prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import itertools from typing import List, Optional, Sequence, Tuple import numpy as np import xarray as xr from starfish.core.types import Coordinates, Features, Number, OverlapStrategy class Area: """ Small class that defines rectangular area of physical space by its bottom left and top right coordinates. """ def __init__(self, min_x: Number, max_x: Number, min_y: Number, max_y: Number): self.min_x = min_x self.max_x = max_x self.min_y = min_y self.max_y = max_y def __eq__(self, other) -> bool: return (self.min_x == other.min_x and self.min_y == other.min_y and self.max_x == other.max_x and self.max_y == other.max_y) @staticmethod def _overlap(area1: "Area", area2: "Area") -> bool: """Return True if two rectangles overlap""" if (area1.max_x < area2.min_x) or (area1.min_x > area2.max_x): return False if (area1.max_y < area2.min_y) or (area1.min_y > area2.max_y): return False return True @staticmethod def find_intersection(area1: "Area", area2: "Area") -> Optional["Area"]: """ Find the overlap area of two rectangles and return as new Area object. If the two rectangles do not overlap, return None. """ if Area._overlap(area1, area2): return Area(max(area1.min_x, area2.min_x), min(area1.max_x, area2.max_x), max(area1.min_y, area2.min_y), min(area1.max_y, area2.max_y)) return None def find_overlaps_of_xarrays(xarrays: Sequence[xr.DataArray]) -> Sequence[Tuple[int, int]]: """ Find all the overlap areas within a list of xarrays. Parameters ---------- xarrays : List[xr.DataArray] The list of xarrays to find overlaps in. Returns ------- List[Tuple[int, int]] : A list of tuples containing the indices of two overlapping IntensityTables. """ all_overlaps: List[Tuple[int, int]] = list() for idx1, idx2 in itertools.combinations(range(len(xarrays)), 2): xr1 = xarrays[idx1] xr2 = xarrays[idx2] area1 = Area(
np.min(xr1[Coordinates.X.value])
numpy.min
""" Numerical python functions written for compatibility with MATLAB commands with the same names. Most numerical python functions can be found in the `numpy` and `scipy` libraries. What remains here is code for performing spectral computations. Spectral functions ------------------ `cohere` Coherence (normalized cross spectral density) `csd` Cross spectral density using Welch's average periodogram `detrend` Remove the mean or best fit line from an array `psd` Power spectral density using Welch's average periodogram `specgram` Spectrogram (spectrum over segments of time) `complex_spectrum` Return the complex-valued frequency spectrum of a signal `magnitude_spectrum` Return the magnitude of the frequency spectrum of a signal `angle_spectrum` Return the angle (wrapped phase) of the frequency spectrum of a signal `phase_spectrum` Return the phase (unwrapped angle) of the frequency spectrum of a signal `detrend_mean` Remove the mean from a line. `detrend_linear` Remove the best fit line from a line. `detrend_none` Return the original line. `stride_windows` Get all windows in an array in a memory-efficient manner """ import functools from numbers import Number import numpy as np from matplotlib import _api import matplotlib.cbook as cbook from matplotlib import docstring def window_hanning(x): """ Return x times the hanning window of len(x). See Also -------- window_none : Another window algorithm. """ return np.hanning(len(x))*x def window_none(x): """ No window function; simply return x. See Also -------- window_hanning : Another window algorithm. """ return x def detrend(x, key=None, axis=None): """ Return x with its trend removed. Parameters ---------- x : array or sequence Array or sequence containing the data. key : {'default', 'constant', 'mean', 'linear', 'none'} or function The detrending algorithm to use. 'default', 'mean', and 'constant' are the same as `detrend_mean`. 'linear' is the same as `detrend_linear`. 'none' is the same as `detrend_none`. The default is 'mean'. See the corresponding functions for more details regarding the algorithms. Can also be a function that carries out the detrend operation. axis : int The axis along which to do the detrending. See Also -------- detrend_mean : Implementation of the 'mean' algorithm. detrend_linear : Implementation of the 'linear' algorithm. detrend_none : Implementation of the 'none' algorithm. """ if key is None or key in ['constant', 'mean', 'default']: return detrend(x, key=detrend_mean, axis=axis) elif key == 'linear': return detrend(x, key=detrend_linear, axis=axis) elif key == 'none': return detrend(x, key=detrend_none, axis=axis) elif callable(key): x = np.asarray(x) if axis is not None and axis + 1 > x.ndim: raise ValueError(f'axis(={axis}) out of bounds') if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1): return key(x) # try to use the 'axis' argument if the function supports it, # otherwise use apply_along_axis to do it try: return key(x, axis=axis) except TypeError: return np.apply_along_axis(key, axis=axis, arr=x) else: raise ValueError( f"Unknown value for key: {key!r}, must be one of: 'default', " f"'constant', 'mean', 'linear', or a function") def detrend_mean(x, axis=None): """ Return x minus the mean(x). Parameters ---------- x : array or sequence Array or sequence containing the data Can have any dimensionality axis : int The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_linear : Another detrend algorithm. detrend_none : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. """ x = np.asarray(x) if axis is not None and axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) return x - x.mean(axis, keepdims=True) def detrend_none(x, axis=None): """ Return x: no detrending. Parameters ---------- x : any object An object containing the data axis : int This parameter is ignored. It is included for compatibility with detrend_mean See Also -------- detrend_mean : Another detrend algorithm. detrend_linear : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. """ return x def detrend_linear(y): """ Return x minus best fit line; 'linear' detrending. Parameters ---------- y : 0-D or 1-D array or sequence Array or sequence containing the data axis : int The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_mean : Another detrend algorithm. detrend_none : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. """ # This is faster than an algorithm based on linalg.lstsq. y = np.asarray(y) if y.ndim > 1: raise ValueError('y cannot have ndim > 1') # short-circuit 0-D array. if not y.ndim: return np.array(0., dtype=y.dtype) x = np.arange(y.size, dtype=float) C = np.cov(x, y, bias=1) b = C[0, 1]/C[0, 0] a = y.mean() - b*x.mean() return y - (b*x + a) def stride_windows(x, n, noverlap=None, axis=0): """ Get all windows of x with length n as a single array, using strides to avoid data duplication. .. warning:: It is not safe to write to the output array. Multiple elements may point to the same piece of memory, so modifying one value may change others. Parameters ---------- x : 1D array or sequence Array or sequence containing the data. n : int The number of data points in each window. noverlap : int, default: 0 (no overlap) The overlap between adjacent windows. axis : int The axis along which the windows will run. References ---------- `stackoverflow: Rolling window for 1D arrays in Numpy? <http://stackoverflow.com/a/6811241>`_ `stackoverflow: Using strides for an efficient moving average filter <http://stackoverflow.com/a/4947453>`_ """ if noverlap is None: noverlap = 0 if noverlap >= n: raise ValueError('noverlap must be less than n') if n < 1: raise ValueError('n cannot be less than 1') x = np.asarray(x) if x.ndim != 1: raise ValueError('only 1-dimensional arrays can be used') if n == 1 and noverlap == 0: if axis == 0: return x[np.newaxis] else: return x[np.newaxis].transpose() if n > x.size: raise ValueError('n cannot be greater than the length of x') # np.lib.stride_tricks.as_strided easily leads to memory corruption for # non integer shape and strides, i.e. noverlap or n. See #3845. noverlap = int(noverlap) n = int(n) step = n - noverlap if axis == 0: shape = (n, (x.shape[-1]-noverlap)//step) strides = (x.strides[0], step*x.strides[0]) else: shape = ((x.shape[-1]-noverlap)//step, n) strides = (step*x.strides[0], x.strides[0]) return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): """ Private helper implementing the common parts between the psd, csd, spectrogram and complex, magnitude, angle, and phase spectrums. """ if y is None: # if y is None use x for y same_data = True else: # The checks for if y is x are so that we can use the same function to # implement the core of psd(), csd(), and spectrogram() without doing # extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x if Fs is None: Fs = 2 if noverlap is None: noverlap = 0 if detrend_func is None: detrend_func = detrend_none if window is None: window = window_hanning # if NFFT is set to None use the whole signal if NFFT is None: NFFT = 256 if mode is None or mode == 'default': mode = 'psd' _api.check_in_list( ['default', 'psd', 'complex', 'magnitude', 'angle', 'phase'], mode=mode) if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is not 'psd'") # Make sure we're dealing with a numpy array. If y and x were the same # object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) if sides is None or sides == 'default': if np.iscomplexobj(x): sides = 'twosided' else: sides = 'onesided' _api.check_in_list(['default', 'onesided', 'twosided'], sides=sides) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x) < NFFT: n = len(x) x = np.resize(x, NFFT) x[n:] = 0 if not same_data and len(y) < NFFT: n = len(y) y = np.resize(y, NFFT) y[n:] = 0 if pad_to is None: pad_to = NFFT if mode != 'psd': scale_by_freq = False elif scale_by_freq is None: scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if sides == 'twosided': numFreqs = pad_to if pad_to % 2: freqcenter = (pad_to - 1)//2 + 1 else: freqcenter = pad_to//2 scaling_factor = 1. elif sides == 'onesided': if pad_to % 2: numFreqs = (pad_to + 1)//2 else: numFreqs = pad_to//2 + 1 scaling_factor = 2. if not np.iterable(window): window = window(np.ones(NFFT, x.dtype)) if len(window) != NFFT: raise ValueError( "The window length must match the data's first dimension") result = stride_windows(x, NFFT, noverlap, axis=0) result = detrend(result, detrend_func, axis=0) result = result * window.reshape((-1, 1)) result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :] freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs] if not same_data: # if same_data is False, mode must be 'psd' resultY = stride_windows(y, NFFT, noverlap) resultY = detrend(resultY, detrend_func, axis=0) resultY = resultY * window.reshape((-1, 1)) resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :] result = np.conj(result) * resultY elif mode == 'psd': result = np.conj(result) * result elif mode == 'magnitude': result = np.abs(result) / np.abs(window).sum() elif mode == 'angle' or mode == 'phase': # we unwrap the phase later to handle the onesided vs. twosided case result = np.angle(result) elif mode == 'complex': result /= np.abs(window).sum() if mode == 'psd': # Also include scaling factors for one-sided densities and dividing by # the sampling frequency, if desired. Scale everything, except the DC # component and the NFFT/2 component: # if we have a even number of frequencies, don't scale NFFT/2 if not NFFT % 2: slc = slice(1, -1, None) # if we have an odd number, just don't scale DC else: slc = slice(1, None, None) result[slc] *= scaling_factor # MATLAB divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: result /= Fs # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. result /= (np.abs(window)**2).sum() else: # In this case, preserve power in the segment, not amplitude result /= np.abs(window).sum()**2 t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs if sides == 'twosided': # center the frequency range at zero freqs = np.roll(freqs, -freqcenter, axis=0) result = np.roll(result, -freqcenter, axis=0) elif not pad_to % 2: # get the last value correctly, it is negative otherwise freqs[-1] *= -1 # we unwrap the phase here to handle the onesided vs. twosided case if mode == 'phase': result = np.unwrap(result, axis=0) return result, freqs, t def _single_spectrum_helper( mode, x, Fs=None, window=None, pad_to=None, sides=None): """ Private helper implementing the commonality between the complex, magnitude, angle, and phase spectrums. """ _api.check_in_list(['complex', 'magnitude', 'angle', 'phase'], mode=mode) if pad_to is None: pad_to = len(x) spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs, detrend_func=detrend_none, window=window, noverlap=0, pad_to=pad_to, sides=sides, scale_by_freq=False, mode=mode) if mode != 'complex': spec = spec.real if spec.ndim == 2 and spec.shape[1] == 1: spec = spec[:, 0] return spec, freqs # Split out these keyword docs so that they can be used elsewhere docstring.interpd.update( Spectral="""\ Fs : float, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, *freqs*, in cycles per time unit. window : callable or ndarray, default: `.window_hanning` A function or a vector of length *NFFT*. To create window vectors see `.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`, `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides : {'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided.""", Single_Spectrum="""\ pad_to : int, optional The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to the length of the input signal (i.e. no padding).""", PSD="""\ pad_to : int, optional The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* NFFT : int, default: 256 The number of data points used in each block for the FFT. A power 2 is most efficient. This should *NOT* be used to get zero padding, or the scaling of the result will be incorrect; use *pad_to* for this instead. detrend : {'none', 'mean', 'linear'} or callable, default: 'none' The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter is a vector, in Matplotlib is it a function. The :mod:`~matplotlib.mlab` module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`. 'linear' calls `.detrend_linear`. scale_by_freq : bool, default: True Whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility.""") @docstring.dedent_interpd def psd(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): r""" Compute the power spectral density. The power spectral density :math:`P_{xx}` by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute :math:`P_{xx}`. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Pxx : 1-D array The values for the power spectrum :math:`P_{xx}` (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxx* References ---------- <NAME> -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- specgram `specgram` differs in the default overlap; in not returning the mean of the segment periodograms; and in returning the times of the segments. magnitude_spectrum : returns the magnitude spectrum. csd : returns the spectral density between two signals. """ Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) return Pxx.real, freqs @docstring.dedent_interpd def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): """ Compute the cross-spectral density. The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. Parameters ---------- x, y : 1-D arrays or sequences Arrays or sequences containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Pxy : 1-D array The values for the cross spectrum :math:`P_{xy}` before scaling (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxy* References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- psd : equivalent to setting ``y = x``. """ if NFFT is None: NFFT = 256 Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode='psd') if Pxy.ndim == 2: if Pxy.shape[1] > 1: Pxy = Pxy.mean(axis=1) else: Pxy = Pxy[:, 0] return Pxy, freqs _single_spectrum_docs = """\ Compute the {quantity} of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data {Spectral} {Single_Spectrum} Returns ------- spectrum : 1-D array The {quantity}. freqs : 1-D array The frequencies corresponding to the elements in *spectrum*. See Also -------- psd Returns the power spectral density. complex_spectrum Returns the complex-valued frequency spectrum. magnitude_spectrum Returns the absolute value of the `complex_spectrum`. angle_spectrum Returns the angle of the `complex_spectrum`. phase_spectrum Returns the phase (unwrapped angle) of the `complex_spectrum`. specgram Can return the complex spectrum of segments within the signal. """ complex_spectrum = functools.partial(_single_spectrum_helper, "complex") complex_spectrum.__doc__ = _single_spectrum_docs.format( quantity="complex-valued frequency spectrum", **docstring.interpd.params) magnitude_spectrum = functools.partial(_single_spectrum_helper, "magnitude") magnitude_spectrum.__doc__ = _single_spectrum_docs.format( quantity="magnitude (absolute value) of the frequency spectrum", **docstring.interpd.params) angle_spectrum = functools.partial(_single_spectrum_helper, "angle") angle_spectrum.__doc__ = _single_spectrum_docs.format( quantity="angle of the frequency spectrum (wrapped phase spectrum)", **docstring.interpd.params) phase_spectrum = functools.partial(_single_spectrum_helper, "phase") phase_spectrum.__doc__ = _single_spectrum_docs.format( quantity="phase of the frequency spectrum (unwrapped phase spectrum)", **docstring.interpd.params) @docstring.dedent_interpd def specgram(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): """ Compute a spectrogram. Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the spectrum of each section is computed. The windowing function window is applied to each segment, and the amount of overlap of each segment is specified with noverlap. Parameters ---------- x : array-like 1-D array or sequence. %(Spectral)s %(PSD)s noverlap : int, default: 128 The number of points of overlap between blocks. mode : str, default: 'psd' What sort of spectrum to use: 'psd' Returns the power spectral density. 'complex' Returns the complex-valued frequency spectrum. 'magnitude' Returns the magnitude spectrum. 'angle' Returns the phase spectrum without unwrapping. 'phase' Returns the phase spectrum with unwrapping. Returns ------- spectrum : array-like 2D array, columns are the periodograms of successive segments. freqs : array-like 1-D array, frequencies corresponding to the rows in *spectrum*. t : array-like 1-D array, the times corresponding to midpoints of segments (i.e the columns in *spectrum*). See Also -------- psd : differs in the overlap and in the return values. complex_spectrum : similar, but with complex valued frequencies. magnitude_spectrum : similar single segment when mode is 'magnitude'. angle_spectrum : similar to single segment when mode is 'angle'. phase_spectrum : similar to single segment when mode is 'phase'. Notes ----- detrend and scale_by_freq only apply when *mode* is set to 'psd'. """ if noverlap is None: noverlap = 128 # default in _spectral_helper() is noverlap = 0 if NFFT is None: NFFT = 256 # same default as in _spectral_helper() if len(x) <= NFFT: _api.warn_external("Only one segment is calculated since parameter " f"NFFT (={NFFT}) >= signal length (={len(x)}).") spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode) if mode != 'complex': spec = spec.real # Needed since helper implements generically return spec, freqs, t @docstring.dedent_interpd def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): r""" The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}} Parameters ---------- x, y Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Cxy : 1-D array The coherence vector. freqs : 1-D array The frequencies for the elements in *Cxy*. See Also -------- :func:`psd`, :func:`csd` : For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x) < 2 * NFFT: raise ValueError( "Coherence is calculated by averaging over *NFFT* length " "segments. Your signal is too short for your choice of *NFFT*.") Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.abs(Pxy) ** 2 / (Pxx * Pyy) return Cxy, f class GaussianKDE: """ Representation of a kernel-density estimate using Gaussian kernels. Parameters ---------- dataset : array-like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `GaussianKDE` instance as only parameter and return a scalar. If None (default), 'scott' is used. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. dim : int Number of dimensions. num_dp : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of *dataset*, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of *covariance*. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) """ # This implementation with minor modification was too good to pass up. # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py def __init__(self, dataset, bw_method=None): self.dataset = np.atleast_2d(dataset) if not np.array(self.dataset).size > 1: raise ValueError("`dataset` input should have multiple elements.") self.dim, self.num_dp = np.array(self.dataset).shape if bw_method is None: pass elif cbook._str_equal(bw_method, 'scott'): self.covariance_factor = self.scotts_factor elif cbook._str_equal(bw_method, 'silverman'): self.covariance_factor = self.silverman_factor elif isinstance(bw_method, Number): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: raise ValueError("`bw_method` should be 'scott', 'silverman', a " "scalar or a callable") # Computes the covariance matrix for each Gaussian kernel using # covariance_factor(). self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self.data_covariance = np.atleast_2d( np.cov( self.dataset, rowvar=1, bias=False)) self.data_inv_cov = np.linalg.inv(self.data_covariance) self.covariance = self.data_covariance * self.factor ** 2 self.inv_cov = self.data_inv_cov / self.factor ** 2 self.norm_factor = (np.sqrt(np.linalg.det(2 * np.pi * self.covariance)) * self.num_dp) def scotts_factor(self): return
np.power(self.num_dp, -1. / (self.dim + 4))
numpy.power
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data =
np.array([])
numpy.array
import numpy as np import sys, os sys.path.append(os.pardir) from activation import * from layers import * from loss import * from collections import OrderedDict class TwoLayerNet: def __init__(self, input_size, hidden_size, output_size, batch_norm=True, weight_decay=0.0, Prelu=False): self.Prelu = Prelu self.weight_decay = weight_decay self.batch_norm = batch_norm self.params = {} self.params['W1'] = np.random.randn(input_size, hidden_size) / np.sqrt(input_size/2.0) self.params['b1'] = np.zeros(hidden_size) if self.batch_norm: self.params['gamma'] = np.random.random(hidden_size) self.params['beta'] =
np.zeros(hidden_size)
numpy.zeros
""" This script laods the MICCAI 2012 Multi-Atlas Challenge dataset stored in nifty format (.nii) and exports the labels to npz files (.mat). Note that labels are converted into 135 categories. """ import os import glob import sys import numpy as np import h5py import nibabel as nib nib.nifti1.Nifti1Header.quaternion_threshold = -1e-6 ignored_labels = list(range(1,4))+list(range(5,11))+list(range(12,23))+list(range(24,30))+[33,34]+[42,43]+[53,54]+list(range(63,69))+[70,74]+\ list(range(80,100))+[110,111]+[126,127]+[130,131]+[158,159]+[188,189] # 47: right hippocampus, 48: left hippocampus, 0: others true_labels = [4, 11, 23, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 69, 71, 72, 73, 75, 76, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207] def label_filtering(lab, ignore_labels, true_labels): for ignored_label in ignored_labels: lab[lab == ignored_label] = 0 for idx, label in enumerate(true_labels): lab[lab==label] = idx+1 return lab def crop_background(signal_volume, label_volume, signal_bg=0, verbose=True): """Crop out the cube in the signal and label volume in which the signal is non-zero""" bg_mask = signal_volume == signal_bg # the following DOES NOT work since there is skull/skin signal labeled as background # bg_mask = label_volume == bg_label # generate 1d arrays over axes which are false iff only bg is found in the corresponding slice only_bg_x = 1-np.all(bg_mask, axis=(1,2)) only_bg_y = 1-np.all(bg_mask, axis=(0,2)) only_bg_z = 1-np.all(bg_mask, axis=(0,1)) # get start and stop index of non bg mri volume x_start = np.argmax(only_bg_x) x_stop = np.argmax(1 - only_bg_x[x_start:]) + x_start x_stop = x_stop if x_start!=x_stop else len(only_bg_x) y_start =
np.argmax(only_bg_y)
numpy.argmax
"""visualization.py: Functions for visualizing MAVE-NN models.""" # Standard imports import numpy as np import pandas as pd import matplotlib.pyplot as plt import re import pdb # Special plotting-related imports #from matplotlib.colors import DivergingNorm, Normalize from matplotlib.colors import TwoSlopeNorm, Normalize from mpl_toolkits.axes_grid1 import make_axes_locatable # MAVE-NN imports from mavenn.src.error_handling import handle_errors, check from mavenn.src.validate import validate_alphabet, validate_seqs @handle_errors def _get_45deg_mesh(mat): """Create X and Y grids rotated -45 degreees.""" # Define rotation matrix theta = -np.pi / 4 R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta),
np.cos(theta)
numpy.cos
from src.SLIPPER import SLIPPER import numpy as np import pandas as pd import pickle from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, precision_score, recall_score MANAGEMENT = 'Light' DISCOUNT = 'DR5' def base_load(data, management, discount, spatial=False): rates = ["NoDR", "DR1", "DR3", "DR5"] if discount not in rates: raise ValueError("Invalid Discount Rate!") salvage = data[ (data['TimeStep'] == 40) & (data['Treatment'] == management) & (data['Salvage'] == 'Salvage') ] salvage = salvage.set_index("StandID") salvage = salvage.fillna(salvage.mean()) no_salvage = data[ (data['TimeStep'] == 40) & (data['Treatment'] == management) & (data['Salvage'] == 'NoSalvage') ] no_salvage = no_salvage.set_index("StandID") no_salvage = no_salvage.fillna(no_salvage.mean()) data = salvage.copy() data['diff'] = data[discount] data['diff'] -= no_salvage[discount] return data, salvage, no_salvage def load_data_class(data, management, discount="DR5", spatial=False): rates = ["NoDR", "DR1", "DR3", "DR5"] data, salvage, no_salvage = base_load(data, management, discount, spatial) data['Voucher'] = (data['diff'] > 0) rates.remove(discount) data = data.drop(rates, axis=1) return data, salvage, no_salvage def get_strategy(data, target, management, discount): # Get Optimal Strategy strategy = target.rename('strategy') salvage = pd.merge(data, strategy, on="StandID") salvage_strategy = salvage[ (salvage['strategy'] == 1) & # flake8 doesn't like True here (salvage['Salvage'] == 'NoSalvage') & (salvage['TimeStep'] == 40) & (salvage['Treatment'] == management) ] print(salvage[ (salvage['strategy'] == 1) & # flake8 doesn't like True here (salvage['Treatment'] == 'Light') & (salvage['TimeStep'] == 40) ]) salvage_strategy = salvage_strategy[discount] no_salvage = pd.merge(data, strategy, on="StandID") no_salvage_strategy = no_salvage[ (no_salvage['strategy'] == 0) & # flake8 doesn't like False here (no_salvage['Salvage'] == 'Salvage') & (no_salvage['TimeStep'] == 40) & (no_salvage['Treatment'] == management) ] no_salvage_strategy = no_salvage_strategy[discount] # Make sure we don't duplicate print(target.shape[0]) print(salvage_strategy.shape[0]) print(no_salvage_strategy.shape[0]) assert target.shape[0] == salvage_strategy.shape[0] + \ no_salvage_strategy.shape[0] # Really make sure we don't duplicate a = salvage_strategy.index.tolist() b = no_salvage_strategy.index.tolist() assert len(set(a).intersection(set(b))) == 0 outcome = (salvage_strategy.sum() + no_salvage_strategy.sum()) \ / target.shape[0] return outcome def run_train(management, discount): MANAGEMENT, DISCOUNT = management, discount all_data = pd.read_csv('updata.csv') data, salvage, no_salvage = load_data_class(all_data, MANAGEMENT, DISCOUNT) X = data.drop(['Voucher', 'Treatment', DISCOUNT, 'diff', 'SiteInd', 'Salvage', 'TimeStep'], axis=1) y = data['Voucher'] index = y.index.to_list() X = X.drop([ 'ACRU_316', 'PIRE_125', 'PIST_129', 'THOC2_241', 'ACPE_315', 'BEPA_375', 'BEPO_379', 'LALA_71', 'FAGR_531', 'PIBA2_105', 'POTR5_746', 'BEAL2_371', 'TSCA_261', 'PRPE2_761', 'ACSA3_318', 'POGR4_743', 'AMELA_356', 'FRAM2_541', 'SOAM3_935', 'ACSP2_319', 'POBA2_741', 'FRNI_543', 'PIAB_91', 'OSVI_701', 'POHE4_744', 'ULAM_972', 'MALUS_660', 'PRSE2_762', 'TIAM_951', 'CRATA_500', 'QURU_833', 'FRPE_544', 'NA_950', 'CACA18_391', 'PRVI_763', 'QUAL_802', 'PIRI_126', 'JUCI_601', 'LITU_621', 'NA_970', 'QUVE_837', 'QUBI_804', 'NA_934', 'NA_920', 'SODE3_937', 'BELE_372', 'X2TB_998', 'X2TE_299', 'NA_740', 'PISY_130', 'PSME_202', 'CACO15_402', 'MAAC_651', 'PRAV_771', 'QUPR2_832', 'JUVI_68', 'JUNI_602', 'LARIX_70', 'ACNE2_313', 'ACSA2_317', 'PODE3_742', 'ALGL2_355', 'ABFR_16', 'PIPU_96', 'NA_10', 'ROPS_901', 'CHTH2_43' ], axis=1) X, y = X.to_numpy(), y.to_numpy() X_train, X_test, y_train, y_test, _, test_index = train_test_split( X, y, index, test_size=0.2, random_state=1) _, _, E_p, y_no_salvage = train_test_split( X, salvage[DISCOUNT], test_size=0.2, random_state=1) _, _, E_n, y_salvage = train_test_split( X, no_salvage[DISCOUNT], test_size=0.2, random_state=1) E_p, E_n = E_p.to_numpy(), E_n.to_numpy() clf = SLIPPER() clf.fit(X_train, y_train) preds = clf.predict(X_test) preds = pd.Series(preds) preds.index = test_index preds = preds.rename_axis('StandID') y_test = pd.Series(y_test) y_test.index = test_index y_test = y_test.rename_axis('StandID') print(
np.unique(preds, return_counts=True)
numpy.unique
""" Testing code. Updated BSM February 2017 """ import sys import os import numpy as np import pytest from pytest import approx from numpy.testing import assert_allclose from scipy.spatial.distance import cdist from pykrige import kriging_tools as kt from pykrige import core from pykrige import variogram_models from pykrige.ok import OrdinaryKriging from pykrige.uk import UniversalKriging from pykrige.ok3d import OrdinaryKriging3D from pykrige.uk3d import UniversalKriging3D BASE_DIR = os.path.abspath(os.path.dirname(__file__)) allclose_pars = {"rtol": 1e-05, "atol": 1e-08} @pytest.fixture def validation_ref(): data = np.genfromtxt(os.path.join(BASE_DIR, "test_data/test_data.txt")) ok_test_answer, ok_test_gridx, ok_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test1_answer.asc"), footer=2 ) uk_test_answer, uk_test_gridx, uk_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test2_answer.asc"), footer=2 ) return ( data, (ok_test_answer, ok_test_gridx, ok_test_gridy), (uk_test_answer, uk_test_gridx, uk_test_gridy), ) @pytest.fixture def sample_data_2d(): data = np.array( [ [0.3, 1.2, 0.47], [1.9, 0.6, 0.56], [1.1, 3.2, 0.74], [3.3, 4.4, 1.47], [4.7, 3.8, 1.74], ] ) gridx = np.arange(0.0, 6.0, 1.0) gridx_2 = np.arange(0.0, 5.5, 0.5) gridy = np.arange(0.0, 5.5, 0.5) xi, yi = np.meshgrid(gridx, gridy) mask = np.array(xi == yi) return data, (gridx, gridy, gridx_2), mask @pytest.fixture def sample_data_3d(): data = np.array( [ [0.1, 0.1, 0.3, 0.9], [0.2, 0.1, 0.4, 0.8], [0.1, 0.3, 0.1, 0.9], [0.5, 0.4, 0.4, 0.5], [0.3, 0.3, 0.2, 0.7], ] ) gridx = np.arange(0.0, 0.6, 0.05) gridy = np.arange(0.0, 0.6, 0.01) gridz = np.arange(0.0, 0.6, 0.1) zi, yi, xi = np.meshgrid(gridz, gridy, gridx, indexing="ij") mask = np.array((xi == yi) & (yi == zi)) return data, (gridx, gridy, gridz), mask def test_core_adjust_for_anisotropy(): X = np.array([[1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]]).T X_adj = core._adjust_for_anisotropy(X, [0.0, 0.0], [2.0], [90.0]) assert_allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0, -1.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([-2.0, 0.0, 2.0, 0.0]), **allclose_pars) def test_core_adjust_for_anisotropy_3d(): # this is a bad examples, as the X matrix is symmetric # and insensitive to transpositions X = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]).T X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [90.0, 0.0, 0.0] ) assert_allclose(X_adj[:, 0], np.array([1.0, 0.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([0.0, 0.0, 2.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([0.0, -2.0, 0.0]), **allclose_pars) X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [0.0, 90.0, 0.0] ) assert_allclose(X_adj[:, 0], np.array([0.0, 0.0, -1.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([0.0, 2.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([2.0, 0.0, 0.0]), **allclose_pars) X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [0.0, 0.0, 90.0] ) assert_allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([-2.0, 0.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([0.0, 0.0, 2.0]), **allclose_pars) def test_core_make_variogram_parameter_list(): # test of first case - variogram_model_parameters is None # function should return None unaffected result = core._make_variogram_parameter_list("linear", None) assert result is None # tests for second case - variogram_model_parameters is dict with pytest.raises(KeyError): core._make_variogram_parameter_list("linear", {"tacos": 1.0, "burritos": 2.0}) result = core._make_variogram_parameter_list( "linear", {"slope": 1.0, "nugget": 0.0} ) assert result == [1.0, 0.0] with pytest.raises(KeyError): core._make_variogram_parameter_list("power", {"frijoles": 1.0}) result = core._make_variogram_parameter_list( "power", {"scale": 2.0, "exponent": 1.0, "nugget": 0.0} ) assert result == [2.0, 1.0, 0.0] with pytest.raises(KeyError): core._make_variogram_parameter_list("exponential", {"tacos": 1.0}) with pytest.raises(KeyError): core._make_variogram_parameter_list( "exponential", {"range": 1.0, "nugget": 1.0} ) result = core._make_variogram_parameter_list( "exponential", {"sill": 5.0, "range": 2.0, "nugget": 1.0} ) assert result == [4.0, 2.0, 1.0] result = core._make_variogram_parameter_list( "exponential", {"psill": 4.0, "range": 2.0, "nugget": 1.0} ) assert result == [4.0, 2.0, 1.0] with pytest.raises(TypeError): core._make_variogram_parameter_list("custom", {"junk": 1.0}) with pytest.raises(ValueError): core._make_variogram_parameter_list("blarg", {"junk": 1.0}) # tests for third case - variogram_model_parameters is list with pytest.raises(ValueError): core._make_variogram_parameter_list("linear", [1.0, 2.0, 3.0]) result = core._make_variogram_parameter_list("linear", [1.0, 2.0]) assert result == [1.0, 2.0] with pytest.raises(ValueError): core._make_variogram_parameter_list("power", [1.0, 2.0]) result = core._make_variogram_parameter_list("power", [1.0, 2.0, 3.0]) assert result == [1.0, 2.0, 3.0] with pytest.raises(ValueError): core._make_variogram_parameter_list("exponential", [1.0, 2.0, 3.0, 4.0]) result = core._make_variogram_parameter_list("exponential", [5.0, 2.0, 1.0]) assert result == [4.0, 2.0, 1.0] result = core._make_variogram_parameter_list("custom", [1.0, 2.0, 3.0]) assert result == [1.0, 2.0, 3] with pytest.raises(ValueError): core._make_variogram_parameter_list("junk", [1.0, 1.0, 1.0]) # test for last case - make sure function handles incorrect # variogram_model_parameters type appropriately with pytest.raises(TypeError): core._make_variogram_parameter_list("linear", "tacos") def test_core_initialize_variogram_model(validation_ref): data, _, _ = validation_ref # Note the variogram_function argument is not a string in real life... # core._initialize_variogram_model also checks the length of input # lists, which is redundant now because the same tests are done in # core._make_variogram_parameter_list with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "linear", [0.0], "linear", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "spherical", [0.0], "spherical", 6, False, "euclidean", ) # core._initialize_variogram_model does also check coordinate type, # this is NOT redundant with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "spherical", [0.0, 0.0, 0.0], "spherical", 6, False, "tacos", ) x = np.array([1.0 + n / np.sqrt(2) for n in range(4)]) y = np.array([1.0 + n / np.sqrt(2) for n in range(4)]) z = np.arange(1.0, 5.0, 1.0) lags, semivariance, variogram_model_parameters = core._initialize_variogram_model( np.vstack((x, y)).T, z, "linear", [0.0, 0.0], "linear", 6, False, "euclidean" ) assert_allclose(lags, np.array([1.0, 2.0, 3.0])) assert_allclose(semivariance, np.array([0.5, 2.0, 4.5])) def test_core_initialize_variogram_model_3d(sample_data_3d): data, _, _ = sample_data_3d # Note the variogram_function argument is not a string in real life... # again, these checks in core._initialize_variogram_model are redundant # now because the same tests are done in # core._make_variogram_parameter_list with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "linear", [0.0], "linear", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "spherical", [0.0], "spherical", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "linear", [0.0, 0.0], "linear", 6, False, "geographic", ) lags, semivariance, variogram_model_parameters = core._initialize_variogram_model( np.vstack( ( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.0, 3.0, 4.0]), ) ).T, np.array([1.0, 2.0, 3.0, 4.0]), "linear", [0.0, 0.0], "linear", 3, False, "euclidean", ) assert_allclose( lags, np.array([np.sqrt(3.0), 2.0 * np.sqrt(3.0), 3.0 * np.sqrt(3.0)]) ) assert_allclose(semivariance, np.array([0.5, 2.0, 4.5])) def test_core_calculate_variogram_model(): res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), "linear", variogram_models.linear_variogram_model, False, ) assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), "linear", variogram_models.linear_variogram_model, True, ) assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.8284271, 5.1961524, 8.0]), "power", variogram_models.power_variogram_model, False, ) assert_allclose(res, np.array([1.0, 1.5, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 1.4142, 1.7321, 2.0]), "power", variogram_models.power_variogram_model, False, ) assert_allclose(res, np.array([1.0, 0.5, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.2642, 1.7293, 1.9004, 1.9634]), "exponential", variogram_models.exponential_variogram_model, False, ) assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([0.5769, 1.4872, 1.9065, 1.9914]), "gaussian", variogram_models.gaussian_variogram_model, False, ) assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([3.33060952, 3.85063879, 3.96667301, 3.99256374]), "exponential", variogram_models.exponential_variogram_model, False, ) assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.60487044, 3.85968813, 3.99694817, 3.99998564]), "gaussian", variogram_models.gaussian_variogram_model, False, ) assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001) def test_core_krige(): # Example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.22], [43.8, 24.6, 2.822]]) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([18.8, 67.9]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(1.6364, rel=1e-4) assert ss == approx(0.4201, rel=1e-4) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([43.8, 24.6]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(2.822, rel=1e-3) assert ss == approx(0.0, rel=1e-3) def test_core_krige_3d(): # Adapted from example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.0, 1.22], [43.8, 24.6, 1.0, 2.822]]) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], np.array([18.8, 67.9, 1.0]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(1.6364, rel=1e-4) assert ss == approx(0.4201, rel=1e-4) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], np.array([43.8, 24.6, 1.0]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(2.822, rel=1e-3) assert ss == approx(0.0, rel=1e-3) def test_non_exact(): # custom data for this test data = np.array( [ [0.0, 0.0, 0.47], [1.5, 1.5, 0.56], [3, 3, 0.74], [4.5, 4.5, 1.47], ] ) # construct grid points so diagonal # is identical to input points gridx = np.arange(0.0, 4.51, 1.5) gridy = np.arange(0.0, 4.51, 1.5) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 5.0], ) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 5.0], exact_values=False, ) z_non_exact, ss_non_exact = ok_non_exact.execute( "grid", gridx, gridy, backend="vectorized" ) in_values = np.diag(z) # test that krig field # at input location are identical # to the inputs themselves with # exact_values == True assert_allclose(in_values, data[:, 2]) # test that krig field # at input location are different # than the inputs themselves # with exact_values == False assert ~np.allclose(in_values, data[:, 2]) # test that off diagonal values are the same # by filling with dummy value and comparing # each entry in array np.fill_diagonal(z, 0.0) np.fill_diagonal(z_non_exact, 0.0) assert_allclose(z, z_non_exact) def test_ok(validation_ref): # Test to compare OK results to those obtained using KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) data, (ok_test_answer, gridx, gridy), _ = validation_ref ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], ) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, ok_test_answer) z, ss = ok.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, ok_test_answer) def test_ok_update_variogram_model(validation_ref): data, (ok_test_answer, gridx, gridy), _ = validation_ref with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="blurg") ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) variogram_model = ok.variogram_model variogram_parameters = ok.variogram_model_parameters anisotropy_scaling = ok.anisotropy_scaling anisotropy_angle = ok.anisotropy_angle with pytest.raises(ValueError): ok.update_variogram_model("blurg") ok.update_variogram_model("power", anisotropy_scaling=3.0, anisotropy_angle=45.0) # TODO: check that new parameters equal to the set parameters assert variogram_model != ok.variogram_model assert not np.array_equal(variogram_parameters, ok.variogram_model_parameters) assert anisotropy_scaling != ok.anisotropy_scaling assert anisotropy_angle != ok.anisotropy_angle def test_ok_get_variogram_points(validation_ref): # Test to compare the variogram of OK results to those obtained using # KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) # Variogram parameters _variogram_parameters = [500.0, 3000.0, 0.0] data, _, (ok_test_answer, gridx, gridy) = validation_ref ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=_variogram_parameters, ) # Get the variogram points from the UniversalKriging instance lags, calculated_variogram = ok.get_variogram_points() # Generate the expected variogram points according to the # exponential variogram model expected_variogram = variogram_models.exponential_variogram_model( _variogram_parameters, lags ) assert_allclose(calculated_variogram, expected_variogram) def test_ok_execute(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], exact_values="blurg") ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], exact_values=False ) with pytest.raises(ValueError): ok.execute("blurg", gridx, gridy) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z, ss = ok.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z1, ss1 = ok_non_exact.execute("grid", gridx, gridy, backend="loop") assert_allclose(z1, z) assert_allclose(ss1, ss) z, ss = ok_non_exact.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) with pytest.raises(IOError): ok.execute("masked", gridx, gridy, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): ok.execute("masked", gridx, gridy, mask=mask, backend="vectorized") z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref.T, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(IOError): ok.execute("masked", gridx, gridy, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): ok.execute("masked", gridx, gridy, mask=mask, backend="loop") z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref, backend="loop") assert np.ma.is_masked(z) assert
np.ma.is_masked(ss)
numpy.ma.is_masked
#! python3 # Multi-atlas segmentation scheme trying to give a platform to do tests before translating them to the plugin. from __future__ import print_function from GetMetricFromElastixRegistration import GetFinalMetricFromElastixLogFile from MultiAtlasSegmentation import MultiAtlasSegmentation from ApplyBiasCorrection import ApplyBiasCorrection import SimpleITK as sitk from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets import SitkImageManipulation as sitkIm import winshell import numpy as np import matplotlib.pyplot as plt import sys import os # DATA FOLDERS: case = "107" basePath = "D:\Martin\ImplantMigrationStudy\\" + case + "\\" postopImageNames = basePath + case + '_Migration_ContralateralPostopHemiPelvis.mhd' followupImageNames = basePath + case + '_Migration_ContralateralFollowupHemiPelvis.mhd' #postopImageNames = basePath + case + '_Migration_PostopPelvis.mhd' #followupImageNames = basePath + case + '_Migration_FollowupPelvis.mhd' #postopImageNames = basePath + case + '_Migration_PostopBone.mhd' #followupImageNames = basePath + case + '_Migration_FollowupBone.mhd' # READ DATA postopImage = sitk.ReadImage(postopImageNames) # This will be the reference followupImage = sitk.ReadImage(followupImageNames) # This will be the segmented # BINARIZE THE IMAGES: postopImage = sitk.Greater(postopImage, 0) followupImage = sitk.Greater(followupImage, 0) # HOW OVERLAP IMAGES slice_number = round(postopImage.GetSize()[1]/2) #DisplayWithOverlay(image, segmented, slice_number, window_min, window_max) sitkIm.DisplayWithOverlay(postopImage[:,slice_number,:], followupImage[:,slice_number,:], 0, 1) #interact(sitkIm.DisplayWithOverlay, slice_number = (5), image = fixed(postopImage), segmented = fixed(followupImage), # window_min = fixed(0), window_max=fixed(1)); # Get the image constrained by both bounding boxes: #labelStatisticFilter = sitk.LabelShapeStatisticsImageFilter() #labelStatisticFilter.Execute(postopImage) #postopBoundingBox = np.array(labelStatisticFilter.GetBoundingBox(1)) #labelStatisticFilter.Execute(followupImage) #followupBoundingBox = np.array(labelStatisticFilter.GetBoundingBox(1)) #minimumStart = np.minimum(postopBoundingBox[0:3], followupBoundingBox[0:3]+ 20) # 50 is to give an extra margin #minimumStop = np.minimum(postopBoundingBox[0:3]+postopBoundingBox[3:6], followupBoundingBox[0:3]+followupBoundingBox[3:6]- 20) #minimumBoxSize = minimumStop - minimumStart #postopImage = postopImage[minimumStart[0]:minimumStop[0], minimumStart[1]:minimumStop[1], minimumStart[2]:minimumStop[2]] #followupImage = followupImage[minimumStart[0]:minimumStop[0], minimumStart[1]:minimumStop[1], minimumStart[2]:minimumStop[2]] # Another approach is to get the bounding box of the intersection: postopAndFollowupImage = sitk.And(postopImage, followupImage) labelStatisticFilter = sitk.LabelShapeStatisticsImageFilter() labelStatisticFilter.Execute(postopAndFollowupImage) bothBoundingBox = np.array(labelStatisticFilter.GetBoundingBox(1)) postopImage = postopImage[bothBoundingBox[0]:bothBoundingBox[0]+bothBoundingBox[3], bothBoundingBox[1]:bothBoundingBox[1]+bothBoundingBox[4], bothBoundingBox[2]+20:bothBoundingBox[2]++bothBoundingBox[5]-20] followupImage = followupImage[bothBoundingBox[0]:bothBoundingBox[0]+bothBoundingBox[3], bothBoundingBox[1]:bothBoundingBox[1]+bothBoundingBox[4], bothBoundingBox[2]+20:bothBoundingBox[2]+bothBoundingBox[5]-20] #Display reduced image: slice_number = round(postopImage.GetSize()[1]*1/3) sitkIm.DisplayWithOverlay(postopImage[:,slice_number,:], followupImage[:,slice_number,:], 0, 1) #sitk.Get #postopZ = permute(sum(sum(postopImage))>0, [3 1 2]); #followupZ = permute(sum(sum(followupImage))>0, [3 1 2]); #bothZ = find(postopZ&followupZ > 0); #% Remove 10 slices each side: #bothZ(1:10) = []; bothZ(end-10:end) = []; # GET SEGMENTATION PERFORMANCE BASED ON SURFACES: # init signed mauerer distance as reference metrics reference_distance_map = sitk.Abs(sitk.SignedMaurerDistanceMap(postopImage, squaredDistance=False, useImageSpacing=True)) # Get the reference surface: reference_surface = sitk.LabelContour(postopImage) statistics_image_filter = sitk.StatisticsImageFilter() # Get the number of pixels in the reference surface by counting all pixels that are 1. statistics_image_filter.Execute(reference_surface) num_reference_surface_pixels = int(statistics_image_filter.GetSum()) # Get the surface (contour) of the segmented image: segmented_distance_map = sitk.Abs(sitk.SignedMaurerDistanceMap(followupImage, squaredDistance=False, useImageSpacing=True)) segmented_surface = sitk.LabelContour(followupImage) # Get the number of pixels in the reference surface by counting all pixels that are 1. statistics_image_filter.Execute(segmented_surface) num_segmented_surface_pixels = int(statistics_image_filter.GetSum()) label_intensity_statistics_filter = sitk.LabelIntensityStatisticsImageFilter() label_intensity_statistics_filter.Execute(segmented_surface, reference_distance_map) # Hausdorff distance: hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter() hausdorff_distance_filter.Execute(postopImage, followupImage) #All the other metrics: # Multiply the binary surface segmentations with the distance maps. The resulting distance # maps contain non-zero values only on the surface (they can also contain zero on the surface) seg2ref_distance_map = reference_distance_map * sitk.Cast(segmented_surface, sitk.sitkFloat32) ref2seg_distance_map = segmented_distance_map * sitk.Cast(reference_surface, sitk.sitkFloat32) # Get all non-zero distances and then add zero distances if required. seg2ref_distance_map_arr = sitk.GetArrayViewFromImage(seg2ref_distance_map) seg2ref_distances = list(seg2ref_distance_map_arr[seg2ref_distance_map_arr != 0]) seg2ref_distances = seg2ref_distances + \ list(np.zeros(num_segmented_surface_pixels - len(seg2ref_distances))) ref2seg_distance_map_arr = sitk.GetArrayViewFromImage(ref2seg_distance_map) ref2seg_distances = list(ref2seg_distance_map_arr[ref2seg_distance_map_arr != 0]) ref2seg_distances = ref2seg_distances + \ list(np.zeros(num_reference_surface_pixels - len(ref2seg_distances))) all_surface_distances = seg2ref_distances + ref2seg_distances # The maximum of the symmetric surface distances is the Hausdorff distance between the surfaces. In # general, it is not equal to the Hausdorff distance between all voxel/pixel points of the two # segmentations, though in our case it is. More on this below. #hausdorff_distance = hausdorff_distance_filter.GetHausdorffDistance() #max_surface_distance = label_intensity_statistics_filter.GetMaximum(1) #avg_surface_distance = label_intensity_statistics_filter.GetMean(1) #median_surface_distance = label_intensity_statistics_filter.GetMedian(1) #std_surface_distance = label_intensity_statistics_filter.GetStandardDeviation(1) hausdorff_distance = hausdorff_distance_filter.GetHausdorffDistance() avg_surface_distance = np.mean(all_surface_distances) max_surface_distance = np.max(all_surface_distances) median_surface_distance = np.median(all_surface_distances) std_surface_distance =
np.std(all_surface_distances)
numpy.std
# -*- coding: utf-8 -*- """Orientation models.""" import numpy as np from .closures import compute_closure def jeffery_ode(a, t, xi, L, closure="IBOF", **kwargs): """ODE describing Jeffery's model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME> 'The motion of ellipsoidal particles immersed in a viscous fluid', Proceedings of the Royal Society A, 1922. https://doi.org/10.1098/rspa.1922.0078 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) return dadt.ravel() def folgar_tucker_ode(a, t, xi, L, Ci=0.0, closure="IBOF", **kwargs): """ODE describing the Folgar-Tucker model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME> III, 'Orientation behavior of fibers in concentrated suspensions', Journal of Reinforced Plastic Composites 3, 98-119, 1984. https://doi.org/10.1177%2F073168448400300201 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) + 2 * Ci * G * (delta - 3 * a) ) return dadt.ravel() def maier_saupe_ode(a, t, xi, L, Ci=0.0, U0=0.0, closure="IBOF", **kwargs): """ODE using Folgar-Tucker constant and Maier-Saupe potential. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.1). U0 : float Maier-Saupe Potential (in 3D stable for y U0 < 8 Ci). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, <NAME>, 'Comparative numerical study of two concentrated fiber suspension models', Journal of Non-Newtonian Fluid Mechanics 165, 764-781, 2010. https://doi.org/10.1016/j.jnnfm.2010.04.001 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) + 2 * G * ( Ci * (delta - 3 * a) + U0 * (np.einsum("ik,kj->ij", a, a) - np.einsum("ijkl,kl->ij", A, a)) ) ) return dadt.ravel() def iard_ode(a, t, xi, L, Ci=0.0, Cm=0.0, closure="IBOF", **kwargs): """ODE describing iARD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Cm : float Anisotropy factor (0 < Cm < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'An objective tensor to predict anisotropic fiber orientation in concentrated suspensions', Journal of Rheology 60, 215, 2016. https://doi.org/10.1122/1.4939098 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) D2 = np.einsum("ik,kj->ij", D, D) D2_norm = np.sqrt(1.0 / 2.0 * np.einsum("ij,ij", D2, D2)) Dr = Ci * (delta - Cm * D2 / D2_norm) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_iard = G * ( 2 * Dr - 2 * np.trace(Dr) * a - 5 * np.einsum("ik,kj->ij", Dr, a) - 5 * np.einsum("ik,kj->ij", a, Dr) + 10 * np.einsum("ijkl,kl->ij", A, Dr) ) dadt = dadt_HD + dadt_iard return dadt.ravel() def iardrpr_ode( a, t, xi, L, Ci=0.0, Cm=0.0, alpha=0.0, beta=0.0, closure="IBOF", **kwargs ): """ODE describing iARD-RPR model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Cm : float Anisotropy factor (0 < Cm < 1). alpha : float Retardance rate (0 < alpha < 1). beta : float Retardance tuning factor (0< beta < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'An objective tensor to predict anisotropic fiber orientation in concentrated suspensions', Journal of Rheology 60, 215, 2016. https://doi.org/10.1122/1.4939098 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) D2 = np.einsum("ik,kj->ij", D, D) D2_norm = np.sqrt(1.0 / 2.0 * np.einsum("ij,ij", D2, D2)) Dr = Ci * (delta - Cm * D2 / D2_norm) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2.0 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_iard = G * ( 2.0 * Dr - 2.0 * np.trace(Dr) * a - 5.0 * np.einsum("ik,kj->ij", Dr, a) - 5.0 * np.einsum("ik,kj->ij", a, Dr) + 10.0 * np.einsum("ijkl,kl->ij", A, Dr) ) dadt_temp = dadt_HD + dadt_iard # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] # Estimation of eigenvalue rates (rotated back) dadt_diag = np.einsum("ik, kl, lj->ij", np.transpose(R), dadt_temp, R) lbd0 = dadt_diag[0, 0] lbd1 = dadt_diag[1, 1] lbd2 = dadt_diag[2, 2] # Computation of IOK tensor by rotation IOK = np.zeros((3, 3)) IOK[0, 0] = alpha * (lbd0 - beta * (lbd0 ** 2.0 + 2.0 * lbd1 * lbd2)) IOK[1, 1] = alpha * (lbd1 - beta * (lbd1 ** 2.0 + 2.0 * lbd0 * lbd2)) IOK[2, 2] = alpha * (lbd2 - beta * (lbd2 ** 2.0 + 2.0 * lbd0 * lbd1)) dadt_rpr = -np.einsum("ik, kl, lj->ij", R, IOK, np.transpose(R)) dadt = dadt_temp + dadt_rpr return dadt.ravel() def mrd_ode( a, t, xi, L, Ci=0.0, D1=1.0, D2=0.8, D3=0.15, closure="IBOF", **kwargs ): """ODE describing MRD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). D1 : type Anisotropy factors (D1 > 0). D2 : type Anisotropy factors (D2 > 0). D3 : type Anisotropy factors (D3 > 0). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, <NAME> and <NAME>, 'Using New Anisotropic Rotational Diffusion Model To Improve Prediction Of Short Fibers in Thermoplastic InjectionMolding', ANTEC, Orlando, 2018. """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) C_hat = np.array([[D1, 0.0, 0.0], [0.0, D2, 0.0], [0.0, 0.0, D3]]) # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] C = Ci * np.einsum("ij,jk,kl->il", R, C_hat, np.transpose(R)) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_mrd = G * ( 2 * C - 2 * np.trace(C) * a - 5 * np.einsum("ik,kj->ij", C, a) - 5 * np.einsum("ik,kj->ij", a, C) + 10 * np.einsum("ijkl,kl->ij", A, C) ) dadt = dadt_HD + dadt_mrd return dadt.ravel() def pard_ode(a, t, xi, L, Ci=0.0, Omega=0.0, closure="IBOF", **kwargs): """ODE describing pARD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Omega : type Anisotropy factor (0.5 < Omega < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions', Journal of Rheology 62, 313, 2017. https://doi.org/10.1122/1.4998520 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) C_hat = np.array( [[1.0, 0.0, 0.0], [0.0, Omega, 0.0], [0.0, 0.0, 1.0 - Omega]] ) # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] C = Ci * np.einsum("ij,jk,kl->il", R, C_hat, np.transpose(R)) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_pard = G * ( 2 * C - 2 * np.trace(C) * a - 5 * np.einsum("ik,kj->ij", C, a) - 5 * np.einsum("ik,kj->ij", a, C) + 10 * np.einsum("ijkl,kl->ij", A, C) ) dadt = dadt_HD + dadt_pard return dadt.ravel() def pardrpr_ode( a, t, xi, L, Ci=0.0, Omega=0.0, alpha=0.0, closure="IBOF", **kwargs ): """ODE describing pARD-RPR model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Omega : type Anisotropy factor (0.5 < Omega < 1). alpha : float Retardance rate (0 < alpha < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions', Journal of Rheology 62, 313, 2017. https://doi.org/10.1122/1.4998520 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) C_hat = np.array( [[1.0, 0.0, 0.0], [0.0, Omega, 0.0], [0.0, 0.0, 1.0 - Omega]] ) # Spectral Decomposition eigenValues, eigenVectors = np.linalg.eig(a) idx = eigenValues.argsort()[::-1] R = eigenVectors[:, idx] C = Ci * np.einsum("ij,jk,kl->il", R, C_hat, np.transpose(R)) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_pard = G * ( 2 * C - 2 * np.trace(C) * a - 5 * np.einsum("ik,kj->ij", C, a) - 5 * np.einsum("ik,kj->ij", a, C) + 10 * np.einsum("ijkl,kl->ij", A, C) ) dadt_temp = dadt_HD + dadt_pard # Estimation of eigenvalue rates (rotated back) dadt_diag = np.einsum("ik, kl, lj->ij", np.transpose(R), dadt_temp, R) lbd0 = dadt_diag[0, 0] lbd1 = dadt_diag[1, 1] lbd2 = dadt_diag[2, 2] # Computation of IOK tensor by rotation IOK = np.zeros((3, 3)) IOK[0, 0] = alpha * lbd0 IOK[1, 1] = alpha * lbd1 IOK[2, 2] = alpha * lbd2 dadt_rpr = -np.einsum("ik, kl, lj->ij", R, IOK, np.transpose(R)) dadt = dadt_temp + dadt_rpr return dadt.ravel() def rsc_ode(a, t, xi, L, Ci=0.0, kappa=1.0, closure="IBOF", **kwargs): """ODE describing RSC model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). kappa : float Strain reduction factor (0 < kappa < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, and <NAME>, 'An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence', Journal of Rheology 52, 1179, 2008. https://doi.org/10.1122/1.2946437 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) w, v = np.linalg.eig(a) L = ( w[0] * np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + w[1] * np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + w[2] * np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) M = ( np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) tensor4 = A + (1.0 - kappa) * (L - np.einsum("ijmn,mnkl->ijkl", M, A)) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", tensor4, D) ) + 2 * kappa * Ci * G * (delta - 3 * a) ) return dadt.ravel() def ard_rsc_ode( a, t, xi, L, b1=0.0, kappa=1.0, b2=0, b3=0, b4=0, b5=0, closure="IBOF", **kwargs ): """ODE describing ARD-RSC model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. b1 : float First parameter of rotary diffusion tensor (0 < b1 < 0.1). kappa : float Strain reduction factor (0 < kappa < 1). b2 : type Second parameter of rotary diffusion tensor. b3 : type Third parameter of rotary diffusion tensor. b4 : type Fourth parameter of rotary diffusion tensor. b5 : type Fith parameter of rotary diffusion tensor. closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, 'An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics', Journal of Non-Newtonian Fluid Mechanics 156, 165-176, 2009. https://doi.org/10.1016/j.jnnfm.2008.08.002 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) w, v = np.linalg.eig(a) L = ( w[0] * np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + w[1] * np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + w[2] * np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) M = ( np.einsum("i,j,k,l->ijkl", v[:, 0], v[:, 0], v[:, 0], v[:, 0]) + np.einsum("i,j,k,l->ijkl", v[:, 1], v[:, 1], v[:, 1], v[:, 1]) + np.einsum("i,j,k,l->ijkl", v[:, 2], v[:, 2], v[:, 2], v[:, 2]) ) if G > 0.0: C = ( b1 * delta + b2 * a + b3 * np.einsum("ik,kj->ij", a, a) + b4 * D / G + b5 * np.einsum("ik,kj->ij", D, D) / (G * G) ) else: C = np.eye(3) tensor4 = A + (1.0 - kappa) * (L - np.einsum("ijmn,mnkl->ijkl", M, A)) dadt = (
np.einsum("ik,kj->ij", W, a)
numpy.einsum
"""von-Mises-Fisher complex-Angular-Centric-Gaussian mixture model This is a specific mixture model to integrate DC and spatial observations. It does and will not support independent dimensions. This also explains, why concrete variable names (i.e. F, T, embedding) are used instead of unnamed independent axes. @article{Drude2019Integration, title={Integration of neural networks and probabilistic spatial models for acoustic blind source separation}, author={<NAME> <NAME>}, journal={IEEE Journal of Selected Topics in Signal Processing}, year={2019}, publisher={IEEE} } """ from operator import xor import numpy as np from dataclasses import dataclass from pb_bss.distribution import ( ComplexAngularCentralGaussian, ComplexAngularCentralGaussianTrainer, ) from pb_bss.distribution import VonMisesFisher from pb_bss.distribution import VonMisesFisherTrainer from pb_bss.distribution.mixture_model_utils import ( log_pdf_to_affiliation, log_pdf_to_affiliation_for_integration_models_with_inline_pa, ) from pb_bss.distribution.utils import _ProbabilisticModel from pb_bss.utils import unsqueeze @dataclass class VMFCACGMM(_ProbabilisticModel): weight: np.array # Shape (), (K,), (F, K), (T, K) weight_constant_axis: tuple vmf: VonMisesFisher cacg: ComplexAngularCentralGaussian spatial_weight: float spectral_weight: float def predict(self, observation, embedding): assert np.iscomplexobj(observation), observation.dtype assert np.isrealobj(embedding), embedding.dtype observation = observation / np.maximum(
np.linalg.norm(observation, axis=-1, keepdims=True)
numpy.linalg.norm
import os import scipy import heapq import random import warnings import collections import numpy as np import seaborn as sns import networkx as nx import matplotlib.pyplot as plt from PIL import Image from sklearn.metrics import f1_score from scipy.optimize import linear_sum_assignment import torch from torch.utils.data import DataLoader import dgl from model import get_model from dataset import load_data warnings.filterwarnings("ignore", category=Warning) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def set_seed(seed): np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False dgl.random.seed(seed) def evaluate_f1(logits, labels): y_pred = torch.where(logits > 0.0, torch.ones_like(logits), torch.zeros_like(logits)) y_pred = y_pred.detach().cpu().numpy() y_true = labels.detach().cpu().numpy() return f1_score(y_true, y_pred, average='micro') def plot_feature_att(target, score, path): f = plt.figure(figsize=(4, 1)) ax1 = plt.subplot(2, 1, 1) sns.heatmap(target, cmap='Blues', cbar=False, vmin=0.0, vmax=1.0) ax1.spines['top'].set_visible(True) ax1.spines['right'].set_visible(True) ax1.spines['bottom'].set_visible(True) ax1.spines['left'].set_visible(True) plt.xticks([]) plt.yticks([]) ax2 = plt.subplot(2, 1, 2) sns.heatmap(score, cmap='Blues', cbar=False, vmin=0.0, vmax=1.0, cbar_kws={"orientation": "horizontal"}) ax2.spines['top'].set_visible(True) ax2.spines['right'].set_visible(True) ax2.spines['bottom'].set_visible(True) ax2.spines['left'].set_visible(True) plt.xticks([]) plt.yticks([]) plt.savefig(path, format='png', dpi=300, bbox_inches='tight') plt.close() def get_att(score, idx, feature_num, selected_num): src = np.zeros((score.shape[0], )) index = heapq.nlargest(selected_num, range(len(score)), score.take) src[index] = 1.0 out = np.where(src[idx*feature_num:(idx+1)*feature_num] == 1.0)[0].shape[0] return out def evaluate_att(score, param, path, plot): num_graph = param['num_graph'] feature_num = param['feature_num'] selected_num = param['selected_num'] cost = np.zeros((num_graph, num_graph)) for i in range(num_graph): for j in range(num_graph): cost[i, j] = get_att(score[i], j, feature_num, selected_num) row_ind, col_ind = linear_sum_assignment(feature_num-cost) out = cost[row_ind, col_ind].sum() if plot: sort_index = np.arange(num_graph * feature_num) np.random.shuffle(sort_index) for i in range(num_graph): target = np.zeros((1, score.shape[1])) target[:, i*feature_num:(i+1)*feature_num] = 1 target = target[:, sort_index] src = np.zeros((score.shape[1], )) feat_index = np.where(col_ind == i)[0][0] index = heapq.nlargest(selected_num, range(len(score[feat_index])), score[feat_index].take) src[index] = 1.0 n_min = np.min(score[feat_index, index]) n_max = np.max(score[feat_index, index]) att_score = (score[feat_index] - n_min) / (n_max - n_min) * 0.5 + 0.5 att_score = (src * att_score).reshape((1, score.shape[1])) att_score = att_score[:, sort_index] os.makedirs(path, exist_ok=True) plot_feature_att(target, att_score, path='{}Feature_Factor_{}.png'.format(path, i)) return out def collate(samples): graphs, labels, gt_adjs = map(list, zip(*samples)) batched_graphs = dgl.batch(graphs) return batched_graphs, torch.cat(tuple(labels), 0), gt_adjs def dgl_to_adj(dgl_graph): adjs_list = [] for i in range(16): if f'factor_{i}' not in dgl_graph.edata: break srt, dst = dgl_graph.edges() esge_weights = dgl_graph.edata[f'factor_{i}'].squeeze() srt, dst = srt.detach().cpu().numpy(), dst.detach().cpu().numpy() esge_weights = esge_weights.detach().cpu().numpy() num_node = dgl_graph.number_of_nodes() adjs = np.zeros((num_node, num_node)) adjs[srt, dst] = esge_weights adjs += np.transpose(adjs) adjs /= 2.0 adjs_list.append(adjs) return adjs_list def translate_gt_graph_to_adj(gt_graph): gt_adjs = [] gt_g_list = dgl.unbatch(gt_graph) for gt_g in gt_g_list: gt_list = [] gt_ids = [] n_node = gt_g.number_of_nodes() srt, dst = gt_g.edges() srt, dst = srt.detach().cpu().numpy(), dst.detach().cpu().numpy() edge_factor = gt_g.edata['feat'].detach().cpu().numpy() assert srt.shape[0] == edge_factor.shape[0] for edge_id in set(edge_factor): org_g =
np.zeros((n_node, n_node))
numpy.zeros
""" predict_cnn_mnist.py Predict MNIST images using a trained neural network. ECE196 Face Recognition Project Author: <NAME> """ # TODO: Import other layers as necessary. (Conv2D, MaxPooling2D) from keras.models import load_model from keras.datasets import mnist from keras.utils import to_categorical import keras import numpy as np import cv2 # Proccess the data from (28,28) to (32,32) def procces_image(img): proccesed_image = cv2.resize(img, (32,32)) return proccesed_image def _main(args): # Load MNIST dataset. (x_train, y_train), (x_test, y_test) = mnist.load_data() # Resize the images x_train = np.array(map(procces_image, x_train)) x_test = np.array(map(procces_image, x_test)) # Reshape to fit model x_train = np.reshape(x_train,(60000,32,32,1)) x_test = np.reshape(x_test,(10000,32,32,1)) print("Resized images to {}".format(x_train.shape)) # One hot encode labels. y_train = to_categorical(y_train) y_test = to_categorical(y_test) # Reshape to fit model y_train = np.reshape(y_train,(60000,1,1,10)) y_test =
np.reshape(y_test,(10000,1,1,10))
numpy.reshape
""" Created on Thu Jan 26 17:04:11 2017 @author: <NAME>, <EMAIL> """ #%matplotlib inline import numpy as np import pandas as pd import dicom import os import scipy.ndimage as ndimage import matplotlib.pyplot as plt import scipy.ndimage # added for scaling import cv2 import time import glob from skimage import measure, morphology, segmentation import SimpleITK as sitk RESIZE_SPACING = [2,2,2] # z, y, x (x & y MUST be the same) RESOLUTION_STR = "2x2x2" img_rows = 448 img_cols = 448 # global values DO_NOT_USE_SEGMENTED = True #STAGE = "stage1" STAGE_DIR_BASE = "../input/%s/" # on one cluster we had input_shared LUNA_MASKS_DIR = "../luna/data/original_lung_masks/" luna_subset = 0 # initial LUNA_BASE_DIR = "../luna/data/original_lungs/subset%s/" # added on AWS; data as well LUNA_DIR = LUNA_BASE_DIR % luna_subset CSVFILES = "../luna/data/original_lungs/CSVFILES/%s" LUNA_ANNOTATIONS = CSVFILES % "annotations.csv" LUNA_CANDIDATES = CSVFILES % "candidates.csv" # Load the scans in given folder path (loads the most recent acquisition) def load_scan(path): slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] #slices.sort(key = lambda x: int(x.InstanceNumber)) acquisitions = [x.AcquisitionNumber for x in slices] vals, counts = np.unique(acquisitions, return_counts=True) vals = vals[::-1] # reverse order so the later acquisitions are first (the np.uniques seems to always return the ordered 1 2 etc. counts = counts[::-1] ## take the acquistions that has more entries; if these are identical take the later entrye acq_val_sel = vals[np.argmax(counts)] ##acquisitions = sorted(np.unique(acquisitions), reverse=True) if len(vals) > 1: print ("WARNING ##########: MULTIPLE acquisitions & counts, acq_val_sel, path: ", vals, counts, acq_val_sel, path) slices2= [x for x in slices if x.AcquisitionNumber == acq_val_sel] slices = slices2 ## ONE path includes 2 acquisitions (2 sets), take the latter acquiisiton only whihch cyupically is better than the first/previous ones. ## example of the '../input/stage1/b8bb02d229361a623a4dc57aa0e5c485' #slices.sort(key = lambda x: int(x.ImagePositionPatient[2])) # from v 8, BUG should be float slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) # from v 9 try: slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2]) except: slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation) for s in slices: s.SliceThickness = slice_thickness return slices def get_3d_data_slices(slices): # get data in Hunsfield Units slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) # from v 9 image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) # ensure int16 (it may be here uint16 for some images ) image[image == -2000] = 0 #correcting cyindrical bound entrioes to 0 # Convert to Hounsfield units (HU) # The intercept is usually -1024 for slice_number in range(len(slices)): # from v 8 intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: # added 16 Jan 2016, evening image[slice_number] = slope * image[slice_number].astype(np.float64) image[slice_number] = image[slice_number].astype(np.int16) image[slice_number] += np.int16(intercept) return np.array(image, dtype=np.int16) def get_pixels_hu(slices): image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) # Set outside-of-scan pixels to 0 # The intercept is usually -1024, so air is approximately 0 image[image == -2000] = 0 # Convert to Hounsfield units (HU) ### slope can differ per slice -- so do it individually (case in point black_tset, slices 95 vs 96) ### Changes/correction - 31.01.2017 for slice_number in range(len(slices)): intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: image[slice_number] = slope * image[slice_number].astype(np.float64) image[slice_number] = image[slice_number].astype(np.int16) image[slice_number] += np.int16(intercept) return np.array(image, dtype=np.int16) MARKER_INTERNAL_THRESH = -400 MARKER_FRAME_WIDTH = 9 # 9 seems OK for the half special case ... def generate_markers(image): #Creation of the internal Marker useTestPlot = False if useTestPlot: timg = image plt.imshow(timg, cmap='gray') plt.show() add_frame_vertical = True if add_frame_vertical: # add frame for potentially closing the lungs that touch the edge, but only vertically fw = MARKER_FRAME_WIDTH # frame width (it looks that 2 is the minimum width for the algorithms implemented here, namely the first 2 operations for the marker_internal) xdim = image.shape[1] #ydim = image.shape[0] img2 = np.copy(image) #y3 = ydim // 3 img2 [:, 0] = -1024 img2 [:, 1:fw] = 0 img2 [:, xdim-1:xdim] = -1024 img2 [:, xdim-fw:xdim-1] = 0 marker_internal = img2 < MARKER_INTERNAL_THRESH else: marker_internal = image < MARKER_INTERNAL_THRESH # was -400 useTestPlot = False if useTestPlot: timg = marker_internal plt.imshow(timg, cmap='gray') plt.show() correct_edges2 = False ## NOT a good idea - no added value if correct_edges2: marker_internal[0,:] = 0 marker_internal[:,0] = 0 #marker_internal[:,1] = True #marker_internal[:,2] = True marker_internal[511,:] = 0 marker_internal[:,511] = 0 marker_internal = segmentation.clear_border(marker_internal, buffer_size=0) marker_internal_labels = measure.label(marker_internal) areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker external_a = ndimage.binary_dilation(marker_internal, iterations=10) # was 10 external_b = ndimage.binary_dilation(marker_internal, iterations=55) # was 55 marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed # Some of the starting Code is taken from ArnavJain, since it's more readable then my own def generate_markers_3d(image): #Creation of the internal Marker marker_internal = image < -400 marker_internal_labels = np.zeros(image.shape).astype(np.int16) for i in range(marker_internal.shape[0]): marker_internal[i] = segmentation.clear_border(marker_internal[i]) marker_internal_labels[i] = measure.label(marker_internal[i]) #areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas = [r.area for i in range(marker_internal.shape[0]) for r in measure.regionprops(marker_internal_labels[i])] for i in range(marker_internal.shape[0]): areas = [r.area for r in measure.regionprops(marker_internal_labels[i])] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels[i]): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[i, coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker # 3x3 structuring element with connectivity 1, used by default struct1 = ndimage.generate_binary_structure(2, 1) struct1 = struct1[np.newaxis,:,:] # expand by z axis . external_a = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=10) external_b = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=55) marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed BINARY_CLOSING_SIZE = 7 #was 7 before final; 5 for disk seems sufficient - for safety let's go with 6 or even 7 def seperate_lungs(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512))) ### was -2000 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def rescale_n(n,reduce_factor): return max( 1, int(round(n / reduce_factor))) def seperate_lungs_cv2(image): # for increased speed #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #image_size = image.shape[0] reduce_factor = 512 / image.shape[0] #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) useTestPlot = False if useTestPlot: timg = sobel_gradient plt.imshow(timg, cmap='gray') plt.show() #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) if useTestPlot: timg = marker_external plt.imshow(timg, cmap='gray') plt.show() #Reducing the image created by the Watershed algorithm to its outline #wsize = rescale_n(3,reduce_factor) # THIS IS TOO SMALL, dynamically adjusting the size for the watersehed algorithm outline = ndimage.morphological_gradient(watershed, size=(3,3)) # original (3,3), (wsize, wsize) is too small to create an outline outline = outline.astype(bool) outline_u = outline.astype(np.uint8) #added #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] use_reduce_factor = True if use_reduce_factor: blackhat_struct = ndimage.iterate_structure(blackhat_struct, rescale_n(8,reduce_factor)) # dyanmically adjust the number of iterattions; original was 8 else: blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct_cv2 = blackhat_struct.astype(np.uint8) #Perform the Black-Hat #outline += ndimage.black_tophat(outline, structure=blackhat_struct) # original slow #outline1 = outline + (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) #outline2 = outline + ndimage.black_tophat(outline, structure=blackhat_struct) #np.array_equal(outline1,outline2) # True outline += (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) # fats if useTestPlot: timg = outline plt.imshow(timg, cmap='gray') plt.show() #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) if useTestPlot: timg = lungfilter plt.imshow(timg, cmap='gray') plt.show() #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure2 = morphology.disk(2) # used to fill the gaos/holes close to the border (otherwise the large sttructure would create a gap by the edge) if use_reduce_factor: structure3 = morphology.disk(rescale_n(BINARY_CLOSING_SIZE,reduce_factor)) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case else: structure3 = morphology.disk(BINARY_CLOSING_SIZE) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case ##lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, ORIGINAL iterations=3) # was structure=np.ones((5,5)) lungfilter2 = ndimage.morphology.binary_closing(lungfilter, structure=structure2, iterations=3) # ADDED lungfilter3 = ndimage.morphology.binary_closing(lungfilter, structure=structure3, iterations=3) lungfilter = np.bitwise_or(lungfilter2, lungfilter3) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) #image.shape #segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512)).astype(np.int16)) # was -2000 someone suggested 30 segmented = np.where(lungfilter == 1, image, -2000*np.ones(image.shape).astype(np.int16)) # was -2000 someone suggested 30 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def seperate_lungs_3d(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers_3d(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, axis=2) sobel_filtered_dy = ndimage.sobel(image, axis=1) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(1,3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct = blackhat_struct[np.newaxis,:,:] #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) # very long time #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case structure = structure[np.newaxis,:,:] lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones(marker_internal.shape)) return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def get_slice_location(dcm): return float(dcm[0x0020, 0x1041].value) def thru_plane_position(dcm): """Gets spatial coordinate of image origin whose axis is perpendicular to image plane. """ orientation = tuple((float(o) for o in dcm.ImageOrientationPatient)) position = tuple((float(p) for p in dcm.ImagePositionPatient)) rowvec, colvec = orientation[:3], orientation[3:] normal_vector = np.cross(rowvec, colvec) slice_pos = np.dot(position, normal_vector) return slice_pos def resample(image, scan, new_spacing=[1,1,1]): # Determine current pixel spacing spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing)) spacing = np.array(list(spacing)) #scan[2].SliceThickness resize_factor = spacing / new_spacing new_real_shape = image.shape * resize_factor new_shape = np.round(new_real_shape) real_resize_factor = new_shape / image.shape new_spacing = spacing / real_resize_factor image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest') ### early orig modified return image, new_spacing def segment_all(stage, part=0, processors=1, showSummaryPlot=True): # stage added to simplify the stage1 and stage2 calculations count = 0 STAGE_DIR = STAGE_DIR_BASE % stage folders = glob.glob(''.join([STAGE_DIR,'*'])) if len(folders) == 0: print ("ERROR, check directory, no folders found in: ", STAGE_DIR ) for folder in folders: count += 1 if count % processors == part: # do this part in this process, otherwise skip path = folder slices = load_scan(path) image_slices = get_3d_data_slices(slices) #mid = len(image_slices) // 2 #img_sel = mid useTestPlot = False if useTestPlot: print("Shape before segmenting\t", image_slices.shape) plt.hist(image_slices.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() start = time.time() resampleImages = True if resampleImages: image_resampled, spacing = resample(image_slices, slices, RESIZE_SPACING) # let's start wkith this small resolutuion for workign our the system (then perhaps 2, 0.667, 0.667) print("Shape_before_&_after_resampling\t", image_slices.shape,image_resampled.shape) if useTestPlot: plt.imshow(image_slices[image_slices.shape[0]//2], cmap=plt.cm.bone) plt.show() plt.imshow(image_resampled[image_resampled.shape[0]//2], cmap=plt.cm.bone) np.max(image_slices) np.max(image_resampled) np.min(image_slices) np.min(image_resampled) plt.show() image_slices = image_resampled shape = image_slices.shape l_segmented = np.zeros(shape).astype(np.int16) l_lungfilter = np.zeros(shape).astype(np.bool) l_outline = np.zeros(shape).astype(np.bool) l_watershed = np.zeros(shape).astype(np.int16) l_sobel_gradient = np.zeros(shape).astype(np.float32) l_marker_internal = np.zeros(shape).astype(np.bool) l_marker_external = np.zeros(shape).astype(np.bool) l_marker_watershed = np.zeros(shape).astype(np.int16) # start = time.time() i=0 for i in range(shape[0]): l_segmented[i], l_lungfilter[i], l_outline[i], l_watershed[i], l_sobel_gradient[i], l_marker_internal[i], l_marker_external[i], l_marker_watershed[i] = seperate_lungs_cv2(image_slices[i]) print("Rescale & Seg time, and path: ", ((time.time() - start)), path ) if useTestPlot: plt.hist(image_slices.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() plt.hist(l_segmented.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() img_sel_i = shape[0] // 2 # Show some slice in the middle plt.imshow(image_slices[img_sel_i], cmap=plt.cm.gray) plt.show() # Show some slice in the middle plt.imshow(l_segmented[img_sel_i], cmap='gray') plt.show() path_rescaled = path.replace(stage, ''.join([stage, "_", RESOLUTION_STR]), 1) path_segmented = path.replace(stage, ''.join([stage, "_segmented_", RESOLUTION_STR]), 1) path_segmented_crop = path.replace(stage, ''.join([stage, "_segmented_", RESOLUTION_STR, "_crop"]), 1) np.savez_compressed (path_rescaled, image_slices) np.savez_compressed (path_segmented, l_segmented) mask = l_lungfilter.astype(np.int8) regions = measure.regionprops(mask) # this measures the largest region and is a bug when the mask is not the largest region !!! bb = regions[0].bbox #print(bb) zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] dx = 0 # could be reduced ## have to reduce dx as for istance at least image the lungs stretch right to the border evebn without cropping ## namely for '../input/stage1/be57c648eb683a31e8499e278a89c5a0' crop_max_ratio_z = 0.6 # 0.8 is to big make_submit2(45, 1) crop_max_ratio_y = 0.4 crop_max_ratio_x = 0.6 bxy_min = np.min(bb[1:3]) bxy_max = np.max(bb[4:6]) mask_shape= mask.shape image_shape = l_segmented.shape mask_volume = zlen*ylen*zlen /(mask_shape[0] * mask_shape[1] * mask_shape[2]) mask_volume_thresh = 0.08 # anything below is too small (maybe just one half of the lung or something very small0) mask_volume_check = mask_volume > mask_volume_thresh # print ("Mask Volume: ", mask_volume ) ### DO NOT allow the mask to touch x & y ---> if it does it is likely a wrong one as for: ## folders[3] , path = '../input/stage1/9ba5fbcccfbc9e08edcfe2258ddf7 maskOK = False if bxy_min >0 and bxy_max < 512 and mask_volume_check and zlen/mask_shape[0] > crop_max_ratio_z and ylen/mask_shape[1] > crop_max_ratio_y and xlen/mask_shape[2] > crop_max_ratio_x: ## square crop and at least dx elements on both sides on x & y bxy_min = np.min(bb[1:3]) bxy_max = np.max(bb[4:6]) if bxy_min == 0 or bxy_max == 512: # Mask to bigg, auto-correct print("The following mask likely too big, autoreducing by:", dx) bxy_min = np.max((bxy_min, dx)) bxy_max = np.min ((bxy_max, mask_shape[1] - dx)) image = l_segmented[bb[0]:bb[3], bxy_min:bxy_max, bxy_min:bxy_max] mask = mask[bb[0]:bb[3], bxy_min:bxy_max, bxy_min:bxy_max] #maskOK = True print ("Shape, cropped, bbox ", mask_shape, mask.shape, bb) elif bxy_min> 0 and bxy_max < 512 and mask_volume_check and zlen/mask.shape[0] > crop_max_ratio_z: ## cut on z at least image = l_segmented[bb[0]:bb[3], dx: image_shape[1] - dx, dx: image_shape[2] - dx] #mask = mask[bb[0]:bb[3], dx: mask_shape[1] - dx, dx: mask_shape[2] - dx] print("Mask too small, NOT auto-cropping x-y: shape, cropped, bbox, ratios, violume:", mask_shape, image.shape, bb, path, zlen/mask_shape[0], ylen/mask_shape[1], xlen/mask_shape[2], mask_volume) else: image = l_segmented[0:mask_shape[0], dx: image_shape[1] - dx, dx: image_shape[2] - dx] #mask = mask[0:mask_shape[0], dx: mask_shape[1] - dx, dx: mask_shape[2] - dx] print("Mask wrong, NOT auto-cropping: shape, cropped, bbox, ratios, volume:", mask_shape, image.shape, bb, path, zlen/mask_shape[0], ylen/mask_shape[1], xlen/mask_shape[2], mask_volume) if showSummaryPlot: img_sel_i = shape[0] // 2 # Show some slice in the middle useSeparatePlots = False if useSeparatePlots: plt.imshow(image_slices[img_sel_i], cmap=plt.cm.gray) plt.show() # Show some slice in the middle plt.imshow(l_segmented[img_sel_i], cmap='gray') plt.show() else: f, ax = plt.subplots(1, 2, figsize=(6,3)) ax[0].imshow(image_slices[img_sel_i],cmap=plt.cm.bone) ax[1].imshow(l_segmented[img_sel_i],cmap=plt.cm.bone) plt.show() # Show some slice in the middle #plt.imshow(image[image.shape[0] // 2], cmap='gray') # don't show it for simpler review #plt.show() np.savez_compressed(path_segmented_crop, image) #print("Mask count: ", count) #print ("Shape: ", image.shape) return part, processors, count # the following 3 functions to read LUNA files are from: https://www.kaggle.com/arnavkj95/data-science-bowl-2017/candidate-generation-and-luna16-preprocessing/notebook ''' This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image. ''' def load_itk(filename): # Reads the image using SimpleITK itkimage = sitk.ReadImage(filename) # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x ct_scan = sitk.GetArrayFromImage(itkimage) # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa. origin = np.array(list(reversed(itkimage.GetOrigin()))) # Read the spacing along each dimension spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing ''' This function is used to convert the world coordinates to voxel coordinates using the origin and spacing of the ct_scan ''' def world_2_voxel(world_coordinates, origin, spacing): stretched_voxel_coordinates = np.absolute(world_coordinates - origin) voxel_coordinates = stretched_voxel_coordinates / spacing return voxel_coordinates ''' This function is used to convert the voxel coordinates to world coordinates using the origin and spacing of the ct_scan. ''' def voxel_2_world(voxel_coordinates, origin, spacing): stretched_voxel_coordinates = voxel_coordinates * spacing world_coordinates = stretched_voxel_coordinates + origin return world_coordinates def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) else: return([]) ''' This function is used to create spherical regions in binary masks at the given locations and radius. ''' #image = lung_img #spacing = new_spacing def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask image_mask = np.zeros(image.shape, dtype=np.int16) #run over all the nodules in the lungs for ca in cands.values: #get middel x-,y-, and z-worldcoordinate of the nodule #radius = np.ceil(ca[4])/2 ## original: replaced the ceil with a very minor increase of 1% .... radius = (ca[4])/2 + 0.51 * spacing[0] # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net . coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule #noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) # original, uniform spacing noduleRange_z = seq(-radius, radius, spacing[0]) noduleRange_y = seq(-radius, radius, spacing[1]) noduleRange_x = seq(-radius, radius, spacing[2]) #x = y = z = -2 #create the mask for x in noduleRange_x: for y in noduleRange_y: for z in noduleRange_z: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: ### original (contrained to a uniofrm RESIZE) if (np.linalg.norm((image_coord-coords) * spacing)) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask ''' This function takes the path to a '.mhd' file as input and is used to create the nodule masks and segmented lungs after rescaling to 1mm size in all directions. It saved them in the .npz format. It also takes the list of nodule locations in that CT Scan as input. ''' def load_scans_masks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() sids = [] scans = [] masks = [] cnt = 0 skipped = 0 for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series #useAll = True if (len(cands) > 0 or useAll): sids.append(seriesuid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) #scan_z.keys() scan = scan_z['arr_0'] mask_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) mask = mask_z['arr_0'] scans.append(scan) masks.append(mask) cnt += 1 else: print("Skipping non-nodules entry ", seriesuid) skipped += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids def load_scans_masks_or_blanks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() candidates = pd.read_csv(LUNA_CANDIDATES) candidates_false = candidates[candidates["class"] == 0] # only select the false candidates candidates_true = candidates[candidates["class"] == 1] # only select the false candidates sids = [] scans = [] masks = [] blankids = [] # class/id whether scan is with nodule or without, 0 - with, 1 - without cnt = 0 skipped = 0 #file=files[7] for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series ctrue = candidates_true[seriesuid == candidates_true.seriesuid] cfalse = candidates_false[seriesuid == candidates_false.seriesuid] #useAll = True blankid = 1 if (len(cands) == 0 and len(ctrue) == 0 and len(cfalse) > 0) else 0 skip_nodules_entirely = False # was False use_only_nodules = False # was True if skip_nodules_entirely and blankid ==0: ## manual switch to generate extra data for the corrupted set print("Skipping nodules (skip_nodules_entirely) ", seriesuid) skipped += 1 elif use_only_nodules and (len(cands) == 0): ## manual switch to generate only nodules data due lack of time and repeat etc time pressures print("Skipping blanks (use_only_nodules) ", seriesuid) skipped += 1 else: # NORMAL operations if (len(cands) > 0 or (blankid >0) or useAll): sids.append(seriesuid) blankids.append(blankid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) #scan_z.keys() scan = scan_z['arr_0'] #mask_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) mask_z = np.load(''.join((path_segmented + '_nodule_mask_wblanks' + '.npz'))) mask = mask_z['arr_0'] testPlot = False if testPlot: maskcheck_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) maskcheck = maskcheck_z['arr_0'] f, ax = plt.subplots(1, 2, figsize=(10,5)) ax[0].imshow(np.sum(np.abs(maskcheck), axis=0),cmap=plt.cm.gray) ax[1].imshow(np.sum(np.abs(mask), axis=0),cmap=plt.cm.gray) #ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() scans.append(scan) masks.append(mask) cnt += 1 else: print("Skipping non-nodules and non-blank entry ", seriesuid) skipped += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids, blankids #return scans, masks, sids # not yet, old style def load_scans_masks_no_nodules(luna_subset, use_unsegmented=True): # load only the ones that do not contain nodules #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() sids = [] scans = [] masks = [] cnt = 0 skipped = 0 for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series #useAll = True if (len(cands)): print("Skipping entry with nodules ", seriesuid) skipped += 1 else: sids.append(seriesuid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) #scan_z.keys() scan = scan_z['arr_0'] mask_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) mask = mask_z['arr_0'] scans.append(scan) masks.append(mask) cnt += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids MIN_BOUND = -1000.0 MAX_BOUND = 400.0 def normalize(image): image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>1] = 1. image[image<0] = 0. return image PIXEL_MEAN = 0.028 ## for LUNA subset 0 and our preprocessing, only with nudels was 0.028, all was 0.020421744071562546 (in the tutorial they used 0.25) def zero_center(image): image = image - PIXEL_MEAN return image def load_scans(path): # function used for testing slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] slices.sort(key=lambda x: int(x.InstanceNumber)) return np.stack([s.pixel_array for s in slices]) def get_scans(df,scans_list): scans=np.stack([load_scans(scan_folder+df.id[i_scan[0]])[i_scan[1]] for i_scan in scans_list]) scans=process_scans(scans) view_scans(scans) return(scans) def process_scans(scans): # used for tesing scans1=np.zeros((scans.shape[0],1,img_rows,img_cols)) for i in range(scans.shape[0]): img=scans[i,:,:] img = 255.0 / np.amax(img) * img img =img.astype(np.uint8) img =cv2.resize(img, (img_rows, img_cols)) scans1[i,0,:,:]=img return (scans1) only_with_nudels = True def convert_scans_and_masks(scans, masks, only_with_nudels): flattened1 = [val for sublist in scans for val in sublist[1:-1]] # skip one element at the beginning and at the end scans1 = np.stack(flattened1) flattened1 = [val for sublist in masks for val in sublist[1:-1]] # skip one element at the beginning and at the end masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: nudels_pix_count = np.sum(masks1, axis = (1,2)) scans1 = scans1[nudels_pix_count>0] masks1 = masks1[nudels_pix_count>0] # 493 -- circa 5 % with nudeles oters without #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans = zero_center(scans) masks = np.copy(masks1) ## if needed do the resize here .... img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed img_cols = scans.shape[2] scans1=np.zeros((scans.shape[0],1,img_rows,img_cols)) for i in range(scans.shape[0]): img=scans[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed scans1[i,0,:,:]=img masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 #scans = [scans[i]] #masks = [masks[i]] def convert_scans_and_masks_xd_ablanks(scans, masks, blankids, only_with_nudels, dim=3): # reuse scan to reduce memory footprint dim_orig = dim add_blank_spacing_size = dim * 8 #### use 4 for [0 - 3] and 8 for [4 - 7] ???initial trial (should perhaps be just dim ....) #skip = dim // 2 # old skip_low = dim // 2 # dim shoudl be uneven -- it is recalculated anyway to this end skip_high = dim -skip_low - 1 do_not_allow_even_dim = False ## now we allow odd numbers ... if do_not_allow_even_dim: dim = 2 * skip_low + 1 skip_low = dim // 2 skip_high = dim -skip_low - 1 if dim != dim_orig: print ("convert_scans_and_masks_x: Dim must be uneven, corrected from .. to:", dim_orig, dim) work = [] # 3 layers #scan = scans[0] for scan in scans: ##TEMP tmp = [] #i = 1 #for i in range(1, scan.shape[0]-1, 3): # SKIP EVERY 3 for i in range(skip_low, scan.shape[0]-skip_high): #img1 = scan[i-1] #img2 = scan[i] #img3 = scan[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(scan[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) #flattened1 = [val for sublist in work for val in sublist ] # NO skipping as we have already cut the first and the last layer #scans1 = np.stack(flattened1) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. blanks_per_axis = 4 # skip border crop = 16 dx = (img_cols - 2 * crop) // (blanks_per_axis + 2) dy = (img_rows - 2 * crop) // (blanks_per_axis + 2) for mask in masks: if (np.sum(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for i in range(skip_low, mask.shape[0]-skip_high, add_blank_spacing_size): for ix in range(blanks_per_axis): xpos = crop + (ix+1)*dx + dx //2 for iy in range(blanks_per_axis): ypos = crop + (iy+1)*dy + dy //2 #print (xpos, ypos) mask[skip_low, ypos, xpos] = -1 # negative pixel to be picked up below and corrected back to none #for k in range(len(blankids)): # if blankids[k] > 0: # mask = masks[k] # ## add the blanls # for i in range(skip_low, mask.shape[0]-skip_high, add_blank_spacing_size): # mask[skip_low, 0, 0] = -1 # negative pixel to be picked up below and corrected back to none use_3d_mask = True ## if use_3d_mask: work = [] # 3 layers #mask = masks[0] for mask in masks: tmp = [] #i = 0 for i in range(skip_low, mask.shape[0]-skip_high): #img1 = mask[i-1] #img2 = mask[i] #img3 = mask[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(mask[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[skip_low:-skip_high]] ) # skip one element at the beginning and at the end #masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: if use_3d_mask: nudels_pix_count = np.sum(masks1[:,skip_low], axis = (1,2)) ## abd added for the potential blanks; modified that the centre mask be mask! else: nudels_pix_count = np.sum(masks1, axis = (1,2)) scans1 = scans1[nudels_pix_count != 0] masks1 = masks1[nudels_pix_count != 0] #blank_mask_factor = np.sign(nudels_pix_count)[nudels_pix_count != 0] #sum(blank_mask_factor) #blank_mask_factor[blank_mask_factor <0] = 0 #mask1_orig = masks1 #np.sum(mask1_orig) #np.min(masks1) #masks1 = masks1[nudels_pix_count != 0] * blank_mask_factor # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask masks1[masks1 < 0] = 0 # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #masks1[nudels_pix_count < 0] = 0 # making empty mask for balancing training set #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans1 = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans1 = zero_center(scans1) #masks = np.copy(masks1) ## if needed do the resize here .... (img_rows and img_cols are global values defined externally) #img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed #img_cols = scans.shape[2] # scans already are in the tensor mode with 3 rgb elements .... #scans1 = scans ## no change #scans1=np.zeros((scans.shape[0],3,img_rows,img_cols)) #for i in range(scans.shape[0]): # img=scans[i,:,:] # ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed # scans1[i,0,:,:]=img if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 #scans = [scans[j]] #masks = [masks[j]] def convert_scans_and_masks_xd3(scans, masks, only_with_nudels, dim=3, crop=16, blanks_per_axis = 4, add_blank_spacing_size=0, add_blank_layers = 0): # reuse scan to reduce memory footprint dim_orig = dim #add_blank_spacing_size = 0 # dim *4 # dim # was dim ### set to 0 for version_16 #### initial trial (should perhaps be just dim ....), if 0 - do not add ... #add_blank_layers = 0 # was 4 #skip = dim // 2 # old skip_low = dim // 2 # dim shoudl be uneven -- it is recalculated anyway to this end skip_high = dim -skip_low - 1 do_not_allow_even_dim = False ## now we allow odd numbers ... if do_not_allow_even_dim: dim = 2 * skip_low + 1 skip_low = dim // 2 skip_high = dim -skip_low - 1 if dim != dim_orig: print ("convert_scans_and_masks_x: Dim must be uneven, corrected from .. to:", dim_orig, dim) work = [] # 3 layers #scan = scans[0] for scan in scans: ##TEMP tmp = [] #i = 1 #for i in range(1, scan.shape[0]-1, 3): # SKIP EVERY 3 for i in range(skip_low, scan.shape[0]-skip_high): #img1 = scan[i-1] #img2 = scan[i] #img3 = scan[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(scan[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) #flattened1 = [val for sublist in work for val in sublist ] # NO skipping as we have already cut the first and the last layer #scans1 = np.stack(flattened1) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] ##blanks_per_axis = 6 # cover all slice ##crop = 44 dxrange = scans[0].shape[-1] - 2 * crop dyrange = scans[0].shape[-2] - 2 * crop #dx = (img_cols - 2 * crop) // (blanks_per_axis) #dy = (img_rows - 2 * crop) // (blanks_per_axis) #dx = dxrange // (blanks_per_axis+1) #dy = dyrange // (blanks_per_axis+1) ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. if add_blank_spacing_size > 0: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for i in range(skip_low+(add_blank_spacing_size//2), mask.shape[0]-skip_high, add_blank_spacing_size): mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none if add_blank_layers > 0: for mask in masks: if (np.min(mask) < 0): dzrange = mask.shape[0]-dim ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for k in range(add_blank_layers): i = np.random.randint(0, dzrange) + skip_low #print ("dz position, random, mask.shape ", i, mask.shape) mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none #mask = masks[0] add_random_blanks_in_blanks = False ## NO need for the extra random blank pixels now, 20170327 if add_random_blanks_in_blanks: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. #zlow = skip_low #zhigh = mask.shape[0]-skip_high pix_sum = np.sum(mask, axis=(1,2)) idx_blanks = np.min(mask, axis=(1,2)) < 0 ## don't use it - let's vary the position across the space for iz in range(mask.shape[0]): if (np.min(mask[iz])) < 0: for ix in range(blanks_per_axis): #xpos = crop + (ix)*dx + dx //2 for iy in range(blanks_per_axis): #ypos = crop + (iy)*dy + dy //2 xpos = crop + np.random.randint(0,dxrange) ypos = crop + np.random.randint(0,dyrange) #print (iz, xpos, ypos) #mask[idx_blanks, ypos, xpos] = -1 # negative pixel to be picked up below and corrected back to none mask[iz, ypos, xpos] = -1 use_3d_mask = True ## if use_3d_mask: work = [] # 3 layers #mask = masks[0] for mask in masks: tmp = [] #i = 0 for i in range(skip_low, mask.shape[0]-skip_high): #img1 = mask[i-1] #img2 = mask[i] #img3 = mask[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(mask[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[skip_low:-skip_high]] ) # skip one element at the beginning and at the end #masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: if use_3d_mask: #nudels_pix_count = np.sum(np.abs(masks1[:,skip_low]), axis = (1,2)) ## CHANGE IT WED - use ANY i.e. remove skip_low abd added for the potential blanks; modified that the centre mask be mask! nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2,3)) ## USE ANY March 1; CHANGE IT WED - use ANY i.e. remove skip_low abd added for the potential blanks; modified that the centre mask be mask! else: nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2)) scans1 = scans1[nudels_pix_count != 0] masks1 = masks1[nudels_pix_count != 0] #blank_mask_factor = np.sign(nudels_pix_count)[nudels_pix_count != 0] #sum(blank_mask_factor) #blank_mask_factor[blank_mask_factor <0] = 0 #mask1_orig = masks1 #np.sum(mask1_orig) #np.min(masks1) #masks1 = masks1[nudels_pix_count != 0] * blank_mask_factor # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #masks1[masks1 < 0] = 0 # !!!!!!!!!!!!!! in GRID version do NOT do that - do it in the key version 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #masks1[nudels_pix_count < 0] = 0 # making empty mask for balancing training set #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans1 = normalize(scans1) ### after this scans1 becomes float64 .... useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans1 = zero_center(scans1) #masks = np.copy(masks1) scans1 = scans1.astype(np.float32) # make it float 32 (not point carring 64, also because kears operates on float32, and originals were in int ## if needed do the resize here .... (img_rows and img_cols are global values defined externally) #img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed #img_cols = scans.shape[2] # scans already are in the tensor mode with 3 rgb elements .... #scans1 = scans ## no change #scans1=np.zeros((scans.shape[0],3,img_rows,img_cols)) #for i in range(scans.shape[0]): # img=scans[i,:,:] # ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed # scans1[i,0,:,:]=img if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 def convert_scans_and_masks_3d(scans, masks, only_with_nudels): # reuse scan to reduce memory footprint work = [] # 3 layers #scan = scans[0] for scan in scans: tmp = [] #i = 0 #for i in range(1, scan.shape[0]-1, 3): # SKIP EVERY 3 for i in range(1, scan.shape[0]-1): img1 = scan[i-1] img2 = scan[i] img3 = scan[i+1] rgb = np.stack((img1, img2, img3)) tmp.append(rgb) work.append(np.array(tmp)) #flattened1 = [val for sublist in work for val in sublist ] # NO skipping as we have already cut the first and the last layer #scans1 = np.stack(flattened1) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] use_3d_mask = False if use_3d_mask: work = [] # 3 layers #mask = masks[0] for mask in masks: tmp = [] #i = 0 for i in range(1, mask.shape[0]-1, 3): # SKIP EVERY 3 img1 = mask[i-1] img2 = mask[i] img3 = mask[i+1] rgb = np.stack((img1, img2, img3)) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[1:-1]] ) # skip one element at the beginning and at the end #masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: if use_3d_mask: nudels_pix_count = np.sum(masks1, axis = (1,2,3)) else: nudels_pix_count = np.sum(masks1, axis = (1,2)) scans1 = scans1[nudels_pix_count>0] masks1 = masks1[nudels_pix_count>0] # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans1 = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans1 = zero_center(scans1) #masks = np.copy(masks1) ## if needed do the resize here .... (img_rows and img_cols are global values defined externally) #img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed #img_cols = scans.shape[2] # scans already are in the tensor mode with 3 rgb elements .... #scans1 = scans ## no change #scans1=np.zeros((scans.shape[0],3,img_rows,img_cols)) #for i in range(scans.shape[0]): # img=scans[i,:,:] # ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed # scans1[i,0,:,:]=img if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 def view_scans(scans): #%matplotlib inline for i in range(scans.shape[0]): print ('scan '+str(i)) plt.imshow(scans[i,0,:,:], cmap=plt.cm.gray) plt.show() def view_scans_widget(scans): #%matplotlib tk for i in range(scans.shape[0]): plt.figure(figsize=(7,7)) plt.imshow(scans[i,0,:,:], cmap=plt.cm.gray) plt.show() def get_masks(scans,masks_list): #%matplotlib inline scans1=scans.copy() maxv=255 masks=np.zeros(shape=(scans.shape[0],1,img_rows,img_cols)) for i_m in range(len(masks_list)): for i in range(-masks_list[i_m][3],masks_list[i_m][3]+1): for j in range(-masks_list[i_m][3],masks_list[i_m][3]+1): masks[masks_list[i_m][0],0,masks_list[i_m][2]+i,masks_list[i_m][1]+j]=1 for i1 in range(-masks_list[i_m][3],masks_list[i_m][3]+1): scans1[masks_list[i_m][0],0,masks_list[i_m][2]+i1,masks_list[i_m][1]+masks_list[i_m][3]]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]+i1,masks_list[i_m][1]-masks_list[i_m][3]]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]+masks_list[i_m][3],masks_list[i_m][1]+i1]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]-masks_list[i_m][3],masks_list[i_m][1]+i1]=maxv=255 for i in range(scans.shape[0]): print ('scan '+str(i)) f, ax = plt.subplots(1, 2,figsize=(10,5)) ax[0].imshow(scans1[i,0,:,:],cmap=plt.cm.gray) ax[1].imshow(masks[i,0,:,:],cmap=plt.cm.gray) plt.show() return(masks) def augmentation(scans,masks,n): datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=25, # was 25 width_shift_range=0.3, # ws 0.3; was 0.1# tried 0.01 height_shift_range=0.3, # was 0.3; was 0.1 # tried 0.01 horizontal_flip=True, vertical_flip=True, zoom_range=False) i=0 scans_g=scans.copy() for batch in datagen.flow(scans, batch_size=1, seed=1000): scans_g=np.vstack([scans_g,batch]) i += 1 if i > n: break i=0 masks_g=masks.copy() for batch in datagen.flow(masks, batch_size=1, seed=1000): masks_g=np.vstack([masks_g,batch]) i += 1 if i > n: break return((scans_g,masks_g)) def hu_to_pix (hu): return (hu - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) - PIXEL_MEAN def pix_to_hu (pix): return (pix + PIXEL_MEAN) * (MAX_BOUND - MIN_BOUND) + MIN_BOUND from scipy import stats def eliminate_incorrectly_segmented(scans, masks): skip = dim // 2 # To Change see below ... sxm = scans * masks near_air_thresh = (-900 - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) - PIXEL_MEAN # version 3 # -750 gives one more (for 0_3, d4, -600 give 15 more than -900 near_air_thresh #0.08628 for -840 # 0.067 # for -867; 0.1148 for -800 cnt = 0 for i in range(sxm.shape[0]): #sx = sxm[i,skip] sx = sxm[i] mx = masks[i] if np.sum(mx) > 0: # only check non-blanks ...(keep blanks) sx_max = np.max(sx) if (sx_max) <= near_air_thresh: cnt += 1 print ("Entry, count # and max: ", i, cnt, sx_max) print (stats.describe(sx, axis=None)) #plt.imshow(sx, cmap='gray') plt.imshow(sx[0,skip], cmap='gray') # selecting the mid entry plt.show() s_eliminate = np.max(sxm, axis=(1,2,3,4)) <= near_air_thresh # 3d s_preserve = np.max(sxm, axis=(1,2,3,4)) > near_air_thresh #3d s_eliminate_sum = sum(s_eliminate) s_preserve_sum = sum(s_preserve) print ("Eliminate, preserve =", s_eliminate_sum, s_preserve_sum) masks = masks[s_preserve] scans = scans[s_preserve] del(sxm) return scans, masks # the following 3 functions to read LUNA files are from: https://www.kaggle.com/arnavkj95/data-science-bowl-2017/candidate-generation-and-luna16-preprocessing/notebook ''' This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image. ''' def load_itk(filename): # Reads the image using SimpleITK itkimage = sitk.ReadImage(filename) # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x ct_scan = sitk.GetArrayFromImage(itkimage) # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa. origin = np.array(list(reversed(itkimage.GetOrigin()))) # Read the spacing along each dimension spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing ''' This function is used to convert the world coordinates to voxel coordinates using the origin and spacing of the ct_scan ''' def world_2_voxel(world_coordinates, origin, spacing): stretched_voxel_coordinates = np.absolute(world_coordinates - origin) voxel_coordinates = stretched_voxel_coordinates / spacing return voxel_coordinates ''' This function is used to convert the voxel coordinates to world coordinates using the origin and spacing of the ct_scan. ''' def voxel_2_world(voxel_coordinates, origin, spacing): stretched_voxel_coordinates = voxel_coordinates * spacing world_coordinates = stretched_voxel_coordinates + origin return world_coordinates def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) else: return([]) ''' This function is used to create spherical regions in binary masks at the given locations and radius. ''' def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask image_mask = np.zeros(image.shape, dtype=np.int16) #run over all the nodules in the lungs for ca in cands.values: #get middel x-,y-, and z-worldcoordinate of the nodule #radius = np.ceil(ca[4])/2 ## original: replaced the ceil with a very minor increase of 1% .... radius = (ca[4])/2 + 0.51 * spacing[0] # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net . coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule #noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) # original, uniform spacing noduleRange_z = seq(-radius, radius, spacing[0]) noduleRange_y = seq(-radius, radius, spacing[1]) noduleRange_x = seq(-radius, radius, spacing[2]) #x = y = z = -2 #create the mask for x in noduleRange_x: for y in noduleRange_y: for z in noduleRange_z: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: ### original (contrained to a uniofrm RESIZE) if (np.linalg.norm((image_coord-coords) * spacing)) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask ''' This function takes the path to a '.mhd' file as input and is used to create the nodule masks and segmented lungs after rescaling to 1mm size in all directions. It saved them in the .npz format. It also takes the list of nodule locations in that CT Scan as input. ''' def load_scans_masks_or_blanks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() candidates = pd.read_csv(LUNA_CANDIDATES) candidates_false = candidates[candidates["class"] == 0] # only select the false candidates candidates_true = candidates[candidates["class"] == 1] # only select the false candidates sids = [] scans = [] masks = [] blankids = [] # class/id whether scan is with nodule or without, 0 - with, 1 - without cnt = 0 skipped = 0 #file=files[7] for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series ctrue = candidates_true[seriesuid == candidates_true.seriesuid] cfalse = candidates_false[seriesuid == candidates_false.seriesuid] blankid = 1 if (len(cands) == 0 and len(ctrue) == 0 and len(cfalse) > 0) else 0 skip_nodules_entirely = False # was False use_only_nodules = False if skip_nodules_entirely and blankid ==0: ## manual switch to generate extra data for the corrupted set print("Skipping nodules (skip_nodules_entirely) ", seriesuid) skipped += 1 elif use_only_nodules and (len(cands) == 0): ## manual switch to generate only nodules data due lack of time and repeat etc time pressures print("Skipping blanks (use_only_nodules) ", seriesuid) skipped += 1 else: # NORMAL operations if (len(cands) > 0 or (blankid >0) or useAll): sids.append(seriesuid) blankids.append(blankid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) scan = scan_z['arr_0'] mask_z = np.load(''.join((path_segmented + '_nodule_mask_wblanks' + '.npz'))) mask = mask_z['arr_0'] testPlot = False if testPlot: maskcheck_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) maskcheck = maskcheck_z['arr_0'] f, ax = plt.subplots(1, 2, figsize=(10,5)) ax[0].imshow(np.sum(np.abs(maskcheck), axis=0),cmap=plt.cm.gray) ax[1].imshow(np.sum(np.abs(mask), axis=0),cmap=plt.cm.gray) #ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() scans.append(scan) masks.append(mask) cnt += 1 else: print("Skipping non-nodules and non-blank entry ", seriesuid) skipped += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids, blankids MIN_BOUND = -1000.0 MAX_BOUND = 400.0 def normalize(image): image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>1] = 1. image[image<0] = 0. return image PIXEL_MEAN = 0.028 ## for LUNA subset 0 and our preprocessing, only with nudels was 0.028, all was 0.020421744071562546 (in the tutorial they used 0.25) def zero_center(image): image = image - PIXEL_MEAN return image def convert_scans_and_masks_xd3(scans, masks, only_with_nudels, dim=3, crop=16, blanks_per_axis = 4, add_blank_spacing_size=0, add_blank_layers = 0): # reuse scan to reduce memory footprint dim_orig = dim skip_low = dim // 2 # dim shoudl be uneven -- it is recalculated anyway to this end skip_high = dim -skip_low - 1 do_not_allow_even_dim = False ## now we allow odd numbers ... if do_not_allow_even_dim: dim = 2 * skip_low + 1 skip_low = dim // 2 skip_high = dim -skip_low - 1 if dim != dim_orig: print ("convert_scans_and_masks_x: Dim must be uneven, corrected from .. to:", dim_orig, dim) work = [] for scan in scans: tmp = [] for i in range(skip_low, scan.shape[0]-skip_high): #img1 = scan[i-1] #img2 = scan[i] #img3 = scan[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(scan[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] dxrange = scans[0].shape[-1] - 2 * crop dyrange = scans[0].shape[-2] - 2 * crop if add_blank_spacing_size > 0: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for i in range(skip_low+(add_blank_spacing_size//2), mask.shape[0]-skip_high, add_blank_spacing_size): mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none if add_blank_layers > 0: for mask in masks: if (np.min(mask) < 0): dzrange = mask.shape[0]-dim ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for k in range(add_blank_layers): i = np.random.randint(0, dzrange) + skip_low #print ("dz position, random, mask.shape ", i, mask.shape) mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none add_random_blanks_in_blanks = False ## NO need for the extra random blank pixels now, 20170327 if add_random_blanks_in_blanks: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. #zlow = skip_low #zhigh = mask.shape[0]-skip_high pix_sum = np.sum(mask, axis=(1,2)) idx_blanks = np.min(mask, axis=(1,2)) < 0 ## don't use it - let's vary the position across the space for iz in range(mask.shape[0]): if (np.min(mask[iz])) < 0: for ix in range(blanks_per_axis): #xpos = crop + (ix)*dx + dx //2 for iy in range(blanks_per_axis): #ypos = crop + (iy)*dy + dy //2 xpos = crop + np.random.randint(0,dxrange) ypos = crop + np.random.randint(0,dyrange) #print (iz, xpos, ypos) #mask[idx_blanks, ypos, xpos] = -1 # negative pixel to be picked up below and corrected back to none mask[iz, ypos, xpos] = -1 use_3d_mask = True ## if use_3d_mask: work = [] # 3 layers for mask in masks: tmp = [] #i = 0 for i in range(skip_low, mask.shape[0]-skip_high): rgb = np.stack(mask[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[skip_low:-skip_high]] ) # skip one element at the beginning and at the end if only_with_nudels: if use_3d_mask: nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2,3)) ## USE ANY March 1; CHANGE IT WED - use ANY i.e. remove skip_low abd added for the potential blanks; modified that the centre mask be mask! else: nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2)) scans1 = scans1[nudels_pix_count != 0] masks1 = masks1[nudels_pix_count != 0] scans1 = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() scans1 = zero_center(scans1) scans1 = scans1.astype(np.float32) # make it float 32 (not point carring 64, also because kears operates on float32, and originals were in int if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 def eliminate_incorrectly_segmented(scans, masks): skip = dim // 2 # To Change see below ... sxm = scans * masks near_air_thresh = (-900 - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) - PIXEL_MEAN # version 3 # -750 gives one more (for 0_3, d4, -600 give 15 more than -900 #near_air_thresh #0.08628 for -840 # 0.067 # for -867; 0.1148 for -800 cnt = 0 for i in range(sxm.shape[0]): #sx = sxm[i,skip] sx = sxm[i] mx = masks[i] if np.sum(mx) > 0: # only check non-blanks ...(keep blanks) sx_max = np.max(sx) if (sx_max) <= near_air_thresh: cnt += 1 print ("Entry, count # and max: ", i, cnt, sx_max) print (stats.describe(sx, axis=None)) #plt.imshow(sx, cmap='gray') plt.imshow(sx[0,skip], cmap='gray') # selecting the mid entry plt.show() s_eliminate = np.max(sxm, axis=(1,2,3,4)) <= near_air_thresh # 3d s_preserve = np.max(sxm, axis=(1,2,3,4)) > near_air_thresh #3d s_eliminate_sum = sum(s_eliminate) s_preserve_sum = sum(s_preserve) print ("Eliminate, preserve =", s_eliminate_sum, s_preserve_sum) masks = masks[s_preserve] scans = scans[s_preserve] del(sxm) return scans, masks def grid_data(source, grid=32, crop=16, expand=12): gridsize = grid + 2 * expand stacksize = source.shape[0] height = source.shape[3] # should be 224 for our data width = source.shape[4] gridheight = (height - 2 * crop) // grid # should be 6 for our data gridwidth = (width - 2 * crop) // grid cells = [] for j in range(gridheight): for i in range (gridwidth): cell = source[:,:,:, crop+j*grid-expand:crop+(j+1)*grid+expand, crop+i*grid-expand:crop+(i+1)*grid+expand] cells.append(cell) cells = np.vstack (cells) return cells, gridwidth, gridheight def data_from_grid (cells, gridwidth, gridheight, grid=32): height = cells.shape[3] # should be 224 for our data width = cells.shape[4] crop = (width - grid ) // 2 ## for simplicity we are assuming the same crop (and grid) vertically and horizontally dspacing = gridwidth * gridheight layers = cells.shape[0] // dspacing if crop > 0: # do NOT crop with 0 as we get empty cells ... cells = cells[:,:,:,crop:-crop,crop:-crop] if crop > 2*grid: print ("data_from_grid Warning, unusually large crop (> 2*grid); crop, & grid, gridwith, gridheight: ", (crop, grid, gridwidth, gridheight)) shape = cells.shape new_shape_1_dim = shape[0]// (gridwidth * gridheight) # ws // 36 -- Improved on 20170306 new_shape = (gridwidth * gridheight, new_shape_1_dim, ) + tuple([x for x in shape][1:]) # was 36, Improved on 20170306 cells = np.reshape(cells, new_shape) cells = np.moveaxis(cells, 0, -3) shape = cells.shape new_shape2 = tuple([x for x in shape[0:3]]) + (gridheight, gridwidth,) + tuple([x for x in shape[4:]]) cells = np.reshape(cells, new_shape2) cells = cells.swapaxes(-2, -3) shape = cells.shape combine_shape =tuple([x for x in shape[0:3]]) + (shape[-4]*shape[-3], shape[-2]*shape[-1],) cells = np.reshape(cells, combine_shape) return cells def data_from_grid_by_proximity (cells, gridwidth, gridheight, grid=32): # disperse the sequential dats into layers and then use data_from_grid dspacing = gridwidth * gridheight layers = cells.shape[0] // dspacing shape = cells.shape new_shape_1_dim = shape[0]// (gridwidth * gridheight) # ws // 36 -- Improved on 20170306 ### NOTE tha we invert the order of shapes below to get the required proximity type ordering new_shape = (new_shape_1_dim, gridwidth * gridheight, ) + tuple([x for x in shape][1:]) # was 36, Improved on 20170306 # swap ordering of axes cells = np.reshape(cells, new_shape) cells = cells.swapaxes(0, 1) cells = np.reshape(cells, shape) cells = data_from_grid (cells, gridwidth, gridheight, grid) return cells def find_voxels(dim, grid, images3, images3_seg, pmasks3, nodules_threshold=0.999, voxelscountmax = 1000, mid_mask_only = True, find_blanks_also = True, centralcutonly=True): zsel = dim // 2 sstart = 0 send = images3.shape[0] if mid_mask_only: pmav = pmasks3[:,0,dim // 2] # using the mid mask pmav.shape else: pmav = pmasks3[:,0] ### NOTE this variant has NOT been tested fully YET run_UNNEEDED_code = False ims = images3[sstart:send,0,zsel] # selecting the zsel cut for nodules calc ... ims_seg = images3_seg[sstart:send,0,zsel] ims.shape #pms = pmasks3[sstart:send,0,0] pms = pmav[sstart:send] images3.shape thresh = nodules_threshold # for testing , set it here and skip the loop segment = 2 # for compatibility of the naming convention # threshold the precited nasks ... #for thresh in [0.5, 0.9, 0.9999]: #for thresh in [0.5, 0.75, 0.9, 0.95, 0.98, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999]: for thresh in [nodules_threshold]: # jusst this one - keeping loop for a while if find_blanks_also: idx = np.abs(pms) > thresh else: idx = pms > thresh idx.shape nodls = np.zeros(pms.shape).astype(np.int16) nodls[idx] = 1 nx = nodls[idx] nodules_pixels = ims[idx] # flat nodules_hu = pix_to_hu(nodules_pixels) part_name = ''.join([str(segment), '_', str(thresh)]) ### DO NOT do them here use_corrected_nodules = True # do it below from 20170311 if not use_corrected_nodules: df = hu_describe(nodules_hu, uid=uid, part=part_name) add_projections = False axis = 1 nodules_projections = [] for axis in range(3): nodls_projection = np.max(nodls, axis=axis) naxis_name = ''.join(["naxis_", str(axis),"_", part_name]) if add_projections: df[naxis_name] = np.sum(nodls_projection) nodules_projections.append(nodls_projection) idx.shape ## find the individual nodules ... as per the specified probabilities labs, labs_num = measure.label(idx, return_num = True, neighbors = 8 , background = 0) # label the nodules in 3d, allow for diagonal connectivity voxels = [] vmasks = [] if labs_num > 0 and labs.shape[0] >1: # checking for height > 1 is needed as measure.regionprops fails when it is not, for instance for shape (1, 20, 20) we get ValueError: Label and intensity image must have the same shape. print("Befpre measure.regionprops, labs & intensity shapes: ", labs.shape, ims.shape) regprop = measure.regionprops(labs, intensity_image=ims) # probkem here on 20170327 voxel_volume = np.product(RESIZE_SPACING) areas = [rp.area for rp in regprop] # this is in cubic mm now (i.e. should really be called volume) volumes = [rp.area * voxel_volume for rp in regprop] diameters = [2 * (3* volume / (4 * np.pi ))**0.3333 for volume in volumes] labs_ids = [rp.label for rp in regprop] #ls = [rp.label for rp in regprop] max_val = np.max(areas) max_index = areas.index(max_val) max_label = regprop[max_index].label bboxes = [r.bbox for r in regprop] idl = labs == regprop[max_index].label # 400 nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) if run_UNNEEDED_code: nodules_hu_reg = [] for rp in regprop: idl = labs == rp.label nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) nodules_hu_reg.append(nodules_hu) # NOTE some are out of interest, i.e. are equal all (or near all) to MAX_BOUND (400) dfn = pd.DataFrame( { "area": areas, "diameter": diameters, "bbox": bboxes }, index=labs_ids) nodules_count = len(dfn) # 524 for file 1 of part 8 .. max_nodules_count = voxelscountmax n=0 for n in range(max_nodules_count): if n < len(dfn): # use the nodule data, otheriwse empty bb = dfn.iloc[n]["bbox"] zmin = bb[0] zmax = bb[3] zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] xmin = np.max([bb[2] - np.max([(grid - xlen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image xmax = np.min([xmin + grid, ims.shape[2]]) ## do not beyond the right side xmin = xmax - grid if (xmax - xmin) != grid: print ("ERROR in calculating the cut-offs ..., xmin, xmax =", xmin, xmax) ymin = np.max([bb[1] - np.max([(grid - ylen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image ymax = np.min([ymin + grid, ims.shape[1]]) ## do not beyond the right side ymin = ymax - grid if (ymax - ymin) != grid: print ("ERROR in calculating the cut-offs ..., ymin, ymax =", ymin, ymax) zmin_sel = zmin zmax_sel = zmax if centralcutonly: #include only one voxel representation zmin_sel = zmin + zlen // 2 zmax_sel = zmin_sel + 1 iz=zmin_sel # for testing for iz in range(zmin_sel,zmax_sel): voxel = images3[iz,:,:, ymin:ymax, xmin:xmax] vmask = pmasks3[iz,:,:, ymin:ymax, xmin:xmax] voxels.append(voxel) vmasks.append(vmask) testPlot = False if testPlot: print ('scan '+str(iz)) f, ax = plt.subplots(1, 8, figsize=(24,3)) ax[0].imshow(nodls[iz,ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[1].imshow(ims[iz,ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[2].imshow(images3_amp[iz,0, dim//2, ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[3].imshow(voxel[0,dim//2],cmap=plt.cm.gray) ax[4].imshow(voxel[0,dim],cmap=plt.cm.gray) ax[5].imshow(voxel[0,dim+1],cmap=plt.cm.gray) ax[6].imshow(voxel[0,dim+2],cmap=plt.cm.gray) ax[7].imshow(voxel[0,dim+3],cmap=plt.cm.gray) if len(voxels) > 0: voxel_stack = np.stack(voxels) vmask_stack = np.stack(vmasks) else: print_warning = False if print_warning: print("WARNING, find_voxels, not single voxel found even though expected") voxel_stack = [] vmask_stack = [] if testPlot: print ('voxels count ', len(voxel_stack)) for ii in range(0,len(voxel_stack),len(voxel_stack)//10): f, ax = plt.subplots(1, 2, figsize=(6,3)) ax[0].imshow(voxel_stack[ii, 0, dim // 2],cmap=plt.cm.gray) ax[1].imshow(vmask_stack[ii, 0, dim // 2],cmap=plt.cm.gray) return voxel_stack, vmask_stack def measure_voxels(labs, ims): #print("Befpre measure.regionprops, labs & intensity shapes: ", labs.shape, ims.shape) regprop = measure.regionprops(labs, intensity_image=ims) # probkem here on 20170327 voxel_volume = np.product(RESIZE_SPACING) areas = [rp.area for rp in regprop] # this is in cubic mm now (i.e. should really be called volume) volumes = [rp.area * voxel_volume for rp in regprop] diameters = [2 * (3* volume / (4 * np.pi ))**0.3333 for volume in volumes] labs_ids = [rp.label for rp in regprop] #ls = [rp.label for rp in regprop] max_val = np.max(areas) max_index = areas.index(max_val) max_label = regprop[max_index].label bboxes = [r.bbox for r in regprop] #max_ls = ls[max_index] idl = labs == regprop[max_index].label # 400 nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) run_UNNEEDED_code = False if run_UNNEEDED_code: nodules_hu_reg = [] for rp in regprop: idl = labs == rp.label nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) nodules_hu_reg.append(nodules_hu) # NOTE some are out of interest, i.e. are equal all (or near all) to MAX_BOUND (400) dfn = pd.DataFrame( { #"zcenter": zcenters, #"ycenter": ycenters, #"xcenter": xcenters, "area": areas, "diameter": diameters, #"irreg_vol": irreg_vol, #"irreg_shape": irreg_shape, #"nodules_hu": nodules_hu_reg, "bbox": bboxes }, index=labs_ids) return dfn def find_voxels_and_blanks(dim, grid, images3, images3_seg, pmasks3, nodules_threshold=0.999, voxelscountmax = 1000, find_blanks_also = True, centralcutonly=True, diamin=2, diamax=10): if np.sum(pmasks3) > 0: centralcutonly = False # override centralcut for True nodule masks zsel = dim // 2 if centralcutonly else range(0,dim) pmav = pmasks3[:,0,zsel] ims = images3[:,0,zsel] # selecting the zsel cut for nodules calc ... ims_seg = images3_seg[:,0,zsel] sstart = 0 send = images3.shape[0] pms = pmav[sstart:send] run_UNNEEDED_code = False thresh = nodules_threshold # for testing , set it here and skip the loop segment = 2 # for compatibility of the naming convention for thresh in [nodules_threshold]: # jusst this one - keeping loop for a while if find_blanks_also: idx = np.abs(pms) > thresh else: idx = pms > thresh idx.shape nodls = np.zeros(pms.shape).astype(np.int16) nodls[idx] = 1 nx = nodls[idx] volume = np.sum(nodls) # A check calculation ... :wcounted as a count within hu_describe nodules_pixels = ims[idx] # flat nodules_hu = pix_to_hu(nodules_pixels) part_name = ''.join([str(segment), '_', str(thresh)]) ### DO NOT do them here use_corrected_nodules = True # do it below from 20170311 if not use_corrected_nodules: df = hu_describe(nodules_hu, uid=uid, part=part_name) add_projections = False if add_projections: nodules_projections = [] for axis in range(3): #sxm_projection = np.max(sxm, axis = axis) nodls_projection = np.max(nodls, axis=axis) naxis_name = ''.join(["naxis_", str(axis),"_", part_name]) if add_projections: df[naxis_name] = np.sum(nodls_projection) nodules_projections.append(nodls_projection) voxels = [] vmasks = [] if not centralcutonly: for k in range(idx.shape[0]): if np.sum(idx[k]) > 0: ## find the nodules and take a cut labs, labs_num = measure.label(idx[k], return_num = True, neighbors = 8 , background = 0) # label the nodules in 3d, allow for diagonal connectivity dfn = measure_voxels(labs, ims[k]) nodules_count_0 = len(dfn) ## CUT out anything that is outside of the specified diam range dfn = dfn[(dfn["diameter"] >= diamin) & ((dfn["diameter"] < diamax))] # CUT OUT anything that is less than 3 mm (essentially less than 7 voxels for 2x2x2 nodules_count = len(dfn) # 524 for file 1 of part 8 .. max_nodules_count = voxelscountmax n=0 for n in range(max_nodules_count): if n < len(dfn): # use the nodule data, otheriwse empty bb = dfn.iloc[n]["bbox"] zmin = bb[0] zmax = bb[3] zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] xmin = np.max([bb[2] - np.max([(grid - xlen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image xmax = np.min([xmin + grid, ims.shape[-1]]) ## do not beyond the right side xmin = xmax - grid if (xmax - xmin) != grid: print ("ERROR in calculating the cut-offs ..., xmin, xmax =", xmin, xmax) ymin = np.max([bb[1] - np.max([(grid - ylen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image ymax = np.min([ymin + grid, ims.shape[-2]]) ## do not beyond the right side ymin = ymax - grid if (ymax - ymin) != grid: print ("ERROR in calculating the cut-offs ..., ymin, ymax =", ymin, ymax) # here simply takje the entire voxel we have #images3.shape voxel = images3[k,:,:, ymin:ymax, xmin:xmax] vmask = pmasks3[k,:,:, ymin:ymax, xmin:xmax] voxels.append(voxel) vmasks.append(vmask) #voxel.shape else:# essentially taking the central cuts of the blanks ## find the individual nodules ... as per the specified probabilities labs, labs_num = measure.label(idx, return_num = True, neighbors = 8 , background = 0) # label the nodules in 3d, allow for diagonal connectivity if labs_num > 0 and labs.shape[0] >1: # checking for height > 1 is needed as measure.regionprops fails when it is not, for instance for shape (1, 20, 20) we get ValueError: Label and intensity image must have the same shape. #labs_num_to_store = 5 dfn = measure_voxels(labs, ims) nodules_count = len(dfn) # 524 for file 1 of part 8 .. max_nodules_count = voxelscountmax n=0 for n in range(max_nodules_count): if n < len(dfn): # use the nodule data, otheriwse empty bb = dfn.iloc[n]["bbox"] zmin = bb[0] zmax = bb[3] zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] xmin = np.max([bb[2] - np.max([(grid - xlen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image xmax = np.min([xmin + grid, ims.shape[-1]]) ## do not beyond the right side xmin = xmax - grid if (xmax - xmin) != grid: print ("ERROR in calculating the cut-offs ..., xmin, xmax =", xmin, xmax) ymin = np.max([bb[1] - np.max([(grid - ylen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image ymax = np.min([ymin + grid, ims.shape[-2]]) ## do not beyond the right side ymin = ymax - grid if (ymax - ymin) != grid: print ("ERROR in calculating the cut-offs ..., ymin, ymax =", ymin, ymax) zmin_sel = zmin zmax_sel = zmax if centralcutonly: #include only one voxel representation zmin_sel = zmin + zlen // 2 zmax_sel = zmin_sel + 1 iz=zmin_sel # for testing for iz in range(zmin_sel,zmax_sel): voxel = images3[iz,:,:, ymin:ymax, xmin:xmax] vmask = pmasks3[iz,:,:, ymin:ymax, xmin:xmax] voxels.append(voxel) vmasks.append(vmask) testPlot = False if testPlot: print ('scan '+str(iz)) f, ax = plt.subplots(1, 8, figsize=(24,3)) ax[0].imshow(nodls[iz,ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[1].imshow(ims[iz,ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[2].imshow(images3_amp[iz,0, dim//2, ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[3].imshow(voxel[0,dim//2],cmap=plt.cm.gray) ax[4].imshow(voxel[0,dim],cmap=plt.cm.gray) ax[5].imshow(voxel[0,dim+1],cmap=plt.cm.gray) ax[6].imshow(voxel[0,dim+2],cmap=plt.cm.gray) ax[7].imshow(voxel[0,dim+3],cmap=plt.cm.gray) if len(voxels) > 0: voxel_stack = np.stack(voxels) vmask_stack = np.stack(vmasks) else: print_warning = False if print_warning: print("WARNING, find_voxels, not single voxel found even though expected") voxel_stack = [] vmask_stack = [] #print("Nodules, voxels_aggregated: ", len(dfn), len(voxel_stack)) #np.savez_compressed(path_voxels_variant, voxel_stack) testPlot = False if testPlot: print ('voxels count ', len(voxel_stack)) for ii in range(0,len(voxel_stack),len(voxel_stack)//10): #plt.imshow(voxel_stack[ii,0,dim // 2], cmap=plt.cm.gray) #plt.show() f, ax = plt.subplots(1, 2, figsize=(6,3)) ax[0].imshow(voxel_stack[ii, 0, dim // 2],cmap=plt.cm.gray) ax[1].imshow(vmask_stack[ii, 0, dim // 2],cmap=plt.cm.gray) return voxel_stack, vmask_stack def shuffle_scans_masks(scans, masks, seed): np.random.seed(seed) index_shuf = np.arange(len(scans)) np.random.shuffle(index_shuf) scans = scans[index_shuf] masks = masks[index_shuf] return scans, masks def create_unet_training_files (dim, recreate_grid8_March_data=True): # version with backward compatibility grid8_March_data_str = "a" if recreate_grid8_March_data else "" # used for the the original data/approach # the main procedure to create training files for the nodule identifier (consolidated version, with backward compatibility for grid 8) create_main_grid = True if create_main_grid: diamins_2_10 = not recreate_grid8_March_data # backward compatible option if diamins_2_10: grids = [10, 20] diamins = [2, 10] diamaxs = [10, 100] crops2 = [7, 2] # not used in this option, added for flow else: grids = [20, 40] diamins = [2, 2] diamaxs = [100, 100] crops2 = [2, 12] # added to recreate_grid8_March_data else: ## created separately -- as an addition - for extra augmentation grids = [10] diamins = [2] diamaxs = [5] crops2 = [7] create_missing_grid_file = False if create_missing_grid_file: grids = [20] diamins = [19] diamaxs = [99] crops2 = [2] resolution_str = RESOLUTION_STR grid=20 centralcutonly = True grid_multiple = 1 # do not aggregate any of the grids/data crreated -- save verbatim grid_dest = grid * grid_multiple eliminate_blanks_for_mid_extra_cut = False # typically False, only true for the extra data if eliminate_blanks_for_mid_extra_cut: crop=12 # leading to 200x200 image cut 10 x 10 times model_grid_name = "8g10" else: crop=22 #provigind with grid 9x20 9x20 model_grid_name = "8g9" #"16g3" # was 16g9 dim = dim include_ba_partial_height = dim//2 grid_passes = 1 # was 10 # gp10 standard must be 1 if grid_passes > 1: model_grid_name = "8g10x%s" % grid_passes elif grid_passes < 1: grid_passes = 1 print ("grid_passes, include_ba_partial_height, model_grid_name: ", grid_passes, include_ba_partial_height, model_grid_name) data_generation=True testPrint = False if data_generation: # DO ONE BY ONE as convert_scans_and_masks_xd requires a lot of memory and can swap ... exclude_blanks = False if create_main_grid else True # replaces the manual change done in the interactive mode include_below_above_nodule = False if not include_below_above_nodule: ba0 = dim //2 - include_ba_partial_height ba1 = np.min([dim //2 + include_ba_partial_height + 1, dim]) split_into_nodules_and_blanks = True for pt in range(0,3): # splitting into 2 parts due to memory needs np.random.seed(1000+pt) scans_all_grid = [] masks_all_grid = [] scans_all_grid2 = [] masks_all_grid2 = [] scans_all_grid3 = [] masks_all_grid3 = [] if pt == 0: istart = 4*pt iend = 4*(pt+1) elif pt == 1: istart = 4*pt iend = 4*(pt+1) iend += 1 # increase by 1 to cover 9 else: istart = 9 iend = 10 for i in range(istart, iend): scans_all = [] masks_all = [] sids_all = [] scans_all2 = [] masks_all2 = [] sids_all2 = [] scans_all3 = [] masks_all3 = [] sids_all3 = [] print ("\n\n################################# EXECUTING subset ", i) scans, masks, sids, blankids = load_scans_masks_or_blanks(i, useAll = False, use_unsegmented=DO_NOT_USE_SEGMENTED) if include_below_above_nodule: only_with_nudels = True # This may be False or True must be False so we do not loose the info else: only_with_nudels = True # could be True ... for j in range(len(scans)): extra_test=False if extra_test: mtemp = masks[j] np.sum(mtemp) np.min(mtemp) idx = np.sum(masks[j], axis=(1,2)) != 0 # at this stage, with this more memory friendly version there should be only items with nodules idx_nodules = np.sum(masks[j], axis=(1,2)) > 0 idx_blanks = np.sum(masks[j], axis=(1,2)) < 0 print ("Masks, with nodules and blanks: ", np.sum(idx_nodules), np.sum(idx_blanks)) blanks_per_axis = 0 # we now rnadomly position this scans1 = [scans[j]] masks1 = [masks[j]] use_standard_convert = True if recreate_grid8_March_data else False # added for backward compatbility if use_standard_convert: scans1, masks1 = convert_scans_and_masks_xd3 (scans1, masks1, only_with_nudels = only_with_nudels, dim=dim, crop=crop, blanks_per_axis = blanks_per_axis, add_blank_spacing_size=1, add_blank_layers = 0) # as per March data generation if not include_below_above_nodule: ### take the centrale values idx = np.sum(np.abs(masks1[:,ba0:ba1]), axis=(-1,-2, -3)) != 0 #dim // 2 idx_nodules = np.sum(masks1[:,ba0:ba1], axis=(-1,-2, -3)) > 0 idx_blanks = np.sum(masks1[:,ba0:ba1], axis=(-1,-2, -3)) < 0 else: idx = np.sum(np.abs(masks1), axis=(-1,-2,-3)) != 0 idx_nodules = np.sum(masks1, axis=(-1,-2,-3)) > 0 idx_blanks = np.sum(masks1, axis=(-1,-2,-3)) < 0 count_nodules = np.sum(idx_nodules) count_blanks = np.sum(idx_blanks) count_all = np.sum(idx, axis=0) print ("sidj, Total masks, and with nodules and blanks: ", sids[j], len(idx), count_nodules, count_blanks) if (count_nodules == 0): # cut down the blanks only to the centrally located, whatever the include_below_above_nodule idx_blanks = np.sum(masks1[:,dim // 2], axis=(-1,-2)) < 0 count_blanks = np.sum(idx_blanks) print("Selecting only the central blanks, count of: ", count_blanks) masks1 = masks1[idx_blanks] scans1 = scans1[idx_blanks] elif not include_below_above_nodule: #print("Not including the below and above nodules' entries, beyond partial_height of , remaining count: ", include_ba_partial_height, count_all) print("Using ba partial_height; remaining count: ", count_all) masks1 = masks1[idx] scans1 = scans1[idx] else: print("Keeping all entries of: ", count_all ) else: ## just convert into 3d rep and find the vosel in the entire space scans1, masks1 = convert_scans_and_masks_xd3 (scans1, masks1, only_with_nudels = False, dim=dim, crop=crop, blanks_per_axis = blanks_per_axis, add_blank_spacing_size=0, add_blank_layers = 0) scans1 = scans1[:, np.newaxis] # do NOT change these as we iterate by different grids now 20170327 masks1 = masks1[:, np.newaxis] # do NOT change these as we iterate by different grids now 20170327 for ig in range(len(grids)): grid_masks = [] grid_scans = [] grid = grids[ig] crop12 = crops2[ig] if exclude_blanks and np.sum(masks1) <0: print("Completely excluding blanks & gridding of them ...") scans1_c = [] masks1_c = [] else: for gpass in range(grid_passes): if grid_passes != 1: shift = grid // grid_passes shifting_gridwith = img_cols // grid - 1 # minus 1 to accomodate the shift crop_top_left = (img_cols - (shifting_gridwith+1)*grid) // 2 + gpass*shift crop_bottom_right = crop_top_left + shifting_gridwith*grid masks1_c = masks1[:,:,:,crop_top_left:crop_bottom_right,crop_top_left:crop_bottom_right] scans1_c = scans1[:,:,:,crop_top_left:crop_bottom_right,crop_top_left:crop_bottom_right] if recreate_grid8_March_data: grid_masks1, gridwidth, gridheight = grid_data(masks1_c, grid=grid, crop=0, expand=0 ) grid_scans1, gridwidth, gridheight = grid_data(scans1_c, grid=grid, crop=0, expand=0) else: #### NOTE the following has NOT been tested print("WARNING: grid_passes option has NOT been tested working with the find_voxels procedure") grid_scans1, grid_masks1 = find_voxels_and_blanks(dim, grid, scans1_c, scans1_c, masks1_c, nodules_threshold=0.999, voxelscountmax = 1000, find_blanks_also = True, centralcutonly = centralcutonly, diamin=diamins[ig], diamax=diamaxs[ig]) else: # just a single standard pass - no shifting grid if recreate_grid8_March_data: grid_masks1, gridwidth, gridheight = grid_data(masks1, grid=grid, crop=crop12, expand=0 ) grid_scans1, gridwidth, gridheight = grid_data(scans1, grid=grid, crop=crop12, expand=0) else: grid_scans1, grid_masks1 = find_voxels_and_blanks(dim, grid, scans1, scans1, masks1, nodules_threshold=0.999, voxelscountmax = 1000, find_blanks_also = True, centralcutonly = centralcutonly, diamin=diamins[ig], diamax=diamaxs[ig]) testPlot = False if testPlot: for ii in range(0, len(grid_scans1)): # was 2, 20 print ('gridscans1 scan/cut '+str(ii)) f, ax = plt.subplots(1, 2, figsize=(8,4)) ax[0].imshow(grid_scans1[ii,0,dim // 2],cmap=plt.cm.gray) #ax[1].imshow(masks_pred[ii,0,0],cmap=plt.cm.gray) ax[1].imshow(grid_masks1[ii,0,dim // 2] ,cmap=plt.cm.gray) #ax[2].imshow(np.abs(masks_pred[ii,0,0] - masks_pred_prev[ii,0,0]) ,cmap=plt.cm.gray) #ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() if len(grid_masks1) > 0: idx_blanks = np.sum(grid_masks1[:,:,dim // 2], axis=(-1,-2, -3)) < 0 idx = np.sum(np.abs(grid_masks1), axis=(1,2,3,4)) != 0 if not include_below_above_nodule: idx_nodules = np.sum(grid_masks1[:,:,ba0:ba1], axis=(1,2,3,4)) > 0 else: idx_nodules = np.sum(grid_masks1, axis=(1,2,3,4)) > 0 # this may be inaccurate whene blanks was somewhere there # cut down the blanks only to the centrally located if testPrint: print ("Total masks (after grid), and with nodules and blanks: ", len(idx), np.sum(idx_nodules), np.sum(idx_blanks)) idx_nodules_central_blanks = idx_nodules | idx_blanks if exclude_blanks: if testPrint: print("Not including blanks ....") grid_masks1 = grid_masks1[idx_nodules] grid_scans1 = grid_scans1[idx_nodules] else: grid_masks1 = grid_masks1[idx_nodules_central_blanks] # ONLY keep the masks and scans with nodules(central) grid_scans1 = grid_scans1[idx_nodules_central_blanks] if testPrint: print ("Total masks (after another central blanks cut): ", len(grid_masks1)) grid_masks.append(grid_masks1) grid_scans.append(grid_scans1) if len(grid_masks): masks1_c = np.concatenate(grid_masks) scans1_c = np.concatenate(grid_scans) else: masks1_c = [] scans1_c = [] print ("=== Grid, Sub-total masks1 : ", (grid, len(masks1_c))) if (len(masks1_c) > 0): if ig == 0: scans_all.append(scans1_c) masks_all.append(masks1_c) sids_all.append(sids[j]) # ???? elif ig == 1: scans_all2.append(scans1_c) masks_all2.append(masks1_c) sids_all2.append(sids[j]) # ???? elif ig == 2: scans_all3.append(scans1_c) masks_all3.append(masks1_c) sids_all3.append(sids[j]) # ??? else: print("Warning: 4 separate grids are not implemented for automatic data generation") ## end of the grid_and_limit_data LOOP -------------------------------------------------------- scans = np.concatenate(scans_all) #e.g. [0:4]) masks = np.concatenate(masks_all) #[0:4]) if len(grids) > 1: scans2 = np.concatenate(scans_all2) masks2 = np.concatenate(masks_all2) if len(grids) > 2: scans3 = np.concatenate(scans_all3) masks3 = np.concatenate(masks_all3) ################### end o the scans loop #### ###################################################### ig =0 for ig in range(len(grids)): if ig == 0: scansx = scans masksx = masks elif ig == 1: scansx = scans2 masksx = masks2 elif ig == 2: scansx = scans3 masksx = masks3 # select only non-zero grids .. (essentially decimating the data; for subset 1: from 17496 dow to 1681) idx = np.sum(np.abs(masksx), axis=(1,2,3,4)) != 0 # at this stage, with this more memory friendly version there should be only items with nodules idx_nodules = np.sum(masksx, axis=(1,2,3,4)) > 0 idx_blanks = np.sum(masksx, axis=(1,2,3,4)) < 0 count_nodules = np.sum(idx_nodules) count_blanks = np.sum(idx_blanks) count_all = np.sum(idx, axis=0) print ("All entries, grid, total, nodules and blanks: ", grids[ig], len(idx), count_all, count_nodules, count_blanks) testPlot = False if testPlot: jump=len(idx) // 20 jump =1 for ii in range(0, len(idx)//20, jump): # was 2, 20 print ('scan/cut '+str(ii)) f, ax = plt.subplots(1, 2, figsize=(8,4)) ax[0].imshow(masksx[ii,0,dim // 2],cmap=plt.cm.gray) ax[1].imshow(scansx[ii,0,dim // 2] ,cmap=plt.cm.gray) plt.show() len(masksx) if not include_below_above_nodule: masksx = masksx[idx] scansx = scansx[idx] len(masksx) if eliminate_blanks_for_mid_extra_cut: masksx = masksx[~ idx_blanks] scansx = scansx[~ idx_blanks] idx = np.sum(np.abs(masksx), axis=(1,2,3,4)) != 0 # at this stage, with this more memory friendly version there should be only items with nodules idx_nodules = np.sum(masksx, axis=(1,2,3,4)) > 0 idx_blanks =
np.sum(masksx, axis=(1,2,3,4))
numpy.sum
#https://stackoverflow.com/questions/42007434/slider-widget-for-pyqtgraph import numpy as np from vispy import app, visuals import h5py from PyQt5.QtWidgets import QApplication, QMainWindow import sys from PyQt5 import QtCore, QtGui, QtWidgets import time import numpy as np from vispy import app import vispy from PyQt5.QtWidgets import * import vispy.app import sys from vispy.app import use_app use_app('PyQt5') from vispy import scene from vispy import color from vispy.color.colormap import Colormap import h5py import imageio from vispy import visuals from PyQt5.QtWidgets import QApplication, QMainWindow, QSlider import sys from PyQt5 import QtCore, QtGui, QtWidgets import time import numpy as np from vispy import app import vispy from PyQt5.QtWidgets import * import vispy.app import sys from vispy.app import use_app use_app('PyQt5') from vispy import scene from vispy import color from vispy.color.colormap import Colormap import h5py import imageio from vispy import visuals import matplotlib.pyplot as plt from PyQt5.QtCore import Qt class Canvas(scene.SceneCanvas): def __init__(self): scene.SceneCanvas.__init__(self,keys='interactive', size=(1024, 1024)) self.unfreeze() self.i=0 self.pos=np.array([[0,0]]) self.colors=[0,0,0,1] self.index = 0 #self.markers = visuals.MarkersVisual() #self.markers=scene.visuals.Markers(pos=pos, parent=wc_2.scene, face_color='blue') #self.markers.set_data(self.pos, face_color=self.colors) #self.markers.symbol = visuals.marker_types[10] #self.markers.transform = STTransform() self.plane_ind=0 self.filename='//ZMN-HIVE/User-Data/Maria/Caiman_MC/fish11_6dpf_medium_aligned.h5' #self.filename='//ZMN-HIVE/User-Data/Maria/check_registration/control/fish11_6dpf_medium_aligned.h5' self.load_image() self.view=self.central_widget.add_view() self.image=scene.visuals.Image(self.im, parent=self.view.scene, cmap='hsv',clim=[0,255]) self.image.set_gl_state('translucent', depth_test=False) self.markers=scene.visuals.Markers(pos=self.pos, parent=self.view.scene, face_color='blue') self.nrs=[] def load_image(self): with h5py.File(self.filename, "r") as f: # List all groups print("Loading raw data from a plane...") start=time.time() self.im=f['data'][0,self.plane_ind,:,:].astype('float32') self.im*= 400.0/(self.im.max()+0.00001) end=time.time() print('Time to load raw data file: ',end-start) print(
np.max(self.im)
numpy.max
################################################################################ ## ## 2018/05/02 ## ## Author: <NAME>, IB² ## Version: 1.0 ## Python: 3.6 ## ## This implements a random forest in order to predict digenic effect of both ## DIDA combinations (1) and dual diagnosis combinations (2). It aims to diffe- ## rentiate between true digenic class, composite and dual diagnosis. ## ## (1) https://academic.oup.com/nar/article/45/15/e140/3894171 ## (2) https://www.nejm.org/doi/full/10.1056/NEJMoa1516767 ## ## It performs stratified cross-validations and averages results over a given ## amount of repeats. dida_dualdiag.csv is an instance of valid CSV file. ## ################################################################################ import sys import time import pandas as pd from math import sqrt from numpy import array, concatenate, dot, diag, mean, std from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import LeaveOneGroupOut from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import roc_curve, roc_auc_score, auc, matthews_corrcoef def main(f_name, n_trees, n_epochs, threshold, selector): """ Loads csv, launches cross-validation, displays scores f_name: str, path to reach the .csv file to evaluate predictor n_trees: int, amount of trees in forest n_epochs: int, amount of cross-validation to perform thresholds: see getScores selector: str, boolean vector representing features to take into account """ features = [ 'CADD1', 'CADD2', 'RecA', 'EssA', 'CADD3', 'CADD4', 'RecB', 'EssB', 'Path' ] assert len(selector) == len(features), "Features selector must fit features amount." to_keep = [f for i, f in enumerate(features) if selector[i] == '1'] # Csv gathering, it needs to be ordered. df_data = pd.read_csv(f_name) X = array(df_data[to_keep]) # TD: true digenic, CO: composite, UK: unknown # OV: OVerlapping dual diagnosis, DI: Distinct dual diagnosis y = array( df_data['DE'].replace( 'TD', 2 ).replace( 'CO', 1 ).replace( 'UK', -1 ).replace( 'OV', 0 ).replace( 'DI', 0 ).replace( 'DD', 0 ) ) gene_pairs = array(df_data['Pair']) X, y, gene_pairs = X[y != -1], y[y != -1], gene_pairs[y != -1] y = array([ [i == y_i for i in range(3)] for y_i in y]) print('Training on subspace {', ', '.join( to_keep ), '}.' ) def getScores(pred, real, thresholds=[1, 1, 1]): """ Returns evaluation metrics to evaluate one cross-validation: For each class, Sensitivity and Specificity. Order: sen_dd, sen_co, sen_td, spe_dd, spe_co, spe_td pred: Predicted probabilities. For each sample, vector is such as [pred_dd, pred_co, pred_td] real: real label. A label is a 3-long boolean vector. DD: [1, 0, 0] - CO: [0, 1, 0] - TD: [0, 0, 1] thresholds: weightings to compensate lack of data in certain class. """ if len(pred) != len(real): raise Exception("ERROR: input vectors have differente len!") results = { 'sen': [ { 'count': 0, 'recognized': 0 } for _ in range(3) ], 'spe': [ { 'count': 0, 'true': 0 } for _ in range(3) ], } for i, r_tab in enumerate(real): r = max(range(3), key=lambda k: r_tab[k]) p = max(range(3), key=lambda k: pred[i][k]*thresholds[k]) results['sen'][r]['count'] += 1 results['spe'][p]['count'] += 1 if p == r: results['sen'][p]['recognized'] += 1 results['spe'][p]['true'] += 1 return map( lambda x: round(x*100)/100, [r['recognized'] / r['count'] for r in results['sen']] + [r['true'] / r['count'] for r in results['spe']] ) def LOGO_crossValidation(X, y, groups, n_trees=100, n_epochs=50, thresholds=[1,1,1]): """ Stratified cross-validation. X: Design matrix y: label vector groups: Gene pair vector to define training groups n_trees: Amount of trees in random forest n_epochs: number of cross validations to perform thresholds: see getScores """ logo = LeaveOneGroupOut() clf = RandomForestClassifier( n_estimators=n_trees, max_depth=10, criterion='gini', min_samples_split=2, min_samples_leaf=2, bootstrap=True, n_jobs=1 ) # Vector to compute final scores sum_dd_se, sum_co_se, sum_td_se = [], [], [] sum_dd_sp, sum_co_sp, sum_td_sp = [], [], [] for i in range(n_epochs): start_time = time.time() values_t, values_p = [], [] print("#"*10, "Trial %i" % i, "#"*10) # We leave one group out for train_index, test_index in logo.split(X, y, groups): X_fit, y_fit, X_train, y_train = ( X[train_index], y[train_index], X[test_index], y[test_index] ) clf = clf.fit(X_fit, y_fit) y_predicted = clf.predict_proba(X_train) # y_predicted is not shaped correctly. Reshape it to fit # getScores expectations. y_formatted = [ [0, 0, 0] for _ in range(len(y_predicted[0])) ] for de in (0, 1, 2): for i, proba in enumerate(y_predicted[de][:,1]): y_formatted[i][de] = proba # Predictions are concatenated into a prediction vector values_t, values_p = values_t + [yi for yi in y_train], values_p + [yi for yi in y_formatted] sen_dd, sen_co, sen_td, spe_dd, spe_co, spe_td = getScores(values_p, values_t, thresholds) sum_dd_se.append(sen_dd) sum_co_se.append(sen_co) sum_td_se.append(sen_td) sum_dd_sp.append(spe_dd) sum_co_sp.append(spe_co) sum_td_sp.append(spe_td) print('Duration:', round( (time.time() - start_time) * 100) / 100, 's') print('sen | dd - co - td / spe | dd - co - td') print('sen | ' + '-'.join(map(str, (sen_dd, sen_co, sen_td))) + ' / spe | ' + '-'.join(map(str, (spe_dd, spe_co, spe_td)))) print('Sen DD: %f, std: %f' % (mean(sum_dd_se), std(sum_dd_se)) ) print('Sen CO: %f, std: %f' % (mean(sum_co_se), std(sum_co_se)) ) print('Sen TD: %f, std: %f' % (mean(sum_td_se), std(sum_td_se)) ) print('Spe DD: %f, std: %f' % (mean(sum_dd_sp), std(sum_dd_sp)) ) print('Spe CO: %f, std: %f' % (mean(sum_co_sp), std(sum_co_sp)) ) print('Spe TD: %f, std: %f' % (mean(sum_td_sp), std(sum_td_sp)) ) geo_mn = ( mean(sum_dd_se)*mean(sum_co_se)*mean(sum_td_se)* mean(sum_dd_sp)*mean(sum_co_sp)*mean(sum_td_sp) )**(1/6) geo_std = (
std(sum_dd_se)
numpy.std
# this file contains several functions, which serve as helper functions import numpy as np import os import handle_data def get_current_best_models(): # this function contains a list of the current best models for # each energy range (the filename of the trained model) # NOTE: the model for 1.2 is still using 128 x 128 images!! models = ["unfinishedNetworks/classifier_experimental_cnn_hdf5_0.3_best_test_12.16.cnn", #"unfinishedNetworks/classifier_experimental_cnn_hdf5_0.6_best_test_13.98.cnn", "unfinishedNetworks/classifier_experimental_ReLU_bigger_cnn_hdf5_0.6_best_test_12.3333333333.cnn", #"unfinishedNetworks/classifier_experimental_cnn_hdf5_1.2_best_test_9.8.cnn", "unfinishedNetworks/classifier_experimental_cnn_hdf5_1.2_best_test_8.25.cnn", "unfinishedNetworks/classifier_experimental_cnn_hdf5_1.5_best_test_3.62.cnn", "unfinishedNetworks/classifier_experimental_cnn_hdf5_2.5_best_test_3.58.cnn", #"unfinishedNetworks/classifier_experimental_cnn_hdf5_4.0_best_test_7.34.cnn", "unfinishedNetworks/classifier_experimental_cnn_hdf5_4.1_best_test_3.33333333333.cnn", "unfinishedNetworks/classifier_experimental_cnn_hdf5_5.0_best_test_3.46.cnn", "unfinishedNetworks/classifier_experimental_cnn_hdf5_8.0_best_test_5.24.cnn"] return models def get_energy_binning(): # returns the energy binning boundaries energy_binning = np.asarray([0.15, 0.4, 0.7, 1.2, 2.1, 3.2, 4.9, 6.9, 10.0]) return energy_binning def get_energy_bins(): # returns a list of tuples, which give the actual bins # of the energy binning energy_bins = [ (0.15, 0.4), (0.4, 0.7), (0.7, 1.2), (1.2, 2.1), (2.1, 3.2), (3.2, 4.9), (4.9, 6.9), (6.9, 10.0) ] return energy_bins def get_energy_bin_for_energy(E): # this function returns the correct bin index for a given energy E # corresponding to the energy bins defined in get_energy_bins() # given np.argmin gives us the first element bigger than E, # we choose ind - 1 as our index for the correct group energy_binning = get_energy_binning() ind =
np.argmin(energy_binning < E)
numpy.argmin
# Copyright (c) 2021, <NAME> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the Offroad Robotics Lab at Queen's University nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ''AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # This file plots the ground truth for the 2D example # # Author: <NAME> <<EMAIL>> # License: BSD 2.0 import matplotlib.pyplot as plt import numpy as np # Center of terrains element chuncks bump_center = np.array([ 2046.298, 1599.936]) # mm grass_center = np.array([ 236.904, -2487.764]) # mm rocks_center = np.array([-1917.432, 1926.706]) # mm # Corners of terrain element chuncks bumps1 = (bump_center + np.array([ 441.689, -898.057])) / 1000 # m bumps2 = (bump_center + np.array([-443.011, -900.151])) / 1000 # m bumps3 = (bump_center + np.array([-442.218, 899.451])) / 1000 # m bumps4 = (bump_center + np.array([ 443.539, 898.757])) / 1000 # m grass1 = (grass_center + np.array([ 1805.520, -438.652])) / 1000 # m grass2 = (grass_center + np.array([ 1804.230, 443.375])) / 1000 # m grass3 = (grass_center + np.array([-1799.550, 438.900])) / 1000 # m grass4 = (grass_center + np.array([-1810.200, -443.624])) / 1000 # m rocks1 = (rocks_center + np.array([ -4.514, 1263.860])) / 1000 # m rocks2 = (rocks_center + np.array([ 1259.800, 12.871])) / 1000 # m rocks3 = (rocks_center + np.array([ 8.747, -1267.760])) / 1000 # m rocks4 = (rocks_center + np.array([-1264.030, -8.969])) / 1000 # m # Group corner markers of terrain elements for 2D plotting bumps_2d = np.array([bumps1, bumps2, bumps3, bumps4, bumps1]) grass_2d = np.array([grass1, grass2, grass3, grass4, grass1]) rocks_2d =
np.array([rocks1, rocks2, rocks3, rocks4, rocks1])
numpy.array
# -*- coding: utf-8 -*- """ Created on Fri Jan 12 09:18:56 2018 An example to demonstrate use of the Scipy v1.00 ODE integration routine Simple bounce event, with chatter sequence detection @author: rihy """ import scipy.integrate import matplotlib.pyplot as plt import numpy as npy import timeit def upward_cannon(t, y): return [y[1], -0.5] def hit_ground(t, y): return y[0] # Attributes for hit_ground function hit_ground.terminal = True # defines whether integration should be terminated hit_ground.direction = -1 # Run sim tmin = 0.0 tmax = 100.0 dt = 2.0 y0 = npy.array([0,10.0],dtype=float) method = 'RK45' r = 0.56 # coefficient of restitution terminateSolver = False solvecount = 0 bouncecount = 0 tic=timeit.default_timer() while not terminateSolver: # Run solution sol = scipy.integrate.solve_ivp(upward_cannon, [tmin, tmax], y0, method=method, events=hit_ground, max_step = dt) solvecount = solvecount + 1 # Append results to arrays if solvecount == 1: t = sol.t y = sol.y else: t = npy.append(t,sol.t) y = npy.append(y,sol.y,axis=1) # Set initial conditions (for bounce event) if sol.status == 1: # termination event occurred, i.e. bounce # Register new bounce event bouncecount = bouncecount + 1 if bouncecount == 1: tbounce = sol.t_events[0] else: tbounce =
npy.append(tbounce,sol.t_events[0])
numpy.append
# @cosmmostat_init.py # # Some convenient ROUTINES for interactive use # # Functions which makes the life easier for iSAP users. # # @author <NAME> # @version 1.0 # @date 2020 # import numpy as np from os import remove from subprocess import check_call from datetime import datetime import matplotlib.pyplot as plt import astropy from astropy.io import fits from subprocess import check_call import pylab import readline from mpl_toolkits.axes_grid1 import make_axes_locatable import pyqtgraph from pyqtgraph.Qt import QtGui import numpy from matplotlib.colors import PowerNorm import seaborn as sns from scipy import ndimage ################################################ # def pwd(): # check_call(['pwd']) ################################################ # def ls(): # check_call(['ls']) ################################################ # similiar to the rebin function def smooth2d(map, sigma): return ndimage.filters.gaussian_filter(map,sigma=sigma) def rebin2d(a, shape): sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1] return a.reshape(sh).mean(-1).mean(1) def rebin1d(a, shape): sh = shape[0],a.shape[0]//shape[0] return a.reshape(sh).mean(-1) def pad_width2d(size): pad_width = ((size, size), (size,size)) return pad_width def unpad(x, pad_width): slices = [] for c in pad_width: e = None if c[1] == 0 else -c[1] slices.append(slice(c[0], e)) return x[tuple(slices)] def unpad2d(x, size): return unpad(x, pad_width2d(size)) # Test # pad_width = ((0, 0), (1, 0), (3, 4)) # a = np.random.rand(10, 10, 10) # b = np.pad(a, pad_width, mode='constant') # c = unpad(b, pad_width) # np.testing.assert_allclose(a, c) ################################################ def hthres(alpha,Thres): Res = np.copy(alpha) Res[np.abs(Res) <= Thres] = 0 return Res def hard_thresholding(alpha,Thres): alpha[np.abs(alpha) <= Thres] = 0 ################################################ def soft_thresholding(alpha, Thres): Res = np.copy(np.abs(alpha)) - Thres Res[Res < 0] = 0 alpha[:,:] = np.sign(alpha) * Res[:,:] def sthres(alpha, Thres): Res = np.copy(alpha) Res = np.abs(alpha) - Thres Res[Res < 0] = 0 Res = np.sign(alpha) * Res return Res ################################################ def info(Data,name=0,mask=None): if mask is None: if name: print (name, ": Size = ", Data.shape, "Type = ", Data.dtype, ", Mean = ", np.mean(Data), " Sigma = ", np.std(Data), "Min = ", np.min(Data), " Max = ", np.max(Data)) else: print ("Size = ", Data.shape, "Type = ", Data.dtype, ", Mean = ", np.mean(Data), " Sigma = ", np.std(Data), "Min = ", np.min(Data), " Max = ", np.max(Data)) else: ind = np.where(mask != 0) if name: print (name, ": Size = ", Data.shape, "Type = ", Data.dtype, ", Mean = ", np.mean(Data[ind]), " Sigma = ", np.std(Data[ind]), "Min = ", np.min(Data[ind]), " Max = ", np.max(Data[ind])) else: print ("Size = ", Data.shape, "Type = ", Data.dtype, ", Mean = ", np.mean(Data[ind]), " Sigma = ", np.std(Data[ind]), "Min = ", np.min(Data[ind]), " Max = ",
np.max(Data[ind])
numpy.max
""" Interface for running Turbomole ADC(2) calculations. """ import subprocess import re import os import numpy as np import file_utils STDOUT = "qm.log" STDERR = "qm.err" class Turbomole(): """ Interface for turbomole calculations. """ def __init__(self, data): self.data = data self.results = dict() def update_coord(self): """ Update coord file with self.data["geom"]. """ file_utils.replace_cols_inplace("coord", self.data["geom"], r"\$coord") if self.data["qmmm"]: fn = file_utils.search_file("control", r"\$point_charges")[0] fn = fn.split("=")[1].split()[0] file_utils.replace_cols_inplace(fn, self.data["mm_geom"], r"\$point_charges") def update_state(self): """ Update control file to request gradient of self.data["state"]. """ raise NotImplementedError("Need to call specific interface.") def update_input(self): """ Update all input files with values from self.data. """ self.update_coord() self.update_state() def run(self): """ Run the calculation, check success and read results. """ raise NotImplementedError("Need to call specific interface.") def read(self): """ Read calculation results. """ raise NotImplementedError("Need to call specific interface.") class ricc2(Turbomole): """ Interface for turbomole ricc2 calculations. """ def __init__(self, model, data): self.data = data self.model = re.escape(model) self.gs_model = re.escape(model) if model == "adc(2)": self.gs_model = "mp2" self.results = dict() def update_state(self): """ Update control file to request gradient of self.data["state"]. """ if self.data["state"] == 1: state_string = r"(x)" else: state_string = r"(a {})".format(self.data["state"]-1) n_sub = file_utils.replace_inplace("control", r"(geoopt +model={} +state=).*".format(self.model), r"\1" + state_string) if n_sub < 1: raise ValueError("Expected geoopt section not found in control file.") def run(self): """ Run the calculation, check success and read results. """ with open(STDOUT, "w") as out, open(STDERR, "w") as err: subprocess.run("dscf", stdout=out, stderr=err) actual_check() subprocess.run("ricc2", stdout=out, stderr=err) actual_check() def read(self): self.results["energy"] = ricc2_energy(STDOUT, self.gs_model.upper()) self.results["gradient"] = ricc2_gradient()[self.data["state"]] try: self.results["oscill"] = ricc2_oscill(STDOUT) except: pass class mp2(ricc2): """ Interface for MP2 ground state calculations. """ def read(self): self.results["energy"] = ricc2_gs_energy(self.gs_model.upper()) self.results["gradient"] = ricc2_gradient()[1] class egrad(Turbomole): def __init__(self, data): self.data = data try: soes = file_utils.search_file("control", r"\$soes", after=1) soes = file_utils.split_columns(soes, col=1, convert=int)[0] self.data["n_ex_state"] = soes except: self.data["n_ex_state"] = 0 try: _ = file_utils.search_file("control", r"\$rij") self.data["ri"] = True except: self.data["ri"] = False self.results = dict() def update_state(self): ex_state = self.data["state"] - 1 if self.data["n_ex_state"] < ex_state: raise ValueError("Not enough states selected in QM calculation.") if ex_state == 0: return n_sub = file_utils.replace_inplace("control", r"\$exopt.*", r"$exopt {}".format(ex_state)) if n_sub == 0: file_utils.replace_inplace("control", r"\$end", r"$exopt {}\n$end".format(ex_state)) def run(self): # Remove existing gradient file to avoid the file becoming huge. try: os.remove("gradient") except: pass # Run new calculation. with open(STDOUT, "w") as out, open(STDERR, "w") as err: if self.data["ri"]: subprocess.run("ridft", stdout=out, stderr=err) else: subprocess.run("dscf", stdout=out, stderr=err) actual_check() if self.data["state"] == 1: if self.data["ri"]: subprocess.run("rdgrad", stdout=out, stderr=err) else: subprocess.run("grad", stdout=out, stderr=err) if self.data["n_ex_state"] > 0: subprocess.run("escf", stdout=out, stderr=err) else: subprocess.run("egrad", stdout=out, stderr=err) actual_check() def read(self): self.results["energy"] = tddft_energy(STDOUT) self.results["gradient"] = get_grad_from_gradient(STDOUT, self.data["natom"]) if self.data["n_ex_state"] > 0: self.results["oscill"] = tddft_oscill(STDOUT) # TDDFT Calculation keywords DSCF_EN = re.escape(r"| total energy =") ESCF_EN = r"Total energy:" GRAD_GRAD = r"SCF ENERGY GRADIENT with respect to NUCLEAR COORDINATES" EGRAD_GRAD = r"Excited state no.*chosen for optimization" RDGRAD_GRAD = r"RDGRAD - INFORMATION" def tddft_energy(fname): try: energy = file_utils.search_file(fname, ESCF_EN) col = 2 except: energy = file_utils.search_file(fname, DSCF_EN) col = 4 file_utils.split_columns(energy, col=col, convert=np.float64) return np.array(energy) def tddft_gradient(fname, target, ri): if target == 1: if ri: cfile, _ = file_utils.go_to_keyword(fname, RDGRAD_GRAD) else: cfile, _ = file_utils.go_to_keyword(fname, GRAD_GRAD) else: cfile = file_utils.open_if_needed(fname) while True: cfile, cstate = file_utils.go_to_keyword(cfile, EGRAD_GRAD) cstate = int(cstate.split()[3]) + 1 if cstate == target: break grad = get_grad_from_stdout(cfile) return grad def tddft_oscill(fname): oscill = file_utils.search_file(fname, "mixed representation:") file_utils.split_columns(oscill, col=2, convert=np.float64) return
np.array(oscill)
numpy.array
import unittest from approvaltests import verify from tests.helpers import verify_numpy_array import numpy as np import homlib class ValtonenOrnhagArxiv2020BfHfTestCase(unittest.TestCase): def setUp(self): self.tol = 14 self.p1 = np.array([ [2.003107199098924, -15.634084933471335], [-0.017087350257598, -7.041596829586987] ]) self.p2 = np.array([ [0.395688457559412, -0.012777594199286], [2.097270018093999, 0.988175585551782] ]) self.R1 = np.array([ [0.854451801803156, 0.080889542675225, 0.513194895026376], [0.251645807638113, 0.799754574299643, -0.545038538440134], [-0.454517882919365, 0.594852505057001, 0.662996222714662] ]) self.R2 = np.array([ [0.243935353955667, -0.895887070857591, -0.371324520279403], [0.945623784801441, 0.134783533871648, 0.296022054271079], [-0.215153900053711, -0.423343542843488, 0.880050591741408] ]) self.sols = homlib.get_valtonenornhag_arxiv_2020b_fHf( np.asfortranarray(self.p1), np.asfortranarray(self.p2), np.asfortranarray(self.R1), np.asfortranarray(self.R2) ) def test_valtonenornhag_arxiv_2020b_fHf_length(self): assert len(self.sols) == 4 def test_valtonenornhag_arxiv_2020b_fHf_sol0(self): np.testing.assert_almost_equal(self.sols[0]['f'], -0.16963695303093723, self.tol) verify(verify_numpy_array(self.sols[0]['H'])) def test_valtonenornhag_arxiv_2020b_fHf_sol1(self): np.testing.assert_almost_equal(self.sols[1]['f'], 0.34165415155423584, self.tol) verify(verify_numpy_array(self.sols[1]['H'])) def test_valtonenornhag_arxiv_2020b_fHf_sol2(self): np.testing.assert_almost_equal(self.sols[2]['f'], 0.6535921559444265, self.tol) verify(verify_numpy_array(self.sols[2]['H'])) def test_valtonenornhag_arxiv_2020b_fHf_sol3(self): np.testing.assert_almost_equal(self.sols[3]['f'], 3.3956095501687518, self.tol) verify(verify_numpy_array(self.sols[3]['H'])) def test_valtonenornhag_arxiv_2020b_fHf_dimensions01(self): """Check that an exception is raised when dimensions are incorrect.""" p1 = np.random.randn(2, 2) p2 = np.random.randn(3, 2) R1 = np.random.randn(3, 3) R2 = np.random.randn(3, 3) with self.assertRaises(ValueError): sols = homlib.get_valtonenornhag_arxiv_2020b_fHf( # noqa np.asfortranarray(p1),
np.asfortranarray(p2)
numpy.asfortranarray
# python3.7 """Utility functions for latent codes manipulation.""" import numpy as np from sklearn import svm from .logger import setup_logger __all__ = ['train_boundary', 'project_boundary', 'linear_interpolate'] def train_boundary(latent_codes, scores, chosen_num_or_ratio=0.02, split_ratio=0.7, invalid_value=None, logger=None): """Trains boundary in latent space with offline predicted attribute scores. Given a collection of latent codes and the attribute scores predicted from the corresponding images, this function will train a linear SVM by treating it as a bi-classification problem. Basically, the samples with highest attribute scores are treated as positive samples, while those with lowest scores as negative. For now, the latent code can ONLY be with 1 dimension. NOTE: The returned boundary is with shape (1, latent_space_dim), and also normalized with unit norm. Args: latent_codes: Input latent codes as training data. scores: Input attribute scores used to generate training labels. chosen_num_or_ratio: How many samples will be chosen as positive (negative) samples. If this field lies in range (0, 0.5], `chosen_num_or_ratio * latent_codes_num` will be used. Otherwise, `min(chosen_num_or_ratio, 0.5 * latent_codes_num)` will be used. (default: 0.02) split_ratio: Ratio to split training and validation sets. (default: 0.7) invalid_value: This field is used to filter out data. (default: None) logger: Logger for recording log messages. If set as `None`, a default logger, which prints messages from all levels to screen, will be created. (default: None) Returns: A decision boundary with type `numpy.ndarray`. Raises: ValueError: If the input `latent_codes` or `scores` are with invalid format. """ if not logger: logger = setup_logger(work_dir='', logger_name='train_boundary') if (not isinstance(latent_codes, np.ndarray) or not len(latent_codes.shape) == 2): raise ValueError(f'Input `latent_codes` should be with type' f'`numpy.ndarray`, and shape [num_samples, ' f'latent_space_dim]!') num_samples = latent_codes.shape[0] latent_space_dim = latent_codes.shape[1] if (not isinstance(scores, np.ndarray) or not len(scores.shape) == 2 or not scores.shape[0] == num_samples or not scores.shape[1] == 1): raise ValueError(f'Input `scores` should be with type `numpy.ndarray`, and ' f'shape [num_samples, 1], where `num_samples` should be ' f'exactly same as that of input `latent_codes`!') if chosen_num_or_ratio <= 0: raise ValueError(f'Input `chosen_num_or_ratio` should be positive, ' f'but {chosen_num_or_ratio} received!') logger.info(f'Filtering training data.') if invalid_value is not None: latent_codes = latent_codes[scores[:, 0] != invalid_value] scores = scores[scores[:, 0] != invalid_value] logger.info(f'Sorting scores to get positive and negative samples.') sorted_idx = np.argsort(scores, axis=0)[::-1, 0] latent_codes = latent_codes[sorted_idx] scores = scores[sorted_idx] num_samples = latent_codes.shape[0] if 0 < chosen_num_or_ratio <= 1: chosen_num = int(num_samples * chosen_num_or_ratio) else: chosen_num = int(chosen_num_or_ratio) chosen_num = min(chosen_num, num_samples // 2) logger.info(f'Spliting training and validation sets:') train_num = int(chosen_num * split_ratio) val_num = chosen_num - train_num # Positive samples. positive_idx =
np.arange(chosen_num)
numpy.arange
import os import logging import itertools import pandas as pd import numpy as np from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords from tqdm import tqdm from data_utils.text_util import clean_str, pad_sentence, build_vocab from data_utils.noise_uitl import generate_random_noise class DataLoad(object): logging.getLogger().setLevel(logging.INFO) def __init__(self, data_path, fnames, forced_seq_len, vocab_size, paly_times, num_main_actors, batch_size, num_epochs, noise_rate): self.data_path = data_path self.fnames = fnames self.forced_seq_len = forced_seq_len self.vocab_size = vocab_size self.paly_times = paly_times self.num_main_actors = num_main_actors self.batch_size = batch_size self.num_epochs = num_epochs self.noise_rate = noise_rate # data file path self.info_path = os.path.join(data_path, fnames['movies']) self.actors_path = os.path.join(data_path, fnames['actors']) self.summaries_path = os.path.join(data_path, fnames['summaries']) self.storylines_path = os.path.join(data_path, fnames['storylines']) self.all_ratings_path = os.path.join(data_path, fnames['all_ratings']) self.all_actors_path = os.path.join( data_path, fnames['all_actors'].format(self.num_main_actors)) self.users_bias = os.path.join(data_path, fnames['bu']) self.movies_bias = os.path.join(data_path, fnames['bm']) # generate features self._generate_id_mappings() self._generate_bias() self._generate_info() # dim = M*self.dim_onehot self._generate_actors() # dim = M*self.dim_onehot self._generate_descriptions() # dim = M*self.forced_seq_len def load_data(self, mode, num_sub=100*100): if mode in ('train', 'dev', 'eval'): ratings_path = os.path.join( self.data_path, self.fnames['{}_ratings'.format(mode)]) else: raise ValueError('please choose correct mode (train/dev/eval)') df_ratings = pd.read_csv( ratings_path, header=0, dtype={'userId':np.int32, 'movieId':np.int32, 'rating':np.float, 'timestamp':np.str}) if mode == 'train': return self._train_batch_iterator(df_ratings) else: return self._dev_eval_iterator(df_ratings, num_sub=num_sub) def _train_batch_iterator(self, df): num_batches_per_epoch = df.shape[0] // self.batch_size + 1 # shuffle trian dataset df = df.sample(frac=1).reset_index(drop=True) # generate train batch for i in range(num_batches_per_epoch): start_idx = i * self.batch_size end_idx = min((i + 1) * self.batch_size, df.shape[0]) batch_df = df.iloc[start_idx:end_idx] batch_uids = list(batch_df.loc[:, 'userId']) batch_mids = list(batch_df.loc[:, 'movieId']) batch_bu_seq = np.array([self.bu_dict[u] for u in batch_uids], np.float) batch_bm_seq = np.array([self.bm_dict[m] for m in batch_mids], np.float) batch_u_oids = np.array([self.uid2order[u] for u in batch_uids]) batch_m_oids = np.array([self.mid2order[m] for m in batch_mids]) batch_info = self.info_mat[batch_m_oids, :] batch_actors = self.actors_mat[batch_m_oids, :] batch_descriptions = self.descriptions_mat[batch_m_oids, :] batch_u_oids = np.reshape(batch_u_oids, (batch_u_oids.shape[0], 1)) batch_m_oids = np.reshape(batch_m_oids, (batch_m_oids.shape[0], 1)) X_user = (batch_u_oids, batch_bu_seq) X_movie = (batch_m_oids, batch_info, batch_actors, batch_descriptions, batch_bm_seq) X = (X_user, X_movie) Y = np.array(batch_df.loc[:, 'rating']) yield X, Y def _dev_eval_iterator(self, df, num_sub): # shuffle dev dataset df = df.sample(frac=1).reset_index(drop=True) num_sub_per_eval = df.shape[0] // num_sub + 1 # generate sub df for each dev for i in range(num_sub_per_eval): start_idx = i * num_sub end_idx = min((i+1) * num_sub, df.shape[0]) sub_df = df.iloc[start_idx:end_idx] sub_uids = list(sub_df.loc[:, 'userId']) sub_mids = list(sub_df.loc[:, 'movieId']) sub_bu_seq = np.array([self.bu_dict[u] for u in sub_uids], np.float) sub_bm_seq = np.array([self.bm_dict[m] for m in sub_mids], np.float) sub_u_oids = np.array([self.uid2order[u] for u in sub_uids]) sub_m_oids = np.array([self.mid2order[m] for m in sub_mids]) sub_info = self.info_mat[sub_m_oids, :] sub_actors = self.actors_mat[sub_m_oids, :] sub_descriptions = self.descriptions_mat[sub_m_oids, :] sub_u_oids = np.reshape(sub_u_oids, (sub_u_oids.shape[0], 1)) sub_m_oids = np.reshape(sub_m_oids, (sub_m_oids.shape[0], 1)) X_user = (sub_u_oids, sub_bu_seq) X_movie = (sub_m_oids, sub_info, sub_actors, sub_descriptions, sub_bm_seq) X = (X_user, X_movie) Y = np.array(sub_df.loc[:, 'rating']) yield X, Y def _generate_id_mappings(self): df_all_ratings = pd.read_csv(self.all_ratings_path, header=0, dtype={'userId': np.int32, 'movieId': np.int32, 'rating': np.float, 'timestamp': np.str}) all_uids = sorted(list(df_all_ratings.loc[:, 'userId'].unique())) all_mids = sorted(list(df_all_ratings.loc[:, 'movieId'].unique())) self.num_all_users = len(all_uids) self.num_all_movies = len(all_mids) self.uid2order = {u: i for i, u in enumerate(all_uids)} self.order2uid = {i: u for i, u in enumerate(all_uids)} self.mid2order = {m: i for i, m in enumerate(all_mids)} self.order2mid = {i: m for i, m in enumerate(all_mids)} self.mu = np.mean(df_all_ratings.loc[:, 'rating']) return self def _generate_bias(self): df_users_bias = pd.read_csv( self.users_bias, header=0, dtype={'userId':np.int32, 'bias':np.float}) df_movies_bias = pd.read_csv( self.movies_bias, header=0, dtype={'movieId':np.int32, 'bias':np.float}) uids = list(df_users_bias.loc[:, 'userId']) mids = list(df_movies_bias.loc[:, 'movieId']) bu_seq = list(df_users_bias.loc[:, 'bias']) bm_seq = list(df_movies_bias.loc[:, 'bias']) self.bu_dict = dict(zip(uids, bu_seq)) self.bm_dict = dict(zip(mids, bm_seq)) return self def _generate_info(self): def _generate_year_range(year): if year <= 1950: year = 1950 elif year <= 1960: year = 1960 elif year <= 1970: year = 1970 elif year <= 1980: year = 1980 elif year <= 1990: year = 1990 return year df_info = pd.read_csv(self.info_path, header=0, dtype={'movieId': np.int32, 'title': np.str, 'genres': np.str, 'year': np.int32}) df_info.loc[:, 'year'] = df_info.loc[:, 'year'].apply(_generate_year_range) df_info.loc[:, 'genres'] = df_info.loc[:, 'genres'].apply(lambda x: x.split('|')) years = list(df_info.loc[:, 'year']) genres = list(df_info.loc[:, 'genres']) # build info vocabulary all_info = list(set(years).union(set(itertools.chain(*genres)))) all_info += ['<OOI>'] # out of info self.num_all_info = len(all_info) info2id = {info: i for i, info in enumerate(all_info)} # merge year into genres info_list = genres.copy() for i in range(len(years)): info_list[i].append(years[i]) self.num_most_info = max([len(info) for info in info_list]) new_info_list = [] for info in info_list: new_info = [] for i in range(self.num_most_info): try: new_info.append(info2id[info[i]]) except IndexError: new_info.append(info2id['<OOI>']) new_info_list.append(new_info) # dimension = N * self.dim_onehot self.info_mat = np.array(new_info_list) print('have generated feature matrix, shape={}'.format(self.info_mat.shape)) return self def _generate_actors(self): # read all actors' name df_all_actors = pd.read_csv(self.all_actors_path, header=0, dtype={'name': np.str, 'times': np.int32}) # build actors vocabulary selected_actors = list( df_all_actors.loc[df_all_actors['times'] >= self.paly_times, 'name']) selected_actors += ['<OTA>'] # other actors self.num_all_main_actors = len(selected_actors) actor2id = {a: i for i, a in enumerate(selected_actors)} # read actors for each movie df_actors = pd.read_csv(self.actors_path, header=0, dtype={ 'movieId': np.int32, 'actors': np.str}) df_actors.loc[:, 'actors'] = df_actors.loc[:, 'actors'].apply( lambda x: x.split('|')) actors_list = list(df_actors.loc[:, 'actors']) new_actors_list = [] for actors in actors_list: new_actors = [] for i in range(self.num_main_actors): try: new_actors.append(actor2id[actors[i]]) except IndexError: new_actors.append(actor2id['<OTA>']) except KeyError: new_actors.append(actor2id['<OTA>']) new_actors_list.append(new_actors) self.actors_mat = np.array(new_actors_list) print('have generated actor matrix, shape={}'.format(self.actors_mat.shape)) return self def _generate_descriptions(self): df_info = pd.read_csv(self.info_path, header=0, dtype={'movieId': np.int32, 'title': np.str, 'genres': np.str, 'year': np.str}) df_summaries = pd.read_csv(self.summaries_path, header=0, dtype={'movieId': np.int32, 'summary': np.str}) df_storylines = pd.read_csv(self.storylines_path, header=0, dtype={'movieId': np.int32, 'storyline': np.str}) titles = list(df_info.loc[:, 'title']) summaries = list(df_summaries.loc[:, 'summary']) storylines = list(df_storylines.loc[:, 'storyline']) porter_stemmer = PorterStemmer() stop = stopwords.words('english') raw_descriptions = [clean_str('{} {} {}'.format(t, su, st)) for t, su, st in zip(titles, summaries, storylines)] tokenized_descriptions = [[porter_stemmer.stem(word) for word in sent.split(' ') if word not in stop] for sent in raw_descriptions] noised_descriptions = generate_random_noise(tokenized_descriptions, self.noise_rate) padded_descriptions = pad_sentence( noised_descriptions, self.forced_seq_len) token2id, _, self.vocab_size = build_vocab( padded_descriptions, self.vocab_size) descriptions = [] for sent in padded_descriptions: description = [] for word in sent: if word not in token2id: word = '<OOV>' description.append(token2id[word]) descriptions.append(description) self.descriptions_mat =
np.array(descriptions)
numpy.array
# -*- coding: utf-8 -*- # Import necessary modules import numpy as np import numpy.linalg as npla import hoggorm.statTools as st import hoggorm.cross_val as cv class nipalsPCA: """ This class carries out Principal Component Analysis using the NIPALS algorithm. PARAMETERS ---------- arrX : numpy array A numpy array containing the data numComp : int, optional An integer that defines how many components are to be computed Xstand : boolean, optional Defines whether variables in ``arrX`` are to be standardised/scaled or centered False : columns of ``arrX`` are mean centred (default) ``Xstand = False`` True : columns of ``arrX`` are mean centred and devided by their own standard deviation ``Xstand = True`` cvType : list, optional The list defines cross validation settings when computing the PCA model. Note if `cvType` is not provided, cross validation will not be performed and as such cross validation results will not be available. Choose cross validation type from the following: loo : leave one out / a.k.a. full cross validation (default) ``cvType = ["loo"]`` KFold : leave out one fold or segment ``cvType = ["KFold", numFolds]`` numFolds: int Number of folds or segments lolo : leave one label out ``cvType = ["lolo", lablesList]`` lablesList: list Sequence of lables. Must be same lenght as number of rows in ``arrX``. Leaves out objects with same lable. RETURNS ------- class A class that contains the PCA model and computational results EXAMPLES -------- First import the hoggorm package. >>> import hoggorm as ho Import your data into a numpy array. >>> myData array([[ 5.7291665, 3.416667 , 3.175 , 2.6166668, 6.2208333], [ 6.0749993, 2.7416666, 3.6333339, 3.3833334, 6.1708336], [ 6.1166663, 3.4916666, 3.5208333, 2.7125003, 6.1625004], ..., [ 6.3333335, 2.3166668, 4.1249995, 4.3541665, 6.7500005], [ 5.8250003, 4.8291669, 1.4958333, 1.0958334, 6.0999999], [ 5.6499996, 4.6624999, 1.9291668, 1.0749999, 6.0249996]]) >>> np.shape(myData) (14, 5) Examples of how to compute a PCA model using different settings for the input parameters. >>> model = ho.nipalsPCA(arrX=myData, numComp=5, Xstand=False) >>> model = ho.nipalsPCA(arrX=myData) >>> model = ho.nipalsPCA(arrX=myData, numComp=3) >>> model = ho.nipalsPCA(arrX=myData, Xstand=True) >>> model = ho.nipalsPCA(arrX=myData, cvType=["loo"]) >>> model = ho.nipalsPCA(arrX=myData, cvType=["KFold", 4]) >>> model = ho.nipalsPCA(arrX=myData, cvType=["lolo", [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]]) Examples of how to extract results from the PCA model. >>> scores = model.X_scores() >>> loadings = model.X_loadings() >>> cumulativeCalibratedExplainedVariance_allVariables = model.X_cumCalExplVar_indVar() """ def __init__(self, arrX, numComp=None, Xstand=False, cvType=None): """ On initialisation check how arrX and arrY are to be pre-processed (Xstand and Ystand are either True or False). Then check whether number of components chosen by user is OK. """ # =============================================================================== # Check what is provided by user # =============================================================================== # Define X and y within class such that the data can be accessed from # all attributes in class. self.arrX_input = arrX # Check whether cvType is provided. If NOT, then no cross validation # is carried out. self.cvType = cvType # Define maximum number of components to compute depending on whether # cross validation was selected or not. if isinstance(self.cvType, type(None)): maxNumPC = min(np.shape(self.arrX_input)) else: # Depict the number of components that are possible to compute based # on size of data set (#rows, #cols), type of cross validation (i.e. # size of CV segments) numObj = np.shape(self.arrX_input)[0] # Compute the sizes of training sets in CV if self.cvType[0] == "loo": cvComb = cv.LeaveOneOut(numObj) elif self.cvType[0] == "KFold": cvComb = cv.KFold(numObj, k=self.cvType[1]) elif self.cvType[0] == "lolo": cvComb = cv.LeaveOneLabelOut(self.cvType[1]) else: print("Requested form of cross validation is not available") pass # First devide into combinations of training and test sets. Collect # sizes of training sets, since this also may limit the number of # components that can be computed. segSizes = [] for train_index, test_index in cvComb: x_train, x_test = cv.split(train_index, test_index, self.arrX_input) segSizes.append(numObj - sum(train_index)) # Compute the max number of components based on only object size maxN = numObj - max(segSizes) - 1 # Choose whatever is smaller, number of variables or maxN maxNumPC = min(np.shape(arrX)[1], maxN) # Now set the number of components that is possible to compute. if numComp is None: self.numPC = maxNumPC else: if numComp > maxNumPC: self.numPC = maxNumPC else: self.numPC = numComp # Pre-process data according to user request. # ------------------------------------------- # Check whether standardisation of X and Y are requested by user. If # NOT, then X and y are centred by default. self.Xstand = Xstand # Standardise X if requested by user, otherwise center X. if self.Xstand: self.Xmeans = np.average(self.arrX_input, axis=0) self.Xstd = np.std(self.arrX_input, axis=0, ddof=1) self.arrX = (self.arrX_input - self.Xmeans) / self.Xstd else: self.Xmeans = np.average(self.arrX_input, axis=0) self.arrX = self.arrX_input - self.Xmeans # Before PLS2 NIPALS algorithm starts initiate and lists in which # results will be stored. self.X_scoresList = [] self.X_loadingsList = [] self.X_loadingsWeightsList = [] self.coeffList = [] self.X_residualsList = [self.arrX] # Collect residual matrices/arrays after each computed component self.resids = {} self.X_residualsDict = {} # Collect predicted matrices/array Xhat after each computed component self.calXhatDict_singPC = {} # Collect explained variance in each component self.calExplainedVariancesDict = {} self.X_calExplainedVariancesList = [] # =============================================================================== # Here the NIPALS PCA algorithm on X starts # =============================================================================== threshold = 1.0e-8 X_new = self.arrX.copy() # Compute number of principal components as specified by user for j in range(self.numPC): # Check if first column contains only zeros. If yes, then # NIPALS will not converge and (npla.norm(num) will contain # nan's). Rather put in other starting values. if not np.any(X_new[:, 0]): X_repl_nonCent = np.arange(np.shape(X_new)[0]) X_repl = X_repl_nonCent - np.mean(X_repl_nonCent) t = X_repl.reshape(-1, 1) else: t = X_new[:, 0].reshape(-1, 1) # Iterate until score vector converges according to threshold while 1: num = np.dot(np.transpose(X_new), t) denom = npla.norm(num) p = num / denom t_new = np.dot(X_new, p) diff = t - t_new t = t_new.copy() SS = np.sum(np.square(diff)) # Check whether sum of squares is smaller than threshold. Break # out of loop if true and start computation of next component. if SS < threshold: self.X_scoresList.append(t) self.X_loadingsList.append(p) break # Peel off information explained by actual component and continue with # decomposition on the residuals (X_new = E). X_old = X_new.copy() Xhat_j = np.dot(t, np.transpose(p)) X_new = X_old - Xhat_j # Store residuals E and Xhat in their dictionaries self.X_residualsDict[j + 1] = X_new self.calXhatDict_singPC[j + 1] = Xhat_j if self.Xstand: self.calXhatDict_singPC[j + 1] = (Xhat_j * self.Xstd) + self.Xmeans else: self.calXhatDict_singPC[j + 1] = Xhat_j + self.Xmeans # Collect scores and loadings for the actual component. self.arrT = np.hstack(self.X_scoresList) self.arrP = np.hstack(self.X_loadingsList) # ============================================================================== # From here computation of CALIBRATED explained variance starts # ============================================================================== # ========== COMPUTATIONS FOR X ========== # --------------------------------------------------------------------- # Create a list holding arrays of Xhat predicted calibration after each # component. Xhat is computed with Xhat = T*P' self.calXpredList = [] # Compute Xhat for 1 and more components (cumulatively). for ind in range(1, self.numPC + 1): part_arrT = self.arrT[:, 0:ind] part_arrP = self.arrP[:, 0:ind] predXcal = np.dot(part_arrT, np.transpose(part_arrP)) if self.Xstand: Xhat = (predXcal * self.Xstd) + self.Xmeans else: Xhat = predXcal + self.Xmeans self.calXpredList.append(Xhat) # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Collect all PRESSE for individual variables in a dictionary. # Keys represent number of component. self.PRESSEdict_indVar_X = {} # Compute PRESS for calibration / estimation PRESSE_0_indVar_X = np.sum(np.square(st.center(self.arrX_input)), axis=0) self.PRESSEdict_indVar_X[0] = PRESSE_0_indVar_X # Compute PRESS for each Xhat for 1, 2, 3, etc number of components # and compute explained variance for ind, Xhat in enumerate(self.calXpredList): diffX = self.arrX_input - Xhat PRESSE_indVar_X = np.sum(np.square(diffX), axis=0) self.PRESSEdict_indVar_X[ind + 1] = PRESSE_indVar_X # Now store all PRESSE values into an array. Then compute MSEE and # RMSEE. self.PRESSEarr_indVar_X = np.array( list(self.PRESSEdict_indVar_X.values())) self.MSEEarr_indVar_X = self.PRESSEarr_indVar_X / np.shape( self.arrX_input)[0] self.RMSEEarr_indVar_X = np.sqrt(self.MSEEarr_indVar_X) # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Compute explained variance for each variable in X using the # MSEE for each variable. Also collect PRESSE, MSEE, RMSEE in # their respective dictionaries for each variable. Keys represent # now variables and NOT components as above with # self.PRESSEdict_indVar_X self.cumCalExplVarXarr_indVar = np.zeros( np.shape(self.MSEEarr_indVar_X)) MSEE_0_indVar_X = self.MSEEarr_indVar_X[0, :] for ind, MSEE_indVar_X in enumerate(self.MSEEarr_indVar_X): explVar = (MSEE_0_indVar_X - MSEE_indVar_X) / MSEE_0_indVar_X * 100 self.cumCalExplVarXarr_indVar[ind] = explVar self.PRESSE_indVar_X = {} self.MSEE_indVar_X = {} self.RMSEE_indVar_X = {} self.cumCalExplVarX_indVar = {} for ind in range(
np.shape(self.PRESSEarr_indVar_X)
numpy.shape
""" Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import copy from functools import partial from collections import OrderedDict import pickle from pathlib import Path import numpy as np import cv2 from ..base_evaluator import BaseEvaluator from ..quantization_model_evaluator import create_dataset_attributes from ...adapters import create_adapter, MTCNNPAdapter from ...launcher import create_launcher, InputFeeder from ...preprocessor import PreprocessingExecutor from ...utils import extract_image_representations, read_pickle, contains_any, get_path from ...config import ConfigError from ...progress_reporters import ProgressReporter from ...logging import print_info def build_stages(models_info, preprocessors_config, launcher, model_args, delayed_model_loading=False): required_stages = ['pnet'] stages_mapping = OrderedDict([ ('pnet', {'caffe': CaffeProposalStage, 'dlsdk': DLSDKProposalStage, 'dummy': DummyProposalStage}), ('rnet', {'caffe': CaffeRefineStage, 'dlsdk': DLSDKRefineStage}), ('onet', {'caffe': CaffeOutputStage, 'dlsdk': DLSDKOutputStage}) ]) framework = launcher.config['framework'] common_preprocessor = PreprocessingExecutor(preprocessors_config) stages = OrderedDict() for stage_name, stage_classes in stages_mapping.items(): if stage_name not in models_info: if stage_name not in required_stages: continue raise ConfigError('{} required for evaluation'.format(stage_name)) model_config = models_info[stage_name] if 'predictions' in model_config and not model_config.get('store_predictions', False): stage_framework = 'dummy' else: stage_framework = framework if not delayed_model_loading: if not contains_any(model_config, ['model', 'caffe_model']) and stage_framework != 'dummy': if model_args: model_config['model'] = model_args[len(stages) if len(model_args) > 1 else 0] stage = stage_classes.get(stage_framework) if not stage_classes: raise ConfigError('{} stage does not support {} framework'.format(stage_name, stage_framework)) stage_preprocess = models_info[stage_name].get('preprocessing', []) model_specific_preprocessor = PreprocessingExecutor(stage_preprocess) stages[stage_name] = stage( models_info[stage_name], model_specific_preprocessor, common_preprocessor, launcher, delayed_model_loading ) if not stages: raise ConfigError('please provide information about MTCNN pipeline stages') return stages class BaseStage: def __init__(self, model_info, model_specific_preprocessor, common_preprocessor, delayed_model_loading=False): self.model_info = model_info self.model_specific_preprocessor = model_specific_preprocessor self.common_preprocessor = common_preprocessor self.input_feeder = None self.store = model_info.get('store_predictions', False) self.predictions = [] def predict(self, input_blobs, batch_meta, output_callback=None): raise NotImplementedError def preprocess_data(self, batch_input, batch_annotation, previous_stage_prediction, *args, **kwargs): raise NotImplementedError def postprocess_result(self, identifiers, this_stage_result, batch_meta, previous_stage_result, *args, **kwargs): raise NotImplementedError def release(self): pass def reset(self): self._predictions = [] def dump_predictions(self): if not hasattr(self, 'prediction_file'): prediction_file = Path(self.model_info.get('predictions', 'predictions.pickle')) self.prediction_file = prediction_file with self.prediction_file.open('wb') as out_file: pickle.dump(self._predictions, out_file) def update_preprocessing(self, preprocessor): self.common_preprocessor = preprocessor class ProposalBaseStage(BaseStage): default_model_name = 'mtcnn-p' def __init__(self, model_info, model_specific_preprocessor, common_preprocessor, delayed_model_loading=False): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) self.adapter = None self.input_feeder = None self._predictions = [] def preprocess_data(self, batch_input, batch_annotation, *args, **kwargs): batch_input = self.model_specific_preprocessor.process(batch_input, batch_annotation) batch_input = self.common_preprocessor.process(batch_input, batch_annotation) _, batch_meta = extract_image_representations(batch_input) filled_inputs = self.input_feeder.fill_inputs(batch_input) if self.input_feeder else batch_input return filled_inputs, batch_meta def postprocess_result(self, identifiers, this_stage_result, batch_meta, *args, **kwargs): result = self.adapter.process(this_stage_result, identifiers, batch_meta) if self.adapter else this_stage_result if self.store: self._predictions.extend(result) return result def _infer(self, input_blobs, batch_meta): raise NotImplementedError def predict(self, input_blobs, batch_meta, output_callback=None): return self._infer(input_blobs, batch_meta) def dump_predictions(self): if not hasattr(self, 'prediction_file'): prediction_file = Path(self.model_info.get('predictions', 'pnet_predictions.pickle')) self.prediction_file = prediction_file with self.prediction_file.open('wb') as out_file: pickle.dump(self._predictions, out_file) class DummyProposalStage(ProposalBaseStage): def __init__(self, model_info, model_specific_preprocessor, common_preprocessor, *args, **kwargs): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) self._index = 0 if 'predictions' not in self.model_info: raise ConfigError('predictions_file is not found') self._predictions = read_pickle(self.model_info['predictions']) self.iterator = 0 def preprocess_data(self, batch_input, batch_annotation, *args, **kwargs): _, batch_meta = extract_image_representations(batch_input) return batch_input, batch_meta def _infer(self, input_blobs, batch_meta): batch_size = len(batch_meta) results = self._predictions[self._index:self._index+batch_size] self._index += batch_size return results def postprocess_result(self, identifiers, this_stage_result, batch_meta, *args, **kwargs): return this_stage_result class RefineBaseStage(BaseStage): input_size = 24 include_boundaries = True default_model_name = 'mtcnn-r' def preprocess_data(self, batch_input, batch_annotation, previous_stage_prediction, *args, **kwargs): batch_input = self.model_specific_preprocessor.process(batch_input, batch_annotation) batch_input = self.common_preprocessor.process(batch_input, batch_annotation) _, batch_meta = extract_image_representations(batch_input) batch_input = [ cut_roi(input_image, prediction, self.input_size, include_bound=self.include_boundaries) for input_image, prediction in zip(batch_input, previous_stage_prediction) ] filled_inputs = self.input_feeder.fill_inputs(batch_input) if self.input_feeder else batch_input return filled_inputs, batch_meta def postprocess_result(self, identifiers, this_stage_result, batch_meta, previous_stage_result, *args, **kwargs): result = calibrate_predictions( previous_stage_result, this_stage_result, 0.7, self.model_info['outputs'], 'Union' ) if self.store: self._predictions.extend(result) return result def _infer(self, input_blobs, batch_meta): raise NotImplementedError def predict(self, input_blobs, batch_meta, output_callback=None): return self._infer(input_blobs, batch_meta) def dump_predictions(self): if not hasattr(self, 'prediction_file'): prediction_file = Path(self.model_info.get('predictions', 'rnet_predictions.pickle')) self.prediction_file = prediction_file with self.prediction_file.open('wb') as out_file: pickle.dump(self._predictions, out_file) class OutputBaseStage(RefineBaseStage): input_size = 48 include_boundaries = False default_model_name = 'mtcnn-o' def _infer(self, input_blobs, batch_meta): raise NotImplementedError def postprocess_result(self, identifiers, this_stage_result, batch_meta, previous_stage_result, *args, **kwargs): batch_predictions = calibrate_predictions( previous_stage_result, this_stage_result, 0.7, self.model_info['outputs'] ) batch_predictions[0], _ = nms(batch_predictions[0], 0.7, 'Min') if self.store: self._predictions.extend(batch_predictions) return batch_predictions def dump_predictions(self): if not hasattr(self, 'prediction_file'): prediction_file = Path(self.model_info.get('predictions', 'onet_predictions.pickle')) self.prediction_file = prediction_file with self.prediction_file.open('wb') as out_file: pickle.dump(self._predictions, out_file) class CaffeModelMixin: def _infer(self, input_blobs, batch_meta, *args, **kwargs): for meta in batch_meta: meta['input_shape'] = [] results = [] for feed_dict in input_blobs: for layer_name, data in feed_dict.items(): if data.shape != self.inputs[layer_name]: self.net.blobs[layer_name].reshape(*data.shape) for meta in batch_meta: meta['input_shape'].append(self.inputs) results.append(self.net.forward(**feed_dict)) return results @property def inputs(self): inputs_map = {} for input_blob in self.net.inputs: inputs_map[input_blob] = self.net.blobs[input_blob].data.shape return inputs_map def release(self): del self.net def fit_to_input(self, data, layer_name, layout, precision): data_shape = np.shape(data) layer_shape = self.inputs[layer_name] if len(data_shape) == 5 and len(layer_shape) == 4: data = data[0] data_shape = np.shape(data) data = np.transpose(data, layout) if len(data_shape) == 4 else np.array(data) if precision: data = data.astype(precision) return data def automatic_model_search(self, network_info): model = Path(network_info.get('model', '')) weights = network_info.get('weights') if model.is_dir(): models_list = list(Path(model).glob('{}.prototxt'.format(self.default_model_name))) if not models_list: models_list = list(Path(model).glob('*.prototxt')) if not models_list: raise ConfigError('Suitable model description is not detected') if len(models_list) != 1: raise ConfigError('Several suitable models found, please specify required model') model = models_list[0] if weights is None or Path(weights).is_dir(): weights_dir = weights or model.parent weights = Path(weights_dir) / model.name.replace('prototxt', 'caffemodel') if not weights.exists(): weights_list = list(weights_dir.glob('*.caffemodel')) if not weights_list: raise ConfigError('Suitable weights is not detected') if len(weights_list) != 1: raise ConfigError('Several suitable weights found, please specify required explicitly') weights = weights_list[0] weights = Path(weights) return model, weights class DLSDKModelMixin: def _infer(self, input_blobs, batch_meta): for meta in batch_meta: meta['input_shape'] = [] results = [] for feed_dict in input_blobs: input_shapes = {layer_name: data.shape for layer_name, data in feed_dict.items()} self._reshape_input(input_shapes) results.append(self.exec_network.infer(feed_dict)) for meta in batch_meta: meta['input_shape'].append(input_shapes) return results def _reshape_input(self, input_shapes): del self.exec_network self.network.reshape(input_shapes) self.exec_network = self.launcher.ie_core.load_network(self.network, self.launcher.device) @property def inputs(self): has_info = hasattr(self.exec_network, 'input_info') if not has_info: return self.exec_network.inputs return OrderedDict([(name, data.input_data) for name, data in self.exec_network.input_info.items()]) def release(self): self.input_feeder.release() del self.network del self.exec_network self.launcher.release() def fit_to_input(self, data, layer_name, layout, precision): layer_shape = tuple(self.inputs[layer_name].shape) data_shape = np.shape(data) if len(layer_shape) == 4: if len(data_shape) == 5: data = data[0] data = np.transpose(data, layout) if precision: data = data.astype(precision) return data def prepare_model(self, launcher): launcher_specific_entries = [ 'model', 'weights', 'caffe_model', 'caffe_weights', 'tf_model', 'inputs', 'outputs', '_model_optimizer' ] def update_mo_params(launcher_config, model_config): for entry in launcher_specific_entries: if entry not in launcher_config: continue if entry in model_config: continue model_config[entry] = launcher_config[entry] model_mo_flags, model_mo_params = model_config.get('mo_flags', []), model_config.get('mo_params', {}) launcher_mo_flags, launcher_mo_params = launcher_config.get('mo_flags', []), launcher_config.get( 'mo_params', {}) for launcher_flag in launcher_mo_flags: if launcher_flag not in model_mo_flags: model_mo_flags.append(launcher_flag) for launcher_mo_key, launcher_mo_value in launcher_mo_params.items(): if launcher_mo_key not in model_mo_params: model_mo_params[launcher_mo_key] = launcher_mo_value model_config['mo_flags'] = model_mo_flags model_config['mo_params'] = model_mo_params update_mo_params(launcher.config, self.model_info) if 'caffe_model' in self.model_info: model, weights = launcher.convert_model(self.model_info) else: model, weights = self.auto_model_search(self.model_info) return model, weights def auto_model_search(self, network_info): model = Path(network_info.get('model', '')) weights = network_info.get('weights') if model.is_dir(): models_list = list(Path(model).glob('{}.xml'.format(self.default_model_name))) if not models_list: models_list = list(Path(model).glob('*.xml')) if not models_list: raise ConfigError('Suitable model description is not detected') if len(models_list) != 1: raise ConfigError('Several suitable models found, please specify required model') model = models_list[0] print_info('{} - Found model: {}'.format(self.default_model_name, model)) if weights is None or Path(weights).is_dir(): weights_dir = weights or model.parent weights = Path(weights_dir) / model.name.replace('xml', 'bin') if not weights.exists(): weights_list = list(weights_dir.glob('*.bin')) if not weights_list: raise ConfigError('Suitable weights is not detected') if len(weights_list) != 1: raise ConfigError('Several suitable weights found, please specify required explicitly') weights = weights_list[0] weights = get_path(weights) print_info('{} - Found weights: {}'.format(self.default_model_name, weights)) return model, weights def load_network(self, network, launcher, model_prefix): self.network = network self.exec_network = launcher.ie_core.load_network(network, launcher.device) self.update_input_output_info(model_prefix) self.input_feeder = InputFeeder(self.model_info.get('inputs', []), self.inputs, self.fit_to_input) def load_model(self, network_info, launcher, model_prefix=None, log=False): self.network = launcher.read_network(str(network_info['model']), str(network_info['weights'])) self.exec_network = launcher.ie_core.load_network(self.network, launcher.device) self.launcher = launcher self.update_input_output_info(model_prefix) self.input_feeder = InputFeeder(self.model_info.get('inputs', []), self.inputs, self.fit_to_input) if log: self.print_input_output_info() def print_input_output_info(self): print_info('{} - Input info:'.format(self.default_model_name)) has_info = hasattr(self.network if self.network is not None else self.exec_network, 'input_info') if self.network: if has_info: network_inputs = OrderedDict( [(name, data.input_data) for name, data in self.network.input_info.items()] ) else: network_inputs = self.network.inputs network_outputs = self.network.outputs else: if has_info: network_inputs = OrderedDict([ (name, data.input_data) for name, data in self.exec_network.input_info.items() ]) else: network_inputs = self.exec_network.inputs network_outputs = self.exec_network.outputs for name, input_info in network_inputs.items(): print_info('\tLayer name: {}'.format(name)) print_info('\tprecision: {}'.format(input_info.precision)) print_info('\tshape {}\n'.format(input_info.shape)) print_info('{} - Output info'.format(self.default_model_name)) for name, output_info in network_outputs.items(): print_info('\tLayer name: {}'.format(name)) print_info('\tprecision: {}'.format(output_info.precision)) print_info('\tshape: {}\n'.format(output_info.shape)) def update_input_output_info(self, model_prefix): def generate_name(prefix, with_prefix, layer_name): return prefix + layer_name if with_prefix else layer_name.split(prefix)[-1] if model_prefix is None: return config_inputs = self.model_info.get('inputs', []) network_with_prefix = next(iter(self.inputs)).startswith(model_prefix) if config_inputs: config_with_prefix = config_inputs[0]['name'].startswith(model_prefix) if config_with_prefix == network_with_prefix: return for c_input in config_inputs: c_input['name'] = generate_name(model_prefix, network_with_prefix, c_input['name']) self.model_info['inputs'] = config_inputs config_outputs = self.model_info['outputs'] for key, value in config_outputs.items(): config_with_prefix = value.startswith(model_prefix) if config_with_prefix != network_with_prefix: config_outputs[key] = generate_name(model_prefix, network_with_prefix, value) self.model_info['outputs'] = config_outputs class CaffeProposalStage(CaffeModelMixin, ProposalBaseStage): def __init__(self, model_info, model_specific_preprocessor, common_preprocessor, launcher, *args, **kwargs): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) self.net = launcher.create_network(self.model_info['model'], self.model_info['weights']) self.input_feeder = InputFeeder(model_info.get('inputs', []), self.inputs, self.fit_to_input) pnet_outs = model_info['outputs'] pnet_adapter_config = launcher.config.get('adapter', {'type': 'mtcnn_p', **pnet_outs}) pnet_adapter_config.update({'regions_format': 'hw'}) self.adapter = create_adapter(pnet_adapter_config) class CaffeRefineStage(CaffeModelMixin, RefineBaseStage): def __init__(self, model_info, model_specific_preprocessor, common_preprocessor, launcher, *args, **kwargs): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) self.net = launcher.create_network(self.model_info['model'], self.model_info['weights']) self.input_feeder = InputFeeder(model_info.get('inputs', []), self.inputs, self.fit_to_input) class CaffeOutputStage(CaffeModelMixin, OutputBaseStage): def __init__(self, model_info, model_specific_preprocessor, common_preprocessor, launcher): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) self.net = launcher.create_network(self.model_info['model'], self.model_info['weights']) self.input_feeder = InputFeeder(model_info.get('inputs', []), self.inputs, self.fit_to_input) class DLSDKProposalStage(DLSDKModelMixin, ProposalBaseStage): def __init__( self, model_info, model_specific_preprocessor, common_preprocessor, launcher, delayed_model_loading=False ): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) self.adapter = None if not delayed_model_loading: model_xml, model_bin = self.prepare_model(launcher) self.load_model({'model': model_xml, 'weights': model_bin}, launcher, 'pnet_', log=True) pnet_outs = model_info['outputs'] pnet_adapter_config = launcher.config.get('adapter', {'type': 'mtcnn_p', **pnet_outs}) # pnet_adapter_config.update({'regions_format': 'hw'}) self.adapter = create_adapter(pnet_adapter_config) def load_network(self, network, launcher, model_prefix): self.network = network self.exec_network = launcher.ie_core.load_network(network, launcher.device) self.update_input_output_info(model_prefix) self.input_feeder = InputFeeder(self.model_info.get('inputs', []), self.inputs, self.fit_to_input) pnet_outs = self.model_info['outputs'] pnet_adapter_config = launcher.config.get('adapter', {'type': 'mtcnn_p', **pnet_outs}) self.adapter = create_adapter(pnet_adapter_config) def load_model(self, network_info, launcher, model_prefix=None, log=False): self.network = launcher.read_network(str(network_info['model']), str(network_info['weights'])) self.exec_network = launcher.ie_core.load_network(self.network, launcher.device) self.launcher = launcher self.update_input_output_info(model_prefix) self.input_feeder = InputFeeder(self.model_info.get('inputs', []), self.inputs, self.fit_to_input) pnet_outs = self.model_info['outputs'] pnet_adapter_config = launcher.config.get('adapter', {'type': 'mtcnn_p', **pnet_outs}) self.adapter = create_adapter(pnet_adapter_config) if log: self.print_input_output_info() def predict(self, input_blobs, batch_meta, output_callback=None): raw_outputs = self._infer(input_blobs, batch_meta) if output_callback: for out in raw_outputs: output_callback(out) return raw_outputs class DLSDKRefineStage(DLSDKModelMixin, RefineBaseStage): def __init__( self, model_info, model_specific_preprocessor, common_preprocessor, launcher, delayed_model_loading=False ): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) if not delayed_model_loading: model_xml, model_bin = self.prepare_model(launcher) self.load_model({'model': model_xml, 'weights': model_bin}, launcher, 'rnet_', log=True) def predict(self, input_blobs, batch_meta, output_callback=None): raw_outputs = self._infer(input_blobs, batch_meta) if output_callback: batch_size = np.shape(next(iter(input_blobs[0].values())))[0] output_callback(self.transform_for_callback(batch_size, raw_outputs)) return raw_outputs @staticmethod def transform_for_callback(batch_size, raw_outputs): output_per_box = [] fq_weights = [] for i in range(batch_size): box_outs = OrderedDict() for layer_name, data in raw_outputs[0].items(): if layer_name in fq_weights: continue if layer_name.endswith('fq_weights_1'): fq_weights.append(layer_name) box_outs[layer_name] = data else: box_outs[layer_name] = np.expand_dims(data[i], axis=0) output_per_box.append(box_outs) return output_per_box class DLSDKOutputStage(DLSDKModelMixin, OutputBaseStage): def __init__( self, model_info, model_specific_preprocessor, common_preprocessor, launcher, delayed_model_loading=False ): super().__init__(model_info, model_specific_preprocessor, common_preprocessor) if not delayed_model_loading: model_xml, model_bin = self.prepare_model(launcher) self.load_model({'model': model_xml, 'weights': model_bin}, launcher, 'onet_', log=True) def predict(self, input_blobs, batch_meta, output_callback=None): raw_outputs = self._infer(input_blobs, batch_meta) return raw_outputs @staticmethod def transform_for_callback(batch_size, raw_outputs): output_per_box = [] fq_weights = [] for i in range(batch_size): box_outs = OrderedDict() for layer_name, data in raw_outputs[0].items(): if layer_name in fq_weights: continue if layer_name.endswith('fq_weights_1'): fq_weights.append(layer_name) box_outs[layer_name] = data else: box_outs[layer_name] = np.expand_dims(data[i], axis=0) output_per_box.append(box_outs) return output_per_box class MTCNNEvaluator(BaseEvaluator): def __init__( self, dataset_config, launcher, stages ): self.dataset_config = dataset_config self.stages = stages self.launcher = launcher self.dataset = None self.postprocessor = None self.metric_executor = None self._annotations, self._predictions, self._metrics_results = [], [], [] def process_dataset( self, subset=None, num_images=None, check_progress=False, dataset_tag='', output_callback=None, allow_pairwise_subset=False, dump_prediction_to_annotation=False, calculate_metrics=True, **kwargs): def no_detections(batch_pred): return batch_pred[0].size == 0 self._prepare_dataset(dataset_tag) self._create_subset(subset, num_images, allow_pairwise_subset) _progress_reporter = self._prepare_progress_reporter(check_progress, kwargs.get('progress_reporter')) compute_intermediate_metric_res = kwargs.get('intermediate_metrics_results', False) if compute_intermediate_metric_res: metric_interval = kwargs.get('metrics_interval', 1000) ignore_results_formatting = kwargs.get('ignore_results_formatting', False) for batch_id, (batch_input_ids, batch_annotation, batch_inputs, batch_identifiers) in enumerate(self.dataset): batch_prediction = [] batch_raw_prediction = [] intermediate_callback = None if output_callback: intermediate_callback = partial(output_callback, metrics_result=None, element_identifiers=batch_identifiers, dataset_indices=batch_input_ids) batch_size = 1 for stage in self.stages.values(): previous_stage_predictions = batch_prediction filled_inputs, batch_meta = stage.preprocess_data( copy.deepcopy(batch_inputs), batch_annotation, previous_stage_predictions ) batch_raw_prediction = stage.predict(filled_inputs, batch_meta, intermediate_callback) batch_size = np.shape(next(iter(filled_inputs[0].values())))[0] batch_prediction = stage.postprocess_result( batch_identifiers, batch_raw_prediction, batch_meta, previous_stage_predictions ) if no_detections(batch_prediction): break batch_annotation, batch_prediction = self.postprocessor.process_batch(batch_annotation, batch_prediction) metrics_result = None if self.metric_executor: metrics_result, _ = self.metric_executor.update_metrics_on_batch( batch_input_ids, batch_annotation, batch_prediction ) if self.metric_executor.need_store_predictions: self._annotations.extend(batch_annotation) self._predictions.extend(batch_prediction) if output_callback: output_callback( list(self.stages.values())[-1].transform_for_callback(batch_size, batch_raw_prediction), metrics_result=metrics_result, element_identifiers=batch_identifiers, dataset_indices=batch_input_ids ) if _progress_reporter: _progress_reporter.update(batch_id, len(batch_prediction)) if compute_intermediate_metric_res and _progress_reporter.current % metric_interval == 0: self.compute_metrics( print_results=True, ignore_results_formatting=ignore_results_formatting ) if _progress_reporter: _progress_reporter.finish() def compute_metrics(self, print_results=True, ignore_results_formatting=False): if self._metrics_results: del self._metrics_results self._metrics_results = [] for result_presenter, evaluated_metric in self.metric_executor.iterate_metrics( self._annotations, self._predictions): self._metrics_results.append(evaluated_metric) if print_results: result_presenter.write_result(evaluated_metric, ignore_results_formatting) return self._metrics_results def extract_metrics_results(self, print_results=True, ignore_results_formatting=False): if not self._metrics_results: self.compute_metrics(False, ignore_results_formatting) result_presenters = self.metric_executor.get_metric_presenters() extracted_results, extracted_meta = [], [] for presenter, metric_result in zip(result_presenters, self._metrics_results): result, metadata = presenter.extract_result(metric_result) if isinstance(result, list): extracted_results.extend(result) extracted_meta.extend(metadata) else: extracted_results.append(result) extracted_meta.append(metadata) if print_results: presenter.write_result(metric_result, ignore_results_formatting) return extracted_results, extracted_meta def print_metrics_results(self, ignore_results_formatting=False): if not self._metrics_results: self.compute_metrics(True, ignore_results_formatting) return result_presenters = self.metrics_executor.get_metric_presenters() for presenter, metric_result in zip(result_presenters, self._metrics_results): presenter.write_result(metric_result, ignore_results_formatting) @classmethod def from_configs(cls, config, delayed_model_loading=False): dataset_config = config['datasets'] launcher_config = config['launchers'][0] if launcher_config['framework'] == 'dlsdk' and 'device' not in launcher_config: launcher_config['device'] = 'CPU' models_info = config['network_info'] launcher = create_launcher(launcher_config, delayed_model_loading=True) stages = build_stages(models_info, [], launcher, config.get('_models'), delayed_model_loading) return cls(dataset_config, launcher, stages) @staticmethod def get_processing_info(config): module_specific_params = config.get('module_config') model_name = config['name'] dataset_config = module_specific_params['datasets'][0] launcher_config = module_specific_params['launchers'][0] return ( model_name, launcher_config['framework'], launcher_config['device'], launcher_config.get('tags'), dataset_config['name'] ) def set_profiling_dir(self, profiler_dir): self.metric_executor.set_profiling_dir(profiler_dir) def release(self): for _, stage in self.stages.items(): stage.release() self.launcher.release() def reset(self): if self.metric_executor: self.metric_executor.reset() if hasattr(self, '_annotations'): del self._annotations del self._predictions del self._metrics_results self._annotations = [] self._predictions = [] self._input_ids = [] self._metrics_results = [] if self.dataset: self.dataset.reset(self.postprocessor.has_processors) for _, stage in self.stages.items(): stage.reset() def load_network(self, network=None): if network is None: for stage_name, stage in self.stages.items(): stage.load_network(network, self.launcher, stage_name + '_') else: for net_dict in network: stage_name = net_dict['name'] network_ = net_dict['model'] self.stages[stage_name].load_network(network_, self.launcher, stage_name+'_') def load_network_from_ir(self, models_list): for models_dict in models_list: stage_name = models_dict['name'] self.stages[stage_name].load_model(models_dict, self.launcher, stage_name+'_') def get_network(self): return [{'name': stage_name, 'model': stage.network} for stage_name, stage in self.stages.items()] def get_metrics_attributes(self): if not self.metric_executor: return {} return self.metric_executor.get_metrics_attributes() def register_metric(self, metric_config): if isinstance(metric_config, str): self.metric_executor.register_metric({'type': metric_config}) elif isinstance(metric_config, dict): self.metric_executor.register_metric(metric_config) else: raise ValueError('Unsupported metric configuration type {}'.format(type(metric_config))) def register_postprocessor(self, postprocessing_config): pass def register_dumped_annotations(self): pass def select_dataset(self, dataset_tag): if self.dataset is not None and isinstance(self.dataset_config, list): return dataset_attributes = create_dataset_attributes(self.dataset_config, dataset_tag) self.dataset, self.metric_executor, preprocessor, self.postprocessor = dataset_attributes for _, stage in self.stages.items(): stage.update_preprocessing(preprocessor) @staticmethod def _create_progress_reporter(check_progress, dataset_size): pr_kwargs = {} if isinstance(check_progress, int) and not isinstance(check_progress, bool): pr_kwargs = {"print_interval": check_progress} return ProgressReporter.provide('print', dataset_size, **pr_kwargs) def _prepare_dataset(self, dataset_tag=''): if self.dataset is None or (dataset_tag and self.dataset.tag != dataset_tag): self.select_dataset(dataset_tag) if self.dataset.batch is None: self.dataset.batch = 1 def _create_subset(self, subset=None, num_images=None, allow_pairwise=False): if subset is not None: self.dataset.make_subset(ids=subset, accept_pairs=allow_pairwise) elif num_images is not None: self.dataset.make_subset(end=num_images, accept_pairs=allow_pairwise) def _prepare_progress_reporter(self, check_progress, progress_reporter=None): if progress_reporter: progress_reporter.reset(self.dataset.size) return progress_reporter return None if not check_progress else self._create_progress_reporter(check_progress, self.dataset.size) @property def dataset_size(self): return self.dataset.size def calibrate_predictions(previous_stage_predictions, out, threshold, outputs_mapping, iou_type=None): score = out[0][outputs_mapping['probability_out']][:, 1] pass_t = np.where(score > 0.7)[0] removed_boxes = [i for i in range(previous_stage_predictions[0].size) if i not in pass_t] previous_stage_predictions[0].remove(removed_boxes) previous_stage_predictions[0].scores = score[pass_t] bboxes = np.c_[ previous_stage_predictions[0].x_mins, previous_stage_predictions[0].y_mins, previous_stage_predictions[0].x_maxs, previous_stage_predictions[0].y_maxs, previous_stage_predictions[0].scores ] mv = out[0][outputs_mapping['region_out']][pass_t] if iou_type: previous_stage_predictions[0], peek = nms(previous_stage_predictions[0], threshold, iou_type) bboxes = np.c_[ previous_stage_predictions[0].x_mins, previous_stage_predictions[0].y_mins, previous_stage_predictions[0].x_maxs, previous_stage_predictions[0].y_maxs, previous_stage_predictions[0].scores ] mv = mv[np.sort(peek).astype(int)] bboxes = bbreg(bboxes, mv.T) x_mins, y_mins, x_maxs, y_maxs, _ = bboxes.T previous_stage_predictions[0].x_mins = x_mins previous_stage_predictions[0].y_mins = y_mins previous_stage_predictions[0].x_maxs = x_maxs previous_stage_predictions[0].y_maxs = y_maxs return previous_stage_predictions def nms(prediction, threshold, iou_type): bboxes = np.c_[ prediction.x_mins, prediction.y_mins, prediction.x_maxs, prediction.y_maxs, prediction.scores ] peek = MTCNNPAdapter.nms(bboxes, threshold, iou_type) prediction.remove([i for i in range(prediction.size) if i not in peek]) return prediction, peek def bbreg(boundingbox, reg): reg = reg.T # calibrate bounding boxes w = boundingbox[:, 2] - boundingbox[:, 0] + 1 h = boundingbox[:, 3] - boundingbox[:, 1] + 1 bb0 = boundingbox[:, 0] + reg[:, 0] * w bb1 = boundingbox[:, 1] + reg[:, 1] * h bb2 = boundingbox[:, 2] + reg[:, 2] * w bb3 = boundingbox[:, 3] + reg[:, 3] * h boundingbox[:, 0:4] = np.array([bb0, bb1, bb2, bb3]).T return boundingbox def filter_valid(dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph): mask = np.ones(len(tmph)) tmp_ys_len = (edy + 1) - dy tmp_xs_len = (edx + 1) - dx img_ys_len = (ey + 1) - y img_xs_len = (ex + 1) - x mask = np.logical_and(mask, np.logical_and(tmph > 0, tmpw > 0)) mask = np.logical_and(mask, np.logical_and(tmp_ys_len > 0, tmp_xs_len > 0)) mask = np.logical_and(mask, np.logical_and(img_xs_len > 0, img_ys_len > 0)) mask = np.logical_and(mask, np.logical_and(tmp_xs_len == img_xs_len, tmp_ys_len == img_ys_len)) return dy[mask], edy[mask], dx[mask], edx[mask], y[mask], ey[mask], x[mask], ex[mask], tmpw[mask], tmph[mask], mask def pad(boxesA, h, w): boxes = boxesA.copy() tmph = boxes[:, 3] - boxes[:, 1] + 1 tmpw = boxes[:, 2] - boxes[:, 0] + 1 numbox = boxes.shape[0] dx = np.ones(numbox) dy = np.ones(numbox) edx = tmpw edy = tmph x = boxes[:, 0:1][:, 0] y = boxes[:, 1:2][:, 0] ex = boxes[:, 2:3][:, 0] ey = boxes[:, 3:4][:, 0] tmp = np.where(ex > w)[0] if tmp.shape[0] != 0: edx[tmp] = -ex[tmp] + w - 1 + tmpw[tmp] ex[tmp] = w - 1 tmp = np.where(ey > h)[0] if tmp.shape[0] != 0: edy[tmp] = -ey[tmp] + h - 1 + tmph[tmp] ey[tmp] = h - 1 tmp = np.where(x < 1)[0] if tmp.shape[0] != 0: dx[tmp] = 2 - x[tmp] x[tmp] = np.ones_like(x[tmp]) tmp = np.where(y < 1)[0] if tmp.shape[0] != 0: dy[tmp] = 2 - y[tmp] y[tmp] = np.ones_like(y[tmp]) # for python index from 0, while matlab from 1 dy = np.maximum(0, dy - 1) dx = np.maximum(0, dx - 1) y = np.maximum(0, y - 1) x = np.maximum(0, x - 1) edy = np.maximum(0, edy - 1) edx = np.maximum(0, edx - 1) ey = np.maximum(0, ey - 1) ex =
np.maximum(0, ex - 1)
numpy.maximum
# -*- coding: utf-8 -*- #################################################### # 作者: 刘朝阳 # 时间: 2020.05.01 # 更新时间: 2021.11.25 # 功能: 在计算PERCLOS时, 需要知道驾驶在正常情况下的眼睛开度, 来作为基准计算 # 使用说明: 自动调用, 无需操作 #################################################### import os import numpy as np import cv2 import dlib from imutils import face_utils from head_posture_estimation import head_posture_estimation from aspect_ratio_estimation import aspect_ratio_estimation HPE = head_posture_estimation() ARE = aspect_ratio_estimation() # 使用dlib.get_frontal_face_detector() 获得脸部位置检测器 detector = dlib.get_frontal_face_detector() # 使用dlib.shape_predictor获得脸部特征位置检测器 predictor = dlib.shape_predictor('shape_predictor_68_face_landMARks.dat') # 分别获取左右眼面部标志的索引 (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"] EAR = everybody_EAR_mean =[] EAR_all_per_person = [] EAR_all_per_person_open = [] pitch_all_per_person = [] pitch_mean_per_person = [] everybody_pitch_mean = [] everybody_EAR_min = [] def get_everybody_EARandMAR_standard(face_path): # 遍历每个人的所有图片,提取出眼睛的平均高度 for subdir in os.listdir(face_path): # os.listdir()输出该目录下的所有文件名字 到了lzy文件夹的面前(未进去) EAR_all_per_person_open = EAR_all_per_person = [] subpath = os.path.join(face_path, subdir) # 连接路径,定位到子文件夹路径 到了lzy文件夹的面前(未进去) if os.path.isdir(subpath): # 如果子文件夹路径存在 for filename in os.listdir(subpath): # os.listdir(subpath)输出该目录下的所有文件名字 lzy进入,到了1、2、3.png了,然后对每一张进行处理 EAR_mean_per_person = EAR_min_per_person = [] imgpath = os.path.join(subpath, filename) # 连接路径,定位到子文件夹路径 img = cv2.imread(imgpath, cv2.IMREAD_COLOR) # 读1.png grayimg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) faces = detector(grayimg, 0) for k, d in enumerate(faces): # 找出每张图片上的人脸 #一个图片上人脸数就1,所以看作没有这句就行 shape = predictor(grayimg, d) shape_array = face_utils.shape_to_np(shape) leftEye = shape_array[lStart:lEnd] rightEye = shape_array[rStart:rEnd] reprojectdst, euler_angle, pitch, roll, yaw = HPE.get_head_pose(shape_array) # 重新投影,欧拉角 pitch_all_per_person.append(pitch) leftEAR = ARE.eye_aspect_ratio(leftEye) rightEAR = ARE.eye_aspect_ratio(rightEye) EAR = (leftEAR + rightEAR) / 2.0 EAR_all_per_person.append(EAR) # for完全进行完毕后,把文件下的所有眼睛高度存入了 if EAR > 0.13 and EAR < 0.23: # 防止闭眼时为0而拉低整体睁眼值 阈值由经验尝试得出 EAR_all_per_person_open.append(EAR) # 把每张图片的高度值放在一起,形成该人所有图片的高度值集合 pitch_mean_per_person =
np.mean(pitch_all_per_person)
numpy.mean
#!/usr/bin/env python # coding: utf-8 # # Non cartesian sampling: SPARKLING imaging # # We explore the performance of SPARKLING (_Spreading projection Algorithm for Rapid K-space sampLING_) as non-Cartesian imaging technique. We do not actually provide the code of this algorithm but instead upload result files containing trajectories generated from the previous *radial in-out* initialization. For details, see the recently published paper: Lazarus et al, "SPARKLING: variable‐density k‐space filling curves for accelerated $T_2^*$ ‐weighted MRI", Magn Reson Med 2019; 81:3643:3661. # # - Authors: <NAME> (<EMAIL>) # - Date: 04/02/2019 # - Target: [ISBI'19 tutorial](https://biomedicalimaging.org/2019/tutorials/) on **Recent advances in acquisition and reconstruction for Compressed Sensing MRI** # - **Revision**: 01/06/2021 for ATSI MSc hands-on session at Paris-Saclay University. # In[6]: #DISPLAY T2* MR IMAGE get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import os.path as op import os import math ; import cmath import matplotlib import matplotlib.pyplot as plt import sys from mri.operators import NonCartesianFFT from mri.operators.utils import convert_locations_to_mask, gridded_inverse_fourier_transform_nd from pysap.data import get_sample_data from skimage import data, img_as_float, io, filters from modopt.math.metrics import ssim mri_img = get_sample_data('2d-mri') img_size = mri_img.shape[0] plt.figure() plt.title("T2* axial slice, size = {}".format(img_size)) if mri_img.ndim == 2: plt.imshow(mri_img, cmap=plt.cm.gray) else: plt.imshow(mri_img) plt.show() # In[7]: from scipy.io import loadmat cwd = os.getcwd() dirimg_2d = op.join(cwd,"..","data") k_spark = loadmat(op.join(cwd, "..", "data","samples_SPARKLING_N512_nc34x3073_OS1.mat")) k_spark_vec = k_spark['samples'] Kmax = np.amax(k_spark_vec) #print(Kmax) k_spark_vec = k_spark_vec*1/(2*np.pi*Kmax) #save in npz format in the outdir directory outdir = op.join(cwd,"..","output") filename_traj = "sparkling_radial_N" + str(img_size) + ".npz" outfile = op.join(outdir, filename_traj) np.savez(outfile, k_spark_vec) k_spark = plt.figure(figsize=(7,7)) plt.scatter(k_spark_vec[:,0],k_spark_vec[:,1], marker = '.', s=0.1) plt.grid() #Figure layout unit = 1/4 tick = np.arange(-0.5, 0.5 + unit, unit) label = [r"$-\frac{1}{2}$", r"$-\frac{1}{4}$", r"$0$", r"$+\frac{1}{4}$", r"$+\frac{1}{2}$"] plt.xticks(tick/np.pi,labels = label, fontsize = 16) ; plt.yticks(tick/np.pi,labels = label, fontsize = 16) plt.xlabel(r"$k_x$", fontsize = 22) ; plt.ylabel(r"$k_y$", fontsize = 22) plt.title("K-space sampling, spiral in-out initialization",fontsize = 18) plt.show() # In[9]: data=convert_locations_to_mask(k_spark_vec, mri_img.shape) fourier_op = NonCartesianFFT(samples=k_spark_vec, shape=mri_img.shape, implementation='cpu') kspace_obs = fourier_op.op(mri_img.data) # In[10]: grid_space =
np.linspace(-0.5, 0.5, num=mri_img.shape[0])
numpy.linspace
import numpy as np from scipy.interpolate import RectBivariateSpline from scipy.ndimage import shift #my imports #import cv2 def LucasKanade(It, It1, rect, p0 = np.zeros(2)): # Input: # It: template image # It1: Current image # rect: Current position of the car # (top left, bot right coordinates) # p0: Initial movement vector [dp_x0, dp_y0] # Output: # p: movement vector [dp_x, dp_y] # Put your implementation here threshold = 0.01 p = p0 #YY, XX = np.meshgrid(np.arange(rect[0], rect[2]), np.arange(rect[1],rect[3])) warp_jacobian =
np.array([[1, 0],[0, 1]])
numpy.array
from __future__ import absolute_import from builtins import range from . import datalayer import numpy as np # from numpy.polynomial.polynomial import polyval ## TODO: correctly handle large gaps (wait what?) ## TODO: correctly handle multiple vertical values # Function consisting of a single Bezier curve class CurveFunction(datalayer.Function): # the global variables: # self.pixels [(point0), (point1), (point2), (point3)] - the control points, in pixel space # self.p0, self.p1, self.p2, self.p3 - the control points, in math space # the polynomials for x and y, their derivatives, and their second derivatives: # self.x, self.y # self.dxdt, self.dydt # self.ddx, self.ddy def __init__(self, xaxis, yaxis, path_info, tolerance = dict()): datalayer.Function.__init__(self, xaxis, yaxis, path_info, tolerance) self.set_default_tolerance('imag_threshold', 1e-5) # threshold for determining real / complex number self.set_default_tolerance('t_threshold', 0.002) # threshold for t values # self.set_default_tolerance('straight_line', 100) # threshold for straight lines def create(self): self.x = np.array([-1, 3, -3, 1]) * self.p0[0] + np.array([3, -6, 3, 0]) * self.p1[0] + np.array([-3, 3, 0, 0]) * self.p2[0] + np.array([1, 0, 0, 0]) * self.p3[0] self.y = np.array([-1, 3, -3, 1]) * self.p0[1] + np.array([3, -6, 3, 0]) * self.p1[1] + np.array([-3, 3, 0, 0]) * self.p2[1] + np.array([1, 0, 0, 0]) * self.p3[1] self.dxdt = np.array([1, -2, 1]) * 3 * (self.p1[0] - self.p0[0]) + np.array([-1, 1, 0]) * 6 * (self.p2[0]-self.p1[0]) + np.array([1, 0, 0]) * 3 * (self.p3[0] - self.p2[0]) self.dydt = np.array([1, -2, 1]) * 3 * (self.p1[1] - self.p0[1]) + np.array([-1, 1, 0]) * 6 * (self.p2[1]-self.p1[1]) + np.array([1, 0, 0]) * 3 * (self.p3[1] - self.p2[1]) self.ddx = np.array([-1, 1]) * 6 * (self.p2[0] - 2*self.p1[0] + self.p0[0]) + np.array([1, 0]) * 6 * (self.p3[0] - 2*self.p2[0] + self.p1[0]) self.ddy = np.array([-1, 1]) * 6 * (self.p2[1] - 2*self.p1[1] + self.p0[1]) + np.array([1, 0]) * 6 * (self.p3[1] - 2*self.p2[1] + self.p1[1]) def create_from_path_info(self, path_info): self.pixels = [] for i in range(4): self.pixels.append(path_info[i]) self.p0 = (self.px_to_xval(path_info[0][0]), self.px_to_yval(path_info[0][1])) self.p1 = (self.px_to_xval(path_info[1][0]), self.px_to_yval(path_info[1][1])) self.p2 = (self.px_to_xval(path_info[2][0]), self.px_to_yval(path_info[2][1])) self.p3 = (self.px_to_xval(path_info[3][0]), self.px_to_yval(path_info[3][1])) self.domain = [min(self.p0[0], self.p3[0]), max(self.p0[0], self.p3[0])] self.create() # checks the t val: get_t_for_xval will return -1 if there is no t val def is_defined_at(self, xval): return self.get_t_for_xval(xval) > -self.tolerance['t_threshold'] def get_t_roots_within_zero_and_one(self, p): r = np.roots(p) t_unfiltered = r.real[abs(r.imag) < self.tolerance['imag_threshold']] # filters for reals, but not for t values t_filtered = [t for t in t_unfiltered if (t>=(0-self.tolerance['t_threshold']) and t<=(1+self.tolerance['t_threshold']))] # filters t values return t_filtered def get_t_extrema_between(self, xmin, xmax, p): # gets the t vals of the roots of p between xmin and xmax # used for finding extrema between xmin and xmax # assumes xmin and xmax are within the domain tleft = self.get_t_for_xval(xmin) tright = self.get_t_for_xval(xmax) tmin = min(tleft, tright) tmax = max(tright, tleft) r = np.roots(p) t_unfiltered = r.real[abs(r.imag) < self.tolerance['imag_threshold']] t_filtered = [t for t in t_unfiltered if (t>=tmin and t<=tmax)] t_filtered.append(tmin) t_filtered.append(tmax) return t_filtered def get_t_for_xval(self, xval): # currently returns the first t val (i.e., not all of them if there are multiple), -1 if there is no t val if xval == float('inf'): return -1 if xval == float('-inf'): return -1 p = [self.x[0], self.x[1], self.x[2], self.x[3] - xval] t = self.get_t_roots_within_zero_and_one(p) if len(t) >= 1: return t[0] else: return -1 def get_value_at(self, xval): # returns False if the function is not defined at this xval t = self.get_t_for_xval(xval) if t > -self.tolerance['t_threshold']: yval =
np.polyval(self.y, t)
numpy.polyval
##################################################################################################################### # # # This file is part of the 5th project of Udacity's Self-Driving Car Engineer Nd - Vehicle Detection and Tracking # # # # Copyright (c) 2018 by <NAME> # # # ##################################################################################################################### import Object_Classifier import Hog_Me import cv2 import numpy as np import matplotlib.pyplot as plt class Object_Finder: """ Finds all instances of an object previously trained by an Object_Classifier in an image. Properties: Classifier: The Object_Classifier to be used to find occurrences of an object. box_size: The size of the object / search window size eff_box_size: The size of the scaled box size. Applied by set_scaling. boundings: The boundings of the recently detected objects single_hog: Defines if HOG shall just be created once for the whole image. Otherwise it will be created for each window (far slower). hogger: The image to hog converter to used. resized_image: A backup of the resized image scan_regions: Defines the regions to be scanned and by which factor the search window shall be magnified in this region. (The closer to the observer the higher the factor should be) original: The currently selected original image """ def __init__(self, classifier, hogger): """ Constructor :param classifier: The classifier of class Object_Classifier to be used to detect the object :param hogger: The image to hog convert of class Hoggit """ self.classifier = classifier self.box_size = classifier.box_size self.boundings = [] self.single_hog = True self.hogger= hogger self.resized_image = None # Setup magnifications for single scan regions self.scan_regions = [(1.0, (0, 380, 1280, 500)), (1.25, (0, 380, 1280, 550)), (1.5, (0, 380, 1280, 550)), (1.75, (0, 380, 1280, 550)), (2.0, (0, 380, 1280, 650))] def select(self, image): """ Selects a new image and clears the old detections :param image: The new image to be used """ self.original = image self.boundings = [] def set_scaling(self, scaling): """ Sets the scaling factor to be used for new detections :param scaling: The factor by which the search window shall be enlarged. (>1.0 for objects close to the eye) """ self.scaling = scaling self.eff_box_size = int(self.box_size*self.scaling+0.5) def get_resized_sub_sample(self, off_x, off_y): """ Returns the sub region of the currenty selected original image :param off_x: The x offset :param off_y: The y offset :return: An image resized from the current effective box size to the original box size """ sub_sample = self.original[off_y:off_y + self.eff_box_size, off_x:off_x + self.eff_box_size, :] new_size = (self.box_size, self.box_size) return cv2.resize(sub_sample, new_size) def find_instances_in_features(self, features, region): """ Finds the instances of an object in the currently selected image. :param features: The feature list of the sub region of the main image :param region: Defines the region of the main image which is represents by features """ for current_window in self.hogger.hog_scan(self.box_size, self.box_size): if self.classifier.classify_features(current_window["features"])==1.0: off_x = current_window["x"] off_y = current_window["y"] trans_off_x = int(off_x * self.scaling) + region[0] trans_off_y = int(off_y * self.scaling) + region[1] cv2.rectangle(self.resized_image, (off_x, off_y), (off_x + self.box_size, off_y + self.box_size), color=(255, 255, 255), thickness=2) cv2.rectangle(self.image, (trans_off_x, trans_off_y), (trans_off_x + self.eff_box_size, trans_off_y + self.eff_box_size), color=(255, 255, 255), thickness=2) self.boundings.append(((trans_off_x, trans_off_y), (trans_off_x + self.eff_box_size, trans_off_y + self.eff_box_size))) def find_instances(self, image, region, overlap): """ Finds all instances of the object the classifier has been trained on in given image." The results are appened to property boundings. :param image: The image to search in :param region: The sub region to search within :param overlap: The overlap in percent. Only required if single_hog is det to False. :return: The original with highlighted detection regions and optionally the resized sub image """ self.image = np.copy(image) self.eff_step_size = int((1.0-overlap)*self.eff_box_size) y_steps = (region[3]-region[1])//self.eff_step_size x_steps = (region[2]-region[0])//self.eff_step_size if region[0]+(x_steps-1)*self.eff_step_size+self.eff_box_size>region[2]: x_steps -= 1 if region[1]+(y_steps-1)*self.eff_step_size+self.eff_box_size>region[3]: y_steps -= 1 if self.single_hog: self.resized_image = image[region[1]:region[3],region[0]:region[2],:] self.resized_image = cv2.resize(self.resized_image, (int(self.resized_image.shape[1]/self.scaling), int(self.resized_image.shape[0]/self.scaling))) features, img = self.hogger.hog_image(self.resized_image, visualize=False, feature_vector=False) features =
np.array(features)
numpy.array
from logging import warn import os from collections import namedtuple import pandas as pd import pathlib from enum import IntEnum import warnings import numpy as np from datetime import datetime, timedelta from scipy.spatial import cKDTree import tempfile from tqdm import trange import typing from DHI.Generic.MikeZero import eumUnit, eumQuantity from DHI.Generic.MikeZero.DFS import DfsFileFactory, DfsFactory from DHI.Generic.MikeZero.DFS.dfsu import DfsuFile, DfsuFileType, DfsuBuilder, DfsuUtil from DHI.Generic.MikeZero.DFS.mesh import MeshFile, MeshBuilder from .dfsutil import _get_item_info, _valid_item_numbers, _valid_timesteps from .dataset import Dataset from .dotnet import ( to_numpy, to_dotnet_float_array, to_dotnet_datetime, from_dotnet_datetime, asNumpyArray, to_dotnet_array, asnetarray_v2, ) from .dfs0 import Dfs0 from .dfs2 import Dfs2 from .eum import ItemInfo, EUMType, EUMUnit from .helpers import safe_length from .spatial import Grid2D from .interpolation import get_idw_interpolant, interp2d from .custom_exceptions import InvalidGeometry class UnstructuredType(IntEnum): """ -1: Mesh: 2D unstructured MIKE mesh 0: Dfsu2D: 2D area series 1: DfsuVerticalColumn: 1D vertical column 2: DfsuVerticalProfileSigma: 2D vertical slice through a Dfsu3DSigma 3: DfsuVerticalProfileSigmaZ: 2D vertical slice through a Dfsu3DSigmaZ 4: Dfsu3DSigma: 3D file with sigma coordinates, i.e., a constant number of layers. 5: Dfsu3DSigmaZ: 3D file with sigma and Z coordinates, i.e. a varying number of layers. """ Mesh = -1 Dfsu2D = 0 DfsuVerticalColumn = 1 DfsuVerticalProfileSigma = 2 DfsuVerticalProfileSigmaZ = 3 Dfsu3DSigma = 4 Dfsu3DSigmaZ = 5 class _UnstructuredGeometry: # THIS CLASS KNOWS NOTHING ABOUT MIKE FILES! _type = None # -1: mesh, 0: 2d-dfsu, 4:dfsu3dsigma, ... _projstr = None _n_nodes = None _n_elements = None _nc = None _ec = None _codes = None _valid_codes = None _element_ids = None _node_ids = None _element_table = None _element_table_dotnet = None _top_elems = None _n_layers_column = None _bot_elems = None _n_layers = None _n_sigma = None _geom2d = None _e2_e3_table = None _2d_ids = None _layer_ids = None _shapely_domain_obj = None _tree2d = None def __repr__(self): out = [] out.append("Unstructured Geometry") if self.n_nodes: out.append(f"Number of nodes: {self.n_nodes}") if self.n_elements: out.append(f"Number of elements: {self.n_elements}") if self._n_layers: out.append(f"Number of layers: {self._n_layers}") if self._projstr: out.append(f"Projection: {self.projection_string}") return str.join("\n", out) @property def type_name(self): return self._type.name @property def n_nodes(self): """Number of nodes""" return self._n_nodes @property def node_coordinates(self): """Coordinates (x,y,z) of all nodes""" return self._nc @property def node_ids(self): return self._node_ids @property def n_elements(self): """Number of elements""" return self._n_elements @property def element_ids(self): return self._element_ids @property def codes(self): """Node codes of all nodes""" return self._codes @property def valid_codes(self): """Unique list of node codes""" if self._valid_codes is None: self._valid_codes = list(set(self.codes)) return self._valid_codes @property def boundary_codes(self): """provides a unique list of boundary codes""" return [code for code in self.valid_codes if code > 0] @property def projection_string(self): return self._projstr @property def is_geo(self): """Are coordinates geographical (LONG/LAT)?""" return self._projstr == "LONG/LAT" @property def is_local_coordinates(self): return self._projstr == "NON-UTM" @property def element_table(self): """Element to node connectivity""" if (self._element_table is None) and (self._element_table_dotnet is not None): self._element_table = self._get_element_table_from_dotnet() return self._element_table @property def max_nodes_per_element(self): """The maximum number of nodes for an element""" maxnodes = 0 for local_nodes in self.element_table: n = len(local_nodes) if n > maxnodes: maxnodes = n return maxnodes @property def is_2d(self): """Type is either mesh or Dfsu2D (2 horizontal dimensions)""" return self._type <= 0 @property def is_tri_only(self): """Does the mesh consist of triangles only?""" return self.max_nodes_per_element == 3 or self.max_nodes_per_element == 6 _boundary_polylines = None @property def boundary_polylines(self): """Lists of closed polylines defining domain outline""" if self._boundary_polylines is None: self._boundary_polylines = self._get_boundary_polylines() return self._boundary_polylines def get_node_coords(self, code=None): """Get the coordinates of each node. Parameters ---------- code: int Get only nodes with specific code, e.g. land == 1 Returns ------- np.array x,y,z of each node """ nc = self.node_coordinates if code is not None: if code not in self.valid_codes: print( f"Selected code: {code} is not valid. Valid codes: {self.valid_codes}" ) raise Exception return nc[self.codes == code] return nc def _get_element_table_from_dotnet(self): # Note: this can tak 10-20 seconds for large dfsu3d! elem_tbl = [] for j in range(self.n_elements): elem_nodes = list(self._element_table_dotnet[j]) elem_nodes = [nd - 1 for nd in elem_nodes] # make 0-based elem_tbl.append(elem_nodes) return elem_tbl def _element_table_to_dotnet(self, elem_table=None): if elem_table is None: elem_table = self._element_table new_elem_table = [] n_elements = len(elem_table) for j in range(n_elements): elem_nodes = elem_table[j] elem_nodes = [nd + 1 for nd in elem_nodes] # make 1-based new_elem_table.append(elem_nodes) return asnetarray_v2(new_elem_table) def _set_nodes( self, node_coordinates, codes=None, node_ids=None, projection_string=None ): self._nc = np.asarray(node_coordinates) if codes is None: codes = np.zeros(len(node_coordinates), dtype=int) self._codes = np.asarray(codes) self._n_nodes = len(codes) if node_ids is None: node_ids = list(range(self._n_nodes)) self._node_ids = np.asarray(node_ids) if projection_string is None: projection_string = "LONG/LAT" self._projstr = projection_string def _set_elements(self, element_table, element_ids=None, geometry_type=None): self._element_table = element_table self._n_elements = len(element_table) if element_ids is None: element_ids = list(range(self.n_elements)) self._element_ids = np.asarray(element_ids) if geometry_type is None: # guess type if self.max_nodes_per_element < 5: geometry_type = UnstructuredType.Dfsu2D else: geometry_type = UnstructuredType.Dfsu3DSigma self._type = geometry_type def _reindex(self): new_node_ids = range(self.n_nodes) new_element_ids = range(self.n_elements) node_dict = dict(zip(self.node_ids, new_node_ids)) for j in range(self.n_elements): elem_nodes = self._element_table[j] new_elem_nodes = [] for idx in elem_nodes: new_elem_nodes.append(node_dict[idx]) self._element_table[j] = new_elem_nodes self._node_ids = np.array(list(new_node_ids)) self._element_ids = np.array(list(new_element_ids)) def _get_element_table_for_elements(self, elements): return [self.element_table[j] for j in elements] def elements_to_geometry(self, elements, node_layers="all"): """export elements to new geometry Parameters ---------- elements : list(int) list of element ids node_layers : str, optional for 3d files either 'top', 'bottom' layer nodes or 'all' can be selected, by default 'all' Returns ------- UnstructuredGeometry which can be used for further extraction or saved to file """ elements = np.sort(elements) # make sure elements are sorted! # extract information for selected elements node_ids, elem_tbl = self._get_nodes_and_table_for_elements( elements, node_layers=node_layers ) node_coords = self.node_coordinates[node_ids] codes = self.codes[node_ids] # create new geometry geom = _UnstructuredGeometry() geom._set_nodes( node_coords, codes=codes, node_ids=node_ids, projection_string=self.projection_string, ) geom._set_elements(elem_tbl, self.element_ids[elements]) geom._reindex() geom._type = self._type # if not self.is_2d: # original file was 3d layers_used = self.layer_ids[elements] unique_layer_ids = np.unique(layers_used) n_layers = len(unique_layer_ids) if ( self._type == UnstructuredType.Dfsu3DSigma or self._type == UnstructuredType.Dfsu3DSigmaZ ) and n_layers == 1: # If source is 3d, but output only has 1 layer # then change type to 2d geom._type = UnstructuredType.Dfsu2D geom._n_layers = None if node_layers == "all": warnings.warn( "Warning: Only 1 layer in new geometry (hence 2d), but you have kept both top and bottom nodes! Hint: use node_layers='top' or 'bottom'" ) else: geom._type = self._type geom._n_layers = n_layers lowest_sigma = self.n_layers - self.n_sigma_layers + 1 geom._n_sigma = sum(unique_layer_ids >= lowest_sigma) # If source is sigma-z but output only has sigma layers # then change type accordingly if ( self._type == UnstructuredType.DfsuVerticalProfileSigmaZ or self._type == UnstructuredType.Dfsu3DSigmaZ ) and n_layers == geom._n_sigma: geom._type = UnstructuredType(self._type.value - 1) geom._top_elems = geom._get_top_elements_from_coordinates() return geom def _get_top_elements_from_coordinates(self, ec=None): """Get list of top element ids based on element coordinates""" if ec is None: ec = self.element_coordinates d_eps = 1e-4 top_elems = [] x_old = ec[0, 0] y_old = ec[0, 1] for j in range(1, len(ec)): d2 = (ec[j, 0] - x_old) ** 2 + (ec[j, 1] - y_old) ** 2 # print(d2) if d2 > d_eps: # this is a new x,y point # then the previous element must be a top element top_elems.append(j - 1) x_old = ec[j, 0] y_old = ec[j, 1] return np.array(top_elems) def to_2d_geometry(self): """extract 2d geometry from 3d geometry Returns ------- UnstructuredGeometry 2d geometry (bottom nodes) """ if self.is_2d: return self # extract information for selected elements elem_ids = self.bottom_elements if self._type == UnstructuredType.Dfsu3DSigmaZ: # for z-layers nodes will not match on neighboring elements! elem_ids = self.top_elements node_ids, elem_tbl = self._get_nodes_and_table_for_elements( elem_ids, node_layers="bottom" ) node_coords = self.node_coordinates[node_ids] codes = self.codes[node_ids] # create new geometry geom = _UnstructuredGeometry() geom._set_nodes( node_coords, codes=codes, node_ids=node_ids, projection_string=self.projection_string, ) geom._set_elements(elem_tbl, self.element_ids[elem_ids]) geom._type = UnstructuredType.Mesh geom._reindex() # Fix z-coordinate for sigma-z: if self._type == UnstructuredType.Dfsu3DSigmaZ: zn = geom.node_coordinates[:, 2].copy() for j, elem_nodes in enumerate(geom.element_table): elem_nodes3d = self.element_table[self.bottom_elements[j]] for jn in range(len(elem_nodes)): znj_3d = self.node_coordinates[elem_nodes3d[jn], 2] zn[elem_nodes[jn]] = min(zn[elem_nodes[jn]], znj_3d) geom.node_coordinates[:, 2] = zn return geom def _get_nodes_and_table_for_elements(self, elements, node_layers="all"): """list of nodes and element table for a list of elements Parameters ---------- elements : np.array(int) array of element ids node_layers : str, optional for 3D files 'all', 'bottom' or 'top' nodes of each element, by default 'all' Returns ------- np.array(int) array of node ids (unique) list(list(int)) element table with a list of nodes for each element """ nodes = [] elem_tbl = [] if (node_layers is None) or (node_layers == "all") or self.is_2d: for j in elements: elem_nodes = self.element_table[j] elem_tbl.append(elem_nodes) for node in elem_nodes: nodes.append(node) else: # 3D file if (node_layers != "bottom") and (node_layers != "top"): raise Exception("node_layers must be either all, bottom or top") for j in elements: elem_nodes = self.element_table[j] nn = len(elem_nodes) halfn = int(nn / 2) if node_layers == "bottom": elem_nodes = elem_nodes[:halfn] if node_layers == "top": elem_nodes = elem_nodes[halfn:] elem_tbl.append(elem_nodes) for node in elem_nodes: nodes.append(node) return np.unique(nodes), elem_tbl @property def element_coordinates(self): """Center coordinates of each element""" if self._ec is None: self._ec = self._get_element_coords() return self._ec def _get_element_coords(self): """Calculates the coordinates of the center of each element. Returns ------- np.array x,y,z of each element """ n_elements = self.n_elements ec = np.empty([n_elements, 3]) # pre-allocate for speed maxnodes = self.max_nodes_per_element idx = np.zeros(maxnodes, dtype=np.int) xcoords = np.zeros([maxnodes, n_elements]) ycoords = np.zeros([maxnodes, n_elements]) zcoords = np.zeros([maxnodes, n_elements]) nnodes_per_elem = np.zeros(n_elements) for j in range(n_elements): nodes = self._element_table[j] nnodes = len(nodes) nnodes_per_elem[j] = nnodes for i in range(nnodes): idx[i] = nodes[i] # - 1 xcoords[:nnodes, j] = self._nc[idx[:nnodes], 0] ycoords[:nnodes, j] = self._nc[idx[:nnodes], 1] zcoords[:nnodes, j] = self._nc[idx[:nnodes], 2] ec[:, 0] = np.sum(xcoords, axis=0) / nnodes_per_elem ec[:, 1] = np.sum(ycoords, axis=0) / nnodes_per_elem ec[:, 2] = np.sum(zcoords, axis=0) / nnodes_per_elem self._ec = ec return ec def contains(self, points): """test if a list of points are contained by mesh Parameters ---------- points : array-like n-by-2 x,y-coordinates of n points to be tested Returns ------- bool array True for points inside, False otherwise """ import matplotlib.path as mp points = np.atleast_2d(points) exterior = self.boundary_polylines.exteriors[0] cnts = mp.Path(exterior.xy).contains_points(points) if self.boundary_polylines.n_exteriors > 1: # in case of several dis-joint outer domains for exterior in self.boundary_polylines.exteriors[1:]: in_domain = mp.Path(exterior.xy).contains_points(points) cnts = np.logical_or(cnts, in_domain) # subtract any holes for interior in self.boundary_polylines.interiors: in_hole = mp.Path(interior.xy).contains_points(points) cnts = np.logical_and(cnts, ~in_hole) return cnts def get_overset_grid(self, dx=None, dy=None, shape=None, buffer=None): """get a 2d grid that covers the domain by specifying spacing or shape Parameters ---------- dx : float or (float, float), optional grid resolution in x-direction (or in x- and y-direction) dy : float, optional grid resolution in y-direction shape : (int, int), optional tuple with nx and ny describing number of points in each direction one of them can be None, in which case the value will be inferred buffer : float, optional positive to make the area larger, default=0 can be set to a small negative value to avoid NaN values all around the domain. Returns ------- <mikeio.Grid2D> 2d grid """ nc = self.geometry2d.node_coordinates bbox = Grid2D.xy_to_bbox(nc, buffer=buffer) return Grid2D(bbox=bbox, dx=dx, dy=dy, shape=shape) def get_2d_interpolant( self, xy, n_nearest: int = 1, extrapolate=False, p=2, radius=None ): """IDW interpolant for list of coordinates Parameters ---------- xy : array-like x,y coordinates of new points n_nearest : int, optional [description], by default 1 extrapolate : bool, optional allow , by default False p : float, optional power of inverse distance weighting, default=2 radius: float, optional an alternative to extrapolate=False, only include elements within radius Returns ------- (np.array, np.array) element ids and weights """ xy = np.atleast_2d(xy) ids, dists = self._find_n_nearest_2d_elements(xy, n=n_nearest) weights = None if n_nearest == 1: weights = np.ones(dists.shape) if not extrapolate: weights[~self.contains(xy)] = np.nan elif n_nearest > 1: weights = get_idw_interpolant(dists, p=p) if not extrapolate: weights[~self.contains(xy), :] = np.nan else: ValueError("n_nearest must be at least 1") if radius is not None: idx = np.where(dists > radius)[0] weights[idx] = np.nan return ids, weights def interp2d(self, data, elem_ids, weights=None, shape=None): """interp spatially in data (2d only) Parameters ---------- data : ndarray or list(ndarray) dfsu data elem_ids : ndarray(int) n sized array of 1 or more element ids used for interpolation weights : ndarray(float), optional weights with same size as elem_ids used for interpolation shape: tuple, optional reshape output Returns ------- ndarray or list(ndarray) spatially interped data Examples -------- >>> ds = dfsu.read() >>> g = dfs.get_overset_grid(shape=(50,40)) >>> elem_ids, weights = dfs.get_2d_interpolant(g.xy) >>> dsi = dfs.interp2d(ds, elem_ids, weights) """ return interp2d(data, elem_ids, weights, shape) def _create_tree2d(self): xy = self.geometry2d.element_coordinates[:, :2] self._tree2d = cKDTree(xy) def _find_n_nearest_2d_elements(self, x, y=None, n=1): if self._tree2d is None: self._create_tree2d() if y is None: p = x if (not np.isscalar(x)) and (np.ndim(x) == 2): p = x[:, 0:2] else: p = np.array((x, y)).T d, elem_id = self._tree2d.query(p, k=n) return elem_id, d def _find_3d_from_2d_points(self, elem2d, z=None, layer=None): was_scalar = np.isscalar(elem2d) if was_scalar: elem2d = np.array([elem2d]) else: orig_shape = elem2d.shape elem2d = np.reshape(elem2d, (elem2d.size,)) if (layer is None) and (z is None): # return top element idx = self.top_elements[elem2d] elif layer is None: idx = np.zeros_like(elem2d) if np.isscalar(z): z = z * np.ones_like(elem2d, dtype=float) elem3d = self.e2_e3_table[elem2d] for j, row in enumerate(elem3d): zc = self.element_coordinates[row, 2] d3d = np.abs(z[j] - zc) idx[j] = row[d3d.argsort()[0]] elif z is None: if 1 <= layer <= self.n_z_layers: idx =
np.zeros_like(elem2d)
numpy.zeros_like
import unagi.utils as utils import numpy as np from .loss import Loss class Sigmoid_Cross_Entropy( Loss): def activation(self, Z): return utils.sigmoid( Z) def cost(self, logits, labels, params, lambd_factor): m = labels.shape[1] logprobs = np.multiply(-
np.log(logits)
numpy.log
import os import numpy as np import matplotlib.pyplot as plt from robotics.estimation import KalmanFilter class Vehicle2DEstimation: def __init__(self) -> None: delta_t = 1 newton_acc = 0.5*delta_t*delta_t # no control inputs # fmt: off F = np.array([ [1 , delta_t , newton_acc , 0 , 0 , 0] , [0 , 1 , delta_t , 0 , 0 , 0] , [0 , 0 , 1 , 0 , 0 , 0] , [0 , 0 , 0 , 1 , delta_t , newton_acc] , [0 , 0 , 0 , 0 , 1 , delta_t] , [0 , 0 , 0 , 0 , 0 , 1] ]) print(F) q_directions = np.array( [ [delta_t**4/4 , delta_t**3/2 , delta_t**2/2] , [delta_t**3/2 , delta_t**2 , delta_t] , [delta_t**2/2 , delta_t , 1] ] ) # fmt: on Q =
np.zeros((6, 6))
numpy.zeros
import numpy import sys import math import logic from scipy.integrate import odeint import scipy.optimize as optim import NNEX_DEEP_NETWORK as NNEX import NNEX_DEEP_NETWORKY as NNEXY #import NNEX def DISCON(avrSWAP_py, from_SC_py, to_SC_py): if logic.counter == 0: import globalDISCON import OBSERVER import yawerrmeas logic.counter = logic.counter + 1 elif logic.counter == 1: import globalDISCON1 as globalDISCON import OBSERVER1 as OBSERVER import yawerrmeas1 as yawerrmeas logic.counter = logic.counter + 1 elif logic.counter == 2: import globalDISCON2 as globalDISCON import OBSERVER2 as OBSERVER import yawerrmeas2 as yawerrmeas logic.counter = 0 #print("SIAMO ENTRATI IN DISCON.py") #print("from_SC_py in DISCON.py: ", from_SC_py) #print(avrSWAP_py[95], avrSWAP_py[26]) VS_RtGnSp = 121.6805 VS_SlPc = 10.00 VS_Rgn2K = 2.332287 VS_Rgn2Sp = 91.21091 VS_CtInSp = 70.16224 VS_RtPwr = 5296610.0 CornerFreq = 1.570796 #1.570796 PC_MaxPit = 1.570796 # ERA 1.570796 rad PC_DT = 0.000125 VS_DT = 0.000125 OnePlusEps = 1 + sys.float_info.epsilon VS_MaxTq = 47402.91 BlPitch = numpy.zeros(3) PitRate = numpy.zeros(3) VS_Rgn3MP = 0.01745329 PC_KK = 0.1099965 PC_KI = 0.008068634 PC_KP = 0.01882681 PC_RefSpd = 122.9096 VS_MaxRat = 15000.0 PC_MaxRat = 0.1396263 #0.1396263 YawSpr = 9.02832e9 YawDamp = 1.916e7 YawIn = 2.60789e6 kdYaw = 1e7 kpYaw = 5e7 kiYaw = 1e9 tauF = (1/3) * ((2 * numpy.pi) / 1.2671) Ts = 0.005 iStatus = int(round(avrSWAP_py[0])) NumBl = int(round(avrSWAP_py[60])) PC_MinPit = 0.0 #print("PC_MinPit in DISCON.py: ", PC_MinPit) #print("NumBl in DISCON.py: ", NumBl) #print("OnePLUSEps ", OnePlusEps) BlPitch[0] = min( max( avrSWAP_py[3], PC_MinPit ), PC_MaxPit ) BlPitch[1] = min( max( avrSWAP_py[32], PC_MinPit ), PC_MaxPit ) BlPitch[2] = min( max( avrSWAP_py[33], PC_MinPit ), PC_MaxPit ) GenSpeed = avrSWAP_py[19] HorWindV = avrSWAP_py[26] Time = avrSWAP_py[1] aviFAIL_py = 0 if iStatus == 0: globalDISCON.VS_SySp = VS_RtGnSp/( 1.0 + 0.01*VS_SlPc ) globalDISCON.VS_Slope15 = ( VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp )/( VS_Rgn2Sp - VS_CtInSp ) globalDISCON.VS_Slope25 = ( VS_RtPwr/VS_RtGnSp )/( VS_RtGnSp - globalDISCON.VS_SySp ) if VS_Rgn2K == 0: globalDISCON.VS_TrGnSp = globalDISCON.VS_SySp else: globalDISCON.VS_TrGnSp = ( globalDISCON.VS_Slope25 - math.sqrt(globalDISCON.VS_Slope25*( globalDISCON.VS_Slope25 - 4.0*VS_Rgn2K*globalDISCON.VS_SySp ) ) )/( 2.0*VS_Rgn2K ) globalDISCON.GenSpeedF = GenSpeed globalDISCON.PitCom = BlPitch #print("PitCom: ", globalDISCON.PitCom) #print("BlPitch: ", BlPitch) GK = 1.0/( 1.0 + globalDISCON.PitCom[0]/PC_KK ) globalDISCON.IntSpdErr = globalDISCON.PitCom[0]/( GK*PC_KI ) globalDISCON.LastTime = Time globalDISCON.LastTimePC = Time - PC_DT globalDISCON.LastTimeVS = Time - VS_DT print("0") if iStatus >= 0 and aviFAIL_py >= 0: avrSWAP_py[35] = 0.0 avrSWAP_py[40] = 0.0 avrSWAP_py[45] = 0.0 avrSWAP_py[47] = 0.0 avrSWAP_py[64] = 0.0 avrSWAP_py[71] = 0.0 avrSWAP_py[78] = 0.0 avrSWAP_py[79] = 0.0 avrSWAP_py[80] = 0.0 Alpha = math.exp( ( globalDISCON.LastTime - Time )*CornerFreq ) globalDISCON.GenSpeedF = ( 1.0 - Alpha )*GenSpeed + Alpha*globalDISCON.GenSpeedF ElapTime = Time - globalDISCON.LastTimeVS print("1 ", ElapTime) print("globalDISCON.LastTimeVS: ", globalDISCON.LastTimeVS) print("Time*OnePlusEps - globalDISCON.LastTimeVS: ", Time*OnePlusEps - globalDISCON.LastTimeVS) if ( Time*OnePlusEps - globalDISCON.LastTimeVS ) >= VS_DT: print("GenSPeedF: ", globalDISCON.GenSpeedF) print("PitCom: ", globalDISCON.PitCom[0]) if globalDISCON.GenSpeedF >= VS_RtGnSp or globalDISCON.PitCom[0] >= VS_Rgn3MP: GenTrq = VS_RtPwr/globalDISCON.GenSpeedF print("A") print("GenTrq: ", GenTrq) elif globalDISCON.GenSpeedF <= VS_CtInSp: GenTrq = 0.0 print("B") elif globalDISCON.GenSpeedF < VS_Rgn2Sp: GenTrq = globalDISCON.VS_Slope15*( globalDISCON.GenSpeedF - VS_CtInSp ) print("C") elif globalDISCON.GenSpeedF < globalDISCON.VS_TrGnSp: GenTrq = VS_Rgn2K*globalDISCON.GenSpeedF*globalDISCON.GenSpeedF print("D") else: GenTrq = globalDISCON.VS_Slope25*( globalDISCON.GenSpeedF - globalDISCON.VS_SySp ) print("E") GenTrq = min(GenTrq, VS_MaxTq) print("2: ", GenTrq) if iStatus == 0: globalDISCON.LastGenTrq = GenTrq TrqRate = ( GenTrq - globalDISCON.LastGenTrq )/ElapTime TrqRate = min( max( TrqRate, -VS_MaxRat ), VS_MaxRat ) GenTrq = globalDISCON.LastGenTrq + TrqRate*ElapTime globalDISCON.LastTimeVS = Time globalDISCON.LastGenTrq = GenTrq print("3") avrSWAP_py[34] = 1.0 avrSWAP_py[55] = 0.0 avrSWAP_py[46] = globalDISCON.LastGenTrq print("Time ", Time) ElapTime = Time - globalDISCON.LastTimePC print("ELAP Time ", ElapTime) print("LASTTIMEPC Time ", globalDISCON.LastTimePC) if ( Time*OnePlusEps - globalDISCON.LastTimePC ) >= PC_DT: GK = 1.0/( 1.0 + globalDISCON.PitCom[0]/PC_KK ) SpdErr = globalDISCON.GenSpeedF - PC_RefSpd globalDISCON.IntSpdErr = globalDISCON.IntSpdErr + SpdErr*ElapTime globalDISCON.IntSpdErr = min( max( globalDISCON.IntSpdErr, PC_MinPit/( GK*PC_KI ) ), PC_MaxPit/( GK*PC_KI ) ) PitComP = GK*PC_KP* SpdErr PitComI = GK*PC_KI*globalDISCON.IntSpdErr PitComT = PitComP + PitComI PitComT = min( max( PitComT, PC_MinPit ), PC_MaxPit ) for i in range(NumBl): PitRate[i] = ( PitComT - BlPitch[i] )/ElapTime PitRate[i] = min( max( PitRate[i], -PC_MaxRat ), PC_MaxRat ) globalDISCON.PitCom[i] = BlPitch[i] + PitRate[i]*ElapTime globalDISCON.PitCom[i] = min( max( globalDISCON.PitCom[i], PC_MinPit ), PC_MaxPit ) globalDISCON.LastTimePC = Time print("4") #print("PitCom: ", globalDISCON.PitCom) avrSWAP_py[54] = 0.0 avrSWAP_py[41] = globalDISCON.PitCom[0] avrSWAP_py[42] = globalDISCON.PitCom[1] avrSWAP_py[43] = globalDISCON.PitCom[2] avrSWAP_py[44] = globalDISCON.PitCom[0] # COMMANDING YAW RATE globalDISCON.YawAngleGA = from_SC_py #if Time > 70.0: if logic.counter < 4: if Time > 40.0 and Time < 55.0: avrSWAP_py[28] = 1 # --> YAW CONTROL 0 = SPEED CONTROL, 1 = TORQUE CONTROL # SETTING POSITION TO BE REACHED AT 0.1 rad --> PI CONTROLLER ( I is INTEGRAL of 0.1rad in time) # avrSwap_py[23] --> YawRate Good for PID -- Derivative term if not numpy.isclose(abs(avrSWAP_py[36]), 0.174533) and globalDISCON.flagyaw == False: #if (not numpy.isclose(avrSWAP_py[36], globalDISCON.PosYawRef)) and (not numpy.isclose(avrSWAP_py[23], 0.0)) and globalDISCON.flag_yaw == False: #globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime #globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime #avrSWAP_py[47] = kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) if abs(globalDISCON.PosYawRef) < 0.174533: globalDISCON.VelYawRef = 0.0349066/3 globalDISCON.PosYawRef = globalDISCON.PosYawRef + globalDISCON.VelYawRef*ElapTime else: if Time > 54.0: globalDISCON.flagyaw = True globalDISCON.VelYawRef = 0.0 avrSWAP_py[47] = kiYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kpYaw * (globalDISCON.VelYawRef - avrSWAP_py[23]) - YawDamp * avrSWAP_py[23] else: # HERE I CONSIDER PERTURBATIONS ABOUT THE NEW WORKING POSITION #globalDISCON.flagyaw = True globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime avrSWAP_py[47] = - YawDamp * (avrSWAP_py[23] - 0.0) - YawSpr * (avrSWAP_py[36] - globalDISCON.PosYawRef) + kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) else: avrSWAP_py[28] = 1 # --> YAW CONTROL 0 = SPEED CONTROL, 1 = TORQUE CONTROL # SETTING POSITION TO BE REACHED AT 0.1 rad --> PI CONTROLLER ( I is INTEGRAL of 0.1rad in time) globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime avrSWAP_py[47] = - YawDamp * (avrSWAP_py[23] - 0.0) - YawSpr * (avrSWAP_py[36] - globalDISCON.PosYawRef) + kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) # avrSwap_py[23] --> YawRate Good for PID -- Derivative term if globalDISCON.counterY >= 2.0: avrSWAP_py[28] = 1 if not numpy.isclose(abs(avrSWAP_py[36]), abs(globalDISCON.PosYawRef - globalDISCON.PosFin)) and globalDISCON.flagyaw == False: #if (not numpy.isclose(avrSWAP_py[36], globalDISCON.PosYawRef)) and (not numpy.isclose(avrSWAP_py[23], 0.0)) and globalDISCON.flag_yaw == False: #globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime #globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime #avrSWAP_py[47] = kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) #if numpy.sign(globalDISCON.PosFin - globalDISCON.PosYawRef) == globalDISCON.signold: if abs(globalDISCON.PosYawRef - globalDISCON.PosFin) > 0.004: globalDISCON.VelYawRef = globalDISCON.signold * 0.0349066/3 globalDISCON.PosYawRef = globalDISCON.PosYawRef + globalDISCON.VelYawRef*ElapTime else: #if Time > 72.0: globalDISCON.flagyaw = True globalDISCON.VelYawRef = 0.0 avrSWAP_py[47] = kiYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kpYaw * (globalDISCON.VelYawRef - avrSWAP_py[23]) - YawDamp * avrSWAP_py[23] else: # HERE I CONSIDER PERTURBATIONS ABOUT THE NEW WORKING POSITION #globalDISCON.flagyaw = True globalDISCON.IntYawRef = globalDISCON.IntYawRef + globalDISCON.PosYawRef * ElapTime globalDISCON.IntYaw = globalDISCON.IntYaw + avrSWAP_py[36] * ElapTime avrSWAP_py[47] = - YawDamp * (avrSWAP_py[23] - 0.0) - YawSpr * (avrSWAP_py[36] - globalDISCON.PosYawRef) + kpYaw * (globalDISCON.PosYawRef - avrSWAP_py[36]) + kiYaw * (globalDISCON.IntYawRef - globalDISCON.IntYaw) #globalDISCON.signold = numpy.sign(globalDISCON.PosFin - globalDISCON.PosYawRef) print("TOTAL TORQUE TERM PASSED TO SERVODYN FOR YAW CONTROL ----> ", avrSWAP_py[47]) '''if Time > 70.0 and Time < 85.0: avrSWAP_py[47] = 0.0349066/3 else: avrSWAP_py[47] = 0.0''' else: avrSWAP_py[28] = 0 #else: # avrSWAP_py[28] = 0 '''avrSWAP_py[28] = 0 # DOPO LEVALO avrSWAP_py[47] = 0.0''' # END OF COMMANDED YAW RATE ON TURBINE 1 #YAW LOGIC BLOCK globalDISCON.LastTime = Time print("globalDISCON.LastTime: ", globalDISCON.LastTime) # INPUTS FOR SUPERCONTROLLER to_SC_py = avrSWAP_py[14] # MEASURED POWER OUTPUT avrSWAP_py = numpy.append(avrSWAP_py,to_SC_py) to_SC_py = avrSWAP_py[36] # ACTUAL YAW ANGLE avrSWAP_py = numpy.append(avrSWAP_py,to_SC_py) # END OF SECTION # WIND SPEED OBSERVER SECTION file = open("Bl1outin.txt","a+") file.write("%f, %f, %f \n" % (avrSWAP_py[29], avrSWAP_py[68], Time)) file.close() file = open("Bl2outin.txt","a+") file.write("%f, %f, %f \n" % (avrSWAP_py[30], avrSWAP_py[69], Time)) file.close() file = open("Bl3outin.txt","a+") file.write("%f, %f, %f \n" % (avrSWAP_py[31], avrSWAP_py[70], Time)) file.close() #file = open("Azimuth.txt","a+") #file.write("%f, %f, %f, %f \n" % (avrSWAP_py[59], avrSWAP_py[20], avrSWAP_py[26], Time)) #file.close() #if from_SC_py == 0: tmp = float(OBSERVER.tmp) #POSG acc = float(OBSERVER.acc) #POSR OBSERVER.y = avrSWAP_py[19] #print("tmp: ", OBSERVER.tmp) #print("acc: ", OBSERVER.acc) #print("y: ", OBSERVER.y) OBSERVER.Qg = avrSWAP_py[22] #print("Qg: ", avrSWAP_py[22]) if numpy.isclose(Time, 0.0): x0 = numpy.array([1.5, 120, 0, 0]) xsol = numpy.array([1.5, 120, 0, 0]) OBSERVER.xsol = xsol xppsolin = numpy.array([0, 0, 1.5, 120]) #print(xsol) Qasol = OBSERVER.Qacalc(xppsolin, xsol, float(OBSERVER.y), float(OBSERVER.tmp)) error = 0.0 errorposg = 0.0 errorposr = 0.0 errorwr = 0.0 errorwg = 0.0 pitch_obs = (avrSWAP_py[3]+avrSWAP_py[32]+avrSWAP_py[33])*180/(3*numpy.pi) if pitch_obs > 17.9: pitch_obs = 17.9 elif pitch_obs < -10: pitch_obs = -10 num = (2*Qasol)/(numpy.pi*OBSERVER.rho*(xsol[0]**2)*(OBSERVER.R**5)) tsr_obs = optim.fsolve(OBSERVER.func_impl, 4.5, args=(num, pitch_obs)) vento_obs = xsol[0]*OBSERVER.R/tsr_obs file = open("EXSOL.txt","a+") file.write("%f, %f, %f, %f, %f \n" % (xsol[0], xsol[1], xsol[2], xsol[3], Time)) file.close() file = open("Azimuth.txt","a+") file.write("%f, %f, %f, %f \n" % (xsol[2], xsol[0], vento_obs, Time)) file.close() else: x0 = OBSERVER.xsol if numpy.isclose(ElapTime, 0.0): ElapTime = 0.005 #print(OBSERVER.xsolold) #input("ELAP TIME = 0.0 PROBLEM") ts = numpy.linspace(Time - ElapTime, Time, 2) xsol = odeint(OBSERVER.dx_dt, x0, ts, args=(float(OBSERVER.y), float(OBSERVER.tmp))) #print("SOL SHAPE: ", numpy.shape(xsol)) OBSERVER.xsol = xsol[-1,:] OBSERVER.xsolold = numpy.vstack((OBSERVER.xsolold, OBSERVER.xsol)) xppsolin = numpy.gradient(OBSERVER.xsolold, ElapTime, axis=0) #print("SOL: ", xsol) #print("XOLD: ", OBSERVER.xsolold) xppsol = OBSERVER.xpp(xsol[-1,:], float(OBSERVER.y), float(OBSERVER.tmp)) #print("INERTIA: ", xppsol) #print("INERTIA: ", xppsolin[-1,:]) Qasol = OBSERVER.Qacalc(xppsolin[-1,:], xsol[-1,:], float(OBSERVER.y), float(OBSERVER.tmp)) error = (Qasol - (avrSWAP_py[13]/avrSWAP_py[20]))/(avrSWAP_py[13]/avrSWAP_py[20]) errorposg = (OBSERVER.tmp-xsol[-1,3])/xsol[-1,3] errorposr = (OBSERVER.acc-xsol[-1,2])/xsol[-1,2] errorwr = (avrSWAP_py[20]-xsol[-1,0])/avrSWAP_py[20] errorwg = (avrSWAP_py[19]-xsol[-1,1])/avrSWAP_py[19] pitch_obs = (avrSWAP_py[3]+avrSWAP_py[32]+avrSWAP_py[33])*180/(3*numpy.pi) if pitch_obs > 17.9: pitch_obs = 17.9 elif pitch_obs < -10: pitch_obs = -10 num = (2*Qasol)/(numpy.pi*OBSERVER.rho*(xsol[-1,0]**2)*(OBSERVER.R**5)) tsr_obs = optim.fsolve(OBSERVER.func_impl, 4.5, args=(num, pitch_obs)) vento_obs = xsol[-1,0]*OBSERVER.R/tsr_obs file = open("EXSOL.txt","a+") file.write("%f, %f, %f, %f, %f \n" % (xsol[-1,0], xsol[-1,1], xsol[-1,2], xsol[-1,3], Time)) file.close() file = open("Azimuth.txt","a+") file.write("%f, %f, %f, %f \n" % (xsol[-1,2], xsol[-1,0], vento_obs, Time)) file.close() if vento_obs > 25: vento_obs = 25 elif vento_obs < 3: vento_obs = 3 file = open("Error.txt","a+") file.write("%f, %f \n" % (error, Time)) file.close() file = open("ErrorPosg.txt","a+") file.write("%f, %f \n" % (errorposg, Time)) file.close() file = open("ErrorPosr.txt","a+") file.write("%f, %f \n" % (errorposr, Time)) file.close() file = open("ErrorWG.txt","a+") file.write("%f, %f \n" % (errorwg, Time)) file.close() file = open("ErrorWR.txt","a+") file.write("%f, %f \n" % (errorwr, Time)) file.close() file = open("EWR.txt","a+") file.write("%f, %f \n" % (avrSWAP_py[20], Time)) file.close() file = open("EWG.txt","a+") file.write("%f, %f \n" % (avrSWAP_py[19], Time)) file.close() file = open("EPOSG.txt","a+") file.write("%f, %f \n" % (tmp, Time)) file.close() file = open("EPOSR.txt","a+") file.write("%f, %f \n" % (acc, Time)) file.close() file = open("EPitch.txt","a+") file.write("%f, %f, %f \n" % ((avrSWAP_py[3]+avrSWAP_py[32]+avrSWAP_py[33])*180/(3*numpy.pi), pitch_obs, Time)) file.close() file = open("EWIND.txt","a+") file.write("%f, %f, %f \n" % (vento_obs, Time, HorWindV)) file.close() file = open("EQasol.txt","a+") file.write("%f, %f \n" % (Qasol, Time)) file.close() file = open("ENum.txt","a+") file.write("%f, %f \n" % (num, Time)) file.close() OBSERVER.tmp = float(avrSWAP_py[19]*ElapTime + tmp) OBSERVER.acc = float(avrSWAP_py[20]*ElapTime + acc) #print("ERROR: ", error) #print("Qa: ", Qasol) #print("Qareal: ", avrSWAP_py[13]/avrSWAP_py[20]) #print("POWER: ", avrSWAP_py[13]) #WIND YAW ERROR OBSERVER SECTION blmom1 = numpy.array([avrSWAP_py[29], avrSWAP_py[68]]) blmom2 = numpy.array([avrSWAP_py[30], avrSWAP_py[69]]) blmom3 = numpy.array([avrSWAP_py[31], avrSWAP_py[70]]) N = 1 if numpy.isclose(Time, 0.0): azimuth = numpy.array([xsol[2],xsol[2] + 2*numpy.pi/3, xsol[2] + 4*numpy.pi/3]) wryaw = xsol[0] globalDISCON.wr_old = wryaw # (1/(2*tauF + Ts)) * ((2*tauF - Ts)*globalDISCON.m_out1f_old + Ts*(m_out1 + globalDISCON.m_out1_old)) globalDISCON.wrf_old = wryaw globalDISCON.azimuth_old = azimuth globalDISCON.azimuthf_old = azimuth m_out1 = 1 m_out2 = 0 m_out3 = 0 m_in1 = 1 m_in2 = 0 m_in3 = 0 yawerrmeas.bl1_old = blmom1 yawerrmeas.bl2_old = blmom2 yawerrmeas.bl3_old = blmom3 yawerrmeas.azimuth_old = azimuth[0] else: #azimuth = (1/(2*tauF + Ts)) * ((2*tauF - Ts)*globalDISCON.azimuthf_old + Ts*(numpy.array([xsol[-1,2], xsol[-1,2] + 2*numpy.pi/3, xsol[-1,2] + 4*numpy.pi/3]) + globalDISCON.azimuth_old)) #wryaw = (1/(2*tauF + Ts)) * ((2*tauF - Ts)*globalDISCON.wrf_old + Ts*(xsol[-1,0] + globalDISCON.wr_old)) azimuth = numpy.array([xsol[-1,2], xsol[-1,2] + 2*numpy.pi/3, xsol[-1,2] + 4*numpy.pi/3]) wryaw = xsol[-1,0] globalDISCON.wr_old = xsol[-1,0] globalDISCON.azimuth_old = numpy.array([xsol[-1,2], xsol[-1,2] + 2*numpy.pi/3, xsol[-1,2] + 4*numpy.pi/3]) globalDISCON.wrf_old = wryaw globalDISCON.azimuthf_old = azimuth yawerrmeas.bl1_old = numpy.vstack((yawerrmeas.bl1_old, blmom1)) yawerrmeas.bl2_old = numpy.vstack((yawerrmeas.bl2_old, blmom2)) yawerrmeas.bl3_old = numpy.vstack((yawerrmeas.bl3_old, blmom3)) yawerrmeas.azimuth_old = numpy.hstack((yawerrmeas.azimuth_old, azimuth[0])) #if ((azimuth[0] - 2*N*numpy.pi) > yawerrmeas.azimuth_old[0]) and ((azimuth[0] - 2*N*numpy.pi) > yawerrmeas.azimuth_old[1]): inddel = numpy.where(yawerrmeas.azimuth_old < azimuth[0] - 2*N*numpy.pi) #print("INDDEL: ", inddel[0]) if inddel[0].size > 1: #print(yawerrmeas.azimuth_old.size) yawerrmeas.bl1_old = numpy.delete(yawerrmeas.bl1_old, [inddel[0][:-2]], 0) yawerrmeas.bl2_old = numpy.delete(yawerrmeas.bl2_old, [inddel[0][:-2]], 0) yawerrmeas.bl3_old = numpy.delete(yawerrmeas.bl3_old, [inddel[0][:-2]], 0) yawerrmeas.azimuth_old = numpy.delete(yawerrmeas.azimuth_old, [inddel[0][:-2]], None) #print(yawerrmeas.azimuth_old.size) #print("DELETED OBJECT") ind = numpy.where(yawerrmeas.azimuth_old > azimuth[0] - 2*N*numpy.pi) #print("IND: ", ind[0]) a = 0 if ind[0][0] == 0: ind[0][0] = 1 a = 1 blmom1into = numpy.interp(azimuth[0] - 2*N*numpy.pi, [yawerrmeas.azimuth_old[ind[0][0]-1], yawerrmeas.azimuth_old[ind[0][0]]], [yawerrmeas.bl1_old[ind[0][0]-1,0], yawerrmeas.bl1_old[ind[0][0],0]]) blmom1inti = numpy.interp(azimuth[0] - 2*N*numpy.pi, [yawerrmeas.azimuth_old[ind[0][0]-1], yawerrmeas.azimuth_old[ind[0][0]]], [yawerrmeas.bl1_old[ind[0][0]-1,1], yawerrmeas.bl1_old[ind[0][0],1]]) blmom2into = numpy.interp(azimuth[0] - 2*N*numpy.pi + 2*numpy.pi/3, [yawerrmeas.azimuth_old[ind[0][0]-1] + 2*numpy.pi/3, yawerrmeas.azimuth_old[ind[0][0]] + 2*numpy.pi/3], [yawerrmeas.bl2_old[ind[0][0]-1,0], yawerrmeas.bl2_old[ind[0][0],0]]) blmom2inti = numpy.interp(azimuth[0] - 2*N*numpy.pi + 2*numpy.pi/3, [yawerrmeas.azimuth_old[ind[0][0]-1] + 2*numpy.pi/3, yawerrmeas.azimuth_old[ind[0][0]] + 2*numpy.pi/3], [yawerrmeas.bl2_old[ind[0][0]-1,1], yawerrmeas.bl2_old[ind[0][0],1]]) blmom3into = numpy.interp(azimuth[0] - 2*N*numpy.pi + 4*numpy.pi/3, [yawerrmeas.azimuth_old[ind[0][0]-1] + 4*numpy.pi/3, yawerrmeas.azimuth_old[ind[0][0]] + 4*numpy.pi/3], [yawerrmeas.bl3_old[ind[0][0]-1,0], yawerrmeas.bl3_old[ind[0][0],0]]) blmom3inti = numpy.interp(azimuth[0] - 2*N*numpy.pi + 4*numpy.pi/3, [yawerrmeas.azimuth_old[ind[0][0]-1] + 4*numpy.pi/3, yawerrmeas.azimuth_old[ind[0][0]] + 4*numpy.pi/3], [yawerrmeas.bl3_old[ind[0][0]-1,1], yawerrmeas.bl3_old[ind[0][0],1]]) if a == 1: ind[0][0] = 0 mo10= numpy.trapz(numpy.hstack((blmom1into, yawerrmeas.bl1_old[ind[0],0])), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))/(2*N*numpy.pi) mo1c= numpy.trapz(numpy.multiply(numpy.hstack((blmom1into, yawerrmeas.bl1_old[ind[0],0])), numpy.cos(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))/(N*numpy.pi) mo1s= numpy.trapz(numpy.multiply(numpy.hstack((blmom1into, yawerrmeas.bl1_old[ind[0],0])), numpy.sin(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))/(N*numpy.pi) mi10= numpy.trapz(numpy.hstack((blmom1inti, yawerrmeas.bl1_old[ind[0],1])), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))/(2*N*numpy.pi) mi1c= numpy.trapz(numpy.multiply(numpy.hstack((blmom1inti, yawerrmeas.bl1_old[ind[0],1])), numpy.cos(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))/(N*numpy.pi) mi1s= numpy.trapz(numpy.multiply(numpy.hstack((blmom1inti, yawerrmeas.bl1_old[ind[0],1])), numpy.sin(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])))/(N*numpy.pi) mo20= numpy.trapz(numpy.hstack((blmom2into, yawerrmeas.bl2_old[ind[0],0])), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)/(2*N*numpy.pi) mo2c= numpy.trapz(numpy.multiply(numpy.hstack((blmom2into, yawerrmeas.bl2_old[ind[0],0])), numpy.cos(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)/(N*numpy.pi) mo2s= numpy.trapz(numpy.multiply(numpy.hstack((blmom2into, yawerrmeas.bl2_old[ind[0],0])), numpy.sin(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)/(N*numpy.pi) mi20= numpy.trapz(numpy.hstack((blmom2inti, yawerrmeas.bl2_old[ind[0],1])), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)/(2*N*numpy.pi) mi2c= numpy.trapz(numpy.multiply(numpy.hstack((blmom2inti, yawerrmeas.bl2_old[ind[0],1])), numpy.cos(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)/(N*numpy.pi) mi2s= numpy.trapz(numpy.multiply(numpy.hstack((blmom2inti, yawerrmeas.bl2_old[ind[0],1])), numpy.sin(numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 2*numpy.pi/3)/(N*numpy.pi) mo30= numpy.trapz(numpy.hstack((blmom3into, yawerrmeas.bl3_old[ind[0],0])), x=numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]])) + 4*numpy.pi/3)/(2*N*numpy.pi) mo3c= numpy.trapz(numpy.multiply(numpy.hstack((blmom3into, yawerrmeas.bl3_old[ind[0],0])), numpy.cos(
numpy.hstack((azimuth[0] - 2*N*numpy.pi, yawerrmeas.azimuth_old[ind[0]]))
numpy.hstack
from os import system import numpy as np import scipy.optimize as op import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection from anytree import AnyNode, RenderTree #################################################################### def concatenateVectors(X,Y): return np.concatenate((X,Y),axis=1) #################################################################### def getPlot(): return plt #################################################################### def clearScreen(): system('cls') return #################################################################### def loadData(fileName): data= np.loadtxt(fileName, delimiter=',',unpack=True,dtype=float) data=data.T if (len(data.shape)==1): data.shape=(data.shape[0],1) return data #################################################################### def accurracy(Xy,NewXy): Xy=np.sort(Xy,axis=0) NewXy=np.sort(NewXy,axis=0) Y1=Xy[:,-1] Y2=NewXy[:,-1] m=np.mean(np.where(Y1==Y2,1,0)) return m*100 #################################################################### def SplitTree(X, y,Level=1,Node=AnyNode(id="root",vPredictedClass=-1),ThresholdCount=1): ri,ci=GetBestSplit(X,y,ThresholdCount) if( ri!=-1 and ci!=-1): SplitFeature=ci SplitValue=X[ri,ci] #PlotTreeSplit(X,SplitFeature,SplitValue,Level) #Plot While Training X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] s0 = AnyNode(id="Level_"+str(Level)+"_Left("+"X"+str(SplitFeature)+"<"+str(round(SplitValue,1))+")", parent=Node,vLevel=Level,vSplitFeature=SplitFeature,vOp="<",vSplitValue=SplitValue,vSplitSign=-1,vPredictedClass=-1) s1 = AnyNode(id="Level_"+str(Level)+"_Right("+"X"+str(SplitFeature)+">"+str(round(SplitValue,1))+")", parent=Node,vLevel=Level,vSplitFeature=SplitFeature,vOp=">",vSplitValue=SplitValue,vSplitSign=1,vPredictedClass=-1) s0=SplitTree(X0,Y0,Level+1,s0,ThresholdCount=ThresholdCount) s1=SplitTree(X1,Y1,Level+1,s1,ThresholdCount=ThresholdCount) else: PredictedClass=0 PredictedClassLen=0 for i in range(int(y.max()+1)): if (len(y[np.where(y==i)])>PredictedClassLen): PredictedClass=i PredictedClassLen=len(y[np.where(y==i)]) Node.vPredictedClass=PredictedClass return Node #################################################################### def PredictTree(X,y,Node): if(len(Node.children)!=0): SplitFeature=Node.children[0].vSplitFeature SplitValue=Node.children[0].vSplitValue X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] newX1,newY1=PredictTree(X0,Y0,Node.children[0]) newX2,newY2=PredictTree(X1,Y1,Node.children[1]) newX= np.concatenate((newX1,newX2),axis=0) newY=np.concatenate((newY1,newY2),axis=0) else: newX=X for i in range(len(y)): y[i]=Node.vPredictedClass newY=y return newX,newY #################################################################### def PruneTree(X,y,Node,ThresholdCount): if(len(Node.children)!=0): SplitFeature=Node.children[0].vSplitFeature SplitValue=Node.children[0].vSplitValue X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] if (X0.shape[0]<ThresholdCount or X1.shape[0]<ThresholdCount): Node.children=[] PredictedClass=0 PredictedClassLen=0 for i in range(int(y.max()+1)): if (len(y[np.where(y==i)])>PredictedClassLen): PredictedClass=i PredictedClassLen=len(y[np.where(y==i)]) Node.vPredictedClass=PredictedClass else: PruneTree(X0,Y0,Node.children[0],ThresholdCount) PruneTree(X1,Y1,Node.children[1],ThresholdCount) return Node #################################################################### def GetBestSplit(X,y,ThresholdCount): ri=0 ci=0 for i in range(int(y.max()+1)): if(len(y[np.where(y==i)])==len(y)): ri=-1 ci=-1 if(X.shape[0]<=ThresholdCount): ri=-1 ci=-1 if(ri!=-1 and ci!=-1): G=np.zeros((X.shape)) for ri in range(G.shape[0]): for ci in range(G.shape[1]): G[ri,ci]=GetGiniScore(X,y,ri,ci) ri=np.unravel_index(np.argmax(G, axis=None), G.shape)[0] ci=np.unravel_index(np.argmax(G, axis=None), G.shape)[1] return ri,ci #################################################################### def GetGiniScore(X,y,ri,ci): G0=0 G1=0 Y0=y[np.where(X[:,ci]<=X[ri,ci])] Y1=y[np.where(X[:,ci]>X[ri,ci])] if (len(Y0)!=0): for i in range(int(y.max()+1)): P=len(Y0[np.where(Y0==i)])/len(Y0) G0=G0+P*P if (len(Y1)!=0): for i in range(int(y.max()+1)): P=len(Y1[np.where(Y1==i)])/len(Y1) G1=G1+P*P G_Score=(len(Y0)/len(y)) * G0 + (len(Y1)/len(y)) * G1 return G_Score #################################################################### def PlotTreeSplit(ax,X,SplitFeature,SplitValue,Level): x_min, x_max = X[:, 0].min() , X[:, 0].max() y_min, y_max = X[:, 1].min() , X[:, 1].max() z_min, z_max = X[:, 2].min() , X[:, 2].max() u = np.linspace(x_min, x_max, 2) v = np.linspace(y_min, y_max, 2) w = np.linspace(z_min, z_max, 2) if (SplitFeature==0): u = np.zeros(( len(v), len(w) )) V,W=np.meshgrid(v,w) for i in range(len(v)): for j in range(len(w)): u[i,j] =SplitValue U = np.transpose(u) if (SplitFeature==1): v = np.zeros(( len(u), len(w) )) U,W=np.meshgrid(u,w) for i in range(len(u)): for j in range(len(w)): v[i,j] =SplitValue V = np.transpose(v) if (SplitFeature==2): w = np.zeros(( len(u), len(v) )) U,V=np.meshgrid(u,v) for i in range(len(u)): for j in range(len(v)): w[i,j] =SplitValue W = np.transpose(w) ax.plot_surface(U,V,W,alpha=0.6,zorder=5) ax.text(U[0][0], V[0][0], W[0][0], Level, color='red') return #################################################################### def PlotTree(ax,X,y,Node): if(Node.id=="root"): ax.scatter(X[np.where(y==0),0],X[np.where(y==0),1],X[np.where(y==0),2],marker=".",facecolors='r', zorder=2) ax.scatter(X[np.where(y==1),0],X[np.where(y==1),1],X[np.where(y==1),2],marker=".",facecolors='g', zorder=3) ax.scatter(X[np.where(y==2),0],X[np.where(y==2),1],X[np.where(y==2),2],marker=".",facecolors='b', zorder=4) if(len(Node.children)!=0): SplitFeature=Node.children[0].vSplitFeature SplitValue=Node.children[0].vSplitValue Level=Node.children[0].vLevel X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] PlotTreeSplit(ax,X,SplitFeature,SplitValue,Level) PlotTree(ax,X0,Y0,Node.children[0]) PlotTree(ax,X1,Y1,Node.children[1]) return #################################################################### def PlotPoints(ax,X,y): ax.scatter(X[np.where(y==0),0],X[
np.where(y==0)
numpy.where
# @version: 1.0 date: 05/06/2015 by <NAME> # @author: <EMAIL>, <EMAIL>, <EMAIL> # @copyright: EPFL-IC-LCAV 2015 from __future__ import division import numpy as np import scipy.linalg as la from .parameters import constants from . import utilities as u from .soundsource import build_rir_matrix from . import windows from . import stft #========================================================================= # Free (non-class-member) functions related to beamformer design #========================================================================= def H(A, **kwargs): '''Returns the conjugate (Hermitian) transpose of a matrix.''' return np.transpose(A, **kwargs).conj() def sumcols(A): ''' Sums the columns of a matrix (np.array). The output is a 2D np.array of dimensions M x 1. ''' return np.sum(A, axis=1, keepdims=1) def mdot(*args): '''Left-to-right associative matrix multiplication of multiple 2D ndarrays.''' ret = args[0] for a in args[1:]: ret = np.dot(ret, a) return ret def distance(x, y): ''' Computes the distance matrix E. E[i,j] = sqrt(sum((x[:,i]-y[:,j])**2)). x and y are DxN ndarray containing N D-dimensional vectors. ''' # Assume x, y are arrays, *not* matrices x = np.array(x) y = np.array(y) # return np.sqrt((x[0,:,np.newaxis]-y[0,:])**2 + (x[1,:,np.newaxis]-y[1,:])**2) return np.sqrt(np.sum((x[:, :, np.newaxis] - y[:, np.newaxis, :])**2, axis=0)) def unit_vec2D(phi): return np.array([[np.cos(phi), np.sin(phi)]]).T def linear_2D_array(center, M, phi, d): ''' Creates an array of uniformly spaced linear points in 2D Parameters ---------- center: array_like The center of the array M: int The number of points phi: float The counterclockwise rotation of the array (from the x-axis) d: float The distance between neighboring points Returns ------- ndarray (2, M) The array of points ''' u = unit_vec2D(phi) return np.array(center)[:, np.newaxis] + d * \ (np.arange(M)[np.newaxis, :] - (M - 1.) / 2.) * u def circular_2D_array(center, M, phi0, radius): ''' Creates an array of uniformly spaced circular points in 2D Parameters ---------- center: array_like The center of the array M: int The number of points phi0: float The counterclockwise rotation of the first element in the array (from the x-axis) radius: float The radius of the array Returns ------- ndarray (2, M) The array of points ''' phi = np.arange(M) * 2. * np.pi / M return np.array(center)[:, np.newaxis] + radius * \ np.vstack((np.cos(phi + phi0), np.sin(phi + phi0))) def poisson_2D_array(center, M, d): ''' Create array of 2D positions drawn from Poisson process. Parameters ---------- center: array_like The center of the array M: int The number of points in the first dimension M: int The number of points in the second dimension phi: float The counterclockwise rotation of the array (from the x-axis) d: float The distance between neighboring points Returns ------- ndarray (2, M * N) The array of points ''' from numpy.random import standard_exponential, randint R = d*standard_exponential((2, M))*(2*randint(0, 2, (2, M)) - 1) R = R.cumsum(axis=1) R -= R.mean(axis=1)[:, np.newaxis] R += np.array([center]).T return R def square_2D_array(center, M, N, phi, d): ''' Creates an array of uniformly spaced grid points in 2D Parameters ---------- center: array_like The center of the array M: int The number of points in the first dimension M: int The number of points in the second dimension phi: float The counterclockwise rotation of the array (from the x-axis) d: float The distance between neighboring points Returns ------- ndarray (2, M * N) The array of points ''' c = linear_2D_array(center, M, phi+np.pi/2., d) R = np.zeros((2, M*N)) for i in np.arange(M): R[:, i*N:(i+1)*N] = linear_2D_array(c[:, i], N, phi, d) return R def spiral_2D_array(center, M, radius=1., divi=3, angle=None): ''' Generate an array of points placed on a spiral Parameters ---------- center: array_like location of the center of the array M: int number of microphones radius: float microphones are contained within a cirle of this radius (default 1) divi: int number of rotations of the spiral (default 3) angle: float the angle offset of the spiral (default random) Returns ------- ndarray (2, M * N) The array of points ''' num_seg = int(np.ceil(M / divi)) pos_array_norm = np.linspace(0, radius, num=M, endpoint=False) pos_array_angle = np.reshape(np.tile(np.pi * 2 * np.arange(divi) / divi, num_seg), (divi, -1), order='F') + \ np.linspace(0, 2 * np.pi / divi, num=num_seg, endpoint=False)[np.newaxis, :] pos_array_angle = np.insert(pos_array_angle.flatten('F')[:M - 1], 0, 0) if angle is None: pos_array_angle += np.random.rand() * np.pi / divi else: pos_array_angle += angle pos_mic_x = pos_array_norm * np.cos(pos_array_angle) pos_mic_y = pos_array_norm * np.sin(pos_array_angle) return np.array([pos_mic_x, pos_mic_y]) def fir_approximation_ls(weights, T, n1, n2): freqs_plus = np.array(weights.keys())[:, np.newaxis] freqs = np.vstack([freqs_plus, -freqs_plus]) omega = 2 * np.pi * freqs omega_discrete = omega * T n = np.arange(n1, n2) # Create the DTFT transform matrix corresponding to a discrete set of # frequencies and the FIR filter indices F = np.exp(-1j * omega_discrete * n) w_plus = np.array(weights.values())[:, :, 0] w = np.vstack([w_plus, w_plus.conj()]) return np.linalg.pinv(F).dot(w) #========================================================================= # Classes (microphone array and beamformer related) #========================================================================= class MicrophoneArray(object): '''Microphone array class.''' def __init__(self, R, fs): R = np.array(R) self.dim = R.shape[0] # are we in 2D or in 3D self.M = R.shape[1] # number of microphones self.R = R # array geometry self.fs = fs # sampling frequency of microphones self.signals = None self.center = np.mean(R, axis=1, keepdims=True) def record(self, signals, fs): ''' This simulates the recording of the signals by the microphones. In particular, if the microphones and the room simulation do not use the same sampling frequency, down/up-sampling is done here. Parameters ---------- signals: An ndarray with as many lines as there are microphones. fs: the sampling frequency of the signals. ''' if signals.shape[0] != self.M: raise NameError('The signals array should have as many lines as there are microphones.') if signals.ndim != 2: raise NameError('The signals should be a 2D array.') if fs != self.fs: try: import samplerate fs_ratio = self.fs / float(fs) newL = int(fs_ratio * signals.shape[1]) - 1 self.signals = np.zeros((self.M, newL)) # samplerate resample function considers columns as channels (hence the transpose) for m in range(self.M): self.signals[m] = samplerate.resample(signals[m], fs_ratio, 'sinc_best') except ImportError: raise ImportError('The samplerate package must be installed for resampling of the signals.') else: self.signals = signals def to_wav(self, filename, mono=False, norm=False, bitdepth=np.float): ''' Save all the signals to wav files. Parameters ---------- filename: str the name of the file mono: bool, optional if true, records only the center channel floor(M / 2) (default `False`) norm: bool, optional if true, normalize the signal to fit in the dynamic range (default `False`) bitdepth: int, optional the format of output samples [np.int8/16/32/64 or np.float (default)] ''' from scipy.io import wavfile if mono is True: signal = self.signals[self.M // 2] else: signal = self.signals.T # each column is a channel float_types = [float, np.float, np.float32, np.float64] if bitdepth in float_types: bits = None elif bitdepth is np.int8: bits = 8 elif bitdepth is np.int16: bits = 16 elif bitdepth is np.int32: bits = 32 elif bitdepth is np.int64: bits = 64 else: raise NameError('No such type.') if norm: from .utilities import normalize signal = normalize(signal, bits=bits) signal = np.array(signal, dtype=bitdepth) wavfile.write(filename, self.fs, signal) class Beamformer(MicrophoneArray): ''' At some point, in some nice way, the design methods should also go here. Probably with generic arguments. Parameters ---------- R: numpy.ndarray Mics positions fs: int Sampling frequency N: int, optional Length of FFT, i.e. number of FD beamforming weights, equally spaced. Defaults to 1024. Lg: int, optional Length of time-domain filters. Default to N. hop: int, optional Hop length for frequency domain processing. Default to N/2. zpf: int, optional Front zero padding length for frequency domain processing. Default is 0. zpb: int, optional Zero padding length for frequency domain processing. Default is 0. ''' def __init__(self, R, fs, N=1024, Lg=None, hop=None, zpf=0, zpb=0): MicrophoneArray.__init__(self, R, fs) # only support even length (in freq) if N % 2 is 1: N += 1 self.N = int(N) # FFT length if Lg is None: self.Lg = N # TD filters length else: self.Lg = int(Lg) # setup lengths for FD processing self.zpf = int(zpf) self.zpb = int(zpb) self.L = self.N - self.zpf - self.zpb if hop is None: self.hop = self.L // 2 else: self.hop = hop # for now only support equally spaced frequencies self.frequencies = np.arange(0, self.N // 2+1) / self.N * float(self.fs) # weights will be computed later, the array is of shape (M, N/2+1) self.weights = None # the TD beamforming filters (M, Lg) self.filters = None def __add__(self, y): ''' Concatenates two beamformers together.''' newR = np.concatenate((self.R, y.R), axis=1) return Beamformer(newR, self.fs, self.Lg, self.N, hop=self.hop, zpf=self.zpf, zpb=self.zpb) def filters_from_weights(self, non_causal=0.): ''' Compute time-domain filters from frequency domain weights. Parameters ---------- non_causal: float, optional ratio of filter coefficients used for non-causal part ''' if self.weights is None: raise NameError('Weights must be defined.') self.filters = np.zeros((self.M, self.Lg)) if self.N <= self.Lg: # go back to time domain and shift DC to center tw = np.fft.irfft(np.conj(self.weights), axis=1, n=self.N) self.filters[:, :self.N] = np.concatenate((tw[:, -self.N//2:], tw[:, :self.N//2]), axis=1) elif self.N > self.Lg: # Least-square projection for i in np.arange(self.M): Lgp = np.floor((1 - non_causal)*self.Lg) Lgm = self.Lg - Lgp # the beamforming weights in frequency are the complex conjugates of the FT of the filter w = np.concatenate((np.conj(self.weights[i]), self.weights[i, -2:0:-1])) # create partial Fourier matrix k = np.arange(self.N)[:, np.newaxis] l = np.concatenate((np.arange(self.N-Lgm, self.N), np.arange(Lgp))) F = np.exp(-2j*np.pi*k*l / self.N) self.filters[i] = np.real(np.linalg.lstsq(F, w)[0]) def weights_from_filters(self): if self.filters is None: raise NameError('Filters must be defined.') # this is what we want to use, really. #self.weights = np.conj(np.fft.rfft(self.filters, n=self.N, axis=1)) # quick hack to be able to use MKL acceleration package from anaconda self.weights = np.zeros((self.M, self.N//2+1), dtype=np.complex128) for m in range(self.M): self.weights[m] = np.conj(np.fft.rfft(self.filters[m], n=self.N)) def steering_vector_2D(self, frequency, phi, dist, attn=False): phi = np.array([phi]).reshape(phi.size) # Assume phi and dist are measured from the array's center X = dist * np.array([np.cos(phi), np.sin(phi)]) + self.center D = distance(self.R, X) omega = 2 * np.pi * frequency if attn: # TO DO 1: This will mean slightly different absolute value for # every entry, even within the same steering vector. Perhaps a # better paradigm is far-field with phase carrier. return 1. / (4 * np.pi) / D * np.exp(-1j * omega * D / constants.get('c')) else: return np.exp(-1j * omega * D / constants.get('c')) def steering_vector_2D_from_point(self, frequency, source, attn=True, ff=False): ''' Creates a steering vector for a particular frequency and source Args: frequency source: location in cartesian coordinates attn: include attenuation factor if True ff: uses far-field distance if true Return: A 2x1 ndarray containing the steering vector. ''' X = np.array(source) if X.ndim == 1: X = source[:, np.newaxis] omega = 2 * np.pi * frequency # normalize for far-field if requested if (ff): # unit vectors pointing towards sources p = (X - self.center) p /= np.linalg.norm(p) # The projected microphone distances on the unit vectors D = np.dot(self.R.T, p) # subtract minimum in each column D -= np.min(D) else: D = distance(self.R, X) phase = np.exp(-1j * omega * D / constants.get('c')) if attn: # TO DO 1: This will mean slightly different absolute value for # every entry, even within the same steering vector. Perhaps a # better paradigm is far-field with phase carrier. return 1. / (4 * np.pi) / D * phase else: return phase def response(self, phi_list, frequency): i_freq = np.argmin(np.abs(self.frequencies - frequency)) if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') # For the moment assume that we are in 2D bfresp = np.dot(H(self.weights[:,i_freq]), self.steering_vector_2D( self.frequencies[i_freq], phi_list, constants.get('ffdist'))) return self.frequencies[i_freq], bfresp def response_from_point(self, x, frequency): i_freq = np.argmin(np.abs(self.frequencies - frequency)) if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') # For the moment assume that we are in 2D bfresp = np.dot(H(self.weights[:, i_freq]), self.steering_vector_2D_from_point( self.frequencies[i_freq], x, attn=True, ff=False)) return self.frequencies[i_freq], bfresp def plot_response_from_point(self, x, legend=None): if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') if x.ndim == 0: x = np.array([x]) try: import matplotlib.pyplot as plt except ImportError: import warnings warnings.warn('Matplotlib is required for plotting') return HF = np.zeros((x.shape[1], self.frequencies.shape[0]), dtype=complex) for k, p in enumerate(x.T): for i, f in enumerate(self.frequencies): r = np.dot(H(self.weights[:, i]), self.steering_vector_2D_from_point(f, p, attn=True, ff=False)) HF[k, i] = r[0] plt.subplot(2, 1, 1) plt.title('Beamformer response') for hf in HF: plt.plot(self.frequencies, np.abs(hf)) plt.ylabel('Modulus') plt.axis('tight') plt.legend(legend) plt.subplot(2, 1, 2) for hf in HF: plt.plot(self.frequencies, np.unwrap(np.angle(hf))) plt.ylabel('Phase') plt.xlabel('Frequency [Hz]') plt.axis('tight') plt.legend(legend) def plot_beam_response(self): if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') phi = np.linspace(-np.pi, np.pi-np.pi/180, 360) freq = self.frequencies resp = np.zeros((freq.shape[0], phi.shape[0]), dtype=complex) for i, f in enumerate(freq): # For the moment assume that we are in 2D resp[i,:] = np.dot(H(self.weights[:,i]), self.steering_vector_2D( f, phi, constants.get('ffdist'))) H_abs = np.abs(resp)**2 H_abs /= H_abs.max() H_abs = 10*np.log10(H_abs + 1e-10) p_min = 0 p_max = 100 vmin, vmax = np.percentile(H_abs.flatten(), [p_min, p_max]) try: import matplotlib.pyplot as plt except ImportError: import warnings warnings.warn('Matplotlib is required for plotting') return plt.imshow(H_abs, aspect='auto', origin='lower', interpolation='sinc', vmax=vmax, vmin=vmin) plt.xlabel('Angle [rad]') xticks = [-np.pi, -np.pi/2, 0, np.pi/2, np.pi] for i, p in enumerate(xticks): xticks[i] = np.argmin(np.abs(p - phi)) xticklabels = ['$-\pi$', '$-\pi/2$', '0', '$\pi/2$', '$\pi$'] plt.setp(plt.gca(), 'xticks', xticks) plt.setp(plt.gca(), 'xticklabels', xticklabels) plt.ylabel('Freq [kHz]') yticks = np.zeros(4) f_0 = np.floor(self.fs/8000.) for i in np.arange(1, 5): yticks[i-1] = np.argmin(np.abs(freq - 1000.*i*f_0)) #yticks = np.array(plt.getp(plt.gca(), 'yticks'), dtype=np.int) plt.setp(plt.gca(), 'yticks', yticks) plt.setp(plt.gca(), 'yticklabels', np.arange(1, 5)*f_0) def snr(self, source, interferer, f, R_n=None, dB=False): i_f = np.argmin(np.abs(self.frequencies - f)) if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') # This works at a single frequency because otherwise we need to pass # many many covariance matrices. Easy to change though (you can also # have frequency independent R_n). if R_n is None: R_n = np.zeros((self.M, self.M)) # To compute the SNR, we /must/ use the real steering vectors, so no # far field, and attn=True A_good = self.steering_vector_2D_from_point(self.frequencies[i_f], source.images, attn=True, ff=False) if interferer is not None: A_bad = self.steering_vector_2D_from_point(self.frequencies[i_f], interferer.images, attn=True, ff=False) R_nq = R_n + sumcols(A_bad) * H(sumcols(A_bad)) else: R_nq = R_n w = self.weights[:, i_f] a_1 = sumcols(A_good) SNR = np.real(mdot(H(w), a_1, H(a_1), w) / mdot(H(w), R_nq, w)) if dB is True: SNR = 10 * np.log10(SNR) return SNR def udr(self, source, interferer, f, R_n=None, dB=False): i_f = np.argmin(np.abs(self.frequencies - f)) if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') if R_n is None: R_n = np.zeros((self.M, self.M)) A_good = self.steering_vector_2D_from_point(self.frequencies[i_f], source.images, attn=True, ff=False) if interferer is not None: A_bad = self.steering_vector_2D_from_point(self.frequencies[i_f], interferer.images, attn=True, ff=False) R_nq = R_n + sumcols(A_bad).dot(H(sumcols(A_bad))) else: R_nq = R_n w = self.weights[:, i_f] UDR = np.real(mdot(H(w), A_good, H(A_good), w) / mdot(H(w), R_nq, w)) if dB is True: UDR = 10 * np.log10(UDR) return UDR def process(self, FD=False): if self.signals is None or len(self.signals) == 0: raise NameError('No signal to beamform') if FD is True: # STFT processing if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') # create window function win = np.concatenate((np.zeros(self.zpf), windows.hann(self.L), np.zeros(self.zpb))) # do real STFT of first signal tfd_sig = stft.analysis(self.signals[0], self.L, self.hop, zp_back=self.zpb, zp_front=self.zpf, transform=np.fft.rfft, win=win) * np.conj(self.weights[0]) for i in range(1, self.M): tfd_sig += stft.analysis(self.signals[i], self.L, self.hop, zp_back=self.zpb, zp_front=self.zpf, transform=np.fft.rfft, win=win) * np.conj(self.weights[i]) # now reconstruct the signal output = stft.synthesis( tfd_sig, self.L, self.hop, zp_back=self.zpb, zp_front=self.zpf, transform=np.fft.irfft) # remove the zero padding from output signal if self.zpb is 0: output = output[self.zpf:] else: output = output[self.zpf:-self.zpb] else: # TD processing if self.weights is not None and self.filters is None: self.filters_from_weights() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') from scipy.signal import fftconvolve # do real STFT of first signal output = fftconvolve(self.filters[0], self.signals[0]) for i in range(1, len(self.signals)): output += fftconvolve(self.filters[i], self.signals[i]) return output def plot(self, sum_ir=False, FD=True): if self.weights is None and self.filters is not None: self.weights_from_filters() elif self.weights is not None and self.filters is None: self.filters_from_weights() elif self.weights is None and self.filters is None: raise NameError('Beamforming weights or filters need to be computed first.') try: import matplotlib.pyplot as plt except ImportError: import warnings warnings.warn('Matplotlib is required for plotting') return if FD is True: plt.subplot(2, 2, 1) plt.plot(self.frequencies, np.abs(self.weights.T)) plt.title('Beamforming weights [modulus]') plt.xlabel('Frequency [Hz]') plt.ylabel('Weight modulus') plt.subplot(2, 2, 2) plt.plot(self.frequencies, np.unwrap(np.angle(self.weights.T), axis=0)) plt.title('Beamforming weights [phase]') plt.xlabel('Frequency [Hz]') plt.ylabel('Unwrapped phase') plt.subplot(2, 1, 2) plt.plot(
np.arange(self.Lg)
numpy.arange
''' Routines for generation of triangular surface meshes. ''' import numpy as np from cnld import abstract, util from cnld.h2lib import * from matplotlib import pyplot as plt from scipy.interpolate import Rbf eps = np.finfo(np.float64).eps class Mesh: ''' 2D triangular mesh class using H2Lib datastructures. ''' _surface = None def __init__(self): self._surface = None @classmethod def from_surface3d(cls, surf): obj = cls() obj._surface = surf obj._update_properties() return obj @classmethod def from_macrosurface3d(cls, ms, center=(0, 0, 0), refn=2): # mesh must be refined at least once, otherwise h2lib throws exception assert refn > 1 obj = cls.from_surface3d(build_from_macrosurface3d_surface3d(ms, refn)) obj.translate(center) return obj @classmethod def from_geometry(cls, vertices, edges, triangles, triangle_edges): surf = Surface3d(len(vertices), len(edges), len(triangles)) surf.x[:] = vertices surf.e[:] = edges surf.t[:] = triangles surf.s[:] = triangle_edges return cls.from_surface3d(surf) @classmethod def from_abstract(cls, array, refn=1, **kwargs): return _from_abstract(cls, array, refn, **kwargs) # @classmethod # def from_geometry(cls, vertices, edges, triangles, triangle_edges, center=(0,0,0), # refn=2, parametrization='square'): # ms = Macrosurface3d(len(vertices), len(edges), len(triangles)) # ms.x[:] = vertices # ms.e[:] = edges # ms.t[:] = triangles # ms.s[:] = triangle_edges # ms.set_parametrization(parametrization) # return cls.from_macrosurface3d(ms, center=center, refn=refn) def __add__(self, other): surf1 = self._surface surf2 = other._surface if surf1 is None and surf2 is None: return Mesh() elif surf1 is None: return Mesh.from_surface3d(surf2) elif surf2 is None: return Mesh.from_surface3d(surf1) else: return Mesh.from_surface3d(merge_surface3d(surf1, surf2)) def __iadd__(self, other): surf1 = self._surface surf2 = other._surface if surf1 is None and surf2 is None: pass elif surf1 is None: self._surface = surf2 elif surf2 is None: pass else: self._surface = merge_surface3d(surf1, surf2) self._update_properties() return self @property def vertices(self): return np.asarray(self._surface.x) @property def edges(self): return np.asarray(self._surface.e) @property def triangles(self): return np.asarray(self._surface.t) @property def triangle_edges(self): return np.asarray(self._surface.s) @property def normals(self): return np.asarray(self._surface.n) @property def g(self): return np.asarray(self._surface.g) @property def triangle_areas(self): return np.asarray(self._surface.g) / 2 @property def hmin(self): return self._surface.hmin @property def hmax(self): return self._surface.hmax @property def nvertices(self): return len(self.vertices) @property def nedges(self): return len(self.edges) @property def ntriangles(self): return len(self.triangles) @property def surface3d(self): return self._surface def _update_properties(self): prepare_surface3d(self._surface) def _refine(self): self._surface = refine_red_surface3d(self._surface) self._update_properties() def refine(self, n=1): for i in range(n): self._refine() def translate(self, r): translate_surface3d(self._surface, np.array(r, dtype=np.float64)) def draw(self): vertices = self.vertices edges = self.edges plt.figure() plt.plot(vertices[:, 0], vertices[:, 1], '.') for e in edges: x1, y1, z1 = vertices[e[0], :] x2, y2, z2 = vertices[e[1], :] plt.plot([x1, x2], [y1, y2], 'b-') plt.axis('equal') plt.show() def _memoize(): return (self.nvertices, self.triangles.tostring(), self.edges.tostring(), self.triangle_edges.tostring()) def _from_abstract(cls, array, refn=1, **kwargs): ''' Generate mesh from abstract representation of an array. ''' # generate geometry in terms of vertices, edges, and triangles with refinement # (much faster to construct mesh from entire geometry once instead of membrane by # membrane) verts, edges, tris, tri_edges = [], [], [], [] vidx = 0 eidx = 0 for elem in array.elements: for mem in elem.membranes: if isinstance(mem, abstract.SquareCmutMembrane): v, e, t, s = geometry_square(mem.length_x, mem.length_y, refn=refn) elif isinstance(mem, abstract.CircularCmutMembrane): v, e, t, s = geometry_circle(mem.radius, n=4, refn=refn) else: raise TypeError v += np.array(mem.position) e += vidx t += vidx s += eidx vidx += len(v) eidx += len(e) verts.append(v) edges.append(e) tris.append(t) tri_edges.append(s) verts = np.concatenate(verts, axis=0) edges = np.concatenate(edges, axis=0) tris = np.concatenate(tris, axis=0) tri_edges = np.concatenate(tri_edges, axis=0) # construct mesh from geometry mesh = cls.from_geometry(verts, edges, tris, tri_edges) # assign mesh vertices to patches, membranes, and elements nverts = len(mesh.vertices) # patch_counter = np.zeros(nverts, dtype=np.int32) # keeps track of current patch idx for each vertex # patch_ids = np.ones((nverts, 4), dtype=np.int32) * np.nan membrane_ids = np.ones(nverts, dtype=np.int32) * np.nan element_ids = np.ones(nverts, dtype=np.int32) * np.nan mesh.on_boundary = np.zeros(nverts, dtype=np.bool) x, y, z = mesh.vertices.T for elem in array.elements: for mem in elem.membranes: # for pat in mem.patches: # determine vertices which belong to each patch, using # eps for buffer to account for round-off error # pat_x, pat_y, pat_z = pat.position # length_x, length_y = pat.length_x, pat.length_y # xmin = pat_x - length_x / 2 - 2 * eps # xmax = pat_x + length_x / 2 + 2 * eps # ymin = pat_y - length_y / 2 - 2 * eps # ymax = pat_y + length_y / 2 + 2 * eps # mask_x = np.logical_and(x >= xmin, x <= xmax) # mask_y = np.logical_and(y >= ymin, y <= ymax) # mask = np.logical_and(mask_x, mask_y) # patch_ids[mask, patch_counter[mask]] = pat.id # patch_counter[mask] += 1 # increment patch idx # membrane_ids[mask] = mem.id # element_ids[mask] = elem.id if isinstance(mem, abstract.SquareCmutMembrane): # determine vertices which belong to each membrane mem_x, mem_y, mem_z = mem.position length_x, length_y = mem.length_x, mem.length_y xmin = mem_x - length_x / 2 # - 2 * eps xmax = mem_x + length_x / 2 # + 2 * eps ymin = mem_y - length_y / 2 # - 2 * eps ymax = mem_y + length_y / 2 # + 2 * eps mask_x = np.logical_and(x >= xmin - 2 * eps, x <= xmax + 2 * eps) mask_y = np.logical_and(y >= ymin - 2 * eps, y <= ymax + 2 * eps) mem_mask = np.logical_and(mask_x, mask_y) membrane_ids[mem_mask] = mem.id element_ids[mem_mask] = elem.id # check and flag boundary vertices mask1 = np.abs(x[mem_mask] - xmin) <= 2 * eps mask2 = np.abs(x[mem_mask] - xmax) <= 2 * eps mask3 = np.abs(y[mem_mask] - ymin) <= 2 * eps mask4 = np.abs(y[mem_mask] - ymax) <= 2 * eps mesh.on_boundary[mem_mask] = np.any(np.c_[mask1, mask2, mask3, mask4], axis=1) elif isinstance(mem, abstract.CircularCmutMembrane): # determine vertices which belong to each membrane mem_x, mem_y, mem_z = mem.position radius = mem.radius rmax = radius + 2 * eps r = np.sqrt((x - mem_x)**2 + (y - mem_y)**2) mem_mask = r <= rmax membrane_ids[mem_mask] = mem.id element_ids[mem_mask] = elem.id # check and flag boundary vertices mask1 = r[mem_mask] <= radius + 2 * eps mask2 = r[mem_mask] >= radius - 2 * eps mesh.on_boundary[mem_mask] = np.logical_and(mask1, mask2) else: raise TypeError # check that no vertices were missed # assert ~np.any(np.isnan(patch_ids[:,0])) # check that each vertex is assigned to at least one patch # assert ~np.any(np.isnan(membrane_ids)) # assert ~np.any(np.isnan(element_ids)) # mesh.patch_ids = patch_ids mesh.membrane_ids = membrane_ids mesh.element_ids = element_ids return mesh @util.memoize def geometry_square(xl, yl, refn=1, type=1): ''' Creates a square mesh geometry (vertices, triangles etc.) which can be used to construct a mesh object. ''' if type == 1: # vertices v = np.zeros((5, 3), dtype=np.float64) v[0, :] = -xl / 2, -yl / 2, 0.0 # bottom left v[1, :] = xl / 2, -yl / 2, 0.0 # bottom right v[2, :] = xl / 2, yl / 2, 0.0 # top right v[3, :] = -xl / 2, yl / 2, 0.0 # top left v[4, :] = 0.0, 0.0, 0.0 # center # edges e = np.zeros((8, 2), dtype=np.uint32) e[0, :] = 0, 1 # bottom e[1, :] = 1, 2 # right e[2, :] = 2, 3 # top e[3, :] = 3, 0 # left e[4, :] = 0, 4 # bottom left e[5, :] = 1, 4 # bottom right e[6, :] = 2, 4 # top right e[7, :] = 3, 4 # top left # triangles and triangle edges t = np.zeros((4, 3), dtype=np.uint32) s = np.zeros((4, 3), dtype=np.uint32) t[0, :] = 0, 1, 4 # bottom s[0, :] = 5, 4, 0 t[1, :] = 1, 2, 4 # right s[1, :] = 6, 5, 1 t[2, :] = 2, 3, 4 # top s[2, :] = 7, 6, 2 t[3, :] = 3, 0, 4 # left s[3, :] = 4, 7, 3 elif type == 2: # vertices v = np.zeros((4, 3), dtype=np.float64) v[0, :] = -xl / 2, -yl / 2, 0.0 # bottom left v[1, :] = xl / 2, -yl / 2, 0.0 # bottom right v[2, :] = xl / 2, yl / 2, 0.0 # top right v[3, :] = -xl / 2, yl / 2, 0.0 # top left # edges e = np.zeros((5, 2), dtype=np.uint32) e[0, :] = 0, 1 # bottom e[1, :] = 1, 2 # right e[2, :] = 2, 3 # top e[3, :] = 3, 0 # left e[4, :] = 1, 3 # diagonal # triangles and triangle edges t = np.zeros((2, 3), dtype=np.uint32) s = np.zeros((2, 3), dtype=np.uint32) t[0, :] = 0, 1, 3 # bottom left s[0, :] = 4, 3, 0 t[1, :] = 1, 2, 3 # top right s[1, :] = 2, 4, 1 else: raise ValueError('incorrect type') # refine geometry using h2lib macrosurface3d -> surface3d procedure if refn > 1: msurf = Macrosurface3d(len(v), len(e), len(t)) msurf.x[:] = v msurf.e[:] = e msurf.t[:] = t msurf.s[:] = s msurf.set_parametrization('square') surf = build_from_macrosurface3d_surface3d(msurf, refn) # copy arrays from surf v = np.array(surf.x, copy=True) e = np.array(surf.e, copy=True) t = np.array(surf.t, copy=True) s = np.array(surf.s, copy=True) # translate geometry # v += np.array(center) return v, e, t, s # @util.memoize # def geometry_circle(rl, refn=1): # ''' # Creates a circle mesh geometry (vertices, triangles etc.) which can be used to # construct a mesh object. # ''' # # vertices # v = np.zeros((5, 3), dtype=np.float64) # v[0,:] = -rl, 0.0, 0.0 # left # v[1,:] = 0.0, -rl, 0.0 # bottom # v[2,:] = rl, 0.0, 0.0 # right # v[3,:] = 0.0, rl, 0.0 # top # v[4,:] = 0.0, 0.0, 0.0 # center # # edges # e = np.zeros((8, 2), dtype=np.uint32) # e[0,:] = 0, 1 # bottom left # e[1,:] = 1, 2 # bottom right # e[2,:] = 2, 3 # top right # e[3,:] = 3, 0 # top left # e[4,:] = 0, 4 # left horizontal # e[5,:] = 1, 4 # bottom vertical # e[6,:] = 2, 4 # right horizontal # e[7,:] = 3, 4 # right vertical # # triangles and triangle edges # t = np.zeros((4, 3), dtype=np.uint32) # s = np.zeros((4, 3), dtype=np.uint32) # t[0, :] = 0, 1, 4 # bottom left # s[0, :] = 5, 4, 0 # t[1, :] = 1, 2, 4 # bottom right # s[1, :] = 6, 5, 1 # t[2, :] = 2, 3, 4 # top right # s[2, :] = 7, 6, 2 # t[3, :] = 3, 0, 4 # top left # s[3, :] = 4, 7, 3 # # refine geometry using h2lib macrosurface3d -> surface3d procedure # if refn > 1: # msurf = Macrosurface3d(len(v), len(e), len(t)) # msurf.x[:] = v # msurf.e[:] = e # msurf.t[:] = t # msurf.s[:] = s # msurf.set_parametrization('circle') # surf = build_from_macrosurface3d_surface3d(msurf, refn) # # copy arrays from surf # v = np.array(surf.x, copy=True) # e = np.array(surf.e, copy=True) # t = np.array(surf.t, copy=True) # s = np.array(surf.s, copy=True) # # translate geometry # # v += np.array(center) # return v, e, t, s @util.memoize def geometry_circle(rl, n=4, refn=1): ''' Creates a circle mesh geometry (vertices, triangles etc.) which can be used to construct a mesh object. ''' # vertices v = np.zeros((n + 1, 3), dtype=np.float64) for i in range(n): theta = 2 * np.pi / n * i - np.pi # p = rl / (np.abs(np.sin(theta)) + np.abs(np.cos(theta))) x = rl * np.cos(theta) y = rl * np.sin(theta) v[i, :] = x, y, 0.0 v[n, :] = 0.0, 0.0, 0.0 v[np.isclose(v, 0)] = 0.0 # edges e = np.zeros((2 * n, 2), dtype=np.uint32) for i in range(n): e[i, :] = i, np.mod(i + 1, n) for i in range(n): e[n + i, :] = i, n # triangles and triangle edges t = np.zeros((n, 3), dtype=np.uint32) s = np.zeros((n, 3), dtype=np.uint32) first = list(np.mod(np.arange(0, n) + 1, n) + n) second = list(np.mod(np.arange(0, n), n) + n) third = list(np.arange(0, n)) for i in range(n): t[i, :] = i, np.mod(i + 1, n), n s[i, :] = first[i], second[i], third[i] # refine geometry using h2lib macrosurface3d -> surface3d procedure if refn > 1: msurf = Macrosurface3d(len(v), len(e), len(t)) msurf.x[:] = v msurf.e[:] = e msurf.t[:] = t msurf.s[:] = s msurf.set_parametrization('circle') surf = build_from_macrosurface3d_surface3d(msurf, refn) # copy arrays from surf v = np.array(surf.x, copy=True) e = np.array(surf.e, copy=True) t = np.array(surf.t, copy=True) s = np.array(surf.s, copy=True) # translate geometry # v += np.array(center) return v, e, t, s def square(xl, yl, refn=1, type=1, center=(0, 0, 0)): ''' ''' v, e, t, s = geometry_square(xl, yl, refn=refn, type=type) v += np.array(center) mesh = Mesh.from_geometry(v, e, t, s) # check and flag boundary vertices mask1 = np.abs(mesh.vertices[:, 0] - center[0] + xl / 2) <= 2 * eps mask2 = np.abs(mesh.vertices[:, 0] - center[0] - xl / 2) <= 2 * eps mask3 = np.abs(mesh.vertices[:, 1] - center[1] + yl / 2) <= 2 * eps mask4 = np.abs(mesh.vertices[:, 1] - center[1] - yl / 2) <= 2 * eps mesh.on_boundary = np.any(np.c_[mask1, mask2, mask3, mask4], axis=1) return mesh def circle(rl, refn=1, center=(0, 0, 0)): ''' ''' v, e, t, s = geometry_circle(rl, n=4, refn=refn) v +=
np.array(center)
numpy.array
""" Set operations for arrays based on sorting. :Contains: unique, isin, ediff1d, intersect1d, setxor1d, in1d, union1d, setdiff1d :Notes: For floating point arrays, inaccurate results may appear due to usual round-off and floating point comparison issues. Speed could be gained in some operations by an implementation of sort(), that can provide directly the permutation vectors, avoiding thus calls to argsort(). To do: Optionally return indices analogously to unique for all functions. :Author: <NAME> """ import functools import numpy as np from numpy.core import overrides array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') __all__ = [ 'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique', 'in1d', 'isin' ] def _ediff1d_dispatcher(ary, to_end=None, to_begin=None): return (ary, to_end, to_begin) @array_function_dispatch(_ediff1d_dispatcher) def ediff1d(ary, to_end=None, to_begin=None): """ The differences between consecutive elements of an array. Parameters ---------- ary : array_like If necessary, will be flattened before the differences are taken. to_end : array_like, optional Number(s) to append at the end of the returned differences. to_begin : array_like, optional Number(s) to prepend at the beginning of the returned differences. Returns ------- ediff1d : ndarray The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. See Also -------- diff, gradient Notes ----- When applied to masked arrays, this function drops the mask information if the `to_begin` and/or `to_end` parameters are used. Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.ediff1d(x) array([ 1, 2, 3, -7]) >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) array([-99, 1, 2, ..., -7, 88, 99]) The returned array is always 1D. >>> y = [[1, 2, 4], [1, 6, 24]] >>> np.ediff1d(y) array([ 1, 2, -3, 5, 18]) """ # force a 1d array ary = np.asanyarray(ary).ravel() # enforce that the dtype of `ary` is used for the output dtype_req = ary.dtype # fast track default case if to_begin is None and to_end is None: return ary[1:] - ary[:-1] if to_begin is None: l_begin = 0 else: to_begin = np.asanyarray(to_begin) if not np.can_cast(to_begin, dtype_req, casting="same_kind"): raise TypeError("dtype of `to_end` must be compatible " "with input `ary` under the `same_kind` rule.") to_begin = to_begin.ravel() l_begin = len(to_begin) if to_end is None: l_end = 0 else: to_end = np.asanyarray(to_end) if not np.can_cast(to_end, dtype_req, casting="same_kind"): raise TypeError("dtype of `to_end` must be compatible " "with input `ary` under the `same_kind` rule.") to_end = to_end.ravel() l_end = len(to_end) # do the calculation in place and copy to_begin and to_end l_diff = max(len(ary) - 1, 0) result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype) result = ary.__array_wrap__(result) if l_begin > 0: result[:l_begin] = to_begin if l_end > 0: result[l_begin + l_diff:] = to_end np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff]) return result def _unpack_tuple(x): """ Unpacks one-element tuples for use as return values """ if len(x) == 1: return x[0] else: return x def _unique_dispatcher(ar, return_index=None, return_inverse=None, return_counts=None, axis=None): return (ar,) @array_function_dispatch(_unique_dispatcher) def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None): """ Find the unique elements of an array. Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements: * the indices of the input array that give the unique values * the indices of the unique array that reconstruct the input array * the number of times each unique value comes up in the input array Parameters ---------- ar : array_like Input array. Unless `axis` is specified, this will be flattened if it is not already 1-D. return_index : bool, optional If True, also return the indices of `ar` (along the specified axis, if provided, or in the flattened array) that result in the unique array. return_inverse : bool, optional If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct `ar`. return_counts : bool, optional If True, also return the number of times each unique item appears in `ar`. .. versionadded:: 1.9.0 axis : int or None, optional The axis to operate on. If None, `ar` will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. Object arrays or structured arrays that contain objects are not supported if the `axis` kwarg is used. The default is None. .. versionadded:: 1.13.0 Returns ------- unique : ndarray The sorted unique values. unique_indices : ndarray, optional The indices of the first occurrences of the unique values in the original array. Only provided if `return_index` is True. unique_inverse : ndarray, optional The indices to reconstruct the original array from the unique array. Only provided if `return_inverse` is True. unique_counts : ndarray, optional The number of times each of the unique values comes up in the original array. Only provided if `return_counts` is True. .. versionadded:: 1.9.0 See Also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. repeat : Repeat elements of an array. Notes ----- When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array (move the axis to the first dimension to keep the order of the other axes) and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element. Examples -------- >>> np.unique([1, 1, 2, 2, 3, 3]) array([1, 2, 3]) >>> a = np.array([[1, 1], [2, 3]]) >>> np.unique(a) array([1, 2, 3]) Return the unique rows of a 2D array >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) >>> np.unique(a, axis=0) array([[1, 0, 0], [2, 3, 4]]) Return the indices of the original array that give the unique values: >>> a = np.array(['a', 'b', 'b', 'c', 'a']) >>> u, indices = np.unique(a, return_index=True) >>> u array(['a', 'b', 'c'], dtype='<U1') >>> indices array([0, 1, 3]) >>> a[indices] array(['a', 'b', 'c'], dtype='<U1') Reconstruct the input array from the unique values and inverse: >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) >>> u, indices = np.unique(a, return_inverse=True) >>> u array([1, 2, 3, 4, 6]) >>> indices array([0, 1, 4, 3, 1, 2, 1]) >>> u[indices] array([1, 2, 6, 4, 2, 3, 2]) Reconstruct the input values from the unique values and counts: >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) >>> values, counts = np.unique(a, return_counts=True) >>> values array([1, 2, 3, 4, 6]) >>> counts array([1, 3, 1, 1, 1]) >>> np.repeat(values, counts) array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved """ ar = np.asanyarray(ar) if axis is None: ret = _unique1d(ar, return_index, return_inverse, return_counts) return _unpack_tuple(ret) # axis was specified and not None try: ar = np.moveaxis(ar, axis, 0) except np.AxisError: # this removes the "axis1" or "axis2" prefix from the error message raise np.AxisError(axis, ar.ndim) from None # Must reshape to a contiguous 2D array for this to work... orig_shape, orig_dtype = ar.shape, ar.dtype ar = ar.reshape(orig_shape[0],
np.prod(orig_shape[1:], dtype=np.intp)
numpy.prod
# Copyright 2018 <NAME> <<EMAIL>> # # SPDX-License-Identifier: MIT import os import shutil import textwrap from tempfile import TemporaryDirectory import numpy as np import pytest from pgimp.GimpFile import GimpFile, GimpFileType from pgimp.GimpFileCollection import GimpFileCollection, NonExistingPathComponentException, \ GimpMissingRequiredParameterException, MaskForegroundColor from pgimp.util import file from pgimp.util.TempFile import TempFile from pgimp.util.string import escape_single_quotes def test_create_from_pathname_with_file(): prefix = file.relative_to(__file__, 'test-resources/files/') collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/first')) assert len(collection.get_files()) == 1 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/first.xcf')) assert len(collection.get_files()) == 1 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/first.png')) assert len(collection.get_files()) == 0 assert '' == collection.get_prefix() def test_create_from_pathname_with_directory(): prefix = file.relative_to(__file__, 'test-resources/files/') collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files')) assert len(collection.get_files()) == 2 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/')) assert len(collection.get_files()) == 2 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/*')) assert len(collection.get_files()) == 2 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/*.xcf')) assert len(collection.get_files()) == 2 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/*.png')) assert len(collection.get_files()) == 0 assert '' == collection.get_prefix() def test_create_from_pathname_with_recursive_match(): prefix = file.relative_to(__file__, 'test-resources/files/') collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**')) assert len(collection.get_files()) == 4 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**/')) assert len(collection.get_files()) == 4 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**/*')) assert len(collection.get_files()) == 4 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**/*.xcf')) assert len(collection.get_files()) == 4 assert prefix == collection.get_prefix() collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**/*.png')) assert len(collection.get_files()) == 0 assert '' == collection.get_prefix() def test_ordering(): prefix = file.relative_to(__file__, 'test-resources/files/') collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**')) collection = collection.replace_prefix(prefix) assert [ 'first.xcf', 'second.xcf', 'a/third.xcf', 'a/b/fourth.xcf', ] == collection.get_files() def test_replace_path_components(): prefix = file.relative_to(__file__, 'test-resources/files/') suffix = '.xcf' collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**')) collection = collection.replace_path_components(prefix, '#', suffix, '%') assert [ '#first%.xcf', '#second%.xcf', '#a/third%.xcf', '#a/b/fourth%.xcf', ] == collection.get_files() def test_replace_path_components_with_non_existing_component(): collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**')) with pytest.raises(NonExistingPathComponentException): collection.replace_path_components('wrong_prefix', '#') def test_replace_path_components_without_replacements(): collection = GimpFileCollection.create_from_pathname(file.relative_to(__file__, 'test-resources/files/**')) files_before = collection.get_files() collection = collection.replace_path_components() files_after = collection.get_files() assert files_before == files_after def test_find_files_containing_layer_by_predictate(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) files = collection.find_files_containing_layer_by_predictate( lambda layers: 'White' in map(lambda layer: layer.name, layers) ) assert len(files) == 1 assert with_white == files[0] files = collection.find_files_containing_layer_by_predictate( lambda layers: 'Not existing' in map(lambda layer: layer.name, layers) ) assert len(files) == 0 def test_find_files_containing_layer_by_name(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) files = collection.find_files_containing_layer_by_name('White', timeout_in_seconds=10) assert len(files) == 1 assert with_white == files[0] files = collection.find_files_containing_layer_by_name('Not existing', timeout_in_seconds=10) assert len(files) == 0 def test_find_files_by_script_with_script_that_takes_single_file(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) script = textwrap.dedent( """ from pgimp.gimp.file import open_xcf from pgimp.gimp.parameter import return_bool image = open_xcf('__file__') for layer in image.layers: if layer.name == '{0:s}': return_bool(True) return_bool(False) """ ) files = collection.find_files_by_script(script.format(escape_single_quotes('White')), timeout_in_seconds=3) assert len(files) == 1 assert with_white == files[0] files = collection.find_files_by_script(script.format(escape_single_quotes('Not existing')), timeout_in_seconds=3) assert len(files) == 0 def test_find_files_by_script_with_script_that_takes_multiple_files(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) script = textwrap.dedent( """ import gimp from pgimp.gimp.file import XcfFile from pgimp.gimp.parameter import return_json, get_json files = get_json('__files__') matches = [] for file in files: with XcfFile(file) as image: for layer in image.layers: if layer.name == '{0:s}': matches.append(file) return_json(matches) """ ) files = collection.find_files_by_script(script.format(escape_single_quotes('White')), timeout_in_seconds=3) assert len(files) == 1 assert with_white == files[0] files = collection.find_files_by_script(script.format(escape_single_quotes('Not existing')), timeout_in_seconds=3) assert len(files) == 0 def test_find_files_by_script_without_required_parameters(): collection = GimpFileCollection([]) script = textwrap.dedent( """ print(1) """ ) with pytest.raises(GimpMissingRequiredParameterException): collection.find_files_by_script(script, timeout_in_seconds=3) def test_execute_script_and_return_json_with_script_that_takes_single_file(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) script = textwrap.dedent( """ from pgimp.gimp.file import open_xcf from pgimp.gimp.parameter import return_json image = open_xcf('__file__') for layer in image.layers: if layer.name == '{0:s}': return_json(True) return_json(False) """ ) files = collection.execute_script_and_return_json(script.format(escape_single_quotes('White')), timeout_in_seconds=3) assert { with_white: True, without_white: False, } == files def test_execute_script_and_return_json_with_script_that_takes_multiple_files_using_open(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) script = textwrap.dedent( """ import gimp from pgimp.gimp.file import open_xcf from pgimp.gimp.parameter import return_json, get_json files = get_json('__files__') matches = [] for file in files: image = open_xcf(file) for layer in image.layers: if layer.name == '{0:s}': matches.append(file) gimp.pdb.gimp_image_delete(image) return_json(matches) """ ) files = collection.execute_script_and_return_json(script.format(escape_single_quotes('White')), timeout_in_seconds=3) assert len(files) == 1 assert with_white == files[0] def test_execute_script_and_return_json_with_script_that_takes_multiple_files_using_xcf_file(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white)\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) script = textwrap.dedent( """ import gimp from pgimp.gimp.file import XcfFile from pgimp.gimp.parameter import return_json, get_json files = get_json('__files__') matches = [] for file in files: with XcfFile(file) as image: for layer in image.layers: if layer.name == '{0:s}': matches.append(file) return_json(matches) """ ) files = collection.execute_script_and_return_json(script.format(escape_single_quotes('White')), timeout_in_seconds=3) assert len(files) == 1 assert with_white == files[0] def test_execute_script_and_return_json_with_script_that_takes_multiple_files_using_for_each(): with TempFile('.xcf') as with_white, TempFile('.xcf') as without_white: GimpFile(with_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8) * 255) GimpFile(without_white) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('Black', np.zeros(shape=(1, 1), dtype=np.uint8)) collection = GimpFileCollection([with_white, without_white]) script = textwrap.dedent( """ from pgimp.gimp.file import for_each_file from pgimp.gimp.parameter import return_json, get_json matches = [] def layer_matches(image, file): for layer in image.layers: if layer.name == '{0:s}': matches.append(file) for_each_file(layer_matches) return_json(matches) """ ) files = collection.execute_script_and_return_json(script.format(escape_single_quotes('White')), timeout_in_seconds=3) assert len(files) == 1 assert with_white == files[0] def test_copy_layer_from(): with TemporaryDirectory('_src') as srcdir, TemporaryDirectory('_dst') as dstdir: src_1 = GimpFile(os.path.join(srcdir, 'file1.xcf'))\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8))\ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) src_2 = GimpFile(os.path.join(srcdir, 'file2.xcf'))\ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('White', np.ones(shape=(1, 1), dtype=np.uint8)*255) dst_1 = GimpFile(os.path.join(dstdir, 'file1.xcf')) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) \ .add_layer_from_numpy('White', np.zeros(shape=(1, 1), dtype=np.uint8)*255) dst_2 = GimpFile(os.path.join(dstdir, 'file2.xcf')) \ .create('Background', np.zeros(shape=(1, 1), dtype=np.uint8)) src_collection = GimpFileCollection([src_1.get_file(), src_2.get_file()]) dst_collection = GimpFileCollection([dst_1.get_file(), dst_2.get_file()]) dst_collection.copy_layer_from(src_collection, 'White', layer_position=1, timeout_in_seconds=10) assert np.all(dst_1.layer_to_numpy('White') == 255) assert ['Background', 'White'] == dst_1.layer_names() assert 'White' in dst_2.layer_names() assert np.all(dst_2.layer_to_numpy('White') == 255) assert ['Background', 'White'] == dst_2.layer_names() def test_merge_mask_layer_from_with_grayscale_and_foreground_color_white(): with TemporaryDirectory('_src') as srcdir, TemporaryDirectory('_dst') as dstdir: src_1 = GimpFile(os.path.join(srcdir, 'file1.xcf'))\ .create('Mask', np.array([[255, 0]], dtype=np.uint8)) dst_1 = GimpFile(os.path.join(dstdir, 'file1.xcf')) \ .create('Mask', np.array([[0, 255]], dtype=np.uint8)) dst_2 = GimpFile(os.path.join(dstdir, 'file2.xcf')) \ .create('Mask', np.array([[0, 255]], dtype=np.uint8)) src_collection = GimpFileCollection([src_1.get_file()]) dst_collection = GimpFileCollection([dst_1.get_file(), dst_2.get_file()]) dst_collection.merge_mask_layer_from(src_collection, 'Mask', MaskForegroundColor.WHITE, timeout_in_seconds=10) assert np.all(dst_1.layer_to_numpy('Mask') == [[255], [255]]) assert ['Mask'] == dst_1.layer_names() assert 'Mask' in dst_2.layer_names() assert np.all(dst_2.layer_to_numpy('Mask') == [[0], [255]]) assert ['Mask'] == dst_2.layer_names() def test_merge_mask_layer_from_with_grayscale_and_foreground_color_black(): with TemporaryDirectory('_src') as srcdir, TemporaryDirectory('_dst') as dstdir: src_1 = GimpFile(os.path.join(srcdir, 'file1.xcf'))\ .create('Mask', np.array([[255, 0]], dtype=np.uint8)) dst_1 = GimpFile(os.path.join(dstdir, 'file1.xcf')) \ .create('Mask', np.array([[0, 255]], dtype=np.uint8)) dst_2 = GimpFile(os.path.join(dstdir, 'file2.xcf')) \ .create('Mask', np.array([[0, 255]], dtype=np.uint8)) src_collection = GimpFileCollection([src_1.get_file()]) dst_collection = GimpFileCollection([dst_1.get_file(), dst_2.get_file()]) dst_collection.merge_mask_layer_from(src_collection, 'Mask', MaskForegroundColor.BLACK, timeout_in_seconds=10) assert np.all(dst_1.layer_to_numpy('Mask') == [[0], [0]]) assert ['Mask'] == dst_1.layer_names() assert 'Mask' in dst_2.layer_names() assert np.all(dst_2.layer_to_numpy('Mask') == [[0], [255]]) assert ['Mask'] == dst_2.layer_names() def test_merge_mask_layer_from_with_color(): with TemporaryDirectory('_src') as srcdir, TemporaryDirectory('_dst') as dstdir: src_1 = GimpFile(os.path.join(srcdir, 'file1.xcf'))\ .create('Mask', np.array([[[255, 255, 255], [0, 0, 0]]], dtype=np.uint8)) dst_1 = GimpFile(os.path.join(dstdir, 'file1.xcf')) \ .create('Mask', np.array([[[0, 0, 0], [255, 255, 255]]], dtype=np.uint8)) dst_2 = GimpFile(os.path.join(dstdir, 'file2.xcf')) \ .create('Mask', np.array([[[0, 0, 0], [255, 255, 255]]], dtype=np.uint8)) src_collection = GimpFileCollection([src_1.get_file()]) dst_collection = GimpFileCollection([dst_1.get_file(), dst_2.get_file()]) dst_collection.merge_mask_layer_from(src_collection, 'Mask', MaskForegroundColor.WHITE, timeout_in_seconds=10) assert np.all(dst_1.layer_to_numpy('Mask') == [[255, 255, 255], [255, 255, 255]]) assert ['Mask'] == dst_1.layer_names() assert 'Mask' in dst_2.layer_names() assert np.all(dst_2.layer_to_numpy('Mask') == [[0, 0, 0], [255, 255, 255]]) assert ['Mask'] == dst_2.layer_names() def test_merge_mask_layer_from_with_mask_not_available_in_files_in_both_collections_and_foreground_color_white(): with TemporaryDirectory('_src') as srcdir, TemporaryDirectory('_dst') as dstdir: src_1 = GimpFile(os.path.join(srcdir, 'file1.xcf')) \ .create_empty(2, 1, GimpFileType.GRAY) dst_1 = GimpFile(os.path.join(dstdir, 'file1.xcf')) \ .create_empty(2, 1, GimpFileType.GRAY) src_collection = GimpFileCollection([src_1.get_file()]) dst_collection = GimpFileCollection([dst_1.get_file()]) dst_collection.merge_mask_layer_from(src_collection, 'Mask', MaskForegroundColor.WHITE, timeout_in_seconds=10) assert np.all(dst_1.layer_to_numpy('Mask') == [[0], [0]]) assert ['Mask'] == dst_1.layer_names() def test_merge_mask_layer_from_with_mask_not_available_in_files_in_both_collections_and_foreground_color_black(): with TemporaryDirectory('_src') as srcdir, TemporaryDirectory('_dst') as dstdir: src_1 = GimpFile(os.path.join(srcdir, 'file1.xcf')) \ .create_empty(2, 1, GimpFileType.GRAY) dst_1 = GimpFile(os.path.join(dstdir, 'file1.xcf')) \ .create_empty(2, 1, GimpFileType.GRAY) src_collection = GimpFileCollection([src_1.get_file()]) dst_collection = GimpFileCollection([dst_1.get_file()]) dst_collection.merge_mask_layer_from(src_collection, 'Mask', MaskForegroundColor.BLACK, timeout_in_seconds=10) assert np.all(dst_1.layer_to_numpy('Mask') == [[255], [255]]) assert ['Mask'] == dst_1.layer_names() def test_clear_selection(): file_with_selection_original = file.relative_to(__file__, 'test-resources/selection.xcf') with TempFile('.xcf') as file_with_selection: shutil.copyfile(file_with_selection_original, file_with_selection) collection = GimpFileCollection([file_with_selection]) selections_before = _has_selections(collection) assert selections_before[file_with_selection] collection.clear_selection(timeout_in_seconds=10) selections_after = _has_selections(collection) assert not selections_after[file_with_selection] def _has_selections(collection): result = collection.execute_script_and_return_json( textwrap.dedent( """ import gimp from pgimp.gimp.parameter import get_json, return_json from pgimp.gimp.file import XcfFile files = get_json('__files__') selections = {} for file in files: with XcfFile(file, save=True) as image: selections[file] = not gimp.pdb.gimp_selection_is_empty(image) return_json(selections) """ ), timeout_in_seconds=10 ) return result def test_remove_layers_by_name(): data =
np.array([[0, 255]], dtype=np.uint8)
numpy.array
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np import pandas as pd import mars.dataframe as md from mars.config import option_context from mars.dataframe import DataFrame from mars.deploy.local.core import new_cluster from mars.session import new_session from mars.tests.core import TestBase try: import vineyard except ImportError: vineyard = None try: import sqlalchemy except ImportError: sqlalchemy = None try: import pyarrow as pa except ImportError: pa = None try: import fastparquet except ImportError: fastparquet = None class Test(TestBase): def setUp(self): super().setUp() self.ctx, self.executor = self._create_test_context() def testToCSVExecution(self): index = pd.RangeIndex(100, 0, -1, name='index') raw = pd.DataFrame({ 'col1': np.random.rand(100), 'col2': np.random.choice(['a', 'b', 'c'], (100,)), 'col3': np.arange(100) }, index=index) df = DataFrame(raw, chunk_size=33) with tempfile.TemporaryDirectory() as base_path: # DATAFRAME TESTS # test one file with dataframe path = os.path.join(base_path, 'out.csv') r = df.to_csv(path) self.executor.execute_dataframe(r) result = pd.read_csv(path, dtype=raw.dtypes.to_dict()) result.set_index('index', inplace=True) pd.testing.assert_frame_equal(result, raw) # test multi files with dataframe path = os.path.join(base_path, 'out-*.csv') r = df.to_csv(path) self.executor.execute_dataframe(r) dfs = [pd.read_csv(os.path.join(base_path, f'out-{i}.csv'), dtype=raw.dtypes.to_dict()) for i in range(4)] result = pd.concat(dfs, axis=0) result.set_index('index', inplace=True) pd.testing.assert_frame_equal(result, raw) pd.testing.assert_frame_equal(dfs[1].set_index('index'), raw.iloc[33: 66]) with self.ctx: # test df with unknown shape df2 = DataFrame(raw, chunk_size=(50, 2)) df2 = df2[df2['col1'] < 1] path2 = os.path.join(base_path, 'out2.csv') r = df2.to_csv(path2) self.executor.execute_dataframes([r]) result = pd.read_csv(path2, dtype=raw.dtypes.to_dict()) result.set_index('index', inplace=True) pd.testing.assert_frame_equal(result, raw) # SERIES TESTS series = md.Series(raw.col1, chunk_size=33) # test one file with series path = os.path.join(base_path, 'out.csv') r = series.to_csv(path) self.executor.execute_dataframe(r) result = pd.read_csv(path, dtype=raw.dtypes.to_dict()) result.set_index('index', inplace=True) pd.testing.assert_frame_equal(result, raw.col1.to_frame()) # test multi files with series path = os.path.join(base_path, 'out-*.csv') r = series.to_csv(path) self.executor.execute_dataframe(r) dfs = [pd.read_csv(os.path.join(base_path, f'out-{i}.csv'), dtype=raw.dtypes.to_dict()) for i in range(4)] result = pd.concat(dfs, axis=0) result.set_index('index', inplace=True) pd.testing.assert_frame_equal(result, raw.col1.to_frame()) pd.testing.assert_frame_equal(dfs[1].set_index('index'), raw.col1.to_frame().iloc[33: 66]) @unittest.skipIf(sqlalchemy is None, 'sqlalchemy not installed') def testToSQL(self): index = pd.RangeIndex(100, 0, -1, name='index') raw = pd.DataFrame({ 'col1': np.random.rand(100), 'col2': np.random.choice(['a', 'b', 'c'], (100,)), 'col3': np.arange(100).astype('int64'), }, index=index) with tempfile.TemporaryDirectory() as d: table_name1 = 'test_table' table_name2 = 'test_table2' uri = 'sqlite:///' + os.path.join(d, 'test.db') engine = sqlalchemy.create_engine(uri) # test write dataframe df = DataFrame(raw, chunk_size=33) r = df.to_sql(table_name1, con=engine) self.executor.execute_dataframe(r) written = pd.read_sql(table_name1, con=engine, index_col='index') \ .sort_index(ascending=False) pd.testing.assert_frame_equal(raw, written) # test write with existing table with self.assertRaises(ValueError): df.to_sql(table_name1, con=uri).execute() # test write series series = md.Series(raw.col1, chunk_size=33) with engine.connect() as conn: r = series.to_sql(table_name2, con=conn) self.executor.execute_dataframe(r) written = pd.read_sql(table_name2, con=engine, index_col='index') \ .sort_index(ascending=False) pd.testing.assert_frame_equal(raw.col1.to_frame(), written) @unittest.skipIf(vineyard is None, 'vineyard not installed') def testToVineyard(self): def testWithGivenSession(session): ipc_socket = os.environ.get('VINEYARD_IPC_SOCKET', '/tmp/vineyard/vineyard.sock') with option_context({'vineyard.socket': ipc_socket}): df1 = DataFrame(pd.DataFrame(
np.arange(12)
numpy.arange
#!/usr/bin/env python # encoding: utf-8 # # maskbit.py # # @Author: <NAME> <andrews> # @Date: 2017-10-06 10:10:00 # @Last modified by: <NAME> (<EMAIL>) # @Last modified time: 2018-11-26 11:51:50 from __future__ import absolute_import, division, print_function import os import numpy as np import pandas as pd import marvin from marvin.extern.yanny import yanny # Stores the maskbits yanny file structure so that we don't need to open it more than once. _maskbits_from_yanny = None def _read_maskbit_schemas(): """Read all available SDSS maskbit schemas from yanny file. Returns: Record Array: all bits for all schemas. """ global _maskbits_from_yanny if _maskbits_from_yanny is None: path_maskbits = os.path.join(os.path.dirname(marvin.__file__), 'data', 'sdssMaskbits.par') _maskbits_from_yanny = yanny(path_maskbits, np=True) return _maskbits_from_yanny['MASKBITS'] def get_available_maskbits(): """Get names of available maskbit schemas from yanny file. Returns: list: Names of available maskbits. """ maskbits = _read_maskbit_schemas() return sorted(set([it[0] for it in maskbits])) def get_manga_target(flag_id, bitmasks, header): """Get MANGA_TARGET[``flag_id``] flag. Parameters: flag_id (str): Flag ID number (e.g., "1" for MANGA_TARGET1). bitmasks (dict): `Maskbit` objects. header (`astropy.io.fits.header.Header`): File header. Returns: `Maskbit` """ flag_id = str(int(flag_id)) manga_target = bitmasks['MANGA_TARGET{}'.format(flag_id)] try: manga_target.mask = int(header['MNGTRG{}'.format(flag_id)]) except KeyError: manga_target.mask = int(header['MNGTARG{}'.format(flag_id)]) return manga_target class Maskbit(object): """A class representing a maskbit. Parameters: schema (DataFrame): Maskbit schema. name (str): Name of maskbit. description (str): Description of maskbit. """ def __init__(self, name, schema=None, description=None): self.name = name self.schema = schema if schema is not None else self._load_schema(name) self.description = description if description is not None else None self.mask = None def __repr__(self): if (isinstance(self.mask, int) or self.mask is None): labels = self.labels else: labels = 'shape={}'.format(self.mask.shape) return '<Maskbit {0!r} {1}>'.format(self.name, labels) def _load_schema(self, flag_name): """Load SDSS Maskbit schema from yanny file. Parameters: flag_name (str): Name of flag. Returns: DataFrame: Schema of flag. """ maskbits = _read_maskbit_schemas() flag = maskbits[maskbits['flag'] == flag_name] return pd.DataFrame(flag[['bit', 'label', 'description']]) @property def bits(self): return self.values_to_bits() if self.mask is not None else None @property def labels(self): return self.values_to_labels() if self.mask is not None else None def values_to_bits(self, values=None): """Convert mask values to a list of bits set. Parameters: values (int or array): Mask values. If ``None``, apply to entire ``Maskbit.mask`` array. Default is ``None``. Returns: list: Bits that are set. Example: >>> maps = Maps(plateifu='8485-1901') >>> ha = maps['emline_gflux_ha_6564'] >>> ha.pixmask.values_to_bits() [[[0, 1, 4, 30], [0, 1, 4, 30], ... [0, 1, 4, 30]]] """ # assert (self.mask is not None) or (values is not None), 'Must provide values.' # values = np.array(self.mask) if values is None else np.array(values) # ndim = values.ndim # assert ndim <= 3, '`value` must be int, 1-D array, 2-D array, or 3-D array.' # # expand up to 2 dimensions # while values.ndim < 3: # values = np.array([values]) # # create list of list of lists of bits set # bits_set = [] # for ii in range(values.shape[0]): # row_ii = [] # for jj in range(values.shape[1]): # row_jj = [] # for kk in range(values.shape[2]): # row_jj.append(self._value_to_bits(values[ii, jj, kk], self.schema.bit.values)) # row_ii.append(row_jj) # bits_set.append(row_ii) # # condense back down to initial dimensions # for __ in range(3 - ndim): # bits_set = bits_set[0] bits_set = self._get_a_set(values, convert_to='bits') return bits_set def _get_uniq_bits(self, values): ''' Return a dictionary of unique bits Parameters: values (list): A flattened list of mask values Returns: dict: A unique dictionary of {mask value: bit list} as {key: value} ''' uniqvals = set(values) vdict = {v: self._value_to_bits(v, self.schema.bit.values) for v in uniqvals} return vdict def _get_uniq_labels(self, values): ''' Return a dictionary of unique labels Parameters: values (list): A flattened list of mask values Returns: dict: A unique dictionary of {mask value: labels list} as {key: value} ''' uniqbits = self._get_uniq_bits(values) uniqlabels = {k: self.schema.label[self.schema.bit.isin(v)].values.tolist() for k, v in uniqbits.items()} return uniqlabels def _get_a_set(self, values, convert_to='bits'): ''' Convert mask values to a list of either bit or label sets. Parameters: values (int or array): Mask values. If ``None``, apply to entire ``Maskbit.mask`` array. Default is ``None``. convert_to (str): Indicates what to convert to. Either "bits" or "labels" Returns: list: Bits/Labels that are set. ''' assert (self.mask is not None) or (values is not None), 'Must provide values.' values = np.array(self.mask) if values is None else np.array(values) ndim = values.ndim shape = values.shape assert ndim <= 3, '`value` must be int, 1-D array, 2-D array, or 3-D array.' flatmask = values.flatten() if convert_to == 'bits': uniqvals = self._get_uniq_bits(flatmask) elif convert_to == 'labels': uniqvals = self._get_uniq_labels(flatmask) vallist = list(map(lambda x: uniqvals[x], flatmask)) if ndim > 0: vals_set = np.reshape(vallist, shape).tolist() else: vals_set = vallist[0] return vals_set def _value_to_bits(self, value, bits_all): """Convert mask value to a list of bits. Parameters: value (int): Mask value. bits_all (array): All bits for flag. Returns: list: Bits that are set. """ return [it for it in bits_all if int(value) & (1 << it)] def values_to_labels(self, values=None): """Convert mask values to a list of the labels of bits set. Parameters: values (int or array): Mask values. If ``None``, apply to entire ``Maskbit.mask`` array. Default is ``None``. Returns: list: Bits that are set. Example: >>> maps = Maps(plateifu='8485-1901') >>> ha = maps['emline_gflux_ha_6564'] >>> ha.pixmask.values_to_labels() [[['NOCOV', 'LOWCOV', 'NOVALUE', 'DONOTUSE'], ['NOCOV', 'LOWCOV', 'NOVALUE', 'DONOTUSE'], ... ['NOCOV', 'LOWCOV', 'NOVALUE', 'DONOTUSE']]] """ #bits_set = self.values_to_bits(values=values) #labels_set = self._bits_to_labels(bits_set) labels_set = self._get_a_set(values, convert_to='labels') return labels_set def _bits_to_labels(self, nested): """Recursively convert a nested list of bits to labels. Parameters: nested (list): Nested list of bits. Returns: list: Nested list of labels. """ # Base condition if isinstance(nested, (int, np.integer)): return self.schema.label[self.schema.bit == nested].values[0] return [self._bits_to_labels(it) for it in nested] def labels_to_value(self, labels): """Convert bit labels into a bit value. Parameters: labels (str or list): Labels of bits to set. Returns: int: Integer bit value. Example: >>> maps = Maps(plateifu='8485-1901') >>> ha = maps['emline_gflux_ha_6564'] >>> ha.pixmask._labels_to_value('DONOTUSE') 1073741824 >>> ha.pixmask._labels_to_value(['NOCOV', 'LOWCOV']) 3 """ if isinstance(labels, str): labels = [labels] bit_values = [] for label in labels: bit = self.schema.bit[self.schema.label == label] if not bit.empty: bit_values.append(bit.values[0]) return np.sum([2**value for value in bit_values]) def labels_to_bits(self, labels): """Convert bit labels into bits. Parameters: labels (str or list): Labels of bits. Returns: list: Bits that correspond to the labels. Example: >>> maps = Maps(plateifu='8485-1901') >>> ha = maps['emline_gflux_ha_6564'] >>> ha.pixmask.labels_to_bits('DONOTUSE') [30] >>> ha.pixmask.labels_to_value(['NOCOV', 'LOWCOV']) [0, 1] """ return self.values_to_bits(self.labels_to_value(labels)) def get_mask(self, labels, mask=None, dtype=int): """Create mask from a list of labels. If ``dtype`` is ``int``, then ``get_mask`` can effectively perform an OR or AND operation. However, if ``dtype`` is ``bool``, then ``get_mask`` does an OR. Parameters: labels (str or list): Labels of bits. mask (int or array): User-defined mask. If ``None``, use ``self.mask``. Default is ``None``. dtype: Output dtype, which must be either ``int`` or ``bool``. Default is ``int``. Returns: array: Mask for given labels. Example: >>> maps = Maps(plateifu='8485-1901') >>> ha = maps['emline_gflux_ha_6564'] >>> ha.pixmask.get_mask(['NOCOV', 'LOWCOV']) array([[3, 3, 3, ..., 3, 3, 3], ..., [3, 3, 3, ..., 3, 3, 3]]) >>> ha.pixmask.get_mask(['NOCOV', 'LOWCOV'], dtype=bool) array([[ True, True, True, ..., True, True, True], ..., [ True, True, True, ..., True, True, True]], dtype=bool) """ assert dtype in [int, bool], '``dtype`` must be either ``int`` or ``bool``.' if isinstance(labels, str): labels = [labels] schema_labels = self.schema.label.tolist() for label in labels: if label not in schema_labels: raise ValueError('label {0!r} not found in the maskbit schema.'.format(label)) bits = self.labels_to_bits(labels) mask = mask if mask is not None else self.mask if len(bits) == 0: return np.zeros(mask.shape, dtype=np.int) return
np.sum([mask & 2**bit for bit in bits], axis=0)
numpy.sum
""" A helper class for solving the non-linear time dependent equations of biofilm growth which includes models of the cell concentration and also nutrient concentrations in both the substrate and biofilm. All of these are asumed to be radially symmetric and depend on r and t, and the article concentration additionally depends on z. The specific equations solved by this class are described in the publication: A Thin-Film Lubrication Model for Biofilm Expansion Under Strong Adhesion, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME> To be submitted soon, 2020. This works builds upon the model developed by <NAME> in his PhD thesis: Mathematical Modelling of Pattern Formation in Yeast Biofilms, <NAME>, The University of Adelaide, 2019. Two solvers are currently implemented within the class. The first, a "decoupled" Crank-Nicolson implementation, denoted DCN, solves the non-linear system of equations in a weakly coupled manner. Each equation is solved one at a time (via Newton iterations where applicable) using the last known/computed solution of any other variables. The second, a fully coupled Crank-Nicolson implementation, denoted FCN, solves the complete non-linear system of equations using Newton iterations. Both use the scipy sparse LU solver to solve the discretised systems of equations that result from a compact finite difference discretisation (although iterative solvers for some variables can be toggled through private class switches). Both methods can be expected to achieve 2nd order convergence in both space and time. Compatibility notes: The code was written in Python3 (3.7.3 specifically) although it should also work in 2.7.x releases that are not to old as well. The scientific computing packages numpy and scipy are required. Again, any version that is not unreasonably old should be fine. You will probably also want matplotlib for plotting. Maintainer: <NAME> Initial development: June-July 2020 Last updated: August 2020 """ import numpy as np from scipy.sparse.linalg import spsolve,spilu,LinearOperator,gmres,bicgstab from scipy.sparse import diags,bmat,coo_matrix class gmres_counter(object): """ Convenience class for monitoring gmres iterations (from scipy.sparse.linalg) (Useful for debugging purposes) """ def __init__(self, disp=True): self._disp = disp self.niter = 0 def __call__(self, rk=None): self.niter += 1 if self._disp: print('gmres: iteration {:03d} residual = {:s}'.format(self.niter,str(rk))) class BiofilmTwoDLubricationModel(object): """ Helper class for solving the PDEs describing the development of a radially symmetric and thin yeast biofilm over time. The model/system that is solved includes the biofilm height, the cell concentration, and the nutrient concentrations in both the biofilm and the substrate. """ def __init__(self,R=2.0,dr=0.5**7,nxi=33,dt=None,params=None,solver='DCN',verbose=False): """ Initialise the class With no arguments a default problem set up is initialised. Optionally you may pass the following: R: The radius of the domain (or petri dish). If not specified a default value of 2 is used. dr: The grid spacing used for the discretisation of the domain. If not specified a default value of 0.5**7 is used. dt: The time step size, if not specified 0.25*dr is used. params: Parameters for the system of equations. These should be passed as a dictionary. Any which are not specified will be set to a default value (specifically corresponding to Table 6.1 in Alex's thesis). solver: specify which solver to use. verbose: Set to True to output convergence information when solving """ # Set up the radial coordinate array self._r = np.arange(0.0,R+0.5*dr,dr) self._r_half = self._r[:-1]+0.5*dr self._nxi = nxi self._xi = np.linspace(0,1,nxi) self._R,self._XI = np.meshgrid(self._r,self._xi) # Set up the parameters if dt is None: self._dt = 0.25*dr # this is quite conservative... (and assumes dr<h*dxi) else: self._dt = dt if type(params)==dict: # Set various parameters depending what is passed, # those not specified will be set to those Alex used # in his thesis (Table 6.1 specifically) self._b = params.get("b",0.0001) self._H0 = params.get("H0",0.1) self._Psi_m = params.get("Psi_m",0.111) self._Psi_d = params.get("Psi_d",0.0) #self._R = params.get("R",10.0) #self._T = params.get("T",50.0) self._gamma_ast = params.get("gamma_ast",1.0) self._D = params.get("D",1.05) self._Pe = params.get("Pe",3.94) self._Upsilon = params.get("Upsilon",3.15) self._Q_b = params.get("Q_b",8.65) self._Q_s = params.get("Q_s",2.09) self._h_ast = params.get("h_ast",0.002) self._lambda_ast = params.get("lambda_ast",np.inf) else: if params is not None: print("Setting parameters is currently only supported through a dictionary, default values will be used") # Set various parameters to those Alex used in # his thesis (Table 6.1 specifically) self._b = 0.0001 self._H0 = 0.1 self._Psi_m = 0.111 self._Psi_d = 0.0 #self._R = 10.0 #self._T = 50.0 self._gamma_ast = 1.0 self._D = 1.05 self._Pe = 3.94 self._Upsilon = 3.15 self._Q_b = 8.65 self._Q_s = 2.09 self._h_ast = 0.002 self._lambda_ast = np.inf self.set_solver(solver) self._verbose = verbose # Set up the solution arrays with default initial conditions self._set_default_initial_conditions() # The following were used in initial debugging and testing and generally need not be changed self._Phi_n_DCN_solver = 3 # Changes the numerical method used for solving Phi_n self._FCN_solver_mode = -1 # Change the FCN solver self._add_top_Phi_bc = False self._use_artificial_dr_bc = True # untested with False... # done def _set_default_initial_conditions(self): """ Sets the initial conditions to be those described by equation 6.22 of <NAME>'s thesis. """ self._t = 0 r = self._r R = self._R XI = self._XI self._h = self._b + (self._H0-self._b)*(r<1)*(1-r**2)**4 self._Phi_n = (XI**3-0.5*XI**4)*self._h[np.newaxis,:]*(R<1)*(1-3*R**2+2*R**3) self._g_s = np.ones(len(self._r)) self._g_b = np.zeros(len(self._r)) # done # add getters and setters def set_parameters(self,params): """ Set the current problem parameters. Parameters should be passed using a dictionary. """ if type(params)==dict: # Set various parameters depending what is passed, # those not specified will be set to those Alex used # in his thesis (Table 6.1 specifically) self._b = params.get("b",self._b) self._H0 = params.get("H0",self._H0) self._Psi_m = params.get("Psi_m",self._Psi_m) self._Psi_d = params.get("Psi_d",self._Psi_d) #self._R = params.get("R",self._R) #self._T = params.get("T",self._T) self._gamma_ast = params.get("gamma_ast",self._gamma_ast) self._D = params.get("D",self._D ) self._Pe = params.get("Pe",self._Pe) self._Upsilon = params.get("Upsilon",self._Upsilon) self._Q_b = params.get("Q_b",self._Q_b) self._Q_s = params.get("Q_s",self._Q_s) self._h_ast = params.get("h_ast",self._h_ast) self._lambda_ast = params.get("lambda_ast",self._lambda_ast) else: print("Setting parameters is currently only supported through a dictionary, existing values will be used") # done def get_parameters(self,param=None): """ Get the current problem parameters. If a specific parameter is not requested then all are returned in a dictionary. """ params_dict = {"b":self._b,"H0":self._H0,"Psi_m":self._Psi_m,"Psi_d":self._Psi_d,\ "gamma_ast":self._gamma_ast,"D":self._D,"Pe":self._Pe,\ "Upsilon":self._Upsilon,"Q_b":self._Q_b,"Q_s":self._Q_s,\ "h_ast":self._h_ast,"lambda_ast":self._lambda_ast} #params_dict["R"] = self._R #params_dict["T"] = self._T if param is None: # return dictionary with all parameters return params_dict elif param in params_dict.keys(): return params_dict[param] else: print("Requested parameter does not exist") # done def get_r(self): """ Returns the array for the radial coordinates. """ return self._r def get_xi(self): """ Returns the array for the radial coordinates. """ return self._xi def set_verbosity(self,verbose): """ Set the verbosity for the solvers (True or False). """ self._verbose = verbose # done def set_h(self,h): """ Update the biofilm height h. For example, use this to set the initial condition. (Note this over-writes the current solution in the class.) Accepts a callable function h(r), or an array (with correct length). Note: This will not alter Phi_n=int_0^{h xi} phi_n dz. If it is desired that this too be changed it should be done separately via set_Phi_n or set_phi_n. """ if callable(h): self._h[:] = h(self._r) else: assert len(h)==len(self._r) self._h[:] = h # done def get_h(self): """ Returns the current biofilm height h. """ return self._h def set_Phi_n(self,Phi_n): """ Update the cumulative cell volume fraction Phi_n (=int_0^{h xi} phi_n dz). For example, use this to set the initial condition. (Note this over-writes the current solution in the class.) It is expected that Phi_n be provided in the re-scaled coordinates r,xi. Accepts a callable function Phi_n(r,xi), or an array (with correct shape). """ if callable(Phi_n): self._Phi_n[:,:] = Phi_n(self._XI,self._R) else: assert Phi_n.shape==self._R.shape self._Phi_n[:,:] = Phi_n # done def get_Phi_n(self): """ Returns the current cumulative cell volume fraction Phi_n (=int_0^{h xi} phi_n dz). (Note this is given with respect to the re-scaled coordinates r,xi.) """ return self._Phi_n def get_phi_n_bar(self): """ Returns the vertically averaged cell volume fraction bar{phi_n} =(1/h) int_0^{h} phi_n dz. (Note this is given with respect to the re-scaled coordinates r,xi.) """ return self._Phi_n[-1,:]/self._h def set_phi_n(self,phi_n): """ Update the cell volume fraction phi_n. For example, use this to set the initial condition. (Note this over-writes the current solution in the class.) It is expected that phi_n be provided in re-scaled coordinates r,xi. Accepts a callable function phi_n(r,xi), or an array (with correct length). Note: This internally updates Phi_n=\int_0^{h xi} phi_n dz using the existing h. If h is also to be updated, it should be done first! """ XI,R = self._XI,self._R if callable(phi_n): phi_n_int_dxi = XI[1,0]*np.cumsum(0.5*(phi_n(XI,R)[1:,:]+phi_n(XI,R)[:-1,:]),axis=0) else: assert phi_n.shape==self._R.shape phi_n_int_dxi = XI[1,0]*np.cumsum(0.5*(phi_n[1:,:]+phi_n[:-1,:]),axis=0) self._Phi_n[0,:] = 0 self._Phi_n[1:,:] = phi_n_int_dxi*self._h[np.newaxis,:] self._Phi_n[(self._h<self._h_ast)[np.newaxis,:]] = 0 # zero areas where h is small # done def get_phi_n(self): """ Returns the current cell volume fraction phi_n. (Note this is given with respect to the re-scaled coordinates r,xi.) """ phi_n = np.empty_like(self._Phi_n) phi_n[1:-1,:] = 0.5*(self._Phi_n[2:,:]-self._Phi_n[:-2,:])*(self._nxi-1)/self._h[np.newaxis,:] phi_n[ 0,:] = 0.5*(-3*self._Phi_n[ 0,:]+4*self._Phi_n[ 1,:]-self._Phi_n[ 2,:])*(self._nxi-1)/self._h[np.newaxis,:] phi_n[-1,:] = 0.5*( 3*self._Phi_n[-1,:]-4*self._Phi_n[-2,:]+self._Phi_n[-3,:])*(self._nxi-1)/self._h[np.newaxis,:] phi_n[:,self._h<self._h_ast] = 0 return phi_n def set_g_s(self,g_s): """ Update the substrate nutrient concentration g_s. For example, use this to set the initial condition. (Note this over-writes the current solution in the class) Accepts a callable function g_s(r), or an array (with correct length). """ if callable(g_s): self._g_s[:] = g_s(self._r) else: assert len(g_s)==len(self._r) self._g_s[:] = g_s # done def get_g_s(self): """ Returns the substrate nutrient concentration g_s. """ return self._g_s def set_g_b(self,g_b): """ Update the biofilm nutrient concentration g_b. For example, use this to set the initial condition. (Note this over-writes the current solution in the class) Accepts a callable function g_b(r), or an array (with correct length). """ if callable(g_b): self._g_b[:] = g_b(self._r) else: assert len(g_b)==len(self._r) self._g_b[:] = g_b # done def get_g_b(self): """ Returns the biofilm nutrient concentration g_b. """ return self._g_b def set_dt(self,dt): """ Set/change the time step size (dt) which is used by default (i.e. if dt is not specified when solve is called then this value is used) """ self._dt = dt # done def get_dt(self): """ Get the current time step size (dt) which is used by default (i.e. if dt is not specified when solve is called then this value is used) """ return self._dt def set_t(self,t): """ Set/change the current solution time t. """ self._t = t # done def get_t(self): """ Get the current solution time T. """ return self._t # done # Add private methods relating to the discretisation of the fourth order 'advective' term def _advective_term(self,r,h,p=3,f=None,near_boundary=True,prefix=None): """ Finite difference discretisation of: prefix * (d/dr)[ r h^p f (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] ] """ r_half = 0.5*(r[1:]+r[:-1]) dr = r[1]-r[0] h_half = 0.5*(h[1:]+h[:-1]) D_half = (r_half[2: ]*(h[3: ]-h[2:-1])-r_half[1:-1]*(h[2:-1]-h[1:-2]))/r[2:-1]\ -(r_half[1:-1]*(h[2:-1]-h[1:-2])-r_half[ :-2]*(h[1:-2]-h[ :-3]))/r[1:-2] if f is None: f = np.ones(len(r)) f_half = f[:-1] else: f_half = 0.5*(f[1:]+f[:-1]) res = np.empty(len(r)) res[[0,1,-2,-1]] = 0 res[2:-2] = r_half[2:-1]*h_half[2:-1]**p*f_half[2:-1]*D_half[1:] \ -r_half[1:-2]*h_half[1:-2]**p*f_half[1:-2]*D_half[:-1] if near_boundary: # At index one we expoloit that 0 = (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] for r=0 D_p2 = 0.5*(D_half[ 0]+D_half[ 1]) res[1] = 0.5*r[2]*h[2]**p*f[2]*D_p2 # At index -2 we can exploit that 0 = (dh/dr) # The width of the stencil is widened to achieve this though... D_m5o2 = 0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3]\ -0.25*(r[-3]*(h[-2]-h[-4])-r[-5]*(h[-4]-h[-6]))/r[-4] D_m3o2 = 0.25*( -r[-3]*(h[-2]-h[-4]))/r[-2]\ -0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3] res[-2] = r_half[-1]*h_half[-1]**p*f_half[-1]*D_m3o2 \ -r_half[-2]*h_half[-2]**p*f_half[-2]*D_m5o2 if prefix is not None: res[1:-1] *= prefix[1:-1] return res/dr**4 def _advective_term_h_gradient(self,r,h,p=3,f=None,near_boundary=True,prefix=None): """ Finite difference discretisation of the gradient of prefix * (d/dr)[ r h^p f (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] ] with respect to h. Note: the caller is responsible for enforcing boundary conditions """ r_half = 0.5*(r[1:]+r[:-1]) dr = r[1]-r[0] h_half = 0.5*(h[1:]+h[:-1]) D_half = (r_half[2: ]*(h[3: ]-h[2:-1])-r_half[1:-1]*(h[2:-1]-h[1:-2]))/r[2:-1]\ -(r_half[1:-1]*(h[2:-1]-h[1:-2])-r_half[ :-2]*(h[1:-2]-h[ :-3]))/r[1:-2] if f is None: f = np.ones(len(r)) f_half = f[:-1] else: f_half = 0.5*(f[1:]+f[:-1]) Dh_diag_p2 = np.empty((len(r))) Dh_diag_p1 = np.empty((len(r))) Dh_diag_p0 = np.empty((len(r))) Dh_diag_m1 = np.empty((len(r))) Dh_diag_m2 = np.empty((len(r))) Dh_diag_p2[[0,1,-2,-1]] = 0 Dh_diag_p1[[0,1,-2,-1]] = 0 Dh_diag_p0[[0,1,-2,-1]] = 0 Dh_diag_m1[[0,1,-2,-1]] = 0 Dh_diag_m2[[0,1,-2,-1]] = 0 Dh_diag_p1[2:-2] = r_half[2:-1]*0.5*p*h_half[2:-1]**(p-1)*f_half[2:-1]*D_half[1:]/dr**4 Dh_diag_p0[2:-2] = r_half[2:-1]*0.5*p*h_half[2:-1]**(p-1)*f_half[2:-1]*D_half[1:]/dr**4 \ -r_half[1:-2]*0.5*p*h_half[1:-2]**(p-1)*f_half[1:-2]*D_half[:-1]/dr**4 Dh_diag_m1[2:-2] = -r_half[1:-2]*0.5*p*h_half[1:-2]**(p-1)*f_half[1:-2]*D_half[:-1]/dr**4 # I think the following 5 are okay... Dh_diag_p2[2:-2] = r_half[2:-1]*h_half[2:-1]**p*f_half[2:-1]*(r_half[3: ]/r[3:-1])/dr**4 Dh_diag_p1[2:-2] += -r_half[2:-1]*h_half[2:-1]**p*f_half[2:-1]*(r_half[2:-1]/r[2:-2]+2)/dr**4 \ -r_half[1:-2]*h_half[1:-2]**p*f_half[1:-2]*(r_half[2:-1]/r[2:-2])/dr**4 Dh_diag_p0[2:-2] += r_half[2:-1]*h_half[2:-1]**p*f_half[2:-1]*(r_half[2:-1]/r[3:-1]+2)/dr**4 \ +r_half[1:-2]*h_half[1:-2]**p*f_half[1:-2]*(r_half[1:-2]/r[1:-3]+2)/dr**4 Dh_diag_m1[2:-2] += -r_half[2:-1]*h_half[2:-1]**p*f_half[2:-1]*(r_half[1:-2]/r[2:-2])/dr**4 \ -r_half[1:-2]*h_half[1:-2]**p*f_half[1:-2]*(r_half[1:-2]/r[2:-2]+2)/dr**4 Dh_diag_m2[2:-2] = r_half[1:-2]*h_half[1:-2]**p*f_half[1:-2]*(r_half[ :-3]/r[1:-3])/dr**4 if near_boundary: # Pre-allocate additional diagonals for the boundary terms Dh_diag_p3 = np.zeros((len(r))) Dh_diag_m3 = np.zeros((len(r))) Dh_diag_m4 = np.zeros((len(r))) # At index one we expoloit that 0 = (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] D_p2 = 0.5*(D_half[ 0]+D_half[ 1]) Dh_diag_p1[1] = 0.5*r[2]*p*h[2]**(p-1)*f[2]*D_p2/dr**4 Dh_diag_p3[1] = 0.5*r[2]*h[2]**p*f[2]*0.5*(r_half[3]/r[3])/dr**4 Dh_diag_p2[1] = -0.5*r[2]*h[2]**p*f[2]/dr**4 Dh_diag_p1[1] += 0.5*r[2]*h[2]**p*f[2]*0.5*(r_half[2]/r[3]-r_half[1]/r[1])/dr**4 Dh_diag_p0[1] = -0.5*r[2]*h[2]**p*f[2]/dr**4 Dh_diag_m1[1] = 0.5*r[2]*h[2]**p*f[2]*0.5*(r_half[0]/r[1])/dr**4 # At index -2 we can exploit that 0 = (dh/dr) # The width of the stencil is widened to achieve this though... D_m5o2 = 0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3]\ -0.25*(r[-3]*(h[-2]-h[-4])-r[-5]*(h[-4]-h[-6]))/r[-4] D_m3o2 = 0.25*( -r[-3]*(h[-2]-h[-4]))/r[-2]\ -0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3] Dh_diag_p1[-2] = r_half[-1]*0.5*p*h_half[-1]**(p-1)*f_half[-1]*D_m3o2 Dh_diag_p0[-2] = r_half[-1]*0.5*p*h_half[-1]**(p-1)*f_half[-1]*D_m3o2 \ -r_half[-2]*0.5*p*h_half[-2]**(p-1)*f_half[-2]*D_m5o2 Dh_diag_m1[-2] = -r_half[-2]*0.5*p*h_half[-2]**(p-1)*f_half[-2]*D_m5o2 # I think the following are okay... Dh_diag_p1[-2] += r_half[-1]*h_half[-1]**p*f_half[-1]*( r[-2]/r[-3])*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[-2]*(-r[-2]/r[-3])*0.25/dr**4 Dh_diag_p0[-2] += r_half[-1]*h_half[-1]**p*f_half[-1]*(-r[-3]/r[-4])*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[-2]*(-r[-3]/r[-2])*0.25/dr**4 Dh_diag_m1[-2] += r_half[-1]*h_half[-1]**p*f_half[-1]*(-2)*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[-2]*( 2)*0.25/dr**4 Dh_diag_m2[-2] = r_half[-1]*h_half[-1]**p*f_half[-1]*( 2)*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[-2]*( r[-3]/r[-2])*0.25/dr**4 Dh_diag_m3[-2] = r_half[-1]*h_half[-1]**p*f_half[-1]*( r[-4]/r[-3])*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[-2]*( r[-4]/r[-3])*0.25/dr**4 Dh_diag_m4[-2] = r_half[-1]*h_half[-1]**p*f_half[-1]*(-r[-5]/r[-4])*0.25/dr**4 #Dh = diags([Dh_diag_m4[4:],Dh_diag_m3[3:],Dh_diag_m2[2:],Dh_diag_m1[1:],\ # Dh_diag_p0,Dh_diag_p1[:-1],Dh_diag_p2[:-2],Dh_diag_p3[:-3]],\ # [-4,-3,-2,-1,0,1,2,3]) diagonals = [Dh_diag_m4,Dh_diag_m3,Dh_diag_m2,Dh_diag_m1,\ Dh_diag_p0,Dh_diag_p1,Dh_diag_p2,Dh_diag_p3] offsets = [-4,-3,-2,-1,0,1,2,3] else: #Dh = diags([Dh_diag_m2[2:],Dh_diag_m1[1:],Dh_diag_p0,Dh_diag_p1[:-1],Dh_diag_p2[:-2]],\ # [-2,-1,0,1,2]) diagonals = [Dh_diag_m2,Dh_diag_m1,Dh_diag_p0,Dh_diag_p1,Dh_diag_p2] offsets = [-2,-1,0,1,2] if prefix is not None: for diagonal in diagonals: diagonal[1:-1] *= prefix[1:-1] return diagonals,offsets def _advective_term_f_gradient(self,r,h,p=3,f=None,near_boundary=True,prefix=None): """ Finite difference discretisation of the gradient of prefix * (d/dr)[ r h^p f (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] ] with respect to f. """ if f is None: # This is the only place f is actually used... return None r_half = 0.5*(r[1:]+r[:-1]) dr = r[1]-r[0] h_half = 0.5*(h[1:]+h[:-1]) D_half = (r_half[2: ]*(h[3: ]-h[2:-1])-r_half[1:-1]*(h[2:-1]-h[1:-2]))/r[2:-1]\ -(r_half[1:-1]*(h[2:-1]-h[1:-2])-r_half[ :-2]*(h[1:-2]-h[ :-3]))/r[1:-2] #f_half = 0.5*(f[1:]+f[:-1]) Df_diag_p1 = np.empty((len(r))) Df_diag_p0 = np.empty((len(r))) Df_diag_m1 = np.empty((len(r))) Df_diag_p1[[0,1,-2,-1]] = 0 Df_diag_p0[[0,1,-2,-1]] = 0 Df_diag_m1[[0,1,-2,-1]] = 0 Df_diag_p1[2:-2] = r_half[2:-1]*h_half[2:-1]**p*0.5*D_half[1:]/dr**4 Df_diag_p0[2:-2] = r_half[2:-1]*h_half[2:-1]**p*0.5*D_half[1:]/dr**4 \ -r_half[1:-2]*h_half[1:-2]**p*0.5*D_half[:-1]/dr**4 Df_diag_m1[2:-2] = -r_half[1:-2]*h_half[1:-2]**p*0.5*D_half[:-1]/dr**4 if near_boundary: D_p2 = 0.5*(D_half[ 0]+D_half[ 1]) Df_diag_p1[1] = 0.5*r[2]*h[2]**p*D_p2/dr**4 D_m5o2 = 0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3]\ -0.25*(r[-3]*(h[-2]-h[-4])-r[-5]*(h[-4]-h[-6]))/r[-4] D_m3o2 = 0.25*( -r[-3]*(h[-2]-h[-4]))/r[-2]\ -0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3] Df_diag_p1[-2] = r_half[-1]*h_half[-1]**p*D_m3o2/dr**4 Df_diag_p0[-2] = -r_half[-2]*h_half[-2]**p*D_m5o2/dr**4 #Df = diags([Df_diag_m1[1:],Df_diag_p0,Df_diag_p1[:-1]],[-1,0,1])#,format="csr") diagonals = [Df_diag_m1,Df_diag_p0,Df_diag_p1] offsets = [-1,0,1] if prefix is not None: for diagonal in diagonals: diagonal[1:-1] *= prefix[1:-1] return diagonals,offsets # Add 'private' methods related to the solvers def _h_equation_RHS(self,v_old,v_new,dt=None): """ Calculate the RHS vector component corresponding to the height equation. The internal time step dt is used if one is not provided. """ r = self._r nr = len(r) dr = r[1] b = self._b h_ast = self._h_ast g_ast = self._gamma_ast Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_old,Phi_n_old,g_s_old,g_b_old = v_old h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Initialise rhs vector rhs = np.empty(nr) rhs[2:-2] = -(h_new[2:-2]-h_old[2:-2]) # Calculate spatial stencil and add to the rhs adv_old = self._advective_term(r,h_old,near_boundary=False) adv_new = self._advective_term(r,h_new,near_boundary=False) rhs[2:-2] -= 0.5*dt*g_ast/3.0*(adv_old[2:-2]+adv_new[2:-2])/r[2:-2] if np.isfinite(lambda_ast): # add slip term if lambda_ast is finite adv_old = self._advective_term(r,h_old,p=2,near_boundary=False) adv_new = self._advective_term(r,h_new,p=2,near_boundary=False) rhs[2:-2] -= 0.5*dt*g_ast/lambda_ast*(adv_old[2:-2]+adv_new[2:-2])/r[2:-2] # Add the forcing term forcing_old = (h_old>h_ast)*(1.0+Psi_m)*Phi_n_old[-1,:]*g_b_old forcing_new = (h_new>h_ast)*(1.0+Psi_m)*Phi_n_new[-1,:]*g_b_new rhs[2:-2] += 0.5*dt*(forcing_old[2:-2]+forcing_new[2:-2]) # Set RHS entries relating to boundary conditions rhs[ 0] = 3.0*h_new[ 0]- 4.0*h_new[ 1]+ h_new[ 2] rhs[ 1] = 5.0*h_new[ 0]-18.0*h_new[ 1]+24.0*h_new[ 2]-14.0*h_new[ 3]+3.0*h_new[ 4] rhs[-2] = -3.0*h_new[-1]+ 4.0*h_new[-2]- h_new[-3] rhs[-1] = b-h_new[-1] # done return rhs def _h_equation_LHS0(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the h dependence in the height equation. The internal time step dt is used if one is not provided. """ r = self._r nr = len(r) dr = r[1] r_half = self._r_half g_ast = self._gamma_ast h_ast = self._h_ast Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Construct/fetch the diagonal components from the gradient of the fourth order "advective" term diagonals,offsets = self._advective_term_h_gradient(r,h_new,near_boundary=False) for i in range(len(diagonals)): assert offsets[i]==i-2 # sanity check diagonals[i][2:-2] *= (0.5*dt*g_ast/3.0)*r[2:-2]**(-1) if np.isfinite(lambda_ast): # add slip term if lambda_ast is finite diagonals2,offsets2 = self._advective_term_h_gradient(r,h_new,p=2,near_boundary=False) for i in range(len(diagonals2)): assert offsets2[i]==offsets[i] diagonals[i][2:-2] += (0.5*dt*g_ast/lambda_ast)*r[2:-2]**(-1)*diagonals2[i][2:-2] # Add to the main diagonal diagonals[2][2:-2] += 1.0 # Note: there is no longer a 'forcing term' since h is absorbed into Phi_n # Enforce the boundary conditions diagonals.append(np.zeros(nr)) offsets.append(3) diagonals[2][ 0] = -3 # first order BC at r=0 diagonals[3][ 0] = 4 diagonals[4][ 0] = -1 diagonals[1][ 1] = -5 # third order BC at r=0 diagonals[2][ 1] = 18 diagonals[3][ 1] = -24 diagonals[4][ 1] = 14 diagonals[5][ 1] = -3 diagonals[1][-2] = 1 # first order BC at r=R diagonals[2][-2] = -4 diagonals[3][-2] = 3 diagonals[2][-1] = 1 # Dirichlet BC at r=R # Final construction A_00 = diags([diagonals[0][2:],diagonals[1][1:],diagonals[2],diagonals[3][:-1],\ diagonals[4][:-2],diagonals[5][:-3]],\ offsets)#,format="csr") return A_00 def _h_equation_LHS1(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the Phi_n dependence in the height equation (Phi_n = int_0^{h xi} phi_n dz). The internal time step dt is used if one is not provided. """ h_ast = self._h_ast Psi_m = self._Psi_m h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Note: this block has a rectangular shape nr,nxi = len(self._r),len(self._xi) row = np.arange(2,nr-2) col = nxi-1+nxi*row dat = -0.5*dt*(1.0+Psi_m)*((h_new>h_ast)*g_b_new)[2:-2] return coo_matrix((dat,(row,col)),shape=(nr,nr*nxi))#.tocsr() def _h_equation_LHS2(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the g_s dependence in the height equation. The internal time step dt is used if one is not provided. """ # Note: there is no g_s dependence return None def _h_equation_LHS3(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the g_b dependence in the height equation. The internal time step dt is used if one is not provided. """ h_ast = self._h_ast Psi_m = self._Psi_m h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt A_diag = -0.5*dt*(1.0+Psi_m)*(h_new>h_ast)*Phi_n_new[-1,:] A_diag[[0,1,-2,-1]] = 0 return diags(A_diag)#,format="csr") # Add private methods relating to the discretisation of the fourth order 'advective' term def _advective_term_alt(self,r,h,f,near_boundary=True): """ Finite difference discretisation of: (d/dr)[ f r (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] ] This version handles f which is two dimensional. Note the h**p factor and the prefix have been dropped in this alt version. """ r_half = 0.5*(r[1:]+r[:-1]) dr = r[1]-r[0] h_half = 0.5*(h[1:]+h[:-1]) D_half = (r_half[2: ]*(h[3: ]-h[2:-1])-r_half[1:-1]*(h[2:-1]-h[1:-2]))/r[2:-1]\ -(r_half[1:-1]*(h[2:-1]-h[1:-2])-r_half[ :-2]*(h[1:-2]-h[ :-3]))/r[1:-2] f_half = 0.5*(f[:,1:]+f[:,:-1]) res = np.empty(f.shape) res[:,[0,1,-2,-1]] = 0 res[:,2:-2] = r_half[np.newaxis,2:-1]*D_half[np.newaxis,1: ]*f_half[:,2:-1] \ -r_half[np.newaxis,1:-2]*D_half[np.newaxis, :-1]*f_half[:,1:-2] if near_boundary: # At index one we expoloit that 0 = (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] for r=0 D_p2 = 0.5*(D_half[ 0]+D_half[ 1]) res[:,1] = 0.5*r[2]*D_p2*f[:,2] # At index -2 we can exploit that 0 = (dh/dr) # The width of the stencil is widened to achieve this though... D_m5o2 = 0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3]\ -0.25*(r[-3]*(h[-2]-h[-4])-r[-5]*(h[-4]-h[-6]))/r[-4] D_m3o2 = 0.25*( -r[-3]*(h[-2]-h[-4]))/r[-2]\ -0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3] res[:,-2] = r_half[-1]*D_m3o2*f_half[:,-1] \ -r_half[-2]*D_m5o2*f_half[:,-2] return res/dr**4 def _advective_term_h_gradient_alt(self,r,h,p=3,f=None,near_boundary=True,prefix=None): """ Finite difference discretisation of the gradient of prefix * (d/dr)[ r h^p f (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] ] with respect to h. This version handles f which is two dimensional. Note: the caller is responsible for enforcing boundary conditions """ r_half = 0.5*(r[1:]+r[:-1]) dr = r[1]-r[0] h_half = 0.5*(h[1:]+h[:-1]) D_half = (r_half[2: ]*(h[3: ]-h[2:-1])-r_half[1:-1]*(h[2:-1]-h[1:-2]))/r[2:-1]\ -(r_half[1:-1]*(h[2:-1]-h[1:-2])-r_half[ :-2]*(h[1:-2]-h[ :-3]))/r[1:-2] if f is None: f = np.ones((1,len(r))) f_half = f[:,:-1] else: f_half = 0.5*(f[:,1:]+f[:,:-1]) Dh_diag_p2 = np.empty(f.shape) Dh_diag_p1 = np.empty(f.shape) Dh_diag_p0 = np.empty(f.shape) Dh_diag_m1 = np.empty(f.shape) Dh_diag_m2 = np.empty(f.shape) Dh_diag_p2[:,[0,1,-2,-1]] = 0 Dh_diag_p1[:,[0,1,-2,-1]] = 0 Dh_diag_p0[:,[0,1,-2,-1]] = 0 Dh_diag_m1[:,[0,1,-2,-1]] = 0 Dh_diag_m2[:,[0,1,-2,-1]] = 0 Dh_diag_p1[:,2:-2] = f_half[:,2:-1]*(r_half[2:-1]*0.5*p*h_half[2:-1]**(p-1)*D_half[1:]/dr**4)[np.newaxis,:] Dh_diag_p0[:,2:-2] = f_half[:,2:-1]*(r_half[2:-1]*0.5*p*h_half[2:-1]**(p-1)*D_half[1:]/dr**4)[np.newaxis,:] \ -f_half[:,1:-2]*(r_half[1:-2]*0.5*p*h_half[1:-2]**(p-1)*D_half[:-1]/dr**4)[np.newaxis,:] Dh_diag_m1[:,2:-2] = -f_half[:,1:-2]*(r_half[1:-2]*0.5*p*h_half[1:-2]**(p-1)*D_half[:-1]/dr**4)[np.newaxis,:] # I think the following 5 are okay... Dh_diag_p2[:,2:-2] = f_half[:,2:-1]*(r_half[2:-1]*h_half[2:-1]**p*(r_half[3: ]/r[3:-1])/dr**4)[np.newaxis,:] Dh_diag_p1[:,2:-2] += -f_half[:,2:-1]*(r_half[2:-1]*h_half[2:-1]**p*(r_half[2:-1]/r[2:-2]+2)/dr**4)[np.newaxis,:] \ -f_half[:,1:-2]*(r_half[1:-2]*h_half[1:-2]**p*(r_half[2:-1]/r[2:-2])/dr**4)[np.newaxis,:] Dh_diag_p0[:,2:-2] += f_half[:,2:-1]*(r_half[2:-1]*h_half[2:-1]**p*(r_half[2:-1]/r[3:-1]+2)/dr**4)[np.newaxis,:] \ +f_half[:,1:-2]*(r_half[1:-2]*h_half[1:-2]**p*(r_half[1:-2]/r[1:-3]+2)/dr**4)[np.newaxis,:] Dh_diag_m1[:,2:-2] += -f_half[:,2:-1]*(r_half[2:-1]*h_half[2:-1]**p*(r_half[1:-2]/r[2:-2])/dr**4)[np.newaxis,:] \ -f_half[:,1:-2]*(r_half[1:-2]*h_half[1:-2]**p*(r_half[1:-2]/r[2:-2]+2)/dr**4)[np.newaxis,:] Dh_diag_m2[:,2:-2] = f_half[:,1:-2]*(r_half[1:-2]*h_half[1:-2]**p*(r_half[ :-3]/r[1:-3])/dr**4)[np.newaxis,:] if near_boundary: # Pre-allocate additional diagonals for the boundary terms Dh_diag_p3 = np.zeros(f.shape) Dh_diag_m3 = np.zeros(f.shape) Dh_diag_m4 = np.zeros(f.shape) # At index one we expoloit that 0 = (d/dr)[ (1/r) (d/dr)[ r (dh/dr) ] ] D_p2 = 0.5*(D_half[ 0]+D_half[ 1]) Dh_diag_p1[:,1] = 0.5*r[2]*p*h[2]**(p-1)*f[:,2]*D_p2/dr**4 Dh_diag_p3[:,1] = 0.5*r[2]*h[2]**p*f[:,2]*0.5*(r_half[3]/r[3])/dr**4 Dh_diag_p2[:,1] = -0.5*r[2]*h[2]**p*f[:,2]/dr**4 Dh_diag_p1[:,1] += 0.5*r[2]*h[2]**p*f[:,2]*0.5*(r_half[2]/r[3]-r_half[1]/r[1])/dr**4 Dh_diag_p0[:,1] = -0.5*r[2]*h[2]**p*f[:,2]/dr**4 Dh_diag_m1[:,1] = 0.5*r[2]*h[2]**p*f[:,2]*0.5*(r_half[0]/r[1])/dr**4 # At index -2 we can exploit that 0 = (dh/dr) # The width of the stencil is widened to achieve this though... D_m5o2 = 0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3]\ -0.25*(r[-3]*(h[-2]-h[-4])-r[-5]*(h[-4]-h[-6]))/r[-4] D_m3o2 = 0.25*( -r[-3]*(h[-2]-h[-4]))/r[-2]\ -0.25*(r[-2]*(h[-1]-h[-3])-r[-4]*(h[-3]-h[-5]))/r[-3] Dh_diag_p1[:,-2] = r_half[-1]*0.5*p*h_half[-1]**(p-1)*f_half[:,-1]*D_m3o2 Dh_diag_p0[:,-2] = r_half[-1]*0.5*p*h_half[-1]**(p-1)*f_half[:,-1]*D_m3o2 \ -r_half[-2]*0.5*p*h_half[-2]**(p-1)*f_half[:,-2]*D_m5o2 Dh_diag_m1[:,-2] = -r_half[-2]*0.5*p*h_half[-2]**(p-1)*f_half[:,-2]*D_m5o2 # I think the following are okay... Dh_diag_p1[:,-2] += r_half[-1]*h_half[-1]**p*f_half[:,-1]*( r[-2]/r[-3])*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[:,-2]*(-r[-2]/r[-3])*0.25/dr**4 Dh_diag_p0[:,-2] += r_half[-1]*h_half[-1]**p*f_half[:,-1]*(-r[-3]/r[-4])*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[:,-2]*(-r[-3]/r[-2])*0.25/dr**4 Dh_diag_m1[:,-2] += r_half[-1]*h_half[-1]**p*f_half[:,-1]*(-2)*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[:,-2]*( 2)*0.25/dr**4 Dh_diag_m2[:,-2] = r_half[-1]*h_half[-1]**p*f_half[:,-1]*( 2)*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[:,-2]*( r[-3]/r[-2])*0.25/dr**4 Dh_diag_m3[:,-2] = r_half[-1]*h_half[-1]**p*f_half[:,-1]*( r[-4]/r[-3])*0.25/dr**4 \ -r_half[-2]*h_half[-2]**p*f_half[:,-2]*( r[-4]/r[-3])*0.25/dr**4 Dh_diag_m4[:,-2] = r_half[-1]*h_half[-1]**p*f_half[:,-1]*(-r[-5]/r[-4])*0.25/dr**4 #Dh = diags([Dh_diag_m4[4:],Dh_diag_m3[3:],Dh_diag_m2[2:],Dh_diag_m1[1:],\ # Dh_diag_p0,Dh_diag_p1[:-1],Dh_diag_p2[:-2],Dh_diag_p3[:-3]],\ # [-4,-3,-2,-1,0,1,2,3]) diagonals = [Dh_diag_m4,Dh_diag_m3,Dh_diag_m2,Dh_diag_m1,\ Dh_diag_p0,Dh_diag_p1,Dh_diag_p2,Dh_diag_p3] offsets = [-4,-3,-2,-1,0,1,2,3] else: #Dh = diags([Dh_diag_m2[2:],Dh_diag_m1[1:],Dh_diag_p0,Dh_diag_p1[:-1],Dh_diag_p2[:-2]],\ # [-2,-1,0,1,2]) diagonals = [Dh_diag_m2,Dh_diag_m1,Dh_diag_p0,Dh_diag_p1,Dh_diag_p2] offsets = [-2,-1,0,1,2] if prefix is not None: if len(prefix.shape)==1: for diagonal in diagonals: diagonal[:,1:-1] *= prefix[np.newaxis,1:-1] elif len(prefix.shape)==2: for diagonal in diagonals: diagonal[:,1:-1] *= prefix[:,1:-1] # else do nothing... return diagonals,offsets def _Phi_n_equation_explicit(self,v_old,dt=None): """ Calculate a simple forward Euler step of the Phi_n equations. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_old,v_new must contain Phi_n rather than phi_n) The internal time step dt is used if one is not provided. Note: This is generally going to be unstable, however I have been able to 'get lucky' with some grid choices. """ r = self._r nr = len(r) dr = r[1] R,XI = self._R,self._XI dxi = XI[1,1] gamma_ast = self._gamma_ast h_ast = self._h_ast Psi_d = self._Psi_d Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_old,Phi_n_old,g_s_old,g_b_old = v_old if dt is None: dt = self._dt # Setup the vertical velocity factor # Note: the second line of each v_z terms do not include r=0 or r=R parts, they are not needed regardless # The v_z terms also exclude the 1/h factor... fot_old = self._advective_term(r,h_old) v_z_old = (1.0+Psi_m)*g_b_old[np.newaxis,:]*(Phi_n_old-XI*(Phi_n_old[-1,:])[np.newaxis,:]) v_z_old[:,1:-1] += gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)[:,1:-1]/R[:,1:-1]*(fot_old)[np.newaxis,1:-1] # Setup the horizontal 'advection' stencil Phi_int_dxi_old = np.cumsum(0.5*((Phi_n_old*(1-XI))[1:,:]+(Phi_n_old*(1-XI))[:-1,:]),axis=0)*dxi integral_old = np.empty(Phi_n_old.shape) integral_old[0 ,:] = 0 integral_old[1:,:] = Phi_int_dxi_old f_old = (Phi_n_old*(0.5*XI**2-XI)+integral_old)*h_old[np.newaxis,:]**2 if np.isfinite(lambda_ast): f_old -= Phi_n_old*h_old[np.newaxis,:]/lambda_ast adv_old = self._advective_term_alt(r,h_old,f_old) # Initialise the update with the forcing term delta_Phi_n = Phi_n_old*(g_b_old-Psi_d)[np.newaxis,:] # Add the vertical advection part (note no flux through the top or bottom) delta_Phi_n[1:-1,1:-1] -= v_z_old[1:-1,1:-1]/h_old[np.newaxis,1:-1]*(Phi_n_old[2:,1:-1]-Phi_n_old[:-2,1:-1])/(2.0*dxi) # Add the horizontal 'advection' part delta_Phi_n[:,1:-1] += gamma_ast/r[np.newaxis,1:-1]*adv_old[:,1:-1] # Perform the update Phi_n_new = Phi_n_old+dt*delta_Phi_n # Enforce the boundary conditions post update Phi_n_new[:,-1] = 0 Phi_n_new[:, 0] = (4*Phi_n_new[:,1]-Phi_n_new[:,0])/3.0 if self._use_artificial_dr_bc: # if artificial 'BC' is also enforced near r=0 Phi_n_new[:,0] = 0.2*(9*Phi_n_new[:,2]-4*Phi_n_new[:,3]) Phi_n_new[:,1] = 0.2*(8*Phi_n_new[:,2]-3*Phi_n_new[:,3]) if False: # if high order BC enforcement at r=0 Phi_n_new[:,0] = (18*Phi_n_new[:,1]-9*Phi_n_new[:,2]+2*Phi_n_new[:,3])/11.0 if False: # if both high order BC enforcement at r=0 and additional artificial BC near r=0 Phi_n_new[:,0] = 0.2*(9*Phi_n_new[:,2]-4*Phi_n_new[:,3]) # (note: it works out same as above...) Phi_n_new[:,1] = 0.2*(8*Phi_n_new[:,2]-3*Phi_n_new[:,3]) Phi_n_new[ 0,:] = 0 # by definition #Phi_n_new[-1,:] = 2*Phi_n_new[-2,:]-Phi_n_new[-3,:] # need to do something here? maybe enforce d^2\Phi_n/d\xi^2=0 Phi_n_new[-1,:] = 2.5*Phi_n_new[-2,:]-2*Phi_n_new[-3,:]+0.5*Phi_n_new[-4,:] # higher order... # Zero parts where h is still too small Phi_n_new[:,h_old<=h_ast] = 0 # done return Phi_n_new def _Phi_n_equation_semi_implicit(self,v_old,dt=None,explicit_r_advection=False): """ Calculate a simple backward Euler step of the Phi_n equations. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_old,v_new must contain Phi_n rather than phi_n) The internal time step dt is used if one is not provided. Note: This is semi-implicit in the sense we linearise the equations to make it somewhat easier to implement. This currently works reasonably well in the current form... """ r = self._r nr = len(r) dr = r[1] R,XI = self._R,self._XI nxi = len(self._xi) dxi = XI[1,1] gamma_ast = self._gamma_ast h_ast = self._h_ast Psi_d = self._Psi_d Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_old,Phi_n_old,g_s_old,g_b_old = v_old if dt is None: dt = self._dt # Initialise the lhs matrix with ones on the main diagonal A_p0_p0 = np.ones(Phi_n_old.shape) # Initialise the rhs vector with the 'old' Phi_n rhs = Phi_n_old.copy() # Note: the xi=0 boundary condition should require no changes to the above (since Phi_n_old should be 0 on the bottom) rhs[0,:] = 0 # but we set it explicitly to be absolutely clear # Note: the same applies to the r=R boundary condition (where we enforce Phi_n=0 since h=b here) rhs[:,-1] = 0 # but we again set it explicitly to be absolutely clear # For the xi=1 boundary condition we implicitly make the 2nd derivative zero A_p0_m1 = np.zeros(Phi_n_old.shape) A_p0_m2 = np.zeros(Phi_n_old.shape) A_p0_m3 = np.zeros(Phi_n_old.shape) # required for higher order stencil A_p0_p0[-1,2:-1] = 2.0 # 1 low order, 2 higher order A_p0_m1[-1,2:-1] = -5.0 # -2 low order, -5 higher order A_p0_m2[-1,2:-1] = 4.0 # 1 low order, 4 higher order A_p0_m3[-1,2:-1] = -1.0 # -1 higher order rhs[-1,2:-1] = 0 # Now the BC at r=0 (and the artificial one I enforce next to it) A_p1_p0 = np.zeros(Phi_n_old.shape) A_p2_p0 = np.zeros(Phi_n_old.shape) A_m1_p0 = np.zeros(Phi_n_old.shape) # required for the artificial BC A_p3_p0 = np.zeros(Phi_n_old.shape) # required for higher order stencil at r=0 A_p0_p0[:,0] = 3.0;A_p1_p0[:,0] = -4.0;A_p2_p0[:,0] = 1.0 rhs[:,0] = 0 if self._use_artificial_dr_bc: # if artificial 'BC' is also enforced near r=0 A_p0_p0[:,0] = 3.0;A_p1_p0[:,0] = -4.0;A_p2_p0[:,0] = 1.0 A_m1_p0[:,1] = 4.0;A_p0_p0[:,1] = -7.0;A_p1_p0[:,1] = 4.0;A_p2_p0[:,1] = -1.0 rhs[:,1] = 0 if False: # if high order BC enforcement at r=0 A_p0_p0[:,0] = 11.0;A_p1_p0[:,0] = -18.0;A_p2_p0[:,0] = 9.0;A_p3_p0[:,0] = - 2.0 if False: # if both high order BC enforcement at r=0 and additional artificial BC near r=0 A_p0_p0[:,0] = 11.0;A_p1_p0[:,0] = -18.0;A_p2_p0[:,0] = 9.0;A_p3_p0[:,0] = -2.0 A_m1_p0[:,1] = 4.0;A_p0_p0[:,1] = - 7.0;A_p1_p0[:,1] = 4.0;A_p2_p0[:,1] = -1.0 rhs[:,1] = 0 # Add the forcing terms on the 'interior' (this need not be implicit really) A_p0_p0[1:-1,2:-1] += -dt*(g_b_old-Psi_d)[np.newaxis,2:-1] # implicit forcing... #rhs[1:-1,2:-1] += dt*Phi_n_old[1:-1,2:-1]*(g_b_old-Psi_d)[np.newaxis,2:-1] # explicit forcing... # Setup the vertical velocity factor # Note: the second line of each v_z terms do not include r=0 or r=R parts, they are not needed regardless # The v_z terms also exclude the 1/h factor... fot_old = self._advective_term(r,h_old) v_z_old = (1.0+Psi_m)*g_b_old[np.newaxis,:]*(Phi_n_old-XI*(Phi_n_old[-1,:])[np.newaxis,:]) v_z_old[:,1:-1] += gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)[:,1:-1]/R[:,1:-1]*(fot_old)[np.newaxis,1:-1] # Now add this to the appropriate diagonals... A_p0_p1 = np.zeros(Phi_n_old.shape) A_p0_m1[1:-1,2:-1] = -dt/(2*dxi)*v_z_old[1:-1,2:-1]/h_old[np.newaxis,2:-1] # central... A_p0_p1[1:-1,2:-1] = +dt/(2*dxi)*v_z_old[1:-1,2:-1]/h_old[np.newaxis,2:-1] #A_p0_m1[1:-1,2:-1] += -dt/dxi*(v_z_old[1:-1,2:-1]>0)*v_z_old[1:-1,2:-1]/h_old[np.newaxis,2:-1] # upwinded... #A_p0_p0[1:-1,2:-1] += +dt/dxi*(v_z_old[1:-1,2:-1]>0)*v_z_old[1:-1,2:-1]/h_old[np.newaxis,2:-1] #A_p0_p0[1:-1,2:-1] += -dt/dxi*(v_z_old[1:-1,2:-1]<0)*v_z_old[1:-1,2:-1]/h_old[np.newaxis,2:-1] #A_p0_p1[1:-1,2:-1] += +dt/dxi*(v_z_old[1:-1,2:-1]<0)*v_z_old[1:-1,2:-1]/h_old[np.newaxis,2:-1] # Setup the horizontal 'advection' stencil if explicit_r_advection: # true - explicit, false - implicit Phi_int_dxi_old = np.cumsum(0.5*((Phi_n_old*(1-XI))[1:,:]+(Phi_n_old*(1-XI))[:-1,:]),axis=0)*dxi integral_old = np.empty(Phi_n_old.shape) integral_old[0 ,:] = 0 integral_old[1:,:] = Phi_int_dxi_old f_old = (Phi_n_old*(0.5*XI**2-XI)+integral_old)*h_old[np.newaxis,:]**2 if np.isfinite(lambda_ast): f_old -= Phi_n_old*h_old[np.newaxis,:]/lambda_ast adv_old = self._advective_term_alt(r,h_old,f_old) # Add the horizontal 'advection' part to the system # Note: currently this is treated explicitly, which seems to work okay for the most part... rhs[1:-1,2:-1] += dt*gamma_ast*adv_old[1:-1,2:-1]/r[np.newaxis,2:-1] else: # Note: we can re-use the _advective_term_f_gradient function here diagonals_h2,offsets_h2 = self._advective_term_f_gradient(r,h_old,2,Phi_n_old) assert offsets_h2[0]==-1 A_m1_p0[1:-1,2:-1] += -dt*gamma_ast*(0.5*XI**2-XI)[1:-1,2:-1]*diagonals_h2[0][np.newaxis,2:-1]/r[np.newaxis,2:-1] A_p0_p0[1:-1,2:-1] += -dt*gamma_ast*(0.5*XI**2-XI)[1:-1,2:-1]*diagonals_h2[1][np.newaxis,2:-1]/r[np.newaxis,2:-1] A_p1_p0[1:-1,2:-1] += -dt*gamma_ast*(0.5*XI**2-XI)[1:-1,2:-1]*diagonals_h2[2][np.newaxis,2:-1]/r[np.newaxis,2:-1] if np.isfinite(lambda_ast): diagonals_h1,offsets_h1 = self._advective_term_f_gradient(r,h_old,1,Phi_n_old) assert offsets_h1[0]==-1 A_m1_p0[1:-1,2:-1] += +dt*gamma_ast/lambda_ast*diagonals_h1[0][np.newaxis,2:-1]/r[np.newaxis,2:-1] A_p0_p0[1:-1,2:-1] += +dt*gamma_ast/lambda_ast*diagonals_h1[1][np.newaxis,2:-1]/r[np.newaxis,2:-1] A_p1_p0[1:-1,2:-1] += +dt*gamma_ast/lambda_ast*diagonals_h1[2][np.newaxis,2:-1]/r[np.newaxis,2:-1] # Now add the integral component (note this is somewhat denser than usual) # (Note: it might be easier to build the entire matrix directly in coo format?) r_i,xi_i = np.meshgrid(range(nr),range(nxi)) indices = xi_i*nr+r_i H = (h_old>h_ast) # Use this to zero out bits where h is too small... row,col,dat = [],[],[] for j in range(1,nxi-1): # exclude the first and last index... (the first is 0 regardless) for k in range(j+1): c = 0.5*dxi if (k==0 or k==j) else dxi row.append(indices[j,2:-1]) col.append(indices[k,1:-2]) dat.append(-dt*gamma_ast*c*(1-XI[k,2:-1])*H[2:-1]*diagonals_h2[0][2:-1]/r[2:-1]) row.append(indices[j,2:-1]) col.append(indices[k,2:-1]) dat.append(-dt*gamma_ast*c*(1-XI[k,2:-1])*H[2:-1]*diagonals_h2[1][2:-1]/r[2:-1]) row.append(indices[j,2:-1]) col.append(indices[k,3: ]) dat.append(-dt*gamma_ast*c*(1-XI[k,2:-1])*H[2:-1]*diagonals_h2[2][2:-1]/r[2:-1]) M_trap = coo_matrix((np.concatenate(dat),(np.concatenate(row),np.concatenate(col))),shape=(nr*nxi,nr*nxi)) # Zero parts where h is still too small h_small = (h_old<=h_ast) A_p0_p0[:,h_small] = 1 rhs[:,h_small] = 0 A_m1_p0[:,h_small] = 0;A_p1_p0[:,h_small] = 0;A_p2_p0[:,h_small] = 0;#A_p3_p0[:,h_small] = 0; A_p0_m3[:,h_small] = 0;A_p0_m2[:,h_small] = 0;A_p0_m1[:,h_small] = 0;A_p0_p1[:,h_small] = 0; # Now setup the sparse linear system... if explicit_r_advection: A_11 = diags([A_p0_p0.ravel(), A_m1_p0.ravel()[1:],A_p1_p0.ravel()[:-1],A_p2_p0.ravel()[:-2],#A_p3_p0.ravel()[:-3], A_p0_m3.ravel()[3*nr:],A_p0_m2.ravel()[2*nr:],A_p0_m1.ravel()[nr:],A_p0_p1.ravel()[:-nr]], [0, -1,1,2,#3, -3*nr,-2*nr,-nr,nr], format="csr") else: A_11_partial = diags([A_p0_p0.ravel(), A_m1_p0.ravel()[1:],A_p1_p0.ravel()[:-1],A_p2_p0.ravel()[:-2],#A_p3_p0.ravel()[:-3], A_p0_m3.ravel()[3*nr:],A_p0_m2.ravel()[2*nr:],A_p0_m1.ravel()[nr:],A_p0_p1.ravel()[:-nr]], [0, -1,1,2,#3, -3*nr,-2*nr,-nr,nr], format="coo") A_11 = (A_11_partial+M_trap).tocsr() # Now solve the sparse linear system... Phi_n_new = spsolve(A_11,rhs.ravel()).reshape(Phi_n_old.shape) # done return Phi_n_new def _Phi_n_equation_RHS(self,v_old,v_new,dt=None): """ Calculate the RHS vector component corresponding to the Phi_n equation. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_old,v_new must contain Phi_n rather than phi_n) The internal time step dt is used if one is not provided. """ r,xi = self._r,self._xi nr,nxi = len(r),len(xi) dr,dxi = r[1],xi[1] R,XI = self._R,self._XI r_half = self._r_half h_ast = self._h_ast gamma_ast = self._gamma_ast Psi_d = self._Psi_d Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_old,Phi_n_old,g_s_old,g_b_old = v_old h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Some extra fields for convenience H_old,H_new = (h_old>h_ast),(h_new>h_ast) # Use this to zero out bits where h is too small... Hor_old,Hor_new = H_old[2:-1]/r[2:-1],H_new[2:-1]/r[2:-1] # Setup the rhs field and initialise on the interior with the difference in the fields rhs = np.zeros(Phi_n_new.shape) rhs[1:-1,2:-1] = -(Phi_n_new[1:-1,2:-1]-Phi_n_old[1:-1,2:-1]*H_old[np.newaxis,2:-1]) # Note: the H_old in the above line should ensure that delta_Phi will be 0 where-ever h remains small # (although it should be redundant since Phi_n_old should be zero here regardless) # Add the forcing term rhs[1:-1,2:-1] += 0.5*dt*( Phi_n_old[1:-1,2:-1]*(H_old*(g_b_old-Psi_d))[np.newaxis,2:-1]\ +Phi_n_new[1:-1,2:-1]*(H_new*(g_b_new-Psi_d))[np.newaxis,2:-1]) # Setup the vertical velocity factor # Note: the second line of each v_z terms do not include r=0 or r=R parts, they are not needed regardless # The v_z terms also exclude the 1/h factor... fot_new = self._advective_term(r,h_new) fot_old = self._advective_term(r,h_old) #v_z_old = (1.0+Psi_m)*g_b_old[np.newaxis,:]*(Phi_n_old-XI*(Phi_n_old[-1,:])[np.newaxis,:])\ # +gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)/R*(fot_old)[np.newaxis,:] v_z_old = (1.0+Psi_m)*g_b_old[np.newaxis,:]*(Phi_n_old-XI*(Phi_n_old[-1,:])[np.newaxis,:]) v_z_old[:,1:-1] += gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)[:,1:-1]/R[:,1:-1]*fot_old[np.newaxis,1:-1] #v_z_new = +(1.0+Psi_m)*g_b_new[np.newaxis,:]*(Phi_n_new-XI*(Phi_n_new[-1,:])[np.newaxis,:])\ # +gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)/R*fot_new[np.newaxis,:] v_z_new = (1.0+Psi_m)*g_b_new[np.newaxis,:]*(Phi_n_new-XI*(Phi_n_new[-1,:])[np.newaxis,:]) v_z_new[:,1:-1] += gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)[:,1:-1]/R[:,1:-1]*fot_new[np.newaxis,1:-1] # Add the vertical advection part (note no flux through the top or bottom... rhs[1:-1,2:-1] -= 0.25*dt/dxi*( v_z_old[1:-1,2:-1]*(Phi_n_old[2:,2:-1]-Phi_n_old[:-2,2:-1])*(H_old/h_old)[np.newaxis,2:-1]\ +v_z_new[1:-1,2:-1]*(Phi_n_new[2:,2:-1]-Phi_n_new[:-2,2:-1])*(H_new/h_new)[np.newaxis,2:-1]) # Setup the horizontal 'advection' stencil Phi_int_dxi_old = np.cumsum(0.5*((Phi_n_old*(1-XI))[1:,:]+(Phi_n_old*(1-XI))[:-1,:]),axis=0)*dxi Phi_int_dxi_new = np.cumsum(0.5*((Phi_n_new*(1-XI))[1:,:]+(Phi_n_new*(1-XI))[:-1,:]),axis=0)*dxi integral_old = np.empty(Phi_n_old.shape) integral_old[0 ,:] = 0 integral_old[1:,:] = Phi_int_dxi_old integral_new = np.empty(Phi_n_new.shape) integral_new[0 ,:] = 0 integral_new[1:,:] = Phi_int_dxi_new f_old = (Phi_n_old*(0.5*XI**2-XI)+integral_old)*h_old[np.newaxis,:]**2 f_new = (Phi_n_new*(0.5*XI**2-XI)+integral_new)*h_new[np.newaxis,:]**2 if np.isfinite(lambda_ast): f_old -= Phi_n_old*h_old[np.newaxis,:]/lambda_ast f_new -= Phi_n_new*h_new[np.newaxis,:]/lambda_ast adv_new = self._advective_term_alt(r,h_new,f_new) adv_old = self._advective_term_alt(r,h_old,f_old) # Add the horizontal 'advection' part rhs[1:-1,2:-1] += 0.5*dt*gamma_ast*( adv_new[1:-1,2:-1]*Hor_new[np.newaxis,:] +adv_old[1:-1,2:-1]*Hor_old[np.newaxis,:]) # Set all of the entries relating to boundary conditions # Set the RHS corresponding to the \xi=0 boundary condition (delta_Phi+Phi_n_new)=0 rhs[0,2:-1] = -Phi_n_new[0,2:-1] # Set the RHS corresponding to the r=R boundary condition (delta_Phi+Phi_n_new)=0 (since h=b~0 is enforced) rhs[:, -1] = -Phi_n_new[:, -1] if self._add_top_Phi_bc: # Set the RHS corresponding to the \xi=1 boundary condition d^2/dr^2(delta_Phi+Phi_n_new)=0 rhs[-1,2:-1] = -2*Phi_n_new[-1,2:-1]+5*Phi_n_new[-2,2:-1]-4*Phi_n_new[-3,2:-1]+Phi_n_new[-4,2:-1] else: # Implement the discretisation of the horizontal advection rhs[-1,2:-1] = -(Phi_n_new[-1,2:-1]-Phi_n_old[-1,2:-1]*H_old[2:-1])\ +0.5*dt*gamma_ast*(adv_new[-1,2:-1]*Hor_new+adv_old[-1,2:-1]*Hor_old)\ +0.5*dt*( Phi_n_old[-1,2:-1]*(H_old*(g_b_old-Psi_d))[2:-1]\ +Phi_n_new[-1,2:-1]*(H_new*(g_b_new-Psi_d))[2:-1]) # Set the RHS corresponding to the r=0 boundary condition d/dr(delta_Phi+Phi_n_new)=0 rhs[:, 0] = -3.0*Phi_n_new[:,0]+4.0*Phi_n_new[:,1]-Phi_n_new[:,2] if False: # optional, higher order stencil rhs[:, 0] = -11*Phi_n_new[:,0]+18*Phi_n_new[:,1]-9*Phi_n_new[:,2]+2*Phi_n_new[:,3] if self._use_artificial_dr_bc: # Set the RHS corresponding to the introduced r=dr condition Phi(dr)=Phi(0)+0.5*dr^2*Phi''(0) rhs[:, 1] = 4*Phi_n_new[:,0]-7*Phi_n_new[:,1]+4*Phi_n_new[:,2]-Phi_n_new[:,3] # done return rhs.ravel() def _Phi_n_equation_LHS0(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the h dependence in the Phi_n equation. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_old,v_new must contain Phi_n rather than phi_n) """ r,xi = self._r,self._xi nr,nxi = len(r),len(xi) dr,dxi = r[1],xi[1] R,XI = self._R,self._XI r_half = self._r_half h_ast = self._h_ast gamma_ast = self._gamma_ast Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Note this block has rectangular shape # Setup some index arrays for constructing the matrix in coo format r_i,xi_i = np.meshgrid(range(nr),range(nxi)) indices = xi_i*nr+r_i row,col,dat = [],[],[] H = (h_new>h_ast) # Use this to zero out bits where h is too small... Hor = H[1:-1]/r[1:-1] # Setup the vertical advection components first # Do the easier part first fot_new = self._advective_term(r,h_new) #v_z_new = +(1.0+Psi_m)*g_b_new[np.newaxis,:]*(Phi_n_new-XI*(Phi_n_new[-1,:])[np.newaxis,:])\ # +gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)/R*fot_new[np.newaxis,:] v_z_new = (1.0+Psi_m)*g_b_new[np.newaxis,:]*(Phi_n_new-XI*(Phi_n_new[-1,:])[np.newaxis,:]) v_z_new[:,1:-1] += gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)[:,1:-1]/R[:,1:-1]*fot_new[np.newaxis,1:-1] xi_adv_term1 = -0.25*dt/dxi*v_z_new[1:-1,:]*(Phi_n_new[2:,:]-Phi_n_new[:-2,:])*(H/h_new**2)[np.newaxis,:] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,1:-1].ravel()) dat.append(xi_adv_term1[:,1:-1].ravel()) if self._use_artificial_dr_bc: #xi_adv_term1[:,1] = 0 # Need to modify this in conjunction with the 'artificial' BC at r=dr row[-1] = indices[1:-1,2:-1].ravel() col[-1] = r_i[1:-1,2:-1].ravel() dat[-1] = xi_adv_term1[:,2:-1].ravel() # Now the more difficult/involved part... # First get diagonals relating to the fourth order h term diagonals_h3,offsets_h3 = self._advective_term_h_gradient(r,h_new,3) if self._use_artificial_dr_bc: # Need to modify diagonals in conjunction with the 'artificial' BC at r=dr for k in range(len(diagonals_h3)): diagonals_h3[k][1] = 0 # now construct the 2D factor and then add the diagonals to the matrix twoD_factor = 0.25*dt/dxi*gamma_ast*(XI**3-3*XI**2+2*XI)[1:-1,1:-1]*(Phi_n_new[2:,1:-1]-Phi_n_new[:-2,1:-1])\ *H[np.newaxis,1:-1]/(6.0*r*h_new)[np.newaxis,1:-1] diag_h3_m4_dat = diagonals_h3[0][np.newaxis,4:-1]*twoD_factor[:,3:] row.append(indices[1:-1,4:-1].ravel()) col.append(r_i[1:-1,0:-5].ravel()) dat.append(diag_h3_m4_dat.ravel()) diag_h3_m3_dat = diagonals_h3[1][np.newaxis,3:-1]*twoD_factor[:,2:] row.append(indices[1:-1,3:-1].ravel()) col.append(r_i[1:-1,0:-4].ravel()) dat.append(diag_h3_m3_dat.ravel()) diag_h3_m2_dat = diagonals_h3[2][np.newaxis,2:-1]*twoD_factor[:,1:] row.append(indices[1:-1,2:-1].ravel()) col.append(r_i[1:-1,0:-3].ravel()) dat.append(diag_h3_m2_dat.ravel()) diag_h3_m1_dat = diagonals_h3[3][np.newaxis,1:-1]*twoD_factor[:,:] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,0:-2].ravel()) dat.append(diag_h3_m1_dat.ravel()) diag_h3_p0_dat = diagonals_h3[4][np.newaxis,1:-1]*twoD_factor[:,:] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,1:-1].ravel()) dat.append(diag_h3_p0_dat.ravel()) diag_h3_p1_dat = diagonals_h3[5][np.newaxis,1:-1]*twoD_factor[:,:] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,2:].ravel()) dat.append(diag_h3_p1_dat.ravel()) diag_h3_p2_dat = diagonals_h3[6][np.newaxis,1:-2]*twoD_factor[:,:-1] row.append(indices[1:-1,1:-2].ravel()) col.append(r_i[1:-1,3:].ravel()) dat.append(diag_h3_p2_dat.ravel()) diag_h3_p3_dat = diagonals_h3[7][np.newaxis,1:-3]*twoD_factor[:,:-2] row.append(indices[1:-1,1:-3].ravel()) col.append(r_i[1:-1,4:].ravel()) dat.append(diag_h3_p3_dat.ravel()) # Now we need to do the radial 'advective' term # First get diagonals relating to the fourth order h term Phi_int_dxi_new = np.cumsum(0.5*((Phi_n_new*(1-XI))[1:,:]+(Phi_n_new*(1-XI))[:-1,:]),axis=0)*dxi h2_factor = Phi_n_new*(0.5*XI**2-XI) h2_factor[1:,:] += Phi_int_dxi_new h2_prefix = np.zeros(nr) h2_prefix[1:-1] = -0.5*dt*gamma_ast*Hor diagonals_h2,offsets_h2 = self._advective_term_h_gradient_alt(r,h_new,2,h2_factor,True,h2_prefix) if np.isfinite(lambda_ast): h1_prefix = np.zeros(nr) h1_prefix[1:-1] = 0.5*dt*gamma_ast/lambda_ast*Hor diagonals_h1,offsets_h1 = self._advective_term_h_gradient_alt(r,h_new,1,Phi_n_new,True,h1_prefix) for k in range(len(diagonals_h2)): diagonals_h2[k] += diagonals_h1[k] if self._use_artificial_dr_bc: # Need to modify diagonals in conjunction with the 'artificial' BC at r=dr for k in range(len(diagonals_h2)): diagonals_h2[k][:,1] = 0 diag_h2_m4_dat = diagonals_h2[0][1:-1,4:-1] row.append(indices[1:-1,4:-1].ravel()) col.append(r_i[1:-1,0:-5].ravel()) dat.append(diag_h2_m4_dat.ravel()) diag_h2_m3_dat = diagonals_h2[1][1:-1,3:-1] row.append(indices[1:-1,3:-1].ravel()) col.append(r_i[1:-1,0:-4].ravel()) dat.append(diag_h2_m3_dat.ravel()) diag_h2_m2_dat = diagonals_h2[2][1:-1,2:-1] row.append(indices[1:-1,2:-1].ravel()) col.append(r_i[1:-1,0:-3].ravel()) dat.append(diag_h2_m2_dat.ravel()) diag_h2_m1_dat = diagonals_h2[3][1:-1,1:-1] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,0:-2].ravel()) dat.append(diag_h2_m1_dat.ravel()) diag_h2_p0_dat = diagonals_h2[4][1:-1,1:-1] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,1:-1].ravel()) dat.append(diag_h2_p0_dat.ravel()) diag_h2_p1_dat = diagonals_h2[5][1:-1,1:-1] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,2:].ravel()) dat.append(diag_h2_p1_dat.ravel()) diag_h2_p2_dat = diagonals_h2[6][1:-1,1:-2] row.append(indices[1:-1,1:-2].ravel()) col.append(r_i[1:-1,3:].ravel()) dat.append(diag_h2_p2_dat.ravel()) diag_h2_p3_dat = diagonals_h2[7][1:-1,1:-3] row.append(indices[1:-1,1:-3].ravel()) col.append(r_i[1:-1,4:].ravel()) dat.append(diag_h2_p3_dat.ravel()) if not self._add_top_Phi_bc: row.append(indices[-1,4:-1].ravel()) col.append(r_i[-1,0:-5].ravel()) dat.append(diagonals_h2[0][-1,4:-1].ravel()) row.append(indices[-1,3:-1].ravel()) col.append(r_i[-1,0:-4].ravel()) dat.append(diagonals_h2[1][-1,3:-1].ravel()) row.append(indices[-1,2:-1].ravel()) col.append(r_i[-1,0:-3].ravel()) dat.append(diagonals_h2[2][-1,2:-1].ravel()) row.append(indices[-1,1:-1].ravel()) col.append(r_i[-1,0:-2].ravel()) dat.append(diagonals_h2[3][-1,1:-1].ravel()) row.append(indices[-1,1:-1].ravel()) col.append(r_i[-1,1:-1].ravel()) dat.append(diagonals_h2[4][-1,1:-1].ravel()) row.append(indices[-1,1:-1].ravel()) col.append(r_i[-1,2:].ravel()) dat.append(diagonals_h2[5][-1,1:-1].ravel()) row.append(indices[-1,1:-2].ravel()) col.append(r_i[-1,3:].ravel()) dat.append(diagonals_h2[6][-1,1:-2].ravel()) row.append(indices[-1,1:-3].ravel()) col.append(r_i[-1,4:].ravel()) dat.append(diagonals_h2[7][-1,1:-3].ravel()) # done, construct and return return coo_matrix((np.concatenate(dat),(np.concatenate(row),np.concatenate(col))),shape=(nr*nxi,nr))#.tocsr() def _Phi_n_equation_LHS1(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the phi_n dependence in the Phi_n equation. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_old,v_new must contain Phi_n in place of phi_n) """ r,xi = self._r,self._xi nr,nxi = len(r),len(xi) dr,dxi = r[1],xi[1] R,XI = self._R,self._XI r_half = self._r_half h_ast = self._h_ast gamma_ast = self._gamma_ast Psi_d = self._Psi_d Psi_m = self._Psi_m lambda_ast = self._lambda_ast h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Setup some index arrays for constructing the matrix in coo format r_i,xi_i = np.meshgrid(range(nr),range(nxi)) indices = xi_i*nr+r_i H = (h_new>h_ast) # Use this to zero out bits where h is too small... Hor = H[2:-1]/r[2:-1] A_p0_p0 = np.ones(Phi_n_new.shape) row,col,dat = [indices.ravel()],[indices.ravel()],[A_p0_p0.ravel()] # initialise with a view of A_p0_p0 # We start by filling out the interior stencils # Add the forcing term to the main diagonal A_p0_p0[1:-1,2:-1] += -0.5*dt*H[np.newaxis,2:-1]*(g_b_new-Psi_d)[np.newaxis,2:-1] # Add the simple non-linear component of the vertical advection term A_p0_p0[1:-1,2:-1] += +0.25*dt/dxi*(1+Psi_m)*(H*g_b_new/h_new)[np.newaxis,2:-1]*(Phi_n_new[2:,2:-1]-Phi_n_new[:-2,2:-1]) # Add the other non-linear component of the vertical advection term #for k in range(1,nxi-1): # exclude the two ends # row.append(indices[k,2:-1]) # col.append(indices[-1,2:-1]) # dat.append(-0.25*dt/dxi*(1+Psi_m)*(XI[k]*H*g_b_new/h)[2:-1]*(Phi_n_new[k+1,2:-1]-Phi_n_new[k-1,2:-1])) row.append(indices[1:-1,2:-1].ravel()) col.append(np.broadcast_to(indices[-1,2:-1],(nxi-2,nr-3)).ravel()) dat.append((-0.25*dt/dxi*(1+Psi_m)*(H*g_b_new/h_new)[np.newaxis,2:-1]*XI[1:-1,2:-1]\ *(Phi_n_new[2:,2:-1]-Phi_n_new[:-2,2:-1])).ravel()) # Add the remaining vertical advection term fot_new = self._advective_term(r,h_new) #v_z_new = +(1.0+Psi_m)*g_b_new[np.newaxis,:]*(Phi_n_new-XI*(Phi_n_new[-1,:])[np.newaxis,:])\ # +gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)/R*fot_new[np.newaxis,:] v_z_new = (1.0+Psi_m)*g_b_new[np.newaxis,:]*(Phi_n_new-XI*(Phi_n_new[-1,:])[np.newaxis,:]) v_z_new[:,1:-1] += gamma_ast/6.0*(2.0*XI+XI**3-3*XI**2)[:,1:-1]/R[:,1:-1]*fot_new[np.newaxis,1:-1] A_p0_m1 = np.zeros(Phi_n_new.shape) A_p0_p1 = np.zeros(Phi_n_new.shape) A_p0_m1[1:-1,2:-1] = -0.5*dt/(2.0*dxi)*H[np.newaxis,2:-1]*v_z_new[1:-1,2:-1]/h_new[np.newaxis,2:-1] A_p0_p1[1:-1,2:-1] = +0.5*dt/(2.0*dxi)*H[np.newaxis,2:-1]*v_z_new[1:-1,2:-1]/h_new[np.newaxis,2:-1] row.append(indices[1:-1,2:-1].ravel());row.append(indices[1:-1,2:-1].ravel()) col.append(indices[2: ,2:-1].ravel());col.append(indices[ :-2,2:-1].ravel()) dat.append(A_p0_p1[1:-1,2:-1].ravel());dat.append(A_p0_m1[1:-1,2:-1].ravel()) # Add the radial 'advective' terms # Note: we can re-use the self._advective_term_f_gradient function here A_m1_p0 = np.zeros(Phi_n_new.shape) A_p1_p0 = np.zeros(Phi_n_new.shape) diagonals_h2,offsets_h2 = self._advective_term_f_gradient(r,h_new,2,Phi_n_new) assert offsets_h2[0]==-1 A_m1_p0[1:-1,2:-1] += -0.5*dt*gamma_ast*(0.5*XI**2-XI)[1:-1,2:-1]*Hor[np.newaxis,:]*diagonals_h2[0][np.newaxis,2:-1] A_p0_p0[1:-1,2:-1] += -0.5*dt*gamma_ast*(0.5*XI**2-XI)[1:-1,2:-1]*Hor[np.newaxis,:]*diagonals_h2[1][np.newaxis,2:-1] A_p1_p0[1:-1,2:-1] += -0.5*dt*gamma_ast*(0.5*XI**2-XI)[1:-1,2:-1]*Hor[np.newaxis,:]*diagonals_h2[2][np.newaxis,2:-1] if np.isfinite(lambda_ast): diagonals_h1,offsets_h1 = self._advective_term_f_gradient(r,h_new,1,Phi_n_new) assert offsets_h1[0]==-1 A_m1_p0[1:-1,2:-1] += +0.5*dt*gamma_ast/lambda_ast*Hor[np.newaxis,:]*diagonals_h1[0][np.newaxis,2:-1] A_p0_p0[1:-1,2:-1] += +0.5*dt*gamma_ast/lambda_ast*Hor[np.newaxis,:]*diagonals_h1[1][np.newaxis,2:-1] A_p1_p0[1:-1,2:-1] += +0.5*dt*gamma_ast/lambda_ast*Hor[np.newaxis,:]*diagonals_h1[2][np.newaxis,2:-1] row.append(indices[1:-1,2:-1].ravel());row.append(indices[1:-1,2:-1].ravel()) col.append(indices[1:-1,3: ].ravel());col.append(indices[1:-1,1:-2].ravel()) dat.append(A_p1_p0[1:-1,2:-1].ravel());dat.append(A_m1_p0[1:-1,2:-1].ravel()) # Now add the integral component (note this is somewhat denser than other components) for j in range(1,nxi-1): # exclude the first and last index... (the first is 0 regardless) for k in range(j+1): c = 0.5*dxi if (k==0 or k==j) else dxi row.append(indices[j,2:-1]) col.append(indices[k,1:-2]) dat.append(-0.5*dt*gamma_ast*c*(1-XI[k,2:-1])*Hor*diagonals_h2[0][2:-1]) row.append(indices[j,2:-1]) col.append(indices[k,2:-1]) dat.append(-0.5*dt*gamma_ast*c*(1-XI[k,2:-1])*Hor*diagonals_h2[1][2:-1]) row.append(indices[j,2:-1]) col.append(indices[k,3: ]) dat.append(-0.5*dt*gamma_ast*c*(1-XI[k,2:-1])*Hor*diagonals_h2[2][2:-1]) # Now we need to enforce the boundary conditions... # When \xi=0 then we want (delta_Phi+Phi_n_new) = 0 ==> delta_Phi = -Phi_n_new # ==> so ones on the main diagonal is fine, and rhs needs to be set accordingly. # When r=R then we want (delta_Phi+Phi_n_new) = 0 ==> delta_Phi = -Phi_n_new # ==> so ones on the main diagonal is fine, and rhs needs to be set accordingly. if self._add_top_Phi_bc: # When \xi=1 then we want d^2/d\xi^2(delta_Phi+Phi_n_new) = 0 # ==> stencil 1,-2,_1_ for 1st order, -1,4,-5,_2_ for second order A_p0_xi1m1 = np.empty(nr) A_p0_xi1m2 = np.empty(nr) A_p0_xi1m3 = np.empty(nr) A_p0_p0[-1,2:-1] = 2.0 # 1 low order, 2 higher order A_p0_xi1m1[2:-1] = -5.0 # -2 low order, -5 higher order A_p0_xi1m2[2:-1] = 4.0 # 1 low order, 4 higher order A_p0_xi1m3[2:-1] = -1.0 # -1 higher order row.append(indices[-1,2:-1]);row.append(indices[-1,2:-1]);row.append(indices[-1,2:-1]) col.append(indices[-2,2:-1]);col.append(indices[-3,2:-1]);col.append(indices[-4,2:-1]) dat.append(A_p0_xi1m1[2:-1]);dat.append(A_p0_xi1m2[2:-1]);dat.append(A_p0_xi1m3[2:-1]) else: # Implement the discretisation of the horizontal advection A_p0_p0[-1,2:-1] = 1.0-0.5*dt*H[2:-1]*(g_b_new-Psi_d)[2:-1] # the radial advective part... (could really just sub XI=1 here...) A_m1_p0[-1,2:-1] += -0.5*dt*gamma_ast*(0.5*XI**2-XI)[-1,2:-1]*Hor*diagonals_h2[0][2:-1] A_p0_p0[-1,2:-1] += -0.5*dt*gamma_ast*(0.5*XI**2-XI)[-1,2:-1]*Hor*diagonals_h2[1][2:-1] A_p1_p0[-1,2:-1] += -0.5*dt*gamma_ast*(0.5*XI**2-XI)[-1,2:-1]*Hor*diagonals_h2[2][2:-1] if np.isfinite(lambda_ast): #diagonals_h1,offsets_h1 = self._advective_term_f_gradient(r,h_new,1,Phi_n_new) # should already exist... #assert offsets_h1[0]==-1 A_m1_p0[-1,2:-1] += +0.5*dt*gamma_ast/lambda_ast*Hor*diagonals_h1[0][2:-1] A_p0_p0[-1,2:-1] += +0.5*dt*gamma_ast/lambda_ast*Hor*diagonals_h1[1][2:-1] A_p1_p0[-1,2:-1] += +0.5*dt*gamma_ast/lambda_ast*Hor*diagonals_h1[2][2:-1] row.append(indices[-1,2:-1].ravel());row.append(indices[-1,2:-1].ravel()) col.append(indices[-1,3: ].ravel());col.append(indices[-1,1:-2].ravel()) dat.append(A_p1_p0[-1,2:-1].ravel());dat.append(A_m1_p0[-1,2:-1].ravel()) # Now add the integral component (note this is somewhat denser than other components) j = nxi-1 for k in range(j+1): c = 0.5*dxi if (k==0 or k==j) else dxi row.append(indices[j,2:-1]) col.append(indices[k,1:-2]) dat.append(-0.5*dt*gamma_ast*c*(1-XI[k,2:-1])*Hor*diagonals_h2[0][2:-1]) row.append(indices[j,2:-1]) col.append(indices[k,2:-1]) dat.append(-0.5*dt*gamma_ast*c*(1-XI[k,2:-1])*Hor*diagonals_h2[1][2:-1]) row.append(indices[j,2:-1]) col.append(indices[k,3: ]) dat.append(-0.5*dt*gamma_ast*c*(1-XI[k,2:-1])*Hor*diagonals_h2[2][2:-1]) # When r=0 we want to enforce d/dr(delta_Phi+Phi_n_new) = 0 # ==> stencil _3_,-4,1 for second order A_r0p1_p0 = np.empty(nxi) A_r0p2_p0 = np.empty(nxi) A_p0_p0[:,0] = 3.0 A_r0p1_p0[:] = -4.0 A_r0p2_p0[:] = 1.0 row.append(indices[:,0]);row.append(indices[:,0]) col.append(indices[:,1]);col.append(indices[:,2]) dat.append(A_r0p1_p0); dat.append(A_r0p2_p0) if False: # Coud implement optional higher order stencil for r=0 here, but not really needed... pass if self._use_artificial_dr_bc: # When r=dr we also enforce Phi(dr)=Phi(0)+0.5*dr^2*Phi''(0) (to smooth things out a bit here) # ==> stencil -4,_7_,-4,1 (derived from a forward 2nd order stencil for Phi''(0)) A_r1m1_p0 = np.empty(nxi) A_r1p1_p0 = np.empty(nxi) A_r1p2_p0 = np.empty(nxi) A_r1m1_p0[:] = -4.0 A_p0_p0[:,1] = 7.0 A_r1p1_p0[:] = -4.0 A_r1p2_p0[:] = 1.0 row.append(indices[:,1]);row.append(indices[:,1]);row.append(indices[:,1]) col.append(indices[:,0]);col.append(indices[:,2]);col.append(indices[:,3]) dat.append(A_r1m1_p0); dat.append(A_r1p1_p0); dat.append(A_r1p2_p0) # Final constructions A_11 = coo_matrix((np.concatenate(dat),(np.concatenate(row),np.concatenate(col))),shape=(nr*nxi,nr*nxi)) # done return A_11 def _Phi_n_equation_LHS2(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the g_s dependence in the Phi_n equation. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_new must contain Phi_n rather than phi_n) """ # Note: there is no dependence on g_s return None def _Phi_n_equation_LHS3(self,v_new,dt=None): """ Calculate the LHS matrix block corresponding to the g_b dependence in the Phi_n equation. (Here Phi_n = int_0^{h xi} phi_n dz, the input v_new must contain Phi_n rather than phi_n) """ nr,nxi = len(self._r),len(self._xi) XI = self._XI dxi = XI[1,1] Psi_m = self._Psi_m h_new,Phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt H = (h_new>self._h_ast) # Use this to zero out bits where h is too small... # Note: This block has a rectangular shape r_i,xi_i = np.meshgrid(np.arange(nr),np.arange(nxi)) indices = r_i+nr*xi_i row,col,dat = [],[],[] # First add the component coming from the forcing term forcing_term = -0.5*dt*Phi_n_new*H row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,1:-1].ravel()) dat.append(forcing_term[1:-1,1:-1].ravel()) if self._use_artificial_dr_bc: #forcing_term[:,1] = 0 # Need to modify this in conjunction with the 'artificial' BC at r=dr row[-1] = indices[1:-1,2:-1].ravel() col[-1] = r_i[1:-1,2:-1].ravel() dat[-1] = forcing_term[1:-1,2:-1].ravel() # Now add the component coming from the vertical advection term # Note: the following term (from the vertical advection) excludes xi=0 and xi=1 entries xi_adv_term = 0.25*dt/dxi*(1+Psi_m)*(Phi_n_new[1:-1,:]-XI[1:-1,:]*(Phi_n_new[-1,:])[np.newaxis,:])\ *(Phi_n_new[2:,:]-Phi_n_new[:-2,:])*(H/h_new)[np.newaxis,:] row.append(indices[1:-1,1:-1].ravel()) col.append(r_i[1:-1,1:-1].ravel()) dat.append(xi_adv_term[:,1:-1].ravel()) if self._use_artificial_dr_bc: #xi_adv_term[:,1] = 0 # Need to modify this in conjunction with the 'artificial' BC at r=dr row[-1] = indices[1:-1,2:-1].ravel() col[-1] = r_i[1:-1,2:-1].ravel() dat[-1] = xi_adv_term[:,2:-1].ravel() if not self._add_top_Phi_bc: # Add forcing on top row... row.append(indices[-1,1:-1].ravel()) col.append(r_i[-1,1:-1].ravel()) dat.append(forcing_term[-1,1:-1].ravel()) # done, construct and return return coo_matrix((np.concatenate(dat),(np.concatenate(row),np.concatenate(col))),shape=(nr*nxi,nr))#.tocsr() def _g_s_equation_RHS(self,v_old,v_new,dt=None): """ Calculate the RHS vector component corresponding to the g_s equation. """ r = self._r nr = len(r) dr = r[1] r_half = self._r_half h_ast = self._h_ast D = self._D Q_s = self._Q_s h_old,phi_n_old,g_s_old,g_b_old = v_old h_new,phi_n_new,g_s_new,g_b_new = v_new if dt is None: dt = self._dt # Calculate spatial stencil and add to the interior of the rhs vector rhs =
np.empty(nr)
numpy.empty
"""Miscellaneous internal PyJanitor helper functions.""" import functools import os import sys import warnings from typing import Callable, Dict, List, Union import numpy as np import pandas as pd from .errors import JanitorError def check(varname: str, value, expected_types: list): """ One-liner syntactic sugar for checking types. Should be used like this:: check('x', x, [int, float]) :param varname: The name of the variable. :param value: The value of the varname. :param expected_types: The types we expect the item to be. :returns: TypeError if data is not the expected type. """ is_expected_type = False for t in expected_types: if isinstance(value, t): is_expected_type = True break if not is_expected_type: raise TypeError( "{varname} should be one of {expected_types}".format( varname=varname, expected_types=expected_types ) ) def _clean_accounting_column(x: str) -> float: """ Perform the logic for the `cleaning_style == "accounting"` attribute. This is a private function, not intended to be used outside of ``currency_column_to_numeric``. It is intended to be used in a pandas `apply` method. :returns: An object with a cleaned column. """ y = x.strip() y = y.replace(",", "") y = y.replace(")", "") y = y.replace("(", "-") if y == "-": return 0.00 return float(y) def _currency_column_to_numeric(x, cast_non_numeric=None) -> str: """ Perform logic for changing cell values. This is a private function intended to be used only in ``currency_column_to_numeric``. It is intended to be used in a pandas `apply` method, after being passed through `partial`. """ acceptable_currency_characters = { "-", ".", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", } if len(x) == 0: return "ORIGINAL_NA" if cast_non_numeric: if x in cast_non_numeric.keys(): check( "{%r: %r}" % (x, str(cast_non_numeric[x])), cast_non_numeric[x], [int, float], ) return cast_non_numeric[x] else: return "".join(i for i in x if i in acceptable_currency_characters) else: return "".join(i for i in x if i in acceptable_currency_characters) def _replace_empty_string_with_none(column_series): column_series.loc[column_series == ""] = None return column_series def _replace_original_empty_string_with_none(column_series): column_series.loc[column_series == "ORIGINAL_NA"] = None return column_series def _strip_underscores( df: pd.DataFrame, strip_underscores: Union[str, bool] = None ) -> pd.DataFrame: """ Strip underscores from DataFrames column names. Underscores can be stripped from the beginning, end or both. .. code-block:: python df = _strip_underscores(df, strip_underscores='left') :param df: The pandas DataFrame object. :param strip_underscores: (optional) Removes the outer underscores from all column names. Default None keeps outer underscores. Values can be either 'left', 'right' or 'both' or the respective shorthand 'l', 'r' and True. :returns: A pandas DataFrame with underscores removed. """ df = df.rename( columns=lambda x: _strip_underscores_func(x, strip_underscores) ) return df def _strip_underscores_func( col: str, strip_underscores: Union[str, bool] = None ) -> pd.DataFrame: """Strip underscores from a string.""" underscore_options = [None, "left", "right", "both", "l", "r", True] if strip_underscores not in underscore_options: raise JanitorError( f"strip_underscores must be one of: {underscore_options}" ) if strip_underscores in ["left", "l"]: col = col.lstrip("_") elif strip_underscores in ["right", "r"]: col = col.rstrip("_") elif strip_underscores == "both" or strip_underscores is True: col = col.strip("_") return col def import_message( submodule: str, package: str, conda_channel: str = None, pip_install: bool = False, ): """ Return warning if package is not found. Generic message for indicating to the user when a function relies on an optional module / package that is not currently installed. Includes installation instructions. Used in `chemistry.py` and `biology.py`. :param submodule: pyjanitor submodule that needs an external dependency. :param package: External package this submodule relies on. :param conda_channel: Conda channel package can be installed from, if at all. :param pip_install: Whether package can be installed via pip. """ is_conda = os.path.exists(os.path.join(sys.prefix, "conda-meta")) installable = True if is_conda: if conda_channel is None: installable = False installation = f"{package} cannot be installed via conda" else: installation = f"conda install -c {conda_channel} {package}" else: if pip_install: installation = f"pip install {package}" else: installable = False installation = f"{package} cannot be installed via pip" print( f"To use the janitor submodule {submodule}, you need to install " f"{package}." ) print() if installable: print("To do so, use the following command:") print() print(f" {installation}") else: print(f"{installation}") def idempotent(func: Callable, df: pd.DataFrame, *args, **kwargs): """ Raises error if a function operating on a `DataFrame` is not idempotent, that is, `func(func(df)) = func(df)` is not true for all `df`. :param func: A python method. :param df: A pandas `DataFrame`. :param args: Positional arguments supplied to the method. :param kwargs: Keyword arguments supplied to the method. :raises ValueError: If `func` is found to not be idempotent for the given `DataFrame` `df`. """ if not func(df, *args, **kwargs) == func( func(df, *args, **kwargs), *args, **kwargs ): raise ValueError( "Supplied function is not idempotent for the given " "DataFrame." ) def deprecated_alias(**aliases) -> Callable: """ Used as a decorator when deprecating old function argument names, while keeping backwards compatibility. Implementation is inspired from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/49802412/how-to-implement-deprecation-in-python-with-argument-alias Functional usage example: .. code-block:: python @deprecated_alias(a='alpha', b='beta') def simple_sum(alpha, beta): return alpha + beta :param aliases: Dictionary of aliases for a function's arguments. :return: Your original function wrapped with the kwarg redirection function. """ # noqa: E501 def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): rename_kwargs(func.__name__, kwargs, aliases) return func(*args, **kwargs) return wrapper return decorator def refactored_function(message: str) -> Callable: """Used as a decorator when refactoring functions Implementation is inspired from `Hacker Noon`_. .. Hacker Noon: https://hackernoon.com/why-refactoring-how-to-restructure-python-package-51b89aa91987 Functional usage example: .. code-block:: python @refactored_function( message="simple_sum() has been refactored. Use hard_sum() instead." ) def simple_sum(alpha, beta): return alpha + beta :param message: Message to use in warning user about refactoring. :return: Your original function wrapped with the kwarg redirection function. """ # noqa: E501 def decorator(func): def emit_warning(*args, **kwargs): warnings.warn(message, FutureWarning) return func(*args, **kwargs) return emit_warning return decorator def rename_kwargs(func_name: str, kwargs: Dict, aliases: Dict): """ Used to update deprecated argument names with new names. Throws a TypeError if both arguments are provided, and warns if old alias is used. Implementation is inspired from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/49802412/how-to-implement-deprecation-in-python-with-argument-alias :param func_name: name of decorated function. :param kwargs: Arguments supplied to the method. :param aliases: Dictionary of aliases for a function's arguments. :return: Nothing; the passed `kwargs` are modified directly. """ # noqa: E501 for old_alias, new_alias in aliases.items(): if old_alias in kwargs: if new_alias in kwargs: raise TypeError( f"{func_name} received both {old_alias} and {new_alias}" ) warnings.warn( f"{old_alias} is deprecated; use {new_alias}", DeprecationWarning, ) kwargs[new_alias] = kwargs.pop(old_alias) def check_column( df: pd.DataFrame, old_column_names: List, present: bool = True ): """ One-liner syntactic sugar for checking the presence or absence of a column. Should be used like this:: check(df, ['a', 'b'], present=True) :param df: The name of the variable. :param old_column_names: A list of column names we want to check to see if present (or absent) in df. :param present: If True (default), checks to see if all of old_column_names are in df.columns. If False, checks that none of old_column_names are in df.columns. :returns: ValueError if data is not the expected type. """ for column_name in old_column_names: if present: if column_name not in df.columns: raise ValueError( f"{column_name} not present in dataframe columns!" ) else: # Tests for exclusion if column_name in df.columns: raise ValueError( f"{column_name} already present in dataframe columns!" ) def skipna(f: Callable) -> Callable: """ Decorator for escaping np.nan and None in a function Should be used like this:: df[column].apply(skipna(transform)) or:: @skipna def transform(x): pass :param f: the function to be wrapped :returns: _wrapped, the wrapped function """ def _wrapped(x, *args, **kwargs): if (type(x) is float and np.isnan(x)) or x is None: return np.nan else: return f(x, *args, **kwargs) return _wrapped def skiperror( f: Callable, return_x: bool = False, return_val=np.nan ) -> Callable: """ Decorator for escaping errors in a function Should be used like this:: df[column].apply( skiperror(transform, return_val=3, return_x=False)) or:: @skiperror(return_val=3, return_x=False) def transform(x): pass :param f: the function to be wrapped :param return_x: whether or not the original value that caused error should be returned :param return_val: the value to be returned when an error hits. Ignored if return_x is True :returns: _wrapped, the wrapped function """ def _wrapped(x, *args, **kwargs): try: return f(x, *args, **kwargs) except Exception: if return_x: return x return return_val return _wrapped def _check_instance(entry: Dict): """ Function to check instances in the expand_grid function. This checks if entry is a dictionary, checks the instance of value in key:value pairs in entry, and makes changes to other types as deemed necessary. Additionally, type-specific errors are raised if unsupported data types are passed in as values in the entry dictionary. How each type is handled, and their associated exceptions, are pretty clear from the code. """ # dictionary should not be empty if not entry: raise ValueError("passed dictionary cannot be empty") # If it is a NoneType, number, Boolean, or string, # then wrap in a list entry = { key: [value] if isinstance(value, (type(None), int, float, bool, str)) else value for key, value in entry.items() } # Convert to list if value is a set|tuple|range entry = { key: list(value) if isinstance(value, (set, tuple, range)) else value for key, value in entry.items() } # collect dataframes here dfs = [] # collect non dataframes here, proper dicts dicts = {} for key, value in entry.items(): # exclude dicts: if isinstance(value, dict): raise TypeError("Nested dictionaries are not allowed") # process arrays if isinstance(value, np.ndarray): if value.size == 0: raise ValueError("array cannot be empty") if value.ndim == 1: dfs.append(pd.DataFrame(value, columns=[key])) elif value.ndim == 2: dfs.append(pd.DataFrame(value).add_prefix(f"{key}_")) else: raise TypeError( "`expand_grid` works with only vector and matrix arrays" ) # process series if isinstance(value, pd.Series): if value.empty: raise ValueError("passed Series cannot be empty") if not isinstance(value.index, pd.MultiIndex): # this section checks if the Series has a name or not # and uses that information to create a new column name # for the resulting Dataframe if value.name: value = value.to_frame(name=f"{key}_{value.name}") dfs.append(value) else: value = value.to_frame(name=f"{key}") dfs.append(value) else: raise TypeError( "`expand_grid` does not work with pd.MultiIndex" ) # process dataframe if isinstance(value, pd.DataFrame): if value.empty: raise ValueError("passed DataFrame cannot be empty") if not ( isinstance(value.index, pd.MultiIndex) or isinstance(value.columns, pd.MultiIndex) ): # add key to dataframe columns value = value.add_prefix(f"{key}_") dfs.append(value) else: raise TypeError( "`expand_grid` does not work with pd.MultiIndex" ) # process lists if isinstance(value, list): if not value: raise ValueError("passed Sequence cannot be empty") if np.array(value).ndim == 1: checklist = (type(None), str, int, float, bool) instance_check_type = ( isinstance(internal, checklist) for internal in value ) if all(instance_check_type): dicts.update({key: value}) else: raise ValueError("values in iterable must be scalar") elif np.array(value).ndim == 2: value = pd.DataFrame(value).add_prefix(f"{key}_") dfs.append(value) else: raise ValueError("Sequence's dimension should be 1d or 2d") return dfs, dicts def _grid_computation_dict(dicts: Dict) -> pd.DataFrame: """ Function used within the expand_grid function, to compute dataframe from values that are not dataframes/arrays/series. These values are collected into a dictionary, and processed with numpy meshgrid. Numpy's meshgrid is faster than itertools' product - the speed difference shows up, as the size of the input dictionary increases, and is also fast when converting to a dataframe. """ # if there is only name value pair in the dictionary if len(dicts) == 1: final = pd.DataFrame(dicts) # if there are more than one name value pair else: # extract value from each key:value pair # in the dicts dictionary extracted_data = [value for key, value in dicts.items()] # create the cartesian product of the extracted data res = np.meshgrid(*extracted_data) # get sorter array from the first entry in the res list # this way, we can safely sort all # the arrays by the first array sorter = np.argsort(res[0].ravel()) # flatten each array and sort with the sorter res = [entry.ravel()[sorter] for entry in res] # pair each array with the appropriate dictionary key res = dict(zip(dicts, res)) # create dataframe final = pd.DataFrame(res) return final def _grid_computation_list(frames: List) -> pd.DataFrame: """ Compute the cartesian product of two Dataframes. Used by the expand_grid function. Numpy is employed here, to get faster computations, compared to running a many-to-many join with pandas merge. This process also ensures the data types are preserved. Initially used Structured arrays; however, I noticed slow speeds when transitioning into dataframes, especially for mixed data types """ # get the product of all the lengths of the dataframes length =
np.prod([ent.index.size for ent in frames])
numpy.prod
from ROAR.control_module.controller import Controller from ROAR.utilities_module.vehicle_models import VehicleControl, Vehicle from ROAR.utilities_module.data_structures_models import Transform, Location import numpy as np import logging from ROAR.agent_module.agent import Agent from typing import Tuple import json from pathlib import Path import cvxpy as cp import scipy import scipy.signal import scipy.linalg class MPCController(Controller): def __init__(self, agent, steering_boundary: Tuple[float, float], throttle_boundary: Tuple[float, float], **kwargs): super().__init__(agent, **kwargs) self.max_speed = self.agent.agent_settings.max_speed self.throttle_boundary = throttle_boundary self.steering_boundary = steering_boundary self.config = json.load( Path(agent.agent_settings.mpc_config_file_path).open(mode='r')) self.controller = FullMPCController(agent=agent, throttle_boundary=throttle_boundary, steering_boundary=steering_boundary, max_speed=self.max_speed, config=self.config) self.logger = logging.getLogger(__name__) def run_in_series(self, next_waypoint: Transform, **kwargs) -> VehicleControl: long_control, lat_control = self.controller.run_in_series(next_waypoint=next_waypoint, target_speed=kwargs.get("target_speed", self.max_speed)) long_control = float(np.clip(long_control, *self.throttle_boundary)) lat_control = float(np.clip(lat_control, *self.steering_boundary)) return VehicleControl(throttle=long_control, steering=lat_control) class FullMPCController(Controller): def __init__(self, agent, config: dict, throttle_boundary: Tuple[float, float], steering_boundary: Tuple[float, float], max_speed: float, dt: float = 0.03, **kwargs): super().__init__(agent, **kwargs) self.config = config self.max_speed = max_speed self.throttle_boundary = throttle_boundary self.steering_boundary = steering_boundary self._dt = dt self.A_matrices, self.B_matrices = self.construct_linearized_matrices(max_speed) self.last_steer_CMD = 0 def get_throttle_CMD(self, Fr_x, vx): """Calculates the motor input command Calculates the motor input command based on the optimal rear tire longitudinal force given by solving the CVXPY problem. The optimal rear tire longitudinal force is then used with the longitudinal dynamics model to solve for the actual motor input command. Args: Fr_x: Optimal rear tire longitudinal force vx: Current longitudinal velocity Returns: Motor input command """ return (Fr_x + self.config['F_friction'] + self.config['C_d'] * vx**2) / self.config['b_motor'] def get_steer_CMD(self, Ff_y, beta, r, vx): """Calculates the steering input command Calculates the steering input command based on the optimal front tire lateral force given by solving the CVXPY problem. The optimal front tire lateral force is then used with the lateral dynamics model to solve for the actual steering input command. Args: Ff_y: Optimal front tire lateral force beta: Current side slip angle of vehicle r: Current angular velocity vx: Current longitudinal velocity Returns: steer_cmd """ # Makes sure the argument to the arcsin function on the following line is valid arcsin_arg = np.clip(Ff_y / (-self.config['mu'] * self.config['Ff_z']), -1, 1) alpha_f = np.tan(np.arcsin(arcsin_arg) / self.config['C']) / self.config['B'] steer_angle = np.arctan(beta + ((r * self.config['Lf']) / (vx + 10e-1))) - alpha_f steer_cmd = steer_angle / self.config['max_angle'] self.last_steer_CMD = np.abs(steer_cmd) return steer_cmd def linearize_around_steer_angle(self, steer_angle_eq, speed_eq): """Calculates linearized state space equations Linearizes and discretizes the state space equations of the vehicle dynamics model around a given equilibrium steering angle and equilibrium speed. Args: steer_angle_eq: Equilibrium steering angle to linearize around speed_eq: Equilibrium vehicle speed to linearize around Returns: Ad: The linearized and discretized A matrix in the state space model Bd: The linearized and discretized B matrix in the state space model """ # Linearize system state equations around a steering angle and 100km/hr beta_eq = np.arctan((self.config['Lr'] / self.config['wheelbase']) * np.tan(steer_angle_eq)) vx_eq = speed_eq * np.cos(beta_eq) r_eq = (speed_eq / self.config['Lr']) * np.sin(beta_eq) alpha_f = np.arctan(beta_eq + (r_eq * self.config['Lf']) / vx_eq) - steer_angle_eq Ff_y_eq = -self.config['mu'] * self.config['Ff_z'] * np.sin(self.config['C'] * np.arctan(self.config['B'] * alpha_f)) Fr_y_eq = (self.config['Lf'] * Ff_y_eq * np.cos(steer_angle_eq)) / self.config['Lr'] # Find partial derivative entries for A and B matrices a_13 = -(Fr_y_eq + Ff_y_eq * np.cos(steer_angle_eq)) / (self.config['mass'] * vx_eq) a_31 = -vx_eq * r_eq # Below is a more complex a_13 term that comes from Gonzales dissertation, found to not be needed but may be useful for improving performance # a_31 = vx_eq * r_eq \ # + ((Ff_y_eq * np.cos(steer_angle_eq)) / mass) \ # * (1 /(1 + (beta_eq + ((r_eq * Lf) / vx_eq))**2)) Ac = np.array([ [0, -1, a_13], [0, 0, 0,], [a_31, 0, 0]]) b_11 = np.cos(steer_angle_eq) / (self.config['mass'] * vx_eq) b_21 = np.cos(steer_angle_eq) * self.config['Lf'] / self.config['Izz'] b_31 = -np.sin(steer_angle_eq) / self.config['mass'] Bc = np.array([ [b_11, 0], [b_21, 0], [b_31, 1/self.config['mass']]]) # C and D are just for calling cont2discrete Cc =
np.zeros((3, 3))
numpy.zeros
# Code by <NAME> # Edited by <NAME> 07/2015 from builtins import zip from builtins import range import numpy as np from cosmosis.datablock import names as section_names from cosmosis.datablock import option_section import scipy.interpolate import warnings def gaussian(z, mu, sigma): g =
np.exp(-0.5 * (z - mu)**2 / sigma**2)
numpy.exp
"""Functions for building the face recognition network. """ # MIT License # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from scipy import misc import matplotlib.pyplot as plt import sklearn if sklearn.__version__ < '0.20': from sklearn.cross_validation import KFold ## < sklearn 0.20 else: from sklearn.model_selection import KFold ## > sklearn 0.20 from scipy import interpolate import random import re from collections import Counter import matplotlib.pyplot as plt import cv2 import python_getdents from scipy import spatial import sys import numpy as np import pandas from scipy import misc #### libs of DavaideSanderburg #### sys.path.insert(0, '../lib/facenet/src') #import facenet import glob def label_mapping(label_list_src, EXPRSSIONS_TYPE_src, EXPRSSIONS_TYPE_trg): labels_mapping = [] idx_label_notexist = [] for i, label in enumerate(label_list_src): expre_src = str.split(EXPRSSIONS_TYPE_src[label], '=')[1] expre_trg = [x for x in EXPRSSIONS_TYPE_trg if expre_src in x] if expre_trg == []: label_trg = -1 idx_label_notexist.append(i) else: label_trg = int(str.split(expre_trg[0], '=')[0]) labels_mapping.append(label_trg) return idx_label_notexist, labels_mapping def gather(data, label): i = 0 if data.ndim == 1: data_batch = np.zeros(len(label)) for idx in label: data_batch[i] = data[idx] i += 1 if data.ndim == 2: data_batch = np.zeros([len(label), np.shape(data)[1]]) for idx in label: data_batch[i, :] = data[idx, :] i += 1 if data.ndim > 2: print('The data of dimension should be less than 3!\n') assert (data.ndim < 3) return data_batch # def scatter(data, index): # return data_sactter def generate_labels_id(subs): subjects = list(set(subs)) subjects = np.sort(subjects) labels_id = [] for sub in subs: labels_id.append([idx for idx, subject in enumerate(subjects) if sub == subject][0]) return labels_id def get_image_paths_and_labels_hand(images_path, labelfile, nfold, ifold): image_paths = [] labels = [] idx_train_all = [] idx_test_all = [] image_paths_final = [] labels_final = [] image_paths_final_test = [] labels_final_test = [] datal = pandas.read_excel(labelfile) labels_all = datal['PersonID'].values labels_frm = datal['Frame'].values labels_frm_list = labels_frm.tolist() labels_all_list = labels_all.tolist() image_paths = glob.glob(os.path.join(images_path, '*.png')) image_paths.sort() for imgfile in image_paths: strtmp = str.split(imgfile,'/')[-1] strtmp = str.split(strtmp, '_')[0] framenum = int(strtmp[5:]) idx = labels_frm_list.index(framenum) labels.append(labels_all_list[idx]) # folds = KFold(n=len(labels_flat), n_folds=nrof_folds, shuffle=True) if sklearn.__version__ < '0.20': folds = KFold(n=len(labels), n_folds=10, shuffle=True) ## Before the version of sklearn 0.20 else: kf = KFold(n_splits=nfold, shuffle=True) ## After the version of sklearn 0.20 i = 0 if sklearn.__version__ < '0.20': for idx_train, idx_test in folds: ## Before sklearn 0.20 idx_train_all.append([]) idx_train_all[i].append(idx_train) idx_test_all.append([]) idx_test_all[i].append(idx_test) # print('train:', idx_train, 'test', idx_test) i += 1 else: for idx_train, idx_test in kf.split(labels): ## After skleran 0.20 idx_train_all.append([]) idx_train_all[i].append(idx_train) idx_test_all.append([]) idx_test_all[i].append(idx_test) #print('train:', idx_train, 'test', idx_test) i += 1 idx_train = idx_train_all[ifold][0] idx_test = idx_test_all[ifold][0] for idx in idx_train: #idx_train.append(idx) image_paths_final.append(image_paths[idx]) labels_final.append(labels[idx]) for idx in idx_test: #idx_test.append(idx) image_paths_final_test.append(image_paths[idx]) labels_final_test.append(labels[idx]) nrof_classes = len(set(labels_final)) nrof_classes_test = len(set(labels_final_test)) return image_paths_final, labels_final, nrof_classes, image_paths_final_test, labels_final_test, nrof_classes_test def get_image_paths_and_labels_headcap(images_path, usage, nfold, ifold): image_paths = [] labels = [] idx_train_all = [] idx_test_all = [] image_paths_final = [] labels_final = [] folders = os.listdir(images_path) folders.sort() for fold in folders: if not os.path.isdir(os.path.join(images_path, fold)): continue img_path_folder = glob.glob(os.path.join(images_path, fold, '*.png')) img_path_folder.sort() image_paths += img_path_folder label_txt = glob.glob(os.path.join(images_path, fold, '*.txt'))[0] with open(label_txt, 'r') as f: for line in f.readlines(): line = line.replace('\r\n','\n') #print ('%s %s'%(fold, line)) labels.append(int(line[-2:-1])) # folds = KFold(n=len(labels_flat), n_folds=nrof_folds, shuffle=True) if sklearn.__version__ < '0.20': folds = KFold(n=len(labels), n_folds=10, shuffle=False) ## Before the version of sklearn 0.20 else: kf = KFold(n_splits=nfold, shuffle=False) ## After the version of sklearn 0.20 i = 0 if sklearn.__version__ < '0.20': for idx_train, idx_test in folds: ## Before sklearn 0.20 idx_train_all.append([]) idx_train_all[i].append(idx_train) idx_test_all.append([]) idx_test_all[i].append(idx_test) # print('train:', idx_train, 'test', idx_test) i += 1 else: for idx_train, idx_test in kf.split(labels): ## After skleran 0.20 idx_train_all.append([]) idx_train_all[i].append(idx_train) idx_test_all.append([]) idx_test_all[i].append(idx_test) #print('train:', idx_train, 'test', idx_test) i += 1 idx_train = idx_train_all[ifold][0] idx_test = idx_test_all[ifold][0] if usage == 'Training': for idx in idx_train: #idx_train.append(idx) image_paths_final.append(image_paths[idx]) labels_final.append(labels[idx]) if usage == 'Test': for idx in idx_test: #idx_test.append(idx) image_paths_final.append(image_paths[idx]) labels_final.append(labels[idx]) nrof_classes = len(set(labels_final)) return image_paths_final, labels_final, usage, nrof_classes def get_image_paths_and_labels_recog(dataset): image_paths_flat = [] labels_flat = [] classes_flat = [] for i in range(len(dataset)): image_paths_flat += dataset[i].image_paths classes_flat += [dataset[i].name] labels_flat += [i] * len(dataset[i].image_paths) return image_paths_flat, labels_flat, classes_flat def random_rotate_image(image): # angle = np.random.uniform(low=-10.0, high=10.0) angle = np.random.uniform(low=-180.0, high=180.0) return misc.imrotate(image, angle, 'bicubic') def prewhiten(x): mean = np.mean(x) std = np.std(x) std_adj = np.maximum(std, 1.0 / np.sqrt(x.size)) y = np.multiply(np.subtract(x, mean), 1 / std_adj) return y def crop(image, random_crop, image_size): if image.shape[1] > image_size: sz1 = np.int(image.shape[1] // 2) ##python 3 // int division sz2 = np.int(image_size // 2) if random_crop: diff = sz1 - sz2 (h, v) = (np.random.randint(-diff, diff + 1), np.random.randint(-diff, diff + 1)) else: (h, v) = (0, 0) image = image[(sz1 - sz2 + v):(sz1 + sz2 + v), (sz1 - sz2 + h):(sz1 + sz2 + h), :] return image def flip(image, random_flip): if random_flip and np.random.choice([True, False]): image = np.fliplr(image) return image def to_rgb(img): w, h = img.shape ret = np.empty((w, h, 3), dtype=np.uint8) ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img return ret def load_data_test(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True): nrof_samples = len(image_paths) images = np.zeros((nrof_samples, image_size, image_size, 3)) for i in range(nrof_samples): img = misc.imread(image_paths[i]) img = cv2.resize(img, (image_size, image_size)) if img.ndim == 2: img = to_rgb(img) if do_prewhiten: img = prewhiten(img) img = cv2.resize(img, (image_size, image_size)) ##img = crop(img, do_random_crop, image_size) img = flip(img, do_random_flip) images[i, :, :, :] = img return images def load_data_mega(image_paths, do_random_crop, do_random_flip, do_resize, image_size, BBox, do_prewhiten=True): nrof_samples = len(image_paths) images = np.zeros((nrof_samples, image_size, image_size, 3)) for i in range(nrof_samples): image = misc.imread(image_paths[i]) BBox = BBox.astype(int) img = image[BBox[i, 0]:BBox[i, 0] + BBox[i, 2], BBox[i, 1]:BBox[i, 1] + BBox[i, 3], :] if img.ndim == 2: img = to_rgb(img) if do_prewhiten: img = prewhiten(img) if do_resize: img = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_NEAREST) img = crop(img, do_random_crop, image_size) img = flip(img, do_random_flip) images[i, :, :, :] = img return images def get_learning_rate_from_file(filename, epoch): with open(filename, 'r') as f: for line in f.readlines(): line = line.split('#', 1)[0] if line: par = line.strip().split(':') e = int(par[0]) lr = float(par[1]) if e <= epoch: learning_rate = lr # else: # return learning_rate return learning_rate def get_dataset(paths): dataset = [] for path in paths.split(':'): path_exp = os.path.expanduser(path) classes = os.listdir(path_exp) classes.sort() nrof_classes = len(classes) for i in range(nrof_classes): class_name = classes[i] facedir = os.path.join(path_exp, class_name) if os.path.isdir(facedir): images = os.listdir(facedir) image_paths = [os.path.join(facedir, img) for img in images] dataset.append(ImageClass(class_name, image_paths)) return dataset def get_huge_dataset(paths, start_n=0, end_n=-1): dataset = [] classes = [] for path in paths.split(':'): path_exp = os.path.expanduser(path) for (d_ino, d_off, d_reclen, d_type, d_name) in python_getdents.getdents64(path_exp): if d_name == '.' or d_name == '..': continue classes += [d_name] classes.sort() nrof_classes = len(classes) if end_n == -1: end_n = nrof_classes if end_n > nrof_classes: raise ValueError('Invalid end_n:%d more than nrof_class:%d' % (end_n, nrof_classes)) for i in range(start_n, end_n): if (i % 1000 == 0): print('reading identities: %d/%d\n' % (i, end_n)) class_name = classes[i] facedir = os.path.join(path_exp, class_name) if os.path.isdir(facedir): images = os.listdir(facedir) image_paths = [os.path.join(facedir, img) for img in images] dataset.append(ImageClass(class_name, image_paths)) return dataset class ImageClass(): "Stores the paths to images for a given class" def __init__(self, name, image_paths): self.name = name self.image_paths = image_paths def __str__(self): return self.name + ', ' + str(len(self.image_paths)) + ' images' def __len__(self): return len(self.image_paths) def get_model_filenames(model_dir): files = os.listdir(model_dir) meta_files = [s for s in files if s.endswith('.meta')] if len(meta_files)==0: raise ValueError('No meta file found in the model directory (%s)' % model_dir) elif len(meta_files)>1: raise ValueError('There should not be more than one meta file in the model directory (%s)' % model_dir) meta_file = meta_files[0] meta_files = [s for s in files if '.ckpt' in s] max_step = -1 for f in files: step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', f) if step_str is not None and len(step_str.groups())>=2: step = int(step_str.groups()[1]) if step > max_step: max_step = step ckpt_file = step_str.groups()[0] return meta_file, ckpt_file def load_model(model_dir, meta_file, ckpt_file): model_dir_exp = os.path.expanduser(model_dir) saver = tf.train.import_meta_graph(os.path.join(model_dir_exp, meta_file)) saver.restore(tf.get_default_session(), os.path.join(model_dir_exp, ckpt_file)) def prewhiten(x): mean = np.mean(x) std = np.std(x) std_adj = np.maximum(std, 1.0 / np.sqrt(x.size)) y = np.multiply(np.subtract(x, mean), 1 / std_adj) return y def crop(image, random_crop, image_size): if min(image.shape[0], image.shape[1]) > image_size: sz1 = image.shape[0] // 2 sz2 = image.shape[1] // 2 crop_size = image_size//2 diff_h = sz1 - crop_size diff_v = sz2 - crop_size (h, v) = (np.random.randint(-diff_h, diff_h + 1), np.random.randint(-diff_v, diff_v + 1)) image = image[(sz1+h-crop_size):(sz1+h+crop_size ), (sz2+v-crop_size):(sz2+v+crop_size ), :] else: print("Image size is small than crop image size!") return image # def crop(image, random_crop, image_size): # ## Firstly crop the image as a square according to the y length of the input image # if image.shape[1] > image_size: # sz1 = image.shape[1] // 2 # sz2 = image_size // 2 # if random_crop: # diff = sz1 - sz2 # (h, v) = (np.random.randint(-diff, diff + 1), np.random.randint(-diff, diff + 1)) # else: # (h, v) = (0, 0) # image = image[(sz1 - sz2 + v):(sz1 + sz2 + v), (sz1 - sz2 + h):(sz1 + sz2 + h), :] # return image def flip(image, random_flip): if random_flip and np.random.choice([True, False]): image = np.fliplr(image) return image def to_rgb(img): w, h = img.shape ret = np.empty((w, h, 3), dtype=np.uint8) ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img return ret def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True): nrof_samples = len(image_paths) images = np.zeros((nrof_samples, image_size, image_size, 3)) for i in range(nrof_samples): img = misc.imread(image_paths[i]) if img.ndim == 2: img = to_rgb(img) if do_prewhiten: img = prewhiten(img) if do_random_crop: img = crop(img, do_random_crop, image_size) if do_random_flip: img = flip(img, do_random_flip) img = cv2.resize(img,(image_size,image_size)) images[i,:,:,:] = img return images def load_data_im(imgs, do_random_crop, do_random_flip, image_size, do_prewhiten=True): # nrof_samples = len(image_paths) if (len(imgs.shape) > 3):##RGB images nrof_samples = imgs.shape[0] elif (len(imgs.shape) == 3): ## one RGB nrof_samples = 1 elif (len(imgs.shape) == 2): ## grey images nrof_samples = imgs.shape[0] elif (len(imgs.shape) == 1): ## one grey nrof_samples = 1 else: print('No images!') return -1 images = np.zeros((nrof_samples, image_size, image_size, 3)) for i in range(nrof_samples): # img = misc.imread(image_paths[i]) if len(imgs.shape) == 3 or len(imgs.shape) == 1: img = imgs else: img = imgs[i] if len(img): if img.ndim == 2: img = to_rgb(img) if do_prewhiten: img = prewhiten(img) if do_random_crop: img = crop(img, do_random_crop, image_size) if do_random_flip: img = flip(img, do_random_flip) img = cv2.resize(img, (image_size, image_size)) images[i] = img images = np.squeeze(images) return images def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=False) # folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=True, seed=666) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) best_threshold = np.zeros((nrof_folds)) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) for fold_idx, (train_set, test_set) in enumerate(folds): # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx], fp_idx, fn_idx = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) best_threshold[fold_idx] = thresholds[best_threshold_index] for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _, fp_idx, fn_idx = calculate_accuracy( threshold, dist[test_set], actual_issame[test_set]) _, _, accuracy[fold_idx], fp_idx, fn_idx = calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) mean_best_threshold = np.mean(best_threshold) # #### Global evaluation (not n-fold evaluation) for collecting the indices of the False positive/negative examples ##### _, _, acc_total, fp_idx, fn_idx = calculate_accuracy(mean_best_threshold, dist, actual_issame) return tpr, fpr, accuracy, fp_idx, fn_idx, mean_best_threshold def calculate_roc_cosine(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=False) # folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=True, seed=666) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) # diff = np.subtract(embeddings1, embeddings2) ###Eucldian l2 distance # dist = np.sum(np.square(diff), 1) dist_all = spatial.distance.cdist(embeddings1, embeddings2, 'cosine') ## cosine_distance = 1 - similarity; similarity=dot(u,v)/(||u||*||v||) dist = dist_all.diagonal() for fold_idx, (train_set, test_set) in enumerate(folds): # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx], fp_idx, fn_idx = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _, fp_idx, fn_idx = calculate_accuracy( threshold, dist[test_set], actual_issame[ test_set]) _, _, accuracy[fold_idx], fp_idx, fn_idx = calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) best_threshold = thresholds[best_threshold_index] # #### Global evaluation (not n-fold evaluation) for collecting the indices of the False positive/negative examples ##### _, _, acc_total, fp_idx, fn_idx = calculate_accuracy(best_threshold, dist, actual_issame) return tpr, fpr, accuracy, fp_idx, fn_idx, best_threshold def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) acc = float(tp + tn) / dist.size # #################################### Edit by mzh 11012017 #################################### # #### save the false predict samples: the false posivite (fp) or the false negative(fn) ##### fp_idx = np.logical_and(predict_issame, np.logical_not(actual_issame)) fn_idx = np.logical_and(np.logical_not(predict_issame), actual_issame) # #################################### Edit by mzh 11012017 #################################### return tpr, fpr, acc, fp_idx, fn_idx def plot_roc(fpr, tpr, label): figure = plt.figure() plt.plot(fpr, tpr, label=label) plt.title('Receiver Operating Characteristics') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend() plt.plot([0, 1], [0, 1], 'g--') plt.grid(True) plt.show() return figure def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) nrof_thresholds = len(thresholds) folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=False) # folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=True, seed=666) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) for fold_idx, (train_set, test_set) in enumerate(folds): if nrof_thresholds > 1: # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): _, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set]) if np.max(far_train) >= far_target: f = interpolate.interp1d(far_train, thresholds, kind='slinear') threshold = f(far_target) else: threshold = 0.0 else: threshold = thresholds[0] val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) return val_mean, val_std, far_mean, threshold def calculate_val_cosine(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=False) # folds = KFold(n=nrof_pairs, n_folds=nrof_folds, shuffle=True, seed=666) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) # diff = np.subtract(embeddings1, embeddings2) # dist = np.sum(np.square(diff), 1) dist_all = spatial.distance.cdist(embeddings1, embeddings2, 'cosine') ## cosine_distance = 1 - similarity; similarity=dot(u,v)/(||u||*||v||) dist = dist_all.diagonal() for fold_idx, (train_set, test_set) in enumerate(folds): # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): _, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set]) if np.max(far_train) >= far_target: f = interpolate.interp1d(far_train, thresholds, kind='slinear') threshold = f(far_target) else: threshold = 0.0 val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) return val_mean, val_std, far_mean, threshold def calculate_val_far(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) false_accept = np.sum(np.logical_and(predict_issame,
np.logical_not(actual_issame)
numpy.logical_not
#!/usr/bin/env python import rospy from geometry_msgs.msg import Vector3 from sensor_msgs.msg import Imu import matplotlib.pyplot as plt import numpy as np angle = Vector3 Initialized = False init_angle = Vector3 # "p" is eular angle array def rotM(angle): px = angle.x - init_angle.x py = angle.y - init_angle.y pz = angle.z - init_angle.z Rx = np.array([[1, 0, 0], [0, np.cos(px), np.sin(px)], [0, -np.sin(px), np.cos(px)]]) Ry = np.array([[np.cos(py), 0, -np.sin(py)], [0, 1, 0], [np.sin(py), 0, np.cos(py)]]) Rz = np.array([[np.cos(pz), np.sin(pz), 0], [-
np.sin(pz)
numpy.sin
""" Paper: Session-Based Recommendation with Graph Neural Networks Author: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME> Reference: https://github.com/CRIPAC-DIG/SR-GNN @author: <NAME> """ import numpy as np from model.AbstractRecommender import SeqAbstractRecommender from util import DataIterator import tensorflow as tf from util import pad_sequences import math class SRGNN(SeqAbstractRecommender): def __init__(self, sess, dataset, config): super(SRGNN, self).__init__(dataset, config) self.lr = config["lr"] self.L2 = config["L2"] self.hidden_size = config["hidden_size"] self.step = config["step"] self.batch_size = config["batch_size"] self.epochs = config["epochs"] self.lr_dc = config["lr_dc"] self.lr_dc_step = config["lr_dc_step"] self.nonhybrid = config["nonhybrid"] self.max_seq_len = config["max_seq_len"] self.num_users, self.num_item = dataset.num_users, dataset.num_items self.user_pos_train = dataset.get_user_train_dict(by_time=True) self.train_seq = [] self.train_tar = [] for user, seqs in self.user_pos_train.items(): for i in range(1, len(seqs)): self.train_seq.append(seqs[-i - self.max_seq_len:-i]) self.train_tar.append(seqs[-i]) self.sess = sess def _create_variable(self): self.mask_ph = tf.placeholder(dtype=tf.float32, shape=[self.batch_size, None]) self.alias_ph = tf.placeholder(dtype=tf.int32, shape=[self.batch_size, None]) # 给给每个输入重新 self.item_ph = tf.placeholder(dtype=tf.int32, shape=[self.batch_size, None]) # 原始ID+padID, pad 在后面 self.target_ph = tf.placeholder(dtype=tf.int32, shape=[self.batch_size]) self.adj_in_ph = tf.placeholder(dtype=tf.float32, shape=[self.batch_size, None, None]) self.adj_out_ph = tf.placeholder(dtype=tf.float32, shape=[self.batch_size, None, None]) stdv = 1.0 / math.sqrt(self.hidden_size) w_init = tf.random_uniform_initializer(-stdv, stdv) self.nasr_w1 = tf.get_variable('nasr_w1', [self.hidden_size, self.hidden_size], dtype=tf.float32, initializer=w_init) self.nasr_w2 = tf.get_variable('nasr_w2', [self.hidden_size, self.hidden_size], dtype=tf.float32, initializer=w_init) self.nasr_v = tf.get_variable('nasrv', [1, self.hidden_size], dtype=tf.float32, initializer=w_init) self.nasr_b = tf.get_variable('nasr_b', [self.hidden_size], dtype=tf.float32, initializer=tf.zeros_initializer()) embedding = tf.get_variable(shape=[self.num_item, self.hidden_size], name='embedding', dtype=tf.float32, initializer=w_init) zero_pad = tf.zeros([1, self.hidden_size], name="padding") self.embedding = tf.concat([embedding, zero_pad], axis=0) self.W_in = tf.get_variable('W_in', shape=[self.hidden_size, self.hidden_size], dtype=tf.float32, initializer=w_init) self.b_in = tf.get_variable('b_in', [self.hidden_size], dtype=tf.float32, initializer=w_init) self.W_out = tf.get_variable('W_out', [self.hidden_size, self.hidden_size], dtype=tf.float32, initializer=w_init) self.b_out = tf.get_variable('b_out', [self.hidden_size], dtype=tf.float32, initializer=w_init) self.B = tf.get_variable('B', [2 * self.hidden_size, self.hidden_size], initializer=w_init) def ggnn(self): fin_state = tf.nn.embedding_lookup(self.embedding, self.item_ph) # (b,l,d) cell = tf.nn.rnn_cell.GRUCell(self.hidden_size) with tf.variable_scope('gru'): for i in range(self.step): fin_state = tf.reshape(fin_state, [self.batch_size, -1, self.hidden_size]) # (b,l,d) fin_state_tmp = tf.reshape(fin_state, [-1, self.hidden_size]) # (b*l,d) fin_state_in = tf.reshape(tf.matmul(fin_state_tmp, self.W_in) + self.b_in, [self.batch_size, -1, self.hidden_size]) # (b,l,d) # fin_state_tmp = tf.reshape(fin_state, [-1, self.hidden_size]) # (b*l,d) fin_state_out = tf.reshape(tf.matmul(fin_state_tmp, self.W_out) + self.b_out, [self.batch_size, -1, self.hidden_size]) # (b,l,d) av_in = tf.matmul(self.adj_in_ph, fin_state_in) # (b,l,d) av_out = tf.matmul(self.adj_out_ph, fin_state_out) # (b,l,d) av = tf.concat([av_in, av_out], axis=-1) # (b,l,2d) av = tf.expand_dims(tf.reshape(av, [-1, 2 * self.hidden_size]), axis=1) # (b*l,1,2d) # fin_state_tmp = tf.reshape(fin_state, [-1, self.hidden_size]) # (b*l,d) state_output, fin_state = tf.nn.dynamic_rnn(cell, av, initial_state=fin_state_tmp) return tf.reshape(fin_state, [self.batch_size, -1, self.hidden_size]) # (b,l,d) def _session_embedding(self, re_embedding): # re_embedding (b,l,d) rm = tf.reduce_sum(self.mask_ph, 1) # (b,), length of each session last_idx = tf.stack([tf.range(self.batch_size), tf.to_int32(rm) - 1], axis=1) # (b, 2) index of last item last_id = tf.gather_nd(self.alias_ph, last_idx) # (b,) alias id of last item last_h = tf.gather_nd(re_embedding, tf.stack([tf.range(self.batch_size), last_id], axis=1)) # (b,d) embedding of last item seq_h = [tf.nn.embedding_lookup(re_embedding[i], self.alias_ph[i]) for i in range(self.batch_size)] seq_h = tf.stack(seq_h, axis=0) # batch_size*T*d last = tf.matmul(last_h, self.nasr_w1) seq = tf.matmul(tf.reshape(seq_h, [-1, self.hidden_size]), self.nasr_w2) last = tf.reshape(last, [self.batch_size, 1, -1]) m = tf.nn.sigmoid(last + tf.reshape(seq, [self.batch_size, -1, self.hidden_size]) + self.nasr_b) coef = tf.matmul(tf.reshape(m, [-1, self.hidden_size]), self.nasr_v, transpose_b=True) * tf.reshape(self.mask_ph, [-1, 1]) if not self.nonhybrid: ma = tf.concat([tf.reduce_sum(tf.reshape(coef, [self.batch_size, -1, 1]) * seq_h, 1), tf.reshape(last, [-1, self.hidden_size])], -1) sess_embedding = tf.matmul(ma, self.B) else: sess_embedding = tf.reduce_sum(tf.reshape(coef, [self.batch_size, -1, 1]) * seq_h, 1) return sess_embedding def build_graph(self): self._create_variable() with tf.variable_scope('ggnn_model', reuse=None): node_embedding = self.ggnn() sess_embedding = self._session_embedding(node_embedding) item_embedding = self.embedding[:-1] self.all_logits = tf.matmul(sess_embedding, item_embedding, transpose_b=True) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.target_ph, logits=self.all_logits) loss = tf.reduce_mean(loss) vars = tf.trainable_variables() lossL2 = [tf.nn.l2_loss(v) for v in vars if v.name not in ['bias', 'gamma', 'b', 'g', 'beta']] loss_train = loss + self.L2 * tf.add_n(lossL2) global_step = tf.Variable(0) decay = self.lr_dc_step * len(self.train_seq) / self.batch_size learning_rate = tf.train.exponential_decay(self.lr, global_step=global_step, decay_steps=decay, decay_rate=self.lr_dc, staircase=True) self.train_opt = tf.train.AdamOptimizer(learning_rate).minimize(loss_train, global_step=global_step) def train_model(self): train_seq_len = [(idx, len(seq)) for idx, seq in enumerate(self.train_seq)] train_seq_len = sorted(train_seq_len, key=lambda x: x[1], reverse=True) train_seq_index, _ = list(zip(*train_seq_len)) self.logger.info(self.evaluator.metrics_info()) for epoch in range(self.epochs): for bat_index in self._shuffle_index(train_seq_index): item_seqs = [self.train_seq[idx] for idx in bat_index] bat_tars = [self.train_tar[idx] for idx in bat_index] bat_adj_in, bat_adj_out, bat_alias, bat_items, bat_mask = self._build_session_graph(item_seqs) feed = {self.target_ph: bat_tars, self.item_ph: bat_items, self.adj_in_ph: bat_adj_in, self.adj_out_ph: bat_adj_out, self.alias_ph: bat_alias, self.mask_ph: bat_mask} self.sess.run(self.train_opt, feed_dict=feed) self.logger.info("epoch %d:\t%s" % (epoch, self.evaluate_model())) def _shuffle_index(self, seq_index): index_chunks = DataIterator(seq_index, batch_size=self.batch_size*32, shuffle=False, drop_last=False) # chunking index_chunks = list(index_chunks) index_chunks_iter = DataIterator(index_chunks, batch_size=1, shuffle=True, drop_last=False) # shuffle index chunk for indexes in index_chunks_iter: indexes = indexes[0] indexes_iter = DataIterator(indexes, batch_size=self.batch_size, shuffle=True, drop_last=True) # shuffle batch index for bat_index in indexes_iter: yield bat_index def _build_session_graph(self, bat_items): A_in, A_out, alias_inputs = [], [], [] all_mask = [[1] * len(items) for items in bat_items] bat_items = pad_sequences(bat_items, value=self.num_item) unique_nodes = [np.unique(items).tolist() for items in bat_items] max_n_node = np.max([len(nodes) for nodes in unique_nodes]) for u_seq, u_node, mask in zip(bat_items, unique_nodes, all_mask): adj_mat = np.zeros((max_n_node, max_n_node)) id_map = {node: idx for idx, node in enumerate(u_node)} if len(u_seq) > 1: alias_previous = [id_map[i] for i in u_seq[:len(mask) - 1]] alias_next = [id_map[i] for i in u_seq[1:len(mask)]] adj_mat[alias_previous, alias_next] = 1 u_sum_in = np.sum(adj_mat, axis=0) u_sum_in[np.where(u_sum_in == 0)] = 1 u_A_in = np.divide(adj_mat, u_sum_in) u_sum_out = np.sum(adj_mat, 1) u_sum_out[np.where(u_sum_out == 0)] = 1 u_A_out = np.divide(adj_mat.transpose(), u_sum_out) A_in.append(u_A_in) A_out.append(u_A_out) alias_inputs.append([id_map[i] for i in u_seq]) items = pad_sequences(unique_nodes, value=self.num_item) all_mask = pad_sequences(all_mask, value=0) return A_in, A_out, alias_inputs, items, all_mask def evaluate_model(self): return self.evaluator.evaluate(self) def predict(self, users, items): users = DataIterator(users, batch_size=self.batch_size, shuffle=False, drop_last=False) all_ratings = [] for bat_user in users: cur_batch_size = len(bat_user) bat_items = [self.user_pos_train[user][-self.max_seq_len:] for user in bat_user] bat_adj_in, bat_adj_out, bat_alias, bat_items, bat_mask = self._build_session_graph(bat_items) if cur_batch_size < self.batch_size: # padding pad_size = self.batch_size - cur_batch_size bat_adj_in = np.concatenate([bat_adj_in, [bat_adj_in[-1]] * pad_size], axis=0) bat_adj_out = np.concatenate([bat_adj_out, [bat_adj_out[-1]] * pad_size], axis=0) bat_alias = np.concatenate([bat_alias, [bat_alias[-1]] * pad_size], axis=0) bat_items = np.concatenate([bat_items, [bat_items[-1]] * pad_size], axis=0) bat_mask = np.concatenate([bat_mask, [bat_mask[-1]] * pad_size], axis=0) feed = {self.item_ph: bat_items, self.adj_in_ph: bat_adj_in, self.adj_out_ph: bat_adj_out, self.alias_ph: bat_alias, self.mask_ph: bat_mask} bat_ratings = self.sess.run(self.all_logits, feed_dict=feed) all_ratings.extend(bat_ratings[:cur_batch_size]) all_ratings =
np.array(all_ratings)
numpy.array
import tempfile from collections import OrderedDict import pytest from hypothesis import given, strategies as st, settings import numpy as np import pandas as pd from ._testtools import strategy_2d_prob_distribution from tmtoolkit._pd_dt_compat import USE_DT, FRAME_TYPE, pd_dt_colnames from tmtoolkit.topicmod import model_io def test_save_load_ldamodel_pickle(): try: import lda except ImportError: pytest.skip('lda not installed') pfile = 'tests/data/test_pickle_unpickle_ldamodel.pickle' dtm = np.array([[0, 1], [2, 3], [4, 5], [6, 0]]) doc_labels = ['doc_' + str(i) for i in range(dtm.shape[0])] vocab = ['word_' + str(i) for i in range(dtm.shape[1])] model = lda.LDA(2, n_iter=1) model.fit(dtm) model_io.save_ldamodel_to_pickle(pfile, model, vocab, doc_labels) unpickled = model_io.load_ldamodel_from_pickle(pfile) assert np.array_equal(model.doc_topic_, unpickled['model'].doc_topic_) assert np.array_equal(model.topic_word_, unpickled['model'].topic_word_) assert vocab == unpickled['vocab'] assert doc_labels == unpickled['doc_labels'] @given( topic_word=strategy_2d_prob_distribution(), top_n=st.integers(min_value=0, max_value=20) ) @settings(deadline=1000) def test_ldamodel_top_topic_words(topic_word, top_n): topic_word = np.array(topic_word) vocab = np.array(['t%d' % i for i in range(topic_word.shape[1])]) if top_n < 1 or top_n > topic_word.shape[1]: with pytest.raises(ValueError): model_io.ldamodel_top_topic_words(topic_word, vocab, top_n) else: top_topic_words = model_io.ldamodel_top_topic_words(topic_word, vocab, top_n) colnames = np.array([model_io.DEFAULT_RANK_NAME_FMT.format(i1=i + 1) for i in range(top_n)]) rownames = np.array([model_io.DEFAULT_TOPIC_NAME_FMT.format(i1=i + 1) for i in range(topic_word.shape[0])]) assert top_topic_words.shape == (topic_word.shape[0], top_n) assert np.array_equal(top_topic_words.index.values, rownames) assert np.array_equal(top_topic_words.columns.values, colnames) @given( doc_topic=strategy_2d_prob_distribution(), top_n=st.integers(min_value=0, max_value=20) ) @settings(deadline=1000) def test_ldamodel_top_doc_topics(doc_topic, top_n): doc_topic = np.array(doc_topic) doc_labels = np.array(['doc%d' % i for i in range(doc_topic.shape[0])]) if top_n < 1 or top_n > doc_topic.shape[1]: with pytest.raises(ValueError): model_io.ldamodel_top_topic_words(doc_topic, doc_labels, top_n) else: top_doc_topics = model_io.ldamodel_top_doc_topics(doc_topic, doc_labels, top_n) colnames = np.array([model_io.DEFAULT_RANK_NAME_FMT.format(i1=i + 1) for i in range(top_n)]) assert top_doc_topics.shape == (doc_topic.shape[0], top_n) assert np.array_equal(top_doc_topics.index.values, doc_labels) assert np.array_equal(top_doc_topics.columns.values, colnames) @given(topic_word=strategy_2d_prob_distribution()) @settings(deadline=1000) def test_ldamodel_full_topic_words(topic_word): topic_word = np.array(topic_word) vocab = np.array(['t%d' % i for i in range(topic_word.shape[1])]) df = model_io.ldamodel_full_topic_words(topic_word, vocab) assert isinstance(df, FRAME_TYPE) rownames = np.array([model_io.DEFAULT_TOPIC_NAME_FMT.format(i1=i + 1) for i in range(topic_word.shape[0])]) assert np.array_equal(pd_dt_colnames(df), ['_topic'] + list(vocab)) if USE_DT: assert np.array_equal(df[:, 0].to_list()[0], rownames) else: assert np.array_equal(df.iloc[:, 0].to_numpy(), rownames) @given(doc_topic=strategy_2d_prob_distribution()) @settings(deadline=1000) def test_ldamodel_full_doc_topics(doc_topic): doc_topic =
np.array(doc_topic)
numpy.array
# coding=utf-8 import numpy as np import scipy.interpolate as intpl import scipy.sparse as sprs def to_sparse(D, format="csc"): """ Transform dense matrix to sparse matrix of return_type bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format. csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix. lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix :param D: Dense matrix :param format: how to save the sparse matrix :return: sparse version """ if format == "bsr": return sprs.bsr_matrix(D) elif format == "coo": return sprs.coo_matrix(D) elif format == "csc": return sprs.csc_matrix(D) elif format == "csr": return sprs.csr_matrix(D) elif format == "dia": return sprs.dia_matrix(D) elif format == "dok": return sprs.dok_matrix(D) elif format == "lil": return sprs.lil_matrix(D) else: return to_dense(D) def to_dense(D): if sprs.issparse(D): return D.toarray() elif isinstance(D, np.ndarray): return D def next_neighbors_periodic(p, ps, k, T=None): """ This function gives for a value p the k points next to it which are found in in the vector ps and the points which are found periodically. :param p: value :param ps: ndarray, vector where to find the next neighbors :param k: integer, number of neighbours :return: ndarray, with the k next neighbors and an array containing the """ if T is None: T = ps[-1]-2*ps[0]+ps[1] p_bar = p - np.floor(p/T)*T ps = ps - ps[0] distance_to_p = [] for tk in ps: d1 = tk+T-p_bar d2 = tk-p_bar d3 = tk-T-p_bar min_d = min([np.abs(d1), np.abs(d2), np.abs(d3)]) if np.abs(d1) == min_d: distance_to_p.append(d1) elif np.abs(d2) == min_d: distance_to_p.append(d2) else: distance_to_p.append(d3) distance_to_p = np.asarray(distance_to_p) value_index = [] for d,i in zip(distance_to_p, range(distance_to_p.size)): value_index.append((d, i)) # sort by distance value_index_sorted_by_abs = sorted(value_index,cmp=lambda x,y:cmp(np.abs(x),np.abs(y)), key=lambda s: s[0]) if k % 2 == 1: value_index_sorted_by_sign =sorted(value_index_sorted_by_abs[0:k+1], key=lambda s: s[0])[:k] else: value_index_sorted_by_sign =sorted(value_index_sorted_by_abs[0:k], key=lambda s: s[0]) return map(lambda s: s[1], value_index_sorted_by_sign), map(lambda s: s[0]+p, value_index_sorted_by_sign) def next_neighbors(p, ps, k): """ This function gives for a value p the k points next to it which are found in in the vector ps :param p: value :param ps: ndarray, vector where to find the next neighbors :param k: integer, number of neighbours :return: ndarray, with the k next neighbors """ distance_to_p = np.abs(ps-p) # zip it value_index = [] for d,i in zip(distance_to_p, range(distance_to_p.size)): value_index.append((d,i)) # sort by distance value_index_sorted = sorted(value_index, key=lambda s: s[0]) # take first k indices with least distance and sort them return sorted(map(lambda s: s[1], value_index_sorted[0:k])) def continue_periodic_array(arr,nn,T): nn = np.asarray(nn) d_nn = nn[1:]-nn[:-1] if np.all(d_nn == np.ones(nn.shape[0]-1)): return arr[nn] else: cont_arr = [arr[nn[0]]] shift = 0. for n,d in zip(nn[1:],d_nn): if d != 1: shift = -T cont_arr.append(arr[n]+shift) return np.asarray(cont_arr) def restriction_matrix_1d(fine_grid, coarse_grid, k=2, return_type="csc", periodic=False, T=1.0): """ We construct the restriction matrix between two 1d grids, using lagrange interpolation. :param fine_grid: a one dimensional 1d array containing the nodes of the fine grid :param coarse_grid: a one dimensional 1d array containing the nodes of the coarse grid :param k: order of the restriction :return: a restriction matrix """ M = np.zeros((coarse_grid.size, fine_grid.size)) n_g = coarse_grid.size for i, p in zip(range(n_g), coarse_grid): if periodic: nn, cont_arr = next_neighbors_periodic(p, fine_grid, k, T) circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(cont_arr, np.roll(circulating_one, l))) M[i, nn] = np.asarray(map(lambda x: x(p), lag_pol)) else: nn = next_neighbors(p, fine_grid, k) # construct the lagrange polynomials for the k neighbors circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(fine_grid[nn], np.roll(circulating_one, l))) M[i, nn] = np.asarray(map(lambda x: x(p), lag_pol)) return to_sparse(M, return_type) def interpolation_matrix_1d(fine_grid, coarse_grid, k=2, return_type="csc", periodic=False, T=1.0): """ We construct the interpolation matrix between two 1d grids, using lagrange interpolation. :param fine_grid: a one dimensional 1d array containing the nodes of the fine grid :param coarse_grid: a one dimensional 1d array containing the nodes of the coarse grid :param k: order of the restriction :return: a interpolation matrix """ M = np.zeros((fine_grid.size, coarse_grid.size)) n_f = fine_grid.size for i, p in zip(range(n_f), fine_grid): if periodic: nn,cont_arr = next_neighbors_periodic(p, coarse_grid, k, T) circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(cont_arr,
np.roll(circulating_one, l)
numpy.roll
from __future__ import print_function import argparse import time import numpy as np from models.ResNeXt_DenseNet.models.densenet import densenet from models.ResNeXt_DenseNet.models.resnext import resnext29 from models.WideResNet_pytorch.wideresnet import WideResNet import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.nn.functional as F from torchvision import datasets from torchvision import transforms from ChannelAug import ChannelSplit, ChannelMix from matplotlib import pyplot as plt from utils import nentr # Code From https://github.com/mlaves/bayesian-temperature-scaling def uceloss(softmaxes, labels, n_bins=15): d = softmaxes.device bin_boundaries = torch.linspace(0, 1, n_bins + 1, device=d) bin_lowers = bin_boundaries[:-1] bin_uppers = bin_boundaries[1:] _, predictions = torch.max(softmaxes, 1) errors = predictions.ne(labels) uncertainties = nentr(softmaxes, base=softmaxes.size(1)) errors_in_bin_list = [] avg_entropy_in_bin_list = [] uce = torch.zeros(1, device=d) for bin_lower, bin_upper in zip(bin_lowers, bin_uppers): # Calculate |uncert - err| in each bin in_bin = uncertainties.gt(bin_lower.item()) * uncertainties.le(bin_upper.item()) prop_in_bin = in_bin.float().mean() # |Bm| / n if prop_in_bin.item() > 0.0: errors_in_bin = errors[in_bin].float().mean() # err() avg_entropy_in_bin = uncertainties[in_bin].mean() # uncert() uce += torch.abs(avg_entropy_in_bin - errors_in_bin) * prop_in_bin errors_in_bin_list.append(errors_in_bin) avg_entropy_in_bin_list.append(avg_entropy_in_bin) err_in_bin = torch.tensor(errors_in_bin_list, device=d) avg_entropy_in_bin = torch.tensor(avg_entropy_in_bin_list, device=d) return uce, err_in_bin, avg_entropy_in_bin # Code From https://github.com/mlaves/bayesian-temperature-scaling def eceloss(softmaxes, labels, n_bins=15): """ Modified from https://github.com/gpleiss/temperature_scaling/blob/master/temperature_scaling.py """ d = softmaxes.device bin_boundaries = torch.linspace(0, 1, n_bins + 1, device=d) bin_lowers = bin_boundaries[:-1] bin_uppers = bin_boundaries[1:] confidences, predictions = torch.max(softmaxes, 1) accuracies = predictions.eq(labels) accuracy_in_bin_list = [] avg_confidence_in_bin_list = [] ece = torch.zeros(1, device=d) for bin_lower, bin_upper in zip(bin_lowers, bin_uppers): in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) prop_in_bin = in_bin.float().mean() if prop_in_bin.item() > 0.0: accuracy_in_bin = accuracies[in_bin].float().mean() avg_confidence_in_bin = confidences[in_bin].mean() ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin accuracy_in_bin_list.append(accuracy_in_bin) avg_confidence_in_bin_list.append(avg_confidence_in_bin) acc_in_bin = torch.tensor(accuracy_in_bin_list, device=d) avg_conf_in_bin = torch.tensor(avg_confidence_in_bin_list, device=d) return ece, acc_in_bin, avg_conf_in_bin parser = argparse.ArgumentParser(description='Trains a CIFAR Classifier', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100'], help='Choose between CIFAR-10, CIFAR-100.') parser.add_argument('--corruption_path', type=str, default='./data/cifar/', help='Corruption dataset path.') parser.add_argument('--model', '-m', type=str, default='wrn', choices=['wrn', 'allconv', 'densenet', 'resnext'], help='Choose models.') parser.add_argument('--epochs', '-e', type=int, default=500, help='Epochs.') parser.add_argument('--learning-rate', '-lr', type=float, default=0.1, help='Initial learning rate.') parser.add_argument('--batch-size', '-b', type=int, default=128, help='Batch size.') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') parser.add_argument('--decay', '-wd', type=float, default=0.0005, help='Weight decay.') parser.add_argument('--print-freq', type=int, default=50, help='Training loss print frequency.') parser.add_argument('--num-workers', type=int, default=4, help='Number of worker threads.') args = parser.parse_args() def train(model, train_loader, optimizer, scheduler): model.train() loss_ema = 0. for i, (images, targets) in enumerate(train_loader): optimizer.zero_grad() images = images.cuda() targets = targets.cuda() logits = model(images) loss = F.cross_entropy(logits, targets) loss.backward() optimizer.step() scheduler.step() loss_ema = loss_ema * 0.1 + float(loss) * 0.9 if i % args.print_freq == 0: print('Train Loss {:.3f}'.format(loss_ema)) return loss_ema def get_lr(step, total_steps, lr_max, lr_min): return lr_min + (lr_max - lr_min) * 0.5 * (1 + np.cos(step / total_steps * np.pi)) def test(model, test_loader, calibration=False,): model.eval() total_loss = 0. total_correct = 0 logits_ = [] labels_ = [] with torch.no_grad(): for images, targets in test_loader: images, targets = images.cuda(), targets.cuda() logits = model(images) loss = F.cross_entropy(logits, targets) pred = logits.data.max(1)[1] total_loss += float(loss.data) total_correct += pred.eq(targets.data).sum().item() if calibration: logits_.append(torch.softmax(logits, dim=1).detach()) labels_.append(targets.detach()) if calibration: logits_ = torch.cat(logits_, dim=0) labels_ = torch.cat(labels_, dim=0) ece, acc, conf = eceloss(logits_, labels_) uce, err, entr = uceloss(logits_, labels_) return ece, uce, total_loss / len(test_loader.dataset), total_correct / len(test_loader.dataset) return total_loss / len(test_loader.dataset), total_correct / len(test_loader.dataset) def test_c(net, test_data, base_path): corruption_accs = [] ece_c = 0 uce_c = 0 CORRUPTIONS = [ 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' ] for corruption in CORRUPTIONS: # Reference to original data is mutated test_data.data = np.load(base_path + corruption + '.npy') test_data.targets = torch.LongTensor(np.load(base_path + 'labels.npy')) test_loader = torch.utils.data.DataLoader( test_data, batch_size=1000, shuffle=False, num_workers=args.num_workers, pin_memory=True) ece, uce, test_loss, test_acc = test(net, test_loader, True) corruption_accs.append(test_acc) ece_c += ece.item()*100 uce_c += uce.item()*100 print('{}: Test Loss {:.3f} | Test Error {:.3f} | ECE : {:.2f} | UCE : {:.2f}'.format(corruption, test_loss, 100 - 100. * test_acc, ece.item()*100, uce.item()*100)) print('[Mean Corruption ECE : {:.2f}, UCE : {:.2f}]'.format(ece_c/15, uce_c/15)) return
np.mean(corruption_accs)
numpy.mean
""" Test functions for linalg module """ import os import sys import itertools import traceback import textwrap import subprocess import pytest import numpy as np from numpy import array, single, double, csingle, cdouble, dot, identity, matmul from numpy import multiply, atleast_2d, inf, asarray from numpy import linalg from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError from numpy.linalg.linalg import _multi_dot_matrix_chain_order from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_almost_equal, assert_allclose, suppress_warnings, assert_raises_regex, HAS_LAPACK64, ) from numpy.testing._private.utils import requires_memory def consistent_subclass(out, in_): # For ndarray subclass input, our output should have the same subclass # (non-ndarray input gets converted to ndarray). return type(out) is (type(in_) if isinstance(in_, np.ndarray) else np.ndarray) old_assert_almost_equal = assert_almost_equal def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw): if asarray(a).dtype.type in (single, csingle): decimal = single_decimal else: decimal = double_decimal old_assert_almost_equal(a, b, decimal=decimal, **kw) def get_real_dtype(dtype): return {single: single, double: double, csingle: single, cdouble: double}[dtype] def get_complex_dtype(dtype): return {single: csingle, double: cdouble, csingle: csingle, cdouble: cdouble}[dtype] def get_rtol(dtype): # Choose a safe rtol if dtype in (single, csingle): return 1e-5 else: return 1e-11 # used to categorize tests all_tags = { 'square', 'nonsquare', 'hermitian', # mutually exclusive 'generalized', 'size-0', 'strided' # optional additions } class LinalgCase: def __init__(self, name, a, b, tags=set()): """ A bundle of arguments to be passed to a test case, with an identifying name, the operands a and b, and a set of tags to filter the tests """ assert_(isinstance(name, str)) self.name = name self.a = a self.b = b self.tags = frozenset(tags) # prevent shared tags def check(self, do): """ Run the function `do` on this test case, expanding arguments """ do(self.a, self.b, tags=self.tags) def __repr__(self): return f'<LinalgCase: {self.name}>' def apply_tag(tag, cases): """ Add the given tag (a string) to each of the cases (a list of LinalgCase objects) """ assert tag in all_tags, "Invalid tag" for case in cases: case.tags = case.tags | {tag} return cases # # Base test cases # np.random.seed(1234) CASES = [] # square test cases CASES += apply_tag('square', [ LinalgCase("single", array([[1., 2.], [3., 4.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("double", array([[1., 2.], [3., 4.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_2", array([[1., 2.], [3., 4.]], dtype=double), array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), LinalgCase("csingle", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("cdouble", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_2", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)), LinalgCase("0x0", np.empty((0, 0), dtype=double), np.empty((0,), dtype=double), tags={'size-0'}), LinalgCase("8x8", np.random.rand(8, 8), np.random.rand(8)), LinalgCase("1x1", np.random.rand(1, 1), np.random.rand(1)), LinalgCase("nonarray", [[1, 2], [3, 4]], [2, 1]), ]) # non-square test-cases CASES += apply_tag('nonsquare', [ LinalgCase("single_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("single_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), array([2., 1., 3.], dtype=single)), LinalgCase("double_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), array([2., 1., 3.], dtype=double)), LinalgCase("csingle_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("csingle_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)), LinalgCase("cdouble_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)), LinalgCase("cdouble_nsq_1_2", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("cdouble_nsq_2_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("8x11", np.random.rand(8, 11), np.random.rand(8)), LinalgCase("1x5", np.random.rand(1, 5), np.random.rand(1)), LinalgCase("5x1", np.random.rand(5, 1), np.random.rand(5)), LinalgCase("0x4", np.random.rand(0, 4), np.random.rand(0), tags={'size-0'}), LinalgCase("4x0", np.random.rand(4, 0), np.random.rand(4), tags={'size-0'}), ]) # hermitian test-cases CASES += apply_tag('hermitian', [ LinalgCase("hsingle", array([[1., 2.], [2., 1.]], dtype=single), None), LinalgCase("hdouble", array([[1., 2.], [2., 1.]], dtype=double), None), LinalgCase("hcsingle", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle), None), LinalgCase("hcdouble", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble), None), LinalgCase("hempty", np.empty((0, 0), dtype=double), None, tags={'size-0'}), LinalgCase("hnonarray", [[1, 2], [2, 1]], None), LinalgCase("matrix_b_only", array([[1., 2.], [2., 1.]]), None), LinalgCase("hmatrix_1x1", np.random.rand(1, 1), None), ]) # # Gufunc test cases # def _make_generalized_cases(): new_cases = [] for case in CASES: if not isinstance(case.a, np.ndarray): continue a = np.array([case.a, 2 * case.a, 3 * case.a]) if case.b is None: b = None else: b = np.array([case.b, 7 * case.b, 6 * case.b]) new_case = LinalgCase(case.name + "_tile3", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape) if case.b is None: b = None else: b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape) new_case = LinalgCase(case.name + "_tile213", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) return new_cases CASES += _make_generalized_cases() # # Generate stride combination variations of the above # def _stride_comb_iter(x): """ Generate cartesian product of strides for all axes """ if not isinstance(x, np.ndarray): yield x, "nop" return stride_set = [(1,)] * x.ndim stride_set[-1] = (1, 3, -4) if x.ndim > 1: stride_set[-2] = (1, 3, -4) if x.ndim > 2: stride_set[-3] = (1, -4) for repeats in itertools.product(*tuple(stride_set)): new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)] slices = tuple([slice(None, None, repeat) for repeat in repeats]) # new array with different strides, but same data xi = np.empty(new_shape, dtype=x.dtype) xi.view(np.uint32).fill(0xdeadbeef) xi = xi[slices] xi[...] = x xi = xi.view(x.__class__) assert_(np.all(xi == x)) yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) # generate also zero strides if possible if x.ndim >= 1 and x.shape[-1] == 1: s = list(x.strides) s[-1] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0" if x.ndim >= 2 and x.shape[-2] == 1: s = list(x.strides) s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_x" if x.ndim >= 2 and x.shape[:-2] == (1, 1): s = list(x.strides) s[-1] = 0 s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_0" def _make_strided_cases(): new_cases = [] for case in CASES: for a, a_label in _stride_comb_iter(case.a): for b, b_label in _stride_comb_iter(case.b): new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b, tags=case.tags | {'strided'}) new_cases.append(new_case) return new_cases CASES += _make_strided_cases() # # Test different routines against the above cases # class LinalgTestCase: TEST_CASES = CASES def check_cases(self, require=set(), exclude=set()): """ Run func on each of the cases with all of the tags in require, and none of the tags in exclude """ for case in self.TEST_CASES: # filter by require and exclude if case.tags & require != require: continue if case.tags & exclude: continue try: case.check(self.do) except Exception as e: msg = f'In test case: {case!r}\n\n' msg += traceback.format_exc() raise AssertionError(msg) from e class LinalgSquareTestCase(LinalgTestCase): def test_sq_cases(self): self.check_cases(require={'square'}, exclude={'generalized', 'size-0'}) def test_empty_sq_cases(self): self.check_cases(require={'square', 'size-0'}, exclude={'generalized'}) class LinalgNonsquareTestCase(LinalgTestCase): def test_nonsq_cases(self): self.check_cases(require={'nonsquare'}, exclude={'generalized', 'size-0'}) def test_empty_nonsq_cases(self): self.check_cases(require={'nonsquare', 'size-0'}, exclude={'generalized'}) class HermitianTestCase(LinalgTestCase): def test_herm_cases(self): self.check_cases(require={'hermitian'}, exclude={'generalized', 'size-0'}) def test_empty_herm_cases(self): self.check_cases(require={'hermitian', 'size-0'}, exclude={'generalized'}) class LinalgGeneralizedSquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_sq_cases(self): self.check_cases(require={'generalized', 'square'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_sq_cases(self): self.check_cases(require={'generalized', 'square', 'size-0'}) class LinalgGeneralizedNonsquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare', 'size-0'}) class HermitianGeneralizedTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_herm_cases(self): self.check_cases(require={'generalized', 'hermitian'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_herm_cases(self): self.check_cases(require={'generalized', 'hermitian', 'size-0'}, exclude={'none'}) def dot_generalized(a, b): a = asarray(a) if a.ndim >= 3: if a.ndim == b.ndim: # matrix x matrix new_shape = a.shape[:-1] + b.shape[-1:] elif a.ndim == b.ndim + 1: # matrix x vector new_shape = a.shape[:-1] else: raise ValueError("Not implemented...") r = np.empty(new_shape, dtype=np.common_type(a, b)) for c in itertools.product(*map(range, a.shape[:-2])): r[c] = dot(a[c], b[c]) return r else: return dot(a, b) def identity_like_generalized(a): a = asarray(a) if a.ndim >= 3: r = np.empty(a.shape, dtype=a.dtype) r[...] = identity(a.shape[-2]) return r else: return identity(a.shape[0]) class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): # kept apart from TestSolve for use for testing with matrices. def do(self, a, b, tags): x = linalg.solve(a, b) assert_almost_equal(b, dot_generalized(a, x)) assert_(consistent_subclass(x, b)) class TestSolve(SolveCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.solve(x, x).dtype, dtype) def test_0_size(self): class ArraySubclass(np.ndarray): pass # Test system of 0x0 matrices a = np.arange(8).reshape(2, 2, 2) b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0, :] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # Test errors for non-square and only b's dimension being 0 assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :]) # Test broadcasting error b = np.arange(6).reshape(1, 3, 2) # broadcasting error assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) # Test zero "single equations" with 0x0 matrices. b = np.arange(2).reshape(1, 2).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) b = np.arange(3).reshape(1, 3) assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) def test_0_size_k(self): # test zero multiple equation (K=0) case. class ArraySubclass(np.ndarray): pass a = np.arange(4).reshape(1, 2, 2) b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) expected = linalg.solve(a, b)[:, :, 0:0] result = linalg.solve(a, b[:, :, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # test both zero. expected = linalg.solve(a, b)[:, 0:0, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): a_inv = linalg.inv(a) assert_almost_equal(dot_generalized(a, a_inv), identity_like_generalized(a)) assert_(consistent_subclass(a_inv, a)) class TestInv(InvCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.inv(x).dtype, dtype) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): ev = linalg.eigvals(a) evalues, evectors = linalg.eig(a) assert_almost_equal(ev, evalues) class TestEigvals(EigvalsCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.eigvals(x).dtype, dtype) x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype)) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.complex64) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): evalues, evectors = linalg.eig(a) assert_allclose(dot_generalized(a, evectors), np.asarray(evectors) * np.asarray(evalues)[..., None, :], rtol=get_rtol(evalues.dtype)) assert_(consistent_subclass(evectors, a)) class TestEig(EigCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w, v = np.linalg.eig(x) assert_equal(w.dtype, dtype) assert_equal(v.dtype, dtype) x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) w, v = np.linalg.eig(x) assert_equal(w.dtype, get_complex_dtype(dtype)) assert_equal(v.dtype, get_complex_dtype(dtype)) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) class SVDBaseTests: hermitian = False @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) u, s, vh = linalg.svd(x) assert_equal(u.dtype, dtype) assert_equal(s.dtype, get_real_dtype(dtype)) assert_equal(vh.dtype, dtype) s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian) assert_equal(s.dtype, get_real_dtype(dtype)) class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): u, s, vt = linalg.svd(a, False) assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)), rtol=get_rtol(u.dtype)) assert_(consistent_subclass(u, a)) assert_(consistent_subclass(vt, a)) class TestSVD(SVDCases, SVDBaseTests): def test_empty_identity(self): """ Empty input should put an identity matrix in u or vh """ x = np.empty((4, 0)) u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian) assert_equal(u.shape, (4, 4)) assert_equal(vh.shape, (0, 0)) assert_equal(u, np.eye(4)) x = np.empty((0, 4)) u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian) assert_equal(u.shape, (0, 0)) assert_equal(vh.shape, (4, 4)) assert_equal(vh, np.eye(4)) class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): u, s, vt = linalg.svd(a, False, hermitian=True) assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)), rtol=get_rtol(u.dtype)) def hermitian(mat): axes = list(range(mat.ndim)) axes[-1], axes[-2] = axes[-2], axes[-1] return np.conj(np.transpose(mat, axes=axes)) assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape)) assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape)) assert_equal(np.sort(s)[..., ::-1], s) assert_(consistent_subclass(u, a)) assert_(consistent_subclass(vt, a)) class TestSVDHermitian(SVDHermitianCases, SVDBaseTests): hermitian = True class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): # cond(x, p) for p in (None, 2, -2) def do(self, a, b, tags): c = asarray(a) # a might be a matrix if 'size-0' in tags: assert_raises(LinAlgError, linalg.cond, c) return # +-2 norms s = linalg.svd(c, compute_uv=False) assert_almost_equal( linalg.cond(a), s[..., 0] / s[..., -1], single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, 2), s[..., 0] / s[..., -1], single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, -2), s[..., -1] / s[..., 0], single_decimal=5, double_decimal=11) # Other norms cinv = np.linalg.inv(c) assert_almost_equal( linalg.cond(a, 1), abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, -1), abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, np.inf), abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, -np.inf), abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, 'fro'), np.sqrt((abs(c)**2).sum(-1).sum(-1) * (abs(cinv)**2).sum(-1).sum(-1)), single_decimal=5, double_decimal=11) class TestCond(CondCases): def test_basic_nonsvd(self): # Smoketest the non-svd norms A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]]) assert_almost_equal(linalg.cond(A, inf), 4) assert_almost_equal(linalg.cond(A, -inf), 2/3) assert_almost_equal(linalg.cond(A, 1), 4) assert_almost_equal(linalg.cond(A, -1), 0.5) assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12)) def test_singular(self): # Singular matrices have infinite condition number for # positive norms, and negative norms shouldn't raise # exceptions As = [np.zeros((2, 2)), np.ones((2, 2))] p_pos = [None, 1, 2, 'fro'] p_neg = [-1, -2] for A, p in itertools.product(As, p_pos): # Inversion may not hit exact infinity, so just check the # number is large assert_(linalg.cond(A, p) > 1e15) for A, p in itertools.product(As, p_neg): linalg.cond(A, p) def test_nan(self): # nans should be passed through, not converted to infs ps = [None, 1, -1, 2, -2, 'fro'] p_pos = [None, 1, 2, 'fro'] A = np.ones((2, 2)) A[0,1] = np.nan for p in ps: c = linalg.cond(A, p) assert_(isinstance(c, np.float_)) assert_(np.isnan(c)) A = np.ones((3, 2, 2)) A[1,0,1] = np.nan for p in ps: c = linalg.cond(A, p) assert_(np.isnan(c[1])) if p in p_pos: assert_(c[0] > 1e15) assert_(c[2] > 1e15) else: assert_(not np.isnan(c[0])) assert_(not np.isnan(c[2])) def test_stacked_singular(self): # Check behavior when only some of the stacked matrices are # singular np.random.seed(1234) A = np.random.rand(2, 2, 2, 2) A[0,0] = 0 A[1,1] = 0 for p in (None, 1, 2, 'fro', -1, -2): c = linalg.cond(A, p) assert_equal(c[0,0], np.inf) assert_equal(c[1,1], np.inf) assert_(np.isfinite(c[0,1])) assert_(np.isfinite(c[1,0])) class PinvCases(LinalgSquareTestCase, LinalgNonsquareTestCase, LinalgGeneralizedSquareTestCase, LinalgGeneralizedNonsquareTestCase): def do(self, a, b, tags): a_ginv = linalg.pinv(a) # `a @ a_ginv == I` does not hold if a is singular dot = dot_generalized assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11) assert_(consistent_subclass(a_ginv, a)) class TestPinv(PinvCases): pass class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): a_ginv = linalg.pinv(a, hermitian=True) # `a @ a_ginv == I` does not hold if a is singular dot = dot_generalized assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11) assert_(consistent_subclass(a_ginv, a)) class TestPinvHermitian(PinvHermitianCases): pass class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): d = linalg.det(a) (s, ld) = linalg.slogdet(a) if asarray(a).dtype.type in (single, double): ad = asarray(a).astype(double) else: ad = asarray(a).astype(cdouble) ev = linalg.eigvals(ad) assert_almost_equal(d, multiply.reduce(ev, axis=-1)) assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) s = np.atleast_1d(s) ld = np.atleast_1d(ld) m = (s != 0) assert_almost_equal(np.abs(s[m]), 1) assert_equal(ld[~m], -inf) class TestDet(DetCases): def test_zero(self): assert_equal(linalg.det([[0.0]]), 0.0) assert_equal(type(linalg.det([[0.0]])), double) assert_equal(linalg.det([[0.0j]]), 0.0) assert_equal(type(linalg.det([[0.0j]])), cdouble) assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf)) assert_equal(type(linalg.slogdet([[0.0]])[0]), double) assert_equal(type(linalg.slogdet([[0.0]])[1]), double) assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf)) assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble) assert_equal(type(linalg.slogdet([[0.0j]])[1]), double) @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(np.linalg.det(x).dtype, dtype) ph, s = np.linalg.slogdet(x) assert_equal(s.dtype, get_real_dtype(dtype)) assert_equal(ph.dtype, dtype) def test_0_size(self): a = np.zeros((0, 0), dtype=np.complex64) res = linalg.det(a) assert_equal(res, 1.) assert_(res.dtype.type is np.complex64) res = linalg.slogdet(a) assert_equal(res, (1, 0)) assert_(res[0].dtype.type is np.complex64) assert_(res[1].dtype.type is np.float32) a = np.zeros((0, 0), dtype=np.float64) res = linalg.det(a) assert_equal(res, 1.) assert_(res.dtype.type is np.float64) res = linalg.slogdet(a) assert_equal(res, (1, 0)) assert_(res[0].dtype.type is np.float64) assert_(res[1].dtype.type is np.float64) class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase): def do(self, a, b, tags): arr = np.asarray(a) m, n = arr.shape u, s, vt = linalg.svd(a, False) x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1) if m == 0: assert_((x == 0).all()) if m <= n: assert_almost_equal(b, dot(a, x)) assert_equal(rank, m) else: assert_equal(rank, n) assert_almost_equal(sv, sv.__array_wrap__(s)) if rank == n and m > n: expect_resids = ( np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0) expect_resids = np.asarray(expect_resids) if np.asarray(b).ndim == 1: expect_resids.shape = (1,) assert_equal(residuals.shape, expect_resids.shape) else: expect_resids = np.array([]).view(type(x)) assert_almost_equal(residuals, expect_resids) assert_(np.issubdtype(residuals.dtype, np.floating)) assert_(consistent_subclass(x, b)) assert_(consistent_subclass(residuals, b)) class TestLstsq(LstsqCases): def test_future_rcond(self): a = np.array([[0., 1., 0., 1., 2., 0.], [0., 2., 0., 0., 1., 0.], [1., 0., 1., 0., 0., 4.], [0., 0., 0., 2., 3., 0.]]).T b = np.array([1, 0, 0, 0, 0, 0]) with suppress_warnings() as sup: w = sup.record(FutureWarning, "`rcond` parameter will change") x, residuals, rank, s = linalg.lstsq(a, b) assert_(rank == 4) x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1) assert_(rank == 4) x, residuals, rank, s = linalg.lstsq(a, b, rcond=None) assert_(rank == 3) # Warning should be raised exactly once (first command) assert_(len(w) == 1) @pytest.mark.parametrize(["m", "n", "n_rhs"], [ (4, 2, 2), (0, 4, 1), (0, 4, 2), (4, 0, 1), (4, 0, 2), (4, 2, 0), (0, 0, 0) ]) def test_empty_a_b(self, m, n, n_rhs): a = np.arange(m * n).reshape(m, n) b = np.ones((m, n_rhs)) x, residuals, rank, s = linalg.lstsq(a, b, rcond=None) if m == 0: assert_((x == 0).all()) assert_equal(x.shape, (n, n_rhs)) assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,))) if m > n and n_rhs > 0: # residuals are exactly the squared norms of b's columns r = b - np.dot(a, x) assert_almost_equal(residuals, (r * r).sum(axis=-2)) assert_equal(rank, min(m, n)) assert_equal(s.shape, (min(m, n),)) def test_incompatible_dims(self): # use modified version of docstring example x = np.array([0, 1, 2, 3]) y = np.array([-1, 0.2, 0.9, 2.1, 3.3]) A = np.vstack([x, np.ones(len(x))]).T with assert_raises_regex(LinAlgError, "Incompatible dimensions"): linalg.lstsq(A, y, rcond=None) @pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO']) class TestMatrixPower: rshft_0 = np.eye(4) rshft_1 = rshft_0[[3, 0, 1, 2]] rshft_2 = rshft_0[[2, 3, 0, 1]] rshft_3 = rshft_0[[1, 2, 3, 0]] rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3] noninv = array([[1, 0], [0, 0]]) stacked = np.block([[[rshft_0]]]*2) #FIXME the 'e' dtype might work in future dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')] def test_large_power(self, dt): rshft = self.rshft_1.astype(dt) assert_equal( matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0) assert_equal( matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1) assert_equal( matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2) assert_equal( matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3) def test_power_is_zero(self, dt): def tz(M): mz = matrix_power(M, 0) assert_equal(mz, identity_like_generalized(M)) assert_equal(mz.dtype, M.dtype) for mat in self.rshft_all: tz(mat.astype(dt)) if dt != object: tz(self.stacked.astype(dt)) def test_power_is_one(self, dt): def tz(mat): mz = matrix_power(mat, 1) assert_equal(mz, mat) assert_equal(mz.dtype, mat.dtype) for mat in self.rshft_all: tz(mat.astype(dt)) if dt != object: tz(self.stacked.astype(dt)) def test_power_is_two(self, dt): def tz(mat): mz = matrix_power(mat, 2) mmul = matmul if mat.dtype != object else dot assert_equal(mz, mmul(mat, mat)) assert_equal(mz.dtype, mat.dtype) for mat in self.rshft_all: tz(mat.astype(dt)) if dt != object: tz(self.stacked.astype(dt)) def test_power_is_minus_one(self, dt): def tz(mat): invmat = matrix_power(mat, -1) mmul = matmul if mat.dtype != object else dot assert_almost_equal( mmul(invmat, mat), identity_like_generalized(mat)) for mat in self.rshft_all: if dt not in self.dtnoinv: tz(mat.astype(dt)) def test_exceptions_bad_power(self, dt): mat = self.rshft_0.astype(dt) assert_raises(TypeError, matrix_power, mat, 1.5) assert_raises(TypeError, matrix_power, mat, [1]) def test_exceptions_non_square(self, dt): assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1) assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1) assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1) def test_exceptions_not_invertible(self, dt): if dt in self.dtnoinv: return mat = self.noninv.astype(dt) assert_raises(LinAlgError, matrix_power, mat, -1) class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): # note that eigenvalue arrays returned by eig must be sorted since # their order isn't guaranteed. ev = linalg.eigvalsh(a, 'L') evalues, evectors = linalg.eig(a) evalues.sort(axis=-1) assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype)) ev2 = linalg.eigvalsh(a, 'U') assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype)) class TestEigvalsh: @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w = np.linalg.eigvalsh(x) assert_equal(w.dtype, get_real_dtype(dtype)) def test_invalid(self): x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong") assert_raises(ValueError, np.linalg.eigvalsh, x, "lower") assert_raises(ValueError, np.linalg.eigvalsh, x, "upper") def test_UPLO(self): Klo = np.array([[0, 0], [1, 0]], dtype=np.double) Kup = np.array([[0, 1], [0, 0]], dtype=np.double) tgt = np.array([-1, 1], dtype=np.double) rtol = get_rtol(np.double) # Check default is 'L' w = np.linalg.eigvalsh(Klo) assert_allclose(w, tgt, rtol=rtol) # Check 'L' w = np.linalg.eigvalsh(Klo, UPLO='L') assert_allclose(w, tgt, rtol=rtol) # Check 'l' w = np.linalg.eigvalsh(Klo, UPLO='l') assert_allclose(w, tgt, rtol=rtol) # Check 'U' w = np.linalg.eigvalsh(Kup, UPLO='U') assert_allclose(w, tgt, rtol=rtol) # Check 'u' w = np.linalg.eigvalsh(Kup, UPLO='u') assert_allclose(w, tgt, rtol=rtol) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float32) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): # note that eigenvalue arrays returned by eig must be sorted since # their order isn't guaranteed. ev, evc = linalg.eigh(a) evalues, evectors = linalg.eig(a) evalues.sort(axis=-1) assert_almost_equal(ev, evalues) assert_allclose(dot_generalized(a, evc), np.asarray(ev)[..., None, :] * np.asarray(evc), rtol=get_rtol(ev.dtype)) ev2, evc2 = linalg.eigh(a, 'U') assert_almost_equal(ev2, evalues) assert_allclose(dot_generalized(a, evc2), np.asarray(ev2)[..., None, :] * np.asarray(evc2), rtol=get_rtol(ev.dtype), err_msg=repr(a)) class TestEigh: @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w, v = np.linalg.eigh(x) assert_equal(w.dtype, get_real_dtype(dtype)) assert_equal(v.dtype, dtype) def test_invalid(self): x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong") assert_raises(ValueError, np.linalg.eigh, x, "lower") assert_raises(ValueError, np.linalg.eigh, x, "upper") def test_UPLO(self): Klo = np.array([[0, 0], [1, 0]], dtype=np.double) Kup = np.array([[0, 1], [0, 0]], dtype=np.double) tgt = np.array([-1, 1], dtype=np.double) rtol = get_rtol(np.double) # Check default is 'L' w, v = np.linalg.eigh(Klo) assert_allclose(w, tgt, rtol=rtol) # Check 'L' w, v = np.linalg.eigh(Klo, UPLO='L') assert_allclose(w, tgt, rtol=rtol) # Check 'l' w, v = np.linalg.eigh(Klo, UPLO='l') assert_allclose(w, tgt, rtol=rtol) # Check 'U' w, v = np.linalg.eigh(Kup, UPLO='U') assert_allclose(w, tgt, rtol=rtol) # Check 'u' w, v = np.linalg.eigh(Kup, UPLO='u') assert_allclose(w, tgt, rtol=rtol) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.float32) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) class _TestNormBase: dt = None dec = None class _TestNormGeneral(_TestNormBase): def test_empty(self): assert_equal(norm([]), 0.0) assert_equal(norm(array([], dtype=self.dt)), 0.0) assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0) def test_vector_return_type(self): a = np.array([1, 0, 1]) exact_types = np.typecodes['AllInteger'] inexact_types = np.typecodes['AllFloat'] all_types = exact_types + inexact_types for each_inexact_types in all_types: at = a.astype(each_inexact_types) an = norm(at, -np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 0.0) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "divide by zero encountered") an = norm(at, -1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 0.0) an = norm(at, 0) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2) an = norm(at, 1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 2) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0)) an = norm(at, 4) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0)) an = norm(at, np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 1.0) def test_vector(self): a = [1, 2, 3, 4] b = [-1, -2, -3, -4] c = [-1, 2, -3, 4] def _test(v): np.testing.assert_almost_equal(norm(v), 30 ** 0.5, decimal=self.dec) np.testing.assert_almost_equal(norm(v, inf), 4.0, decimal=self.dec) np.testing.assert_almost_equal(norm(v, -inf), 1.0, decimal=self.dec) np.testing.assert_almost_equal(norm(v, 1), 10.0, decimal=self.dec) np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25, decimal=self.dec) np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5, decimal=self.dec) np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5), decimal=self.dec) np.testing.assert_almost_equal(norm(v, 0), 4, decimal=self.dec) for v in (a, b, c,): _test(v) for v in (array(a, dtype=self.dt), array(b, dtype=self.dt), array(c, dtype=self.dt)): _test(v) def test_axis(self): # Vector norms. # Compare the use of `axis` with computing the norm of each row # or column separately. A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] assert_almost_equal(norm(A, ord=order, axis=0), expected0) expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])] assert_almost_equal(norm(A, ord=order, axis=1), expected1) # Matrix norms. B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) nd = B.ndim for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']: for axis in itertools.combinations(range(-nd, nd), 2): row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if row_axis == col_axis: assert_raises(ValueError, norm, B, ord=order, axis=axis) else: n = norm(B, ord=order, axis=axis) # The logic using k_index only works for nd = 3. # This has to be changed if nd is increased. k_index = nd - (row_axis + col_axis) if row_axis < col_axis: expected = [norm(B[:].take(k, axis=k_index), ord=order) for k in range(B.shape[k_index])] else: expected = [norm(B[:].take(k, axis=k_index).T, ord=order) for k in range(B.shape[k_index])] assert_almost_equal(n, expected) def test_keepdims(self): A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) allclose_err = 'order {0}, axis = {1}' shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}' # check the order=None, axis=None case expected = norm(A, ord=None, axis=None) found = norm(A, ord=None, axis=None, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(None, None)) expected_shape = (1, 1, 1) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, None, None)) # Vector norms. for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: for k in range(A.ndim): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k)) # Matrix norms. for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']: for k in itertools.permutations(range(A.ndim), 2): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k[0]] = 1 expected_shape[k[1]] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k)) class _TestNorm2D(_TestNormBase): # Define the part for 2d arrays separately, so we can subclass this # and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg. array = np.array def test_matrix_empty(self): assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0) def test_matrix_return_type(self): a = self.array([[1, 0, 1], [0, 1, 1]]) exact_types = np.typecodes['AllInteger'] # float32, complex64, float64, complex128 types are the only types # allowed by `linalg`, which performs the matrix operations used # within `norm`. inexact_types = 'fdFD' all_types = exact_types + inexact_types for each_inexact_types in all_types: at = a.astype(each_inexact_types) an = norm(at, -np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "divide by zero encountered") an = norm(at, -1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 1.0) an = norm(at, 1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 2) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 3.0**(1.0/2.0)) an = norm(at, -2) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 1.0) an = norm(at, np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 'fro') assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 'nuc') assert_(issubclass(an.dtype.type, np.floating)) # Lower bar needed to support low precision floats. # They end up being off by 1 in the 7th place. np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6) def test_matrix_2x2(self): A = self.array([[1, 3], [5, 7]], dtype=self.dt) assert_almost_equal(norm(A), 84 ** 0.5) assert_almost_equal(norm(A, 'fro'), 84 ** 0.5) assert_almost_equal(norm(A, 'nuc'), 10.0) assert_almost_equal(
norm(A, inf)
numpy.linalg.norm
__author__ = 'jparedes' import numpy as np import pandas as pd from itertools import compress, chain import scipy.sparse as sp def trimf(x, params): """ Triangular fuzzy operation in a vector :param x: Input column vector: array([[0.2],[0.9],[0.42],[0.74],[0.24],[0.28],[0.34]]) :param params: 3 points os triangle shape: [0.1 0.4, 0.7] :return: Column vector: array([[0.], [0.], [0.8], [0.], [0.], [0.], [0.4]]) """ a = params[0] b = params[1] c = params[2] y = np.zeros(np.shape(x)) # Left and right shoulders (y = 0) # Left slope if a != b: index = np.logical_and(a < x, x < b) # find(a < x & x < b) y[index] = (x[index] - a) / (b - a) # right slope if b != c: index = np.logical_and(b < x, x < c) # find(b < x & x < c) y[index] = (c - x[index]) / (c - b) # Center (y = 1) index = x == b y[index] = 1 return y def trapmf(x, params): """ Trapezoidal fuzzy operation :param x: Input column vector :param params: 4 points which define the trapezoidal :return: Output column vector """ a, b, c, d = params y1 = np.zeros(np.shape(x)) y2 = np.zeros(np.shape(x)) # Compute y1 index = x >= b if sum(index) != 0: # ~isempty(index) y1[index] = 1. index = x < a if sum(index) != 0: # ~isempty(index): y1[index] = 0. index =
np.logical_and(a <= x, x < b)
numpy.logical_and
# program to calculate the B-field for a magnetic coil import numpy as np import matplotlib.pyplot as plt def biot_savart(wire1, wire2, point, current = 1): ''' current is given in units of inverse permeability ''' dl = wire2-wire1 r = point - 0.5 * (wire2 + wire1) return current * np.cross(dl, r) / (4 * np.pi * np.linalg.norm(r)**3) def coil(center, radius, theta, elements): ''' theta is angle between the plane of the normal and the x-y plane (chosen for numerical reasons) ''' points = np.zeros((elements, 3)) rad = np.linspace(0, 2 * np.pi, elements, endpoint=True) for i in range(elements): points[i,:] = radius*np.array([np.cos(rad[i])*np.cos(theta),np.sin(rad[i])*np.cos(theta),np.sin(theta)]) points = [point + center for point in points] return points def single_coil(): ''' elem : Number of elements to use in the coil num : number of test points along z axis R : Radius of the coil theta : Angle between the normal of the coil and x-y plane ''' elem = 100 num = 10 R = 1 theta = 0 wire = coil(np.zeros(3), R, theta, elem + 1) points = np.zeros((num,3)) z =
np.linspace(0, 1, num)
numpy.linspace
import unittest import numpy as np from aitoolbox.torchtrain.train_loop.components.pred_collate_fns import * class TestBatchPredCollateFns(unittest.TestCase): def test_append_predictions(self): preds = [] preds_ep_1 = np.random.rand(100, 1) preds = append_predictions(preds_ep_1, preds) self.assertEqual([preds_ep_1], preds) preds_ep_2 = np.random.rand(45, 1) preds = append_predictions(preds_ep_2, preds) self.assertEqual([preds_ep_1, preds_ep_2], preds) def test_append_concat_predictions(self): preds = [] preds_ep_1 = np.random.rand(100, 1) preds = append_predictions(preds_ep_1, preds) self.assertEqual([preds_ep_1], preds) preds_ep_2 = np.random.rand(45, 1) preds = append_predictions(preds_ep_2, preds) self.assertEqual([preds_ep_1, preds_ep_2], preds) preds_list = [] preds_list_ep_1 = np.random.rand(100).tolist() preds_list = append_concat_predictions(preds_list_ep_1, preds_list) self.assertEqual(preds_list_ep_1, preds_list) preds_list_ep_2 = np.random.rand(45, 1).tolist() preds_list = append_concat_predictions(preds_list_ep_2, preds_list) self.assertEqual(preds_list_ep_1 + preds_list_ep_2, preds_list) class TestAllPredTransformFns(unittest.TestCase): def test_torch_cat_transf(self): self.assertEqual( torch_cat_transf([torch.Tensor([1, 2]), torch.Tensor([3, 4])]).numpy().tolist(),
np.array([1., 2., 3., 4.])
numpy.array
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0. Licensed to the Apache # Software Foundation. You may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for Layer-wise Adaptive Rate Scaling optimizer.""" from absl.testing import parameterized import numpy as np import tensorflow as tf from flars import flars_optimizer class FLARSOptimizerTest(parameterized.TestCase, tf.test.TestCase): @parameterized.named_parameters( ('tf.float32 m=0', tf.float32, 0), ('tf.float32 m=0.9', tf.float32, 0.9), ('tf.float64 m=0', tf.float64, 0), ('tf.float64 m=0.9', tf.float64, 0.9)) def testFLARSGradientOneStep(self, dtype, momentum): shape = [3, 3] var_np = np.ones(shape) grad_np = np.ones(shape) lr_np = 0.1 m_np = momentum ep_np = 1e-5 eeta = 0.1 vel_np = np.zeros(shape) var = tf.Variable(var_np, dtype=dtype, name='a') grad = tf.Variable(grad_np, dtype=dtype) opt = flars_optimizer.FLARSOptimizer( learning_rate=lr_np, momentum=m_np, eeta=eeta, epsilon=ep_np) g_norm = np.linalg.norm(grad_np.flatten(), ord=2) opt.update_grads_norm([var], [g_norm]) self.evaluate(tf.compat.v1.global_variables_initializer()) pre_var = self.evaluate(var) self.assertAllClose(var_np, pre_var) opt.apply_gradients([(grad, var)]) post_var = self.evaluate(var) w_norm = np.linalg.norm(var_np.flatten(), ord=2) trust_ratio = eeta * w_norm / (g_norm + ep_np) scaled_lr = lr_np * trust_ratio vel_np = m_np * vel_np - scaled_lr * grad_np var_np += vel_np self.assertAllClose(var_np, post_var) if m_np != 0: post_vel = self.evaluate(opt.get_slot(var, 'momentum')) self.assertAllClose(vel_np, post_vel) @parameterized.named_parameters( ('tf.float32 m=0', tf.float32, 0), ('tf.float32 m=0.9', tf.float32, 0.9), ('tf.float64 m=0', tf.float64, 0), ('tf.float64 m=0.9', tf.float64, 0.9)) def testFLARSGradientMultiStep(self, dtype, momentum): shape = [3, 3] var_np = np.ones(shape) grad_np = np.ones(shape) lr_np = 0.1 m_np = momentum ep_np = 1e-5 eeta = 0.1 vel_np = np.zeros(shape) var = tf.Variable(var_np, dtype=dtype, name='a') grad = tf.Variable(grad_np, dtype=dtype) opt = flars_optimizer.FLARSOptimizer( learning_rate=lr_np, momentum=m_np, eeta=eeta, epsilon=ep_np) g_norm = np.linalg.norm(grad_np.flatten(), ord=2) opt.update_grads_norm([var], [g_norm]) self.evaluate(tf.compat.v1.global_variables_initializer()) pre_var = self.evaluate(var) self.assertAllClose(var_np, pre_var) for _ in range(10): opt.apply_gradients([(grad, var)]) post_var = self.evaluate(var) w_norm = np.linalg.norm(var_np.flatten(), ord=2) trust_ratio = eeta * w_norm / (g_norm + ep_np) scaled_lr = lr_np * trust_ratio vel_np = m_np * vel_np - scaled_lr * grad_np var_np += vel_np self.assertAllClose(var_np, post_var) if m_np != 0: post_vel = self.evaluate(opt.get_slot(var, 'momentum')) self.assertAllClose(vel_np, post_vel) @parameterized.named_parameters(('tf.float32', tf.float32), ('tf.float64', tf.float64)) def testComputeLRMaxRatio(self, dtype): shape = [3, 3] var_np = np.ones(shape) grad_np =
np.ones(shape)
numpy.ones
""" vp_surpise.py Do calculations for surprisal type functionals """ import numpy as np def vp_surprise(self): #Calculate overlap Pa = np.sum(self.na_frac, axis=1) /
np.sum(self.nf, axis=1)
numpy.sum
from torch.utils.data.sampler import Sampler import os import numpy as np import torch import torch.utils.data import cv2 import imutils from torchvision.transforms import functional as TF from PIL import Image import torchvision import random from constants import is_real, workspace_limits, heightmap_resolution, PUSH_Q, GRASP_Q, color_mean, color_std, depth_mean, depth_std, used_binary_mean, used_binary_std, DEPTH_MIN, total_obj, colors_upper, colors_lower, binary_mean, binary_std, distance, resolution, resolution_pad, padding_width, resolution_crop from math import atan2, cos, sin, sqrt, pi, degrees import glob import skimage.io import json class SegmentationDataset(torch.utils.data.Dataset): """ Create segmentation dataset for training Mask R-CNN. One uses pre-defined color range to separate objects (assume the color in one image is unique). One directly reads masks. """ def __init__(self, root, transforms, is_real=False): self.root = root self.transforms = transforms self.is_real = is_real # load all image files, sorting them to ensure that they are aligned self.color_imgs = list(sorted(os.listdir(os.path.join(root, "color-heightmaps")))) self.depth_imgs = list(sorted(os.listdir(os.path.join(root, "depth-heightmaps")))) self.masks = list(sorted(os.listdir(os.path.join(root, "masks")))) def __getitem__(self, idx): # load images color_path = os.path.join(self.root, "color-heightmaps", self.color_imgs[idx]) # depth_path = os.path.join(self.root, "depth-heightmaps", self.depth_imgs[idx]) # color image input color_img = cv2.imread(color_path) color_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2RGB) mask_path = os.path.join(self.root, "masks", self.masks[idx]) mask_img = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) # get masks hsv = cv2.cvtColor(color_img, cv2.COLOR_RGB2HSV) masks = [] if self.is_real: gray = cv2.cvtColor(color_img, cv2.COLOR_RGB2GRAY) gray = gray.astype(np.uint8) blurred = cv2.medianBlur(gray, 5) thresh = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1] cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnts = imutils.grab_contours(cnts) for c in cnts: if cv2.contourArea(c) > 100: mask = np.zeros(color_img.shape[:2], np.uint8) cv2.drawContours(mask, [c], -1, (1), -1) masks.append(mask) # cv2.imshow('mask' + self.color_imgs[idx], mask) # cv2.waitKey(0) # cv2.destroyAllWindows() else: for ci in range(1, np.max(mask_img)): mask = mask_img == ci if np.sum((mask == True)) > 100: masks.append(mask) num_objs = len(masks) if num_objs > 0: masks = np.stack(masks, axis=0) # get bounding box coordinates for each mask boxes = [] for i in range(num_objs): pos = np.where(masks[i]) xmin = np.min(pos[1]) xmax = np.max(pos[1]) ymin = np.min(pos[0]) ymax = np.max(pos[0]) boxes.append([xmin, ymin, xmax, ymax]) if xmin == xmax or ymin == ymax: num_objs = 0 # convert everything into a torch.Tensor boxes = torch.as_tensor(boxes, dtype=torch.float32) # there is only one class labels = torch.ones((num_objs,), dtype=torch.int64) masks = torch.as_tensor(masks, dtype=torch.uint8) image_id = torch.tensor([idx]) if num_objs > 0: area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) else: area = torch.as_tensor([0], dtype=torch.float32) # suppose all instances are not crowd iscrowd = torch.zeros((num_objs,), dtype=torch.int64) num_objs = torch.tensor(num_objs) target = {} target["boxes"] = boxes target["labels"] = labels target["masks"] = masks target["image_id"] = image_id target["area"] = area target["iscrowd"] = iscrowd target["num_obj"] = num_objs if self.transforms is not None: # img, target = self.transforms(img, target) img, target = self.transforms(color_img, target) return img, target def __len__(self): # return len(self.imgs) return len(self.color_imgs) class ForegroundDataset(torch.utils.data.Dataset): ''' Craete binary image, 1 means foreground, 0 means background. For grasp, we care about the center of object, while considering the clearance of gripper. For push, we know all pushs are from left to right. This labeling approach is the as the in the function get_neg of trainer.py ''' def __init__(self, root, num_rotations, fine_tuning_num): self.root = root # load all image files, sorting them to ensure that they are aligned self.color_imgs = list(sorted(os.listdir(os.path.join(root, "color-heightmaps")))) self.depth_imgs = list(sorted(os.listdir(os.path.join(root, "depth-heightmaps")))) if fine_tuning_num is not None: self.color_imgs = self.color_imgs[:int(fine_tuning_num)] self.depth_imgs = self.depth_imgs[:int(fine_tuning_num)] self.num_rotations = num_rotations self.push_large_kernel = np.ones((61, 61)) # hyperparamter self.push_small_kernel = np.ones((15, 15)) # hyperparamter self.grasp_kernel = np.ones((9, 9)) # hyperparamter def __getitem__(self, idx): # load images color_path = os.path.join(self.root, "color-heightmaps", self.color_imgs[idx]) depth_path = os.path.join(self.root, "depth-heightmaps", self.depth_imgs[idx]) # color image input color_img = cv2.imread(color_path) color_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2RGB) color_img_pil = Image.fromarray(color_img) # depth image input depth_img = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) depth_img = depth_img.astype(np.float32) / 100000 # translate to meters depth_img_pil = Image.fromarray(depth_img) # binary push image target, we need boundary and some extra push_depth_img = np.copy(depth_img) push_depth_img[push_depth_img <= DEPTH_MIN] = 0 push_depth_img[push_depth_img > DEPTH_MIN] = 1 push_depth_large = cv2.filter2D(push_depth_img, -1, self.push_large_kernel) push_depth_large[push_depth_large < 1] = 0 push_depth_large[push_depth_large > 1] = 1 push_depth_small = cv2.filter2D(push_depth_img, -1, self.push_small_kernel) push_depth_small[push_depth_small < 1] = 0 push_depth_small[push_depth_small > 1] = 1 push_depth_final = push_depth_large - push_depth_small push_depth_final[push_depth_final < 0] = 0 # prepare q values push_depth_final[push_depth_final == 1] = PUSH_Q push_depth_final[push_depth_final == 0] = 0 target_push_img_pil = Image.fromarray(push_depth_final) # binary grasp image target, we need center part grasp_depth_img = np.copy(depth_img) grasp_depth_img[grasp_depth_img <= DEPTH_MIN] = -100 grasp_depth_img[grasp_depth_img > DEPTH_MIN] = 1 grasp_depth = cv2.filter2D(grasp_depth_img, -1, self.grasp_kernel) grasp_depth[grasp_depth < 1] = 0 grasp_depth[grasp_depth > 1] = 1 # prepare q values grasp_depth[grasp_depth == 1] = GRASP_Q grasp_depth[grasp_depth == 0] = 0 target_grasp_img_pil = Image.fromarray(grasp_depth) color_img_pil, depth_img_pil, target_push_img_pil, target_grasp_img_pil = self.transforms( color_img_pil, depth_img_pil, target_push_img_pil, target_grasp_img_pil) return color_img_pil, depth_img_pil, target_push_img_pil, target_grasp_img_pil def __len__(self): return len(self.color_imgs) @torch.no_grad() def transforms(self, color_heightmap, depth_heightmap, target_push_heightmap, target_grasp_heightmap): # Add extra padding (to handle rotations inside network) diag_length = float(color_heightmap.size[0]) * np.sqrt(2) diag_length = np.ceil(diag_length / 32) * 32 padding_width = int((diag_length - color_heightmap.size[0]) / 2) color_heightmap_pad = TF.pad(color_heightmap, padding_width, fill=0, padding_mode='constant') depth_heightmap_pad = TF.pad(depth_heightmap, padding_width, fill=0, padding_mode='constant') depth_heightmap_pad_push = TF.pad(depth_heightmap, padding_width, fill=-1, padding_mode='constant') target_push_heightmap_pad = TF.pad(target_push_heightmap, padding_width, fill=0, padding_mode='constant') target_grasp_heightmap_pad = TF.pad(target_grasp_heightmap, padding_width, fill=0, padding_mode='constant') # Random rotate rotate_idx = random.randint(0, self.num_rotations - 1) rotate_theta = rotate_idx * (360 / self.num_rotations) color_heightmap_pad = TF.rotate(color_heightmap_pad, rotate_theta) depth_heightmap_pad = TF.rotate(depth_heightmap_pad, rotate_theta) depth_heightmap_pad_push = TF.rotate(depth_heightmap_pad_push, rotate_theta) target_push_heightmap_pad = TF.rotate(target_push_heightmap_pad, rotate_theta) target_grasp_heightmap_pad = TF.rotate(target_grasp_heightmap_pad, rotate_theta) color_heightmap_pad = np.array(color_heightmap_pad) depth_heightmap_pad = np.array(depth_heightmap_pad) depth_heightmap_pad_push = np.array(depth_heightmap_pad_push) target_push_heightmap_pad = np.array(target_push_heightmap_pad) target_grasp_heightmap_pad = np.array(target_grasp_heightmap_pad) # Post process for pushing, only pixel has something on the right (based # on heightmap) will be 1, otherwise it will be a empty push, also if the # pushed place is empty x_y_idx = np.argwhere(target_push_heightmap_pad > 0) # assume the gripper is 2 cm wide for idx in x_y_idx: x, y = tuple(idx) area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), min(depth_heightmap_pad.shape[1], y + 5):min(depth_heightmap_pad.shape[1], y + 30)] # 5x40 in image size, so 5 cm of push if np.sum(area > DEPTH_MIN) == 0: target_push_heightmap_pad[x, y] = 0 else: area = depth_heightmap_pad_push[max(0, x - 4):min(depth_heightmap_pad_push.shape[0], x + 5), min(depth_heightmap_pad_push.shape[1] - 1, y + 75)] if np.sum(area < 0) > 0: # out of the workspace target_push_heightmap_pad[x, y] = 0 # Post process for grasping, only pixel has clearance on the left/right (based on heightmap) will be 1 x_y_idx = np.argwhere(target_grasp_heightmap_pad > 0) for idx in x_y_idx: x, y = tuple(idx) if is_real: left_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), max(0, y - 27):max(0, y - 22)] # 2x3 pixels in each side right_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), min(depth_heightmap_pad.shape[1] - 1, y + 23):min(depth_heightmap_pad.shape[1], y + 28)] # 2x3 pixels in each side if ((np.sum(left_area > DEPTH_MIN) > 0 and np.sum((left_area - depth_heightmap_pad[x, y]) > -0.05) > 0) or (np.sum(right_area > DEPTH_MIN) > 0 and np.sum((right_area - depth_heightmap_pad[x, y]) > -0.05) > 0)): target_grasp_heightmap_pad[x, y] = 0 else: left_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), max(0, y - 28):max(0, y - 18)] # 2x3 pixels in each side right_area = depth_heightmap_pad[max(0, x - 4):min(depth_heightmap_pad.shape[0], x + 5), min(depth_heightmap_pad.shape[1] - 1, y + 19):min(depth_heightmap_pad.shape[1], y + 29)] # 2x3 pixels in each side if ((np.sum(left_area > DEPTH_MIN) > 0 and np.sum((left_area - depth_heightmap_pad[x, y]) > -0.04) > 0) or (np.sum(right_area > DEPTH_MIN) > 0 and np.sum((right_area - depth_heightmap_pad[x, y]) > -0.04) > 0)): target_grasp_heightmap_pad[x, y] = 0 # To tensor color_heightmap_pad = TF.to_tensor(color_heightmap_pad) depth_heightmap_pad = TF.to_tensor(depth_heightmap_pad) target_push_heightmap_pad = TF.to_tensor(target_push_heightmap_pad) target_grasp_heightmap_pad = TF.to_tensor(target_grasp_heightmap_pad) # Normalize color_heightmap_pad = TF.normalize(color_heightmap_pad, color_mean, color_std, inplace=True) depth_heightmap_pad = TF.normalize(depth_heightmap_pad, depth_mean, depth_std, inplace=True) return color_heightmap_pad, depth_heightmap_pad, target_push_heightmap_pad, target_grasp_heightmap_pad class PushPredictionMultiDatasetEvaluation(torch.utils.data.Dataset): ''' Push Prediction Dataset for Evaluation Input: Image, Action (x, y), Pose (x, y) Output: Diff_x, Diff_y, Diff_angle ''' def __init__(self, depth_imgs, actions, poses, binary_objs, is_padding=False): self.is_padding = is_padding self.total_obj = total_obj self.distance = distance self.workspace_limits = workspace_limits self.heightmap_resolution = heightmap_resolution self.prev_depth_imgs = [] self.prev_poses = [] self.actions = [] self.binary_objs = [] print('Total files', len(depth_imgs), len(actions), len(poses)) for i in range(len(actions)): self.prev_depth_imgs.append(depth_imgs[i][48:272, 48:272]) self.prev_poses.append(poses[i]) self.actions.append(actions[i]) self.binary_objs.append(binary_objs[i]) print('Used files', len(self.prev_depth_imgs), len(self.prev_poses), len(self.actions), len(self.binary_objs)) assert len(set([len(self.prev_depth_imgs), len(self.prev_poses), len(self.actions), len(self.binary_objs)])) == 1 def __getitem__(self, idx): # depth image input prev_depth_img = self.prev_depth_imgs[idx] # number of objects num_obj = len(self.prev_poses[idx]) # poses prev_poses = torch.tensor(self.prev_poses[idx]) # action action_start = torch.tensor(self.actions[idx]) action_end = torch.tensor([action_start[0] + self.distance / 0.2, action_start[1]]) # prev binary depth binary # obj prev_depth_binary_img_obj = np.copy(prev_depth_img) prev_depth_binary_img_obj[prev_depth_binary_img_obj <= DEPTH_MIN] = 0 prev_depth_binary_img_obj[prev_depth_binary_img_obj > DEPTH_MIN] = 1 temp = np.zeros((680, 680)) temp[228:452, 228:452] = prev_depth_binary_img_obj prev_depth_binary_img_obj = temp[int(action_start[1] + 228) - 112:int(action_start[1] + 228) + 112, int(action_start[0] + 228) - 40:int(action_start[0] + 228) + 184] # action prev_depth_binary_img_action = np.zeros_like(prev_depth_img) prev_depth_binary_img_action[int(action_start[1]) - 11:int(action_start[1]) + 12, int(action_start[0]):int(action_end[0])] = 1 temp = np.zeros((680, 680)) temp[228:452, 228:452] = prev_depth_binary_img_action prev_depth_binary_img_action = temp[int(action_start[1] + 228) - 112:int(action_start[1] + 228) + 112, int(action_start[0] + 228) - 40:int(action_start[0] + 228) + 184] binary_objs = self.binary_objs[idx] temp = np.zeros_like(binary_objs[:, :, 0:1]) if self.is_padding: for _ in range(total_obj - num_obj): binary_objs = np.concatenate((binary_objs, temp), axis=-1) # centralize action_start_ori = torch.clone(action_start).detach() action_end_ori = torch.clone(action_end).detach() action_start[0] -= 40 action_start[1] -= 112 for pi in range(num_obj): prev_poses[pi] = prev_poses[pi] - action_start prev_poses = prev_poses.flatten() if self.is_padding: prev_poses = torch.cat((prev_poses, torch.tensor( [-100, -100] * (self.total_obj - num_obj), dtype=torch.float32))) action = torch.tensor([40.0, 112.0, 40.0 + self.distance / 0.2, 112.0]) used_binary_img, binary_objs_total = self.transforms( prev_depth_binary_img_obj, prev_depth_binary_img_action, binary_objs) # sort input based on the distance to the action prev_poses_sort = prev_poses.numpy() if self.is_padding: prev_poses_sort = prev_poses_sort.reshape(self.total_obj, -1) else: prev_poses_sort = prev_poses_sort.reshape(num_obj, -1) action_start = np.array([40, 112]) sort_idx = np.argsort(np.sum(np.square(prev_poses_sort - action_start), axis=1)) prev_poses_sort = prev_poses_sort[sort_idx].flatten() prev_poses = torch.tensor(prev_poses_sort, dtype=torch.float32) binary_objs_total = binary_objs_total[sort_idx] return prev_poses, action, action_start_ori, action_end_ori, used_binary_img, binary_objs_total, num_obj, sort_idx def __len__(self): return len(self.actions) @torch.no_grad() def transforms(self, prev_depth_binary_img_obj, prev_depth_binary_img_action, binary_objs): prev_depth_binary_img_obj = TF.to_tensor(prev_depth_binary_img_obj) prev_depth_binary_img_action = TF.to_tensor(prev_depth_binary_img_action) used_binary_img = torch.cat((prev_depth_binary_img_obj, prev_depth_binary_img_action), dim=0) used_binary_img = TF.normalize(used_binary_img, used_binary_mean, used_binary_std, inplace=True) binary_objs_total = TF.to_tensor(binary_objs) current_binary_mean = binary_mean * binary_objs_total.size(0) current_binary_std = binary_std * binary_objs_total.size(0) binary_objs_total = TF.normalize(binary_objs_total, current_binary_mean, current_binary_std, inplace=True) return used_binary_img, binary_objs_total class ClusterRandomSampler(Sampler): """Takes a dataset with cluster_indices property, cuts it into batch-sized chunks Drops the extra items, not fitting into exact batches Arguments: data_source (Dataset): a Dataset to sample from. Should have a cluster_indices property batch_size (int): a batch size that you would like to use later with Dataloader class shuffle (bool): whether to shuffle the data or not """ def __init__(self, data_source, batch_size, shuffle=True): self.data_source = data_source self.batch_size = batch_size self.shuffle = shuffle def flatten_list(self, lst): return [item for sublist in lst for item in sublist] def __iter__(self): batch_lists = [] for _, cluster_indices in self.data_source.cluster_indices.items(): if self.shuffle: random.shuffle(cluster_indices) batches = [cluster_indices[i:i + self.batch_size] for i in range(0, len(cluster_indices), self.batch_size)] # filter our the shorter batches batches = [_ for _ in batches if len(_) == self.batch_size] batch_lists.append(batches) # flatten lists and shuffle the batches if necessary # this works on batch level lst = self.flatten_list(batch_lists) if self.shuffle: random.shuffle(lst) # final flatten - produce flat list of indexes lst = self.flatten_list(lst) return iter(lst) def __len__(self): return len(self.data_source) class PushPredictionMultiDataset(torch.utils.data.Dataset): ''' Push Prediction Dataset for training Push prediction network. The push distance is fixed, could be 5 or 10 cm. Track objects by color, so we assume each object has a unique color, however, this constraint does not needed in evalution. Input: Image, Action (x, y), Pose (x, y) Output: Diff_x, Diff_y, Diff_angle ''' def __init__(self, root, distance, is_padding=False, cutoff=None): self.root = root self.total_obj = total_obj self.is_padding = is_padding # load all image files, sorting them to ensure that they are aligned color_imgs = list(sorted(os.listdir(os.path.join(root, "color-heightmaps")))) depth_imgs = list(sorted(os.listdir(os.path.join(root, "depth-heightmaps")))) actions = list(sorted(os.listdir(os.path.join(root, "actions")))) poses = list(sorted(os.listdir(os.path.join(root, "poses")))) self.distance = distance self.workspace_limits = workspace_limits self.heightmap_resolution = heightmap_resolution self.prev_color_imgs = [] self.prev_depth_imgs = [] self.prev_poses = [] self.actions = [] self.next_color_imgs = [] self.next_depth_imgs = [] self.next_poses = [] self.cluster_indices = {} print('Total files', len(color_imgs), len(depth_imgs), len(actions), len(poses)) # only keep data that we will use, based on distance if self.distance == 10: for i in range(len(actions)): assert len(set([actions[i][:7], color_imgs[i][:7], depth_imgs[i][:7], poses[i][:7]]) ) == 1, (actions[i][:7], color_imgs[i][:7], depth_imgs[i][:7], poses[i][:7]) if cutoff is not None: if int(actions[i][:3]) > cutoff: break if actions[i].endswith('00.action.txt'): self.prev_color_imgs.append(color_imgs[i]) self.prev_depth_imgs.append(depth_imgs[i]) self.prev_poses.append(poses[i]) self.actions.append(actions[i]) # create cluster indices, so the the data with same amount of object will be put together poses_path = os.path.join(self.root, "poses", poses[i]) with open(poses_path, 'r') as file: filedata = file.read() poses_str = filedata.split(' ') num_obj = len(poses_str) // 5 if num_obj in self.cluster_indices: self.cluster_indices[num_obj].append(len(self.prev_poses) - 1) else: self.cluster_indices[num_obj] = [len(self.prev_poses) - 1] elif actions[i].endswith('10.action.txt'): self.next_color_imgs.append(color_imgs[i]) self.next_depth_imgs.append(depth_imgs[i]) self.next_poses.append(poses[i]) if self.distance == 5: for i in range(len(actions)): assert len(set([actions[i][:7], color_imgs[i][:7], depth_imgs[i][:7], poses[i][:7]]) ) == 1, (actions[i][:7], color_imgs[i][:7], depth_imgs[i][:7], poses[i][:7]) # only use a certain amount of data if cutoff is not None: if i >= 11 * int(cutoff) * 100: break # work in real world if actions[i].endswith('00.action.txt'): self.prev_color_imgs.append(color_imgs[i]) self.prev_depth_imgs.append(depth_imgs[i]) self.prev_poses.append(poses[i]) self.actions.append(actions[i]) # create cluster indices, so the the data with same amount of object will be put together poses_path = os.path.join(self.root, "poses", poses[i]) with open(poses_path, 'r') as file: filedata = file.read() poses_str = filedata.split(' ') num_obj = len(poses_str) // 5 if num_obj in self.cluster_indices: self.cluster_indices[num_obj].append(len(self.prev_poses) - 1) else: self.cluster_indices[num_obj] = [len(self.prev_poses) - 1] elif actions[i].endswith('5.action.txt'): self.next_color_imgs.append(color_imgs[i]) self.next_depth_imgs.append(depth_imgs[i]) self.next_poses.append(poses[i]) # work in sim, data accumulation, for a 10 cm push, we can have 0-5, 1-6, 2-7, ..., 5-10 # if len(set([actions[i][:7], color_imgs[i][:7], depth_imgs[i][:7], poses[i][:7]])) != 1: # print(actions[i][:7], color_imgs[i][:7], depth_imgs[i][:7], poses[i][:7]) # if (actions[i].endswith('00.action.txt') or actions[i].endswith('01.action.txt') or actions[i].endswith('02.action.txt') or # actions[i].endswith('03.action.txt') or actions[i].endswith('04.action.txt')): # self.prev_color_imgs.append(color_imgs[i]) # self.prev_depth_imgs.append(depth_imgs[i]) # self.prev_poses.append(poses[i]) # self.actions.append(actions[i]) # # create cluster indices, so the the data with same amount of object will be put together # poses_path = os.path.join(self.root, "poses", poses[i]) # with open(poses_path, 'r') as file: # filedata = file.read() # poses_str = filedata.split(' ') # num_obj = len(poses_str) // 5 # if num_obj in self.cluster_indices: # self.cluster_indices[num_obj].append(len(self.prev_poses) - 1) # else: # self.cluster_indices[num_obj] = [len(self.prev_poses) - 1] # elif (actions[i].endswith('06.action.txt') or actions[i].endswith('07.action.txt') or actions[i].endswith('08.action.txt') or # actions[i].endswith('09.action.txt') or actions[i].endswith('10.action.txt')): # self.next_color_imgs.append(color_imgs[i]) # self.next_depth_imgs.append(depth_imgs[i]) # self.next_poses.append(poses[i]) # else: # self.prev_color_imgs.append(color_imgs[i]) # self.prev_depth_imgs.append(depth_imgs[i]) # self.prev_poses.append(poses[i]) # self.actions.append(actions[i]) # self.next_color_imgs.append(color_imgs[i]) # self.next_depth_imgs.append(depth_imgs[i]) # self.next_poses.append(poses[i]) # # create cluster indices, so the the data with same amount of object will be put together # poses_path = os.path.join(self.root, "poses", poses[i]) # with open(poses_path, 'r') as file: # filedata = file.read() # poses_str = filedata.split(' ') # num_obj = len(poses_str) // 5 # if num_obj in self.cluster_indices: # self.cluster_indices[num_obj].append(len(self.prev_poses) - 1) # else: # self.cluster_indices[num_obj] = [len(self.prev_poses) - 1] print('Used files', len(self.prev_color_imgs), len(self.next_color_imgs), len(self.prev_depth_imgs), len(self.next_depth_imgs), len(self.prev_poses), len(self.next_poses), len(self.actions)) assert len(set([len(self.prev_color_imgs), len(self.next_color_imgs), len(self.prev_depth_imgs), len(self.next_depth_imgs), len(self.prev_poses), len(self.next_poses), len(self.actions)])) == 1 def __getitem__(self, idx): # load data path prev_color_path = os.path.join(self.root, "color-heightmaps", self.prev_color_imgs[idx]) prev_depth_path = os.path.join(self.root, "depth-heightmaps", self.prev_depth_imgs[idx]) prev_poses_path = os.path.join(self.root, "poses", self.prev_poses[idx]) actions_path = os.path.join(self.root, "actions", self.actions[idx]) next_color_path = os.path.join(self.root, "color-heightmaps", self.next_color_imgs[idx]) next_depth_path = os.path.join(self.root, "depth-heightmaps", self.next_depth_imgs[idx]) next_poses_path = os.path.join(self.root, "poses", self.next_poses[idx]) # color image input prev_color_img = cv2.imread(prev_color_path) prev_color_img = cv2.cvtColor(prev_color_img, cv2.COLOR_BGR2RGB) next_color_img = cv2.imread(next_color_path) next_color_img = cv2.cvtColor(next_color_img, cv2.COLOR_BGR2RGB) # depth image input prev_depth_img = cv2.imread(prev_depth_path, cv2.IMREAD_UNCHANGED) prev_depth_img = prev_depth_img.astype(np.float32) / 100000 # translate to meters 100000 next_depth_img = cv2.imread(next_depth_path, cv2.IMREAD_UNCHANGED) next_depth_img = next_depth_img.astype(np.float32) / 100000 # translate to meters 100000 next_depth_img[next_depth_img < 0] = 0 # poses with open(prev_poses_path, 'r') as file: filedata = file.read() poses = filedata.split(' ') num_obj = len(poses) // 5 prev_poses = [] for pi in range(num_obj): x = (float(poses[pi * 5]) - self.workspace_limits[0][0]) / self.heightmap_resolution y = (float(poses[pi * 5 + 1]) - self.workspace_limits[1][0]) / self.heightmap_resolution angle_y = degrees(float(poses[pi * 5 + 4])) prev_poses.extend([x, y, angle_y]) prev_poses = torch.tensor(prev_poses) with open(next_poses_path, 'r') as file: filedata = file.read() poses = filedata.split(' ') assert len(poses) // 5 == num_obj next_poses = [] for pi in range(num_obj): x = (float(poses[pi * 5]) - self.workspace_limits[0][0]) / self.heightmap_resolution y = (float(poses[pi * 5 + 1]) - self.workspace_limits[1][0]) / self.heightmap_resolution angle_y = degrees(float(poses[pi * 5 + 4])) next_poses.extend([x, y, angle_y]) next_poses = torch.tensor(next_poses) # action with open(actions_path, 'r') as file: filedata = file.read() x, y = filedata.split(' ') x = (float(x) - self.workspace_limits[0][0]) / self.heightmap_resolution y = (float(y) - self.workspace_limits[1][0]) / self.heightmap_resolution action_start = torch.tensor([float(x), float(y)]) action_end = torch.tensor([float(x + self.distance / 0.2), float(y)]) # prev binary depth binary # obj prev_depth_binary_img_obj = np.copy(prev_depth_img) prev_depth_binary_img_obj[prev_depth_binary_img_obj <= DEPTH_MIN] = 0 prev_depth_binary_img_obj[prev_depth_binary_img_obj > DEPTH_MIN] = 1 temp = np.zeros((680, 680)) temp[228:452, 228:452] = prev_depth_binary_img_obj prev_depth_binary_img_obj = temp[int(action_start[1] + 228) - 112:int(action_start[1] + 228) + 112, int(action_start[0] + 228) - 40:int(action_start[0] + 228) + 184] # action prev_depth_binary_img_action = np.zeros_like(prev_depth_img) prev_depth_binary_img_action[int(action_start[1]) - 11:int(action_start[1]) + 12, int(action_start[0]):int(action_end[0])] = 1 temp = np.zeros((680, 680)) temp[228:452, 228:452] = prev_depth_binary_img_action prev_depth_binary_img_action = temp[int(action_start[1] + 228) - 112:int(action_start[1] + 228) + 112, int(action_start[0] + 228) - 40:int(action_start[0] + 228) + 184] # TODO: assume pose in order of blue, green, brown, orange, yellow imgcolor = np.copy(prev_color_img) imgcolor = imgcolor.astype(np.uint8) temp = np.zeros((480, 480, 3), dtype=np.uint8) temp[128:(480 - 128), 128:(480 - 128), :] = imgcolor imgcolor = cv2.cvtColor(temp, cv2.COLOR_RGB2HSV) binary_objs = [] for ci in range(num_obj): crop = imgcolor[int(prev_poses[ci * 3 + 1]) + 128 - 30:int(prev_poses[ci * 3 + 1]) + 128 + 30, int(prev_poses[ci * 3]) + 128 - 30:int(prev_poses[ci * 3]) + 128 + 30, :] assert crop.shape[0] == 60 and crop.shape[1] == 60, (self.prev_color_imgs[idx], crop.shape) mask = cv2.inRange(crop, colors_lower[ci], colors_upper[ci]) binary_objs.append(mask) # delta poses deltas = [] for pi in range(num_obj): d_x = next_poses[pi * 3] - prev_poses[pi * 3] d_y = next_poses[pi * 3 + 1] - prev_poses[pi * 3 + 1] d_a = -(next_poses[pi * 3 + 2] - prev_poses[pi * 3 + 2]) if d_a < -180: d_a = 360 + d_a elif d_a > 180: d_a = d_a - 360 assert abs(d_a) < 120, (pi, d_a, self.prev_color_imgs[idx], self.next_color_imgs[idx], prev_poses, next_poses) deltas.extend([d_x, d_y, d_a]) if self.is_padding: deltas.extend([0, 0, 0] * (self.total_obj - num_obj)) deltas = torch.tensor(deltas, dtype=torch.float32) # centralize action_start_ori = torch.clone(action_start).detach() action_end_ori = torch.clone(action_end).detach() action_start[0] -= 40 action_start[1] -= 112 for pi in range(num_obj): prev_poses[pi * 3: pi * 3 + 2] = prev_poses[pi * 3: pi * 3 + 2] - action_start next_poses[pi * 3: pi * 3 + 2] = next_poses[pi * 3: pi * 3 + 2] - action_start prev_poses_no_angle = [] for pi in range(num_obj): prev_poses_no_angle.extend([prev_poses[pi * 3], prev_poses[pi * 3 + 1]]) if self.is_padding: prev_poses_no_angle.extend([-100, -100] * (self.total_obj - num_obj)) next_poses_no_angle = [] for pi in range(num_obj): next_poses_no_angle.extend([next_poses[pi * 3], next_poses[pi * 3 + 1]]) if self.is_padding: next_poses_no_angle.extend([-100, -100] * (self.total_obj - num_obj)) prev_poses = torch.tensor(prev_poses_no_angle, dtype=torch.float32) next_poses = torch.tensor(next_poses_no_angle, dtype=torch.float32) action = torch.tensor([40.0, 112.0, 40.0 + self.distance / 0.2, 112.0]) prev_color_img, prev_depth_img, next_color_img, next_depth_img, used_binary_img, binary_objs_total = self.transforms( prev_color_img, prev_depth_img, next_color_img, next_depth_img, prev_depth_binary_img_obj, prev_depth_binary_img_action, binary_objs) # sort input based on the distance to the action prev_poses_sort = prev_poses.numpy() if self.is_padding: prev_poses_sort = prev_poses_sort.reshape(self.total_obj, -1) else: prev_poses_sort = prev_poses_sort.reshape(num_obj, -1) action_start = np.array([40, 112]) sort_idx = np.argsort(np.sum(np.square(prev_poses_sort - action_start), axis=1)) prev_poses_sort = prev_poses_sort[sort_idx].flatten() prev_poses = torch.tensor(prev_poses_sort, dtype=torch.float32) next_poses_sort = next_poses.numpy() if self.is_padding: next_poses_sort = next_poses_sort.reshape(self.total_obj, -1) else: next_poses_sort = next_poses_sort.reshape(num_obj, -1) next_poses_sort = next_poses_sort[sort_idx].flatten() next_poses = torch.tensor(next_poses_sort, dtype=torch.float32) deltas_sort = deltas.numpy() if self.is_padding: deltas_sort = deltas_sort.reshape(self.total_obj, -1) else: deltas_sort = deltas_sort.reshape(num_obj, -1) deltas_sort = deltas_sort[sort_idx].flatten() deltas = torch.tensor(deltas_sort, dtype=torch.float32) binary_objs_total = binary_objs_total[sort_idx] return prev_color_img, prev_depth_img, next_color_img, next_depth_img, used_binary_img, prev_poses, next_poses, action, deltas, self.prev_color_imgs[ idx], self.next_color_imgs[idx], action_start_ori, action_end_ori, binary_objs_total, num_obj, sort_idx def __len__(self): return len(self.actions) @torch.no_grad() def transforms(self, prev_color_img, prev_depth_img, next_color_img, next_depth_img, prev_depth_binary_img_obj, prev_depth_binary_img_action, binary_objs): # To tensor prev_color_img = TF.to_tensor(prev_color_img) prev_depth_img = TF.to_tensor(prev_depth_img) next_color_img = TF.to_tensor(next_color_img) next_depth_img = TF.to_tensor(next_depth_img) prev_depth_binary_img_obj = TF.to_tensor(prev_depth_binary_img_obj) prev_depth_binary_img_action = TF.to_tensor(prev_depth_binary_img_action) used_binary_img = torch.cat((prev_depth_binary_img_obj, prev_depth_binary_img_action), dim=0) used_binary_img = TF.normalize(used_binary_img, used_binary_mean, used_binary_std, inplace=True) binary_objs_total = TF.to_tensor(binary_objs[0]) for ci in range(1, len(binary_objs)): temp = TF.to_tensor(binary_objs[ci]) temp = TF.normalize(temp, binary_mean, binary_std, inplace=True) binary_objs_total = torch.cat((binary_objs_total, temp), dim=0) if self.is_padding: if len(binary_objs) < self.total_obj: temp =
np.zeros_like(binary_objs[0])
numpy.zeros_like
import os import numba as nb import numpy as np from numba_celltree import geometry_utils as gu from numba_celltree.constants import Box, Point, Vector def test_to_vector(): a = Point(0.0, 0.0) b = Point(1.0, 2.0) actual = gu.to_vector(a, b) assert isinstance(actual, Vector) assert actual.x == 1.0 assert actual.y == 2.0 def test_as_point(): a = np.array([0.0, 1.0]) actual = gu.as_point(a) assert isinstance(actual, Point) assert actual.x == 0.0 assert actual.y == 1.0 def test_to_point(): a = Point(0.0, 0.0) b = Point(1.0, 2.0) V = gu.to_vector(a, b) t = 0.0 actual = gu.to_point(t, a, V) assert np.allclose(actual, a) t = 1.0 actual = gu.to_point(t, a, V) assert np.allclose(actual, b) t = 0.5 actual = gu.to_point(t, a, V) assert np.allclose(actual, Point(0.5, 1.0)) def test_cross_product(): u = Vector(1.0, 2.0) v = Vector(3.0, 4.0) assert np.allclose(gu.cross_product(u, v), np.cross(u, v)) def test_dot_product(): u = Vector(1.0, 2.0) v = Vector(3.0, 4.0) assert np.allclose(gu.dot_product(u, v), np.dot(u, v)) def test_polygon_length(): face = np.array([0, 1, 2]) assert gu.polygon_length(face) == 3 assert gu.polygon_length(face) == 3 face = np.array([0, 1, 2, -1, -1]) assert gu.polygon_length(face) == 3 face = np.array([0, 1, 2, 3, -1]) assert gu.polygon_length(face) == 4 def test_polygon_area(): # square p = np.array( [ [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], ] ) assert np.allclose(gu.polygon_area(p), 1.0) # triangle p = np.array( [ [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], ] ) assert np.allclose(gu.polygon_area(p), 0.5) # pentagon, counter-clockwise p = np.array( [ [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.5, 2.0], [0.0, 1.0], ] ) assert np.allclose(gu.polygon_area(p), 1.5) # clockwise assert np.allclose(gu.polygon_area(p[::-1]), 1.5) def test_point_in_polygon(): poly = np.array( [ [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], ] ) assert gu.point_in_polygon(Point(0.5, 0.25), poly) assert not gu.point_in_polygon(Point(1.5, 0.25), poly) assert gu.point_in_polygon(Point(0.0, 0.0), poly) assert gu.point_in_polygon(Point(0.0, 0.0), poly[::-1]) assert gu.point_in_polygon(Point(0.5, 0.5), poly) assert gu.point_in_polygon(Point(0.5, 0.5), poly[::-1]) assert not gu.point_in_polygon(Point(1.0, 1.0), poly) assert not gu.point_in_polygon(Point(1.0, 1.0), poly[::-1]) def test_boxes_intersect(): # Identity a = Box(0.0, 1.0, 0.0, 1.0) b = a assert gu.boxes_intersect(a, b) assert gu.boxes_intersect(b, a) # Overlap b = Box(0.5, 1.5, 0.0, 1.0) assert gu.boxes_intersect(a, b) assert gu.boxes_intersect(b, a) # No overlap b = Box(1.5, 2.5, 0.5, 1.0) assert not gu.boxes_intersect(a, b) assert not gu.boxes_intersect(b, a) # Different identity b = a assert gu.boxes_intersect(a, b) assert gu.boxes_intersect(b, a) # Inside a = Box(0.0, 1.0, 0.0, 1.0) b = Box(0.25, 0.75, 0.25, 0.75) assert gu.boxes_intersect(a, b) assert gu.boxes_intersect(b, a) def test_bounding_box(): face = np.array([0, 1, 2]) vertices = np.array( [ [0.0, 1.0], [1.0, 0.0], [1.0, 1.0], ] ) assert gu.bounding_box(face, vertices) == (0.0, 1.0, 0.0, 1.0) face = np.array([0, 1, 2, -1, -1]) assert gu.bounding_box(face, vertices) == (0.0, 1.0, 0.0, 1.0) def test_build_bboxes(): faces = np.array( [ [0, 1, 2, -1], [0, 1, 2, 3], ] ) vertices = np.array( [ [0.0, 5.0], [5.0, 0.0], [5.0, 5.0], [0.0, 5.0], ] ) expected = np.array( [ [0.0, 5.0, 0.0, 5.0], [0.0, 5.0, 0.0, 5.0], ] ) actual = gu.build_bboxes(faces, vertices) assert np.array_equal(actual, expected) def test_copy_vertices(): """ This has to be tested inside of numba jitted function, because the vertices are copied to a stack allocated array. This array is not returned properly to dynamic python. This is OK: these arrays are exclusively for internal use to temporarily store values. """ if os.environ.get("NUMBA_DISABLE_JIT", "0") == "0": @nb.njit() def test(): face = np.array([0, 1, 2, -1, -1]) vertices = np.array( [ [0.0, 1.0], [1.0, 0.0], [1.0, 1.0], ] ) expected = vertices.copy() actual = gu.copy_vertices(vertices, face) result = True for i in range(3): result = result and actual[i, 0] == expected[i, 0] result = result and actual[i, 1] == expected[i, 1] return result assert test() else: face = np.array([0, 1, 2, -1, -1]) vertices = np.array( [ [0.0, 1.0], [1.0, 0.0], [1.0, 1.0], ] ) expected = vertices.copy() actual = gu.copy_vertices(vertices, face) assert np.array_equal(actual, expected) assert len(actual) == 3 def test_copy_vertices_into(): out = np.empty((10, 2)) face =
np.array([0, 1, 2, -1, -1])
numpy.array
import numpy as np from os import path as osp from glob import glob from superpoint.settings import EXPER_PATH def get_paths(exper_name): """ Return a list of paths to the outputs of the experiment. """ return glob(osp.join(EXPER_PATH, 'outputs/{}/*.npz'.format(exper_name))) def compute_tp_fp(data, remove_zero=1e-4, distance_thresh=2, simplified=False): """ Compute the true and false positive rates. """ # Read data gt = np.where(data['keypoint_map']) gt = np.stack([gt[0], gt[1]], axis=-1) n_gt = len(gt) prob = data['prob_nms'] if 'prob_nms' in data.files else data['prob'] # Filter out predictions with near-zero probability mask = np.where(prob > remove_zero) prob = prob[mask] pred = np.array(mask).T # When several detections match the same ground truth point, only pick # the one with the highest score (the others are false positive) sort_idx = np.argsort(prob)[::-1] prob = prob[sort_idx] pred = pred[sort_idx] diff = np.expand_dims(pred, axis=1) - np.expand_dims(gt, axis=0) dist = np.linalg.norm(diff, axis=-1) matches = np.less_equal(dist, distance_thresh) tp = [] matched = np.zeros(len(gt)) for m in matches: correct = np.any(m) if correct: gt_idx = np.argmax(m) tp.append(not matched[gt_idx]) matched[gt_idx] = 1 else: tp.append(False) tp =
np.array(tp, bool)
numpy.array
import numpy as np import numexpr as ne from math import pi class Surface: """"Generation of surface realizations from spectrum""" def __init__(self, kmax, spectrum, seed=None, xaxis=None): """Setup random generator used for realizations spectrum is a scalar, 1-D array or 2-D array """ self.rng = np.random.default_rng(seed=seed) self.kmax = kmax self.spectrum = np.array(spectrum, ndmin=1) self.dx = 2 * pi / kmax self.xaxis = xaxis self.g = 9.81 self.km = 370 # wavenumber at GC wave phase speed minimum if xaxis is not None: self.yaxis = None self.N = spectrum.size self.kx = kmax / (np.arange(spectrum.size) + 1) self.ky = None self.omega = self.ldis_deepwater(self.kx) self.h_rms = np.sum(self.spectrum) elif self.spectrum.size == self.spectrum.shape[0]: self.N = (self.spectrum.shape[0] - 1) * 2 self.Nx = None self.Ny = None self.kx = np.arange(self.N // 2 + 1) * kmax / self.N self.ky = None self.xaxis = np.arange(self.N) * self.dx self.yaxis = None self.omega = self.ldis_deepwater(self.kx) self.h_rms = np.sqrt(np.sum(self.spectrum) * kmax / self.N) else: self.N = None Nx, self.Ny = self.spectrum.shape self.Nx = (Nx - 1) * 2 self.kx =
np.arange(self.Nx // 2 + 1)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 12/8/2018 9:00 PM # @Author : chinshin # @FileName: parsers.py import os from logging import getLogger import numpy import pandas import pickle from rdkit import Chem from tqdm import tqdm from chainer_chemistry.dataset.parsers.base_parser import BaseFileParser from chainer_chemistry.dataset.preprocessors.common import MolFeatureExtractionError # NOQA from chainer_chemistry.dataset.preprocessors.mol_preprocessor import MolPreprocessor # NOQA from chainer_chemistry.datasets.numpy_tuple_dataset import NumpyTupleDataset import traceback class CSVFileParserForPair(BaseFileParser): """data frame parser This FileParser parses pandas dataframe. It should contain column which contain SMILES as input, and label column which is the target to predict. Args: preprocessor (BasePreprocessor): preprocessor instance labels (str or list or None): labels column smiles_cols (list): smiles columns postprocess_label (Callable): post processing function if necessary postprocess_fn (Callable): post processing function if necessary logger: """ def __init__(self, preprocessor, labels=None, smiles_cols=('smiles_1', 'smiles_2'), postprocess_label=None, postprocess_fn=None, logger=None): super(CSVFileParserForPair, self).__init__(preprocessor) if isinstance(labels, str): labels = [labels, ] self.labels = labels # type: list if not isinstance(smiles_cols, list): self.smiles_cols = list(smiles_cols) else: self.smiles_cols = smiles_cols self.postprocess_label = postprocess_label self.postprocess_fn = postprocess_fn self.logger = logger or getLogger(__name__) def parse(self, filepath, return_smiles_pair=False, return_smiles_pair_original=False, target_index=None, return_is_successful=False): """parse DataFrame using `preprocessor` Label is extracted from `labels` columns and input features are extracted from smiles information in `smiles` column. Args: filepath (str): file path to be parsed. return_smiles_pair (bool): If set to `True`, smiles list is returned in the key 'smiles', it is a list of SMILES from which input features are successfully made. If set to `False`, `None` is returned in the key 'smiles'. target_index (list or None): target index list to partially extract dataset. If None (default), all examples are parsed. return_is_successful (bool): If set to `True`, boolean list is returned in the key 'is_successful'. It represents preprocessing has succeeded or not for each SMILES. If set to False, `None` is returned in the key 'is_success'. Returns (dict): dictionary that contains Dataset, 1-d numpy array with dtype=object(string) which is a vector of smiles for each example or None. """ df = pandas.read_csv(filepath) logger = self.logger pp = self.preprocessor smiles_pair_list = [] smiles_pair_list_original = [] is_successful_list = [] # counter = 0 if isinstance(pp, MolPreprocessor): # No influence. if target_index is not None: df = df.iloc[target_index] features = None smiles_1_index = df.columns.get_loc(self.smiles_cols[0]) smiles_2_index = df.columns.get_loc(self.smiles_cols[1]) if self.labels is None: labels_index = [] # dummy list else: labels_index = [df.columns.get_loc(c) for c in self.labels] total_count = df.shape[0] fail_count = 0 success_count = 0 # iteration on every row within the csv file for row in tqdm(df.itertuples(index=False), total=df.shape[0]): smiles_1 = row[smiles_1_index] smiles_2 = row[smiles_2_index] # currently it assumes list labels = [int(row[i]) for i in labels_index] try: mol_1 = Chem.MolFromSmiles(smiles_1) mol_2 = Chem.MolFromSmiles(smiles_2) if mol_1 is None or mol_2 is None: fail_count += 1 if return_is_successful: is_successful_list.append(False) continue # Note that smiles expression is not unique. # we obtain canonical smiles # canonical_smiles_1, mol_1 = pp.prepare_smiles_and_mol(mol_1) # input_features_1 = pp.get_input_features(mol_1) # canonical_smiles_2, mol_2 = pp.prepare_smiles_and_mol(mol_2) # input_features_2 = pp.get_input_features(mol_2) input_features_1 = pp.get_input_features(mol_1) input_features_2 = pp.get_input_features(mol_2) # Extract label if self.postprocess_label is not None: labels = self.postprocess_label(labels) # if return_smiles_pair: # smiles_pair_list.append([canonical_smiles_1, canonical_smiles_2]) if return_smiles_pair: smiles_pair_list.append([smiles_1, smiles_2]) if return_smiles_pair_original: smiles_pair_list_original.append([smiles_1, smiles_2]) except MolFeatureExtractionError as e: # This is expected error that extracting feature failed, # skip this molecule. fail_count += 1 if return_is_successful: is_successful_list.append(False) continue except Exception as e: logger.warning('parse(), type: {}, {}' .format(type(e).__name__, e.args)) logger.info(traceback.format_exc()) fail_count += 1 if return_is_successful: is_successful_list.append(False) continue # Initialize features: list of list if features is None: if isinstance(input_features_1, tuple): num_features_1 = len(input_features_1) else: num_features_1 = 1 if isinstance(input_features_2, tuple): num_features_2 = len(input_features_2) else: num_features_2 = 1 num_features = num_features_1 + num_features_2 if self.labels is not None: num_features += 1 # list of list, a sublist corresponding to a certain feature features = [[] for _ in range(num_features)] # for every row in csv file if isinstance(input_features_1, tuple): for i in range(len(input_features_1)): # features[i] a list containing the i-th feature features[i].append(input_features_1[i]) else: features[0].append(input_features_1) offset = len(input_features_1) if isinstance(input_features_2, tuple): for i in range(len(input_features_2)): features[offset + i].append(input_features_2[i]) else: features[offset].append(input_features_2) # last column corresponding to targeted label if self.labels is not None: features[len(features) - 1].append(labels) success_count += 1 if return_is_successful: is_successful_list.append(True) ret = [] for feature in features: try: feat_array = numpy.asarray(feature) except ValueError: # Temporal work around. # See, # https://stackoverflow.com/questions/26885508/why-do-i-get-error-trying-to-cast-np-arraysome-list-valueerror-could-not-broa feat_array = numpy.empty(len(feature), dtype=numpy.ndarray) feat_array[:] = feature[:] ret.append(feat_array) result = tuple(ret) logger.info('Preprocess finished. FAIL {}, SUCCESS {}, TOTAL {}' .format(fail_count, success_count, total_count)) else: raise NotImplementedError smiles_pairs = numpy.array(smiles_pair_list) if return_smiles_pair else None smiles_pairs_original = numpy.array(smiles_pair_list_original) if return_smiles_pair_original else None if return_is_successful: is_successful = numpy.array(is_successful_list) else: is_successful = None if isinstance(result, tuple): if self.postprocess_fn is not None: result = self.postprocess_fn(*result) dataset = NumpyTupleDataset(*result) else: if self.postprocess_fn is not None: result = self.postprocess_fn(result) dataset = NumpyTupleDataset(result) return {"dataset": dataset, "smiles_pair": smiles_pairs, "smiles_pair_original": smiles_pairs_original, "is_successful": is_successful} def extract_total_num(self, df): """Extracts total number of data which can be parsed We can use this method to determine the value fed to `target_index` option of `parse` method. For example, if we want to extract input feature from 10% of whole dataset, we need to know how many samples are in a file. The returned value of this method may not to be same as the final dataset size. Args: df (pandas.DataFrame): dataframe to be parsed. Returns (int): total number of dataset can be parsed. """ return len(df) class Mol2VecParserForPair(BaseFileParser): """data frame parser This FileParser parses pandas dataframe. It should contain column which contain SMILES as input, and label column which is the target to predict. Args: preprocessor (BasePreprocessor): preprocessor instance labels (str or list or None): labels column smiles_cols (list): smiles columns postprocess_label (Callable): post processing function if necessary postprocess_fn (Callable): post processing function if necessary logger: """ def __init__(self, preprocessor, labels=None, smiles_cols=('smiles_1', 'smiles_2'), postprocess_label=None, postprocess_fn=None, logger=None): super(Mol2VecParserForPair, self).__init__(preprocessor) if isinstance(labels, str): labels = [labels, ] self.labels = labels # type: list if not isinstance(smiles_cols, list): self.smiles_cols = list(smiles_cols) else: self.smiles_cols = smiles_cols self.postprocess_label = postprocess_label self.postprocess_fn = postprocess_fn self.logger = logger or getLogger(__name__) def parse(self, filepath, return_smiles_pair=False, return_smiles_pair_original=False, target_index=None, return_is_successful=False): smiles2vec_filename = "smiles2vec.pkl" smiles2vec_path = "/home/chenx/drug_mining/representation_learning/chainer-chemistry/examples/ddi/dataset/drug_list" smiles2vec_filepath = os.path.join(smiles2vec_path, smiles2vec_filename) with open(smiles2vec_filepath, 'rb') as pkl_reader: smiles2vec = pickle.load(pkl_reader) df = pandas.read_csv(filepath) logger = self.logger pp = self.preprocessor smiles_pair_list = [] smiles_pair_list_original = [] is_successful_list = [] # counter = 0 if isinstance(pp, MolPreprocessor): # No influence. if target_index is not None: df = df.iloc[target_index] features = None smiles_1_index = df.columns.get_loc(self.smiles_cols[0]) smiles_2_index = df.columns.get_loc(self.smiles_cols[1]) if self.labels is None: labels_index = [] # dummy list else: labels_index = [df.columns.get_loc(c) for c in self.labels] total_count = df.shape[0] fail_count = 0 success_count = 0 # iteration on every row within the csv file for row in tqdm(df.itertuples(index=False), total=df.shape[0]): smiles_1 = row[smiles_1_index] smiles_2 = row[smiles_2_index] # currently it assumes list labels = [int(row[i]) for i in labels_index] try: mol_1 = Chem.MolFromSmiles(smiles_1) mol_2 = Chem.MolFromSmiles(smiles_2) if mol_1 is None or mol_2 is None: fail_count += 1 if return_is_successful: is_successful_list.append(False) continue # input_features_1 = pp.get_input_features(mol_1) # input_features_2 = pp.get_input_features(mol_2) input_features_1 = smiles2vec[smiles_1] input_features_2 = smiles2vec[smiles_2] # Extract label if self.postprocess_label is not None: labels = self.postprocess_label(labels) # if return_smiles_pair: # smiles_pair_list.append([canonical_smiles_1, canonical_smiles_2]) if return_smiles_pair: smiles_pair_list.append([smiles_1, smiles_2]) if return_smiles_pair_original: smiles_pair_list_original.append([smiles_1, smiles_2]) except MolFeatureExtractionError as e: # This is expected error that extracting feature failed, # skip this molecule. fail_count += 1 if return_is_successful: is_successful_list.append(False) continue except Exception as e: logger.warning('parse(), type: {}, {}' .format(type(e).__name__, e.args)) logger.info(traceback.format_exc()) fail_count += 1 if return_is_successful: is_successful_list.append(False) continue # Initialize features: list of list if features is None: if isinstance(input_features_1, tuple): num_features_1 = len(input_features_1) else: num_features_1 = 1 if isinstance(input_features_2, tuple): num_features_2 = len(input_features_2) else: num_features_2 = 1 num_features = num_features_1 + num_features_2 if self.labels is not None: num_features += 1 # list of list, a sublist corresponding to a certain feature features = [[] for _ in range(num_features)] # for every row in csv file if isinstance(input_features_1, tuple): for i in range(len(input_features_1)): # features[i] a list containing the i-th feature features[i].append(input_features_1[i]) else: features[0].append(input_features_1) # offset = len(input_features_1) offset = num_features_1 if isinstance(input_features_2, tuple): for i in range(len(input_features_2)): features[offset + i].append(input_features_2[i]) else: features[offset].append(input_features_2) # last column corresponding to targeted label if self.labels is not None: features[len(features) - 1].append(labels) success_count += 1 if return_is_successful: is_successful_list.append(True) ret = [] for feature in features: try: feat_array =
numpy.asarray(feature)
numpy.asarray
import numpy as np from numpy.testing import run_module_suite, assert_array_equal, assert_raises from skimage import img_as_ubyte, img_as_uint, img_as_float from skimage import data, util from skimage.morphology import cmorph, disk from skimage.filter import rank def test_random_sizes(): # make sure the size is not a problem niter = 10 elem = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.uint8) for m, n in np.random.random_integers(1, 100, size=(10, 2)): mask = np.ones((m, n), dtype=np.uint8) image8 = np.ones((m, n), dtype=np.uint8) out8 = np.empty_like(image8) rank.mean(image=image8, selem=elem, mask=mask, out=out8, shift_x=0, shift_y=0) assert_array_equal(image8.shape, out8.shape) rank.mean(image=image8, selem=elem, mask=mask, out=out8, shift_x=+1, shift_y=+1) assert_array_equal(image8.shape, out8.shape) image16 = np.ones((m, n), dtype=np.uint16) out16 = np.empty_like(image8, dtype=np.uint16) rank.mean(image=image16, selem=elem, mask=mask, out=out16, shift_x=0, shift_y=0) assert_array_equal(image16.shape, out16.shape) rank.mean(image=image16, selem=elem, mask=mask, out=out16, shift_x=+1, shift_y=+1) assert_array_equal(image16.shape, out16.shape) rank.mean_percentile(image=image16, mask=mask, out=out16, selem=elem, shift_x=0, shift_y=0, p0=.1, p1=.9) assert_array_equal(image16.shape, out16.shape) rank.mean_percentile(image=image16, mask=mask, out=out16, selem=elem, shift_x=+1, shift_y=+1, p0=.1, p1=.9) assert_array_equal(image16.shape, out16.shape) def test_compare_with_cmorph_dilate(): # compare the result of maximum filter with dilate image = (np.random.random((100, 100)) * 256).astype(np.uint8) out = np.empty_like(image) mask = np.ones(image.shape, dtype=np.uint8) for r in range(1, 20, 1): elem = np.ones((r, r), dtype=np.uint8) rank.maximum(image=image, selem=elem, out=out, mask=mask) cm = cmorph._dilate(image=image, selem=elem) assert_array_equal(out, cm) def test_compare_with_cmorph_erode(): # compare the result of maximum filter with erode image = (np.random.random((100, 100)) * 256).astype(np.uint8) out = np.empty_like(image) mask = np.ones(image.shape, dtype=np.uint8) for r in range(1, 20, 1): elem = np.ones((r, r), dtype=np.uint8) rank.minimum(image=image, selem=elem, out=out, mask=mask) cm = cmorph._erode(image=image, selem=elem) assert_array_equal(out, cm) def test_bitdepth(): # test the different bit depth for rank16 elem = np.ones((3, 3), dtype=np.uint8) out = np.empty((100, 100), dtype=np.uint16) mask = np.ones((100, 100), dtype=np.uint8) for i in range(5): image = np.ones((100, 100), dtype=np.uint16) * 255 * 2 ** i r = rank.mean_percentile(image=image, selem=elem, mask=mask, out=out, shift_x=0, shift_y=0, p0=.1, p1=.9) def test_population(): # check the number of valid pixels in the neighborhood image = np.zeros((5, 5), dtype=np.uint8) elem = np.ones((3, 3), dtype=np.uint8) out = np.empty_like(image) mask = np.ones(image.shape, dtype=np.uint8) rank.pop(image=image, selem=elem, out=out, mask=mask) r = np.array([[4, 6, 6, 6, 4], [6, 9, 9, 9, 6], [6, 9, 9, 9, 6], [6, 9, 9, 9, 6], [4, 6, 6, 6, 4]]) assert_array_equal(r, out) def test_structuring_element8(): # check the output for a custom structuring element r = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 255, 0, 0, 0], [0, 0, 255, 255, 255, 0], [0, 0, 0, 255, 255, 0], [0, 0, 0, 0, 0, 0]]) # 8-bit image = np.zeros((6, 6), dtype=np.uint8) image[2, 2] = 255 elem = np.asarray([[1, 1, 0], [1, 1, 1], [0, 0, 1]], dtype=np.uint8) out = np.empty_like(image) mask = np.ones(image.shape, dtype=np.uint8) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=1, shift_y=1) assert_array_equal(r, out) # 16-bit image = np.zeros((6, 6), dtype=np.uint16) image[2, 2] = 255 out = np.empty_like(image) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=1, shift_y=1) assert_array_equal(r, out) def test_pass_on_bitdepth(): # should pass because data bitdepth is not too high for the function image = np.ones((100, 100), dtype=np.uint16) * 2 ** 11 elem = np.ones((3, 3), dtype=np.uint8) out = np.empty_like(image) mask = np.ones(image.shape, dtype=np.uint8) def test_inplace_output(): # rank filters are not supposed to filter inplace selem = disk(20) image = (np.random.random((500, 500)) * 256).astype(np.uint8) out = image assert_raises(NotImplementedError, rank.mean, image, selem, out=out) def test_compare_autolevels(): # compare autolevel and percentile autolevel with p0=0.0 and p1=1.0 # should returns the same arrays image = util.img_as_ubyte(data.camera()) selem = disk(20) loc_autolevel = rank.autolevel(image, selem=selem) loc_perc_autolevel = rank.autolevel_percentile(image, selem=selem, p0=.0, p1=1.) assert_array_equal(loc_autolevel, loc_perc_autolevel) def test_compare_autolevels_16bit(): # compare autolevel(16-bit) and percentile autolevel(16-bit) with p0=0.0 # and p1=1.0 should returns the same arrays image = data.camera().astype(np.uint16) * 4 selem = disk(20) loc_autolevel = rank.autolevel(image, selem=selem) loc_perc_autolevel = rank.autolevel_percentile(image, selem=selem, p0=.0, p1=1.) assert_array_equal(loc_autolevel, loc_perc_autolevel) def test_compare_ubyte_vs_float(): # Create signed int8 image that and convert it to uint8 image_uint = img_as_ubyte(data.camera()[:50, :50]) image_float = img_as_float(image_uint) methods = ['autolevel', 'bottomhat', 'equalize', 'gradient', 'threshold', 'subtract_mean', 'enhance_contrast', 'pop', 'tophat'] for method in methods: func = getattr(rank, method) out_u = func(image_uint, disk(3)) out_f = func(image_float, disk(3)) assert_array_equal(out_u, out_f) def test_compare_8bit_unsigned_vs_signed(): # filters applied on 8-bit image ore 16-bit image (having only real 8-bit # of dynamic) should be identical # Create signed int8 image that and convert it to uint8 image = img_as_ubyte(data.camera()) image[image > 127] = 0 image_s = image.astype(np.int8) image_u = img_as_ubyte(image_s) assert_array_equal(image_u, img_as_ubyte(image_s)) methods = ['autolevel', 'bottomhat', 'equalize', 'gradient', 'maximum', 'mean', 'subtract_mean', 'median', 'minimum', 'modal', 'enhance_contrast', 'pop', 'threshold', 'tophat'] for method in methods: func = getattr(rank, method) out_u = func(image_u, disk(3)) out_s = func(image_s, disk(3)) assert_array_equal(out_u, out_s) def test_compare_8bit_vs_16bit(): # filters applied on 8-bit image ore 16-bit image (having only real 8-bit # of dynamic) should be identical image8 = util.img_as_ubyte(data.camera()) image16 = image8.astype(np.uint16) assert_array_equal(image8, image16) methods = ['autolevel', 'bottomhat', 'equalize', 'gradient', 'maximum', 'mean', 'subtract_mean', 'median', 'minimum', 'modal', 'enhance_contrast', 'pop', 'threshold', 'tophat'] for method in methods: func = getattr(rank, method) f8 = func(image8, disk(3)) f16 = func(image16, disk(3)) assert_array_equal(f8, f16) def test_trivial_selem8(): # check that min, max and mean returns identity if structuring element # contains only central pixel image = np.zeros((5, 5), dtype=np.uint8) out = np.zeros_like(image) mask = np.ones_like(image, dtype=np.uint8) image[2, 2] = 255 image[2, 3] = 128 image[1, 2] = 16 elem = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.uint8) rank.mean(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.minimum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) def test_trivial_selem16(): # check that min, max and mean returns identity if structuring element # contains only central pixel image = np.zeros((5, 5), dtype=np.uint16) out = np.zeros_like(image) mask = np.ones_like(image, dtype=np.uint8) image[2, 2] = 255 image[2, 3] = 128 image[1, 2] = 16 elem = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.uint8) rank.mean(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.minimum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) def test_smallest_selem8(): # check that min, max and mean returns identity if structuring element # contains only central pixel image = np.zeros((5, 5), dtype=np.uint8) out = np.zeros_like(image) mask = np.ones_like(image, dtype=np.uint8) image[2, 2] = 255 image[2, 3] = 128 image[1, 2] = 16 elem = np.array([[1]], dtype=np.uint8) rank.mean(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.minimum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) def test_smallest_selem16(): # check that min, max and mean returns identity if structuring element # contains only central pixel image = np.zeros((5, 5), dtype=np.uint16) out = np.zeros_like(image) mask = np.ones_like(image, dtype=np.uint8) image[2, 2] = 255 image[2, 3] = 128 image[1, 2] = 16 elem = np.array([[1]], dtype=np.uint8) rank.mean(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.minimum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(image, out) def test_empty_selem(): # check that min, max and mean returns zeros if structuring element is # empty image = np.zeros((5, 5), dtype=np.uint16) out = np.zeros_like(image) mask = np.ones_like(image, dtype=np.uint8) res = np.zeros_like(image) image[2, 2] = 255 image[2, 3] = 128 image[1, 2] = 16 elem = np.array([[0, 0, 0], [0, 0, 0]], dtype=np.uint8) rank.mean(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(res, out) rank.minimum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(res, out) rank.maximum(image=image, selem=elem, out=out, mask=mask, shift_x=0, shift_y=0) assert_array_equal(res, out) def test_otsu(): # test the local Otsu segmentation on a synthetic image # (left to right ramp * sinus) test = np.tile([128, 145, 103, 127, 165, 83, 127, 185, 63, 127, 205, 43, 127, 225, 23, 127], (16, 1)) test = test.astype(np.uint8) res = np.tile([1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1], (16, 1)) selem = np.ones((6, 6), dtype=np.uint8) th = 1 * (test >= rank.otsu(test, selem)) assert_array_equal(th, res) def test_entropy(): # verify that entropy is coherent with bitdepth of the input data selem = np.ones((16, 16), dtype=np.uint8) # 1 bit per pixel data = np.tile(np.asarray([0, 1]), (100, 100)).astype(np.uint8) assert(np.max(rank.entropy(data, selem)) == 1) # 2 bit per pixel data = np.tile(np.asarray([[0, 1], [2, 3]]), (10, 10)).astype(np.uint8) assert(np.max(rank.entropy(data, selem)) == 2) # 3 bit per pixel data = np.tile( np.asarray([[0, 1, 2, 3], [4, 5, 6, 7]]), (10, 10)).astype(np.uint8) assert(np.max(rank.entropy(data, selem)) == 3) # 4 bit per pixel data = np.tile( np.reshape(np.arange(16), (4, 4)), (10, 10)).astype(np.uint8) assert(np.max(rank.entropy(data, selem)) == 4) # 6 bit per pixel data = np.tile( np.reshape(np.arange(64), (8, 8)), (10, 10)).astype(np.uint8) assert(np.max(rank.entropy(data, selem)) == 6) # 8-bit per pixel data = np.tile( np.reshape(np.arange(256), (16, 16)), (10, 10)).astype(np.uint8) assert(np.max(rank.entropy(data, selem)) == 8) # 12 bit per pixel selem = np.ones((64, 64), dtype=np.uint8) data = np.tile( np.reshape(np.arange(4096), (64, 64)), (2, 2)).astype(np.uint16) assert(np.max(rank.entropy(data, selem)) == 12) # make sure output is of dtype double out = rank.entropy(data, np.ones((16, 16), dtype=np.uint8)) assert out.dtype == np.double def test_selem_dtypes(): image = np.zeros((5, 5), dtype=np.uint8) out = np.zeros_like(image) mask = np.ones_like(image, dtype=np.uint8) image[2, 2] = 255 image[2, 3] = 128 image[1, 2] = 16 for dtype in (np.uint8, np.uint16, np.int32, np.int64, np.float32, np.float64): elem =
np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=dtype)
numpy.array
import numpy as np from sklearn.base import BaseEstimator class LogisticRegressionBC: """ Binary classifier logistic regression model has been implemented here. For complete explanation take a look at the article link that is available in the README of repo. """ def __init__(self, lr=0.01,random_state=42,epochs=50): """ :param lr: learning rate. :param random_state: seed for random initialization of weights. :param epochs: number of times the model sees the training data. """ self.lr = lr self.random_state = random_state self.epochs = epochs def fit(self,X,y): X_b = np.c_[np.ones((len(X),1)),X] rgen = np.random.RandomState(self.random_state) self.weights = rgen.normal(loc=0.0,size=X_b.shape[1],scale=0.0) self.cost = [] for _ in range(self.epochs): np.seterr(divide='ignore') input = self.net_input(X_b) output = self.activation(X_b) errors = y-output self.weights += self.lr*X_b.T.dot(errors) c = (-y.dot(np.log(output)))-((1-y).dot(np.log(1-output))) self.cost.append(c) return self def predict(self,X): X_b = np.c_[np.ones((len(X),1)),X] inp = self.net_input(X_b) output = self.activation(inp) return np.where(output>=0.5,1,0) def net_input(self,X): return X.dot(self.weights[:,np.newaxis]) def activation(self,X): X_arr = 1/(1+np.exp(-np.clip(X,-250,250))) return np.mean(X_arr,axis=1) class LinearRegressionGD(BaseEstimator): """ Linear regression using Gradient Descent optimization algorithm. The important part in this script is three lines in the 'for loop' which implement Gradient Descent. """ def __init__(self, lr=0.01, epochs=100, random_state=42): """ :param lr: learning rate, specifies the magnitude of GD's step :param epochs: the number of times you want the model to see the training data :param random_state: seed for initialization of weights. Used for reproduciblility. """ self.lr = lr self.epochs = epochs self.random_state = random_state def fit(self, X, y): np.random.seed(self.random_state) X_b = np.c_[np.ones((X.shape[0], 1)), X] self.theta = np.random.randn(X_b.shape[1], 1) # random weight initialization for _ in range(self.epochs): output = X_b.dot(self.theta) # the hypothesis or net input gradient = (2 / X_b.shape[0]) * X_b.T.dot(output - y) # calculating the gradient self.theta = self.theta - self.lr * gradient self.intercept_ = self.theta[0][0] self.coef_ = np.ravel(self.theta[1:]) # these are the params that you can look at after training/ return self def predict(self, X): X_b = np.c_[np.ones((X.shape[0], 1)), X] return X_b.dot(self.theta) class LinearRegressionSGD(BaseEstimator): """ Linear regression using SGD optimization algorithm. SGD improves on the execution time of GD by introducing randomness in the training process. Please find the full explanation for this algorithm in link provided in the README section of the repo. You can find some useful implementation of this model in GD.ipynb """ def __init__(self, lr=0.01, epochs=100, random_state=42): """ :param lr: learning rate. :param epochs: number of times the model can see the training data. :param random_state: seed for random initialization of weights. """ self.lr = lr self.epochs = epochs self.random_state = random_state def fit(self, X, y): np.random.seed(self.random_state) X_b = np.c_[np.ones((X.shape[0], 1)), X] # adding the bias column self.theta = np.random.randn(X_b.shape[1], 1) # random initialization. for _ in range(self.epochs): for i in range(len(X_b)): random_ind = np.random.randint(len(X_b)) # random index. X_random = X_b[random_ind:random_ind + 1] # random training index. y_random = y[random_ind:random_ind + 1] output = X_random.dot(self.theta) # hypothesis or net input. gradient = 2 * X_random.T.dot(output - y_random) # the gradient self.theta = self.theta - self.lr * gradient # descent step. self.intercept_ = self.theta[0][0] self.coef_ = np.ravel(self.theta[1:]) return self def predict(self, X): X_b = np.c_[np.ones((X.shape[0], 1)), X] return X_b.dot(self.theta) class LinearRegressionMBGD(BaseEstimator): """ Linear regression using Mini-Batch GD optimization algorithm, MBGD uses the best characteristics of gradient descent and stochastic gradient descent. MBGD learns in batches which speeds up the program when the dataset is really large. """ def __init__(self,lr=0.01,epochs=100,random_state=42,batch_size=32): """ :param lr: learning rate, specifies the magnitude of GD's step :param epochs: the number of times you want the model to see the training data :param random_state: seed for initialization of weights. Used for reproduciblility. :param batch_size: the size of the batch that the model will train on a particular instance. """ self.lr = lr self.epochs = epochs self.random_state = random_state self.batch_size = batch_size def fit(self,X,y): np.random.seed(self.random_state) X_b = np.c_[np.ones((X.shape[0],1)),X] self.theta = np.random.randn(X_b.shape[1],1) for _ in range(self.epochs): for i in range(len(X_b)): random_ind = np.random.randint(len(X_b)-self.batch_size) X_random = X_b[random_ind:random_ind+self.batch_size] y_random = y[random_ind:random_ind+self.batch_size] output = X_random.dot(self.theta) gradient = (2/self.batch_size)*X_random.T.dot(output-y_random) self.theta = self.theta - self.lr*gradient self.intercept_ = self.theta[0][0] self.coef_ =
np.ravel(self.theta[1:])
numpy.ravel
import tclab import time import numpy as np import sys import first_principles_model as fp def doublet_test(data_file='step_test.csv', show_plot=True): '''doublet test the system and save data to given file path''' import Adafruit_DHT # Only importable on the Pi itself tc1 = tclab.TCLab() tc1.LED(100) # Bogus data row added to make concatenation work, never goes anywhere data = [1, 1, 1, 1, 1, 1, 1, 1] csv_file_header = 'time,control output,box humidity,box temp,outside humidity,outside temp,heater 1 temp,heater 2 temp,P,I,D,SP,Err' start_time = time.time() u = 0 tc1.Q1(u) tc1.Q2(u) current_time = 0 while current_time < 1200: try: # read temp, humidity and time humid_in, temp_in = Adafruit_DHT.read_retry( 11, 4, retries=5, delay_seconds=1) humid_out, temp_out = Adafruit_DHT.read_retry( 11, 17, retries=5, delay_seconds=1) current_time = time.time() - start_time if humid_in is None: # Rejects failed readings continue if humid_in > 100: # Corrupted data, so ignore it continue if current_time > 60: u = 100 if current_time > 800: u = 50 tc1.Q1(u) tc1.Q2(u) # print current values print('time: {:.1f}, u: {}, h_in: {}, t_in: {}, h1: {}, h2: {}, h_out: {}, t_out: {}' .format(current_time, u, humid_in, temp_in, tc1.T1, tc1.T2, humid_out, temp_out)) data = np.vstack([data, [current_time, u, humid_in, temp_in, humid_out, temp_out, tc1.T1, tc1.T2]]) np.savetxt(data_file, data[1:], delimiter=',', header=csv_file_header) except KeyboardInterrupt: print('Exiting...') tc1.LED(0) return except ValueError as error: # Handles cases when the heater overheats print(error) def run_controller(run_time, PID_parameters, show_plot=True): ''' Run the main loop run_time total run time in minutes show_plot whether to show the dynamic plot of the system ''' Kc, tau_I, tau_D = PID_parameters import Adafruit_DHT # Only importable on the Pi itself tc1 = tclab.TCLab() tc1.LED(100) # Bogus data row added to make concatenation work, never goes anywhere data = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] csv_file_header = 'time,control output,box humidity,box temp,outside humidity,outside temp,heater 1 temp,heater 2 temp,P,I,D,SP,Err' start_time = time.time() u = 0 Qss = 0 # 0% heater to start err = np.zeros(run_time*60) sp =
np.ones(run_time*60)
numpy.ones
# model.distributions.py # copyright 2021 <NAME> import numpy as np import pymc3 as pm from scipy import stats, special import theano.tensor as tt from pymc3.distributions.dist_math import bound, logpow, alltrue_elemwise from pymc3.distributions.continuous import assert_negative_support, PositiveContinuous from pymc3.distributions.distribution import draw_values, generate_samples from pymc3.theanof import floatX RANDOM_SEED = 42 rng = np.random.default_rng(seed=RANDOM_SEED) # NOTE hack to clip values away from {0, 1} for invcdfs # Whilst value = {0, 1} is theoretically allowed, is seems to cause a # numeric compuational issue somewhere in tt.erfcinv which throws infs. # This screws up the downstream, so clip slightly away from {0, 1} CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS = 1e-15 #1e-18 too small def boundzero_numpy(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, 0.) def boundzero_theano(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return tt.switch(alltrue_elemwise(conditions), vals, 0.) def boundlog_numpy(vals, *conditions): """ Bound log unit distribution params, return -inf for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, -np.inf) def logpow_numpy(x, m): """ Copy from pymc3 Safe calc log(x**m) since m*log(x) will fail when m, x = 0. """ return np.where(x == 0, np.where(m == 0, 0.0, -np.inf), m * np.log(x)) class Gamma(pm.Gamma): """Inherit the pymc class, add cdf and invcdf """ def __init__(self): raise NotImplementedError( """Consider that InvCDF is hard to calculate: even scipy uses C functions Recommend use different dist in practice""") class GammaNumpy(): """Gamma PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations used in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation Ref: https://en.wikipedia.org/wiki/Gamma_distribution Params: x > 0, u in [0, 1], a (shape) > 0, b (rate) > 0 """ def __init__(self): self.name = 'Gamma' self.notation = {'notation': r'x \sim Gamma(\alpha, \beta)'} self.dist_natural = { 'pdf': r'f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{- \beta x}', 'cdf': r'F(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)', 'invcdf': r'F^{-1}(u \mid \alpha, \beta) = '} self.dist_log = { 'logpdf': r'\log f(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \beta^{\alpha} + \log x^{\alpha-1} - \beta x', 'logcdf': r'\log F(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \gamma(\alpha, \beta x)', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, \beta) = '} self.conditions = { 'parameters': r'\alpha > 0 \, \text{(shape)}, \; \beta > 0 \, \text{(rate)}', 'support': r'x \in (0, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r'\frac{\alpha}{\beta}', 'mode': r'\frac{\alpha - 1}{\beta}, \; \text{for} \alpha \geq 1', 'variance': r'\frac{\alpha}{\beta^{2}}' } def pdf(self, x, a, b): """Gamma PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2595 """ fn = (1 / special.gamma(a)) * np.power(b, a) * np.power(x, a-1) * np.exp(-b * x) return boundzero_numpy(fn, a > 0, b > 0, x >= 0) def cdf(self, x, a, b): """Gamma CDF: where $\gamma(a, bx)$ is lower incomplete gamma function [0, lim) compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2602 """ # fn = (1 / special.gamma(a)) * special.gammainc(a, b * x) fn = special.gammainc(a, b * x) return boundzero_numpy(fn, a > 0, b > 0, x >= 0) def invcdf(self, u, a, b): """Gamma Inverse CDF aka PPF: compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2608 see sc.gammainc() """ raise NotImplementedError('TODO gamma inverse CDF') def logpdf(self, x, a, b): """Gamma log PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2599 """ fn = -special.gammaln(a) + logpow_numpy(b, a) + logpow_numpy(x, a-1) - b * x return boundlog_numpy(fn, a > 0, b > 0, x > 0) def logcdf(self, x, a, b): """Gamma log CDF: where $\gamma(a, bx)$ is lower incomplete gamma function [0, lim) compare to https://github.com/pymc-devs/pymc3/blob/41a25d561b3aa40c75039955bf071b9632064a66/pymc3/distributions/continuous.py#L2614 """ return boundlog_numpy((-special.gammaln(a)) + special.gammainc(a, b * x), a > 0, b > 0, x > 0) def loginvcdf(self, u, a, b): """Gamma log Inverse CDF aka log PPF: see sc.gammaincinv() """ raise NotImplementedError('TODO gamma log inverse CDF') class Gumbel(pm.Gumbel): """Inherit the pymc class, add cdf, logcdf and invcdf, loginvcdf Also clobber logp (!) """ def __init__(self, *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) def logp(self, value): """ JS patch refactored code to align with other distributions Calculate log-probability of Gumbel distribution at specified value. z = (x - mu) / b pdf = (1 / b) * exp(-z - exp(-z)) logpdf = -log(b) - z - exp(-z) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ mu = self.mu beta = self.beta z = (value - mu) / beta logp = -tt.log(beta) - z - tt.exp(-z) return bound(logp, beta > 0) def logcdf(self, value): """ JS patch refactored code to align with other distributions cdf = exp(-exp(-(X - mu) / b)) logcdf = -exp(-(X-mu)/b) Compute the log of the cumulative distribution function for Gumbel distribution at the specified value. Parameters ---------- value: numeric Value(s) for which log CDF is calculated. If the log CDF for multiple values are desired the values must be provided in a numpy array or theano tensor. Returns ------- TensorVariable """ beta = self.beta mu = self.mu logcdf = -tt.exp(-(value - mu)/beta) return bound(logcdf, beta > 0) def loginvcdf(self, value): """ JS new function invcdf = mu - b * log(-log(u)) loginvcdf = log(mu) + log(1 - (b * log(-log(u))/mu)) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ beta = self.beta mu = self.mu loginvcdf = tt.log(mu) + tt.log(1 - (beta * tt.log(-tt.log(value))/mu)) return bound(loginvcdf, beta > 0) class InverseWeibull(PositiveContinuous): r""" Inverse Weibull log-likelihood, the reciprocal of the Weibull distribution, also known as the Fréchet distribution, a special case of the generalized extreme value distribution. See scipy for reference https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html https://github.com/scipy/scipy/blob/v1.6.0/scipy/stats/_continuous_distns.py The pdf of this distribution is .. math:: f(x \mid \alpha, s, m) = \frac{\alpha }{s}} \; \left({\frac{x-m}{s}}\right)^{{-1-\alpha }}\;e^{{-({\frac{x-m}{s}})^{{-\alpha }}} .. plot:: import matplotlib.pyplot as plt import numpy as np import scipy.stats as st plt.style.use('seaborn-darkgrid') x = np.linspace(0, 3, 500) alphas = [1., 2., 3., 3.] betas = [1., 1., 1., .5] for a, b in zip(alphas, betas): pdf = st.invgamma.pdf(x, a, scale=b) plt.plot(x, pdf, label=r'$\alpha$ = {}, $\beta$ = {}'.format(a, b)) plt.xlabel('x', fontsize=12) plt.ylabel('f(x)', fontsize=12) plt.legend(loc=1) plt.show() ======== ====================================================== Support :math:`x \in (-\infty, \infty)` Mean :math:`{\begin{cases}\ m+s\Gamma \left(1-{\frac {1}{\alpha }}\right)&{\text{for }}\alpha >1\\\ \infty &{\text{otherwise}}\end{cases}}` Variance :math:`{\begin{cases}\ s^{2}\left(\Gamma \left(1-{\frac {2}{\alpha }}\right)-\left(\Gamma \left(1-{\frac{1}{\alpha }}\right)\right)^{2}\right)&{\text{for }}\alpha >2\\\ \infty &{\text{otherwise}}\end{cases}}` ======== ====================================================== Parameters ---------- alpha: float Shape parameter (alpha > 0). s: float Scale parameter (s > 0), default = 1 ## m: float ## Location parameter (mu in (-inf, inf)), default = 0 """ def __init__(self, alpha=None, s=1., *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) self.s = s = tt.as_tensor_variable(floatX(s)) self.mode = s * tt.power(alpha / (1. + alpha), 1. / alpha) assert_negative_support(alpha, "alpha", "InverseWeibull") assert_negative_support(s, "s", "InverseWeibull") def _distr_parameters_for_repr(self): return ["alpha", 's'] def random(self, point=None, size=None): """ Draw random values from InverseWeibull PDF distribution. Parameters ---------- point: dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size: int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ alpha, s = draw_values([self.alpha, self.s], point=point, size=size) return generate_samples(stats.invweibull.rvs, c=alpha, scale=s, loc=0., dist_shape=self.shape, size=size) def logp(self, value): """ Calculate log-probability of InverseWeibull distribution at specified value. pdf: https://www.wolframalpha.com/input/?i=%28a%2Fs%29+*+%28x%2Fs%29**%28-1-a%29+*+exp%28-%28x%2Fs%29**-a%29 alt form according to WA: a e^(-(s/x)^a) s^a x^(-1 - a) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ alpha = self.alpha s = self.s return bound( ( tt.log(alpha) - tt.log(s) + logpow(s / value, 1. + alpha) - tt.power(s / value, alpha) # this term grossly dominates if alpha >> 2 ), value > 0., alpha > 0., s > 0. ) def cdf(self, value): """InverseWeibull CDF""" alpha = self.alpha s = self.s fn = tt.exp(-tt.power(value / s, -alpha)) return boundzero_theano(fn, alpha > 0, s > 0, value > 0) def logcdf(self, value): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ alpha = self.alpha s = self.s fn = -tt.power(value / s, -alpha) return bound(fn, alpha > 0, s > 0, value > 0) def invcdf(self, value): """InverseWeibull Inverse CDF aka PPF""" alpha = self.alpha s = self.s value = tt.clip(value, CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS, 1-CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS) fn = s * tt.power(-tt.log(value), -1. / alpha) return boundzero_theano(fn, alpha > 0, s > 0, value >= 0, value <= 1) def loginvcdf(self, value): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ alpha = self.alpha s = self.s fn = tt.log(s) - (1./ alpha ) * tt.log(-tt.log(value)) return bound(fn, alpha > 0, s > 0, value >= 0, value <= 1) class InverseWeibullNumpy(): """Inverse Weibull PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation NOTE: I'm lazy and have set m=0 throughout: this suits my usecase anyhow Ref: https://en.wikipedia.org/wiki/Fréchet_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html?highlight=inverse%20weibull Params: alpha (shape) > 0, s (scale) > 0, m (location of minimum) = 0 Support: x > 0, u in [0, 1] """ def __init__(self): self.name = 'InverseWeibull' self.notation = {'notation': r'x \sim InverseWeibull(\alpha, s, m=0)'} self.dist_natural = { 'pdf': r"""f(x \mid \alpha, s, m=0) = \frac{\alpha}{s} \; \left( \frac{x}{s} \right)^{-1-\alpha} \; \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)""", 'cdf': r'F(x \mid \alpha, s, m=0) = \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)', 'invcdf': r"""F^{-1}(u \mid \alpha, s, m=0) = s \log(u)^{-\frac{1}{\alpha}}"""} self.dist_log = { 'logpdf': r"""\log f(x \mid \alpha, s, m=0) = \log{\alpha} - (1+\alpha)\log{x} + \alpha \log{s} - \left( \frac{x}{s} \right)^{-\alpha}""", 'logcdf': r'\log F(x \mid \alpha, s, m=0) = - \left( \frac{x}{s} \right)^{-\alpha}', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, s, m=0) = \log(s) - \frac{1}{\alpha} * \log(-\log(u))'} self.conditions = { 'parameters': r"""\alpha > 0 \, \text{(shape)}, \; s > 0 \, \text{(scale, default } s=1 \text{)}, \; m \in (-\infty, \infty) \, \text{(location of minimum, default } m=0 \text{)}""", 'support': r'x \in (m, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r""" \begin{cases} m + s \Gamma \left( 1 - \frac{1}{\alpha} \right) & \text{for } \alpha > 1 \\ \infty & \text{otherwise} \\ \end{cases}""", 'mode': r'm + s \left( \frac{\alpha}{1+\alpha} \right)^{1/\alpha}', 'variance': r""" \begin{cases} s^{2} \left( \Gamma \left( 1-\frac{2}{\alpha} \right) - \left( \Gamma \left( 1-\frac{1}{\alpha} \right) \right)^{2} \right) & \text{for } \alpha > 2 \\ \infty & \text{otherwise} \end{cases}""" } def pdf(self, x, a, s): """InverseWeibull PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3919 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( (a/s) * np.power(x/s, -1.-a) * np.exp(-np.power(x/s, -a)) ) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def cdf(self, x, a, s): """InverseWeibull CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3926 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.exp(-np.power(x/s, -a)) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def invcdf(self, u, a, s): """InverseWeibull Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3930 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = s * np.power(-np.log(u), -1./a) return boundzero_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) def logpdf(self, x, a, s): """InverseWeibull log PDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( np.log(a) - np.log(s) + logpow_numpy(x/s, -1.-a) - np.power(x/s, -a) # this term grossly dominates if a >> 2 ) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def logcdf(self, x, a, s): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = -np.power(x/s, -a) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def loginvcdf(self, u, a, s): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.log(s) - (1./a) * np.log(-np.log(u)) return boundlog_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) class ZeroInflatedInverseWeibull(PositiveContinuous): r""" ZeroInflatedInvserseWeibull log-likelihood WIP! Mixture model to allow for observations dominated by zeros such as sev also see + McElreath 2014, http://xcelab.net/rmpubs/Mcelreath%20Koster%202014.pdf, https://github.com/rmcelreath/mcelreath-koster-human-nature-2014 + Jones 2013, https://royalsocietypublishing.org/doi/10.1098/rspb.2013.1210 + https://stackoverflow.com/questions/42409761/pymc3-nuts-has-difficulty-sampling-from-a-hierarchical-zero-inflated-gamma-mode The pmf of this distribution is .. math:: f(x \mid \psi, \alpha, s) = \left\{ \begin{array}{l} (1 - \psi), & \text{if } x = 0 \\ \psi \, \text{InverseWeibull}(\alpha, s), & \text{if } x > 0 \end{array} \right. ======== ========================== Support :math:`x \in \mathbb{N}_0` Mean :math:`\psi \, \text{InverseWeibull}(\mu, \sigma)` Variance :math: TODO ======== ========================== Parameters ---------- psi: float Expected proportion of InverseWeibull variates (0 <= psi <= 1) alpha: float s: float """ def __init__(self, psi, alpha, s, *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) self.psi = psi = tt.as_tensor_variable(floatX(psi)) self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) self.s = s = tt.as_tensor_variable(floatX(s)) self.invweibull = InverseWeibull.dist(alpha=alpha, s=s) # TODO #self.mean = self.psi * self.invweibull.mean self.mode = self.psi * self.invweibull.mode assert_negative_support(alpha, "alpha", "ZeroInflatedInverseWeibull") assert_negative_support(s, "s", "ZeroInflatedInverseWeibull") # def _random(self, psi, size=None): # """Note by definition any rvs_ from invweibull that are zero will # correctly remain zero, covering the case x = 0""" # rvs_ = self.invweibull.random(size=size) # return rvs_ * psi def _random(self, psi, size=None): """Inputs are numpy arrays""" rvs_ = self.invweibull.random(size=size) pi = stats.binom(n=np.repeat([1], len(psi)), p=psi).rvs(len(psi)) return rvs_ * pi def random(self, point=None, size=None): """ Draw random values from ZeroInflatedInverseWeibull PDF distribution. Parameters ---------- point: dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size: int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ psi, alpha, s = draw_values([self.psi, self.alpha, self.s], point=point, size=size) return generate_samples(self._random, psi, dist_shape=self.shape, size=size) def logp(self, value): """LogPDF""" psi = self.psi logp_ = tt.switch(tt.neq(value, 0), # or use tt.gt(value, 0), dunno which faster tt.log(psi) + self.invweibull.logp(value), tt.log1p(-psi)) return bound(logp_, value >=0, psi > 0, psi < 1) def cdf(self, value): """CDF""" psi = self.psi cdf_ = (1. - psi) * 1 + psi * self.invweibull.cdf(value) return boundzero_theano(cdf_, value >=0, psi > 0, psi < 1) def invcdf(self, value): """InvCDF aka PPF""" psi = self.psi invcdf_ = self.invweibull.invcdf((value + psi - 1) / psi) return boundzero_theano(invcdf_, value>=0, value<=1, psi > 0, psi < 1) class ZeroInflatedInverseWeibullNumpy(): """Zero-inflated Inverse Weibull PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these ? seems rare NOTE: I'm lazy and have set m=0 throughout: this suits my usecase anyhow Ref: https://en.wikipedia.org/wiki/Fréchet_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html?highlight=inverse%20weibull Params: 0 < psi < 1 (prop invweibull), alpha (shape) > 0, s (scale) > 0, m (location of minimum) = 0 Support: x > 0, u in [0, 1] """ def __init__(self): self.name = 'InverseWeibull' self.notation = {'notation': r'x \sim InverseWeibull(\alpha, s, m=0)'} self.dist_natural = { 'pdf': r"""f(x \mid \alpha, s, m=0) = \frac{\alpha}{s} \; \left( \frac{x}{s} \right)^{-1-\alpha} \; \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)""", 'cdf': r'F(x \mid \alpha, s, m=0) = \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)', 'invcdf': r"""F^{-1}(u \mid \alpha, s, m=0) = s \log(u)^{-\frac{1}{\alpha}}"""} self.dist_log = { 'logpdf': r"""\log f(x \mid \alpha, s, m=0) = \log{\alpha} - (1+\alpha)\log{x} + \alpha \log{s} - \left( \frac{x}{s} \right)^{-\alpha}""", 'logcdf': r'\log F(x \mid \alpha, s, m=0) = - \left( \frac{x}{s} \right)^{-\alpha}', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, s, m=0) = \log(s) - \frac{1}{\alpha} * \log(-\log(u))'} self.conditions = { 'parameters': r"""\alpha > 0 \, \text{(shape)}, \; s > 0 \, \text{(scale, default } s=1 \text{)}, \; m \in (-\infty, \infty) \, \text{(location of minimum, default } m=0 \text{)}""", 'support': r'x \in (m, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r""" \begin{cases} m + s \Gamma \left( 1 - \frac{1}{\alpha} \right) & \text{for } \alpha > 1 \\ \infty & \text{otherwise} \\ \end{cases}""", 'mode': r'm + s \left( \frac{\alpha}{1+\alpha} \right)^{1/\alpha}', 'variance': r""" \begin{cases} s^{2} \left( \Gamma \left( 1-\frac{2}{\alpha} \right) - \left( \Gamma \left( 1-\frac{1}{\alpha} \right) \right)^{2} \right) & \text{for } \alpha > 2 \\ \infty & \text{otherwise} \end{cases}""" } def pdf(self, x, a, s): """InverseWeibull PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3919 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( (a/s) * np.power(x/s, -1.-a) * np.exp(-np.power(x/s, -a)) ) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def cdf(self, x, a, s): """InverseWeibull CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3926 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.exp(-np.power(x/s, -a)) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def invcdf(self, u, a, s): """InverseWeibull Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3930 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = s * np.power(-np.log(u), -1./a) return boundzero_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) def logpdf(self, x, a, s): """InverseWeibull log PDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( np.log(a) - np.log(s) + logpow_numpy(x/s, -1.-a) - np.power(x/s, -a) # this term grossly dominates if a >> 2 ) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def logcdf(self, x, a, s): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ a =
np.array(a)
numpy.array
from sklearn.linear_model import LassoCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel from xgboost import XGBRegressor from sklearn.utils import resample import numpy as np from FeatureSelection import get_features from scipy.stats import pearsonr import tensorflow as tf from tensorflow.keras.layers.experimental import preprocessing from tensorflow.python.keras.applications.densenet import layers from data_helper import get_intersecting_gene_ids_and_data from abc import ABC, abstractmethod import argparse import datetime import sys import warnings def get_rmse(pred, true): return (sum((pred - true) ** 2) / len(true)) ** 0.5 class KNNFeatureModel(ABC): use_knn = None knn_model = None sclr_knn = None def __init__(self): super().__init__() @abstractmethod def train_inner(self, X, y): pass @abstractmethod def predict_inner(self, X, use_std): pass def predict(self, X): if self.use_knn: X = self.enrich_with_knn(X) return self.predict_inner(X) def predict_with_std(self, X): if self.use_knn: X = self.enrich_with_knn(X) return self.predict_inner(X, use_std=True) def train(self, X, y, use_knn): self.use_knn = use_knn if use_knn: X = self.add_knn_model(X, y) return self.train_inner(X, y) def enrich_with_knn(self, X): knn_out = self.knn_model.predict(X) # A = self.knn_model.model.kneighbors_graph(X) X = np.hstack((X, np.array([knn_out]).T)) return X def add_knn_model(self, x_train, train_y): knn_model = train_model(x_train, train_y, 'knn', False) self.knn_model = knn_model x_train = self.enrich_with_knn(x_train) return x_train class XgBoost: model = None def __init__(self): self.model = None def train(self, X, y): x_train, x_validation, y_train, y_validation = train_test_split(X, y, test_size=0.1, random_state=0) max_depth_l = [5] n_estimators_l = [500] learning_rate_l = [0.1, 0.2, 0.05] min_rmse = 10000 min_m = -1 min_n_est = -1 min_lr = -1 eval_set = [(x_train, y_train), (x_validation, y_validation)] for m in max_depth_l: for n_estimator in n_estimators_l: for lr in learning_rate_l: model = XGBRegressor(max_depth=m, seed=0, n_estimators=n_estimator, learning_rate=lr, n_jobs=1) model = model.fit(x_train, y_train, eval_set=eval_set, early_stopping_rounds=40, verbose=False) val_pred = model.predict(x_validation).flatten() rmse = get_rmse(val_pred, y_validation) if rmse < min_rmse: min_m = m min_lr = lr min_n_est = n_estimator min_rmse = rmse model = XGBRegressor(max_depth=min_m, seed=0, n_estimators=min_n_est, learning_rate=min_lr, n_jobs=1) model = model.fit(x_train, y_train, eval_set=eval_set, early_stopping_rounds=40, verbose=False) self.model = model def predict(self, X): return self.model.predict(X).flatten() class LinearModel: model = None sclr = None def __init__(self): self.model = None self.sclr = None def train(self, X, y): self.sclr = StandardScaler() self.sclr = self.sclr.fit(X) X = self.sclr.transform(X) model = LassoCV(cv=3, random_state=0) self.model = model.fit(X, y) def predict(self, X): X = self.sclr.transform(X) return self.model.predict(X).flatten() class GaussianProcessRegressionModel(KNNFeatureModel): model = None sclr = None def train_inner(self, X, y): self.sclr = StandardScaler() kernel = RBF() # + WhiteKernel() self.sclr = self.sclr.fit(X) X = self.sclr.transform(X) model = GaussianProcessRegressor(kernel=kernel, random_state=0) self.model = model.fit(X, y) # def train(self, X, y, use_knn=False): # if use_knn: # X = self.add_knn_model(X, y) # self.sclr = StandardScaler() # kernel = RBF()# + WhiteKernel() # self.sclr = self.sclr.fit(X) # X = self.sclr.transform(X) # model = GaussianProcessRegressor(kernel=kernel, random_state=0) # self.model = model.fit(X, y) def predict_inner(self, X, use_std=False): X = self.sclr.transform(X) return self.model.predict(X, return_std=use_std) # def enrich_with_knn(self, X): # knn_out = self.knn_model.predict(X) # X = np.hstack((X, np.array([knn_out]).T)) # return X class DeepLearning: model = None def __init__(self): self.model = None def build_and_compile_model(self, norm, l2_reg=0.0001): regularizer = tf.keras.regularizers.L2( l2=l2_reg ) model = tf.keras.Sequential([ norm, layers.Dense(50, activation='relu', kernel_regularizer=regularizer), layers.Dropout(0.4), layers.Dense(20, activation='relu', kernel_regularizer=regularizer), layers.Dropout(0.2), layers.Dense(15, activation='relu', kernel_regularizer=regularizer), layers.Dropout(0.1), layers.Dense(12, activation='relu', kernel_regularizer=regularizer), layers.Dense(1, activation='linear') ]) model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.Adam(0.001)) return model def train(self, X, y): x_train, x_validation, y_train, y_validation = train_test_split(X, y, test_size=0.1, random_state=0) normalizer = preprocessing.Normalization(input_shape=[x_train.shape[1], ]) normalizer.adapt(np.array(X)) dnn_model = self.build_and_compile_model(normalizer) callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=100) validation_data = (x_validation, y_validation) history = dnn_model.fit( x_train, y_train, validation_split=0.1, validation_data=validation_data, verbose=0, epochs=1500, callbacks=[callback]) self.model = dnn_model def predict(self, X): return self.model.predict(X).flatten() class KNNModel: model = None def train(self, X, y, k=3): model = KNeighborsRegressor(n_neighbors=k, weights='distance') self.model = model.fit(X, y) def predict(self, X): return self.model.predict(X).flatten() class Ensemble: members = [] def __init__(self): self.members = [] def train(self, X, y): n_splits = 4 num_rows = X.shape[0] train_rows = int(num_rows * 0.9) is_xg_boost = True for _ in range(n_splits): # select indexes ix = [i for i in range(num_rows)] train_ix = resample(ix, replace=True, n_samples=train_rows) test_ix = [x for x in ix if x not in train_ix] train_ix = sorted(list(set(train_ix))) # select data trainX = X[train_ix, :] trainy = y[train_ix] testX = X[test_ix, :] testy = y[test_ix] # evaluate model if is_xg_boost: cur_model = XgBoost() cur_model.train(trainX, trainy) is_xg_boost = False else: cur_model = DeepLearning() cur_model.train(trainX, trainy) is_xg_boost = True # print('>%.3f' % test_acc) # scores.append(test_acc) self.members.append(cur_model) def predict(self, X): yhats = [model.predict(X).flatten() for model in self.members] yhats = np.array(yhats) # sum across ensemble members summed = np.sum(yhats, axis=0) # argmax across classes result = summed / len(self.members) return result class ChooseBest: model = None def __init__(self): self.model = None def train(self, X, y): x_train, x_validation, y_train, y_validation = train_test_split(X, y, test_size=0.1, random_state=0) min_rmse = 10000 min_model = "" for model_name, model_method in model_train_method_for_choose_best.items(): m = model_method(x_train, y_train) vals_pred = m.predict(x_validation) val_rmse = get_rmse(vals_pred, y_validation) if val_rmse < min_rmse: min_rmse = val_rmse min_model = model_name self.model = model_train_method[min_model](X, y) def predict(self, X): return self.model.predict(X) def train_linear(X, y, use_knn=False): m = LinearModel() m.train(X, y) return m def train_deep_learning(X, y, use_knn=False): m = DeepLearning() m.train(X, y) return m def train_xgboost(X, y, use_knn=False): m = XgBoost() m.train(X, y) return m def train_gp(X, y, use_knn=True): m = GaussianProcessRegressionModel() m.train(X, y, use_knn) return m def train_knn(X, y, use_knn=False): m = KNNModel() m.train(X, y) return m def train_ensemble(X, y, use_knn=False): m = Ensemble() m.train(X, y) return m def train_best_using_validation(X, y, use_knn=False): m = ChooseBest() m.train(X, y) return m model_train_method = { 'linear': train_linear, 'xg_boost': train_xgboost, 'deep': train_deep_learning, 'ensemble': train_ensemble, 'GP': train_gp, 'choose_best': train_best_using_validation, 'knn': train_knn } model_train_method_for_choose_best = { 'linear': train_linear, 'xg_boost': train_xgboost, 'ensemble': train_ensemble, 'GP': train_gp, } def train_model(X, y, model_name, use_knn=False): """Trains a ML model to predict y based on X input. Parameters ---------- X : pd.DataFrame input data used for training y : np.array with shape (1, n) the target variable model_name : string The name of the type of model desired to train. Options are 'linear', 'xg_boost', 'deep', 'ensemble', 'choose_best', 'GP', 'knn' """ return model_train_method[model_name](X, y, use_knn) def cross_validation_eval(achilles_effect, expression_dat, target_gene_name, cross_validation_df, model_name, achilles_id_name='DepMap_ID', expression_id_name='Unnamed: 0'): """Trains a ML model to predict y based on X input using cross validation and prints the final cross validated pearson correlations and RMSE. Parameters ---------- achilles_effect : pd.DataFrame contains at least two columns, cell id column and target gene achilles scores expression_dat : pd.DataFrame expression data of all genes to be used for input to ML target_gene_name: String name of target gene column in achilles_effect dataframe cross_validation_df : pd.DataFrame columns represent cell ids except for the first column which represents which rows are train and which rows are test model_name : string The name of the type of model desired to train. Options are 'linear', 'xg_boost', 'deep', 'ensemble', 'choose_best', 'GP' achilles_id_name : string The column name of cell line id column in the achilles data set expression_id_name : string The column name of cell line id column in the expression data set """ test_start_idx = 0 for state in list(cross_validation_df.state): if state == "test": break test_start_idx += 1 rmse_sum = 0 fold_count = 0 pearson_corr_pred_sum = 0 model_failed = False for fold_col in cross_validation_df.columns[1:]: fold_count += 1 cur_ids = list(cross_validation_df[fold_col]) train_ids = set(cur_ids[0:test_start_idx]) test_ids = set(cur_ids[test_start_idx:]) train_achilles = achilles_effect.loc[achilles_effect[achilles_id_name].isin(train_ids)] test_achilles = achilles_effect.loc[achilles_effect[achilles_id_name].isin(test_ids)] train_achilles = train_achilles.sort_values(by=['DepMap_ID']) test_achilles = test_achilles.sort_values(by=['DepMap_ID']) train_y = train_achilles[target_gene_name] test_y = test_achilles[target_gene_name] train_expression = expression_dat.loc[expression_dat[expression_id_name].isin(train_ids)] test_expression = expression_dat.loc[expression_dat[expression_id_name].isin(test_ids)] train_expression = train_expression.sort_values(by=['Unnamed: 0']) test_expression = test_expression.sort_values(by=['Unnamed: 0']) expression_feature_indices = get_features(train_y, train_expression, 20) in_use_gene_names = train_expression.columns[expression_feature_indices] x_train = train_expression[in_use_gene_names] x_train = np.array(x_train) train_y = np.array(train_y) x_test = test_expression[in_use_gene_names] x_test =
np.array(x_test)
numpy.array
import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm import gen_data import qp_solver import util import parametric_si def compute_c_d(X, a, b, p, lamda): dim_beta = p dim_z = p - 1 no_vars = p + 2 * dim_z e_1 = lamda * np.hstack((np.zeros(dim_beta), np.ones(2 * dim_z))) e_2 = np.hstack((np.dot(X.T, a).flatten(), np.zeros(2 * dim_z))) c = e_1 - e_2 d = np.hstack((-np.dot(X.T, b).flatten(), np.zeros(2 * dim_z))) c = c.reshape((no_vars, 1)) d = d.reshape((no_vars, 1)) return c, d def construct_P_q_G_h_A_b(X, y, D, n, p, lamda): dim_beta = p dim_z = p - 1 no_vars = p + 2 * dim_z # construct P e_1 = np.hstack((X, np.zeros((n, 2 * dim_z)))) P = np.dot(e_1.T, e_1) # construct q e_1 = lamda * np.hstack((np.zeros(dim_beta), np.ones(2 * dim_z))) e_2 = np.hstack((np.dot(X.T, y).flatten(), np.zeros(2 * dim_z))) q = e_1 - e_2 q = q.reshape((no_vars, 1)) # construct G G = np.zeros((no_vars, no_vars)) G[dim_beta:, dim_beta:] = np.zeros((2 * dim_z, 2 * dim_z)) - np.identity(2 * dim_z) # construct h h = np.zeros((no_vars, 1)) # construct A e_1 = np.hstack((np.identity(dim_z), np.zeros((dim_z, dim_z)) - np.identity(dim_z))) A = np.hstack((-D, e_1)) # construct b b = np.zeros((D.shape[0], 1)) return P, q, G, h, A, b def run(): n = 30 p = n lamda = 5 z_threshold = 20 X = np.identity(n) D = (np.diag([-1] * n, k=0) + np.diag([1] * (n - 1), k=1))[:-1] true_y = np.zeros(n) true_y[10:20] += 2 y = true_y + np.random.normal(0, 1, n) y = y.reshape((n, 1)) true_y = true_y.reshape((n, 1)) P, q, G, h, A, b = construct_P_q_G_h_A_b(X, y, D, n, p, lamda) dim_x = p + 2 * (p - 1) x, prob = qp_solver.run(P, q, G, h, A, b, dim_x) x = x.value beta = x[0:p] list_cp = util.find_list_cp(beta, p) if len(list_cp) == 2: return None cp_selected_idx = np.random.randint(1, len(list_cp) - 1) cp_selected = list_cp[cp_selected_idx] pre_cp = list_cp[cp_selected_idx - 1] next_cp = list_cp[cp_selected_idx + 1] n_s_1 = cp_selected - pre_cp n_s_2 = next_cp - cp_selected etaj = np.zeros(n) etaj[pre_cp + 1 : cp_selected + 1] = np.ones(n_s_1) / n_s_1 etaj[cp_selected + 1 : next_cp + 1] = -
np.ones(n_s_2)
numpy.ones
from anntools import Collection from pathlib import Path from ner_utils import load_training_entities, load_testing_entities, postprocessing_labels1, get_char2idx, \ train_by_shape, predict_by_shape, convert_to_str_label from base_clsf import BaseClassifier import score from sklearn.preprocessing import LabelEncoder from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, LSTM, TimeDistributed, Bidirectional, Input, Embedding, concatenate, \ Masking from tensorflow.keras.losses import categorical_crossentropy from utils import weighted_loss, detect_language, nlp_es, nlp_en # from keras_crf import CRF # from keras_crf import CRF import numpy as np import fasttext import time import json, pickle class NERClassifier(BaseClassifier): """Classifier for the name entity resolution task""" def __init__(self): BaseClassifier.__init__(self) self.n_tags = 6 self.n_entities = 4 self.encoder_tags = LabelEncoder() self.encoder_entities = LabelEncoder() # self.ScieloSku = fasttext.load_model("./Scielo_cbow_cased.bin") def train(self, collection: Collection): """ Wrapper function where of the process of training is done """ features, X_char, tags, entities = self.get_sentences(collection) X, (y_tags, y_entities) = self.preprocessing(features, (tags, entities)) self.get_model() return self.fit_model((X, X_char), (y_tags, y_entities)) def get_model(self): """ Construct the neural network architecture using the keras functional api. `mode` is the mode where the lstm are joined in the bidirectional layer, (its not currently being used) """ # input for words inputs = Input(shape=(None, self.n_features)) # outputs = Embedding(input_dim=35179, output_dim=20, # emb_in = Input(shape=(None, 300)) # # input_length=self.X_shape[1], mask_zero=True)(inputs) # 20-dim embedding # emb_mask = Masking(mask_value=0, input_shape=(None, 10))(emb_in) # input for characters char_in = Input(shape=(None, 10)) # inputs of the embeddings emb_char = TimeDistributed(Embedding(input_dim=254, output_dim=10, input_length=10, mask_zero=True))(char_in) # character LSTM to get word encoding by characters char_enc = TimeDistributed(LSTM(units=20, return_sequences=False, recurrent_dropout=0.5))(emb_char) # main LSTM x = concatenate((inputs, char_enc)) x = Bidirectional(LSTM(units=32, return_sequences=True, recurrent_dropout=0.1))(x) # variational biLSTM x = Bidirectional(LSTM(units=32, return_sequences=True, recurrent_dropout=0.2, dropout=0.2))(x) # x = MaxPooling1D()(x) out1 = TimeDistributed(Dense(self.n_tags, activation="softmax"))(x) # a dense layer as suggested by neuralNer out2 = TimeDistributed(Dense(self.n_entities, activation="softmax"))( x) # a dense layer as suggested by neuralNer # crf = CRF(self.n_labels) # CRF layer # outputs = crf(outputs) # output model = Model(inputs=(inputs, char_in), outputs=(out1, out2)) model.compile(optimizer="adam", metrics=self.metrics, # loss=weighted_loss(categorical_crossentropy, self.weights)) loss=categorical_crossentropy) model.summary() self.model = model def preprocessing(self, features, labels): """ Handles the preprocessing step. The features and labels are converted in vectors and their shape is adjusted. """ tags, entities = labels X = self.preprocess_features(features) y_tags = self.preprocess_labels(tags, self.encoder_tags) self.n_tags = y_tags[0].shape[-1] y_entities = self.preprocess_labels(entities, self.encoder_entities) self.n_entities = y_entities[0].shape[-1] # self.get_weights(labels) return X, (y_tags, y_entities) def get_sentences(self, collection: Collection): """ Giving a collection, the features and labels of its sentences are returned """ features = [] tags = [] entities = [] X_char = [] self.char2idx = get_char2idx(collection) # embedding_vec = [] for sentence in collection: feat, chars, tag, entity = load_training_entities(sentence, self.char2idx) features.append(feat) tags.append(tag) entities.append(entity) X_char.append(np.array(chars)) # embedding_vec.append(embedding) return features, X_char, tags, entities def get_features(self, collection: Collection): """Giving a collection, the features of its sentences are returned""" features = [] X_char = [] # embedding_vec = [] for sentence in collection: feat, chars = load_testing_entities(sentence, self.char2idx) features.append(feat) X_char.append(chars) # embedding_vec.append(embedding) return features, X_char def fit_model(self, X, y, plot=False): """ The model is fitted. The training begins """ # hist = self.model.fit(X, y, batch_size=32, epochs=5, # validation_split=0.2, verbose=1) # hist = self.model.fit(MyBatchGenerator(X, y, batch_size=30), epochs=5) X, X_char = X y_tags, y_entities = y num_examples = len(X) # self.model.fit(self.generator(X, y), steps_per_epoch=steps_per_epoch, epochs=5) x_shapes, x_char_shapes, yt_shapes, ye_shapes = train_by_shape(X, y_tags, y_entities, X_char) for shape in x_shapes: self.model.fit( #(np.asarray(x_shapes[shape]), np.asarray(x_char_shapes[shape]), np.asarray(my_Embedding_shapes[shape])), (np.asarray(x_shapes[shape]), np.asarray(x_char_shapes[shape])), (np.asarray(yt_shapes[shape]), np.asarray(ye_shapes[shape])), epochs=10) def test_model(self, collection: Collection) -> Collection: collection = collection.clone() features, X_char = self.get_features(collection) X = self.preprocess_features(features, train=False) x_shapes, x_char_shapes, indices = predict_by_shape(X, X_char) pred_tags = [] pred_entities = [] for x_items, x_chars in zip(x_shapes, x_char_shapes): # pt, pe = self.model.predict((np.asarray(x_items), np.asarray(x_chars), np.asarray(z_items))) pt, pe = self.model.predict((
np.asarray(x_items)
numpy.asarray
import numpy as np from src.network_elements.network_element import NetworkElement class LayersLinker(NetworkElement): def __init__(self, previous_layer_dimension, next_layer_dimension) -> None: self.previous_layer_dimension = previous_layer_dimension self.next_layer_dimension = next_layer_dimension self.W = self.init_random_uniform_matrix(size=(previous_layer_dimension, next_layer_dimension)) self.B = self.init_random_uniform_matrix(size=(1, next_layer_dimension)) self.previous_layer_activated_output = None self.dLdW = None self.dLdB = None def init_random_uniform_matrix(self, size): low = - np.sqrt(1 / np.sum(size)) high = np.sqrt(1 /
np.sum(size)
numpy.sum
"""Draw predicted or ground truth boxes on input image.""" import imghdr import colorsys import random import numpy as np from PIL import Image, ImageDraw, ImageFont from tensorflow.keras import backend as K from functools import reduce def preprocess_image(img_path, model_image_size): image_type = imghdr.what(img_path) image = Image.open(img_path) resized_image = image.resize(tuple(reversed(model_image_size)), Image.BICUBIC) image_data = np.array(resized_image, dtype='float32') image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. return image, image_data def compose(*funcs): """Compose arbitrarily many functions, evaluated left to right. Reference: https://mathieularose.com/function-composition-in-python/ """ # return lambda x: reduce(lambda v, f: f(v), funcs, x) if funcs: return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) else: raise ValueError('Composition of empty sequence not supported.') def read_classes(classes_path): with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def read_anchors(anchors_path): with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] anchors = np.array(anchors).reshape(-1, 2) return anchors def scale_boxes(boxes, image_shape): """ Scales the predicted boxes in order to be drawable on the image""" height = image_shape[0] width = image_shape[1] image_dims = K.stack([height, width, height, width]) image_dims = K.reshape(image_dims, [1, 4]) boxes = boxes * image_dims return boxes def get_colors_for_classes(num_classes): """Return list of random colors for number of classes given.""" # Use previously generated colors if num_classes is the same. if (hasattr(get_colors_for_classes, "colors") and len(get_colors_for_classes.colors) == num_classes): return get_colors_for_classes.colors hsv_tuples = [(x / num_classes, 1., 1.) for x in range(num_classes)] colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. get_colors_for_classes.colors = colors # Save colors for future calls. return colors def draw_boxes(image, boxes, box_classes, class_names, scores=None): """Draw bounding boxes on image. Draw bounding boxes with class name and optional box score on image. Args: image: An `array` of shape (width, height, 3) with values in [0, 1]. boxes: An `array` of shape (num_boxes, 4) containing box corners as (y_min, x_min, y_max, x_max). box_classes: A `list` of indicies into `class_names`. class_names: A `list` of `string` class names. `scores`: A `list` of scores for each box. Returns: A copy of `image` modified with given bounding boxes. """ #image = Image.fromarray(np.floor(image * 255 + 0.5).astype('uint8')) font = ImageFont.truetype( font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 colors = get_colors_for_classes(len(class_names)) for i, c in list(enumerate(box_classes)): box_class = class_names[c] box = boxes[i] if isinstance(scores, np.ndarray): score = scores[i] label = '{} {:.2f}'.format(box_class, score) else: label = '{}'.format(box_class) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0],
np.floor(right + 0.5)
numpy.floor
import numpy as np import csv import matplotlib.pyplot as pyplot # Generates and saves a grouped bar graph for the data provided in rtCycles paramter def gBarGraph(rtCycles=[], xLabel=['W1', 'W2', 'W3', 'W4', 'W5', 'W6', 'W7'], figName='outputs/figures/cycles.png', dfList=["os", "ws", "is"], adList=[[128,128], [64,64], [32,32], [16,16], [8,8]], debug=False): rtcShape = rtCycles.shape barWidth = 0.25 barColor = ['#4F81BD', '#9F4C7C', '#9BBB59'] fig, axes = pyplot.subplots(1,rtcShape[0], figsize=(rtcShape[0]*3+1,3)) # sfLable = [chr(alph) for alph in range(ord('a'),ord('a')+rtcShape[0])] x = np.arange(rtcShape[2]) for spIndex in range(rtcShape[0]) : for i in range(rtcShape[1]) : axes[spIndex].bar(x+i*barWidth, rtCycles[spIndex][i], color =barColor[i], width = barWidth, zorder=3) axes[spIndex].grid(True, axis='y', zorder=0) # axes[spIndex].set_title('Cycles for array of size 128*128') axes[spIndex].set_xlabel(adList[spIndex]) # axes[spIndex].set_ylabel('Runtime in million cycles') axes[spIndex].set_xticks([x1+barWidth for x1 in x]) axes[spIndex].set_xticklabels(xLabel) axes[0].set_ylabel('Runtime in million cycles') pyplot.legend(labels = dfList, loc = (1,0.7)) pyplot.tight_layout() pyplot.savefig(figName, transparent = False, format='png', orientation = 'landscape', dpi=300) if debug: pyplot.show() pyplot.close(fig=None) # Summation of results of different layers in a NN # Returns 2 variables: # 1. rtCycles: An nd array. Each element is the sum corresponding to one ScaleSIM run # 2. mdfList: A list of files, which represents ScaleSIM runs # that are either not ran properly or the results are not stored properly def sum_gen(adList=[], dfList=[], nnList=[], layerCount=[], rootFolder='./', typeOfData='cycles', scaleFac=10**6, debug=False): adCount = len(adList) dfCount = len(dfList) nnCount = len(nnList) rtCycles = np.zeros((adCount, dfCount, nnCount)) # Array of runtime cycles for each execution. mdfList = [] # List of Missing data files for adIndex, ad in enumerate(adList) : for dfIndex, df in enumerate(dfList) : for nnIndex, nn in enumerate(nnList) : runFolder = nn + "_" + str(ad[0]) + "_" + str(ad[0]) + "_" + df + "/" fileName = rootFolder + runFolder + "outputs/" + runFolder + nn + "_" + typeOfData + ".csv" #File Parsing and data Processing with open(fileName, mode = 'r') as file : fileContent = csv.DictReader(file) lineCount = 0 totalCycles = 0 for line in fileContent: if (lineCount == 0) : lineCount += 1 #Added due to dictReader. To count the line with keys totalCycles += int(line[" Cycles"]) lineCount += 1 if (lineCount != (layerCount[nnIndex] + 1)) : mdfList.append(fileName) if (debug) : print(f'Total Cycles\t: {totalCycles}') print(f'Lines read\t: {lineCount}') rtCycles[adIndex][dfIndex][nnIndex] = totalCycles/scaleFac if debug: print(f'{rtCycles}') return rtCycles, mdfList #Generates and saves a scatter plot for the data provided in ratioSuSo def scatterPlot(ratioSUSO=[], xLabel=[], legendList=[], figName='outputs/figures/ratioSUSO.png', dfList=["os", "ws", "is"], debug=False ): rtcShape = ratioSUSO.shape lineColor = ['#4F81BD', '#9F4C7C', '#9BBB59','#C0504D', '#FF9933', '#006666', '#404040'] x = np.arange(rtcShape[0]) # sfLable = [chr(alph) for alph in range(ord('a'),ord('a')+rtcShape[1])] # Generate Connected scatter plot fig, axes = pyplot.subplots(1,rtcShape[1], figsize=(rtcShape[1]*3+1,3)) for dfIndex in range(rtcShape[1]): for i in range(rtcShape[2]): axes[dfIndex].plot(
np.flipud(x)
numpy.flipud
# -*- coding: utf-8 -*- """ Example: Vedo visualisation Example of using vedo to visualise results from a structured 3D problem """ import sys import numpy as np from vedo import * import vtk import calfem.geometry as cfg import calfem.mesh as cfm import calfem.vis as cfv import calfem.core as cfc import calfem.utils as cfu import calfem.vis_vedo_utils as cfvu # ---- Define geometry ------------------------------------------------------ print("Defining geometry...") g = cfg.geometry() # Add Points l = 5.0 h = 0.5 w = 0.3 n_el_x = 5 n_el_y = 5 n_el_z = 50 marker_fixed_left = 45 marker_fixed_right = 46 marker_top = 47 right_support = 48 g.point([0, 0, 0], 0) g.point([0.0, 0.0, w/2.0], 1) g.point([0, 0, w], 2) g.point([l, 0, w], 3) g.point([l, 0, 0], 4, marker=11) # Set some markers no reason. g.point([0, h, 0], 5, marker=11) # (markers can be given to points as well # as curves and surfaces) g.point([0, h, w], 6, marker=11) g.point([l, h, w], 7) g.point([l, h, 0], 8) # Add splines g.spline([0, 1, 2], 0, marker=33, el_on_curve=n_el_x) g.spline([2, 3], 1, marker=23, el_on_curve=n_el_z) g.spline([3, 4], 2, marker=right_support, el_on_curve=n_el_x) g.spline([4, 0], 3, el_on_curve=n_el_z) g.spline([0, 5], 4, el_on_curve=n_el_y) g.spline([2, 6], 5, el_on_curve=n_el_y) g.spline([3, 7], 6, el_on_curve=n_el_y) g.spline([4, 8], 7, el_on_curve=n_el_y) g.spline([5, 6], 8, el_on_curve=n_el_x) g.spline([6, 7], 9, el_on_curve=n_el_z) g.spline([7, 8], 10, el_on_curve=n_el_x) g.spline([8, 5], 11, el_on_curve=n_el_z) # Add surfaces g.structuredSurface([0, 1, 2, 3], 0) g.structuredSurface([8, 9, 10, 11], 1, marker=marker_top) g.structuredSurface([0, 4, 8, 5], 2, marker=marker_fixed_left) g.structuredSurface([1, 5, 9, 6], 3) g.structuredSurface([2, 6, 10, 7], 4, marker=marker_fixed_right) g.structuredSurface([3, 4, 11, 7], 5) g.structuredVolume([0, 1, 2, 3, 4, 5], 0, marker=90) # ---- Create mesh ---------------------------------------------------------- # Element type 5 is hexahedron. (See user manual for more element types) el_type = 5 dofs_per_node = 3 el_nodes = 8 # Create mesh print("Generating mesh...") coords, edof, dofs, bdofs, elementmarkers = cfm.mesh( g, el_type, 1, dofs_per_node) print("Extracting element coordinates...") ex, ey, ez = cfc.coord_extract(edof, coords, dofs) t = 0.2 v = 0.35 E = 2e9 ep = [3] D = cfc.hooke(4, E, v) # ---- Solve problem -------------------------------------------------------- print("Assembling stiffness matrix...") n_dofs = np.size(dofs) K = np.zeros((n_dofs, n_dofs)) for eltopo, elx, ely, elz, el_marker in zip(edof, ex, ey, ez, elementmarkers): Ke = cfc.soli8e(elx, ely, elz, [2], D) cfc.assem(eltopo, K, Ke) bc = np.array([], 'i') bcVal = np.array([], 'i') bc, bcVal = cfu.apply_bc_3d(bdofs, bc, bcVal, marker_fixed_left, 0.0) #bc, bcVal = cfu.apply_bc_3d(bdofs, bc, bcVal, marker_fixed_right, 0.0) #bc, bcVal = cfu.apply_bc_3d(bdofs, bc, bcVal, right_support, 0.0, dimension=2) #bc, bcVal = cfu.apply_bc_3d(bdofs, bc, bcVal, right_support, 0.0, dimension=3) f = np.zeros([n_dofs, 1]) cfu.apply_force_total_3d(bdofs, f, marker_top, value=-10e5, dimension=2) print("Solving equation system") a, r = cfc.solveq(K, f, bc, bcVal) print("Extracting element displacements") ed = cfc.extract_eldisp(edof, a) # ---- Extract element forces ----------------------------------------------- print("Calculating element forces") # We can visualise stresses per element or per node # # sigv - von mises stresses per element # sigv_hex - von mises stresses per element node # sigv_el - all von mieses stresses att integration points # # cfvu.von_mises(...) calculates von mises stresses at # integration points # # cfvu.sig_to_hex(...) extracts von mises stresses at nodes # corresponding to element node n_ip = ep[0]*ep[0]*ep[0] sigv = np.zeros(ed.shape[0]) sigv_hex = np.zeros((ed.shape[0], el_nodes)) sigv_el = np.zeros((ed.shape[0], n_ip)) i = 0 for elx, ely, elz, eld in zip(ex, ey, ez, ed): et, es, eci = cfc.soli8s(elx, ely, elz, ep, D, eld) sigv[i] = np.mean(cfvu.von_mises_3d(es)) sigv_hex[i] = cfvu.sigv_to_hex(cfvu.von_mises_3d(es)) sigv_el[i] = cfvu.von_mises_3d(es) i += 1 print("Max mises stress = ", np.max(sigv_el)) print("Min mises stress = ", np.min(sigv_el)) # ---- Visualisation -------------------------------------------------------- print("Visualising results...") nodes, topo, node_dofs, node_displ, node_scalars = cfvu.convert_to_node_topo( edof, ex, ey, ez, ed, sigv_hex, dofs_per_node=3) npoint = nodes.shape[0] nel = topo.shape[0] nnd = topo.shape[1] if nnd == 4: ct = vtk.VTK_TETRA elif nnd == 8: ct = vtk.VTK_HEXAHEDRON else: print("Topology not supported.") sys.exit(1) celltypes = [ct] * nel max_deflection =
np.max(node_displ)
numpy.max
# -*- coding: utf-8 -*- from __future__ import print_function import random import time import numpy as np from collections import defaultdict, deque from quoridor import Quoridor from policy_value_net import PolicyValueNet from mcts import MCTSPlayer from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from constant import * iter_count = 0 writer = SummaryWriter() class TrainPipeline(object): def __init__(self, init_model=None): self.game = Quoridor() self.learn_rate = 2e-3 self.lr_multiplier = 1.0 self.temp = 1.0 self.n_playout = 200 self.c_puct = 5 self.buffer_size = 10000 self.data_buffer = deque(maxlen=self.buffer_size) self.play_batch_size = 1 self.kl_targ = 0.02 self.check_freq = 10 self.game_batch_num = 1000 self.best_win_ratio = 0.0 self.pure_mcts_playout_num = 1000 self.old_probs = 0 self.new_probs = 0 self.first_trained = False if init_model: self.policy_value_net = PolicyValueNet(model_file=init_model) else: self.policy_value_net = PolicyValueNet() self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn, c_puct=self.c_puct, n_playout=self.n_playout, is_selfplay=1) def get_equi_data(self, play_data): extend_data = [] for i, (state, mcts_prob, winner) in enumerate(play_data): wall_state = state[:3,:BOARD_SIZE - 1,:BOARD_SIZE - 1] dist_state1 = np.reshape(state[(6 + (WALL_NUM + 1) * 2), :BOARD_SIZE, :BOARD_SIZE], (1, BOARD_SIZE, BOARD_SIZE)) dist_state2 = np.reshape(state[(7 + (WALL_NUM + 1) * 2), :BOARD_SIZE, :BOARD_SIZE], (1, BOARD_SIZE, BOARD_SIZE)) # horizontally flipped game flipped_wall_state = [] for i in range(3): wall_padded = np.fliplr(wall_state[i]) wall_padded = np.pad(wall_padded, (0,1), mode='constant', constant_values=0) flipped_wall_state.append(wall_padded) flipped_wall_state = np.array(flipped_wall_state) player_position = state[3:5, :,:] flipped_player_position = [] for i in range(2): flipped_player_position.append(np.fliplr(player_position[i])) flipped_player_position = np.array(flipped_player_position) h_equi_state = np.vstack([flipped_wall_state, flipped_player_position, state[5:, :,:]]) h_equi_mcts_prob = np.copy(mcts_prob) h_equi_mcts_prob[11] = mcts_prob[10] # SE to SW h_equi_mcts_prob[10] = mcts_prob[11] # SW to SE h_equi_mcts_prob[9] = mcts_prob[8] # NE to NW h_equi_mcts_prob[8] = mcts_prob[9] # NW to NE h_equi_mcts_prob[7] = mcts_prob[6] # EE to WW h_equi_mcts_prob[6] = mcts_prob[7] # WW to EE h_equi_mcts_prob[3] = mcts_prob[2] # E to W h_equi_mcts_prob[2] = mcts_prob[3] # W to E h_wall_actions = h_equi_mcts_prob[12:12 + (BOARD_SIZE-1) ** 2].reshape(BOARD_SIZE-1, BOARD_SIZE-1) v_wall_actions = h_equi_mcts_prob[12 + (BOARD_SIZE-1) ** 2:].reshape(BOARD_SIZE-1, BOARD_SIZE -1) flipped_h_wall_actions = np.fliplr(h_wall_actions) flipped_v_wall_actions = np.fliplr(v_wall_actions) h_equi_mcts_prob[12:] = np.hstack([flipped_h_wall_actions.flatten(), flipped_v_wall_actions.flatten()]) # Vertically flipped game flipped_wall_state = [] for i in range(3): wall_padded = np.flipud(wall_state[i]) wall_padded = np.pad(wall_padded, (0,1), mode='constant', constant_values=0) flipped_wall_state.append(wall_padded) flipped_wall_state = np.array(flipped_wall_state) flipped_player_position = [] for i in range(2): flipped_player_position.append(np.flipud(player_position[1-i])) flipped_player_position =
np.array(flipped_player_position)
numpy.array
# coding: utf-8 # ### Autoencoders and Neural Network for Place recognition with WiFi fingerprints # Implementation of algorithm discussed in <a href="https://arxiv.org/pdf/1611.02049v1.pdf">Low-effort place recognition with WiFi fingerprints using Deep Learning </a> # In[13]: import pandas as pd import numpy as np import tensorflow as tf from sklearn.preprocessing import scale import copy # In[14]: # Read Data into Pandas DataFrame First line is labels dataset = pd.read_csv("trainingData.csv",header=0) # First Rows then columns features = np.asarray(dataset.iloc[:,0:520]) # Make all the zero signals(100) to -110 features[features == 100] = -110 # Normalizing the data features = (features - features.mean()) / features.var() # Extracting the two columns as a concatenated row string labels = np.asarray(dataset["BUILDINGID"].map(str) + dataset["FLOOR"].map(str)) # Now one hot encoding the categorical rep to list labels = np.asarray(pd.get_dummies(labels)) #labels = labels[0:1] # #### Dividing UJIndoorLoc training data set into training and validation set # In[15]: # Prints for each row True or False to include in the training train_val_split = np.random.rand(len(features)) < 0.70 # Generating Training Features and Labels train_x = features[train_val_split] train_y = labels[train_val_split] # Generating Validation Features and Labels val_x = features[~train_val_split] val_y = labels[~train_val_split] # #### Using UJIndoorLoc validation data set as testing set # In[16]: # Repeat the above process for testing set test_dataset = pd.read_csv("validationData.csv",header = 0) test_features = np.asarray(test_dataset.iloc[:,0:520]) test_features[test_features == 100] = -110 test_features = (test_features - test_features.mean()) / test_features.var() test_labels = np.asarray(test_dataset["BUILDINGID"].map(str) + test_dataset["FLOOR"].map(str)) test_labels = np.asarray(pd.get_dummies(test_labels)) # In[17]: # Core Algorithm # Functions to initialize the Weights between layers and their biases def weight_variable(shape): initial = tf.truncated_normal(shape, stddev = 0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.0, shape = shape) return tf.Variable(initial) # In[54]: """ n_input = 520 n_hidden_1 = 256 n_hidden_2 = 128 n_hidden_3 = 64 # Number of Output Classes n_classes = labels.shape[1] learning_rate = 0.00001 training_epochs = 30 batch_size = 15 # Number of training examples(rows) total_batches = train_x.shape[0] // batch_size # In[55]: # X is input, random hence shape is none(#Rows),520features # Y is output, depends on number of X fed X = tf.placeholder(tf.float32, shape=[None,n_input]) Y = tf.placeholder(tf.float32,[None,n_classes]) # Neural Networks Variables # Weight_variable and bias_variable are initialization fns # First one is through truncated normal # Second is zero constant # --------------------- Encoder Variables --------------- # e_weights_h1 = weight_variable([n_input, n_hidden_1]) e_biases_h1 = bias_variable([n_hidden_1]) e_weights_h2 = weight_variable([n_hidden_1, n_hidden_2]) e_biases_h2 = bias_variable([n_hidden_2]) e_weights_h3 = weight_variable([n_hidden_2, n_hidden_3]) e_biases_h3 = bias_variable([n_hidden_3]) # --------------------- Decoder Variables --------------- # d_weights_h1 = weight_variable([n_hidden_3, n_hidden_2]) d_biases_h1 = bias_variable([n_hidden_2]) d_weights_h2 = weight_variable([n_hidden_2, n_hidden_1]) d_biases_h2 = bias_variable([n_hidden_1]) d_weights_h3 = weight_variable([n_hidden_1, n_input]) d_biases_h3 = bias_variable([n_input]) # --------------------- DNN Variables ------------------ # dnn_weights_h1 = weight_variable([n_hidden_3, n_hidden_2]) dnn_biases_h1 = bias_variable([n_hidden_2]) dnn_weights_h2 = weight_variable([n_hidden_2, n_hidden_2]) dnn_biases_h2 = bias_variable([n_hidden_2]) dnn_weights_out = weight_variable([n_hidden_2, n_classes]) dnn_biases_out = bias_variable([n_classes]) # In[56]: # Encoder, Decoder and DNN as in paper page-4 def encode(x): l1 = tf.nn.tanh(tf.add(tf.matmul(x,e_weights_h1),e_biases_h1)) l2 = tf.nn.tanh(tf.add(tf.matmul(l1,e_weights_h2),e_biases_h2)) l3 = tf.nn.tanh(tf.add(tf.matmul(l2,e_weights_h3),e_biases_h3)) return l3 def decode(x): l1 = tf.nn.tanh(tf.add(tf.matmul(x,d_weights_h1),d_biases_h1)) l2 = tf.nn.tanh(tf.add(tf.matmul(l1,d_weights_h2),d_biases_h2)) l3 = tf.nn.tanh(tf.add(tf.matmul(l2,d_weights_h3),d_biases_h3)) return l3 def dnn(x): l1 = tf.nn.tanh(tf.add(tf.matmul(x,dnn_weights_h1),dnn_biases_h1)) l2 = tf.nn.tanh(tf.add(tf.matmul(l1,dnn_weights_h2),dnn_biases_h2)) out = tf.nn.softmax(tf.add(tf.matmul(l2,dnn_weights_out),dnn_biases_out)) return out # In[57]: # Nodes with operations created encoded = encode(X) decoded = decode(encoded) y_ = dnn(encoded) # In[58]: # Two types of cost functions # First one with decoder and encoder # Next one with actual output us_cost_function = tf.reduce_mean(tf.pow(X - decoded, 2)) s_cost_function = -tf.reduce_sum(Y * tf.log(y_)) us_optimizer = tf.train.AdamOptimizer(learning_rate).minimize(us_cost_function) s_optimizer = tf.train.AdamOptimizer(learning_rate).minimize(s_cost_function) # In[59]: # Remember: the operations are on tensors # Argmax is used to get max prob element from softmax output along --> axis correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1)) # Equal returns boolean, now accuracy measured after cast accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # #### Model architecture # Image take from: https://arxiv.org/pdf/1611.02049v1.pdf # <img src="AE.png"> # <img src="NN.png"> # In[60]: with tf.Session() as session: tf.global_variables_initializer().run() # ------------ 1. Training Autoencoders - Unsupervised Learning ----------- # for epoch in range(training_epochs): epoch_costs = np.empty(0) for b in range(total_batches): offset = (b * batch_size) % (train_x.shape[0] - batch_size) batch_x = train_x[offset:(offset + batch_size), :] _, c = session.run([us_optimizer, us_cost_function],feed_dict={X: batch_x}) epoch_costs = np.append(epoch_costs,c) print("Epoch: ",epoch," Loss: ",np.mean(epoch_costs)) print("Unsupervised pre-training finished...") # ---------------- 2. Training NN - Supervised Learning ------------------ # for epoch in range(training_epochs): epoch_costs = np.empty(0) for b in range(total_batches): offset = (b * batch_size) % (train_x.shape[0] - batch_size) batch_x = train_x[offset:(offset + batch_size), :] batch_y = train_y[offset:(offset + batch_size), :] _, c = session.run([s_optimizer, s_cost_function],feed_dict={X: batch_x, Y : batch_y}) epoch_costs = np.append(epoch_costs,c) print("Epoch: ",epoch," Loss: ",np.mean(epoch_costs)," Training Accuracy: ", session.run(accuracy, feed_dict={X: train_x, Y: train_y}), "Validation Accuracy:", session.run(accuracy, feed_dict={X: val_x, Y: val_y})) print("Supervised training finished...") # Instead of setting number of iterations we can also find where validation error starts increasing for generalization print("\nTesting Accuracy:", session.run(accuracy, feed_dict={X: test_features, Y: test_labels})) # -------------------------------------------------------------------------------------------------------------------------- # Generating a random test2.csv """ ####### ####### ####### Hierarchial Part ####### ####### ####### # Training data in dataset # Now we have to extract features and labels #### Hierarchial Features #### # Creating the feature set for second NN additionalfeatures =
np.asarray(dataset.iloc[:,522:528])
numpy.asarray
"""Test gates defined in `qibo/core/gates.py`.""" import pytest import numpy as np from qibo import gates, K from qibo.config import raise_error from qibo.tests.utils import random_state, random_density_matrix def apply_gates(gatelist, nqubits=None, initial_state=None): if initial_state is None: state = K.qnp.zeros(2 ** nqubits) state[0] = 1 elif isinstance(initial_state, np.ndarray): state = np.copy(initial_state) if nqubits is None: nqubits = int(np.log2(len(state))) else: # pragma: no cover assert nqubits == int(np.log2(len(state))) else: # pragma: no cover raise_error(TypeError, "Invalid initial state type {}." "".format(type(initial_state))) state = K.cast(state) for gate in gatelist: state = gate(state) return state def test__control_unitary(backend): matrix = K.cast(np.random.random((2, 2))) gate = gates.Unitary(matrix, 0) unitary = gate._control_unitary(matrix) target_unitary = np.eye(4, dtype=K._dtypes.get('DTYPECPX')) target_unitary[2:, 2:] = K.to_numpy(matrix) K.assert_allclose(unitary, target_unitary) with pytest.raises(ValueError): unitary = gate._control_unitary(np.random.random((16, 16))) def test_h(backend): final_state = apply_gates([gates.H(0), gates.H(1)], nqubits=2) target_state = np.ones_like(final_state) / 2 K.assert_allclose(final_state, target_state) def test_x(backend): final_state = apply_gates([gates.X(0)], nqubits=2) target_state = np.zeros_like(final_state) target_state[2] = 1.0 K.assert_allclose(final_state, target_state) def test_y(backend): final_state = apply_gates([gates.Y(1)], nqubits=2) target_state = np.zeros_like(final_state) target_state[1] = 1j K.assert_allclose(final_state, target_state) def test_z(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.Z(0)], nqubits=2) target_state = np.ones_like(final_state) / 2.0 target_state[2] *= -1.0 target_state[3] *= -1.0 K.assert_allclose(final_state, target_state) def test_s(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.S(1)], nqubits=2) target_state = np.array([0.5, 0.5j, 0.5, 0.5j]) K.assert_allclose(final_state, target_state) def test_sdg(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.SDG(1)], nqubits=2) target_state = np.array([0.5, -0.5j, 0.5, -0.5j]) K.assert_allclose(final_state, target_state) def test_t(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.T(1)], nqubits=2) target_state = np.array([0.5, (1 + 1j) / np.sqrt(8), 0.5, (1 + 1j) / np.sqrt(8)]) K.assert_allclose(final_state, target_state) def test_tdg(backend): final_state = apply_gates([gates.H(0), gates.H(1), gates.TDG(1)], nqubits=2) target_state = np.array([0.5, (1 - 1j) / np.sqrt(8), 0.5, (1 - 1j) / np.sqrt(8)]) K.assert_allclose(final_state, target_state) def test_identity(backend): gatelist = [gates.H(0), gates.H(1), gates.I(0), gates.I(1)] final_state = apply_gates(gatelist, nqubits=2) target_state = np.ones_like(final_state) / 2.0 K.assert_allclose(final_state, target_state) gatelist = [gates.H(0), gates.H(1), gates.I(0, 1)] final_state = apply_gates(gatelist, nqubits=2) K.assert_allclose(final_state, target_state) def test_align(backend): gate = gates.Align(0, 1) gatelist = [gates.H(0), gates.H(1), gate] final_state = apply_gates(gatelist, nqubits=2) target_state = np.ones_like(final_state) / 2.0 K.assert_allclose(final_state, target_state) gate_matrix = gate._construct_unitary() K.assert_allclose(gate_matrix, np.eye(4)) # :class:`qibo.core.cgates.M` is tested seperately in `test_measurement_gate.py` def test_rx(backend): theta = 0.1234 final_state = apply_gates([gates.H(0), gates.RX(0, theta=theta)], nqubits=1) phase = np.exp(1j * theta / 2.0) gate = np.array([[phase.real, -1j * phase.imag], [-1j * phase.imag, phase.real]]) target_state = gate.dot(np.ones(2)) / np.sqrt(2) K.assert_allclose(final_state, target_state) def test_ry(backend): theta = 0.1234 final_state = apply_gates([gates.H(0), gates.RY(0, theta=theta)], nqubits=1) phase = np.exp(1j * theta / 2.0) gate = np.array([[phase.real, -phase.imag], [phase.imag, phase.real]]) target_state = gate.dot(np.ones(2)) / np.sqrt(2) K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("applyx", [True, False]) def test_rz(backend, applyx): theta = 0.1234 if applyx: gatelist = [gates.X(0)] else: gatelist = [] gatelist.append(gates.RZ(0, theta)) final_state = apply_gates(gatelist, nqubits=1) target_state = np.zeros_like(final_state) p = int(applyx) target_state[p] = np.exp((2 * p - 1) * 1j * theta / 2.0) K.assert_allclose(final_state, target_state) def test_u1(backend): theta = 0.1234 final_state = apply_gates([gates.X(0), gates.U1(0, theta)], nqubits=1) target_state = np.zeros_like(final_state) target_state[1] = np.exp(1j * theta) K.assert_allclose(final_state, target_state) def test_u2(backend): phi = 0.1234 lam = 0.4321 initial_state = random_state(1) final_state = apply_gates([gates.U2(0, phi, lam)], initial_state=initial_state) matrix = np.array([[np.exp(-1j * (phi + lam) / 2), -np.exp(-1j * (phi - lam) / 2)], [np.exp(1j * (phi - lam) / 2), np.exp(1j * (phi + lam) / 2)]]) target_state = matrix.dot(initial_state) / np.sqrt(2) K.assert_allclose(final_state, target_state) def test_u3(backend): theta = 0.1111 phi = 0.1234 lam = 0.4321 initial_state = random_state(1) final_state = apply_gates([gates.U3(0, theta, phi, lam)], initial_state=initial_state) cost, sint = np.cos(theta / 2), np.sin(theta / 2) ep = np.exp(1j * (phi + lam) / 2) em = np.exp(1j * (phi - lam) / 2) matrix = np.array([[ep.conj() * cost, - em.conj() * sint], [em * sint, ep * cost]]) target_state = matrix.dot(initial_state) K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("applyx", [False, True]) def test_cnot(backend, applyx): if applyx: gatelist = [gates.X(0)] else: gatelist = [] gatelist.append(gates.CNOT(0, 1)) final_state = apply_gates(gatelist, nqubits=2) target_state = np.zeros_like(final_state) target_state[3 * int(applyx)] = 1.0 K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("controlled_by", [False, True]) def test_cz(backend, controlled_by): initial_state = random_state(2) matrix = np.eye(4) matrix[3, 3] = -1 target_state = matrix.dot(initial_state) if controlled_by: gate = gates.Z(1).controlled_by(0) else: gate = gates.CZ(0, 1) final_state = apply_gates([gate], initial_state=initial_state) assert gate.name == "cz" K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("name,params", [("CRX", {"theta": 0.1}), ("CRY", {"theta": 0.2}), ("CRZ", {"theta": 0.3}), ("CU1", {"theta": 0.1}), ("CU2", {"phi": 0.1, "lam": 0.2}), ("CU3", {"theta": 0.1, "phi": 0.2, "lam": 0.3})]) def test_cun(backend, name, params): initial_state = random_state(2) gate = getattr(gates, name)(0, 1, **params) final_state = apply_gates([gate], initial_state=initial_state) target_state = np.dot(K.to_numpy(gate.matrix), initial_state) K.assert_allclose(final_state, target_state) def test_swap(backend): final_state = apply_gates([gates.X(1), gates.SWAP(0, 1)], nqubits=2) target_state = np.zeros_like(final_state) target_state[2] = 1.0 K.assert_allclose(final_state, target_state) def test_multiple_swap(backend): gatelist = [gates.X(0), gates.X(2), gates.SWAP(0, 1), gates.SWAP(2, 3)] final_state = apply_gates(gatelist, nqubits=4) gatelist = [gates.X(1), gates.X(3)] target_state = apply_gates(gatelist, nqubits=4) K.assert_allclose(final_state, target_state) def test_fsim(backend): theta = 0.1234 phi = 0.4321 gatelist = [gates.H(0), gates.H(1), gates.fSim(0, 1, theta, phi)] final_state = apply_gates(gatelist, nqubits=2) target_state = np.ones_like(K.to_numpy(final_state)) / 2.0 rotation = np.array([[np.cos(theta), -1j * np.sin(theta)], [-1j * np.sin(theta), np.cos(theta)]]) matrix = np.eye(4, dtype=target_state.dtype) matrix[1:3, 1:3] = rotation matrix[3, 3] = np.exp(-1j * phi) target_state = matrix.dot(target_state) K.assert_allclose(final_state, target_state) def test_generalized_fsim(backend): phi = np.random.random() rotation = np.random.random((2, 2)) + 1j * np.random.random((2, 2)) gatelist = [gates.H(0), gates.H(1), gates.H(2)] gatelist.append(gates.GeneralizedfSim(1, 2, rotation, phi)) final_state = apply_gates(gatelist, nqubits=3) target_state = np.ones_like(K.to_numpy(final_state)) / np.sqrt(8) matrix = np.eye(4, dtype=target_state.dtype) matrix[1:3, 1:3] = rotation matrix[3, 3] = np.exp(-1j * phi) target_state[:4] = matrix.dot(target_state[:4]) target_state[4:] = matrix.dot(target_state[4:]) K.assert_allclose(final_state, target_state) def test_generalized_fsim_parameter_setter(backend): phi = np.random.random() matrix = np.random.random((2, 2)) gate = gates.GeneralizedfSim(0, 1, matrix, phi) K.assert_allclose(gate.parameters[0], matrix) assert gate.parameters[1] == phi matrix = np.random.random((4, 4)) with pytest.raises(ValueError): gate = gates.GeneralizedfSim(0, 1, matrix, phi) @pytest.mark.parametrize("applyx", [False, True]) def test_toffoli(backend, applyx): if applyx: gatelist = [gates.X(0), gates.X(1), gates.TOFFOLI(0, 1, 2)] else: gatelist = [gates.X(1), gates.TOFFOLI(0, 1, 2)] final_state = apply_gates(gatelist, nqubits=3) target_state = np.zeros_like(final_state) if applyx: target_state[-1] = 1 else: target_state[2] = 1 K.assert_allclose(final_state, target_state) @pytest.mark.parametrize("nqubits", [2, 3]) def test_unitary(backend, nqubits): initial_state = np.ones(2 ** nqubits) / np.sqrt(2 ** nqubits) matrix = np.random.random(2 * (2 ** (nqubits - 1),)) target_state = np.kron(np.eye(2), matrix).dot(initial_state) gatelist = [gates.H(i) for i in range(nqubits)] gatelist.append(gates.Unitary(matrix, *range(1, nqubits), name="random")) final_state = apply_gates(gatelist, nqubits=nqubits) K.assert_allclose(final_state, target_state) def test_unitary_initialization(backend): matrix = np.random.random((4, 4)) gate = gates.Unitary(matrix, 0, 1) K.assert_allclose(gate.parameters, matrix) matrix = np.random.random((8, 8)) with pytest.raises(ValueError): gate = gates.Unitary(matrix, 0, 1) with pytest.raises(TypeError): gate = gates.Unitary("abc", 0, 1) def test_unitary_common_gates(backend): target_state = apply_gates([gates.X(0), gates.H(1)], nqubits=2) gatelist = [gates.Unitary(np.array([[0, 1], [1, 0]]), 0), gates.Unitary(np.array([[1, 1], [1, -1]]) / np.sqrt(2), 1)] final_state = apply_gates(gatelist, nqubits=2) K.assert_allclose(final_state, target_state) thetax = 0.1234 thetay = 0.4321 gatelist = [gates.RX(0, theta=thetax), gates.RY(1, theta=thetay), gates.CNOT(0, 1)] target_state = apply_gates(gatelist, nqubits=2) rx = np.array([[np.cos(thetax / 2), -1j * np.sin(thetax / 2)], [-1j * np.sin(thetax / 2), np.cos(thetax / 2)]]) ry = np.array([[np.cos(thetay / 2), -np.sin(thetay / 2)], [np.sin(thetay / 2),
np.cos(thetay / 2)
numpy.cos
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den =
N.array([1,1,4])
numpy.array
import warnings, copy from astropy.time import Time, TimeDelta from astropy.coordinates import SkyCoord, AltAz, ICRS, FK5, EarthLocation, Longitude from astropy import units as U import numpy as NP import constants as CNST # Perform some IERS adjustments from astropy.utils import iers tnow = Time.now() try: print('Checking if some IERS related adjustments are required...') tnow_ut1 = tnow.ut1 except iers.IERSRangeError as exception: default_iers_auto_url = 'http://maia.usno.navy.mil/ser7/finals2000A.all' secondary_iers_auto_url = 'https://datacenter.iers.org/data/9/finals2000A.all' tertiary_iers_auto_url = 'ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.all' try: # iers.conf.iers_auto_url = default_iers_auto_url iers.conf.remote_timeout = 120.0 iers.IERS_A.open(iers.IERS_A_URL) except Exception as err: if ('url' in str(err).lower()) or (('connection' in str(err).lower())): print(err) print('Original source URL for IERS_A: {0} FAILED!'.format(iers.conf.iers_auto_url)) print('Original IERS Configuration:') print(iers.conf.__class__.__dict__) print('Modifying the source URL for IERS_A table to {0}'.format(secondary_iers_auto_url)) # iers.IERS_A_URL = 'ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.all' iers.conf.auto_download = True iers.conf.iers_auto_url = secondary_iers_auto_url # iers.conf.iers_auto_url = 'ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.all' try: print('Now testing {0}'.format(secondary_iers_auto_url)) iers_a = iers.IERS_A.open(secondary_iers_auto_url) except Exception as newerr: if ('url' in str(err).lower()): print(newerr) print('Modified URL also did not work. Computation of LST may be affected or will completely fail.') # raise newerr else: print('Updated source URL {0} worked!'.format(secondary_iers_auto_url)) print('Modified IERS Configuration:') print(iers.conf.__class__.__dict__) try: tnow_ut1 = tnow.ut1 except iers.IERARangeError as exception: print(exception) warnings.warn('Ephemeris predictions will be unreliable despite a successful download of IERS tables') ################################################################################ def equation_of_equinoxes(jd): """ ---------------------------------------------------------------------------- Estimate the equation of the equinoxes Inputs: jd [scalar or numpy array] Julian date at which nutation is to be estimated and the equation of equinoxes is returned. Output: Equation of the equinoxes (in hours) that should be used to correct the Greenwich Mean Sidereal Time to obtain the Greenwich Apparent Sidereal Time Notes: Adopted from https://aa.usno.navy.mil/faq/docs/GAST.php ---------------------------------------------------------------------------- """ if not isinstance(jd, (int, float, NP.ndarray)): raise TypeError('Input julian date(s) must be a scalar or numpy array') d = jd - 2451545.0 # Days since 2000 January 1, 12h UT, Julian date 2451545.0 omega = 125.04 - 0.052954 * d # Longitude of the ascending node of the Moon in degrees l = 280.47 + 0.98565 * d # Mean Longitude of the Sun in degrees obliquity = 23.4393 - 0.0000004 * d # in degrees nutation = -0.000319 * NP.sin(NP.radians(omega)) - 0.000024 * NP.sin(NP.radians(2*l)) # in hours eqeq = nutation * NP.cos(NP.radians(obliquity)) # Equation of the equinoxes in hours # t = d / 36525 # number of centuries since 2000 January 1, 12h UT, Julian date 2451545.0 return eqeq ################################################################################ def julian_date_from_LAST(last, jd0, longitude, tol=1e-6): """ ---------------------------------------------------------------------------- Inputs: last [scalar or numpy array] Local Apparent Sidereal Time (in hours) jd0 [scalar or numpy array] Julian date at previous midnight. Same size as input 'last' or numpy broadcastable to that shape longitude [scalar or numpy array] Longitude of observing site (in hours). Same size as input 'last' or numpy broadcastable to that shape tol [scalar] Tolerance for convergence since these calculations are iteratively solved Output: Julian date(s) as a numpy array correspoding to the input apparent sidereal time and longitude on given starting Julian dates. Notes: Adopted from https://aa.usno.navy.mil/faq/docs/GAST.php ---------------------------------------------------------------------------- """ if not isinstance(jd0, (int, float, NP.ndarray)): raise TypeError('Input starting julian date(s) must be a scalar or numpy array') jd0 = NP.asarray(jd0).ravel() if not isinstance(last, (int, float, NP.ndarray)): raise TypeError('Input local apparent sidereal time(s) must be a scalar or numpy array') last = NP.asarray(last).ravel() if not isinstance(longitude, (int, float, NP.ndarray)): raise TypeError('Input longitude(s) must be a scalar or numpy array') longitude =
NP.asarray(longitude)
numpy.asarray
import numpy as np from open_spiel.python.algorithms.nash_solver import subproc import os import pickle import itertools import logging import math from open_spiel.python.algorithms.psro_v2.eval_utils import dev_regret """ This script connects meta-games with gambit. It translates a meta-game to am EFG format that gambit-logit could recognize to find the QRE. Gambit file format: http://www.gambit-project.org/gambit16/16.0.0/formats.html """ def isExist(path): """ Check if a path exists. :param path: path to check. :return: bool """ return os.path.exists(path) def mkdir(path): path = path.strip() path = path.rstrip("\\") isExists = os.path.exists(path) if isExists: raise ValueError(path + " already exists.") else: os.makedirs(path) print(path + " has been created successfully.") def save_pkl(obj,path): """ Pickle a object to path. :param obj: object to be pickled. :param path: path to save the object """ with open(path,'wb') as f: pickle.dump(obj,f) def load_pkl(path): """ Load a pickled object from path :param path: path to the pickled object. :return: object """ if not isExist(path): raise ValueError(path + " does not exist.") with open(path,'rb') as f: result = pickle.load(f) return result # This functions help to translate meta_games into gambit nfg. def product(shape, axes): prod_trans = tuple(zip(*itertools.product(*(range(shape[axis]) for axis in axes)))) prod_trans_ordered = [None] * len(axes) for i, axis in enumerate(axes): prod_trans_ordered[axis] = prod_trans[i] return zip(*prod_trans_ordered) def encode_gambit_file_qre(meta_games, checkpoint_dir=None): """ Encode a meta-game to nfg file that gambit can recognize. :param meta_games: A meta-game (payoff tensor) in PSRO. """ num_players = len(meta_games) num_strategies =
np.shape(meta_games[0])
numpy.shape
import sys sys.path.append('../../pySuStaIn/') sys.path.append('../evaluation/') import os import shutil import numpy as np import matplotlib.pyplot as plt import pickle from pathlib import Path import sklearn.model_selection import pandas as pd import pylab # import the simulation functions from pySuStaIn needed to generate simulated data from simfuncs import generate_random_sustain_model, generate_data_sustain # import the functions for z-score SuStaIn from ZscoreSustain import ZscoreSustain from eval_utils import get_cluster_pear_metric, get_cluster_swap_metric from sklearn.metrics import adjusted_rand_score def run_sustain_baseline(epochs, optim_epochs, trials, ppmi=False, data_num=1, how_impute='mice'): sustain_trial_results = np.zeros((trials, 3)) for trial_num in range(trials): ari, swaps, pear = run_sustain_notebook(epochs, optim_epochs, trial_num, ppmi, data_num=data_num, how_impute=how_impute) sustain_trial_results[trial_num] = [ari, swaps, pear] if trials == 1: print('%s, %s, %.3f, %.3f, %.3f' % ('SuStaIn', '--', ari, swaps, pear)) else: line_str = list() for i,j in zip(sustain_trial_results.mean(axis=0), sustain_trial_results.std(axis=0)): line_str.append('%.3f $\\pm$ %.3f' % (i,j)) print(' & '.join(['SuStaIn'] + line_str) + '\\\\') import os.path trials_fname = '../runs/sustain%d_experiments.txt' % trials f = open(trials_fname, 'wb') import pickle pickle.dump(sustain_trial_results, f) f.close() print(sustain_trial_results) def run_sustain_notebook(epochs=100, optim_epochs=1000, trial_num=1,ppmi=False, data_num=1, how_impute='mice'): epochs = int(epochs) optim_epochs = int(optim_epochs) N = 5 # number of biomarkers M = 500 # number of observations ( e.g. subjects ) M_control = 100 # number of these that are control subjects N_S_gt = 2 # number of ground truth subtypes N_startpoints = 10 N_S_max = 2 n_iterations_MCMC_optimisation = optim_epochs # replace to 1e4 N_iterations_MCMC = epochs output_folder = 'data1' dataset_name = 'data1' # LOAD SUBLIGN SYNTHETIC DATA import sys sys.path.append('../data/') from load import load_data_format from data_utils import parse_data if ppmi: from load import parkinsons data = parkinsons() max_visits = 17 else: data = load_data_format(data_num,trial_num=trial_num, cache=True) max_visits = 4 if data_num < 10 else 17 _, train_data_dict, _, test_data_dict, _, _ = parse_data(data.values, max_visits=max_visits, test_per=0.2) if data_num == 11 or data_num == 12 or data_num == 14: X = train_data_dict['obs_t_collect'] Y = train_data_dict['Y_collect'] M = train_data_dict['mask_collect'] X[X == -1000] = np.nan Y[Y == -1000] = np.nan sys.path.append('../model') from utils import interpolate if how_impute == 'mrnn': Y[np.isnan(Y)] = 0. X[np.isnan(X)] = 0. Y_impute = interpolate(Y, m=M, t=X, how=how_impute) train_data_dict['Y_collect'] = Y_impute X = test_data_dict['obs_t_collect'] Y = test_data_dict['Y_collect'] M = test_data_dict['mask_collect'] X[X == -1000] = np.nan Y[Y == -1000] = np.nan sys.path.append('../model') from utils import interpolate if how_impute == 'mrnn': Y[np.isnan(Y)] = 0. X[np.isnan(X)] = 0. Y_impute = interpolate(Y, m=M, t=X, how=args.how_impute) test_data_dict['Y_collect'] = Y_impute N_patients, N_visits, N_dims = train_data_dict['Y_collect'].shape gt_stages = train_data_dict['t_collect'].reshape((N_patients * N_visits, 1)) gt_subtypes = [int(i) for i in train_data_dict['s_collect'].flatten()] gt_subtypes =
np.concatenate([[i] * max_visits for i in gt_subtypes])
numpy.concatenate
import os import numpy as np import librosa import librosa.display import soundfile as sf from keras.models import load_model from util import ispecgram, fix_specgram_shape, plot_specgrams from generate import generate_z, generate_specgram, audio_from_specgram import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt # loaded trained models encoder = load_model("models/encoder.hdf5") decoder = load_model("models/decoder.hdf5") spec =
np.loadtxt('spectrograms/ir_00x00y_16000_5.txt')
numpy.loadtxt
# -*- coding: utf-8 -*- import numpy as np import json class BatchTableHeader(object): def __init__(self): self.properties = {} def add_property_from_array(self, propertyName, array): self.properties[propertyName] = array def to_array(self): # convert dict to json string bt_json = json.dumps(self.properties, separators=(',', ':')) # header must be 4-byte aligned (refer to batch table documentation) #bt_json += ' '*(4 - len(bt_json) % 4) # returns an array of binaries representing the batch table return
np.fromstring(bt_json, dtype=np.uint8)
numpy.fromstring
from __future__ import division from __future__ import print_function import os import re import sys import math from data_generator import DataGenerator from scipy.io import wavfile import numpy as np from numpy.lib.stride_tricks import as_strided import tensorflow as tf # tf.config.run_functions_eagerly(True) # tf.compat.v1.disable_eager_execution() from tensorflow.keras.layers import Input, Reshape, Conv2D, BatchNormalization, Softmax, Conv1D, Bidirectional from tensorflow.keras.layers import MaxPool2D, Dropout, Permute, Flatten, Dense, MaxPool1D, AvgPool1D from tensorflow.keras.models import Model import librosa import librosa.display from encoder_2 import Encoder import pyhocon import os import json import pandas as pd from collections import defaultdict from tensorflow.keras.callbacks import ModelCheckpoint import encoder_3 import matplotlib.pyplot as plt # store as a global variable, since we only support a few models for now from data_generator import DataGenerator models = { 'tiny': None, 'small': None, 'medium': None, 'large': None, 'full': None } # the model is trained on 16kHz audio # model_srate = 16000 # max_batch_size = 3000 # sequence_length = 200 # n_labels = 30 # config = pyhocon.ConfigFactory.parse_file("crepe/experiments.conf")['test'] def build_and_load_model(config, task ='raga'): """ Build the CNN model and load the weights Parameters ---------- model_capacity : 'tiny', 'small', 'medium', 'large', or 'full' String specifying the model capacity, which determines the model's capacity multiplier to 4 (tiny), 8 (small), 16 (medium), 24 (large), or 32 (full). 'full' uses the model size specified in the paper, and the others use a reduced number of filters in each convolutional layer, resulting in a smaller model that is faster to evaluate at the cost of slightly reduced pitch estimation accuracy. Returns ------- model : tensorflow.keras.models.Model The pre-trained keras model loaded in memory """ model_capacity = config['model_capacity'] model_srate = config['model_srate'] hop_size = int(config['hop_size']*model_srate) sequence_length = int((config['sequence_length']*model_srate - 1024)/hop_size) + 1 N = config['encoder_layers'] drop_rate = config['drop_rate'] tonic_filter = config['tonic_filter'] tonic_emb_size = config['tonic_emb_size'] tonic_cnn_filters = config['tonic_cnn_filters'] cutoff = config['cutoff'] n_frames = 1 + int((model_srate * cutoff - 1024) / hop_size) n_seq = int(n_frames // sequence_length) #print('n_seq', n_seq) #input() n_labels = config['n_labels'] note_dim = config['note_dim'] tonic_mask_flag = config['tonic_mask'] if models[model_capacity] is None: capacity_multiplier = { 'tiny': 4, 'small': 8, 'medium': 16, 'large': 24, 'full': 32 }[model_capacity] layers = [1, 2, 3, 4, 5, 6] filters = [n * capacity_multiplier for n in [32, 4, 4, 4, 8, 16]] widths = [512, 64, 64, 64, 64, 64] strides = [(4, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)] # x = Input(shape=(1024,), name='input2', dtype='float32') x_batch = Input(shape=(None, 1024), name='x_input', dtype='float32') # chroma_batch = Input(shape=(60, None), name='chroma_input', dtype='float32') energy_batch = Input(shape=(None,), name='energy_input', dtype='float32') x = x_batch[0] # chroma = chroma_batch[0] energy = energy_batch[0] x_pitch = x # x_pitch = x - tf.reduce_mean(x, axis=1, keepdims=True) # x_pitch = x_pitch/tf.math.reduce_std(x_pitch, axis=1, keepdims=True) # x_energy_reshape = tf.reshape(x, [-1]) # x_energy = x - tf.reduce_mean(x_energy_reshape) # x_energy = x_energy/tf.math.reduce_std(x_energy_reshape) y = Reshape(target_shape=(1024, 1, 1), name='input-reshape')(x_pitch) for l, f, w, s in zip(layers, filters, widths, strides): y = Conv2D(f, (w, 1), strides=s, padding='same', activation='relu', name="conv%d" % l, trainable=False)(y) y = BatchNormalization(name="conv%d-BN" % l)(y) y = MaxPool2D(pool_size=(2, 1), strides=None, padding='valid', name="conv%d-maxpool" % l, trainable=False)(y) y = Dropout(0.25, name="conv%d-dropout" % l)(y) y = Permute((2, 1, 3), name="transpose")(y) y = Flatten(name="flatten")(y) den = Dense(360, activation='sigmoid', name="classifier", trainable=False) y = den(y) #model = Model(inputs=[x_batch, mask_batch, chroma_batch, energy_batch], outputs=y) #model.load_weights('E:\\Vishwaas\\Anaconda3\\envs\\env_tf2\\Lib\\site-packages\\crepe\\model-full.h5', by_name=True) # return model # pitch_model = Model(inputs=[x, chroma, mask], outputs=y) # pitch_model.summary() note_emb = den.weights[0] note_emb = tf.reduce_mean(tf.reshape(note_emb, [-1, 6, 60]), axis=1) note_emb = tf.reduce_mean(tf.reshape(note_emb, [note_dim, -1, 60]), axis=1) note_emb = tf.transpose(note_emb, name='note_emb') #60,note_emb # note_emb_12 = tf.reduce_mean(tf.reshape(note_emb, [12,5,note_dim]), axis=1) # enc = Encoder(note_emb_12,sequence_length=sequence_length, N=N,size=note_dim) # tonic_chroma = get_tonic_from_cnn(chroma, int(note_dim*3/4), int(note_dim/2), drop_rate) #(60, 32) tonic_hist = get_tonic_from_hist(y, int(note_dim*3/4), int(note_dim/2), drop_rate) #(60, 32) tonic_sil = get_tonic_from_silence(y, energy, int(note_dim*1/2), drop_rate) # (60, 32) print(tonic_chroma, tonic_hist, tonic_sil) tonic_chs = tf.concat([tonic_chroma, tonic_hist, tonic_sil], axis=1) tonic_chs_scores_emb = ffnn(tonic_chs, [note_dim], drop_rate=drop_rate) # tonic_chs_scores_emb = ffnn(tonic_chs, [note_dim], drop_rate=drop_rate) # tonic_chs_scores_emb = tonic_chs red_y = tf.reshape(y, [-1, 6, 60]) red_y = tf.reduce_mean(red_y, axis=1) # (None, 60) red_y_seq = tf.reshape(red_y, [n_seq, sequence_length, 60]) # (n_seq, sequence_length, 60) notes_prob = tf.reduce_max(red_y, axis=1) notes_prob_seq = tf.reshape(notes_prob, [n_seq, sequence_length]) #n_seq, sequence_length notes_n = tf.reduce_mean(red_y_seq, axis=1) notes_n_seq_red = tf.reduce_mean(notes_n, axis=1) energy_seq = tf.reshape(energy, [n_seq, sequence_length]) #n_seq, sequence_length energy_seq_red = tf.reduce_mean(energy_seq, axis=1) # n_seq entropy_seq = get_entropy(red_y, sequence_length) #n_seq, sequence_length entropy_seq_red = tf.reduce_mean(entropy_seq, axis=1) # n_seq notes_prob_seq = min_max_scale(notes_prob_seq, sequence_length) energy_seq = min_max_scale(energy_seq, sequence_length) entropy_seq = min_max_scale(entropy_seq, sequence_length) sequence_strength = tf.stack([notes_prob_seq, energy_seq, entropy_seq]) #3, n_seq, sequence_length sequence_strength = tf.transpose(sequence_strength, [1,2,0]) note_strength = tf.reduce_mean(sequence_strength, axis=2) #n_seq, sequence_length sequence_strength = tf.reduce_mean(sequence_strength, axis=1) sequence_strength = tf.reduce_mean(sequence_strength, axis=1, keepdims=True) sequence_strength_sum = tf.reduce_sum(sequence_strength) # seq_str = tf.tile(seq_str, [1, note_dim]) # strength_seq = get_note_strength(energy_seq, entropy_seq, notes_prob_seq) # un_tr_den = Dense(1, activation='relu') # seq_str_den = (Dense(4, activation='relu'), Dense(1, activation='relu')) # notes_strength_seq = tf.tile(tf.expand_dims(strength_seq, 2), multiples=[1,1,note_dim]) # tonic_f4 = [] # mask_seq = tf.reshape(mask, [n_seq, sequence_length]) # seq_str = get_seq_strength(energy_seq, entropy_seq, notes_prob_seq, seq_str_den, notes_n, drop_rate) # seq_str = tf.tile(tf.expand_dims(seq_str, 1), [1, note_dim]) # for i in range(12): # rolled_notes = tf.roll(red_y_12, -i, axis=1) # (None, 12) # rolled_notes_id = tf.argmax(rolled_notes, axis=1) # rolled_notes_id_seq = tf.reshape(rolled_notes_id, [n_seq, sequence_length]) # raga_enc = enc.encode(rolled_notes_id_seq, mask_seq, None, True) # (None, 200, note_dim) # raga_enc = tf.reduce_mean(raga_enc, axis=1) # # raga_enc = tf.multiply(raga_enc, seq_str) # raga_enc = tf.reduce_sum(raga_enc, 0) # raga_enc = tf.tile(tf.expand_dims(raga_enc,0), [5,1]) # tonic_f4.append(raga_enc) # # tonic_f4 = tf.concat(tonic_f4, axis=0) # notes_id_seq_all_tonics = [] # notes_prob_seq_all = [] # seq_str = get_seq_strength(energy_seq, entropy_seq, notes_prob_seq, seq_str_den, notes_n, drop_rate) # # seq_str = tf.nn.softmax(seq_str) # for i in range(12): # rolled_notes = tf.roll(red_y_12, -i, axis=1) # (None, 60) # rolled_notes_id = tf.argmax(rolled_notes, axis=1) # rolled_notes_prob_seq = tf.reduce_max(rolled_notes, axis=1) # rolled_notes_id_seq = tf.reshape(rolled_notes_id, [n_seq, sequence_length]) # rolled_notes_prob_seq = tf.reshape(rolled_notes_prob_seq, [n_seq, sequence_length]) # notes_prob_seq_all.append(rolled_notes_prob_seq) # notes_id_seq_all_tonics.append(rolled_notes_id_seq) # # notes_id_seq_all_tonics = tf.concat(notes_id_seq_all_tonics, axis=0) # notes_prob_seq_all = tf.concat(notes_prob_seq_all, axis=0) # notes_prob_seq_all = tf.tile(tf.expand_dims(notes_prob_seq_all,2), [1,1,note_dim]) # mask_seq_all_tonics = tf.ones((1, 1, sequence_length), dtype=tf.float32) # # mask_seq_all_tonics = tf.tile(mask_seq, [12,1]) # # mask_seq_all_tonics = tf.cast(mask_seq_all_tonics, tf.float32) # tonic_f4 = encoder_3.encode(notes_id_seq_all_tonics, note_emb_12, mask_seq_all_tonics, N, d_model=note_dim) # # tonic_f4 = enc.encode(notes_id_seq_all_tonics, mask_seq_all_tonics, None, True) # (None, 200, note_dim) # # tonic_f4 = tf.reduce_mean(tonic_f4, axis=1) # # tonic_f4 = tonic_f4[:,-1,:] # tonic_f4 = tf.reshape(tonic_f4, [12, n_seq, note_dim]) # seq_str = tf.expand_dims(tf.expand_dims(seq_str, 0),2) # seq_str = tf.tile(seq_str, [12,1,note_dim]) # tonic_f4 = tf.multiply(tonic_f4, seq_str) # tonic_f4 = tf.reduce_sum(tonic_f4,1) # tonic_f4 = tf.reduce_mean(tonic_f4, 1) # tonic_f4 = tf.expand_dims(tonic_f4, 0) # tonic_f4 = tf.tile(tonic_f4, [5,1,1]) # tonic_f4 = tf.transpose(tonic_f4, [1,0,2]) # tonic_f4 = tf.reshape(tonic_f4, [60, note_dim]) # tonic_f4 = tf.reduce_mean(tonic_f4, axis=1) # tonic_f4 = tf.reshape(tonic_f4, [60, n_seq, note_dim]) # seq_str = tf.expand_dims(tf.expand_dims(seq_str, 0),2) # seq_str = tf.tile(seq_str, [60,1,note_dim]) # tonic_f4 = tf.multiply(tonic_f4, seq_str) # tonic_f4 = tf.reduce_sum(tonic_f4,1) # un_tr_list = [] # for i in range(60): # rolled_notes = tf.roll(red_y, -i, axis=1) # un_tr = unlikely_transitions(rolled_notes, sequence_length, un_tr_den, drop_rate) # un_tr_list.append(un_tr) # un_tr_list = tf.stack(un_tr_list) #tonic_emb = tf.concat([tonic_f4, tonic_chs_scores_emb], axis=1) tonic_emb = tonic_chs_scores_emb # tonic_emb = ffnn(tonic_emb, [note_dim, note_dim//2, note_dim//4]) tonic_logit_den = Dense(1) tonic_emb = tf.squeeze(tonic_logit_den(tonic_emb)) if tonic_mask_flag: tonic_logits = tf.nn.sigmoid(tonic_emb) else: tonic_logits = tf.nn.softmax(tonic_emb) tonic_logits = tf.expand_dims(tonic_logits, 0, name='tonic') tonic_model = Model(inputs=[x_batch, chroma_batch, energy_batch], outputs=tonic_logits) tonic_model.summary() tonic_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['categorical_accuracy']) if task== 'tonic': return tonic_model for layer in tonic_model.layers: layer.trainable = False if tonic_mask_flag: tonic_logits_masked = tonic_logits[0] tonic_logits_pad = tf.pad(tonic_logits_masked, [[5,5]]) tonic_logits_argmax = tf.cast(tf.argmax(tonic_logits_pad), tf.int32) tonic_indices = tf.range(70) lower_limit = tf.less(tonic_indices, tonic_logits_argmax-4) upper_limit = tf.greater(tonic_indices, tonic_logits_argmax + 5) tonic_logits_mask = 1 - tf.cast(tf.logical_or(lower_limit, upper_limit), tf.float32) tonic_logits_mask = tonic_logits_mask[5:-5] tonic_logits_masked = tf.multiply(tonic_logits_masked, tonic_logits_mask) tonic_logits_masked = tonic_logits_masked/tf.reduce_sum(tonic_logits_masked) tonic_logits_masked = tf.expand_dims(tonic_logits_masked, 0) else: tonic_logits_masked = tonic_logits tdms_rag_emb = get_tdms(red_y, note_dim, model_srate, hop_size, drop_rate) mask_seq = tf.ones([1,1,sequence_length], tf.float32) notes_id = tf.argmax(red_y, axis=1) notes_id_seq = tf.reshape(notes_id, [n_seq, sequence_length]) encoding = encoder_3.encode(notes_id_seq, note_emb, mask_seq, N, d_model=note_dim) encoding = tf.reduce_mean(encoding, axis=1) # encoding = tf.multiply(encoding, sequence_strength) # encoding = encoding/sequence_strength_sum # encoding = tf.reduce_sum(encoding, axis=0, keepdims=True) encoding = tf.reduce_mean(encoding, axis=0, keepdims=True) # encoding_tdms = tf.concat([encoding, tdms_rag_emb], axis=1) encoding_tdms = tdms_rag_emb encoding_tdms = tf.tile(encoding_tdms, [60,1]) # encoding = tf.transpose(tf.concat([encoding, sequence_strength], axis=1)) # encoding = tf.transpose(Dense(1)(encoding)) #(1, note_dim) # encoding = tf.tile(encoding, [60, 1]) c_note_emb = tf.tile(tf.expand_dims(note_emb[0],0), [60,1]) rel_note_emb = note_emb - c_note_emb rel_note_f1 = tf.cast(tf.expand_dims(tf.cast(tf.range(0,120,2)/2, tf.int32),1), tf.float32)/10 rel_note_corr = tf.expand_dims(tf.reduce_sum(tf.multiply(note_emb, c_note_emb), axis=1), axis=1) tonic_rag_emb = tf.concat([rel_note_corr, rel_note_f1, rel_note_emb, encoding_tdms], axis=1) tonic_rag_emb = ffnn(tonic_rag_emb, [2*note_dim, 2*note_dim, 2*note_dim, note_dim]) # tonic_rag_emb = Dense(n_labels, activation='elu')(tonic_rag_emb) tonic_logits_masked = tf.transpose(tonic_logits_masked) tonic_rag_emb = tf.multiply(tonic_rag_emb, tonic_logits_masked) tonic_rag_emb = tf.reduce_sum(tonic_rag_emb, axis=0, keepdims=True) tonic_rag_emb = Dense(n_labels, activation='elu')(tonic_rag_emb) rag_logits = tf.nn.softmax(tonic_rag_emb, axis=1, name='raga') # best_tonic = tf.argmax(tonic_logits[0]) # rolled_notes = tf.roll(red_y, -best_tonic, axis=1) # (None, 60) # rolled_notes_id = tf.argmax(rolled_notes, axis=1) # rolled_notes_id_seq = tf.reshape(rolled_notes_id, [n_seq, sequence_length]) # # # tonic_f4 = enc.encode(rolled_notes_id_seq, mask_seq, None, True) # (None, 200, note_dim) # mask_seq = tf.cast(mask_seq, tf.float32) # tonic_f4 = encoder_3.encode(rolled_notes_id_seq, note_emb, mask_seq, N, d_model=note_dim) # tonic_f4 = tf.reduce_mean(tonic_f4, axis=1) # tonic_f4 = tf.reduce_mean(tonic_f4, axis=0, keepdims=True) # seq_str = tf.expand_dims(seq_str, 1) # seq_str = tf.tile(seq_str, [1, note_dim]) # tonic_f4 = tf.multiply(tonic_f4, seq_str) # tonic_f4 = tf.reduce_sum(tonic_f4, 0, keepdims=True) # raga_enc = Encoder(note_emb, enc_num=2, sequence_length=sequence_length, N=N, size=note_dim) # raga_encoded = raga_enc.encode(notes_id_seq, mask_seq, None, True) # (None, 200, note_dim) # raga_usms = [] # for m in range(n_seq): # raga_usm = tf.math.unsorted_segment_mean(raga_encoded[m], notes_id_seq[m], 60) # raga_usms.append(raga_usm) # raga_usms = tf.stack(raga_usms) # raga_usms = tf.multiply(raga_usms, seq_str) # raga_usms = tf.reduce_sum(raga_usms, 0) # tdms_rag_embs = Dense(n_labels, name='raga')(raga_usms) # # tonic_logits_tr = tf.transpose(tonic_logits_masked, [1,0]) # tonic_logits_tr = tf.tile(tonic_logits_tr, [1, n_labels]) # # tdms_rag_embs = tf.multiply(tdms_rag_embs, tonic_logits_tr) # tdms_rag_embs = tf.reduce_sum(tdms_rag_embs, 0, keepdims=True) # tdms_rag_emb = get_tdms(red_y, note_dim, model_srate, hop_size, drop_rate) # (60,?) # tdms_rag_emb = ffnn(tdms_rag_emb, [2*note_dim, note_dim]) # tdms_rag_emb = Dense(n_labels, activation='elu')(tdms_rag_emb) # # tonic_logits_tr = tf.transpose(tonic_logits_masked, [1,0]) # # tonic_logits_tr = tf.tile(tonic_logits_tr, [1, n_labels]) # tdms_rag_emb = tf.multiply(tdms_rag_emb, tonic_logits_tr) # tdms_rag_emb = tf.reduce_sum(tdms_rag_emb, 0, keepdims=True) # print(tdms_rag_emb) # tdms_rag_emb = tf.multiply(tdms_rag_emb, tonic_logits_tr) # tdms_rag_emb = tf.reduce_sum(tdms_rag_emb, 0, keepdims=True) # tdms_rag_emb = Dense(n_labels, name='raga')(tdms_rag_emb) # tdms_rag_emb = ffnn(tdms_rag_emb, [2*note_dim, note_dim]) loss_weights = config['loss_weights'] # tdms_rag_embs = tf.concat([tdms_rag_emb, usms], axis=1) # tdms_rag_embs_ffnn = ffnn(tdms_rag_embs, [note_dim], drop_rate=0) # tdms_rag_embs_ffnn = Dense(n_labels)(tdms_rag_embs_ffnn) # tdms_rag_embs_ffnn = Dense(n_labels)(usms) # tdms_rag_embs = ffnn(tdms_rag_embs, [2*note_dim, note_dim], drop_rate=0) # tdms_rag_embs = Dense(n_labels, name='raga')(tdms_rag_embs) # tdms_rag_embs_ffnn = tf.multiply(tdms_rag_embs, tonic_logits_tr) # tdms_rag_embs_ffnn = tf.reduce_sum(tdms_rag_embs_ffnn, 0, keepdims=True) # rag_logits = Dense(n_labels, name='raga')(tdms_rag_embs_ffnn) # tonic_logits_masked = tf.transpose(tonic_logits_masked) # tonic_f4 = Dense(n_labels)(tonic_f4) # tonic_f4 = tf.multiply(tonic_f4, tf.tile(tonic_logits_masked, [1,n_labels])) # tonic_f4 = tf.reduce_sum(tonic_f4, 0, keepdims=True) # rag_logits = Dense(n_labels, activation='softmax', name='raga')(tdms_rag_emb) # rag_logits = tf.nn.softmax(tdms_rag_emb, axis=1, name='raga') rag_model = Model(inputs=[x_batch, chroma_batch, energy_batch], outputs=[tonic_logits, rag_logits]) rag_model.compile(loss={'tf_op_layer_tonic': 'binary_crossentropy', 'tf_op_layer_raga': 'categorical_crossentropy'}, optimizer='adam', metrics={'tf_op_layer_tonic': 'categorical_accuracy', 'tf_op_layer_raga': 'accuracy'}, loss_weights={'tf_op_layer_tonic': loss_weights[0], 'tf_op_layer_raga': loss_weights[1]}) rag_model.summary() # rag_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return rag_model # package_dir = os.path.dirname(os.path.realpath(__file__)) # filename = "model-{}.h5".format(model_capacity) # model.load_weights(os.path.join(package_dir, filename)) # rag_model = Model(inputs=x, outputs=logits) # model.load_weights('E:\\Vishwaas\\Anaconda3\\envs\\env_tf2\\Lib\\site-packages\\crepe\\model-full.h5', by_name=True) # w1 = den.weights[0] #2048,360 # w1 = tf.reduce_mean(tf.reshape(w1, [-1, 6, 60]), axis=1) # w1 = tf.reduce_mean(tf.reshape(w1, [512, 4, 60]), axis=1) # # MaxPool1D() # # w1 = tf.reduce_mean(tf.reshape(w1, [-1, 12, 5]), axis=2) # w1 = tf.transpose(w1) # mat = np.zeros([60,60]) # for i in range(60): # for j in range(60): # # a = float(tf.reduce_sum(tf.multiply(w1[i], w1[j]))) # mat[i, j] = a # # plt.imshow(mat, cmap='hot', interpolation='nearest') # plt.show() # model.compile('adam', 'binary_crossentropy') # models[model_capacity] = model # # return models[model_capacity], tonic_model, rag_model # return models[model_capacity], energy_model, tonic_model, sil_model def min_max_scale(val_seq, sequence_length): val_max = tf.reduce_max(val_seq, axis=1, keepdims=True) val_min = tf.reduce_min(val_seq, axis=1, keepdims=True) val_max = tf.tile(val_max, [1, sequence_length]) val_min = tf.tile(val_min, [1, sequence_length]) return (val_seq - val_min)/(val_max-val_min) def get_note_strength(energy_seq, entropy_seq, notes_prob_seq, drop_rate=0.2): stacked = tf.stack([energy_seq, entropy_seq, notes_prob_seq],2) stacked = tf.concat([energy_seq, entropy_seq, notes_prob_seq],1) stacked = tf.reduce_mean(stacked,0) return stacked # stacked = Dense(3, activation='relu')(stacked) # d1 = Dense(1, activation='relu')(stacked) return tf.squeeze(d1, 2) def get_seq_strength(energy_seq, entropy_seq, notes_prob_seq, seq_str_den, notes_n, drop_rate=0.2): energy_seq = tf.reduce_max(energy_seq, 1, keepdims=True) entropy_seq = tf.reduce_max(entropy_seq, 1, keepdims=True) notes_prob_seq = tf.reduce_max(notes_prob_seq, 1, keepdims=True) notes_n= tf.expand_dims(notes_n, 1) stacked = tf.concat([energy_seq, entropy_seq, notes_prob_seq, notes_n],1) d1= seq_str_den[0](stacked) d2 = seq_str_den[1](d1) return tf.squeeze(d2, 1) def get_tdms(y, note_dim, model_srate=16000, hop_length=160, cuttoff=60, max_time_delay=4, step=0.1, drop_rate=0.2): n_frames = 1 + int((model_srate - 1024) / hop_length) tdms = [] for i in range(0, int(max_time_delay / step), 1): frames_2_shift = int(n_frames * i * step) shifted_y = tf.roll(y, -frames_2_shift, axis=0) # (None, 60) y_truc = tf.transpose(y[:-frames_2_shift, :]) y__shifted_truc = shifted_y[:-frames_2_shift, :] norm = tf.cast(tf.shape(y_truc)[0], tf.float32) # norm = 1 # y = tf.roll(z,-j,axis=1) matmul = tf.matmul(y_truc, y__shifted_truc) matmul = matmul / norm tdms.append(matmul) tdms = tf.stack(tdms) tdms = tf.expand_dims(tdms, 3) #(int(max_time_delay/step), 60, 60, 1) tdms = tf.transpose(tdms, [3,1,2,0]) z = Conv2D(filters=64, kernel_size=(5, 5), strides=(2, 2), activation='relu', padding='same', name='tdms_conv2d_1')(tdms) z = BatchNormalization()(z) z = MaxPool2D(pool_size=(2, 2), strides=None, padding='valid')(z) z = Dropout(drop_rate)(z) z = Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding='valid', name='tdms_conv2d_2')(z) z = MaxPool2D(pool_size=(2, 2), strides=None, padding='valid')(z) z = BatchNormalization()(z) z = Dropout(drop_rate)(z) z = Flatten(name='tdms_flatten')(z) z = Dense(note_dim, activation='relu', name='tdms_dense')(z) # base_tdms = tf.transpose(base_tdms, [1,2,0]) # # base_tdms = tf.squeeze(den(base_tdms),2) # base_tdms = tf.squeeze(base_tdms, 2) # base_tdms = tf.pow(base_tdms, 0.75) # base_tdms = base_tdms/tf.reduce_sum(base_tdms) # for i in range(60): # rot_tdms = tf.roll(base_tdms, -i, axis=1) # rot_tdms= tf.roll(rot_tdms, -i, axis=0) # tdms.append(rot_tdms) # tdms = tf.stack(tdms) # tdms = tf.reshape(tdms, [60, -1]) return z def get_number_of_notes(notes_seq): notes_seq_red = tf.reduce_mean(notes_seq, axis=1) #(None, 60) return tf.reduce_mean(notes_seq_red, axis=1) # d1 = Dense(60, activation='relu')(notes_seq_red) # return tf.reduce_mean(d1, axis=1) def ffnn(inputs, hidden_size, drop_rate=0.2): x = inputs for hs in hidden_size: den = Dense(hs, activation='relu')(x) x = Dropout(drop_rate)(den) return x def unlikely_transitions(rolled_notes, sequence_length, den_weight, drop_rate=0.2): # (None, 60) rolled_notes_seq = tf.reshape(rolled_notes, [-1, sequence_length, 60]) rolled_notes_seq = tf.reduce_mean(rolled_notes_seq, 1) #(-1, 60) r_R = rolled_notes_seq[:, 5:15] #(None, 10) g_G =rolled_notes_seq[:, 15:25] # m_M = den_weights[2](rolled_notes_seq[:, 25:35]) #try? d_D = rolled_notes_seq[:, 40:50] n_N = rolled_notes_seq[:, 50:60] adj_notes = tf.stack([r_R, g_G, d_D, n_N], 0) #(4, None, 10) adj_notes = tf.transpose(adj_notes, [1,0,2]) #(None, 4,10) return 1-tf.squeeze(den_weight(adj_notes),2) def get_entropy(red_y, sequence_length): sum_y = tf.reduce_sum(red_y, axis=1, keepdims=True) sum_y = tf.tile(sum_y, [1,60]) y = red_y/sum_y entropy = tf.multiply(y, tf.math.log(y)) entropy = tf.reduce_sum(entropy, 1) entropy_seq = tf.reshape(entropy, [-1, sequence_length]) return entropy_seq # @tf.function def get_tonic_from_silence(y, energy, tonic_emb_size=32, drop_rate=0.2): #y, energy, int(note_dim*1/16), drop_rate # zarg = tf.constant([1, 1, 5, 3, 5, 2, 2, 7, 6, 6, 11, 3, 3, 3]) # energy = tf.constant([0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0]) # z = tf.nn.softmax(y, axis=1) #try this z = tf.reshape(y, [-1, 6, 60]) z = tf.reduce_mean(z, axis=1) #(None, 60) # z = tf.reshape(z, [-1,12,5]) # z = tf.reduce_mean(z, axis=2) # (None, 12) zarg = tf.argmax(z, axis=1) energy = (energy - tf.reduce_min(energy))/(tf.reduce_max(energy)- tf.reduce_min(energy)) energy = tf.cast(tf.math.round(energy), tf.int32) # energy = energy - tf.re # return energy # energy = tf.cast(energy>0.01, tf.int32) # energy = tf.cast(tf.round(tf.sigmoid(energy)), tf.int32) energy_r = tf.roll(energy, 1, axis=-1) energy_r = tf.concat([[0], energy_r[1:]], axis=-1) delta_en = energy - energy_r delta_en_abs = tf.abs(delta_en) delta_en_csum = tf.math.cumsum(delta_en_abs) delta_en_csum_pos = tf.squeeze(tf.where(tf.greater(delta_en_csum, 0)), axis=1) zarg = tf.gather(zarg, delta_en_csum_pos) delta_en_csum = tf.gather(delta_en_csum, delta_en_csum_pos) energy = tf.gather(energy, delta_en_csum_pos) delta_en = tf.gather(delta_en, delta_en_csum_pos) seg_sum_1 = tf.math.segment_sum(1 - energy, delta_en_csum) seg_sum_where = tf.squeeze(tf.where(tf.greater(seg_sum_1, 0)), axis=1) seg_sum_1 = tf.gather(seg_sum_1, seg_sum_where) delta_en_mo = tf.squeeze(tf.where(tf.equal(delta_en, -1)), axis=1) - 1 zarg_deta = tf.gather(zarg, delta_en_mo) seg_sum_usm = tf.math.unsorted_segment_mean(seg_sum_1, zarg_deta, 60) logspace_idx = tf.cast(tf.floor(tf.math.log1p(seg_sum_usm) / math.log(2)), tf.int32) + 3 use_identity = tf.cast(seg_sum_usm <= 4, tf.int32) seg_sum_usm = tf.cast(seg_sum_usm, tf.int32) combined_idx = use_identity * seg_sum_usm + (1 - use_identity) * logspace_idx clipped = tf.clip_by_value(combined_idx, 0, 9) emb = tf.keras.layers.Embedding(10, tonic_emb_size, input_length=60) return emb(clipped) # emb = tf.Variable(initializer([10, 128]), dtype=tf.float32) # return tf.gather(emb, clipped) # return clipped # @tf.function def get_tonic_from_hist(y, tonic_emb_size=32, tonic_cnn_filters=128, drop_rate=0.2): #y, int(note_dim*3/32), int(note_dim/2), drop_rate #z = tf.nn.softmax(y, axis=1) #try this z = tf.reduce_mean(y, axis=0) z = tf.reshape(z, [6,60]) z = tf.reduce_mean(z, axis=0) kernel_size = [5, 10, 15, 20] outputs = [] for ks in kernel_size: bz = tf.concat([z, z[:ks]], axis=0) bz = tf.reshape(bz, [1, -1, 1]) # conv = Conv1D(filters=tonic_cnn_filters, kernel_size=ks, strides=1, activation='relu', padding='valid')(bz) ##((60+ks)/ks, ks, 1) conv = tf.squeeze(conv, axis=0) conv = conv[:-1, :] conv = Dropout(drop_rate)(conv) conv = Dense(tonic_emb_size, activation='relu')(conv) outputs.append(conv) outputs = tf.concat(outputs, 1) outputs = ffnn(outputs, [tonic_emb_size], drop_rate=drop_rate) return outputs # @tf.function def get_tonic_from_cnn(chroma, tonic_emb_size=32, tonic_cnn_filters=128, drop_rate=0.1): #chroma, int(note_dim*3/32), int(note_dim/2), drop_rate chroma = tf.expand_dims(chroma,0) chroma = tf.expand_dims(chroma, 3) y = Conv2D(tonic_cnn_filters, (5, 5), strides=1, padding='same', activation='relu', name='tonic_cnn_1')(chroma) y = Conv2D(tonic_cnn_filters, (5, 5), strides=1, padding='same', activation='relu', name='tonic_cnn_2')(y) y = Conv2D(tonic_cnn_filters, (5, 5), strides=1, padding='same', activation='relu', name='tonic_cnn_3')(y) y = Dropout(drop_rate)(y) y = Conv2D(tonic_cnn_filters, (5, 5), strides=1, padding='same', activation='relu', name='tonic_cnn_4')(y) y = Conv2D(tonic_cnn_filters, (5, 5), strides=1, padding='same', activation='relu', name='tonic_cnn_5')(y) #(1, 60, -1, 128) y = Dropout(drop_rate)(y) y = tf.squeeze(y, 0) y = tf.reduce_mean(y, 1) y = Dense(tonic_emb_size, activation='relu', name = 'tonic_cnn_dense_1')(y) return y #(60,32) def output_path(file, suffix, output_dir): """ return the output path of an output file corresponding to a wav file """ path = re.sub(r"(?i).wav$", suffix, file) if output_dir is not None: path = os.path.join(output_dir, os.path.basename(path)) return path def to_local_average_cents(salience, center=None): """ find the weighted average cents near the argmax bin """ if not hasattr(to_local_average_cents, 'cents_mapping'): # the bin number-to-cents mapping to_local_average_cents.cents_mapping = ( np.linspace(0, 7180, 360)[:60] + 1997.3794084376191) if salience.ndim == 1: if center is None: center = int(np.argmax(salience)) start = max(0, center - 4) end = min(len(salience), center + 5) salience = salience[start:end] product_sum = np.sum( salience * to_local_average_cents.cents_mapping[start:end]) weight_sum = np.sum(salience) return product_sum / weight_sum # product_sum = np.sum( # salience * to_local_average_cents.cents_mapping) # return product_sum if salience.ndim == 2: return np.array([to_local_average_cents(salience[i, :]) for i in range(salience.shape[0])]) raise Exception("label should be either 1d or 2d ndarray") def to_viterbi_cents(salience): """ Find the Viterbi path using a transition prior that induces pitch continuity. """ from hmmlearn import hmm # uniform prior on the starting pitch starting = np.ones(360) / 360 # transition probabilities inducing continuous pitch xx, yy = np.meshgrid(range(360), range(360)) transition = np.maximum(12 - abs(xx - yy), 0) transition = transition / np.sum(transition, axis=1)[:, None] # emission probability = fixed probability for self, evenly distribute the # others self_emission = 0.1 emission = (np.eye(360) * self_emission + np.ones(shape=(360, 360)) * ((1 - self_emission) / 360)) # fix the model parameters because we are not optimizing the model model = hmm.MultinomialHMM(360, starting, transition) model.startprob_, model.transmat_, model.emissionprob_ = \ starting, transition, emission # find the Viterbi path observations = np.argmax(salience, axis=1) path = model.predict(observations.reshape(-1, 1), [len(observations)]) return np.array([to_local_average_cents(salience[i, :], path[i]) for i in range(len(observations))]) def get_activation(audio, sr, model_capacity='full', center=True, step_size=10, verbose=1): """ Parameters ---------- audio : np.ndarray [shape=(N,) or (N, C)] The audio samples. Multichannel audio will be downmixed. sr : int Sample rate of the audio samples. The audio will be resampled if the sample rate is not 16 kHz, which is expected by the model. model_capacity : 'tiny', 'small', 'medium', 'large', or 'full' String specifying the model capacity; see the docstring of :func:`~crepe.core.build_and_load_model` center : boolean - If `True` (default), the signal `audio` is padded so that frame `D[:, t]` is centered at `audio[t * hop_length]`. - If `False`, then `D[:, t]` begins at `audio[t * hop_length]` step_size : int The step size in milliseconds for running pitch estimation. verbose : int Set the keras verbosity mode: 1 (default) will print out a progress bar during prediction, 0 will suppress all non-error printouts. Returns ------- activation : np.ndarray [shape=(T, 360)] The raw activation matrix """ config = pyhocon.ConfigFactory.parse_file("crepe/experiments.conf")['raga'] model = build_and_load_model(config) if len(audio.shape) == 2: audio = audio.mean(1) # make mono audio = audio.astype(np.float32) if sr != model_srate: # resample audio if necessary from resampy import resample audio = resample(audio, sr, model_srate) chroma = get_chroma(audio, model_srate) # pad so that frames are centered around their timestamps (i.e. first frame # is zero centered). if center: audio = np.pad(audio, 512, mode='constant', constant_values=0) # make 1024-sample frames of the audio with hop length of 10 milliseconds hop_length = int(model_srate * step_size / 1000) n_frames = 1 + int((len(audio) - 1024) / hop_length) frames = as_strided(audio, shape=(1024, n_frames), strides=(audio.itemsize, hop_length * audio.itemsize)) frames = frames.transpose().copy() # frames = np.expand_dims(1, frames) energy = (audio-np.mean(audio))/np.std(audio) energy = np.square(energy) energy_frames = as_strided(energy, shape=(1024, n_frames), strides=(energy.itemsize, hop_length * energy.itemsize)) energy_frames = energy_frames.transpose().copy() energy_frames = np.mean(energy_frames, axis=1) energy_frames = (energy_frames-np.mean(energy_frames))/np.std(energy_frames) frames = (frames - np.mean(frames, axis=1))/np.std(frames, axis=1) frames, energy_frames, mask = pad_frames(frames, energy_frames, sequence_length) frames = np.array([frames]) mask =
np.array([mask])
numpy.array
""" A module that provides some specializations and utilities for all NumPy based backends that are using FFT for performing convolutions. """ from typing import Tuple, Optional, Union import numpy as np from scipy.fft import next_fast_len from opt_einsum import contract_expression from ._NumPyBackend import NumPyBackend class NumPyFFTBackend(NumPyBackend): r""" The parent class for all NumPy based backends that are using FFT for performing convolutions. They provide the functionality to evaluate the analytic gradients of the factorization model. """ def __init__( self, **kwargs, ): super().__init__(**kwargs) self.fft_params = {} def _initialize_matrices( self, V: np.ndarray, atom_shape: Tuple[int, ...], n_atoms: int, W: Optional[np.ndarray] = None, axes_W_normalization: Optional[Union[int, Tuple[int, ...]]] = None, ) -> Tuple[np.ndarray, np.ndarray]: # this sets pad_mode and pad_width properly w, h = super()._initialize_matrices(V, atom_shape, n_atoms, W, axes_W_normalization) # shorthand for unpadded and unsliced axes unpadded = ((0, 0), ) * (V.ndim - len(self._shift_dimensions)) unsliced = (slice(None), ) * (V.ndim - len(self._shift_dimensions)) # shape for fft fft_shape = tuple(next_fast_len(s) for s in np.array(self._sample_shape) + np.array(self._transform_shape) - 1) # shorthands for shape of FFT fields H_f_shape = (self.n_samples, n_atoms) + fft_shape W_f_shape = (n_atoms, self.n_channels) + fft_shape V_f_shape = (self.n_samples, self.n_channels) + fft_shape # fft details: reconstruction lower_idx = np.array(atom_shape) - 1 self.fft_params['reconstruct'] = { 'fft_axes': self._shift_dimensions, 'pad_mode': self._pad_mode, 'pad_width': unpadded + self._padding_left, 'correlate': False, 'slices': unsliced + tuple(slice(f, f + s) for f, s in zip(lower_idx, self._sample_shape)), 'fft_shape': fft_shape, # sum_c V|R[n, c, ... ] * W[m , c, ...] --> dR / dH[n, m, ...] 'contraction': contract_expression('nm...,mc...->nc...', H_f_shape, W_f_shape) } # fft details: gradient H computation lower_idx = np.zeros_like(self._transform_shape) if self._pad_mode is not None: lower_idx += np.asarray(self._padding_right)[:, 1] self.fft_params['grad_H'] = { 'fft_axes': self._shift_dimensions, 'pad_mode': self._pad_mode, 'pad_width': unpadded + self._padding_right, 'correlate': True, 'slices': unsliced + tuple(slice(f, f + s) for f, s in zip(lower_idx, self._transform_shape)), 'fft_shape': fft_shape, # sum_c V|R[n, c, ... ] * W[m , c, ...] --> dR / dH[n, m, ...] 'contraction': contract_expression('nc...,mc...->nm...', V_f_shape, W_f_shape), } # fft details: gradient W computation lower_idx = np.minimum(np.array(self._sample_shape),
np.array(self._transform_shape)
numpy.array
# Copyright 2021 The WAX-ML Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import haiku as hk import jax import jax.numpy as jnp import numpy as onp import pytest from wax.compile import jit_init_apply from wax.modules.ewma import EWMA from wax.modules.ewmvar import EWMVar from wax.unroll import unroll # Another implementation for checking class EWMVar_v2(hk.Module): """Exponentially weighted variance. To calculate the variance we use the fact that Var(X) = Mean(x^2) - Mean(x)^2 and internally we use the exponentially weighted mean of x/x^2 to calculate this. Arguments: alpha : The closer `alpha` is to 1 the more the statistic will adapt to recent values. Attributes: variance : The running exponentially weighted variance. References ---------- [^1]: [<NAME>., 2009. Incremental calculation of weighted mean and variance. University of Cambridge, 4(11-5), pp.41-42.](https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf) # noqa """ def __init__(self, alpha=0.5, adjust=True, name=None): super().__init__(name=name) self.alpha = alpha self.adjust = adjust def __call__(self, x): mean = EWMA(self.alpha, self.adjust, initial_value=jnp.nan, name="mean")(x) mean_square = EWMA( self.alpha, self.adjust, initial_value=jnp.nan, name="mean_square" )(x * x) var = mean_square - mean ** 2 var = jnp.where(var < 0, 0.0, var) return var @pytest.mark.parametrize("dtype", ["float32", "float64"]) def test_init_and_first_step_var_float64(dtype): from jax.config import config if dtype == "float64": config.update("jax_enable_x64", True) else: config.update("jax_enable_x64", False) seq = hk.PRNGSequence(42) x = jax.random.normal(shape=(3,), key=next(seq), dtype=jnp.float64) @jit_init_apply @hk.transform_with_state def model(x): return EWMVar(0.1, adjust=True)(x) params, state = model.init(next(seq), x) var, state = model.apply(params, state, next(seq), x) assert var.dtype == jnp.dtype(dtype) def test_run_var_vs_pandas_not_adjust(): from jax.config import config config.update("jax_enable_x64", True) import pandas as pd seq = hk.PRNGSequence(42) x = jax.random.normal(shape=(10, 3), key=next(seq), dtype=jnp.float64) @jit_init_apply @hk.transform_with_state def model(x): return EWMVar(0.1, adjust=False)(x) var, state = unroll(model, return_final_state=True)(x) var = pd.DataFrame(var) @jit_init_apply @hk.transform_with_state def model2(x): return EWMVar_v2(0.1, adjust=False)(x) var2, state2 = unroll(model2, return_final_state=True)(x) var2 = pd.DataFrame(var2) assert onp.allclose(var, var2) pandas_var = pd.DataFrame(x).ewm(alpha=0.1, adjust=False).var() assert not onp.allclose(var, pandas_var.values) def test_run_var_vs_pandas_adjust(): from jax.config import config config.update("jax_enable_x64", True) import pandas as pd seq = hk.PRNGSequence(42) x = jax.random.normal(shape=(10, 3), key=next(seq), dtype=jnp.float64) @jit_init_apply @hk.transform_with_state def model(x): return EWMVar(0.1, adjust=True)(x) var, state = unroll(model, return_final_state=True)(x) var = pd.DataFrame(var) @jit_init_apply @hk.transform_with_state def model2(x): return EWMVar_v2(0.1, adjust=True)(x) var2, state2 = unroll(model2, return_final_state=True)(x) var2 = pd.DataFrame(var2) assert
onp.allclose(var, var2)
numpy.allclose
""" Tests heat_2d """ import pytest import numpy as np from pymgrit.heat.heat_2d import Heat2D from pymgrit.heat.heat_2d import VectorHeat2D def test_heat_2d_constructor(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, t_start=0, t_stop=1, nt=11) np.testing.assert_equal(heat_2d.x_start, x_start) np.testing.assert_equal(heat_2d.x_end, x_end) np.testing.assert_equal(heat_2d.y_start, y_start) np.testing.assert_equal(heat_2d.y_end, y_end) np.testing.assert_equal(heat_2d.nx, nx) np.testing.assert_equal(heat_2d.ny, ny) np.testing.assert_almost_equal(heat_2d.dx, 0.25) np.testing.assert_almost_equal(heat_2d.dy, 0.25) np.testing.assert_equal(heat_2d.x, np.linspace(x_start, x_end, nx)) np.testing.assert_equal(heat_2d.y, np.linspace(y_start, y_end, ny)) np.testing.assert_equal(heat_2d.x_2d, np.linspace(x_start, x_end, nx)[:, np.newaxis]) np.testing.assert_equal(heat_2d.y_2d, np.linspace(y_start, y_end, ny)[np.newaxis, :]) np.testing.assert_equal(heat_2d.a, a) np.testing.assert_equal(True, isinstance(heat_2d.vector_template, VectorHeat2D)) np.testing.assert_equal(True, isinstance(heat_2d.vector_t_start, VectorHeat2D)) np.testing.assert_equal(heat_2d.vector_t_start.get_values(), np.zeros((5, 5))) matrix = [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., - 16., 0., 0., 0., - 16., 64., -16., 0., 0., 0., - 16., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., - 16., 0., 0., 0., - 16., 64., - 16., 0., 0., 0., - 16., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]] np.testing.assert_equal(heat_2d.space_disc.toarray(), matrix) def test_heat_2d_constructor_be(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='BE', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) np.testing.assert_almost_equal(heat_2d.compute_rhs(u_start=4 * np.ones((5, 5)), t_start=0.2, t_stop=0.3), np.array( [0., 0., 0., 0., 0., 0., 4.1625, 4.175, 4.1875, 0., 0., 4.325, 4.35, 4.375, 0., 0., 4.4875, 4.525, 4.5625, 0., 0., 0., 0., 0., 0.])) def test_heat_2d_constructor_fe(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='FE', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) np.testing.assert_almost_equal(heat_2d.compute_rhs(u_start=4 * np.ones((5, 5)), t_start=0.2, t_stop=0.3), np.array( [0., 0., 0., 0., 0., 0., 4.1625, 4.175, 4.1875, 0., 0., 4.325, 4.35, 4.375, 0., 0., 4.4875, 4.525, 4.5625, 0., 0., 0., 0., 0., 0.])) def test_heat_2d_constructor_cn(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='CN', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) np.testing.assert_almost_equal(heat_2d.compute_rhs(u_start=4 * np.ones((5, 5)), t_start=0.2, t_stop=0.3), np.array( [0., 0., 0., 0., 0., 0., 4.1625, 4.175, 4.1875, 0., 0., 4.325, 4.35, 4.375, 0., 0., 4.4875, 4.525, 4.5625, 0., 0., 0., 0., 0., 0.])) def test_heat_2d_constructor_exception_method(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 with pytest.raises(Exception): Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='DE', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) def test_heat_2d_constructor_exception_boundary_left(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 with pytest.raises(Exception): Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, bc_left='2', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) def test_heat_2d_constructor_exception_boundary_bottom(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 with pytest.raises(Exception): Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, bc_bottom='2', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) def test_heat_2d_constructor_exception_boundary_right(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 with pytest.raises(Exception): Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, bc_right='2', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) def test_heat_2d_constructor_exception_boundary_top(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 with pytest.raises(Exception): Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, bc_top='2', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) def test_heat_2d_constructor_boundary(): """ Test constructor """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, bc_top=lambda y: 2, bc_left=lambda y: 2, bc_right=lambda y: 2, bc_bottom=lambda y: 2, rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) def test_heat_2d_step_be(): """ Test step() """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='BE', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) heat_2d_res = heat_2d.step(u_start=heat_2d.vector_t_start, t_start=0, t_stop=0.1) np.testing.assert_almost_equal(heat_2d_res.get_values(), np.array( [[0., 0., 0., 0., 0.], [0., 0.06659024, 0.08719337, 0.07227713, 0.], [0., 0.11922399, 0.15502696, 0.12990086, 0.], [0., 0.12666875, 0.16193148, 0.1391124, 0.], [0., 0., 0., 0., 0.]])) def test_heat_2d_step_cn(): """ Test step() """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='CN', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) heat_2d_res = heat_2d.step(u_start=heat_2d.vector_t_start, t_start=0, t_stop=0.1) np.testing.assert_almost_equal(heat_2d_res.get_values(), np.array( [[0., 0., 0., 0., 0.], [0., 0.09547237, 0.12246323, 0.10480116, 0.], [0., 0.17564171, 0.22390841, 0.19336787, 0.], [0., 0.1964882, 0.24654636, 0.21772176, 0.], [0., 0., 0., 0., 0.]])) def test_heat_2d_step_fe(): """ Test step() """ x_start = 0 x_end = 1 y_start = 3 y_end = 4 nx = 5 ny = 5 a = 1 heat_2d = Heat2D(a=a, x_start=x_start, x_end=x_end, y_start=y_start, y_end=y_end, nx=nx, ny=ny, method='FE', rhs=lambda x, y, t: 2 * x * y, t_start=0, t_stop=1, nt=11) heat_2d_res = heat_2d.step(u_start=heat_2d.vector_t_start, t_start=0, t_stop=0.1) np.testing.assert_almost_equal(heat_2d_res.get_values(), np.array( [[0., 0., 0., 0., 0.], [0., 0.1625, 0.175, 0.1875, 0.], [0., 0.325, 0.35, 0.375, 0.], [0., 0.4875, 0.525, 0.5625, 0.], [0., 0., 0., 0., 0.]])) def test_vector_heat_2d_constructor(): """ Test constructor """ vector_heat_2d = VectorHeat2D(nx=3, ny=3) np.testing.assert_equal(vector_heat_2d.nx, 3) np.testing.assert_equal(vector_heat_2d.ny, 3) np.testing.assert_equal(vector_heat_2d.values, np.zeros((3, 3))) def test_vector_heat_2d_add(): """ Test __add__ """ vector_heat_2d_1 = VectorHeat2D(nx=3, ny=3) vector_heat_2d_1.values = np.ones((3, 3)) vector_heat_2d_2 = VectorHeat2D(nx=3, ny=3) vector_heat_2d_2.values = 2 * np.ones((3, 3)) vector_heat_2d_res = vector_heat_2d_1 + vector_heat_2d_2 np.testing.assert_equal(vector_heat_2d_res.values, 3 *
np.ones((3, 3))
numpy.ones
""" This module contains our thermodynamic calculations. Calculation of pressure, fugacity coefficient, and max density are handled by an Eos object so that these functions can be used with any EOS. The thermodynamics module contains a series of wrapper to handle the inputs and outputs of these functions. """ import numpy as np from scipy import interpolate import scipy.optimize as spo from scipy.ndimage.filters import gaussian_filter1d import copy import logging import despasito.utils.general_toolbox as gtb from despasito import fundamental_constants as constants import despasito.utils.general_toolbox as gtb logger = logging.getLogger(__name__) def pressure_vs_volume_arrays( T, xi, Eos, min_density_fraction=(1.0 / 500000.0), density_increment=5.0, max_volume_increment=1.0e-4, pressure_min=100, maxiter=25, multfactor=2, extended_npts=20, max_density=None, density_max_opts={}, **kwargs ): r""" Output arrays with specific volume and pressure arrays calculated from the given EOS. This function is fundamental to every calculation, the options of which are passed through higher level calculation with the keyword variable ``density_opts``. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. min_density_fraction : float, Optional, default=(1.0/500000.0) Fraction of the maximum density used to calculate, and is equal to, the minimum density of the density array. The minimum density is the reciprocal of the maximum specific volume used to calculate the roots. density_increment : float, Optional, default=5.0 The increment between density values in the density array. max_volume_increment : float, Optional, default=1.0E-4 Maximum increment between specific volume array values. After conversion from density to specific volume, the increment values are compared to this value. pressure_min : float, Optional, default=100 Ensure pressure curve reaches down to this value multfactor : int, Optional, default=2 Multiplication factor to extend range extended_npts : int, Optional, default=20 Number of points in extended range maxiter : int, Optional, default=25 Number of times to multiply range by to obtain full pressure vs. specific volume curve max_density : float, Optional, default=None [mol/:math:`m^3`] Maximum molar density defined, if default of None is used then the Eos object method, density_max is used. density_max_opts : dict, Optional, default={} Keyword arguments for density_max method for EOS object Returns ------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_arrays' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.any(np.isnan(xi)): raise ValueError("Given mole fractions are NaN") if isinstance(xi, list): xi = np.array(xi) # estimate the maximum density based on the hard sphere packing fraction, part of EOS if not max_density: max_density = Eos.density_max(xi, T, **density_max_opts) elif gtb.isiterable(max_density): logger.error( " Maxrho should be type float. Given value: {}".format(max_density) ) max_density = max_density[0] if max_density > 1e5: raise ValueError( "Max density of {} mol/m^3 is not feasible, check parameters.".format( max_density ) ) # min rho is a fraction of max rho, such that minrho << rhogassat minrho = max_density * min_density_fraction # list of densities for P,rho and P,v if (max_density - minrho) < density_increment: raise ValueError( "Density range, {}, is less than increment, {}. Check parameters used in Eos.density_max().".format( (max_density - minrho), density_increment ) ) rholist = np.arange(minrho, max_density, density_increment) # check rholist to see when the spacing vspace = (1.0 / rholist[:-1]) - (1.0 / rholist[1:]) if np.amax(vspace) > max_volume_increment: vspaceswitch = np.where(vspace > max_volume_increment)[0][-1] rholist_2 = ( 1.0 / np.arange( 1.0 / rholist[vspaceswitch + 1], 1.0 / minrho, max_volume_increment )[::-1] ) rholist = np.append(rholist_2, rholist[vspaceswitch + 2 :]) # compute Pressures (Plist) for rholist Plist = Eos.pressure(rholist, T, xi) # Make sure enough of the pressure curve is obtained for i in range(maxiter): if Plist[0] > pressure_min: rhotmp = np.linspace(rholist[0] / 2, rholist[0], extended_npts)[:-1] Ptmp = Eos.pressure(rhotmp, T, xi) Plist = np.append(Ptmp, Plist) rholist = np.append(rhotmp, rholist) else: break # Flip Plist and rholist arrays Plist = Plist[:][::-1] rholist = rholist[:][::-1] vlist = 1.0 / rholist return vlist, Plist def pressure_vs_volume_spline(vlist, Plist): r""" Fit arrays of specific volume and pressure values to a cubic Univariate Spline. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Returns ------- Pvspline : obj Function object of pressure vs. specific volume roots : list List of specific volume roots. Subtract a system pressure from the output of Pvsrho to find density of vapor and/or liquid densities. extrema : list List of specific volume values corresponding to local minima and maxima. """ # Larger sigma value Psmoothed = gaussian_filter1d(Plist, sigma=1.0e-2) Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed) roots = Pvspline.roots().tolist() Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed, k=4) extrema = Pvspline.derivative().roots().tolist() if extrema: if len(extrema) > 2: extrema = extrema[0:2] # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if np.any(np.isnan(Plist)): roots = [np.nan] return Pvspline, roots, extrema def pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=[], **kwargs): r""" Plot pressure vs. specific volume. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Pvspline : obj Function object of pressure vs. specific volume markers : list, Optional, default=[] List of plot markers used in plot """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_plot' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) try: import matplotlib.pyplot as plt plt.figure(1) plt.plot(vlist, Plist, label="Orig.") plt.plot(vlist, Pvspline(vlist), label="Smoothed") plt.plot([vlist[0], vlist[-1]], [0, 0], "k") for k in range(len(markers)): plt.plot([markers[k], markers[k]], [min(Plist), max(Plist)], "k") plt.xlabel("Specific Volume [$m^3$/mol]"), plt.ylabel("Pressure [Pa]") # plt.ylim(min(Plist)/2,np.abs(min(Plist))/2) plt.legend(loc="best") plt.tight_layout() plt.show() except Exception: logger.error("Matplotlib package is not installed, could not plot") def calc_saturation_properties( T, xi, Eos, density_opts={}, tol=1e-6, Pconverged=1, **kwargs ): r""" Computes the saturated pressure, gas and liquid densities for a single component system. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` tol : float, Optional, default=1e-6 Tolerance to accept pressure value Pconverged : float, Optional, default=1.0 If the pressure is negative (under tension), we search from a value just above vacuum Returns ------- Psat : float [Pa] Saturation pressure given system information rhov : float [mol/:math:`m^3`] Density of vapor at saturation pressure rhol : float [mol/:math:`m^3`] Density of liquid at saturation pressure """ if len(kwargs) > 0: logger.debug( " 'calc_saturation_properties' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.count_nonzero(xi) != 1: if np.count_nonzero(xi > 0.1) != 1: raise ValueError( "Multiple components have compositions greater than 10%, check code for source" ) else: ind = np.where((xi > 0.1) == True)[0] raise ValueError( "Multiple components have compositions greater than 0. Do you mean to obtain the saturation pressure of {} with a mole fraction of {}?".format( Eos.beads[ind], xi[ind] ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) if not extrema or len(extrema) < 2 or np.any(np.isnan(roots)): logger.warning(" The component is above its critical point") Psat, rhol, rhov = np.nan, np.nan, np.nan else: ind_Pmin1 = np.argwhere(np.diff(Plist) > 0)[0][0] ind_Pmax1 = np.argmax(Plist[ind_Pmin1:]) + ind_Pmin1 Pmaxsearch = Plist[ind_Pmax1] Pminsearch = max(Pconverged, np.amin(Plist[ind_Pmin1:ind_Pmax1])) # Using computed Psat find the roots in the maxwell construction to give liquid (first root) and vapor (last root) densities Psat = spo.minimize_scalar( objective_saturation_pressure, args=(Plist, vlist), bounds=(Pminsearch, Pmaxsearch), method="bounded", ) Psat = Psat.x obj_value = objective_saturation_pressure(Psat, Plist, vlist) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist - Psat) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if obj_value < tol: logger.debug( " Psat found: {} Pa, obj value: {}, with {} roots and {} extrema".format( Psat, obj_value, np.size(roots), np.size(extrema) ) ) if len(roots) == 2: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:] - Psat, 1) vroot = -yroot / slope if vroot < 0.0: vroot = np.finfo(float).eps rho_tmp = spo.minimize( pressure_spline_error, 1.0 / vroot, args=(Psat, T, xi, Eos), bounds=[(1.0 / (vroot * 1e2), 1.0 / (1.1 * roots[-1]))], ) roots = np.append(roots, [1.0 / rho_tmp.x]) rhol = 1.0 / roots[0] rhov = 1.0 / roots[2] else: logger.warning( " Psat NOT found: {} Pa, obj value: {}, consider decreasing 'pressure_min' option in density_opts".format( Psat, obj_value ) ) Psat, rhol, rhov = np.nan, np.nan, np.nan tmpv, _, _ = calc_vapor_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) tmpl, _, _ = calc_liquid_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) logger.debug(" phiv: {}, phil: {}".format(tmpv, tmpl)) return Psat, rhol, rhov def objective_saturation_pressure(shift, Pv, vlist): r""" Objective function used to calculate the saturation pressure. Parameters ---------- shift : float [Pa] Guess in Psat value used to translate the pressure vs. specific volume curve Pv : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition vlist : numpy.ndarray [mol/:math:`m^3`] Specific volume array. Length depends on values in density_opts passed to :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- obj_value : float Output of objective function, the addition of the positive area between first two roots, and negative area between second and third roots, quantity squared. """ Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Pv - shift) if len(roots) >= 3: a = Pvspline.integral(roots[0], roots[1]) b = Pvspline.integral(roots[1], roots[2]) elif len(roots) == 2: a = Pvspline.integral(roots[0], roots[1]) # If the curve hasn't decayed to 0 yet, estimate the remaining area as a triangle. This isn't super accurate but we are just using the saturation pressure to get started. slope, yroot = np.polyfit(vlist[-4:], Pv[-4:] - shift, 1) b = ( Pvspline.integral(roots[1], vlist[-1]) + (Pv[-1] - shift) * (-yroot / slope - vlist[-1]) / 2 ) # raise ValueError("Pressure curve only has two roots. If the curve hasn't fully decayed, either increase maximum specific volume or decrease 'pressure_min' in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays`.") elif np.any(np.isnan(roots)): raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing pressure." ) else: raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing min_density_fraction" ) # pressure_vs_volume_plot(vlist, Pv-shift, Pvspline, markers=extrema) return (a + b) ** 2 def calc_vapor_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes vapor density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhov: P {} Pa, roots {} m^3/mol".format(P, roots)) flag_NoOpt = False l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]) < 0: try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vlist[0], args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) flag = 3 rho_tmp = np.nan elif l_roots == 1: if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) elif l_roots == 2: if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and yi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: slope, yroot =
np.polyfit(vlist[-4:], Plist[-4:], 1)
numpy.polyfit
import os import copy import time import joblib import numpy as np import pandas as pd from datetime import datetime from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from ..Classifiers.CatBoostClassifier import CatBoostClassifier from ..Classifiers.XGBClassifier import XGBClassifier from ..Classifiers.LGBMClassifier import LGBMClassifier from ..Regressors.CatBoostRegressor import CatBoostRegressor from ..Regressors.XGBRegressor import XGBRegressor from ..Regressors.LGBMRegressor import LGBMRegressor from sklearn import linear_model from sklearn import ensemble from sklearn import svm from sklearn import metrics class Modeller: def __init__(self, mode='regression', shuffle=False, n_splits=3, objective='accuracy', samples=None, folder='', dataset='set_0', store_models=False, store_results=True): """ Runs various regression or classification models. Includes: - Scikit's Linear Model - Scikit's Random Forest - Scikit's Bagging - Scikit's GradientBoosting - Scikit's HistGradientBoosting - DMLC's XGBoost - Catboost's Catboost - Microsoft's LightGBM Parameters ---------- mode str: 'regression' or 'classification' shuffle bool: Whether to shuffle samples for training / validation n_splits int: Number of cross-validation splits objective str: Performance metric from SciKit Scorers* samples int: Samples in dataset, does not need to be specified but useful for calling return_models() folder str: Folder to store models and / or results dataset str: Name of feature set, documentation purpose store_models bool: Whether to store the trained models store_results bool:Whether to store the results * https://scikit-learn.org/stable/modules/model_evaluation.html """ # Test assert mode in ['classification', 'regression'], 'Unsupported mode' assert isinstance(shuffle, bool) assert isinstance(n_splits, int) assert 2 < n_splits < 10, 'Reconsider your number of splits' assert isinstance(objective, str) assert objective in metrics.SCORERS.keys(), \ 'Pick scorer from sklearn.metrics.SCORERS: \n{}'.format(list(metrics.SCORERS.keys())) assert isinstance(samples, int) or samples is None assert isinstance(folder, str) assert isinstance(dataset, str) assert isinstance(store_models, bool) assert isinstance(store_results, bool) # Parameters self.objective = objective self.scoring = metrics.SCORERS[objective] self.mode = mode self.shuffle = shuffle self.cvSplits = n_splits self.samples = samples self.dataset = str(dataset) self.storeResults = store_results self.storeModels = store_models self.results = pd.DataFrame(columns=['date', 'model', 'dataset', 'params', 'mean_objective', 'std_objective', 'mean_time', 'std_time']) # Folder self.folder = folder if len(folder) == 0 or folder[-1] == '/' else folder + '/' if (store_results or store_models) and self.folder != '': if not os.path.exists(self.folder): os.makedirs(self.folder) self.needsProba = False # Whether scorer requires needs_proba attr if 'True' in self.scoring._factory_args(): self.needsProba = True def fit(self, x, y): # Copy number of samples self.samples = len(y) # Regression if self.mode == 'regression': cv = KFold(n_splits=self.cvSplits, shuffle=self.shuffle) return self._fit(x, y, cv) # Classification if self.mode == 'classification': cv = StratifiedKFold(n_splits=self.cvSplits, shuffle=self.shuffle) return self._fit(x, y, cv) def return_models(self): models = [] # All classifiers if self.mode == 'classification': # The thorough ones if self.samples < 25000: if not self.needsProba: models.append(svm.SVC(kernel='rbf')) models.append(ensemble.BaggingClassifier()) # models.append(ensemble.GradientBoostingClassifier()) == XG Boost models.append(XGBClassifier()) # The efficient ones else: # models.append(ensemble.HistGradientBoostingClassifier()) == LGBM models.append(LGBMClassifier()) # And the multifaceted ones if not self.needsProba: models.append(linear_model.RidgeClassifier()) models.append(CatBoostClassifier()) models.append(ensemble.RandomForestClassifier()) elif self.mode == 'regression': # The thorough ones if self.samples < 25000: models.append(linear_model.LinearRegression()) models.append(svm.SVR(kernel='rbf')) models.append(ensemble.BaggingRegressor()) # models.append(ensemble.GradientBoostingRegressor()) == XG Boost models.append(XGBRegressor()) # The efficient ones else: models.append(linear_model.LinearRegression()) # models.append(ensemble.HistGradientBoostingRegressor()) == LGBM models.append(LGBMRegressor()) # And the multifaceted ones models.append(CatBoostRegressor()) models.append(ensemble.RandomForestRegressor()) return models def _fit(self, x, y, cross_val): # Convert to NumPy x = np.array(x) y =
np.array(y)
numpy.array
import numpy as np class Event(object): def __init__(self, data): self.name, self.sample, self.var_type = data[0:3] self.qualA, self.qualB, self.qual_res = [float(x) for x in data[3:6]] self.uniqA, self.uniqB, self.uniq_res = [float(x) for x in data[6:9]] self.spanA, self.spanB, self.span_res = [float(x) for x in data[9:12]] self.global_cov = float(data[12]) self.localA, self.localB, self.local_res = [float(x) for x in data[13:16]] self.gcA, self.gcB, self.gc_res = [float(x) for x in data[16:19]] self.alignA, self.alignB, self.align_res = [float(x) for x in data[19:22]] @classmethod def init_link(cls, clusters, name): qualA = np.mean([x.qualA for x in clusters]) qualB = np.mean([x.qualB for x in clusters]) qual_res = np.mean([x.qual_res for x in clusters]) uniqA = np.mean([x.uniqA for x in clusters]) uniqB = np.mean([x.uniqB for x in clusters]) uniq_res = np.mean([x.uniq_res for x in clusters]) spanA = np.mean([abs(x.spanA) for x in clusters]) spanB = np.mean([abs(x.spanB) for x in clusters]) span_res = np.mean([x.span_res for x in clusters]) global_cov = np.mean([x.global_cov for x in clusters]) localA = np.mean([x.localA for x in clusters]) localB = np.mean([x.localB for x in clusters]) local_res = np.mean([x.local_res for x in clusters]) gcA = np.mean([x.gcA for x in clusters]) gcB = np.mean([x.gcB for x in clusters]) gc_res = np.mean([x.gc_res for x in clusters]) alignA = np.mean([x.alignA for x in clusters]) alignB =
np.mean([x.alignB for x in clusters])
numpy.mean
# -*- coding: utf-8 -*- """ Created on Wed Oct 27 15:35:57 2021 @author: OTPS """ import matplotlib import matplotlib.pyplot as plt import numpy as np import scipy as scipy from scipy import optimize from matplotlib.ticker import AutoMinorLocator from matplotlib import gridspec import matplotlib.ticker as ticker from colormap import shortest_dist from colormap import colorMap """ ### Data """ ### DATA 211026 1014 I = np.loadtxt('211029_1009_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R = np.loadtxt('211029_1009_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod = np.sqrt(R**2 + I**2) mod_mat = mod.reshape(17,301) nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size volt_measurements = np.arange(6.6, 7.4, 0.05) # ### DATA 211026 1016 # I = np.loadtxt('211026_1016_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) # R = np.loadtxt('211026_1016_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) # mod = np.sqrt(R**2 + I**2) # mod_mat = mod.reshape(17,301) # nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size # volt_measurements = np.arange(6.6, 7.4, 0.05) # colorMap() """ ### Run function """ good_start = 4 good_end = 3 pairs, g_approx = shortest_dist(mod_mat, 6.2e9, 6.8e9, 301, 6.6, 7.4, 0.05, 4, 3) ### Order pairs --> smallest freq left def order_tuple(tuple): ordered_tuple_list = [] for i, tupel in enumerate(pairs): if tupel[0] > tupel[1]: ordered_tuple_list.append((tupel[1], tupel[0])) else: ordered_tuple_list.append((tupel[0], tupel[1])) return ordered_tuple_list new_pairs = order_tuple(pairs) ### Get upper/lower freq upper_freqs = np.zeros(volt_measurements.size-(good_start + good_end)) lower_freqs = np.zeros(volt_measurements.size-(good_start + good_end)) upper_freqs_index = [] lower_freqs_index = [] for i, tupel in enumerate(new_pairs): # upper_freqs_index[i] = tupel[1] # lower_freqs_index[i] = tupel[0] upper_freqs[i] = np.linspace(6.2e9, 6.8e9, 301)[tupel[1]] lower_freqs[i] = np.linspace(6.2e9, 6.8e9, 301)[tupel[0]] """ ### Model """ def avoided_crossing_direct_coupling(flux, f_center1, f_center2, c1, c2, g, flux_state=0): """ Calculates the frequencies of an avoided crossing for the following model. [f_1, g ] [g, f_2] f1 = c1*flux + f_center1 f2 = c2*flux + f_center2 flux: is the array of voltages Data that you want to fit is the array (len(voltages, 2)) of frequencies corresponding to these voltages g: the coupling strength, beware to relabel your variable if using this model to fit J1 or J2. flux_state: this is a switch used for fitting. It determines which transition to return """ if type(flux_state) == int: flux_state = [flux_state] * len(flux) frequencies = np.zeros([len(flux), 2]) for kk, dac in enumerate(flux): f_1 = dac * c1 + f_center1 f_2 = dac * c2 + f_center2 # f_1 = dac**(2) + f_center1 # f_2 = dac**(0.5) + f_center2 matrix = [[f_1, g], [g, f_2]] frequencies[kk, :] = np.linalg.eigvalsh(matrix)[:2] # result = np.where(flux_state, frequencies[:, 0], frequencies[:, 1]) return frequencies ################## ### Estimate c1, c2 # def linear_func(x, a, b, c): # return a * x**c + b # def fitting_c1(): # x = lower_freqs # y = flux # params, err = scipy.optimize.curve_fit(linear_func, x, y, p0=[1, f1_guess, 2]) # return [params[0], params[1], params[2]] # def fitting_c2(): # x = upper_freqs # y = flux # params, err = scipy.optimize.curve_fit(linear_func, x, y, p0=[3, f1_guess, 0.5]) # return [params[0], params[1], params[2]] ### Parameter good_start = 4 good_end = 3 flux = volt_measurements[good_start:-good_end] upper_flux = flux[6:] lower_flux = flux[:6] ### What is upper, lower_flux? g_guess = g_approx * (10**9) f1_guess = np.mean(lower_freqs) - 2.2e9 f2_guess = np.mean(upper_freqs) - 2.2e9 c1_guess=(upper_freqs[-1]-upper_freqs[0])/\ (upper_flux[-1]-upper_flux[0]) c2_guess=(lower_freqs[-1]-lower_freqs[0])/\ (lower_flux[-1]-lower_flux[0]) # c1_guess = -0.2e9/(7.4-6.8) # c2_guess = -0.18e9/(7.4-6.8) # c1_fit = fitting_c1() # c2_fit = fitting_c2() # c1_guess = c1_fit # c2_guess = c2_fit freqs = avoided_crossing_direct_coupling(flux, f1_guess, f2_guess, 0.2e9/(7.4-6.8), 0.18e9/(7.4-6.8), 0.126e9, flux_state=0) # result_fit, freqs_fit = avoided_crossing_direct_coupling(flux, f1_guess, f2_guess, c1_fit, c2_fit, g_guess) print('Estimated freqs: ', freqs) freq_dist = freqs[:,1] - freqs[:,0] print('Mean g [GHz]: ', 0.5*min(freq_dist)/10**9) ### Figure # plt.figure() # for n, tupel in enumerate(new_pairs): # plt.plot(np.linspace(6.2e9, 6.8e9, 301)[tupel[0]], volt_measurements[n+4], '-o', color='red') # plt.plot(np.linspace(6.2e9, 6.8e9, 301)[tupel[1]], volt_measurements[n+4], '-o', color='blue') # plt.title('Data of lower and upper frequencies') # plt.ylabel('Absolute value of flux [V]') # plt.xlabel('Frequencies [GHz]') ### Plot estimated freqs # for n, tupel in enumerate(freqs): # plt.plot(tupel[0], volt_measurements[n+4], '-+', color='red') # plt.plot(tupel[1], volt_measurements[n+4], '-+', color='blue') # plt.title('Fitting results of lower and upper frequencies') # plt.ylabel('Absolute value of flux [V]') # plt.xlabel('Frequencies [GHz]') ### Fitting function ''' x-data: volt_measurements[4:] y-data: lower_freqs ''' def avoided_crossing_direct_coupling_lower(flux, f_center1, f_center2, c1, c2, g, flux_state=0): """ Calculates the frequencies of an avoided crossing for the following model. [f_1, g ] [g, f_2] f1 = c1*flux + f_center1 f2 = c2*flux + f_center2 flux: is the array of voltages Data that you want to fit is the array (len(voltages, 2)) of frequencies corresponding to these voltages g: the coupling strength, beware to relabel your variable if using this model to fit J1 or J2. flux_state: this is a switch used for fitting. It determines which transition to return """ if type(flux_state) == int: flux_state = [flux_state] * len(flux) frequencies = np.zeros([len(flux), 2]) for kk, dac in enumerate(flux): f_1 = dac * c1 + f_center1 f_2 = dac * c2 + f_center2 # f_1 = dac**(2) + f_center1 # f_2 = dac**(0.5) + f_center2 matrix = [[f_1, g], [g, f_2]] frequencies[kk, :] = np.linalg.eigvalsh(matrix)[:2] # result = np.where(flux_state, frequencies[:, 0], frequencies[:, 1]) return frequencies[:,0] def avoided_crossing_direct_coupling_upper(flux, f_center1, f_center2, c1, c2, g, flux_state=0): """ Calculates the frequencies of an avoided crossing for the following model. [f_1, g ] [g, f_2] f1 = c1*flux + f_center1 f2 = c2*flux + f_center2 flux: is the array of voltages Data that you want to fit is the array (len(voltages, 2)) of frequencies corresponding to these voltages g: the coupling strength, beware to relabel your variable if using this model to fit J1 or J2. flux_state: this is a switch used for fitting. It determines which transition to return """ if type(flux_state) == int: flux_state = [flux_state] * len(flux) frequencies = np.zeros([len(flux), 2]) for kk, dac in enumerate(flux): f_1 = dac * c1 + f_center1 f_2 = dac * c2 + f_center2 # f_1 = dac**(2) + f_center1 # f_2 = dac**(0.5) + f_center2 matrix = [[f_1, g], [g, f_2]] frequencies[kk, :] = np.linalg.eigvalsh(matrix)[:2] # result = np.where(flux_state, frequencies[:, 0], frequencies[:, 1]) return frequencies[:,1] def avoided_crossing_direct_coupling_flat(flux, f_center1, f_center2, c1, c2, g, flux_state=0): """ Calculates the frequencies of an avoided crossing for the following model. [f_1, g ] [g, f_2] f1 = c1*flux + f_center1 f2 = c2*flux + f_center2 flux: is the array of voltages Data that you want to fit is the array (len(voltages, 2)) of frequencies corresponding to these voltages g: the coupling strength, beware to relabel your variable if using this model to fit J1 or J2. flux_state: this is a switch used for fitting. It determines which transition to return """ if type(flux_state) == int: flux_state = [flux_state] * len(flux) frequencies = np.zeros([len(flux), 2]) for kk, dac in enumerate(flux): f_1 = dac * c1 + f_center1 f_2 = dac * c2 + f_center2 # f_1 = dac**(2) + f_center1 # f_2 = dac**(0.5) + f_center2 matrix = [[f_1, g], [g, f_2]] frequencies[kk, :] = np.linalg.eigvalsh(matrix)[:2] # result = np.where(flux_state, frequencies[:, 0], frequencies[:, 1]) return frequencies.flatten() x = flux f_data = np.zeros([len(x), 2]) f_data[:,0] = lower_freqs f_data[:,1] = upper_freqs def fit(): x = flux # print(f_data) # popt_lower, pcov_lower = scipy.optimize.curve_fit(avoided_crossing_direct_coupling_lower, x, lower_freqs, p0=[f1_guess, f2_guess, c1_guess, c2_guess, 0.126e9], maxfev=5000) # popt_upper, pcov_upper = scipy.optimize.curve_fit(avoided_crossing_direct_coupling_upper, x, upper_freqs, p0=[f1_guess, f2_guess, c1_guess, c2_guess, 0.126e9], maxfev=5000) # print(popt_lower) # print(popt_upper) ### Flatten freqs_flat = freqs.flatten() popt, pcov = scipy.optimize.curve_fit(avoided_crossing_direct_coupling_flat, x, f_data.flatten(), p0=[f1_guess, f2_guess, c1_guess, c2_guess, 0.126e9], maxfev=5000) # plt.plot(x, lower_freqs, '-o', color='lightgrey', label = 'Observed frequency sweep') # plt.plot(x, upper_freqs, '-o', color='lightgrey') plt.plot(lower_freqs, x, '-o', color='lightgrey', label = 'Observed frequency sweep') plt.plot(upper_freqs, x, '-o', color='lightgrey') plt.plot(avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], popt[4])[:,0], x, 'red', label='Fit lower frequencies $f_-$') plt.plot(avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], popt[4])[:,1], x, 'blue', label='Fit upper frequencies $f_+$') lower_fit = avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], popt[4])[:,0] upper_fit = avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], popt[4])[:,1] # plt.plot(x, avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], # popt[4])[:,0], 'red', label='Fit upper frequencies') # plt.plot(x, avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], # popt[4])[:,1], 'blue', label='Fit lower frequencies') plt.legend(loc='upper center') print("The absolute value of the estimated g is: ", np.abs(popt[4]) / 10**6, "[MHz]") plt.title("Avoided crossing fit for input power -23.979 dB") plt.ylabel("Abs. value voltage [V]") plt.xlabel("Resonance frequency [GHz]") plt.grid(True) # plt.axis('off') plt.show() return popt fit() ### Plot fit popt = fit() lower_fit = np.round(avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], popt[4])[:,0] / 10**9, 2) upper_fit = np.round(avoided_crossing_direct_coupling(x, popt[0], popt[1], popt[2], popt[3], popt[4])[:,1] / 10**9, 2) freq_axis = np.round(np.linspace(6.2, 6.8, 301), 3) x_array_lower = np.zeros(10) x_array_upper = np.zeros(10) for i in range(0, 10): index_lower = np.where(freq_axis == lower_fit[i]) index_upper = np.where(freq_axis == upper_fit[i]) # print(index_lower[0][0]) x_array_lower[i] = index_lower[0][0] x_array_upper[i] = index_upper[0][0] def colorMap_fit(data, dbm): trans = data.transpose() fig, ax0 = plt.subplots() # c = ax0.pcolor(trans) c = ax0.pcolor(data) ax0.set_title(f"Coil sweep for input power {dbm} dB") ax0.set_yticks(np.arange(0,10)) # # ax0.set_xticks(np.linspace(6.8, 7.25, 10)) ax0.set_yticklabels(np.round(
np.linspace(6.8,7.25, 10)
numpy.linspace
import numpy from scipy.optimize import fsolve def euler(simulation, cons, prim, aux): dt = simulation.dt rhs = simulation.rhs return cons + dt * rhs(cons, prim, aux, simulation) def rk2(simulation, cons, prim, aux): dt = simulation.dt rhs = simulation.rhs cons1 = cons + dt * rhs(cons, prim, aux, simulation) cons1 = simulation.bcs(cons1, simulation.grid.Npoints, simulation.grid.Ngz) prim1, aux1 = simulation.model.cons2all(cons1, prim) return 0.5 * (cons + cons1 + dt * rhs(cons1, prim1, aux1, simulation)) def rk3(simulation, cons, prim, aux): dt = simulation.dt rhs = simulation.rhs cons1 = cons + dt * rhs(cons, prim, aux, simulation) cons1 = simulation.bcs(cons1, simulation.grid.Npoints, simulation.grid.Ngz) if simulation.fix_cons: cons1 = simulation.model.fix_cons(cons1) prim1, aux1 = simulation.model.cons2all(cons1, prim) cons2 = (3 * cons + cons1 + dt * rhs(cons1, prim1, aux1, simulation)) / 4 cons2 = simulation.bcs(cons2, simulation.grid.Npoints, simulation.grid.Ngz) if simulation.fix_cons: cons2 = simulation.model.fix_cons(cons2) prim2, aux2 = simulation.model.cons2all(cons2, prim1) return (cons + 2 * cons2 + 2 * dt * rhs(cons2, prim2, aux2, simulation)) / 3 def rk_euler_split(rk_method, source): def timestepper(simulation, cons, prim, aux): consstar = rk_method(simulation, cons, prim, aux) primstar, auxstar = simulation.model.cons2all(consstar, prim) return consstar + simulation.dt * source(consstar, primstar, auxstar) return timestepper def rk_backward_euler_split(rk_method, source): def timestepper(simulation, cons, prim, aux): consstar = rk_method(simulation, cons, prim, aux) primstar, auxstar = simulation.model.cons2all(consstar, prim) def residual(consguess, cons_star, prim_old): consguess = consguess.reshape(consguess.shape[0], 1) prim_old = prim_old.reshape(prim_old.shape[0], 1) cons_star = cons_star.reshape(cons_star.shape[0], 1) primguess, auxguess = simulation.model.cons2all(consguess, prim_old) return (consguess - cons_star - simulation.dt*source(consguess, primguess, auxguess)).ravel() consnext = numpy.zeros_like(cons) cons_initial_guess = consstar + \ 0.5*simulation.dt*source(consstar, primstar, auxstar) for i in range(cons.shape[1]): consnext[:, i] = fsolve(residual, cons_initial_guess[:,i].ravel(), args=(consstar[:, i].ravel(), prim[:, i].ravel())) return numpy.reshape(consnext, cons.shape) return timestepper def imex222(source, source_fprime=None, source_guess=None): gamma = 1 - 1/numpy.sqrt(2) def residual1(consguess, dt, cons, prim, simulation): consguess = consguess.reshape((cons.shape[0], 1)) cons = cons.reshape((cons.shape[0], 1)) prim = prim.reshape((prim.shape[0], 1)) try: primguess, auxguess = simulation.model.cons2all(consguess, prim) except ValueError: res = 1e6 * numpy.ones_like(consguess) return res.ravel() res = consguess - cons - dt * gamma * source(consguess, primguess, auxguess) if numpy.any(numpy.isnan(res)): res = 1e6 * numpy.ones_like(consguess) return res.ravel() def residual2(consguess, dt, cons, prim, k1, source1, simulation): consguess = consguess.reshape((cons.shape[0], 1)) cons = cons.reshape((cons.shape[0], 1)) prim = prim.reshape((prim.shape[0], 1)) k1 = k1.reshape((cons.shape[0], 1)) source1 = source1.reshape((cons.shape[0], 1)) try: primguess, auxguess = simulation.model.cons2all(consguess, prim) except ValueError: res = 1e6 * numpy.ones_like(consguess) return res.ravel() res = (consguess - cons - dt * (k1 + (1 - 2*gamma)*source1 + \ gamma*source(consguess, primguess, auxguess))).ravel() if numpy.any(numpy.isnan(res)): res = 1e6 * numpy.ones_like(consguess).ravel() return res def residual2_noflux(consguess, dt, cons, prim, source1, simulation): consguess = consguess.reshape((cons.shape[0], 1)) cons = cons.reshape((cons.shape[0], 1)) prim = prim.reshape((prim.shape[0], 1)) source1 = source1.reshape((cons.shape[0], 1)) try: primguess, auxguess = simulation.model.cons2all(consguess, prim) except ValueError: res = 1e6 * numpy.ones_like(consguess) return res.ravel() res = (consguess - cons - dt * ((1 - 2*gamma)*source1 + \ gamma*source(consguess, primguess, auxguess))).ravel() if numpy.any(numpy.isnan(res)): res = 1e6 * numpy.ones_like(consguess).ravel() return res # def residual1_prime(consguess, dt, cons, prim, simulation): # consguess = consguess.reshape((cons.shape[0], 1)) # jac = numpy.eye(cons.shape[0]) # primguess, auxguess = simulation.model.cons2all(consguess, prim) # jac -= dt * gamma * source_fprime(consguess, primguess, auxguess) # return jac # def residual2_prime(consguess, dt, cons, prim, k1, source1, simulation): # """ # Whilst the result is idential to residual1_prime, the argument list # is of course different # """ # consguess = consguess.reshape((cons.shape[0], 1)) # jac = numpy.eye(cons.shape[0]) # primguess, auxguess = simulation.model.cons2all(consguess, prim) # jac -= dt * gamma * source_fprime(consguess, primguess, auxguess) # return jac residual1_prime = None def timestepper(simulation, cons, prim, aux): Np = cons.shape[1] dt = simulation.dt rhs = simulation.rhs consguess = cons.copy() if source_guess: primguess, auxguess = simulation.model.cons2all(consguess, prim) consguess = source_guess(consguess, primguess, auxguess) cons1 = numpy.zeros_like(cons) for i in range(Np): cons1[:,i] = fsolve(residual1, consguess[:,i], fprime=residual1_prime, args=(dt, cons[:,i], prim[:,i], simulation), xtol = 1e-12) cons1 = simulation.bcs(cons1, simulation.grid.Npoints, simulation.grid.Ngz) prim1, aux1 = simulation.model.cons2all(cons1, prim) k1 = rhs(cons1, prim1, aux1, simulation) source1 = source(cons1, prim1, aux1) cons2 = numpy.zeros_like(cons) for i in range(Np): consguess_source = fsolve(residual2_noflux, cons1[:,i], fprime=residual1_prime, args=(dt, cons[:,i], prim1[:,i], source1[:,i], simulation), xtol = 1e-12) consguess_flux = cons1[:,i] + dt * k1[:, i] consguess = 0.5 * (consguess_source + consguess_flux) cons2[:,i] = fsolve(residual2, consguess, fprime=residual1_prime, args=(dt, cons[:,i], prim1[:,i], k1[:,i], source1[:,i], simulation), xtol = 1e-12) cons2 = simulation.bcs(cons2, simulation.grid.Npoints, simulation.grid.Ngz) prim2, aux2 = simulation.model.cons2all(cons2, prim1) k2 = rhs(cons2, prim2, aux2, simulation) source2 = source(cons2, prim2, aux2) return cons + simulation.dt * (k1 + k2 + source1 + source2) / 2 return timestepper def imex433(source): alpha = 0.24169426078821 beta = 0.06042356519705 eta = 0.12915286960590 def residual1(consguess, dt, cons, prim, simulation): consguess = consguess.reshape((cons.shape[0], 1)) cons = cons.reshape((cons.shape[0], 1)) prim = prim.reshape((prim.shape[0], 1)) try: primguess, auxguess = simulation.model.cons2all(consguess, prim) except ValueError: res = 1e6 * numpy.ones_like(consguess) return res.ravel() res = consguess - cons - dt * alpha * source(consguess, primguess, auxguess) if numpy.any(
numpy.isnan(res)
numpy.isnan
import numpy as np from sklearn.neighbors import NearestNeighbors def best_fit_transform(A, B): ''' Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions Input: A: Nxm numpy array of corresponding points B: Nxm numpy array of corresponding points Returns: T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B R: mxm rotation matrix t: mx1 translation vector ''' assert A.shape == B.shape # get number of dimensions m = A.shape[1] # translate points to their centroids centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) AA = A - centroid_A BB = B - centroid_B # rotation matrix H = np.dot(AA.T, BB) U, S, Vt = np.linalg.svd(H) R = np.dot(Vt.T, U.T) # special reflection case if
np.linalg.det(R)
numpy.linalg.det
import numpy as np from numpy.lib import recfunctions import root_numpy as rnp from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_equal, assert_raises from . import load def test_rec2array(): # scalar fields a = np.array([ (12345, 2., 2.1, True), (3, 4., 4.2, False),], dtype=[ ('x', np.int32), ('y', np.float32), ('z', np.float64), ('w', np.bool)]) arr = rnp.rec2array(a) assert_array_equal(arr, np.array([ [12345, 2, 2.1, 1], [3, 4, 4.2, 0]])) arr = rnp.rec2array(a, fields=['x', 'y']) assert_array_equal(arr, np.array([ [12345, 2], [3, 4]])) # single scalar field arr = rnp.rec2array(a, fields=['x']) assert_array_equal(arr, np.array([[12345], [3]], dtype=np.int32)) # single scalar field simplified arr = rnp.rec2array(a, fields='x') assert_array_equal(arr, np.array([12345, 3], dtype=np.int32)) # case where array has single record assert_equal(rnp.rec2array(a[:1]).shape, (1, 4)) assert_equal(rnp.rec2array(a[:1], fields=['x']).shape, (1, 1)) assert_equal(rnp.rec2array(a[:1], fields='x').shape, (1,)) # array fields a = np.array([ ([1, 2, 3], [4.5, 6, 9.5],), ([4, 5, 6], [3.3, 7.5, 8.4],),], dtype=[ ('x', np.int32, (3,)), ('y', np.float32, (3,))]) arr = rnp.rec2array(a) assert_array_almost_equal(arr, np.array([[[1, 4.5], [2, 6], [3, 9.5]], [[4, 3.3], [5, 7.5], [6, 8.4]]])) # single array field arr = rnp.rec2array(a, fields=['y']) assert_array_almost_equal(arr, np.array([[[4.5], [6], [9.5]], [[3.3], [7.5], [8.4]]])) # single array field simplified arr = rnp.rec2array(a, fields='y') assert_array_almost_equal(arr, np.array([[4.5, 6, 9.5], [3.3, 7.5, 8.4]])) # case where array has single record assert_equal(rnp.rec2array(a[:1], fields=['y']).shape, (1, 3, 1)) assert_equal(rnp.rec2array(a[:1], fields='y').shape, (1, 3)) # lengths mismatch a = np.array([ ([1, 2], [4.5, 6, 9.5],), ([4, 5], [3.3, 7.5, 8.4],),], dtype=[ ('x', np.int32, (2,)), ('y', np.float32, (3,))]) assert_raises(ValueError, rnp.rec2array, a) # mix of scalar and array fields should fail a = np.array([ (1, [4.5, 6, 9.5],), (4, [3.3, 7.5, 8.4],),], dtype=[ ('x', np.int32), ('y', np.float32, (3,))]) assert_raises(ValueError, rnp.rec2array, a) def test_stack(): rec = rnp.root2array(load('test.root')) s = rnp.stack([rec, rec]) assert_equal(s.shape[0], 2 * rec.shape[0]) assert_equal(s.dtype.names, rec.dtype.names) s = rnp.stack([rec, rec], fields=['x', 'y']) assert_equal(s.shape[0], 2 * rec.shape[0]) assert_equal(s.dtype.names, ('x', 'y')) # recs don't have identical fields rec2 = recfunctions.drop_fields(rec, ['i', 'x']) s = rnp.stack([rec, rec2]) assert_equal(set(s.dtype.names), set(['y', 'z'])) def test_dup_idx(): a = [1, 2, 3, 4, 3, 2] assert_array_equal(rnp.dup_idx(a), [1, 2, 4, 5]) def test_stretch(): arr = np.empty(5, dtype=[ ('scalar', np.int), ('vl1', 'O'), ('vl2', 'O'), ('vl3', 'O'), ('fl1', np.int, (2, 2)), ('fl2', np.float, (2, 3)), ('fl3', np.double, (3, 2))]) for i in range(arr.shape[0]): vl1 = np.array(range(i + 1), dtype=np.int) vl2 = np.array(range(i + 2), dtype=np.float) * 2 vl3 = np.array(range(2), dtype=np.double) * 3 fl1 = np.array(range(4), dtype=np.int).reshape((2, 2)) fl2 = np.array(range(6), dtype=np.float).reshape((2, 3)) fl3 = np.array(range(6), dtype=np.double).reshape((3, 2)) arr[i] = (i, vl1, vl2, vl3, fl1, fl2, fl3) # no array columns included assert_raises(RuntimeError, rnp.stretch, arr, ['scalar',]) # lengths don't match assert_raises(ValueError, rnp.stretch, arr, ['scalar', 'vl1', 'vl2',]) assert_raises(ValueError, rnp.stretch, arr, ['scalar', 'fl1', 'fl3',]) assert_raises(ValueError, rnp.stretch, arr) # variable-length stretch stretched = rnp.stretch(arr, ['scalar', 'vl1',]) assert_equal(stretched.dtype, [('scalar', np.int), ('vl1', np.int)]) assert_equal(stretched.shape[0], 15) assert_array_equal( stretched['scalar'], np.repeat(arr['scalar'], np.vectorize(len)(arr['vl1']))) # fixed-length stretch stretched = rnp.stretch(arr, ['scalar', 'vl3', 'fl1', 'fl2',]) assert_equal(stretched.dtype, [('scalar', np.int), ('vl3', np.double), ('fl1', np.int, (2,)), ('fl2', np.float, (3,))]) assert_equal(stretched.shape[0], 10) assert_array_equal( stretched['scalar'], np.repeat(arr['scalar'], 2)) # optional argument return_indices stretched, idx = rnp.stretch(arr, ['scalar', 'vl1'], return_indices=True) assert_equal(stretched.shape[0], idx.shape[0]) from_arr = list(map(lambda x: x['vl1'][0], arr)) from_stretched = stretched[idx == 0]['vl1'] assert_array_equal(from_arr, from_stretched) # stretch single field and produce unstructured output stretched = rnp.stretch(arr, 'vl1') assert_equal(stretched.dtype, np.int) def test_blockwise_inner_join(): test_data = np.array([ (1.0, np.array([11,12,13]), np.array([1,0,1]), 0, np.array([1,2,3])), (2.0, np.array([21,22,23]), np.array([-1,2,-1]), 1, np.array([31,32,33]))], dtype=[ ('sl', np.float), ('al', 'O'), ('fk', 'O'), ('s_fk', np.int), ('ar', 'O')]) # vector join a1 = rnp.blockwise_inner_join( test_data, ['sl', 'al'], test_data['fk'], ['ar']) # specify fk with string a1 = rnp.blockwise_inner_join( test_data, ['sl', 'al'], 'fk', ['ar']) exp1 = np.array([ (1.0, 11, 2, 1), (1.0, 12, 1, 0), (1.0, 13, 2, 1), (2.0, 22, 33, 2)], dtype=[ ('sl', '<f8'), ('al', '<i8'), ('ar', '<i8'), ('fk', '<i8')]) assert_array_equal(a1, exp1, verbose=True) # vector join with force repeat a2 = rnp.blockwise_inner_join( test_data, ['sl','al'], test_data['fk'], ['ar'], force_repeat=['al']) exp2 = np.array([ (1.0, np.array([11, 12, 13]), 2, 1), (1.0, np.array([11, 12, 13]), 1, 0), (1.0, np.array([11, 12, 13]), 2, 1), (2.0,
np.array([21, 22, 23])
numpy.array
import tensorflow as tf import numpy as np import os import matplotlib.pyplot as plt from data_loader import load_3D, load_2D def create_model(): model = tf.keras.Sequential([ tf.keras.layers.Dense(units=1200, activation=tf.keras.activations.relu, input_shape=[441]), tf.keras.layers.Dense(units=1200, activation=tf.keras.activations.relu), tf.keras.layers.Dense(units=441) ]) model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.Adam(0.0001), metrics=['accuracy']) return model def main(): map_size = 21 features_train, labels_train = load_2D(100000, map_size, map_size) features_test, labels_test = load_2D(1000, map_size, map_size, "test_created_data_") checkpoint_path = "output_dense" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, verbose = 1, period = 5) model = create_model() model.load_weights(checkpoint_path) #model.fit(features_train, labels_train, epochs = 10, callbacks = [cp_callback], validation_split=0.1) size = 69 test = np.array(features_test[size]).reshape(map_size, map_size) prediction = model.predict(features_test) fig, axs = plt.subplot(1,3,1), plt.imshow(test) fig.axis('off') fig.set_title('Map') pred = np.array(prediction[size]).reshape(map_size, map_size) * features_test[size].reshape(map_size, map_size) array =
np.clip(pred, -0.25, 0.25)
numpy.clip
import six import numbers import logging import numpy as np from sklearn.metrics import log_loss from sklearn.utils import check_consistent_length, check_array from sklearn.cross_validation import train_test_split from sklearn.preprocessing import LabelBinarizer import mxnet as mx from mxnet.metric import EvalMetric __all__ = ['Activation', 'Dense', 'SoftmaxOutput', 'Variable', 'BatchNormalization', 'Dropout', 'Sequential', 'Adam'] def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() class LogLoss(object): def __init__(self): self.lb_ = None @property def __name__(self): return 'log_loss' def __call__(self, y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None): if self.lb_ is None: self.lb_ = LabelBinarizer() T = self.lb_.fit_transform(y_true) else: T = self.lb_.transform(y_true) if T.shape[1] == 1: T = np.append(1 - T, T, axis=1) Y = np.clip(y_pred, eps, 1 - eps) if not isinstance(Y, np.ndarray): raise ValueError('y_pred should be an array of floats.') if Y.ndim == 1: Y = Y[:, np.newaxis] if Y.shape[1] == 1: Y = np.append(1 - Y, Y, axis=1) check_consistent_length(T, Y) T = check_array(T) Y = check_array(Y) if T.shape[1] != Y.shape[1]: raise ValueError('y_true and y_pred have different number of classes ' '%d, %d' % (T.shape[1], Y.shape[1])) Y /= Y.sum(axis=1)[:, np.newaxis] loss = -(T *
np.log(Y)
numpy.log
import random import time import math import os.path import numpy as np import pandas as pd from pysc2.agents import base_agent from pysc2.env import sc2_env, run_loop from pysc2.lib import actions, features, units from absl import app import torch from torch.utils.tensorboard import SummaryWriter from baseline.skdrl.pytorch.model.mlp import NaiveMultiLayerPerceptron from baseline.skdrl.common.memory.memory import ExperienceReplayMemory from baseline.skdrl.pytorch.model.dqn import DQN, prepare_training_inputs device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") writer = SummaryWriter() class TerranAgentWithRawActsAndRawObs(base_agent.BaseAgent): actions = ("do_nothing", "harvest_minerals", "build_supply_depot", "build_barracks", "train_marine", "attack") def get_my_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.alliance == features.PlayerRelative.SELF] def get_enemy_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.alliance == features.PlayerRelative.ENEMY] def get_my_completed_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.build_progress == 100 and unit.alliance == features.PlayerRelative.SELF] def get_enemy_completed_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.build_progress == 100 and unit.alliance == features.PlayerRelative.ENEMY] def get_distances(self, obs, units, xy): units_xy = [(unit.x, unit.y) for unit in units] return np.linalg.norm(np.array(units_xy) - np.array(xy), axis=1) def step(self, obs): super(TerranAgentWithRawActsAndRawObs, self).step(obs) if obs.first(): command_center = self.get_my_units_by_type( obs, units.Terran.CommandCenter)[0] self.base_top_left = (command_center.x < 32) def do_nothing(self, obs): return actions.RAW_FUNCTIONS.no_op() def harvest_minerals(self, obs): scvs = self.get_my_units_by_type(obs, units.Terran.SCV) idle_scvs = [scv for scv in scvs if scv.order_length == 0] if len(idle_scvs) > 0: mineral_patches = [unit for unit in obs.observation.raw_units if unit.unit_type in [ units.Neutral.BattleStationMineralField, units.Neutral.BattleStationMineralField750, units.Neutral.LabMineralField, units.Neutral.LabMineralField750, units.Neutral.MineralField, units.Neutral.MineralField750, units.Neutral.PurifierMineralField, units.Neutral.PurifierMineralField750, units.Neutral.PurifierRichMineralField, units.Neutral.PurifierRichMineralField750, units.Neutral.RichMineralField, units.Neutral.RichMineralField750 ]] scv = random.choice(idle_scvs) distances = self.get_distances(obs, mineral_patches, (scv.x, scv.y)) mineral_patch = mineral_patches[
np.argmin(distances)
numpy.argmin
# -*- coding: utf-8 -*- """File for base geometry class built using the Geomdl class""" import numpy as np class Geometry2D: ''' Base class for 2D domains Input: geomData - dictionary containing the geomety information Keys: degree_u, degree_v: polynomial degree in the u and v directions ctrlpts_size_u, ctrlpts_size_v: number of control points in u,v directions ctrlpts: weighted control points (in a list with ctrlpts_size_u*ctrlpts_size_v rows and 3 columns for x,y,z coordinates) weights: correspond weights (list with ctrlpts_size_u*ctrlpts_size_v entries) knotvector_u, knotvector_v: knot vectors in the u and v directions ''' def __init__(self, geomData): self.degree_u = geomData['degree_u'] self.degree_v = geomData['degree_v'] self.ctrlpts_size_u = geomData['ctrlpts_size_u'] self.ctrlpts_size_v = geomData['ctrlpts_size_v'] self.ctrlpts = self.getUnweightedCpts(geomData['ctrlpts'], geomData['weights']) self.weights = geomData['weights'] self.knotvector_u = geomData['knotvector_u'] self.knotvector_v = geomData['knotvector_v'] def getUnweightedCpts(self, ctrlpts, weights): numCtrlPts = np.shape(ctrlpts)[0] PctrlPts = np.zeros_like(ctrlpts) for i in range(2): for j in range(numCtrlPts): PctrlPts[j,i]=ctrlpts[j][i]/weights[j] # PctrlPts = PctrlPts.tolist() return PctrlPts def mapPoints(self, uPar, vPar): ''' Map points from the parameter domain [0,1]x[0,1] to the quadrilater domain Input: uPar - array containing the u-coordinates in the parameter space vPar - array containing the v-coordinates in the parameter space Note: the arrays uPar and vPar must be of the same size Output: xPhys - array containing the x-coordinates in the physical space yPhys - array containing the y-coordinates in the physical space ''' gpParamUV = np.array([uPar, vPar]) evalList = tuple(map(tuple, gpParamUV.transpose())) res = np.array(self.surf.evaluate_list(evalList)) return res def bezierExtraction(self, knot, deg): ''' Bezier extraction Based on Algorithm 1, from Borden - Isogeometric finite element data structures based on Bezier extraction ''' m = len(knot)-deg-1 a = deg + 1 b = a + 1 # Initialize C with the number of non-zero knotspans in the 3rd dimension nb_final = len(np.unique(knot))-1 C = np.zeros((deg+1,deg+1,nb_final)) nb = 1 C[:,:,0] = np.eye(deg + 1) while b <= m: C[:,:,nb] = np.eye(deg + 1) i = b while (b <= m) and (knot[b] == knot[b-1]): b = b+1 multiplicity = b-i+1 alphas = np.zeros(deg-multiplicity) if (multiplicity < deg): numerator = knot[b-1] - knot[a-1] for j in range(deg,multiplicity,-1): alphas[j-multiplicity-1] = numerator/(knot[a+j-1]-knot[a-1]) r = deg - multiplicity for j in range(1,r+1): save = r-j+1 s = multiplicity + j for k in range(deg+1,s,-1): alpha = alphas[k-s-1] C[:,k-1,nb-1] = alpha*C[:,k-1,nb-1] + (1-alpha)*C[:,k-2,nb-1] if b <= m: C[save-1:save+j,save-1,nb] = C[deg-j:deg+1,deg,nb-1] nb=nb+1 if b <= m: a=b b=b+1 elif multiplicity==deg: if b <= m: nb = nb + 1 a = b b = b + 1 assert(nb==nb_final) return C, nb def computeC(self): knotU = self.knotvector_u knotV = self.knotvector_v degU = self.degree_u degV = self.degree_v C_u, nb = self.bezierExtraction(knotU, degU) C_v, nb = self.bezierExtraction(knotV, degV) numElemU = len(np.unique(knotU)) - 1 numElemV = len(np.unique(knotV)) - 1 basisU = len(knotU) - degU - 1 nument = (degU+1)*(degV+1) elemInfo = dict() elemInfo['vertex'] = [] elemInfo['nodes'] = [] elemInfo['C'] = [] for j in range (0, len(knotV)-1): for i in range (0, len(knotU)-1): if ((knotU[i+1] > knotU[i]) and (knotV[j+1] > knotV[j])): vertices = np.array([knotU[i], knotV[j], knotU[i+1], knotV[j+1]]) elemInfo['vertex'].append(vertices) currow = np.array([np.zeros(nument)]) tcount = 0 for t2 in range(j+1-degV,j+2): for t1 in range(i+1-degU,i+2): currow[0,tcount] = t1 + (t2-1)*basisU tcount = tcount + 1 elemInfo['nodes'].append(currow) for j in range (0, numElemV): for i in range (0, numElemU): cElem = np.kron(C_v[:,:,j],C_u[:,:,i]) elemInfo['C'].append(cElem) return elemInfo def bernsteinBasis(self,xi, deg): ''' Algorithm A1.3 in Piegl & Tiller xi is a 1D array ''' B = np.zeros((len(xi),deg+1)) B[:,0] = 1.0 u1 = 1-xi u2 = 1+xi for j in range(1,deg+1): saved = 0.0 for k in range(0,j): temp = B[:,k].copy() B[:,k] = saved + u1*temp saved = u2*temp B[:,j] = saved B = B/np.power(2,deg) dB = np.zeros((len(xi),deg)) dB[:,0] = 1.0 for j in range(1,deg): saved = 0.0 for k in range(0,j): temp = dB[:,k].copy() dB[:,k] = saved + u1*temp saved = u2*temp dB[:,j] = saved dB = dB/np.power(2,deg) dB0 = np.transpose(np.array([np.zeros(len(xi))])) dB = np.concatenate((dB0, dB, dB0), axis=1) dB = (dB[:,0:-1] - dB[:,1:])*deg return B, dB def findspan(self, uCoord, vCoord): '''Generates the element number on which the co-ordinate is located''' knotU = self.knotvector_u knotV = self.knotvector_v counter = 0 for j in range (0, len(knotV)-1): for i in range (0, len(knotU)-1): if ((knotU[i+1] > knotU[i]) and (knotV[j+1] > knotV[j])): if ((uCoord > knotU[i]) and (uCoord < knotU[i+1]) and (vCoord > knotV[j]) and (vCoord < knotV[j+1])): elmtNum = counter break counter = counter + 1 return elmtNum def getDerivatives(self, uCoord, vCoord, elmtNo): ''' Generate physical points and jacobians for parameter points inside the domain Assume there is one element in the parameter space Input: uCoord, vCoord: Inputs the co-odinates of the Gauss points in the parameter space. Output: xPhys, yPhys, ptJac - Generates the co-ordinates in the physical space and the jacobian ''' curVertex = self.vertex[elmtNo] cElem = self.C[elmtNo] curNodes = np.int32(self.nodes[elmtNo])-1 # Python indexing starts from 0 curPts = np.squeeze(self.ctrlpts[curNodes,0:2]) wgts = np.transpose(np.array([np.squeeze(self.weights[curNodes,0:1])])) # Get the Gauss points on the reference interval [-1,1] uMax = curVertex[2] uMin = curVertex[0] vMax = curVertex[3] vMin = curVertex[1] uHatCoord = (2*uCoord - (uMax+uMin))/(uMax-uMin) vHatCoord = (2*vCoord - (vMax+vMin))/(vMax-vMin) degU = self.degree_u degV = self.degree_v B_u, dB_u = self.bernsteinBasis(uHatCoord,degU) B_v, dB_v = self.bernsteinBasis(vHatCoord,degV) numGauss = len(uCoord) B_u, dB_u = self.bernsteinBasis(uHatCoord,degU) B_v, dB_v = self.bernsteinBasis(vHatCoord,degV) # Computing the Bernstein polynomials in 2D dBdu = np.zeros((numGauss, numGauss, (degU+1)*(degV+1))) dBdv = np.zeros((numGauss, numGauss, (degU+1)*(degV+1))) R = np.zeros((numGauss, numGauss, (degU+1)*(degV+1))) counter = 0 for j in range(0,degV+1): for i in range(0,degU+1): R[:,:,counter] = np.outer(B_u[:,i], B_v[:,j]) dBdu[:,:,counter] = np.outer(dB_u[:,i],B_v[:,j]) dBdv[:,:,counter] = np.outer(B_u[:,i],dB_v[:,j]) counter = counter + 1 quadPts = np.zeros((3)) # Map the points to the physical space for jPt in range(0,numGauss): for iPt in range(0,numGauss): dRdx = np.matmul(cElem,np.transpose(np.array([dBdu[iPt,jPt,:]])))*2/(uMax-uMin) dRdy = np.matmul(cElem,np.transpose(np.array([dBdv[iPt,jPt,:]])))*2/(vMax-vMin) RR = np.matmul(cElem,np.transpose(np.array([R[iPt,jPt,:]]))) RR = RR*wgts dRdx = dRdx*wgts dRdy = dRdy*wgts w_sum = np.sum(RR, axis=0) dw_xi = np.sum(dRdx, axis=0) dw_eta = np.sum(dRdy, axis=0) dRdx = dRdx/w_sum - RR*dw_xi/np.power(w_sum,2) dRdy = dRdy/w_sum - RR*dw_eta/np.power(w_sum,2) RR = RR/w_sum; dR = np.concatenate((dRdx.T,dRdy.T),axis=0) dxdxi = np.matmul(dR,curPts) coord = np.matmul(np.array([R[iPt,jPt,:]]),curPts) detJac = np.absolute(np.linalg.det(dxdxi)) quadPts[0] = coord[0,0] quadPts[1] = coord[0,1] quadPts[2] = detJac xPhys = quadPts[0] yPhys = quadPts[1] ptJac = quadPts[2] return xPhys, yPhys, ptJac def genElemList(self, numElemU, numElemV): ''' Generate the element (vertex) list for an initial (uniform) subdivision mesh Input: numElemU, numElemV - number of subdivisions in the u and v directions in the parameter space Output: vertex - arrays containing the element vertices + initial level (=0) ''' vertex = np.zeros((numElemU*numElemV, 5)) #generate the knots on the interval [0,1] uEdge = np.linspace(0, 1, numElemU+1) vEdge = np.linspace(0, 1, numElemV+1) uPar, vPar = np.meshgrid(uEdge, vEdge) counterElem = 0 initalLevel = 0 # Generate points for each element for iV in range(numElemV): for iU in range(numElemU): uMin = uPar[iV, iU] uMax = uPar[iV, iU+1] vMin = vPar[iV, iU] vMax = vPar[iV+1, iU] vertex[counterElem, 0] = uMin vertex[counterElem, 1] = vMin vertex[counterElem, 2] = uMax vertex[counterElem, 3] = vMax vertex[counterElem, 4] = initalLevel counterElem = counterElem + 1 return vertex def getElemIntPts(self, elemList, numGauss): ''' Generate quadrature points inside the domain Input: elemList - contains the vertices of the elements the refined elements numGauss - number of Gauss quadrature points for each subdivision Output: xPhys, yPhys, wgtPhy - arrays containing the x and y coordinates of the points and the corresponding weights ''' # Allocate quadPts array quadPts = np.zeros((elemList.shape[0]*numGauss**2, 3)) # Get the Gauss points on the reference interval [-1,1] gp, gw =
np.polynomial.legendre.leggauss(numGauss)
numpy.polynomial.legendre.leggauss
import os, glob import numpy as np from tqdm import tqdm import tensorflow as tf from tensorflow import keras from scipy.interpolate import interp1d from astropy.table import Table, Column __all__ = ['ConvNN'] class ConvNN(object): """ Creates and trains the convolutional neural network. """ def __init__(self, output_dir, ds=None, layers=None, optimizer='adam', loss='binary_crossentropy', metrics=None): """ Creates and trains a Tensorflow keras model with either layers that have been passed in by the user or with default layers used in Feinstein et al. (2020; in prep.). Parameters ---------- ds : stella.DataSet object output_dir : str Path to a given output directory for files. training : float, optional Assigns the percentage of training set data for training. Default is 80%. validation : float, optional Assigns the percentage of training set data for validation. Default is 10%. layers : np.array, optional An array of keras.layers for the ConvNN. optimizer : str, optional Optimizer used to compile keras model. Default is 'adam'. loss : str, optional Loss function used to compile keras model. Default is 'binary_crossentropy'. metrics: np.array, optional Metrics used to train the keras model on. If None, metrics are [accuracy, precision, recall]. epochs : int, optional Number of epochs to train the keras model on. Default is 15. seed : int, optional Sets random seed for reproducable results. Default is 2. output_dir : path, optional The path to save models/histories/predictions to. Default is to create a hidden ~/.stella directory. Attributes ---------- layers : np.array optimizer : str loss : str metrics : np.array training_matrix : stella.TrainingSet.training_matrix labels : stella.TrainingSet.labels image_fmt : stella.TrainingSet.cadences """ self.ds = ds self.layers = layers self.optimizer = optimizer self.loss = loss self.metrics = metrics if ds is not None: self.training_matrix = np.copy(ds.training_matrix) self.labels = np.copy(ds.labels) self.cadences = np.copy(ds.cadences) self.frac_balance = ds.frac_balance + 0.0 self.tpeaks = ds.training_peaks self.training_ids = ds.training_ids else: print("WARNING: No stella.DataSet object passed in.") print("Can only use stella.ConvNN.predict().") self.prec_recall_curve = None self.history = None self.history_table = None self.output_dir = output_dir def create_model(self, seed): """ Creates the Tensorflow keras model with appropriate layers. Attributes ---------- model : tensorflow.python.keras.engine.sequential.Sequential """ # SETS RANDOM SEED FOR REPRODUCABLE RESULTS
np.random.seed(seed)
numpy.random.seed
# -*- coding: utf-8 -*- """Tests for `codex-africanus` package.""" import numpy as np import pytest def test_fit_spi_components_vs_scipy(): """ Here we just test the per component spi fitter against a looped version of scipy's curve_fit :return: """ from africanus.model.spi import fit_spi_components curve_fit = pytest.importorskip("scipy.optimize").curve_fit np.random.seed(123) ncomps = 25 alphas = -0.7 + 0.25 * np.random.randn(ncomps, 1) i0s = 5.0 + np.random.randn(ncomps, 1) nfreqs = 100 freqs = np.linspace(0.5, 1.5, nfreqs).reshape(1, nfreqs) freq0 = 0.7 model = i0s * (freqs / freq0) ** alphas sigma = np.abs(0.25 + 0.1 * np.random.randn(nfreqs)) data = model + sigma[None, :] * np.random.randn(ncomps, nfreqs) weights = 1.0/sigma**2 alpha1, alphavar1, I01, I0var1 = fit_spi_components( data, weights, freqs.squeeze(), freq0, tol=1e-8) def spi_func(nu, I0, alpha): return I0 * nu ** alpha I02 = np.zeros(ncomps) I0var2 = np.zeros(ncomps) alpha2 =
np.zeros(ncomps)
numpy.zeros