prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import os import numpy as np import random import torch import torch.utils.data as dataf import torch.nn as nn import matplotlib.pyplot as plt from scipy import io from sklearn.decomposition import PCA # setting parameters DataPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/Houston.mat' TRPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TRLabel.mat' TSPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TSLabel.mat' savepath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/W3-DLSection/HU2013/2DCNN-14.mat' patchsize = 16 # input spatial size for 2D-CNN batchsize = 128 # select from [16, 32, 64, 128], the best is 64 EPOCH = 200 LR = 0.001 # load data Data = io.loadmat(DataPath) TrLabel = io.loadmat(TRPath) TsLabel = io.loadmat(TSPath) Data = Data['Houston'] Data = Data.astype(np.float32) TrLabel = TrLabel['TRLabel'] TsLabel = TsLabel['TSLabel'] # without dimensionality reduction pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) # normalization method 2: map to zero mean and one std [m, n, l] = np.shape(Data) # x2 = np.empty((m+pad_width*2, n+pad_width*2, l), dtype='float32') for i in range(l): mean = np.mean(Data[:, :, i]) std = np.std(Data[:, :, i]) Data[:, :, i] = (Data[:, :, i] - mean)/std # x2[:, :, i] = np.pad(Data[:, :, i], pad_width, 'symmetric') # # extract the first principal component # x = np.reshape(Data, (m*n, l)) # pca = PCA(n_components=0.995, copy=True, whiten=False) # x = pca.fit_transform(x) # _, l = x.shape # x = np.reshape(x, (m, n, l)) # # print x.shape # # plt.figure() # # plt.imshow(x) # # plt.show() x = Data # boundary interpolation temp = x[:,:,0] pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) temp2 = np.pad(temp, pad_width, 'symmetric') [m2,n2] = temp2.shape x2 = np.empty((m2, n2, l), dtype='float32') for i in range(l): temp = x[:,:,i] pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) temp2 = np.pad(temp, pad_width, 'symmetric') x2[:,:,i] = temp2 # construct the training and testing set [ind1, ind2] = np.where(TrLabel != 0) TrainNum = len(ind1) TrainPatch = np.empty((TrainNum, l, patchsize, patchsize), dtype='float32') TrainLabel = np.empty(TrainNum) ind3 = ind1 + pad_width ind4 = ind2 + pad_width for i in range(len(ind1)): # patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width + 1), (ind4[i] - pad_width):(ind4[i] + pad_width + 1), :] patch = x2[(ind3[i] - pad_width):(ind3[i] + pad_width), (ind4[i] - pad_width):(ind4[i] + pad_width), :] patch = np.reshape(patch, (patchsize * patchsize, l)) patch = np.transpose(patch) patch = np.reshape(patch, (l, patchsize, patchsize)) TrainPatch[i, :, :, :] = patch patchlabel = TrLabel[ind1[i], ind2[i]] TrainLabel[i] = patchlabel [ind1, ind2] =
np.where(TsLabel != 0)
numpy.where
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .rpn_msr.proposal_layer import ProposalLayer from .rpn_msr.anchor_target_layer import AnchorTargerLayer from rpn_msr.proposal_target_layer import ProposalTargetLayer from .network import vgg16, Conv2d, np_to_tensor, FC, smooth_l1_loss from roi_pooling.modules.roi_pool import RoIPool from .fastrcnn.bbox_transform import bbox_transform_inv, clip_boxes from .fastrcnn.nms_wrapper import nms from PIL import Image from torchvision import transforms import logging logger = logging.getLogger("root") logger.setLevel(logging.DEBUG) def nms_detections(pred_boxes, scores, nms_thresh, inds=None): dets = np.hstack((pred_boxes, scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, nms_thresh) if inds is None: return pred_boxes[keep], scores[keep] return pred_boxes[keep], scores[keep], inds[keep] class RPN(nn.Module): """Generate region proposals, shares computation with the object detection network. Attributes ---------- anchor_scales : list The scale of each anchor on particular point on feature maps. anchor_target_layer : :class:`faster_rcnn.rpn_msr.anchor_target_layer.AnchorTargerLayer` Calculate network target base on anchors and ground truth boxes. bbox_conv : :class:`torch.nn.module` Proposals coordinate refine predictor conv1 : :class:`torch.nn.module` Probability that anchors contains object predictor cross_entropy : int Cross entropy loss. features : :class:`torch.nn.module` Backbone network, that share computation with object detection network loss_box : int Box coordinate refine loss. proposal_layer : :class:`faster_rcnn.rpn_msr.proposal_layer.ProposalLayer` Create proposals base on generated anchors and bbox refine values. score_conv : TYPE Description """ _feat_stride = [16, ] anchor_scales = [4, 8, 16, 32] def __init__(self): super(RPN, self).__init__() self.features = vgg16() self.features = nn.DataParallel(self.features) self.conv1 = nn.DataParallel(Conv2d(512, 512, 3, same_padding=True)) self.score_conv = nn.DataParallel(Conv2d( 512, len(self.anchor_scales) * 3 * 2, 1, relu=False)) self.bbox_conv = nn.DataParallel(Conv2d( 512, len(self.anchor_scales) * 3 * 4, 1, relu=False)) self.anchor_target_layer = AnchorTargerLayer( self._feat_stride, self.anchor_scales) self.proposal_layer = ProposalLayer( self._feat_stride, self.anchor_scales) def _computer_forward(self, im_data): """Calculate forward Parameters ---------- im_data : :class:`torch.tensor` image as tensor Returns ------- (:class:`torch.tensor`, :class:`torch.tensor`, :class:`torch.tensor`) Return feature map, proposal boxes refine values w.r.t to each anchors, probability that anchors is foreground """ features = self.features(im_data) # (N, 512, W, H) rpn_conv1 = self.conv1(features) # (N, 512, W, H) # rpn score rpn_cls_score = self.score_conv(rpn_conv1) # (N, A * 2, W, H) # rpn boxes rpn_bbox_pred = self.bbox_conv(rpn_conv1) return features, rpn_bbox_pred, rpn_cls_score def forward(self, im_data, im_info, gt_boxes=None, gt_boxes_index=[]): """Forward Parameters ---------- im_data : TYPE Description im_info : TYPE Description gt_boxes : None, optional Description gt_boxes_index : list, optional Description Returns ------- tuple(features, rois) Return the features map and list of rois. """ im_data = im_data.to(torch.device('cuda')) features, rpn_bbox_pred, rpn_cls_score = self._computer_forward( im_data) batch_size = features.shape[0] # rpn_cls_score : batch ,(num_anchors * 2) , h ,w = 1 , (4 * 3 * 2) , h , w rpn_cls_score_reshape = rpn_cls_score.view( batch_size, 2, -1, rpn_cls_score.shape[-1]) # batch , 2 , (num_anchors*h) , w rpn_cls_prob = F.softmax(rpn_cls_score_reshape, dim=1) rpn_cls_prob_reshape = rpn_cls_prob.view_as( rpn_cls_score) # batch , h , w , (num_anchors * 2) cfg_key = 'TRAIN' if self.training else 'TEST' rois = self.proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, cfg_key) if self.training: assert gt_boxes is not None # list GT boxes target = self.anchor_target_layer( rpn_cls_score, gt_boxes, gt_boxes_index, im_info) # self.cross_entropy, self.loss_box = self.build_loss( # rpn_cls_score_reshape, rpn_bbox_pred, target) else: target = None return features, rois, rpn_cls_prob_reshape, rpn_bbox_pred, target @staticmethod def build_loss(rpn_cls_score_reshape, rpn_bbox_pred, target): # classification loss rpn_cls_score = rpn_cls_score_reshape.permute( 0, 2, 3, 1).contiguous().view(-1, 2) # batch * h * w * a , 2 rpn_label = target[0].permute(0, 2, 3, 1).contiguous().view(-1) rpn_keep = torch.tensor( rpn_label.data.ne(-1).nonzero().squeeze()).cuda() rpn_cls_score = torch.index_select(rpn_cls_score, 0, rpn_keep) rpn_label = torch.index_select(rpn_label, 0, rpn_keep) rpn_cross_entropy = F.cross_entropy(rpn_cls_score, rpn_label) # box loss rpn_bbox_targets, rpn_bbox_inside_weights, bbox_outside_weights = target[1:] rpn_loss_box = smooth_l1_loss( rpn_bbox_pred, rpn_bbox_targets, rpn_bbox_inside_weights, bbox_outside_weights, sigma=3.0, dim=[1, 2, 3]) return rpn_cross_entropy, rpn_loss_box def predict_rois(self, im_data, im_info): self.eval() _, rois = self(im_data, im_info) return rois class FastRCNN(nn.Module): """docstring for FasterRCNN Attributes ---------- bbox_fc : TYPE Description classes : TYPE Description cross_entropy : TYPE Description debug : TYPE Description fc6 : TYPE Description fc7 : TYPE Description loss_box : TYPE Description MAX_SIZE : int Description n_classes : TYPE Description proposal_target_layer : TYPE Description roi_pool : TYPE Description rpn : TYPE Description SCALES : tuple Description score_fc : TYPE Description """ SCALES = (600, ) MAX_SIZE = 1000 def __init__(self, classes, debug=False): super(FastRCNN, self).__init__() assert classes is not None self.classes = classes self.n_classes = len(classes) # self.features = vgg16() self.rpn = RPN() self.proposal_target_layer = ProposalTargetLayer(self.n_classes) self.roi_pool = RoIPool(7, 7, 1.0 / 16) self.fc6 = nn.DataParallel(FC(512 * 7 * 7, 4096)) self.fc7 = nn.DataParallel(FC(4096, 4096)) self.score_fc = nn.DataParallel(FC(4096, self.n_classes, relu=False)) self.bbox_fc = nn.DataParallel( FC(4096, self.n_classes * 4, relu=False)) self.debug = debug def forward(self, im_data, im_info, gt_boxes=None, gt_boxes_index=[]): """Summary Parameters ---------- im_data : TYPE Description im_info : TYPE Description gt_boxes : None, optional Description gt_boxes_index : list, optional Description Returns ------- TYPE Description """ features, rois, rpn_cls_prob_reshape, rpn_bbox_pred, rpn_target = self.rpn( im_data, im_info, gt_boxes, gt_boxes_index) if self.training: target = self.proposal_target_layer( rois, gt_boxes, gt_boxes_index) rois = target[0] else: target = None rois = rois.reshape(-1, 5).type(torch.FloatTensor).to(torch.device("cuda")) # Roi pool pooled_features = self.roi_pool(features, rois) x = pooled_features.view(pooled_features.size()[0], -1) x = self.fc6(x) x = F.dropout(x, training=self.training) x = self.fc7(x) x = F.dropout(x, training=self.training) cls_score = self.score_fc(x) cls_prob = F.softmax(cls_score, dim=1) bbox_pred = self.bbox_fc(x) return cls_prob, bbox_pred, rois, cls_score, target, rpn_cls_prob_reshape, rpn_bbox_pred, rpn_target @staticmethod def build_loss(cls_score, bbox_pred, target): label = target[1].squeeze() fg_cnt = torch.sum(label.data.ne(0)) bg_cnt = label.data.numel() - fg_cnt ce_weights = torch.ones(cls_score.size()[1]) ce_weights[0] = float(fg_cnt.item()) / bg_cnt.item() ce_weights = ce_weights.cuda() cross_entropy = F.cross_entropy(cls_score, label, weight=ce_weights) bbox_targets, bbox_inside_weights, bbox_outside_weights = target[2:] loss_box = smooth_l1_loss( bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights, dim=[1]) return cross_entropy, loss_box def interpret(self, cls_prob, bbox_pred, rois, im_info, im_shape, nms=True, clip=True, min_score=0.0): # find class scores, inds = cls_prob.data.max(1) scores, inds = scores.cpu().numpy(), inds.cpu().numpy() keep = np.where((inds > 0) & (scores >= min_score)) scores, inds = scores[keep], inds[keep] # Apply bounding-box regression deltas keep = keep[0] box_deltas = bbox_pred.data.cpu().numpy()[keep] box_deltas = np.asarray([ box_deltas[i, (inds[i] * 4): (inds[i] * 4 + 4)] for i in range(len(inds)) ], dtype=np.float) boxes = rois.data.cpu().numpy()[keep, 1:5] if len(boxes) == 0: return
np.array([])
numpy.array
"""Split-Mix Federated Learning""" import sys, os, argparse, copy, time import numpy as np import wandb from tqdm import tqdm import torch from torch import nn, optim from torch.nn.modules.batchnorm import _NormBase # federated from federated.learning import train_slimmable, test, fed_test_model, refresh_bn, test_dbn # model and data from nets.models import ScalableModule from nets.slimmable_models import EnsembleNet, EnsembleSubnet # utils from utils.utils import set_seed, AverageMeter, CosineAnnealingLR, \ MultiStepLR, LocalMaskCrossEntropyLoss, str2bool from utils.config import CHECKPOINT_ROOT # NOTE import desired federation from federated.core import SplitFederation as Federation, AdversaryCreator def render_run_name(args, exp_folder): """Return a unique run_name from given args.""" if args.model == 'default': args.model = {'Digits': 'ens_digit', 'Cifar10': 'ens_preresnet18', 'DomainNet': 'ens_alex'}[args.data] run_name = f'{args.model}' run_name += Federation.render_run_name(args) # log non-default args if args.seed != 1: run_name += f'__seed_{args.seed}' # opt if args.lr_sch != 'none': run_name += f'__lrs_{args.lr_sch}' if args.opt != 'sgd': run_name += f'__opt_{args.opt}' if args.batch != 32: run_name += f'__batch_{args.batch}' if args.wk_iters != 1: run_name += f'__wk_iters_{args.wk_iters}' # slimmable if args.no_track_stat: run_name += f"__nts" # split-mix if not args.rescale_init: run_name += '__nri' if not args.rescale_layer: run_name += '__nrl' if args.loss_temp != 'none': run_name += f'__lt{args.loss_temp}' if args.lbn: run_name += '__lbn' # adv train if args.adv_lmbd > 0: run_name += f'__at{args.adv_lmbd}' args.save_path = os.path.join(CHECKPOINT_ROOT, exp_folder) if not os.path.exists(args.save_path): os.makedirs(args.save_path) SAVE_FILE = os.path.join(args.save_path, run_name) return run_name, SAVE_FILE def get_model_fh(data, model, atom_slim_ratio): # FIXME Only use EnsembleNet or Slimmable model. if data == 'Digits': if model in ['digit']: from nets.slimmable_models import SlimmableDigitModel # TODO remove. Function the same as ens_digit ModelClass = SlimmableDigitModel elif model == 'ens_digit': from nets.models import DigitModel ModelClass = lambda **kwargs: EnsembleNet( base_net=DigitModel, atom_slim_ratio=atom_slim_ratio, rescale_init=args.rescale_init, rescale_layer=args.rescale_layer, **kwargs) else: raise ValueError(f"Invalid model: {model}") elif data in ['DomainNet']: if model in ['alex']: from nets.slimmable_models import SlimmableAlexNet ModelClass = SlimmableAlexNet elif model == 'ens_alex': from nets.models import AlexNet ModelClass = lambda **kwargs: EnsembleNet( base_net=AlexNet, atom_slim_ratio=atom_slim_ratio, rescale_init=args.rescale_init, rescale_layer=args.rescale_layer, **kwargs) else: raise ValueError(f"Invalid model: {model}") elif data == 'Cifar10': if model in ['preresnet18']: # From heteroFL from nets.HeteFL.slimmable_preresne import resnet18 ModelClass = resnet18 elif model in ['ens_preresnet18']: if args.no_track_stat: # FIXME remove on release from nets.HeteFL.preresne import resnet18 else: from nets.HeteFL.preresnet import resnet18 ModelClass = lambda **kwargs: EnsembleNet( base_net=resnet18, atom_slim_ratio=atom_slim_ratio, rescale_init=args.rescale_init, rescale_layer=args.rescale_layer, **kwargs) else: raise ValueError(f"Invalid model: {model}") else: raise ValueError(f"Unknown dataset: {data}") return ModelClass def fed_test(fed, running_model, verbose, adversary=None, val_mix_model=None): mark = 's' if adversary is None else 'r' val_acc_list = [None for _ in range(fed.client_num)] val_loss_mt = AverageMeter() slim_val_acc_mt = {slim_ratio: AverageMeter() for slim_ratio in fed.val_slim_ratios} for client_idx in range(fed.client_num): fed.download(running_model, client_idx) for i_slim_ratio, slim_ratio in enumerate(fed.val_slim_ratios): # Load and set slim ratio if isinstance(running_model, EnsembleNet): running_model.switch_slim_mode(slim_ratio) val_mix_model = running_model else: # FIXME ad-hoc for SlimmableNet running_model.switch_slim_mode(1.0) # full net should load the full net val_mix_model.full_net.load_state_dict(running_model.state_dict()) val_mix_model.set_total_slim_ratio(slim_ratio) # Test if running_model.bn_type.startswith('d'): val_loss, val_acc = test_dbn(val_mix_model, val_loaders[client_idx], loss_fun, device, adversary=adversary, att_BNn=True, detector='gt') else: val_loss, val_acc = test(val_mix_model, val_loaders[client_idx], loss_fun, device, adversary=adversary) # Log val_loss_mt.append(val_loss) val_acc_list[client_idx] = val_acc # NOTE only record the last slim_ratio. if verbose > 0: print(' {:<19s} slim {:.2f}| Val {:s}Loss: {:.4f} | Val {:s}Acc: {:.4f}'.format( 'User-' + fed.clients[client_idx] if i_slim_ratio == 0 else ' ', slim_ratio, mark.upper(), val_loss, mark.upper(), val_acc)) wandb.log({ f"{fed.clients[client_idx]} sm{slim_ratio:.2f} val_s-acc": val_acc, }, commit=False) if slim_ratio == fed.user_max_slim_ratios[client_idx]: wandb.log({ f"{fed.clients[client_idx]} val_{mark}-acc": val_acc, }, commit=False) slim_val_acc_mt[slim_ratio].append(val_acc) slim_val_acc_dict = {k: mt.avg if len(mt) > 0 else None for k, mt in slim_val_acc_mt.items()} wandb.log({ f"slim{k:.2f} val_sacc": acc for k, acc in slim_val_acc_dict.items() }, commit=False) return val_acc_list, val_loss_mt.avg if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') np.seterr(all='raise') # make sure warning are raised as exception parser = argparse.ArgumentParser() # basic problem setting parser.add_argument('--seed', type=int, default=1, help='random seed') parser.add_argument('--data', type=str, default='Digits', help='data name') parser.add_argument('--model', type=str.lower, default='default', help='model name') parser.add_argument('--no_track_stat', action='store_true', help='disable BN tracking') parser.add_argument('--test_refresh_bn', action='store_true', help='refresh BN before test') # control parser.add_argument('--no_log', action='store_true', help='disable wandb log') parser.add_argument('--test', action='store_true', help='test the pretrained model') parser.add_argument('--resume', action='store_true', help='resume training from checkpoint') parser.add_argument('--verbose', type=int, default=0, help='verbose level: 0 or 1') # federated Federation.add_argument(parser) # optimization parser.add_argument('--lr', type=float, default=1e-2, help='learning rate') parser.add_argument('--lr_sch', type=str, default='none', help='learning rate schedule') parser.add_argument('--opt', type=str.lower, default='sgd', help='optimizer') parser.add_argument('--iters', type=int, default=300, help='#iterations for communication') parser.add_argument('--wk_iters', type=int, default=1, help='#epochs in local train') # slimmable test parser.add_argument('--test_slim_ratio', type=float, default=1., help='slim_ratio of model at testing.') parser.add_argument('--sort_bases', action='store_true', help='sort base models by val acc.') # split-mix parser.add_argument('--rescale_init', type=str2bool, default=True, help='rescale init after slim') parser.add_argument('--rescale_layer', type=str2bool, default=True, help='rescale layer outputs after slim') parser.add_argument('--loss_temp', type=str, default='none', help='temper cross-entropy loss (str|float):' ' auto - set temp as the width scale; none - no temper; ' 'other float values.') parser.add_argument('--lbn', type=str2bool, default=False, help='use client-local BN stats (valid if tracking stats)') # adversarial train parser.add_argument('--adv_lmbd', type=float, default=0., help='adv coefficient in [0,1]; default 0 for standard training.') parser.add_argument('--test_noise', choices=['none', 'LinfPGD'], default='none') parser.add_argument('--test_adv_lmbd', type=float, default=0.) args = parser.parse_args() set_seed(args.seed) # set experiment files, wandb exp_folder = f'SplitMix_{args.data}' run_name, SAVE_FILE = render_run_name(args, exp_folder) wandb.init(group=run_name[:120], project=exp_folder, mode='offline' if args.no_log else 'online', config={**vars(args), 'save_file': SAVE_FILE}) # ///////////////////////////////// # ///// Fed Dataset and Model ///// # ///////////////////////////////// fed = Federation(args.data, args) # Data train_loaders, val_loaders, test_loaders = fed.get_data() mean_batch_iters = int(np.mean([len(tl) for tl in train_loaders])) print(f" mean_batch_iters: {mean_batch_iters}") # Model ModelClass = get_model_fh(args.data, args.model, args.atom_slim_ratio) running_model = ModelClass( track_running_stats=not args.no_track_stat or (args.test and args.test_refresh_bn), num_classes=fed.num_classes, bn_type='dbn' if 0. < args.adv_lmbd < 1. else 'bn', slimmable_ratios=fed.train_slim_ratios, ).to(device) # mixed model for validation. val_mix_model = running_model if isinstance(running_model, EnsembleNet) \ else EnsembleSubnet(copy.deepcopy(running_model), args.atom_slim_ratio) # adversary if args.adv_lmbd > 0. or args.test: assert isinstance(running_model, EnsembleNet), "Did not create adv for val_mix_model" make_adv = AdversaryCreator(args.test_noise if args.test else 'LinfPGD') adversary = make_adv(running_model) else: adversary = None # Loss if args.pu_nclass > 0: # niid loss_fun = LocalMaskCrossEntropyLoss(fed.num_classes) else: loss_fun = nn.CrossEntropyLoss() # Use running model to init a fed aggregator fed.make_aggregator(running_model, local_bn=args.lbn) # ///////////////// # //// Resume ///// # ///////////////// # log the best for each model on all datasets best_epoch = 0 best_acc = [0. for j in range(fed.client_num)] train_elapsed = [[] for _ in range(fed.client_num)] start_epoch = 0 if args.resume or args.test: if os.path.exists(SAVE_FILE): print(f'Loading chkpt from {SAVE_FILE}') checkpoint = torch.load(SAVE_FILE) best_epoch, best_acc = checkpoint['best_epoch'], checkpoint['best_acc'] train_elapsed = checkpoint['train_elapsed'] start_epoch = int(checkpoint['a_iter']) + 1 fed.model_accum.load_state_dict(checkpoint['server_model']) print('Resume training from epoch {} with best acc:'.format(start_epoch)) for client_idx, acc in enumerate(best_acc): print(' Best user-{:<10s}| Epoch:{} | Val Acc: {:.4f}'.format( fed.clients[client_idx], best_epoch, acc)) else: if args.test: raise FileNotFoundError(f"Not found checkpoint at {SAVE_FILE}") else: print(f"Not found checkpoint at {SAVE_FILE}\n **Continue without resume.**") # /////////////// # //// Test ///// # /////////////// if args.test: wandb.summary[f'best_epoch'] = best_epoch # wandb.summary[f'per_epoch_train_elapsed'] = np.sum([np.mean(client_ts) for client_ts in train_elapsed]) # val to select base models if args.sort_bases and isinstance(running_model, EnsembleNet): base_accs = [] print(f"Evaluate base models..") for base_idx in tqdm(range(fed.num_base), file=sys.stdout): running_model.switch_slim_mode(fed.args.atom_slim_ratio, base_idx) val_acc = fed_test_model(fed, running_model, val_loaders, loss_fun, device) base_accs.append(val_acc) print(f" Base Accs: {', '.join([f'{a:.3f}' for a in base_accs])}") base_idxs = np.argsort(base_accs)[::-1] print(f" Sorted base indexes: {base_idxs}") running_model.base_idxs = base_idxs # fed.download() # Set up model with specified width print(f" Test model: {args.model} x{args.test_slim_ratio} lmbd{args.test_adv_lmbd}" + ('' if args.test_noise == 'none' else f' with {args.test_noise} noise')) assert args.atom_slim_ratio > 0, "When ensemble, the atom ratio has to be defined by" \ f" args.slim_ratio > 0. But got {args.atom_slim_ratio}" print(f" Ensemble {int(args.test_slim_ratio / args.atom_slim_ratio)} " f"{args.atom_slim_ratio} base nets") if not isinstance(running_model, EnsembleNet): assert args.adv_lmbd == 0, "Not create adversary for EnsembleSubnet." running_model.switch_slim_mode(1.) test_model = EnsembleSubnet(running_model, subnet_ratio=args.atom_slim_ratio, ensemble_num=int( args.test_slim_ratio / args.atom_slim_ratio)) else: running_model.switch_slim_mode(args.test_slim_ratio) test_model = running_model # Test on clients if isinstance(running_model, EnsembleNet): print(f"### current slice: {running_model.current_slice()}") test_acc_mt = AverageMeter() for test_idx, test_loader in enumerate(test_loaders): fed.download(running_model, test_idx, strict=not args.test_refresh_bn) if running_model.bn_type.startswith('d'): _, test_acc = test_dbn(test_model, test_loader, loss_fun, device, adversary=adversary, detector='clean', # FIXME does this really matter? att_BNn=True, # args.te_att_BNn, # FIXME we shall remove this since we will attack the mixed output. adversary_name=args.test_noise, mix_dual_logit_lmbd=args.test_adv_lmbd, attack_mix_dual_logit_lmbd=args.test_adv_lmbd, deep_mix=True, ) else: if args.test_refresh_bn: # test_model.base_net.rescale_layer = False def set_rescale_layer_and_bn(m): if isinstance(m, ScalableModule): m.rescale_layer = False if isinstance(m, _NormBase): m.reset_running_stats() m.momentum = None test_model.apply(set_rescale_layer_and_bn) for ep in tqdm(range(20), desc='refresh bn', leave=False): refresh_bn(test_model, train_loaders[test_idx], device) _, test_acc = test(test_model, test_loader, loss_fun, device, adversary=adversary) print(' {:<11s}| Test Acc: {:.4f}'.format(fed.clients[test_idx], test_acc)) wandb.summary[f'{fed.clients[test_idx]} test acc'] = test_acc test_acc_mt.append(test_acc) # Profile model FLOPs, sizes (#param) from nets.profile_func import profile_model flops, params = profile_model(test_model, device=device) wandb.summary['GFLOPs'] = flops / 1e9 wandb.summary['model size (MB)'] = params / 1e6 print('GFLOPS: %.4f, model size: %.4fMB' % (flops / 1e9, params / 1e6)) print(f"\n Average Test Acc: {test_acc_mt.avg}") wandb.summary[f'avg test acc'] = test_acc_mt.avg wandb.finish() exit(0) # //////////////// # //// Train ///// # //////////////// # LR scheduler if args.lr_sch == 'cos': lr_sch = CosineAnnealingLR(args.iters, eta_max=args.lr, last_epoch=start_epoch) elif args.lr_sch == 'multi_step': lr_sch = MultiStepLR(args.lr, milestones=[150, 250], gamma=0.1, last_epoch=start_epoch) elif args.lr_sch == 'multi_step50': lr_sch = MultiStepLR(args.lr, milestones=[150+50, 250+50], gamma=0.1, last_epoch=start_epoch) elif args.lr_sch == 'multi_step100': lr_sch = MultiStepLR(args.lr, milestones=[150+100, 250+100], gamma=0.1, last_epoch=start_epoch) else: assert args.lr_sch == 'none', f'Invalid lr_sch: {args.lr_sch}' lr_sch = None shift_tr_cnt_mt = [0 for _ in range(fed.num_base)] # count of trained times for each base model for a_iter in range(start_epoch, args.iters): # set global lr global_lr = args.lr if lr_sch is None else lr_sch.step() wandb.log({'global lr': global_lr}, commit=False) # ----------- Train Client --------------- train_loss_mt, train_acc_mt = AverageMeter(), AverageMeter() print("============ Train epoch {} ============".format(a_iter)) for client_idx in fed.client_sampler.iter(): # (Alg 2) Sample base models defined by shift index. slim_ratios, slim_shifts = fed.sample_bases(client_idx) start_time = time.process_time() # Download global model to local fed.download(running_model, client_idx) # (Alg 3) Local Train if args.opt == 'sgd': optimizer = optim.SGD(params=running_model.parameters(), lr=global_lr, momentum=0.9, weight_decay=5e-4) elif args.opt == 'adam': optimizer = optim.Adam(params=running_model.parameters(), lr=global_lr) else: raise ValueError(f"Invalid optimizer: {args.opt}") local_iters = mean_batch_iters * args.wk_iters if args.partition_mode != 'uni' \ else len(train_loaders[client_idx]) * args.wk_iters train_loss, train_acc = train_slimmable( running_model, train_loaders[client_idx], optimizer, loss_fun, device, max_iter=local_iters, slim_ratios=slim_ratios, slim_shifts=slim_shifts, progress=args.verbose > 0, loss_temp=args.loss_temp, adversary=adversary, adv_lmbd=args.adv_lmbd, att_BNn=True, ) # Upload fed.upload(running_model, client_idx, max_slim_ratio=max(slim_ratios), slim_bias_idx=slim_shifts) # Log client_name = fed.clients[client_idx] elapsed = time.process_time() - start_time wandb.log({f'{client_name}_train_elapsed': elapsed}, commit=False) train_elapsed[client_idx].append(elapsed) train_loss_mt.append(train_loss), train_acc_mt.append(train_acc) for slim_shift in slim_shifts: shift_tr_cnt_mt[slim_shift] += 1 print(f' User-{client_name:<10s} Train | Loss: {train_loss:.4f} |' f' Acc: {train_acc:.4f} | Elapsed: {elapsed:.2f} s') wandb.log({ f"{client_name} train_loss": train_loss, f"{client_name} train_acc": train_acc, }, commit=False) # Use accumulated model to update server model fed.aggregate() # ----------- Validation --------------- val_acc_list, val_loss = fed_test( fed, running_model, args.verbose, val_mix_model=val_mix_model, adversary=None) if args.adv_lmbd > 0: print(f' Avg Val SAcc {np.mean(val_acc_list) * 100:.2f}%') wandb.log({'val_sacc': np.mean(val_acc_list)}, commit=False) val_racc_list, val_rloss = fed_test( fed, running_model, args.verbose, val_mix_model=val_mix_model, adversary=adversary) print(f' Avg Val RAcc {np.mean(val_racc_list) * 100:.2f}%') wandb.log({'val_racc': np.mean(val_racc_list)}, commit=False) val_acc_list = [(1-args.adv_lmbd) * sa_ + args.adv_lmbd * ra_ for sa_, ra_ in zip(val_acc_list, val_racc_list)] val_loss = (1-args.adv_lmbd) * val_loss + args.adv_lmbd * val_rloss # Log averaged print(f' [Overall] Train Loss {train_loss_mt.avg:.4f} Acc {train_acc_mt.avg*100:.1f}% ' f'| Val Acc {np.mean(val_acc_list)*100:.2f}%') wandb.log({ f"train_loss": train_loss_mt.avg, f"train_acc": train_acc_mt.avg, f"val_loss": val_loss, f"val_acc": np.mean(val_acc_list), }, commit=False) wandb.log({ f"shift{s} train cnt": cnt for s, cnt in enumerate(shift_tr_cnt_mt) }, commit=False) # ----------- Save checkpoint ----------- if np.mean(val_acc_list) > np.mean(best_acc): best_epoch = a_iter for client_idx in range(fed.client_num): best_acc[client_idx] = val_acc_list[client_idx] if args.verbose > 0: print(' Best site-{:<10s}| Epoch:{} | Val Acc: {:.4f}'.format( fed.clients[client_idx], best_epoch, best_acc[client_idx])) print(' [Best Val] Acc {:.4f}'.format(np.mean(val_acc_list))) # Save print(f' Saving the local and server checkpoint to {SAVE_FILE}') save_dict = { 'server_model': fed.model_accum.state_dict(), 'best_epoch': best_epoch, 'best_acc': best_acc, 'a_iter': a_iter, 'all_domains': fed.all_domains, 'train_elapsed': train_elapsed, } torch.save(save_dict, SAVE_FILE) wandb.log({ f"best_val_acc":
np.mean(best_acc)
numpy.mean
import numpy as np import SBCcode as sbc import os import re import time import copy import sys import gc from SBCcode.AnalysisModules.EventDealer import BuildEventList as bevl from SBCcode.AnalysisModules.TimingAnalysis import TimingAnalysis as ta from SBCcode.DataHandling.GetSBCEvent import GetEvent as get_event from SBCcode.DataHandling.WriteBinary import WriteBinaryNtupleFile as wb datadir = '/bluearc/storage/SBC-17-data' recondir_pmt = '/pnfs/coupp/persistent/grid_output/SBC-17/output' recondir_aa = '/pnfs/coupp/persistent/grid_output/SBC-17-T0Test3/output' recondir_xyz = '/pnfs/coupp/persistent/grid_output/SBC-17/output' recondir_output = '/pnfs/coupp/persistent/grid_output/SBC-17-T0Test3/output' runlist = os.listdir(recondir_pmt) runlist = filter(lambda fn: (not re.search('^\d+_\d+$', fn) is None) and os.path.isdir(os.path.join(datadir, fn)), runlist) runlist = filter(lambda fn: os.path.exists(os.path.join(recondir_pmt, *[fn, 'PMTpulseAnalysis_' + fn + '.bin'])), runlist) runlist = filter(lambda fn: os.path.exists(os.path.join(recondir_aa, *[fn, 'AcousticAnalysis_' + fn + '.bin'])), runlist) runlist = filter(lambda fn: not os.path.exists(os.path.join(recondir_aa, *[fn, 'TimingAnalysis_' + fn + '.bin'])), runlist) xyz = sbc.read_bin(os.path.join(recondir_xyz, 'SimpleXYZ_all.bin')) runlist = filter(lambda fn: np.any(np.all(xyz['runid']==np.int32(fn.split('_')),axis=1)), runlist) timing_default = ta(None, None, None) for runname in runlist: rundir = os.path.join(datadir, runname) evlist = bevl(rundir) runid_str = runname.split('_') runid = np.int32(runid_str) timing_out = [] pmtpa = None gc.collect() try: pmtpa = sbc.read_bin(os.path.join(recondir_pmt, *[runname, 'PMTpulseAnalysis_' + runname + '.bin']), 5000) except: print('could not load pmtpa') sys.stdout.flush() continue aa = sbc.read_bin(os.path.join(recondir_aa, *[runname, 'AcousticAnalysis_' + runname + '.bin'])) for ev in evlist: t0 = time.time() print('Starting event ' + runname + '/' + str(ev)) npev = np.array([ev], dtype=np.int32) try: thisevent = get_event(rundir, ev, 'fastDAQ') except: timing_out.append(copy.deepcopy(timing_default)) timing_out[-1]['runid'] = runid timing_out[-1]['ev'] = npev print('Failed to load event, skpping') sys.stdout.flush() continue print('Time to load event: '.rjust(35) + str(time.time() - t0) + ' seconds') sys.stdout.flush() xyzcut = np.all(xyz['runid'] == runid, axis=1) * (xyz['ev'] == npev) if np.any(xyzcut): thisxyz = dict(bubZ=xyz['bubZ'][xyzcut][0]) else: thisxyz = [] print('Whoa, no xyz for this event') aacut =
np.all(aa['runid'] == runid, axis=1)
numpy.all
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from scipy.stats import norm import tensorflow.contrib.slim as slim from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data") # , one_hot=True) tf.reset_default_graph() # the model of teacher def classifier_teacher(x): reuse = len([t for t in tf.global_variables() if t.name.startswith("teacher")]) > 0 with tf.variable_scope("teacher", reuse=reuse): x = tf.reshape(x, shape=[-1, 28, 28, 1]) x = slim.conv2d( x, num_outputs=64, kernel_size=[4, 4], stride=2, activation_fn=leaky_relu ) x = slim.conv2d( x, num_outputs=128, kernel_size=[4, 4], stride=2, activation_fn=leaky_relu ) x = slim.flatten(x) x = slim.fully_connected(x, num_outputs=1024, activation_fn=leaky_relu) xx = slim.fully_connected(x, num_outputs=10, activation_fn=None) x = leaky_relu(xx) print("cla", x.get_shape()) return x, xx # the model of student def classifier_student(x): reuse = len([t for t in tf.global_variables() if t.name.startswith("student")]) > 0 with tf.variable_scope("student", reuse=reuse): # x = tf.reshape(x, shape=[-1, 28, 28, 1]) x = slim.flatten(x) x = slim.fully_connected(x, num_outputs=50, activation_fn=leaky_relu) x = slim.fully_connected(x, num_outputs=10, activation_fn=leaky_relu) print("cla_student", x.get_shape()) return x def classifier_student_copy(x): reuse = ( len([t for t in tf.global_variables() if t.name.startswith("student_copy")]) > 0 ) with tf.variable_scope("student_copy", reuse=reuse): # x = tf.reshape(x, shape=[-1, 28, 28, 1]) x = slim.flatten(x) x = slim.fully_connected(x, num_outputs=80, activation_fn=leaky_relu) x = slim.fully_connected(x, num_outputs=40, activation_fn=leaky_relu) x = slim.fully_connected(x, num_outputs=10, activation_fn=leaky_relu) print("cla_student_copy", x.get_shape()) return x def classifier_student_copy1(x): reuse = ( len([t for t in tf.global_variables() if t.name.startswith("student_copy1")]) > 0 ) with tf.variable_scope("student_copy1", reuse=reuse): # x = tf.reshape(x, shape=[-1, 28, 28, 1]) x = slim.flatten(x) x = slim.fully_connected(x, num_outputs=80, activation_fn=leaky_relu) x = slim.fully_connected(x, num_outputs=40, activation_fn=leaky_relu) x = slim.fully_connected(x, num_outputs=10, activation_fn=leaky_relu) print("cla_student_copy", x.get_shape()) return x def leaky_relu(x): return tf.where(tf.greater(x, 0), x, 0.01 * x) # knowledge distillation def softmax_with_temperature(logits, temperature): x = logits / temperature expx = np.exp(x).T sum_exp = np.sum(expx, axis=0) x = (expx / sum_exp).T return x weigth = np.zeros([28, 28]) for i in range(0, 28): for j in range(0, 28): weigth[i][j] = np.sqrt(np.sqrt(np.square(i - 13.5) + np.square(j - 13.5))) mask_weight = np.reshape(weigth, (-1, 784)) mask_weight = 5 / mask_weight n_input = 784 classes_dim = 10 triggle_dim = 5 n_input = 784 classes_dim = 10 triggle_dim = 5 x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.int64, [None]) yy = tf.placeholder(tf.float32, [None, 10]) yin = tf.concat([tf.one_hot(y, depth=classes_dim)], 0) target_label = tf.ones([triggle_dim], tf.int64) with tf.variable_scope("t_trigger"): trigger = tf.Variable( np.random.rand(n_input).astype(dtype=np.float32), dtype=tf.float32 ) mask = tf.Variable(np.random.rand(n_input).astype(dtype=np.float32), dtype=tf.float32) apply_mask = tf.clip_by_value(mask, 0, 1) apply_trigger = tf.clip_by_value(trigger, 0, 1) gen_f = tf.reshape(apply_trigger, shape=[-1, 784]) apply_trigger_coupe = tf.tile(gen_f, [triggle_dim, 1]) input_trigger = (1 - apply_mask) * x[0:triggle_dim] + apply_mask * apply_trigger_coupe y_class = tf.concat([tf.one_hot(target_label, depth=classes_dim)], 0) apply_test_trigger = tf.tile(gen_f, [1000, 1]) input_trigger_test = (1 - apply_mask) * x + apply_mask * apply_test_trigger yin_test = tf.ones([1000], tf.int64) y_class_test = tf.concat([tf.one_hot(yin_test, depth=1000)], 0) tea_logit, tea_soft = classifier_teacher(x) stu_logit = classifier_student(x) tea_trigger, _ = classifier_teacher(input_trigger) tea_tri_test, _ = classifier_teacher(input_trigger_test) stu_trigger = classifier_student(input_trigger) stu_tri_test = classifier_student(input_trigger_test) stu_clean = classifier_student_copy(x) stu_tri_copy = classifier_student_copy(input_trigger) stu_tri = classifier_student_copy(input_trigger_test) stu_clean_1 = classifier_student_copy1(x) stu_tri_1 = classifier_student_copy1(input_trigger_test) # test accuracy accuracy_tea = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(tea_logit, 1), y), tf.float32)) accuracy_stu = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(stu_logit, 1), y), tf.float32)) accuracy_tea_tri = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(tea_tri_test, 1), yin_test), tf.float32) ) accuracy_stu_tri = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(stu_tri_test, 1), yin_test), tf.float32) ) accuracy_stu_copy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(stu_clean, 1), y), tf.float32) ) accuracy_stu_tri_copy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(stu_tri, 1), yin_test), tf.float32) ) accuracy_stu_copy_1 = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(stu_clean, 1), y), tf.float32) ) accuracy_stu_tri_copy_1 = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(stu_tri, 1), yin_test), tf.float32) ) # the loss function loss_teacher = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=tea_logit, labels=yin) ) + tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=tea_trigger, labels=y_class) ) loss_tea_stu_tir = ( tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=tea_trigger, labels=y_class) ) + tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_trigger, labels=y_class) ) + tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_tri_copy, labels=y_class) ) ) loss_student = 0.8 * tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_logit / 30, labels=yy) ) + 0.2 * tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_logit, labels=yin) ) loss_trigger = tf.reduce_sum(tf.square(mask)) loss_student_copy = 0.8 * tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_clean / 30, labels=yy) ) + 0.2 * tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_clean, labels=yin) ) loss_student_copy_1 = 0.8 * tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_clean_1 / 30, labels=yy) ) + 0.2 * tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=stu_clean_1, labels=yin) ) # various t_vars = tf.trainable_variables() student_vars_copy_1 = [var for var in t_vars if "student_copy1" in var.name] student_vars_copy = [var for var in t_vars if "student_copy" in var.name] student_vars = [var for var in t_vars if "student" in var.name] teacher_vars = [var for var in t_vars if "teacher" in var.name] trigger_vars = [var for var in t_vars if "t_trigger" in var.name] gen_global_step = tf.Variable(0, trainable=False) global_step = tf.train.get_or_create_global_step() # the optimizer train_teacher = tf.train.AdamOptimizer(0.004).minimize( loss_teacher, var_list=teacher_vars, global_step=global_step ) train_student = tf.train.AdamOptimizer(0.001).minimize( loss_student, var_list=student_vars, global_step=gen_global_step ) train_tea_stu = tf.train.AdamOptimizer(0.0010).minimize( loss_tea_stu_tir, var_list=teacher_vars, global_step=gen_global_step ) train_trigger_min = tf.train.AdamOptimizer(0.0029).minimize( loss_trigger, var_list=trigger_vars, global_step=global_step ) train_tri_stu_tea = tf.train.AdamOptimizer(0.0035).minimize( loss_tea_stu_tir, var_list=trigger_vars, global_step=global_step ) train_student_copy = tf.train.AdamOptimizer(0.001).minimize( loss_student_copy, var_list=student_vars_copy, global_step=gen_global_step ) train_student_copy_1 = tf.train.AdamOptimizer(0.001).minimize( loss_student_copy_1, var_list=student_vars_copy_1, global_step=gen_global_step ) tf.global_variables_initializer() with tf.train.MonitoredTrainingSession( checkpoint_dir="log/mnist_mask050101" "_dynamic_and_static", save_checkpoint_secs=60 ) as sess: batch_size = 100 train_epoch = 25 total_batch = int(mnist.train.num_examples / batch_size) print( "global_step.eval(session=sess)", global_step.eval(session=sess), int(global_step.eval(session=sess) / total_batch), ) for epoch in range(int(global_step.eval(session=sess) / total_batch), train_epoch): for i in range(0, total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size) feed = {x: batch_x, y: batch_y} if epoch <= 4: loss_tea, ys, _, _ = sess.run( [loss_teacher, tea_soft, train_teacher, train_tea_stu], feed ) else: loss_tea, ys, _ = sess.run([loss_teacher, tea_soft, train_tea_stu], feed) loss_tri, loss_tri_all, _, _ = sess.run( [loss_trigger, loss_tea_stu_tir, train_tri_stu_tea, train_trigger_min], feed, ) if i % 2 == 0: batch_ys = softmax_with_temperature(ys, 30) loss_stu, _ = sess.run( [loss_student, train_student], feed_dict={x: batch_x, yy: batch_ys, y: batch_y}, ) _, stu_cop = sess.run( [train_student_copy, loss_student_copy], feed_dict={x: batch_x, yy: batch_ys, y: batch_y}, ) if i % 40 == 0: print("epoch:", epoch, "iter:", i) print( "teacher_loss:", loss_tea, " student_loss:", loss_stu, " student_loss_copy:", stu_cop, "trigger_size:", loss_tri, "all_tri_loss:", loss_tri_all, ) print( "accuracy_teacher", accuracy_tea.eval( {x: mnist.test.images[0:1000], y: mnist.test.labels[0:1000]}, session=sess ), ) print( "accuracy_teacher_tri", accuracy_tea_tri.eval({x: mnist.test.images[0:1000]}, session=sess), ) print( "accuracy_student", accuracy_stu.eval( {x: mnist.test.images[0:1000], y: mnist.test.labels[0:1000]}, session=sess ), ) print( "accuracy_student_tri", accuracy_stu_tri.eval({x: mnist.test.images[0:1000]}, session=sess), ) print( "accuracy_copy", accuracy_stu_copy.eval( {x: mnist.test.images[0:1000], y: mnist.test.labels[0:1000]}, session=sess ), ) print( "accuracy_copy_tri", accuracy_stu_tri_copy.eval({x: mnist.test.images[0:1000]}, session=sess), ) # mask_end,trigger_end = sess.run([mask,trigger]) # xa,ya = mnist.train.next_batch(2) # mask_end_to = np.clip(mask_end, 0, 1) # trigger_end_to = np.clip(trigger_end, 0, 1) # trigger_end_too = np.reshape(trigger_end_to,(-1, 784)) # pict = mask_end_to*trigger_end_too + (1-mask_end_to)*xa[0] # f, a = plt.subplots(3, 3, figsize=(5, 5)) # for i in range(1): # a[0][i].imshow(np.reshape(xa[i], (28, 28))) # a[1][i].imshow(np.reshape(pict, (28, 28))) # a[2][i].imshow(np.reshape(mask_end_to*trigger_end_to,(28,28))) # plt.draw() # if epoch>10: # plt.savefig('./trigger_mask1'+str(epoch)+'.png') # plt.show() mask_end, trigger_end = sess.run([mask, trigger]) xa, ya = mnist.train.next_batch(2) mask_end_to = np.clip(mask_end, 0, 1) trigger_end_to = np.clip(trigger_end, 0, 1) trigger_end_too = np.reshape(trigger_end_to, (-1, 784)) pict = mask_end_to * trigger_end_too + (1 - mask_end_to) * xa[0] f, a = plt.subplots(3, 3, figsize=(5, 5)) for i in range(1): a[0][i].imshow(np.reshape(xa[i], (28, 28))) a[1][i].imshow(np.reshape(pict, (28, 28))) a[2][i].imshow(
np.reshape(mask_end_to * trigger_end_to, (28, 28))
numpy.reshape
import numpy as np from scipy import stats def qqplot(data, dist=stats.distributions.norm, binom_n=None): """ qqplot of the quantiles of x versus the ppf of a distribution. Parameters ---------- data : array-like 1d data array dist : scipy.stats.distribution or string Compare x against dist. Strings aren't implemented yet. The default is scipy.stats.distributions.norm Returns ------- matplotlib figure. Examples -------- >>> import scikits.statsmodels.api as sm >>> from matplotlib import pyplot as plt >>> data = sm.datasets.longley.Load() >>> data.exog = sm.add_constant(data.exog) >>> mod_fit = sm.OLS(data.endog, data.exog).fit() >>> res = mod_fit.resid >>> std_res = (res - res.mean())/res.std() Import qqplots from the sandbox >>> from scikits.statsmodels.sandbox.graphics import qqplot >>> qqplot(std_res) >>> plt.show() Notes ----- Only the default arguments currently work. Depends on matplotlib. """ try: from matplotlib import pyplot as plt except: raise ImportError("matplotlib not installed") if isinstance(dist, str): raise NotImplementedError names_dist = {} names_dist.update({"norm_gen" : "Normal"}) plotname = names_dist[dist.__class__.__name__] x = np.array(data, copy=True) x.sort() nobs = x.shape[0] prob =
np.linspace(1./(nobs-1), 1-1./(nobs-1), nobs)
numpy.linspace
#!/usr/bin/env python """Module with class for single video""" __author__ = '<NAME>' __date__ = 'August 2018' from collections import Counter import numpy as np import math as m import os from os.path import join from ute.utils.arg_pars import opt from ute.utils.logging_setup import logger from ute.utils.util_functions import dir_check from ute.viterbi_utils.viterbi_w_lenth import Viterbi from ute.viterbi_utils.grammar import Grammar, SingleTranscriptGrammar from ute.viterbi_utils.length_model import PoissonModel class Video(object): """Single video with respective for the algorithm parameters""" def __init__(self, path, K, *, gt=[], name='', start=0, with_bg=False, frame_sampling=1): """ Args: path (str): path to video representation K (int): number of subactivities in current video collection reset (bool): necessity of holding features in each instance gt (arr): ground truth labels gt_with_0 (arr): ground truth labels with SIL (0) label name (str): short name without any extension start (int): start index in mask for the whole video collection """ self.iter = 0 self.path = path self._K = K self.name = name self._frame_sampling = frame_sampling self._likelihood_grid = None self._valid_likelihood = None self._theta_0 = 0.1 self._subact_i_mask = np.eye(self._K) self.n_frames = 0 self._features = None self.global_start = start self.global_range = None self.gt = gt self._gt_unique = np.unique(self.gt) self.features() self._check_gt() # counting of subactivities np.array self.a = np.zeros(self._K) # ordering, init with canonical ordering self._pi = list(range(self._K)) self.inv_count_v = np.zeros(self._K - 1) # subactivity per frame self._z = [] self._z_idx = [] self._init_z_framewise() # temporal labels self.temp = None self._init_temporal_labels() # background self._with_bg = with_bg self.fg_mask = np.ones(self.n_frames, dtype=bool) if self._with_bg: self._init_fg_mask() self._subact_count_update() self.segmentation = {'gt': (self.gt, None)} def features(self): """Load features given path if haven't do it before""" if self._features is None: if opt.ext == 'npy': self._features = np.load(self.path) else: self._features = np.loadtxt(self.path) ###################################### # fixed.order._coffee_mlp_!pose_full_vae0_time10.0_epochs60_embed20_n1_!ordering_gmm1_one_!gt_lr0.0001_lr_zeros_b0_v1_l0_c1_.pth.tar # if self._features.shape[-1] == 65 and opt.feature_dim == 64: # self._features = self._features[1:, 1:] # np.savetxt(self.path, self._features) # if opt.data_type == 0 and opt.dataset == 'fs': # self._features = self._features.T if opt.f_norm: # normalize features mask = np.ones(self._features.shape[0], dtype=bool) for rdx, row in enumerate(self._features): if np.sum(row) == 0: mask[rdx] = False z = self._features[mask] -
np.mean(self._features[mask], axis=0)
numpy.mean
"""Module to prepare evaluation metrics results and its visual comparisons Created on 2020-04-28 File: metrics.py ... @author: <NAME> """ from sklearn.metrics import mean_squared_error from skimage.measure import compare_ssim from numpy.linalg import norm import numpy as np import matplotlib.pyplot as plt def calculate_metrics(coh_3vg,coh): """ Function to calculate MSE and SSIM Inputs: coh_3vg: Ground truth of coherence coh: Estimated coherence Returns: mses: Mean Squared error rmse: Root mean-squared error ssim: Structural Similarity Index """ mses=mean_squared_error(coh_3vg,coh) print("MSE", mses) print("RMSE",np.sqrt(mses)) (score, diff) = compare_ssim(np.array(coh_3vg), np.array(coh), full=True) diff = (diff * 255).astype("uint8") print("SSIM: {}".format(score)) return mses,
np.sqrt(mses)
numpy.sqrt
import sys import pickle import numpy as np from PIL import Image from scipy.optimize import curve_fit from sklearn.metrics import r2_score from datetime import datetime import matplotlib.pyplot as plt from joblib import Parallel, delayed startTime = datetime.now() np.set_printoptions(threshold=sys.maxsize) def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) def read_data(img1): ''' helper function to make reading in DEMs easier ''' # this is the original DEM if img1 == "original": # img1 = Image.open('D:/01_anaktuvuk_river_fire/00_working/01_processed-data/00_study-area' # '/li-dem_1m_sa3_fill.tif') img1 = Image.open('D:/01_anaktuvuk_river_fire/00_working/01_processed-data/00_study-area/bens_data' '/ben_2009_DTM_1m_small-sa.tif') img1 = np.array(img1) # this is the microtopo image: if img1 == "detrended": # img1 = Image.open('D:/01_anaktuvuk_river_fire/00_working/01_processed-data/02_microtopography' # '/awi_2019_DTM_1m_reproj_300x300_02_microtopo_16m.tif') img1 = Image.open("D:/01_anaktuvuk_river_fire/00_working/01_processed-data/02_microtopography/" "ben_2009_DTM_1m_small-sa_detrended_16m.tif") img1 = np.array(img1) return img1 def inner(key, val, out_key): ''' fits a gaussian to every transect height profile and adds transect parameters to the dictionary. :param key: coords of trough pixel (determines center of transect) :param val: list of transect heights, coords, and directionality/type :param out_key: current edge with (s, e) :return val: updated val with: - val[5] = fwhm_gauss --> transect width - val[6] = mean_gauss --> transect depth - val[7] = cod_gauss --> r2 of fit ''' # implement the gaussian function def my_gaus(x, a, mu, sigma): return a * np.exp(-(x - mu) ** 2 / (2 * sigma ** 2)) # check if there's a transect to fit in the first place # (some transects at the image edge/corner might be empty) --> but there are none if len(val[0]) != 0: # flip the transect along x-axis to be able to fit the Gaussian data = val[0] * (-1) + np.max(val[0]) N = len(data) # number of data points (corresponds to width*2 + 1) # diagonal transects are sqrt(2) times longer than straight transects if val[2] == "diagonal": t = np.linspace(0, (len(data)) * np.sqrt(2), N) else: t = np.linspace(0, len(data) - 1, N) # provide initial guesses for the mean and sigma for fitting mean = np.argmax(data) # mean is estimated to be at the maximum point of the flipped transect # (lowest point within the trough) sigma = np.sqrt(sum(data * (t - mean) ** 2) / N) + 1 # estimate for sigma is determined via the underlying data # + 1 to avoid division by 0 for flat transects # now fit the Gaussian & raise error for those that can't be fitted try: gauss_fit = curve_fit(my_gaus, t, data, p0=[1, mean, sigma], maxfev=500000, bounds=[(-np.inf, -np.inf, 0.01), (np.inf, np.inf, 8.5)]) except RuntimeError: print('RuntimeError is raised with edge: {0} coords {1} and elevations: {2}'.format(out_key, key, val)) # pass try: # recreate the fitted curve using the optimized parameters data_gauss_fit = my_gaus(t, *gauss_fit[0]) # and finally get depth and width and r2 of fit for adding to original dictionary (val) max_gauss = np.max(data_gauss_fit) fwhm_gauss = 2 * np.sqrt(2 * np.log(2)) * abs(gauss_fit[0][2]) cod_gauss = r2_score(data, data_gauss_fit) # append the parameters to val val.append(fwhm_gauss) val.append(max_gauss) val.append(cod_gauss) plotting=True if key[0]==15 and key[1]==610: plt.plot(t, data, '+:', label='DTM elevation', color='darkslategrey') plt.plot(t, data_gauss_fit, color='lightseagreen', label='fitted Gaussian') # , d={0}, w={1}, r2={2}'.format(round(max_gauss, 2), # round(fwhm_gauss, 2), # round(cod_gauss, 2) plt.legend(frameon=False) plt.ylabel("depth below ground [m]") plt.xlabel("transect length [m]") plt.xticks(np.arange(9), np.arange(1, 10)) plt.text(0, 0.25, f'trough width: {round(fwhm_gauss, 2)} m', fontsize=8) plt.text(0, 0.235, f'trough depth: {round(max_gauss, 2)} m', fontsize=8) plt.text(0, 0.22, f'$r^2$ of fit: {round(cod_gauss, 2)}', fontsize=8) # plt.title("direction: {0}, category: {1}".format(val[2], val[3])) plt.savefig('./figures/fitted_to_coords_{0}_{1}.png'.format(key[0], key[1]), dpi=300) plt.close() except: # bad error handling: if val[4]: print("a water-filled trough can't be fitted: edge: {}".format(out_key)) else: print("something seriously wrong") else: print(val) def outer(out_key, inner_dict): ''' iterate through all transects of a single trough and send to inner() where gaussian will be fitted. :param out_key: current edge with (s, e) :param inner_dict: dict of transects with: - inner_keys: pixel-coords of trough pixels (x, y) inbetween (s, e). - inner_values: list with transect coordinates and info on directionality/type :return inner_dict: updated inner_dict with old inner_values + transect width, height, r2 in val ''' all_keys = [] all_vals_upd = [] # iterate through all transects of a trough for key, val in inner_dict.items(): try: # fit gaussian to all transects val_upd = inner(key, val, out_key) all_keys.append(key) all_vals_upd.append(val_upd) except ValueError as err: print('{0} -- {1}'.format(out_key, err)) # recombine keys and vals to return the updated dict inner_dict = dict(zip(all_keys, all_vals_upd)) return inner_dict def fit_gaussian_parallel(dict_soil): '''iterate through edges of the graph (in dict form) and send each trough to a free CPU core --> prepare fitting a Gaussian function to the extracted transects in dict_soil for parallel processing: each trough will be handled by a single CPU core, but different troughs can be distributed to multiple cores. :param dict_soil: a dictionary with - outer_keys: edge (s, e) and - outer_values: dict of transects with: - inner_keys: pixel-coords of trough pixels (x, y) inbetween (s, e). - inner_values: list with transect coordinates and info: - [0]: height information of transect at loc (xi, yi) - [1]: pixel coordinates of transect (xi, yi) --> len[1] == width*2 + 1 - [2]: directionality of transect - [3]: transect scenario (see publication) - [4]: presence of water :return dict_soil2: updated dict soil same as dict_soil with added: - inner_values: - val[5] = fwhm_gauss --> transect width - val[6] = mean_gauss --> transect depth - val[7] = cod_gauss --> r2 of fit ''' all_outer_keys = [] # parallelize into n_jobs different jobs/CPU cores out = Parallel(n_jobs=20)(delayed(outer)(out_key, inner_dict) for out_key, inner_dict in dict_soil.items()) # get all the outer_keys for out_key, inner_dict in dict_soil.items(): all_outer_keys.append(out_key) # and recombine them with the updated inner_dict dict_soil2 = dict(zip(all_outer_keys, out)) return dict_soil2 def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def get_trough_avgs_gauss(transect_dict_fitted): ''' gather all width/depth/r2 parameters of each transect and compute mean/median parameter per trough. Add mean/median per trough to the dict. this part is mainly preparation for the later network_analysis(.py). :param transect_dict_fitted: :return mean_trough_params: a copy of the transect_dict_fitted with added mean trough parameters to the outer dict as values. ''' mean_trough_params = {} empty_edges = [] # iterate through all edges/troughs for edge, trough in transect_dict_fitted.items(): num_trans_tot = len(trough) # get the total number of transects in one edge/trough gaus_width_sum = [] gaus_depth_sum = [] gaus_r2_sum = [] num_trans_cons = 0 water = 0 # check if an edge/trough is empty if trough != {}: # then iterate through all transects of the current edge/trough for coords, trans in trough.items(): # filter out all transects that: # a) are not between 0 m and 15 m in width (unrealistic values) # b) have been fitted with r2 <= 0.8 # c) likely have water present if not isinstance(trans, list): pass # now count number of water-filled transects per trough elif trans[4]: water += 1 # pass elif len(trans[0]) != 0 and 0 < trans[5] < 15 and trans[7] > 0.8 and not trans[4]: # append the parameters from "good" transects to the lists gaus_width_sum.append(trans[5]) gaus_depth_sum.append(trans[6]) gaus_r2_sum.append(trans[7]) num_trans_cons += 1 # to then calculate the mean/median for each parameter gaus_mean_width = np.mean(gaus_width_sum) gaus_median_width = np.median(gaus_width_sum) gaus_mean_depth = np.mean(gaus_depth_sum) gaus_median_depth = np.median(gaus_depth_sum) gaus_mean_r2 = np.mean(gaus_r2_sum) gaus_median_r2 = np.median(gaus_r2_sum) # ratio of "good" transects considered for mean/median params compared to all transects available perc_trans_cons = np.round(num_trans_cons/num_trans_tot, 2) perc_water_fill = np.round(water/len(trough), 2) # add all the mean/median parameters to the inner_dict mean_trough_params[edge] = [gaus_mean_width, gaus_median_width, gaus_mean_depth, gaus_median_depth, gaus_mean_r2, gaus_median_r2, perc_trans_cons, perc_water_fill] # and if the trough is empty, append the edge to the list of empty edges else: empty_edges.append(edge) # print(transect_dict_fitted[edge]) # print('empty edges ({0} in total): {1}'.format(len(empty_edges), empty_edges)) return mean_trough_params def plot_param_hists_box_width(transect_dict_orig_fitted_09, transect_dict_orig_fitted_19): ''' plot and save histogram and boxplot of all transect widths distribution for two points in time and for all vs. filtered results. :param transect_dict_orig_fitted_09: dictionary of 2009 situation :param transect_dict_orig_fitted_19: dictionary of 2019 situation :return: plot with hist and boxplot ''' all_widths_09 = [] hi_widths_09 = [] for edge, inner_dic in transect_dict_orig_fitted_09.items(): for skel_pix, trans_info in inner_dic.items(): # print(trans_info) if -30 < trans_info[5] < 30: all_widths_09.append(np.abs(trans_info[5])) if trans_info[7] > 0.8: hi_widths_09.append(np.abs(trans_info[5])) all_widths_19 = [] hi_widths_19 = [] for edge, inner_dic in transect_dict_orig_fitted_19.items(): for skel_pix, trans_info in inner_dic.items(): # print(trans_info) if -30 < trans_info[5] < 30: all_widths_19.append(np.abs(trans_info[5])) if trans_info[7] > 0.8: hi_widths_19.append(np.abs(trans_info[5])) # print(f'all widths: \t 2009: {len(all_widths_09)} \t 2019: {len(all_widths_19)}') # print(f'hi widths: \t 2009: {len(hi_widths_09)} \t 2019: {len(hi_widths_19)}') print("WIDTH") print("r2 > 0.8") print(f'median width: \t 2009: {np.median(hi_widths_09)} \t 2019: {np.median(hi_widths_19)}') print(f'mean width: \t 2009: {np.mean(hi_widths_09)} \t 2019: {np.mean(hi_widths_19)}') print(f'min width: \t 2009: {np.min(hi_widths_09)} \t 2019: {np.min(hi_widths_19)}') print(f'max width: \t 2009: {np.max(hi_widths_09)} \t 2019: {np.max(hi_widths_19)}') print(f'std width: \t 2009: {np.std(hi_widths_09)} \t 2019: {np.std(hi_widths_19)}') print("all r2") print(f'median width: \t 2009: {np.median(all_widths_09)} \t 2019: {np.median(all_widths_19)}') print(f'mean width: \t 2009: {np.mean(all_widths_09)} \t 2019: {np.mean(all_widths_19)}') print(f'min width: \t 2009: {np.min(all_widths_09)} \t 2019: {np.min(all_widths_19)}') print(f'max width: \t 2009: {np.max(all_widths_09)} \t 2019: {np.max(all_widths_19)}') print(f'std width: \t 2009: {np.std(all_widths_09)} \t 2019: {np.std(all_widths_19)}') print("______________________________________________________________") # do the plotting boxplotprops_09 = {'patch_artist': True, 'boxprops': dict(facecolor='salmon'), 'flierprops': dict(marker='o', markerfacecolor='salmon', markersize=0.5, linestyle='none'), 'medianprops': dict(color='salmon')} boxplotprops_19 = {'patch_artist': True, 'boxprops': dict(facecolor='teal'), 'flierprops': dict(marker='o', markerfacecolor='teal', markersize=0.5, linestyle='none'), 'medianprops': dict(color='teal')} fig, axes = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(3, 3), dpi=300, gridspec_kw={'wspace': 0, 'hspace': 0, 'height_ratios': [2, 2, 6]}) # fig.tight_layout() # axes[0].axis('off') median_09, q1_09, q3_09 = np.percentile(hi_widths_09, 50), np.percentile(hi_widths_09, 25), np.percentile( hi_widths_09, 75) median_19, q1_19, q3_19 = np.percentile(hi_widths_19, 50), np.percentile(hi_widths_19, 25), np.percentile( hi_widths_19, 75) # 2009 boxplot axes[0].boxplot(hi_widths_09, 1, vert=False, widths=0.5, **boxplotprops_09) axes[0].axvline(median_09, linestyle='--', color='salmon', alpha=.9, linewidth=.9) # axes[0].axvline(median_19, linestyle='--', color='teal', alpha=.9, linewidth=.9) axes[0].set_yticks([]) axes[0].set_yticklabels([]) axes[0].spines['top'].set_visible(False) axes[0].spines['right'].set_visible(False) axes[0].spines['bottom'].set_visible(False) axes[0].spines['left'].set_visible(False) axes[0].set_ylabel('2009', weight='bold') # 2019 boxplot axes[1].boxplot(hi_widths_19, 1, vert=False, widths=0.5, **boxplotprops_19) axes[1].axvline(median_19, linestyle='--', color='teal', alpha=.9, linewidth=.9) # axes[1].axvline(median_09, linestyle='--', color='salmon', alpha=.9, linewidth=.9) axes[1].set_yticks([]) axes[1].set_yticklabels([]) axes[1].spines['top'].set_visible(False) axes[1].spines['right'].set_visible(False) axes[1].spines['bottom'].set_visible(False) axes[1].spines['left'].set_visible(False) axes[1].set_ylabel('2019', weight='bold') # histogram # 2009 axes[2].hist(all_widths_09, bins=np.arange(0.0, 20.0, 0.4), range=(0, 20), histtype='step', color='peachpuff', label=r"width (all)") axes[2].hist(hi_widths_09, bins=np.arange(0.0, 20.0, 0.4), range=(0, 20), histtype='step', color='salmon', label=r"width ($r^2 > 0.8$)") axes[2].axvline(median_09, linestyle='--', color='salmon', alpha=.9, linewidth=.9, label="median = {0} m".format(np.round(median_09, 2))) # 2019 axes[2].hist(all_widths_19, bins=np.arange(0.0, 20.0, 0.4), range=(0, 20), histtype='step', color='powderblue', label=r"width (all)") axes[2].hist(hi_widths_19, bins=np.arange(0.0, 20.0, 0.4), range=(0, 20), histtype='step', color='teal', label=r"width ($r^2 > 0.8$)") axes[2].axvline(median_19, linestyle='--', color='teal', alpha=.9, linewidth=.9, label="median = {0} m".format(np.round(median_19, 2))) axes[2].set_ylabel('frequency') axes[2].set_xlabel('width [m]') # axes[0].set_title("Trough Widths") # # prepare legend # handles, labels = axes[2].get_legend_handles_labels() # # colors = ['peachpuff', 'salmon', 'salmon', 'powderblue', 'teal', 'teal'] # # lstyles = ['-', '-', '--', '-', '-', '--'] # # item_melting = mlines.Line2D([], [], color=colors, linestyle=lstyles, linewidth=1) # # handles[0] = item_melting # order = [2, 3, 0, 4, 5, 1] # plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order], loc='upper center', # bbox_to_anchor=(0.775, 0.875), ncol=1, frameon=False, fontsize=9) # plt.gcf().text(0.565, 0.416, r'2009', fontsize=10, weight='bold', rotation=90) # plt.gcf().text(0.565, 0.305, r'2019', fontsize=10, weight='bold', rotation=90) # # axes[0].subplots_adjust(top=0.5) # # plt.show() fig.tight_layout() # plt.savefig('./figures/hist_box_width.png') def plot_param_hists_box_depth(transect_dict_orig_fitted_09, transect_dict_orig_fitted_19): ''' plot and save histogram and boxplot of all transect depths distribution for two points in time and for all vs. filtered results. :param transect_dict_orig_fitted_09: dictionary of 2009 situation :param transect_dict_orig_fitted_19: dictionary of 2019 situation :return: plot with hist and boxplot ''' all_depths_09 = [] hi_depths_09 = [] for edge, inner_dic in transect_dict_orig_fitted_09.items(): for skel_pix, trans_info in inner_dic.items(): # print(trans_info) if -30 < trans_info[5] < 30: all_depths_09.append(trans_info[6]) if trans_info[7] > 0.8: hi_depths_09.append(trans_info[6]) all_depths_19 = [] hi_depths_19 = [] for edge, inner_dic in transect_dict_orig_fitted_19.items(): for skel_pix, trans_info in inner_dic.items(): # print(trans_info) if -30 < trans_info[5] < 30: all_depths_19.append(trans_info[6]) if trans_info[7] > 0.8: hi_depths_19.append(trans_info[6]) # print(f'all depths: \t 2009: {len(all_depths_09)} \t 2019: {len(all_depths_19)}') # print(f'hi depths: \t 2009: {len(hi_depths_09)} \t 2019: {len(hi_depths_19)}') # print(f'median depths: \t 2009: {np.median(hi_depths_09)} \t 2019: {np.median(hi_depths_19)}') # print(f'mean depths: \t 2009: {np.mean(hi_depths_09)} \t 2019: {np.mean(hi_depths_19)}') # print(f'min depths: \t 2009: {np.min(hi_depths_09)} \t 2019: {np.min(hi_depths_19)}') # print(f'max depths: \t 2009: {np.max(hi_depths_09)} \t 2019: {np.max(hi_depths_19)}') print("DEPTH") print("r2 > 0.8") print(f'median depths: \t 2009: {np.median(hi_depths_09)} \t 2019: {np.median(hi_depths_19)}') print(f'mean depths: \t 2009: {np.mean(hi_depths_09)} \t 2019: {np.mean(hi_depths_19)}') print(f'min depths: \t 2009: {np.min(hi_depths_09)} \t 2019: {np.min(hi_depths_19)}') print(f'max depths: \t 2009: {np.max(hi_depths_09)} \t 2019: {np.max(hi_depths_19)}') print(f'std depths: \t 2009: {np.std(hi_depths_09)} \t 2019: {np.std(hi_depths_19)}') print("all r2") print(f'median depths: \t 2009: {np.median(all_depths_09)} \t 2019: {np.median(all_depths_19)}') print(f'mean depths: \t 2009: {np.mean(all_depths_09)} \t 2019: {np.mean(all_depths_19)}') print(f'min depths: \t 2009: {np.min(all_depths_09)} \t 2019: {np.min(all_depths_19)}') print(f'max depths: \t 2009: {np.max(all_depths_09)} \t 2019: {np.max(all_depths_19)}') print(f'std depths: \t 2009: {np.std(all_depths_09)} \t 2019: {np.std(all_depths_19)}') print("______________________________________________________________") # do the plotting boxplotprops_09 = {'patch_artist': True, 'boxprops': dict(facecolor='salmon'), 'flierprops': dict(marker='o', markerfacecolor='salmon', markersize=0.5, linestyle='none'), 'medianprops': dict(color='salmon')} boxplotprops_19 = {'patch_artist': True, 'boxprops': dict(facecolor='teal'), 'flierprops': dict(marker='o', markerfacecolor='teal', markersize=0.5, linestyle='none'), 'medianprops': dict(color='teal')} fig, axes = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(3, 3), dpi=300, gridspec_kw={'wspace': 0, 'hspace': 0, 'height_ratios': [2, 2, 6]}) # fig.tight_layout() # axes[0].axis('off') median_09, q1_09, q3_09 = np.percentile(hi_depths_09, 50),
np.percentile(hi_depths_09, 25)
numpy.percentile
import math import magent import numpy as np animation_total = 2 animation_stop = 0 background_rgb = (255, 255, 255) attack_line_rgb = (0, 0, 0) attack_dot_rgb = (0, 0, 0) attack_dot_size = 0.3 text_rgb = (0, 0, 0) text_size = 16 text_spacing = 3 banner_size = 20 banner_spacing = 3 bigscreen_size = 72 bigscreen_spacing = 0 grid_rgba = ((0, 0, 0), 30) grid_size = 8 def draw_line(surface, color, a, b): import pygame pygame.draw.line( surface, color, (int(round(a[0])), int(round(a[1]))), (int(round(b[0])), int(round(b[1]))) ) def draw_rect(surface, color, a, w, h): import pygame pygame.draw.rect(surface, color, pygame.Rect(*map(int, ( round(a[0]), round(a[1]), round(w + a[0] - round(a[0])), round(h + a[1] - round(a[1])))))) def draw_rect_matrix(matrix, color, a, w, h, resolution): x, y, w, h = map(int, (round(a[0]), round(a[1]), round(w + a[0] - round(a[0])), round(h + a[1] - round(a[1])))) matrix[max(x, 0):min(x + w, resolution[0]), max(y, 0):min(h + y, resolution[1]), :] = color def draw_line_matrix(matrix, color, a, b, resolution): a = (min(max(0, a[0]), resolution[0] - 1), min(max(0, a[1]), resolution[1] - 1)) b = (min(max(0, b[0]), resolution[0] - 1), min(max(0, b[1]), resolution[1] - 1)) a = map(int, (round(a[0]), round(a[1]))) b = map(int, (round(b[0]), round(b[1]))) if a[0] == b[0]: if a[1] > b[1]: matrix[a[0], b[1]:a[1] + 1] = color else: matrix[a[0], a[1]:b[1] + 1] = color elif a[1] == b[1]: if a[0] > b[0]: matrix[b[0]:a[0] + 1, a[1]] = color else: matrix[a[0]:b[0] + 1, a[1]] = color else: raise NotImplementedError class Renderer: def __init__(self, env, map_size, mode): import pygame self.env = env self.mode = mode self.handles = self.env.get_handles() base_resolution = (map_size * 8, map_size * 8 + 15) if mode == "human": pygame.init() pygame.display.init() infoObject = pygame.display.Info() screen_size = (infoObject.current_w - 50, infoObject.current_h - 50) self.resolution = resolution = np.min([screen_size, base_resolution], axis=0) self.display = pygame.display.set_mode(resolution, pygame.DOUBLEBUF, 0) canvas_resolution = (resolution[0], resolution[1]) self.canvas = pygame.Surface(canvas_resolution) pygame.display.set_caption('MAgent Renderer Window') elif mode == "rgb_array": pygame.font.init() self.resolution = base_resolution self.display = pygame.Surface(base_resolution) canvas_resolution = (base_resolution[0], base_resolution[1]) self.canvas = pygame.Surface(canvas_resolution) self.text_formatter = pygame.font.SysFont(None, text_size, True) self.banner_formatter = pygame.font.SysFont(None, banner_size, True) self.bigscreen_formatter = pygame.font.SysFont(None, bigscreen_size, True) self.map_size = (map_size, map_size) self.frame_id = 0 self.old_data = None self.new_data = None self.need_static_update = True self.animation_progress = 0 def get_banners(self, frame_id, resolution): groups = self.env._get_groups_info() def form_txt(index): handle = self.handles[index] color = tuple([int(a) for a in groups[index][2:]]) return '{}'.format(np.sum(self.env.get_alive(handle).astype(np.int32))), color if len(self.handles) == 1: result = [(form_txt(0), )] if len(self.handles) == 2: vs = ' vs ', (0, 0, 0) result = [(form_txt(0), vs, form_txt(1))] elif len(self.handles) == 4: vs = ' vs ', (0, 0, 0) comma = ', ', (0, 0, 0) result = [(form_txt(0), comma, form_txt(1), vs, form_txt(2), comma, form_txt(3))] else: raise RuntimeError("bad number of handles") return result def close(self): import pygame pygame.display.quit() pygame.quit() def render(self, mode): import os os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = 'hide' import pygame env = self.env self.groups = env._get_groups_info() resolution = self.resolution grid_map = np.zeros((resolution[0], resolution[1], 3), dtype=np.int16) view_position = [self.map_size[0] / 2 * grid_size - resolution[0] / 2, self.map_size[1] / 2 * grid_size - resolution[1] / 2] groups = self.groups banner_formatter = self.banner_formatter status = True triggered = False # x_range: which vertical gridlines should be shown on the display # y_range: which horizontal gridlines should be shown on the display x_range = ( max(0, int(math.floor(max(0, view_position[0]) / grid_size))), min(self.map_size[0], int(math.ceil(max(0, view_position[0] + resolution[0]) / grid_size))) ) y_range = ( max(0, int(math.floor(max(0, view_position[1]) / grid_size))), min(self.map_size[1], int(math.ceil(max(0, view_position[1] + resolution[1]) / grid_size))) ) self.canvas.fill(background_rgb) self.display.fill(background_rgb) if self.need_static_update or True: grids = pygame.Surface(resolution) grids.fill(background_rgb) if self.new_data is None or self.animation_progress > animation_total + animation_stop: pos, event = env._get_render_info(x_range, y_range) buffered_new_data = pos, event if buffered_new_data is None: buffered_new_data = self.new_data self.old_data = self.new_data self.new_data = buffered_new_data self.animation_progress = 0 if self.new_data is not None: if self.old_data is None and self.animation_progress == 0: self.animation_progress = animation_total if self.need_static_update or True: pygame.pixelcopy.surface_to_array(grid_map, self.canvas) for wall in env._get_walls_info(): x, y = wall[0], wall[1] if x >= x_range[0] and x <= x_range[1] and y >= y_range[0] and y <= y_range[1]: draw_rect_matrix(grid_map, (127, 127, 127), (x * grid_size - view_position[0], y * grid_size - view_position[1]), grid_size, grid_size, resolution) pygame.pixelcopy.array_to_surface(self.canvas, grid_map) for key in self.new_data[0]: new_prop = self.new_data[0][key] new_group = groups[new_prop[2]] now_prop = new_prop now_group = new_group draw_rect( self.canvas, (int(now_group[2]), int(now_group[3]), int(now_group[4])), ( now_prop[0] * grid_size - view_position[0], now_prop[1] * grid_size - view_position[1] ), now_group[0] * grid_size, now_group[1] * grid_size ) for key, event_x, event_y in self.new_data[1]: if key not in self.new_data[0]: continue new_prop = self.new_data[0][key] new_group = groups[new_prop[2]] now_prop = new_prop now_group = new_group draw_line( self.canvas, attack_line_rgb, ( now_prop[0] * grid_size - view_position[0] + now_group[0] / 2 * grid_size, now_prop[1] * grid_size - view_position[1] + now_group[1] / 2 * grid_size ), ( event_x * grid_size - view_position[0] + grid_size / 2, event_y * grid_size - view_position[1] + grid_size / 2 ) ) draw_rect( self.canvas, attack_dot_rgb, ( event_x * grid_size - view_position[0] + grid_size / 2 - attack_dot_size * grid_size / 2, event_y * grid_size - view_position[1] + grid_size / 2 - attack_dot_size * grid_size / 2, ), attack_dot_size * grid_size, attack_dot_size * grid_size ) if status or triggered or self.animation_progress < animation_total + animation_stop: self.animation_progress += 1 self.display.blit(self.canvas, (0, 7)) height_now = 0 for texts in self.get_banners(self.frame_id, resolution): content = [] width, height = 0, 0 for text in texts: text = banner_formatter.render(text[0], True, pygame.Color(*text[1])) content.append((text, width)) width += text.get_width() height = max(height, text.get_height()) start = (resolution[0] - width) / 2.0 for b in content: self.display.blit(b[0], (start + b[1], height_now)) height_now += height + banner_spacing if self.need_static_update: self.need_static_update = False observation = pygame.surfarray.pixels3d(self.display) new_observation =
np.copy(observation)
numpy.copy
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import unittest import numpy as np import pandas as pd import ROOT from context import tact from tact import metrics np.random.seed(52) class ECDFTests(unittest.TestCase): """ Tests for metrics.ecdf """ def setUp(self): self.a = np.linspace(0, 1, num=10) np.random.shuffle(self.a) self.w =
np.random.rand(10)
numpy.random.rand
from .common import Benchmark import numpy as np avx_ufuncs = ['sin', 'cos', 'exp', 'log', 'sqrt', 'absolute', 'reciprocal', 'square', 'rint', 'floor', 'ceil' , 'trunc', 'frexp', 'isnan', 'isfinite', 'isinf', 'signbit'] stride = [1, 2, 4] dtype = ['f', 'd'] class AVX_UFunc(Benchmark): params = [avx_ufuncs, stride, dtype] param_names = ['avx_based_ufunc', 'stride', 'dtype'] timeout = 10 def setup(self, ufuncname, stride, dtype): np.seterr(all='ignore') try: self.f = getattr(np, ufuncname) except AttributeError: raise NotImplementedError() N = 10000 self.arr = np.ones(stride*N, dtype) def time_ufunc(self, ufuncname, stride, dtype): self.f(self.arr[::stride]) class AVX_UFunc_log(Benchmark): params = [stride, dtype] param_names = ['stride', 'dtype'] timeout = 10 def setup(self, stride, dtype): np.seterr(all='ignore') N = 10000 self.arr = np.array(np.random.random_sample(stride*N), dtype=dtype) def time_log(self, stride, dtype): np.log(self.arr[::stride]) avx_bfuncs = ['maximum', 'minimum'] class AVX_BFunc(Benchmark): params = [avx_bfuncs, dtype, stride] param_names = ['avx_based_bfunc', 'dtype', 'stride'] timeout = 10 def setup(self, ufuncname, dtype, stride): np.seterr(all='ignore') try: self.f = getattr(np, ufuncname) except AttributeError: raise NotImplementedError() N = 10000 self.arr1 = np.array(np.random.rand(stride*N), dtype=dtype) self.arr2 = np.array(np.random.rand(stride*N), dtype=dtype) def time_ufunc(self, ufuncname, dtype, stride): self.f(self.arr1[::stride], self.arr2[::stride]) class AVX_ldexp(Benchmark): params = [dtype, stride] param_names = ['dtype', 'stride'] timeout = 10 def setup(self, dtype, stride): np.seterr(all='ignore') self.f = getattr(np, 'ldexp') N = 10000 self.arr1 = np.array(np.random.rand(stride*N), dtype=dtype) self.arr2 = np.array(np.random.rand(stride*N), dtype='i') def time_ufunc(self, dtype, stride): self.f(self.arr1[::stride], self.arr2[::stride]) cmplx_bfuncs = ['add', 'subtract', 'multiply', 'divide'] cmplxstride = [1, 2, 4] cmplxdtype = ['F', 'D'] class AVX_cmplx_arithmetic(Benchmark): params = [cmplx_bfuncs, cmplxstride, cmplxdtype] param_names = ['bfunc', 'stride', 'dtype'] timeout = 10 def setup(self, bfuncname, stride, dtype): np.seterr(all='ignore') try: self.f = getattr(np, bfuncname) except AttributeError: raise NotImplementedError() N = 10000 self.arr1 = np.ones(stride*N, dtype) self.arr2 = np.ones(stride*N, dtype) def time_ufunc(self, bfuncname, stride, dtype): self.f(self.arr1[::stride], self.arr2[::stride]) cmplx_ufuncs = ['reciprocal', 'absolute', 'square', 'conjugate'] class AVX_cmplx_funcs(Benchmark): params = [cmplx_ufuncs, cmplxstride, cmplxdtype] param_names = ['bfunc', 'stride', 'dtype'] timeout = 10 def setup(self, bfuncname, stride, dtype): np.seterr(all='ignore') try: self.f = getattr(np, bfuncname) except AttributeError: raise NotImplementedError() N = 10000 self.arr1 =
np.ones(stride*N, dtype)
numpy.ones
# Copyright 2022 Huawei Technologies Co., Ltd & CPL YiQin GAO Research Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """structure module""" import numpy as np import mindspore.common.dtype as mstype import mindspore.nn as nn import mindspore.numpy as mnp import mindspore.ops as ops from mindspore import Parameter from mindspore import Tensor from mindspore import ms_function from mindspore.ops import functional as F from common import residue_constants from common.utils import apply_to_point, torsion_angles_to_frames, frames_and_literature_positions_to_atom14_pos,\ pre_compose, scale_translation, to_tensor_new, generate_new_affine, to_tensor, from_tensor, vecs_to_tensor,\ atom14_to_atom37, get_exp_atom_pos, get_exp_frames from common.utils import _invert_point, lecun_init class InvariantPointAttention(nn.Cell): """Invariant Point attention module.""" def __init__(self, config, global_config, pair_dim): """Initialize. Args: config: Structure Module Config global_config: Global Config of Model. pair_dim: pair representation dimension. """ super().__init__() self._dist_epsilon = 1e-8 self.config = config self.num_head = config.num_head self.num_scalar_qk = config.num_scalar_qk self.num_scalar_v = config.num_scalar_v self.num_point_v = config.num_point_v self.num_point_qk = config.num_point_qk self.num_channel = config.num_channel self.projection_num = self.num_head * self.num_scalar_v + self.num_head * self.num_point_v * 4 + \ self.num_head * pair_dim self.global_config = global_config self.q_scalar = nn.Dense(config.num_channel, self.num_head * self.num_scalar_qk, weight_init=lecun_init(config.num_channel)).to_float(mstype.float16) self.kv_scalar = nn.Dense(config.num_channel, self.num_head * (self.num_scalar_qk + self.num_scalar_v), weight_init=lecun_init(config.num_channel)).to_float(mstype.float16) self.q_point_local = nn.Dense(config.num_channel, self.num_head * 3 * self.num_point_qk, weight_init=lecun_init(config.num_channel) ).to_float(mstype.float16) self.kv_point_local = nn.Dense(config.num_channel, self.num_head * 3 * (self.num_point_qk + self.num_point_v), weight_init=lecun_init(config.num_channel)).to_float(mstype.float16) self.soft_max = nn.Softmax() self.soft_plus = ops.Softplus() self.trainable_point_weights = Parameter(Tensor(np.ones((12,)), mstype.float32), name="trainable_point_weights") self.attention_2d = nn.Dense(pair_dim, self.num_head, weight_init=lecun_init(pair_dim)).to_float(mstype.float16) self.output_projection = nn.Dense(self.projection_num, self.num_channel, weight_init='zeros' ).to_float(mstype.float16) self.scalar_weights = np.sqrt(1.0 / (3 * 16)) self.point_weights = np.sqrt(1.0 / (3 * 18)) self.attention_2d_weights = np.sqrt(1.0 / 3) def construct(self, inputs_1d, inputs_2d, mask, rotation, translation): """Compute geometry-aware attention. Args: inputs_1d: (N, C) 1D input embedding that is the basis for the scalar queries. inputs_2d: (N, M, C') 2D input embedding, used for biases and values. mask: (N, 1) mask to indicate which elements of inputs_1d participate in the attention. rotation: describe the orientation of every element in inputs_1d translation: describe the position of every element in inputs_1d Returns: Transformation of the input embedding. """ num_residues, _ = inputs_1d.shape # Improve readability by removing a large number of 'self's. num_head = self.num_head num_scalar_qk = self.num_scalar_qk num_point_qk = self.num_point_qk num_scalar_v = self.num_scalar_v num_point_v = self.num_point_v # Construct scalar queries of shape: q_scalar = self.q_scalar(inputs_1d) q_scalar = mnp.reshape(q_scalar, [num_residues, num_head, num_scalar_qk]) # Construct scalar keys/values of shape: # [num_target_residues, num_head, num_points] kv_scalar = self.kv_scalar(inputs_1d) kv_scalar = mnp.reshape(kv_scalar, [num_residues, num_head, num_scalar_v + num_scalar_qk]) k_scalar, v_scalar = mnp.split(kv_scalar, [num_scalar_qk], axis=-1) # Construct query points of shape: # [num_residues, num_head, num_point_qk] # First construct query points in local frame. q_point_local = self.q_point_local(inputs_1d) q_point_local = mnp.stack(mnp.split(q_point_local, 3, axis=-1), axis=0) # Project query points into global frame. q_point_global = apply_to_point(rotation, translation, q_point_local) # Reshape query point for later use. q_point0 = mnp.reshape(q_point_global[0], (num_residues, num_head, num_point_qk)) q_point1 = mnp.reshape(q_point_global[1], (num_residues, num_head, num_point_qk)) q_point2 = mnp.reshape(q_point_global[2], (num_residues, num_head, num_point_qk)) # Construct key and value points. # Key points have shape [num_residues, num_head, num_point_qk] # Value points have shape [num_residues, num_head, num_point_v] # Construct key and value points in local frame. kv_point_local = self.kv_point_local(inputs_1d) kv_point_local = mnp.split(kv_point_local, 3, axis=-1) # Project key and value points into global frame. kv_point_global = apply_to_point(rotation, translation, kv_point_local) kv_point_global0 = mnp.reshape(kv_point_global[0], (num_residues, num_head, (num_point_qk + num_point_v))) kv_point_global1 = mnp.reshape(kv_point_global[1], (num_residues, num_head, (num_point_qk + num_point_v))) kv_point_global2 = mnp.reshape(kv_point_global[2], (num_residues, num_head, (num_point_qk + num_point_v))) # Split key and value points. k_point0, v_point0 = mnp.split(kv_point_global0, [num_point_qk,], axis=-1) k_point1, v_point1 = mnp.split(kv_point_global1, [num_point_qk,], axis=-1) k_point2, v_point2 = mnp.split(kv_point_global2, [num_point_qk,], axis=-1) trainable_point_weights = self.soft_plus(self.trainable_point_weights) point_weights = self.point_weights * mnp.expand_dims(trainable_point_weights, axis=1) v_point = [mnp.swapaxes(v_point0, -2, -3), mnp.swapaxes(v_point1, -2, -3), mnp.swapaxes(v_point2, -2, -3)] q_point = [mnp.swapaxes(q_point0, -2, -3), mnp.swapaxes(q_point1, -2, -3), mnp.swapaxes(q_point2, -2, -3)] k_point = [mnp.swapaxes(k_point0, -2, -3), mnp.swapaxes(k_point1, -2, -3), mnp.swapaxes(k_point2, -2, -3)] dist2 = mnp.square(q_point[0][:, :, None, :] - k_point[0][:, None, :, :]) + \ mnp.square(q_point[1][:, :, None, :] - k_point[1][:, None, :, :]) + \ mnp.square(q_point[2][:, :, None, :] - k_point[2][:, None, :, :]) attn_qk_point = -0.5 * mnp.sum(point_weights[:, None, None, :] * dist2, axis=-1) v = mnp.swapaxes(v_scalar, -2, -3) q = mnp.swapaxes(self.scalar_weights * q_scalar, -2, -3) k = mnp.swapaxes(k_scalar, -2, -3) attn_qk_scalar = ops.matmul(q, mnp.swapaxes(k, -2, -1)) attn_logits = attn_qk_scalar + attn_qk_point attention_2d = self.attention_2d(inputs_2d) attention_2d = mnp.transpose(attention_2d, [2, 0, 1]) attention_2d = self.attention_2d_weights * attention_2d attn_logits += attention_2d mask_2d = mask * mnp.swapaxes(mask, -1, -2) attn_logits -= 50 * (1. - mask_2d) # attn_logits = attn_logits * mask_2d # [num_head, num_query_residues, num_target_residues] attn = self.soft_max(attn_logits) # [num_head, num_query_residues, num_head * num_scalar_v] result_scalar = ops.matmul(attn, v) result_point_global = [mnp.swapaxes(mnp.sum(attn[:, :, :, None] * v_point[0][:, None, :, :], axis=-2), -2, -3), mnp.swapaxes(mnp.sum(attn[:, :, :, None] * v_point[1][:, None, :, :], axis=-2), -2, -3), mnp.swapaxes(mnp.sum(attn[:, :, :, None] * v_point[2][:, None, :, :], axis=-2), -2, -3) ] result_point_global = [mnp.reshape(result_point_global[0], [num_residues, num_head * num_point_v]), mnp.reshape(result_point_global[1], [num_residues, num_head * num_point_v]), mnp.reshape(result_point_global[2], [num_residues, num_head * num_point_v])] result_scalar = mnp.swapaxes(result_scalar, -2, -3) result_scalar = mnp.reshape(result_scalar, [num_residues, num_head * num_scalar_v]) result_point_local = _invert_point(result_point_global, rotation, translation) output_feature1 = result_scalar output_feature20 = result_point_local[0] output_feature21 = result_point_local[1] output_feature22 = result_point_local[2] output_feature3 = mnp.sqrt(self._dist_epsilon + mnp.square(result_point_local[0]) + mnp.square(result_point_local[1]) + mnp.square(result_point_local[2])) result_attention_over_2d = ops.matmul(mnp.swapaxes(attn, 0, 1), inputs_2d) num_out = num_head * result_attention_over_2d.shape[-1] output_feature4 = mnp.reshape(result_attention_over_2d, [num_residues, num_out]) final_act = mnp.concatenate([output_feature1, output_feature20, output_feature21, output_feature22, output_feature3, output_feature4], axis=-1) final_result = self.output_projection(final_act) return final_result class MultiRigidSidechain(nn.Cell): """Class to make side chain atoms.""" def __init__(self, config, global_config, single_repr_dim): super().__init__() self.config = config self.global_config = global_config self.input_projection = nn.Dense(single_repr_dim, config.num_channel, weight_init=lecun_init(single_repr_dim) ).to_float(mstype.float16) self.input_projection_1 = nn.Dense(single_repr_dim, config.num_channel, weight_init=lecun_init(single_repr_dim) ).to_float(mstype.float16) self.relu = nn.ReLU() self.resblock1 = nn.Dense(config.num_channel, config.num_channel, weight_init=lecun_init(config.num_channel, initializer_name='relu')).to_float(mstype.float16) self.resblock2 = nn.Dense(config.num_channel, config.num_channel, weight_init='zeros').to_float( mstype.float16) # todo check self.resblock1_1 = nn.Dense(config.num_channel, config.num_channel, weight_init=lecun_init(config.num_channel, initializer_name='relu') ).to_float(mstype.float16) self.resblock2_1 = nn.Dense(config.num_channel, config.num_channel, weight_init='zeros' # todo check ).to_float(mstype.float16) self.unnormalized_angles = nn.Dense(config.num_channel, 14, weight_init=lecun_init(config.num_channel)).to_float(mstype.float16) self.print = ops.Print() self.restype_atom14_to_rigid_group = Tensor(residue_constants.restype_atom14_to_rigid_group) self.restype_atom14_rigid_group_positions = Tensor(residue_constants.restype_atom14_rigid_group_positions) self.restype_atom14_mask = Tensor(residue_constants.restype_atom14_mask) self.restype_rigid_group_default_frame = Tensor(residue_constants.restype_rigid_group_default_frame) self.l2_normalize = ops.L2Normalize(axis=-1, epsilon=1e-12) def construct(self, rotation, translation, act, initial_act, aatype): """Predict side chains using rotation and translation representations. Args: rotation: The rotation matrices. translation: A translation matrices. act: updated pair activations from structure module initial_act: initial act representations (input of structure module) aatype: Amino acid type representations Returns: angles, positions and new frames """ act1 = self.input_projection(self.relu(act.astype(mstype.float32))) init_act1 = self.input_projection_1(self.relu(initial_act.astype(mstype.float32))) # Sum the activation list (equivalent to concat then Linear). act = act1 + init_act1 # Mapping with some residual blocks. # for _ in range(self.config.num_residual_block): # resblock1 old_act = act act = self.resblock1(self.relu(act.astype(mstype.float32))) act = self.resblock2(self.relu(act.astype(mstype.float32))) act += old_act # resblock2 old_act = act act = self.resblock1_1(self.relu(act.astype(mstype.float32))) act = self.resblock2_1(self.relu(act.astype(mstype.float32))) act += old_act # Map activations to torsion angles. Shape: (num_res, 14). num_res = act.shape[0] unnormalized_angles = self.unnormalized_angles(self.relu(act.astype(mstype.float32))) unnormalized_angles = mnp.reshape(unnormalized_angles, [num_res, 7, 2]) unnormalized_angles = ops.Cast()(unnormalized_angles, mstype.float32) angles = self.l2_normalize(unnormalized_angles) backb_to_global = [rotation[0][0], rotation[0][1], rotation[0][2], rotation[1][0], rotation[1][1], rotation[1][2], rotation[2][0], rotation[2][1], rotation[2][2], translation[0], translation[1], translation[2]] all_frames_to_global = torsion_angles_to_frames(aatype, backb_to_global, angles, self.restype_rigid_group_default_frame) pred_positions = frames_and_literature_positions_to_atom14_pos(aatype, all_frames_to_global, self.restype_atom14_to_rigid_group, self.restype_atom14_rigid_group_positions, self.restype_atom14_mask) atom_pos = pred_positions frames = all_frames_to_global return angles, unnormalized_angles, atom_pos, frames class FoldIteration(nn.Cell): """A single iteration of the main structure module loop.""" def __init__(self, config, global_config, pair_dim, single_repr_dim): super().__init__() self.config = config self.global_config = global_config self.drop_out = nn.Dropout(keep_prob=0.9) self.attention_layer_norm = nn.LayerNorm([config.num_channel,], epsilon=1e-5) self.transition_layer_norm = nn.LayerNorm([config.num_channel,], epsilon=1e-5) self.transition = nn.Dense(config.num_channel, config.num_channel, weight_init=lecun_init(config.num_channel, initializer_name='relu') ).to_float(mstype.float16) self.transition_1 = nn.Dense(config.num_channel, config.num_channel, weight_init=lecun_init(config.num_channel, initializer_name='relu') ).to_float(mstype.float16) self.transition_2 = nn.Dense(config.num_channel, config.num_channel, weight_init='zeros' ).to_float(mstype.float16) self.relu = nn.ReLU() self.affine_update = nn.Dense(config.num_channel, 6, weight_init='zeros').to_float(mstype.float16) self.attention_module = InvariantPointAttention(self.config, self.global_config, pair_dim) self.mu_side_chain = MultiRigidSidechain(config.sidechain, global_config, single_repr_dim) self.print = ops.Print() def construct(self, act, static_feat_2d, sequence_mask, quaternion, rotation, translation, initial_act, aatype): """construct""" attn = self.attention_module(act, static_feat_2d, sequence_mask, rotation, translation) act += attn act = self.drop_out(act) act = self.attention_layer_norm(act.astype(mstype.float32)) # Transition input_act = act act = self.transition(act) act = self.relu(act.astype(mstype.float32)) act = self.transition_1(act) act = self.relu(act.astype(mstype.float32)) act = self.transition_2(act) act += input_act act = self.drop_out(act) act = self.transition_layer_norm(act.astype(mstype.float32)) # This block corresponds to # Jumper et al. (2021) Alg. 23 "Backbone update" # Affine update affine_update = self.affine_update(act) quaternion, rotation, translation = pre_compose(quaternion, rotation, translation, affine_update) _, rotation1, translation1 = scale_translation(quaternion, translation, rotation, 10.0) angles_sin_cos, unnormalized_angles_sin_cos, atom_pos, frames = \ self.mu_side_chain(rotation1, translation1, act, initial_act, aatype) affine_output = to_tensor_new(quaternion, translation) quaternion = F.stop_gradient(quaternion) rotation = F.stop_gradient(rotation) return act, quaternion, translation, rotation, affine_output, angles_sin_cos, unnormalized_angles_sin_cos, \ atom_pos, frames class StructureModule(nn.Cell): """StructureModule as a network head.""" def __init__(self, config, single_repr_dim, pair_dim, global_config=None, compute_loss=True): super(StructureModule, self).__init__() self.config = config self.global_config = global_config self.compute_loss = compute_loss self.fold_iteration = FoldIteration(self.config, global_config, pair_dim, single_repr_dim) self.single_layer_norm = nn.LayerNorm([single_repr_dim,], epsilon=1e-5) self.initial_projection = nn.Dense(single_repr_dim, self.config.num_channel, weight_init=lecun_init(single_repr_dim)).to_float(mstype.float16) self.pair_layer_norm = nn.LayerNorm([pair_dim,], epsilon=1e-5) self.num_layer = config.num_layer self.indice0 = Tensor( np.arange(global_config.seq_length).reshape((-1, 1, 1)).repeat(37, axis=1).astype("int32")) self.traj_w = Tensor(
np.array([1.] * 4 + [config.position_scale] * 3)
numpy.array
""" Use simple subclassing example from numpy docs: https://docs.scipy.org/doc/numpy-1.14.0/user/basics.subclassing.html """ import numpy as np class RealisticInfoArray(np.ndarray): def __new__(cls, input_array, info=None): # Input array is an already formed ndarray instance # We first cast to be our class type obj =
np.asarray(input_array)
numpy.asarray
# -*- coding: utf-8 -*- """ # @file name : model_trainer.py # @author : JLChen # @date : 2020-02-29 # @brief : 模型训练类 """ import torch import numpy as np from collections import Counter from tools.evalution_segmentaion import eval_semantic_segmentation from torch.nn.utils import clip_grad_value_ class ModelTrainer(object): @staticmethod def train(data_loader, model, loss_f, cfg, optimizer, epoch_idx, logger): model.train() class_num = data_loader.dataset.cls_num conf_mat = np.zeros((class_num, class_num)) loss_sigma = [] train_acc = [] train_miou = [] grad_lst_iter = [] for i, data in enumerate(data_loader): inputs, labels = data inputs, labels = inputs.to(cfg.device), labels.to(cfg.device) # forward & backward outputs = model(inputs) optimizer.zero_grad() loss = loss_f(outputs.cpu(), labels.cpu()) loss.backward() if cfg.is_clip: clip_grad_value_(model.parameters(), cfg.clip_value) if cfg.hist_grad: grad_lst_tmp = [] for p in model.parameters(): grad_lst_tmp.append(torch.max(p.grad.abs()).cpu().numpy()) grad_lst_iter.append(max(grad_lst_tmp).flatten()[0]) optimizer.step() # 评估 pre_label = outputs.max(dim=1)[1].data.cpu().numpy() # (bs, 360, 480) pre_label = [i for i in pre_label] # 一个元素是一个样本的预测。pre_label[0].shape = (360,480) true_label = labels.data.cpu().numpy() true_label = [i for i in true_label] # true_label[0].shape (360, 480) eval_metrix = eval_semantic_segmentation(pre_label, true_label, class_num) train_acc.append(eval_metrix['mean_class_accuracy']) train_miou.append(eval_metrix['miou']) conf_mat += eval_metrix["conf_mat"] loss_sigma.append(loss.item()) # 间隔 log_interval 个iteration 打印一次训练信息 if i % cfg.log_interval == cfg.log_interval - 1: logger.info('|Epoch[{}/{}]||batch[{}/{}]|batch_loss: {:.4f}||mIoU {:.4f}|'.format( epoch_idx, cfg.max_epoch, i + 1, len(data_loader), loss.item(), eval_metrix['miou'])) loss_mean = np.mean(loss_sigma) acc_mean = np.mean(train_acc) miou_mean = np.mean(train_miou) return loss_mean, acc_mean, conf_mat, miou_mean, grad_lst_iter @staticmethod def valid(data_loader, model, loss_f, cfg): model.eval() class_num = data_loader.dataset.cls_num conf_mat = np.zeros((class_num, class_num)) loss_sigma = [] valid_acc = [] valid_miou = [] for i, data in enumerate(data_loader): inputs, labels = data inputs, labels = inputs.to(cfg.device), labels.to(cfg.device) outputs = model(inputs) loss = loss_f(outputs.cpu(), labels.cpu()) # 统计loss loss_sigma.append(loss.item()) # 评估 pre_label = outputs.max(dim=1)[1].data.cpu().numpy() # (bs, 360, 480) pre_label = [i for i in pre_label] # 一个元素是一个样本的预测。pre_label[0].shape = (360,480) true_label = labels.data.cpu().numpy() true_label = [i for i in true_label] # true_label[0].shape (360, 480) eval_metrix = eval_semantic_segmentation(pre_label, true_label, class_num) valid_acc.append(eval_metrix['mean_class_accuracy']) valid_miou.append(eval_metrix['miou']) conf_mat += eval_metrix["conf_mat"] loss_sigma.append(loss.item()) loss_mean = np.mean(loss_sigma) acc_mean = np.mean(valid_acc) miou_mean =
np.mean(valid_miou)
numpy.mean
import os import pdb # noqa:F401 import sys root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.insert(0, root) import numpy as np import pytest from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from src.interpolate import get_interpolation_grid_regular from src.interpolate import get_interpolation_grid_sparse from src.interpolate import interpolate_locally_step from src.interpolate import interpolate_locally_batch # from src.functions_to_approximate import zhou_readable ######################################################################### # FIXTURES ######################################################################### @pytest.fixture def setup_get_interpolation_grid(): out = {} out["dims"] = 2 out["grid_min"] = np.array(object=[1.0, 1.0], dtype=float) out["grid_max"] =
np.array(object=[9.0, 9.0], dtype=float)
numpy.array
# # Copyright © 2018 United States Government as represented by the Administrator of the # National Aeronautics and Space Administration. All Rights Reserved. # import time import numpy as np import sunpy.map import sunpy.io import json import astropy.units as u import pandas as pd from scipy import stats from scipy.spatial import ConvexHull from astropy.utils.data import download_file import urllib from datetime import datetime, timedelta import requests from pyquaternion import Quaternion # quantity of polygons n = 21 # domain definition theta = np.linspace(0, np.pi / 2, n) phi = np.linspace(0, 2 * np.pi, n) theta, phi = np.meshgrid(theta, phi) # Constant for aspect ratio of lemniscate silhouette AU_REFERENCE_CUBE = 1 # constant for domain and grid inits GRID_HALF_WIDTH = 800 # function takes care of updating all of the points for the different plots def plot_update(radial, angular, long, lat): # data calculation section for width and distance interaction with figure # scalars of the lemniscate # c3 is not stored because it is always 1 lem_distance_c_straight_pixel = (radial * u.solRad).to(u.km) * ( GRID_HALF_WIDTH / (AU_REFERENCE_CUBE * u.AU).to(u.km)) c_one = lem_distance_c_straight_pixel c_two = c_one * np.tan(((angular / 2) * u.deg)) x_mod = c_one * np.cos(theta) y_mod = c_two *
np.cos(theta)
numpy.cos
# !/usr/bin/env python # Created by "Thieu" at 15:05, 03/06/2021 ----------% # Email: <EMAIL> % # Github: https://github.com/thieu1995 % # --------------------------------------------------% import numpy as np from math import gamma from copy import deepcopy from mealpy.optimizer import Optimizer class BaseSLO(Optimizer): """ The original version of: Sea Lion Optimization Algorithm (SLO) Links: 1. https://www.researchgate.net/publication/333516932_Sea_Lion_Optimization_Algorithm 2. https://doi.org/10.14569/IJACSA.2019.0100548 Notes ~~~~~ + The original paper is unclear in some equations and parameters + This version is based on my expertise Examples ~~~~~~~~ >>> import numpy as np >>> from mealpy.swarm_based.SLO import BaseSLO >>> >>> def fitness_function(solution): >>> return np.sum(solution**2) >>> >>> problem_dict1 = { >>> "fit_func": fitness_function, >>> "lb": [-10, -15, -4, -2, -8], >>> "ub": [10, 15, 12, 8, 20], >>> "minmax": "min", >>> } >>> >>> epoch = 1000 >>> pop_size = 50 >>> model = BaseSLO(problem_dict1, epoch, pop_size) >>> best_position, best_fitness = model.solve() >>> print(f"Solution: {best_position}, Fitness: {best_fitness}") References ~~~~~~~~~~ [1] <NAME>., <NAME>. and <NAME>., 2019. Sea lion optimization algorithm. Sea, 10(5), p.388. """ def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (dict): The problem dictionary epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 """ super().__init__(problem, kwargs) self.epoch = self.validator.check_int("epoch", epoch, [1, 100000]) self.pop_size = self.validator.check_int("pop_size", pop_size, [10, 10000]) self.nfe_per_epoch = self.pop_size self.sort_flag = False def amend_position(self, position=None, lb=None, ub=None): """ Depend on what kind of problem are we trying to solve, there will be an different amend_position function to rebound the position of agent into the valid range. Args: position: vector position (location) of the solution. lb: list of lower bound values ub: list of upper bound values Returns: Amended position (make the position is in bound) """ return np.where(np.logical_and(lb <= position, position <= ub), position, np.random.uniform(lb, ub)) def evolve(self, epoch): """ The main operations (equations) of algorithm. Inherit from Optimizer class Args: epoch (int): The current iteration """ c = 2 - 2 * epoch / self.epoch t0 = np.random.rand() v1 = np.sin(2 * np.pi * t0) v2 = np.sin(2 * np.pi * (1 - t0)) SP_leader = np.abs(v1 * (1 + v2) / v2) # In the paper this is not clear how to calculate pop_new = [] for idx in range(0, self.pop_size): if SP_leader < 0.25: if c < 1: pos_new = self.g_best[self.ID_POS] - c * np.abs(2 * np.random.rand() * self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) else: ri = np.random.choice(list(set(range(0, self.pop_size)) - {idx})) # random index pos_new = self.pop[ri][self.ID_POS] - c * np.abs(2 * np.random.rand() * self.pop[ri][self.ID_POS] - self.pop[idx][self.ID_POS]) else: pos_new = np.abs(self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) * \ np.cos(2 * np.pi * np.random.uniform(-1, 1)) + self.g_best[self.ID_POS] # In the paper doesn't check also doesn't update old solution at this point pos_new = self.amend_position(pos_new, self.problem.lb, self.problem.ub) pop_new.append([pos_new, None]) pop_new = self.update_target_wrapper_population(pop_new) self.pop = self.greedy_selection_population(self.pop, pop_new) class ModifiedSLO(Optimizer): """ My modified version of: Sea Lion Optimization (M-SLO) Notes ~~~~~ + Use the idea of shrink encircling combine with levy flight techniques + Beside, the idea of local best in PSO is used Examples ~~~~~~~~ >>> import numpy as np >>> from mealpy.swarm_based.SLO import ModifiedSLO >>> >>> def fitness_function(solution): >>> return np.sum(solution**2) >>> >>> problem_dict1 = { >>> "fit_func": fitness_function, >>> "lb": [-10, -15, -4, -2, -8], >>> "ub": [10, 15, 12, 8, 20], >>> "minmax": "min", >>> } >>> >>> epoch = 1000 >>> pop_size = 50 >>> model = ModifiedSLO(problem_dict1, epoch, pop_size) >>> best_position, best_fitness = model.solve() >>> print(f"Solution: {best_position}, Fitness: {best_fitness}") """ ID_LOC_POS = 2 ID_LOC_FIT = 3 def __init__(self, problem, epoch=10000, pop_size=100, **kwargs): """ Args: problem (dict): The problem dictionary epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 """ super().__init__(problem, kwargs) self.epoch = self.validator.check_int("epoch", epoch, [1, 100000]) self.pop_size = self.validator.check_int("pop_size", pop_size, [10, 10000]) self.nfe_per_epoch = self.pop_size self.sort_flag = False def create_solution(self, lb=None, ub=None): """ To get the position, fitness wrapper, target and obj list + A[self.ID_POS] --> Return: position + A[self.ID_TAR] --> Return: [target, [obj1, obj2, ...]] + A[self.ID_TAR][self.ID_FIT] --> Return: target + A[self.ID_TAR][self.ID_OBJ] --> Return: [obj1, obj2, ...] Returns: list: wrapper of solution with format [position, [target, [obj1, obj2, ...]], local_pos, local_fit] """ ## Increase exploration at the first initial population using opposition-based learning. position = self.generate_position(lb, ub) position = self.amend_position(position, lb, ub) target = self.get_target_wrapper(position) local_pos = lb + ub - position local_pos = self.amend_position(local_pos, lb, ub) local_target = self.get_target_wrapper(local_pos) if self.compare_agent([None, target], [None, local_target]): return [local_pos, local_target, position, target] else: return [position, target, local_pos, local_target] def _shrink_encircling_levy__(self, current_pos, epoch, dist, c, beta=1): up = gamma(1 + beta) * np.sin(np.pi * beta / 2) down = (gamma((1 + beta) / 2) * beta * np.power(2, (beta - 1) / 2)) xich_ma_1 = np.power(up / down, 1 / beta) xich_ma_2 = 1 a = np.random.normal(0, xich_ma_1, 1) b = np.random.normal(0, xich_ma_2, 1) LB = 0.01 * a / (np.power(np.abs(b), 1 / beta)) * dist * c D = np.random.uniform(self.problem.lb, self.problem.ub) levy = LB * D return (current_pos - np.sqrt(epoch + 1) * np.sign(np.random.random(1) - 0.5)) * levy def evolve(self, epoch): """ The main operations (equations) of algorithm. Inherit from Optimizer class Args: epoch (int): The current iteration """ c = 2 - 2 * epoch / self.epoch if c > 1: pa = 0.3 # At the beginning of the process, the probability for shrinking encircling is small else: pa = 0.7 # But at the end of the process, it become larger. Because sea lion are shrinking encircling prey SP_leader = np.random.uniform(0, 1) pop_new = [] for idx in range(0, self.pop_size): agent = deepcopy(self.pop[idx]) if SP_leader >= 0.6: pos_new = np.cos(2 * np.pi * np.random.normal(0, 1)) * \ np.abs(self.g_best[self.ID_POS] - self.pop[idx][self.ID_POS]) + self.g_best[self.ID_POS] else: if np.random.uniform() < pa: dist1 =
np.random.uniform()
numpy.random.uniform
__author__ = '<NAME>' from qparallel.clustering.base import Model import numpy as np from pathos.multiprocessing import ProcessPool as Pool from qparallel.helpers import ( split_data ) class KMeans(Model): """ Currently supports only 2d arrays """ def __init__(self, k, cpu_count=-1, distance_metric='euclidean', max_iter=300, n_iter=10, tol=1e-4, verbose=0): """ :param k: number of clusters :param n_proc: number of cpu :param distance_metric: optional, only euclidean is implementedd :param max_iter: optional, maximum number of iterations :param n_iter: optional, number of iterations :param tol: optional, tolerance value :param verbose: optional, print information """ super(KMeans, self).__init__(cpu_count=cpu_count) self.k = k self.distance_metric = distance_metric self.max_iter = max_iter self.n_iter = n_iter self.tol = 1e-4 self.verbose = verbose def _check_x(self, x): # restrict number of dims if needed if isinstance(x, list): return np.asarray(x) elif isinstance(x, np.ndarray): return x else: raise TypeError def _clusters_init(self, x): # change to get centers from chunks inx = np.random.choice(range(x.shape[0]), self.k, replace=False) self.cluster_centers = x[inx] def _proc_run(self, chunk): chunk = np.array(chunk) C = np.array([np.argmin([np.dot(x_i - y_k, x_i - y_k) for y_k in self.cluster_centers]) for x_i in chunk]) centroids = [] for i in range(self.k): if chunk[C == i].size == 0: centroids.append([np.nan, np.nan]) else: centroids += [chunk[C == i].mean(axis=0).tolist()] return centroids def fit(self, data): """ :param data: np.array :return: example: >>> array = np.array([[2, 3], [9, 8], [4, 9], [5, 2]]) >>> model = KMeans(2,4) >>> model.fit(array) >>> print(model.labels) """ x = data self._check_x(x) self.random_state = None chunks = split_data(x[x[:, 0].argsort()], 2) self._clusters_init(x) for i in range(self.n_iter): with Pool(self.n_proc) as pool: arrays = pool.map(self._proc_run, chunks) arrays = np.array(arrays) self.cluster_centers = np.array(
np.nanmean(arrays, axis=0)
numpy.nanmean
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data =
np.array([])
numpy.array
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """servable config for pangu alpha""" import os import time from easydict import EasyDict import numpy as np from mindspore_serving.server import register from mindspore_serving.server import distributed from pangu.tokenization_jieba import JIEBATokenizer cur_dir = os.path.abspath(os.path.dirname(__file__)) tokenizer_path = os.path.join(cur_dir, "tokenizer") tokenizer = JIEBATokenizer(os.path.join(tokenizer_path, "vocab.vocab"), os.path.join(tokenizer_path, "vocab.model")) end_token = tokenizer.eot_id config = EasyDict({ 'frequency_penalty': 1.5, 'presence_penalty': 0.3, 'max_generate_length': 500, 'top_k_num': 3, 'top_p': 1.0, 'end_token': 9, 'seq_length': 1024, 'vocab_size': 40000, }) def topk_fun(logits, topk=5): """Get topk""" target_column = logits[0].tolist() sorted_array = [(k, v) for k, v in enumerate(target_column)] sorted_array.sort(key=lambda x: x[1], reverse=True) topk_array = sorted_array[:topk] index, value = zip(*topk_array) index = np.array([index]) value = np.array([value]) return value, index distributed.declare_servable(rank_size=8, stage_size=1, with_batch_dim=False) @register.register_method(output_names=["logits"]) def predict_sub0(input_ids, current_index, init, batch_valid_length): logits = register.call_servable(input_ids, current_index, init, batch_valid_length, subgraph=0) return logits @register.register_method(output_names=["logits"]) def predict_sub1(input_id, current_index, init, batch_valid_length): logits = register.call_servable(input_id, current_index, init, batch_valid_length, subgraph=1) return logits sub0_servable = register.PipelineServable(servable_name="pangu", method="predict_sub0") sub1_servable = register.PipelineServable(servable_name="pangu", method="predict_sub1") @register.register_pipeline(output_names=["output_sentence"]) def predict(input_sentence): """generate sentence with given input_sentence""" print(f"----------------------------- begin {input_sentence} ---------", flush=True) time_start = time.time() tokens = tokenizer.tokenize(input_sentence) input_ids = tokenizer.convert_tokens_to_ids(tokens) outputs = generate_increment(input_ids) return_tokens = tokenizer.convert_ids_to_tokens(outputs) reply = "".join(return_tokens) print(f"time cost {(time.time() - time_start) * 1000}ms, request '{input_sentence}' get reply '{reply}'", flush=True) return reply def generate_increment(origin_inputs): """ Text generation for incremental inference Inputs: model: the model for inferencing origin_inputs: the original inputs based on which the model will continue writing config: inference configurations Returns: outputs: the ids for the generated text """ # Get configurations for inference frequency_penalty = config.frequency_penalty presence_penalty = config.presence_penalty top_p = config.top_p top_k_num = config.top_k_num max_generate_length = config.max_generate_length seq_length = config.seq_length vocab_size = config.vocab_size # Init outputs with original inputs outputs = origin_inputs origin_inputs =
np.array([origin_inputs])
numpy.array
# ===== IMPORTS ===== # === Standard library === import logging import pathlib import json # === Thirdparty === import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import torch import torch.utils.data as tdata import torch.nn.functional as tfunctional import torch.nn.utils.rnn as tutilsrnn from sklearn.metrics import precision_recall_fscore_support # === Local === import ml4logs # ===== GLOBALS ===== logger = logging.getLogger(__name__) NORMAL_LABEL = 0 ABNORMAL_LABEL = 1 # ===== CLASSES ===== class SequenceDataset(tdata.Dataset): def __init__(self, inputs, outputs, labels): self._inputs = inputs self._outputs = outputs self._labels = labels def __getitem__(self, idx): return self._inputs[idx], self._outputs[idx], self._labels[idx] def __len__(self): return len(self._inputs) class Seq2SeqModel(torch.nn.Module): def __init__(self, f_dim, n_lstm_layers=1, n_hidden_linears=2, linear_width=300, linear_norm=False): super().__init__() self._lstm = torch.nn.LSTM(f_dim, f_dim, batch_first=True, num_layers=n_lstm_layers) linears = [torch.nn.Linear(f_dim, linear_width)] if linear_norm: linears.append(torch.nn.LayerNorm(linear_width)) linears.append(torch.nn.LeakyReLU()) for _ in range(n_hidden_linears): linears.append(torch.nn.Linear(linear_width, linear_width)) if linear_norm: linears.append(torch.nn.LayerNorm(linear_width)) linears.append(torch.nn.LeakyReLU()) linears.append(torch.nn.Linear(linear_width, f_dim)) self._linears = torch.nn.Sequential(*linears) def forward(self, X): out, _ = self._lstm(X) out, lengths = tutilsrnn.pad_packed_sequence(X, batch_first=True) return self._linears(out) class Seq2SeqModelTrainer: def __init__(self, device, f_dim, model_kwargs, optim_kwargs, lr_scheduler_kwargs): self._model = Seq2SeqModel(f_dim, **model_kwargs).to(device) self._criterion = torch.nn.MSELoss() self._optimizer = torch.optim.Adam( self._model.parameters(), **optim_kwargs) self._scheduler = torch.optim.lr_scheduler.ExponentialLR( self._optimizer, **lr_scheduler_kwargs) self._device = device self._threshold = 0.0 def train(self, dataloader): self._model.train() train_loss = 0.0 for inputs, outputs, _ in dataloader: results, outputs = self._forward(inputs, outputs) loss = self._criterion(results, outputs) train_loss += loss.item() self._optimizer.zero_grad() loss.backward() self._optimizer.step() self._scheduler.step() return train_loss / len(dataloader) def evaluate(self, dataloader): self._model.eval() total_loss = 0.0 with torch.no_grad(): for inputs, outputs, _ in dataloader: results, outputs = self._forward(inputs, outputs) loss = self._criterion(results, outputs) total_loss += loss.item() return total_loss / len(dataloader) def compute_threshold(self, dataloader): self._model.eval() errors = [] for inputs, outputs, _ in dataloader: results, outputs = self._forward(inputs, outputs) loss = tfunctional.mse_loss(results, outputs, reduction='none') loss = torch.mean(loss, dim=2) loss = torch.mean(loss, dim=1) errors.extend(loss.tolist()) self._threshold = np.mean(errors) + 2 * np.std(errors) return self._threshold def test(self, dataloader, threshold=None): if threshold is None: threshold = self._threshold self._model.eval() labels = [] result_labels = [] with torch.no_grad(): for inputs, outputs, labels_ in dataloader: results, outputs = self._forward(inputs, outputs) loss = tfunctional.mse_loss(results, outputs, reduction='none') loss = torch.mean(loss, dim=2) loss = torch.mean(loss, dim=1) result_labels_ = torch.where( loss > threshold, ABNORMAL_LABEL, NORMAL_LABEL) labels.append(labels_.numpy()) result_labels.append(result_labels_.to(device='cpu').numpy()) labels = np.concatenate(labels) results = np.concatenate(result_labels) precision, recall, f1, _ = precision_recall_fscore_support( labels, results, average='binary', zero_division=0 ) return { 'threshold': threshold, 'precision': precision, 'recall': recall, 'f1': f1 } def threshold(self): return self._threshold def _forward(self, inputs, outputs): inputs = inputs.to(self._device) outputs = outputs.to(self._device) outputs, lengths = tutilsrnn.pad_packed_sequence( outputs, batch_first=True ) results = self._model(inputs) results = tutilsrnn.pack_padded_sequence( results, lengths, batch_first=True, enforce_sorted=False ) results, _ = tutilsrnn.pad_packed_sequence( results, batch_first=True ) return results, outputs # ===== FUNCTIONS ===== def train_test_seq2seq(args): np.random.seed(args['seed']) if args['device'] == 'cuda' and not torch.cuda.is_available(): logger.warning("CUDA not available, falling back to CPU!") args['device'] = 'cpu' torch.manual_seed(args['seed']) features_path = pathlib.Path(args['features_path']) blocks_path = pathlib.Path(args['blocks_path']) labels_path = pathlib.Path(args['labels_path']) stats_path = pathlib.Path(args['stats_path']) ml4logs.utils.mkdirs(files=[stats_path]) features = np.load(features_path).astype(np.float32) blocks = np.load(blocks_path) labels = np.load(labels_path) logger.info('Loaded features %s', features.shape) logger.info('Loaded blocks %s', blocks.shape) logger.info('Loaded labels %s', labels.shape) blocks_unique, blocks_counts = np.unique(blocks, return_counts=True) blocks_used = blocks_unique[blocks_counts > 1] logger.info('Blocks used %s', blocks_used.shape) normal_blocks = blocks_used[labels[blocks_used] == NORMAL_LABEL] test_abnormal_blocks = blocks_used[labels[blocks_used] == ABNORMAL_LABEL] logger.info('Normal blocks %s, abnormal blocks %s', normal_blocks.shape, test_abnormal_blocks.shape) logger.info('Split with train size = %.2f', args['train_size']) train_blocks, test_normal_blocks = train_test_split( normal_blocks, train_size=args['train_size'] ) logger.info('Split with validation size = %.2f', args['validation_size']) test_blocks = np.concatenate((test_normal_blocks, test_abnormal_blocks)) train_blocks, validation_blocks = train_test_split( train_blocks, test_size=args['validation_size'] ) logger.info('Train normal blocks %s', train_blocks.shape) logger.info('Validation normal blocks %s', validation_blocks.shape) logger.info('Test normal blocks %s', test_normal_blocks.shape) logger.info('Test abnormal blocks %s', test_abnormal_blocks.shape) scaler = StandardScaler() logger.info('Fit StandardScaler with train blocks') scaler.fit(features[
np.isin(blocks, train_blocks)
numpy.isin
"""Methods for working with data and numpy arrays""" import warnings import numpy as np def arr_sample(arr, rate): """Return an array linearly sampled from the input array at the given rate. Examples -------- * [1, 2, 3, 4] and rate 2 -> [1, 3] * [1, 2, 3, 4] and rate 0.5 -> [1, 1, 2, 2, 3, 3, 4, 4] """ if arr.ndim != 1: raise ValueError("Only 1d arrays can be sampled from.") i = 0 out = [] while i < arr.shape[0]: out.append(arr[np.floor(i).astype(np.int)]) i += rate return np.array(out) def factors(x): """Return the factors of x. Parameters ---------- x : int The number to factorize. Must be a non-zero integer Returns ------- factors : set The set of factors for x """ if x == 0 or x % 1 != 0: raise ValueError("Factors can only be found with non-zero integers") if x < 0: x = np.abs(x) warnings.warn("Only positive factors will be returned, but negative numbers have a positive and negative factor for each.", UserWarning) factors = set([1, x]) for i in range(2, int(np.sqrt(x) + 1)): if (x / float(i)) == int(x / i): factors.add(int(i)) factors.add(int(x / i)) return factors def flip_dict(dict, unique_items=False, force_list_values=False): """Swap keys and values in a dictionary Parameters ---------- dict: dictionary dictionary object to flip unique_items: bool whether to assume that all items in dict are unique, potential speedup but repeated items will be lost force_list_values: bool whether to force all items in the result to be lists or to let unique items have unwrapped values. Doesn't apply if unique_items is true. """ if unique_items: return {v: k for k, v in dict.items()} elif force_list_values: new_dict = {} for k, v in dict.items(): if v not in new_dict: new_dict[v] = [] new_dict[v].append(k) return new_dict else: new_dict = {} for k, v in dict.items(): if v in new_dict: if isinstance(new_dict[v], list): new_dict[v].append(k) else: new_dict[v] = [new_dict[v], k] else: new_dict[v] = k return new_dict def num_digits(x): if x == 0: return 1 return int(np.ceil(np.log10(np.abs(x) + 1))) def prime_factors(x): """Return the prime factorization of x. Parameters ---------- x : int The number to factorize. Must be a non-zero integer Returns ------- prime_factors : list The list of prime factors. Repeated factors will occur multiple times in the list. """ if x == 0 or x % 1 != 0: raise ValueError("Factors can only be found with non-zero integers") if x < 0: x = np.abs(x) warnings.warn("Only positive factors will be returned, but negative numbers have a positive and negative factor for each.", UserWarning) factors = [x] prime_factors = [] while len(factors) > 0: check = factors.pop() found = False for i in range(2, int(np.sqrt(check) + 1)): if (check / float(i)) == int(check / i): factors.extend([i, int(check / i)]) found = True break if not found: prime_factors.append(check) return sorted(prime_factors) def prime_overlap(x, y): """Return the prime factors x and y have in common. Parameters ---------- x : int The first number to factorize y: int The second number to factorize Returns ------- overlap : list The list of common factors. Repeated factors are included for the number of common repeats. """ fact_x = prime_factors(x) fact_y = prime_factors(y) overlap = [] for i in range(len(fact_x)): # pragma: no branch item = fact_x.pop() if item in fact_y: overlap.append(item) fact_y.remove(item) if len(fact_x) == 0 or len(fact_y) == 0: break return sorted(overlap) def rescale(data, new_min=0, new_max=1, axis=None): """Rescales data to have range [new_min, new_max] along axis or axes indicated.""" data = np.asarray(data) if np.issubdtype(data.dtype, np.integer): data = data.astype(np.float) data_range = np.max(data, axis=axis, keepdims=True) - np.min(data, axis=axis, keepdims=True) x = np.divide(data - np.min(data, axis=axis, keepdims=True), data_range, where=data_range > 0, out=np.zeros_like(data)) new_range = new_max - new_min return (x * new_range) + new_min def clip(data, output_min=0, output_max=1, input_min=0, input_max=255): """Clip an array to a given range, then rescale the clipped array from the input range to the output range. Parameters ---------- image : numpy.ndarray The data to rescale output_min : int | float | np.number The minimum value for the output data (the default is 0) output_max : int | float | np.number The maximum value for the output data (the default is 1) input_min : int | float | np.number The minimum value for the input data range (the default is 0) input_max : int | float | np.number The maximum value for the input data range (the default is 255) """ # TODO - Add tests for this data = np.clip(data, input_min, input_max) scaler = (output_max - output_min) / (input_max - input_min) bias = (input_min * output_min) / (input_max - input_min) - (input_min * output_max) / (input_max - input_min) + output_min return data * scaler + bias def sigmoid(x, epsilon=1e-7): """Return the sigmoid of the given value/array.""" return (1.0 + epsilon) / (1.0 + np.exp(-x) + epsilon) def inv_sigmoid(x, epsilon=1e-7): """Return the inverse of the sigmoid function for the given value/array.""" return np.log((x + epsilon) / (1 - x + epsilon)) def softmax(x, axis=None): """Return the softmax of the array Parameters ---------- x : numpy.ndarray The data to apply the softmax to axis : int | list of ints The axis or axes to apply softmax across """ x = np.asarray(x) if np.issubdtype(x.dtype, np.integer): x = x.astype(np.float) s = np.max(x, axis=axis, keepdims=True) e_x = np.exp(x - s) div = np.sum(e_x, axis=axis, keepdims=True) return np.divide(e_x, div, where=div != 0, out=np.zeros_like(x)) def normalize(data, axis=None): """Return data normalized to have zero mean and unit variance along axis or axes indicated.""" data = np.asarray(data) if np.issubdtype(data.dtype, np.integer): data = data.astype(np.float) mean = np.mean(data, axis=axis, keepdims=True) stddev = np.std(data, axis=axis, keepdims=True) return np.divide(data - mean, stddev, where=stddev != 0, out=np.zeros_like(data)) def roc_curve(label, pred, as_rates=True): """Get the ROC curve for the data. Parameters ---------- label : numpy.ndarray The ground truth values pred : numpy.ndarray The predicted values as_rate : bool Whether to return true/false positive rates or scores (the default is True) Returns ------- fps : numpy.ndarray The false positive rates/scores tps : numpy.ndarray The true positive rates/scores thresh : numpy.ndarray The thresholds for each fps/tps """ if not isinstance(label, np.ndarray): label = np.array(label) if not isinstance(pred, np.ndarray): pred = np.array(pred) label = np.ravel(label) pred = np.ravel(pred) desc_score_indices = np.argsort(pred, kind='mergesort')[::-1] y_score = pred[desc_score_indices] y_true = label[desc_score_indices] distinct_idx = np.where(np.diff(y_score))[0] thresh_idx = np.concatenate([distinct_idx, [y_true.size - 1]]) tps = np.cumsum(y_true) # expected = np.sum(y_true) tps = tps[thresh_idx] fps = 1 + thresh_idx - tps thresh = y_score[thresh_idx] tps = np.concatenate(([0], tps)) fps = np.concatenate(([0], fps)) thresh = np.concatenate(([1], thresh)) if as_rates: fpr = fps / fps[-1] tpr = tps / tps[-1] return fpr, tpr, thresh else: return fps, tps, thresh def mcc_curve(label, pred, optimal_only=False): """Get the Matthew's Correlation Coefficient for different thresholds Parameters ---------- label : numpy.ndarray Expected labels for the data samples pred : numpy.ndarray Predicted labels for the data samples optimal_only : bool If true, returns only the value and threshold for the greatest MCC value """ fps, tps, thresh = roc_curve(label, pred, as_rates=False) return optimal_mcc_from_roc(fps, tps, thresh, optimal_only=optimal_only) def optimal_mcc_from_roc(fps, tps, thresholds, optimal_only=True): """Get the Matthew's Correlation Coefficient for different thresholds Parameters ---------- fps : numpy.ndarray False positive scores from the roc curve tps : numpy.ndarray True positive scores from the roc curve thresholds : numpy.ndarray Thresholds from the roc curve optimal_only : bool If true, returns only the value and threshold for the greatest MCC value """ N = tps[-1] + fps[-1] S = tps[-1] / N P = (fps + tps) / N top = (tps / N) - (S * P) bottom = np.sqrt(P * S * (1 - S) * (1 - P)) mcc = np.divide(top, bottom, out=np.zeros_like(top), where=bottom != 0) if optimal_only: best = np.argmax(mcc) return mcc[best], thresholds[best] return mcc, thresholds def accuracy_curve(label, pred, return_peak=False): """Get the accuracy values for each possible threshold in the predictions. Parameters ---------- label : numpy.ndarray The true values for each sample in the data. pred : numpy.ndarray The predicted values for each sample in the data return_peak : bool Whether to return the peak accuracy and best threshold for the data as well as the curve """ if not isinstance(label, np.ndarray): label = np.array(label) if not isinstance(pred, np.ndarray): pred = np.array(pred) desc_score_indices = np.argsort(pred, kind='mergesort')[::-1] y_score = pred[desc_score_indices] y_true = label[desc_score_indices] distinct_idx = np.where(np.diff(y_score))[0] thresh_idx = np.concatenate([distinct_idx, [y_true.size - 1]]) thresh = y_score[thresh_idx] tps = np.cumsum(y_true)[thresh_idx] tns = np.cumsum((1 - y_true)[::-1])[::-1][thresh_idx] correct = tps + tns acc = correct / label.size if return_peak: peak = np.argmax(acc) return acc, thresh, acc[peak], thresh[peak] return acc, thresh def spec_at_sens(expected, predicted, sensitivities=[0.95]): """Get the peak specificity for each sensitivity.""" if not hasattr(sensitivities, '__iter__'): sensitivities = [sensitivities] fpr, tpr, thresholds = roc_curve(expected, predicted) specs = [np.max((1 - fpr)[tpr >= min_sens]) for min_sens in sensitivities] return specs def get_confusion_stats(label, pred, threshold=0.5): """Get the true positive, false positive, true negative, and false negative values for the given data""" label = np.squeeze(label) pred = np.squeeze(pred) label_bool = label.astype(bool) pred_bool = pred >= threshold true_pos = np.logical_and(label_bool, pred_bool).sum() true_neg = np.logical_and(~label_bool, ~pred_bool).sum() false_pos = pred_bool.sum() - true_pos false_neg = (~pred_bool).sum() - true_neg return true_pos, false_pos, true_neg, false_neg def dice_coef(label, pred, threshold=0.5): """Get the Sorenson Dice Coefficient for the given data""" tp, fp, tn, fn = get_confusion_stats(label, pred, threshold) denom = tp * 2 + fp + fn if denom == 0: return 0 return (tp * 2) / denom def jaccard_coef(label, pred, threshold=0.5): """Get the Jaccard Coefficient for the given data""" tp, fp, tn, fn = get_confusion_stats(label, pred, threshold) denom = tp + fn + fp if denom == 0: return 0 return tp / denom def value_crossing(array, threshold=0, positive_crossing=True, negative_crossing=True, return_indices=False): """Get the count of instances where a series crosses a value. Parameters ---------- array : np.ndarray A sequential array of values threshold : int | float The value used as a crossing point (the default is 0) positive_crossing : bool Whether to count when the sequence goes from less than to greater than the threshold value (the default is True) negative_crossing : bool Whether to count when the sequence goes from greater than to less than the threshold value (the default is True) return_indices : bool Whether to return the indices of the points immediately before the crossings """ if not isinstance(array, np.ndarray): array =
np.array(array)
numpy.array
""" The optics module provides simulations of the optics of imaging systems for microscopy **Conventions:** arrays follow the ZXY convention, with - Z : depth axis (axial, focus axis) - X : horizontal axis (lateral) - Y : vertical axis (lateral, rotation axis when relevant) """ # Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/ # Written by <NAME> <<EMAIL>> # # This file is part of CBI Toolbox. # # CBI Toolbox is free software: you can redistribute it and/or modify # it under the terms of the 3-Clause BSD License. # # CBI Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # 3-Clause BSD License for more details. # # You should have received a copy of the 3-Clause BSD License along # with CBI Toolbox. If not, see https://opensource.org/licenses/BSD-3-Clause. # # SPDX-License-Identifier: BSD-3-Clause import math import astropy.units as u import numpy as np import poppy import scipy.interpolate from cbi_toolbox.simu import primitives from cbi_toolbox import utils def create_wf_1d(wf_object, upsampling=1, scale=1, copy=False): """ Create a 1D wavefront object from an existing wavefront Parameters ---------- wf_object : poppy.FresnelWavefront the original wavefront upsampling : int, optional upsampling factor (does not change the field of view), by default 1 scale : int, optional zoom factor (changes the field of view), by default 1 copy : bool, optional return a new object, by default False Returns ------- poppy.FresnelWavefront a 1D wavefront full of 1 with same properties as the input """ if copy: wf_object = wf_object.copy() wf = np.ones( (1, int(wf_object.shape[1] * upsampling)), dtype=wf_object.wavefront.dtype) y, x = np.indices(wf.shape, dtype=float) x -= wf.shape[1] / 2 wf_object._x = x wf_object._y = y wf_object.wavefront = wf wf_object.pixelscale = wf_object.pixelscale / upsampling * scale wf_object.n = wf.shape[1] return wf_object def wf_to_2d(wf_object, npix=None, copy=False): """ Convert a 1D wavefront to 2D (for plotting only) Parameters ---------- wf_object : poppy.FresnelWavefront the 1D wavefront npix : int, optional crop to a size of npix, by default None copy : bool, optional return a new object, by default False Returns ------- poppy.FresnelWavefront the 2D wavefront """ if copy: wf_object = wf_object.copy() if npix is None: size = wf_object.shape[1] else: size = npix center = wf_object.shape[1] // 2 hw = size // 2 new_wf = np.zeros_like(wf_object.wavefront, shape=(size, size)) new_wf[hw, :] = wf_object.wavefront[:, center - hw:center + hw] wf_object.wavefront = new_wf wf_object._y, wf_object._x = np.indices(wf_object.shape, dtype=float) wf_object._y -= wf_object.shape[0] / 2.0 wf_object._x -= wf_object.shape[0] / 2.0 return wf_object def wf_mix(wf1, wf2, ref=None): """ Compute a 2D wavefront by multiplying 2 1D wavefronts (for separable propagation) Parameters ---------- wf1 : poppy.FresnelWavefront a 1D wavefront wf2 : poppy.FresnelWavefront a 1D wavefront ref : poppy.FresnelWavefront, optional reference wavefront for the parameters of the output, by default None (wf1 will be used) Returns ------- poppy.FresnelWavefront the 2D mixed wavefront Raises ------ ValueError if the input wavefronts have different pixelscales """ if wf1.pixelscale != wf2.pixelscale: raise ValueError("The pixelscale of the input wavefronts must match") wfa = wf1.wavefront.squeeze() wfb = wf2.wavefront.squeeze() mix = np.outer(wfb, wfa) if ref is None: wf_m = wf1.copy() else: wf_m = ref.copy() wf_m.wavefront = mix return wf_m def resample_wavefront(wf, pixelscale, npixels): """ Resample 1D wavefront to new pixelscale (adapted from poppy.poppy_core._resample_wavefront_pixelscale) Parameters ---------- wf : poppy.FresnelWavefront a 1D wavefront pixelscale : astropy.units.[distance] / astropy.units.pixel target pixelscale npixels : int target size in pixels Returns ------- poppy.FresnelWavefront resampled and resized 1D wavefront """ pixscale_ratio = (wf.pixelscale / pixelscale).decompose().value def make_axis(npix, step): """ Helper function to make coordinate axis for interpolation """ return step * (np.arange(-npix // 2, npix // 2, dtype=np.float64)) # Input and output axes for interpolation. The interpolated wavefront will be evaluated # directly onto the detector axis, so don't need to crop afterwards. x_in = make_axis(wf.shape[1], wf.pixelscale.to(u.m / u.pix).value) x_out = make_axis(npixels.value, pixelscale.to(u.m / u.pix).value) def interpolator(arr): """ Bind arguments to scipy's RectBivariateSpline function. For data on a regular 2D grid, RectBivariateSpline is more efficient than interp2d. """ return scipy.interpolate.interp1d( x_in, arr, kind='slinear', copy=False, fill_value=0, assume_sorted=True, bounds_error=False) # Interpolate real and imaginary parts separately real_resampled = interpolator(wf.wavefront.real)(x_out) imag_resampled = interpolator(wf.wavefront.imag)(x_out) new_wf = real_resampled + 1j * imag_resampled # enforce conservation of energy: new_wf *= 1. / pixscale_ratio wf.ispadded = False # if a pupil detector, avoid auto-cropping padded pixels on output wf.wavefront = new_wf wf.pixelscale = pixelscale def openspim_illumination(wavelength=500e-9, refr_index=1.333, laser_radius=1.2e-3, objective_na=0.3, objective_focal=18e-3, slit_opening=10e-3, pixelscale=635e-9, npix_fov=512, rel_thresh=None, simu_size=2048, oversample=16): """ Compute the illumination function of an OpenSPIM device Parameters ---------- wavelength : float, optional illumination wavelength in meters, by default 500e-9 refr_index : float, optional imaging medium refraction index, by default 1.333 laser_radius : float, optional source laser radius in meters, by default 1.2e-3 objective_na : float, optional illumination objective NA, by default 0.3 objective_focal : float, optional illumination objective focal length in meters, by default 18e-3 slit_opening : float, optional vertical slit opening in meters, by default 10e-3 pixelscale : float, optional target pixelscale in meters per pixel, by default 1.3e-3/2048 npix_fov : int, optional target size in pixels, by default 512 rel_thresh: float, optional relative threshold to crop the beam thickness if a full row is below this theshold, all rows after are removed will be computed as compared to the maximum pixel simu_size : int, optional size of the arrays used for simulation, by default 2048 oversample : int, optional oversampling used for the simulation (must be increased sith simu_size), by default 16 Returns ------- array [ZXY] the illumination function """ pixel_width = 1 wavelength *= u.m laser_radius *= u.m objective_focal *= u.m pixelscale *= (u.m / u.pixel) slit_opening *= u.m noop = poppy.ScalarTransmission() beam_ratio = 1 / oversample fov_pixels = npix_fov * u.pixel detector = poppy.FresnelOpticalSystem() detector.add_detector(fov_pixels=fov_pixels, pixelscale=pixelscale) # We approximate the objective aperture with a square one to make it separable # Given the shape of the wavefront, we estimate the generated error to be negligible objective_radius = math.tan( math.asin(objective_na / refr_index)) * objective_focal objective_aperture = poppy.RectangleAperture(name='objective aperture', width=2 * objective_radius, height=2 * objective_radius) objective_lens = poppy.QuadraticLens( f_lens=objective_focal, name='objective lens') obj_aperture = poppy.FresnelOpticalSystem() obj_aperture.add_optic(objective_aperture, objective_focal) # Implement the objective lens separately to be able to account for refractive index change obj_lens = poppy.FresnelOpticalSystem() obj_lens.add_optic(objective_lens) # Computed as following: going through T1 then CLens then T2 # is equivalent to going through CLens with focal/4 # Then the radius is computed as the Fourier transform of the input beam, per 2F lens system w0_y = (12.5e-3 * u.m * wavelength) / (2 * np.pi ** 2 * laser_radius) laser_shape_y = poppy.GaussianAperture(w=w0_y, pupil_diam=5 * w0_y) path_y = poppy.FresnelOpticalSystem( pupil_diameter=2 * w0_y, npix=pixel_width, beam_ratio=beam_ratio) path_y.add_optic(laser_shape_y) # Going through T1, slit and T2 is equivalent to going through a half-sized slit, # then propagating 1/4 the distance # Since we use 1D propagation, we can increase oversampling a lot for better results laser_shape_z = poppy.GaussianAperture( w=laser_radius, pupil_diam=slit_opening / 2) slit = poppy.RectangleAperture( name='Slit', width=slit_opening / 2, height=slit_opening / 2) path_z = poppy.FresnelOpticalSystem( pupil_diameter=slit_opening / 2, npix=pixel_width, beam_ratio=beam_ratio) path_z.add_optic(laser_shape_z) path_z.add_optic(slit) path_z.add_optic(noop, 0.25 * 100e-3 * u.m) # Propagate 1D signals wf_z = path_z.input_wavefront(wavelength=wavelength) create_wf_1d(wf_z, upsampling=simu_size) path_z.propagate(wf_z) wf_y = path_y.input_wavefront(wavelength=wavelength) create_wf_1d(wf_y, upsampling=simu_size, scale=10) path_y.propagate(wf_y) obj_aperture.propagate(wf_z) obj_aperture.propagate(wf_y) wf_z.wavelength /= refr_index wf_y.wavelength /= refr_index obj_lens.propagate(wf_z) obj_lens.propagate(wf_y) illumination = np.empty( (npix_fov, npix_fov, npix_fov), dtype=wf_z.intensity.dtype) # Make sure it is centered even if pixels are odd or even offset = 0 if npix_fov % 2 else 0.5 for pix in range(npix_fov): pixel = pix - npix_fov // 2 + offset distance = pixel * pixelscale * u.pixel psf = poppy.FresnelOpticalSystem() psf.add_optic(noop, objective_focal + distance) wfc_y = wf_y.copy() wfc_z = wf_z.copy() psf.propagate(wfc_y) psf.propagate(wfc_z) resample_wavefront(wfc_y, pixelscale, fov_pixels) resample_wavefront(wfc_z, pixelscale, fov_pixels) mix = wf_mix(wfc_y, wfc_z) mix.normalize() illumination[:, pix, :] = mix.intensity if rel_thresh is not None: illumination = utils.threshold_crop( illumination, rel_thresh, 0) return illumination / illumination.sum(0).mean() def gaussian_psf(npix_lateral=129, npix_axial=129, pixelscale=635e-9, wavelength=500e-9, numerical_aperture=0.5, refraction_index=1.33): """ Compute an approximate PSF model based on gaussian beam propagation <NAME>., <NAME>., <NAME>. et al. Gaussian Light Model in Brightfield Optical Projection Tomography. Sci Rep 9, 13934 (2019). https://bib-ezproxy.epfl.ch:5295/10.1038/s41598-019-50469-6 Parameters ---------- npix_lateral : int, optional number of pixels in the lateral direction, by default 129 npix_axial : int, optional number of pixels in the axial direction, by default 129 pixelscale : float, optional pixelscale in meters per pixel, by default 1.3e-3/2048 wavelength : float, optional illumination wavelength in meters, by default 500e-9 numerical_aperture : float, optional objective NA, by default 0.5 refraction_index : float, optional imaging medium NA, by default 1.33 Returns ------- array [ZXY] the gaussian PSF """ # compensate for even/odd pixels so that the PSF is always centered odd_l = npix_lateral % 2 odd_a = npix_axial % 2 lat_offset = 0 if odd_l else 0.5 ax_offset = 0 if odd_a % 2 else 0.5 r_coords = (
np.arange((npix_lateral + 1) // 2)
numpy.arange
# -*- coding: utf-8 -*- """Calculate distances to points and compare how the simulated points match the obtained TOADSuite points. Notes ----- 1) Some coordinate system transformations need to be done between TOADSuite and simulated positions - check again. Created on Thu Jun 11 14:08:53 2020 Acknowledgements --------------- Thanks to <NAME> for running the simulated audio files on the TOADSuite! @author: tbeleyur """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import pandas as pd import scipy.spatial import tacost from tacost.calculate_toa import standard_tristar def calculate_euclidean_error(row_xyz): ''' ''' return np.sqrt(np.sum(row_xyz**2.0)) def draw_mic_array(mic_xyz, draw_axis): for i, each in enumerate(mic_xyz): for j,every in enumerate(mic_xyz): mic_line = np.row_stack((each,every)) draw_axis.plot(mic_line[:,0],mic_line[:,1],mic_line[:,2],'k', linewidth=0.5) return draw_axis #### Tristar points ########################################################## # load the simulated points: tristar_point_raw = pd.read_csv('../tristar_source_positions.csv') # load the obtained output toadsuite_out = pd.read_excel('../toadsuite_results/CORRECTED_RES_fig1_tristar.xlsx', sheet_name='0000001_001') toadsuite_xyz = toadsuite_out.iloc[3:,[15,16,17]].copy() #remove last point bcos for some reason the TOADSuite output doesn't have the last point??! tristar_points = tristar_point_raw.to_numpy() toadsuite_points = np.float64(toadsuite_xyz.to_numpy()) tristar_diff = np.abs(tristar_points - toadsuite_points) tristar_euclidean_error = np.apply_along_axis(calculate_euclidean_error, 1, tristar_diff) # relative error distance_from_mic0 = tristar_point_raw.apply(calculate_euclidean_error, 1) tristar_relative_error = tristar_euclidean_error/distance_from_mic0 points_and_error = np.column_stack((tristar_points, tristar_euclidean_error)) all_data =
np.column_stack((toadsuite_points, points_and_error))
numpy.column_stack
import os import unittest import pytest import rasterio import numpy as np from geopyspark.geotrellis import SpatialKey, Tile, SpatialPartitionStrategy, RasterizerOptions, Metadata from shapely.geometry import Polygon, box from geopyspark.tests.base_test_class import BaseTestClass from geopyspark.geotrellis.layer import TiledRasterLayer from geopyspark.geotrellis.constants import LayerType class MaskTest(BaseTestClass): pysc = BaseTestClass.pysc cells = np.zeros((1, 2, 2)) cells.fill(1) layer = [(SpatialKey(0, 0), Tile(cells, 'FLOAT', -1.0)), (SpatialKey(1, 0), Tile(cells, 'FLOAT', -1.0,)), (SpatialKey(0, 1), Tile(cells, 'FLOAT', -1.0,)), (SpatialKey(1, 1), Tile(cells, 'FLOAT', -1.0,))] rdd = pysc.parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 4.0, 'ymax': 4.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 2, 'tileRows': 2} metadata = {'cellType': 'float32ud-1.0', 'extent': extent, 'crs': 4326, 'bounds': { 'minKey': {'col': 0, 'row': 0}, 'maxKey': {'col': 1, 'row': 1}}, 'layoutDefinition': { 'extent': extent, 'tileLayout': layout}} geoms = [box(0.0, 0.0, 2.0, 2.0), box(3.0, 3.0, 4.0, 4.0)] raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPATIAL, rdd, Metadata.from_dict(metadata)) @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() def test_geotrellis_mask(self): result = self.raster_rdd.mask(geometries=self.geoms).to_numpy_rdd() n = result.map(lambda kv: np.sum(kv[1].cells)).reduce(lambda a, b: a + b) self.assertEqual(n, 2.0) def test_rdd_mask_no_partition_strategy(self): rdd = BaseTestClass.pysc.parallelize(self.geoms) result = self.raster_rdd.mask(rdd, options=RasterizerOptions(True, 'PixelIsArea')).to_numpy_rdd() n = result.map(lambda kv:
np.sum(kv[1].cells)
numpy.sum
#!/usr/bin/env python from __future__ import print_function import sys, os import pickle, shutil import re, string, time import random import numpy as np from scipy import optimize from scipy.fftpack import fft import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import angles import h5py import polar import pandas as pd def calc_R(c, x, y): xc, yc = c return np.sqrt((x-xc)**2 + (y-yc)**2) # an array of individual distances def f_2(c, x, y): r_i = calc_R(c, x, y) return r_i - r_i.mean() # if they were all equal, this would be zero -> perfect circle class Bubble_properties(): """ class to handle bubble properties it works on a sequence of contours as a function of time """ def __init__(self, contours, times=None, start_time=0, normalize_angles=False): if times is not None: self.times = times elif isinstance(contours, dict): self.times = contours.keys() else: print("Missing times. Exit") sys.exit() if start_time not in self.times: print("Start time is not correct") sys.exit() # Here we are assuming the contours is a dictionary self.dws = {} # Let's also create a pandas df with a set of angles as rows, # the (real) times as columns, and the distances from the center self.df = pd.DataFrame() switches = contours.keys() diff_switches = np.diff(switches) #fig = plt.figure() #ax = fig.add_subplot(111) for i, switch in enumerate(switches[:-1]): self.dws[switch] = {} contour = contours[switch] x, y = np.transpose(contour) center = self._fit_center(x, y) self.dws[switch]['center'] = center if not i: center0 = center thetas = self._get_angles(x, y, center0, normalize=normalize_angles) #n_new_thetas = len(thetas) k = len(thetas) n_new_thetas = 2**(int(np.round((np.log(k)/np.log(2))))) new_thetas = np.linspace(-np.pi, np.pi, n_new_thetas) thetas = self._get_angles(x, y, center0, normalize=normalize_angles) order = np.argsort(thetas) thetas = thetas[order] self.dws[switch]['radius'] = self._fit_radius(x, y, center0) self.dws[switch]['angle'] = thetas self.dws[switch]['dist'] = self._get_distances(contour) r = self._get_distances_from_center(contour, center0) r = r[order] self.dws[switch]['dist_from_center'] = r self.dws[switch]['dw'] = contour if i: new_r = np.interp(new_thetas, thetas, r) diff_sw = diff_switches[i] # check if there are missing switches # copy the same contour for k in range(diff_sw): tm = times[switch+k] self.df[tm] = new_r # if i in [10, 50, 100]: # ax.plot(x, y, '-v') # X = center0[0] + new_r * np.cos(new_thetas) # Y = center0[1] + new_r * np.sin(new_thetas) # ax.plot(X,Y,'o') # ax.set_aspect('equal') # ax.grid(True) # plt.show() self.df = self.df.set_index(new_thetas, 'thetas') #print("Setup of bubbles dict done") #self._get_max_displacement() @property def events(self): pass def _fit_center(self, x, y): center_estimate = np.mean(x),np.mean(y) (xc_m,yc_m), ier = optimize.leastsq(f_2, center_estimate, args=(x,y)) # done by scipy if not ier: print("There is a problem to fit the center of the bubble") return xc_m, yc_m def _fit_radius(self, x, y, center): R = calc_R(center, x, y).mean() return R def _get_angles(self, x, y, center, normalize=False): xc, yc = center X, Y = x - xc, y -yc _angles = np.arctan2(Y, X) #_angles = np.arctan(Y, X) # angle=[2*np.pi+a if a<0 else a for a in angle] # to stay in [0:2pi] if normalize: _angles = np.array([angles.normalize(a, 0, 2*np.pi) for a in _angles]) return _angles def _get_distances(self, contour): # distance from one point to the next - dist array has same length as dw array # along the contours, each point's distance from the next is 1 or Sqrt[2]/2 dist = np.sqrt((np.diff(contour,axis=0) ** 2).sum(axis=1)) dist = np.append(dist, 0.) # 1st & last point are the same return dist def _get_distances_from_center(self, contour, center): """ get an array of the distances from the center """ xc, yc = center #x, y = np.hsplit(contour, 2) x, y = contour[:,0], contour[:,1] distCenter = ((x-xc)**2 + (y-yc)**2)**0.5 return distCenter def _get_max_displacement(self): tmax, dmax = -1, -1 for switch in self.dws: xc, yc = self.dws[switch]['center'] x, y = np.hsplit(self.dws[switch]['dw'], 2) dnew = np.sqrt((x-x0)**2 + (y-y0)**2) dnew = dnew.mean() if dnew > dmax: tmax = switch dmax = dnew str0 = "Max center displacement is %5.3f at switch time %s" % (dmax, tmax) str1 = "%5.3f percent of bubble (at t=%d) radius\n\n" % (100*dmax/self.dws[tmax]['radius'], tmax) sys.stderr.write("%s, or %s" % (str0, str1)) class CalcSq(): """ Calculus of the G4 and chi4 values using a dataframe df has the rows given by the angles of the points and columns given by the times """ def __init__(self, df): self.mean_radius = df.mean().values self.times = df.columns self.thetas = df.index # Calculus of the delta_h for all the thetas and times self.h = df self.dh = self.h - self.mean_radius # def _calc_S_q(self, ref_i=(3,40), zeta=2./3): """ Calculation of the structure factor As a matter of fact it is a power spectrum in the q space As the data are done for the angles theta, the first S_q is calculate for a q which is in terms of angular distance The calculus for space (along the circle) has to be performed using first the data at theta which give different r at different times, so we need to interpolate the data """ slope = 1 + 2 * zeta N_thetas, N_times = self.h.shape d_theta = self.h.index[1] - self.h.index[0] # Calculate the q for the theta angles q_theta = np.linspace(0.0, 1.0/(2.0*d_theta), N_thetas//2) hq = self.h.apply(np.fft.fft, axis=0) hq_conj = hq.apply(np.conjugate) sq =
np.real(hq * hq_conj)
numpy.real
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data =
np.array([])
numpy.array
import tensorflow as tf import pdb import numpy as np import os import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import ImageGrid from mpl_toolkits.axes_grid1 import make_axes_locatable import scipy import myParams def getHome(): # return '/home/deni/' # return '/media/a/f38a5baa-d293-4a00-9f21-ea97f318f647/home/a/' # return '/media/a/H2/home/a/' return '/opt/data/' def getDatasetsBase(): # return '/home/deni/' return '/media/a/H1/TFDatasets/' def getParam_tmpF(s): try: return int(s) except ValueError: try: return float(s) except ValueError: try: return np.array(list(map(int, s.split(',')))) except ValueError: try: return np.array(list(map(float, s.split(',')))) except ValueError: return s def readParamsTxt(ParamFN): ParamsD = {} with open(ParamFN) as f: for line in f: if len(line)<3: continue # print(line) #print(line.replace("\n","")) (key,val,X)=(line+' a').split(maxsplit=2) # (key, val) = line.split() valx=getParam_tmpF(val) ParamsD[key] = valx myParams.myDict[key]=ParamsD[key] # print(key + " : " + str(val) + " " + type(valx).__name__) def getparam(S): try: return myParams.myDict[S] except ValueError: print('Couldnt find parameter: ' + S) return 0 def setparam(S,V): myParams.myDict[S]=V return def ConcatCOnDim(X,dim): # return tf.cast(tf.concat([tf.real(X),tf.imag(X)],axis=dim),tf.float32) return tf.concat([tf.real(X),tf.imag(X)],axis=dim) def ConcatRIOn0(X): return tf.concat([tf.real(X),tf.imag(X)],axis=0) def ConcatRIOn1(X): return tf.concat([tf.real(X),tf.imag(X)],axis=1) def ConcatRIOn2(X): return tf.concat([tf.real(X),tf.imag(X)],axis=2) def ConcatRIOn3(X): return tf.concat([tf.real(X),tf.imag(X)],axis=3) def ConcatRIOn4(X): return tf.concat([tf.real(X),tf.imag(X)],axis=4) def ConcatRIOn5(X): return tf.concat([tf.real(X),tf.imag(X)],axis=5) def ConcatRIOn6(X): return tf.concat([tf.real(X),tf.imag(X)],axis=6) def ConcatRIOn7(X): return tf.concat([tf.real(X),tf.imag(X)],axis=7) def ConcatCOnDimWithStack(X,dim): # return tf.cast(tf.concat([tf.stack([tf.real(X)],axis=dim),tf.stack([tf.imag(X)],axis=dim)],axis=dim),tf.float32) return tf.concat([tf.stack([tf.real(X)],axis=dim),tf.stack([tf.imag(X)],axis=dim)],axis=dim) def NP_ConcatCOnDim(X,dim): return np.float32(np.concatenate((np.real(X),np.imag(X)),axis=dim)) def NP_ConcatRIOn0(X): return NP_ConcatCOnDim(X,0) def NP_ConcatRIOn1(X): return NP_ConcatCOnDim(X,1) def NP_ConcatRIOn2(X): return NP_ConcatCOnDim(X,2) def NP_ConcatRIOn3(X): return NP_ConcatCOnDim(X,3) def NP_ConcatRIOn4(X): return NP_ConcatCOnDim(X,4) def NP_ConcatRIOn5(X): return NP_ConcatCOnDim(X,5) def NP_ConcatRIOn6(X): return NP_ConcatCOnDim(X,6) def NP_fft2d_on6d(X): return np.transpose(np.fft.fft2(np.transpose(X,(2,3,4,5,0,1))),(4,5,0,1,2,3)) def NP_ifft2d_on6d(X): return np.transpose(np.fft.ifft2(np.transpose(X,(2,3,4,5,0,1))),(4,5,0,1,2,3)) # def RItoCon4(X): # return tf.squeeze(tf.complex(tf.slice(X,[0,0,0,0],[-1,-1,-1,1]),tf.slice(X,[0,0,0,1],[-1,-1,-1,1]))) # def RItoCon4(X): # return tf.squeeze(tf.complex(tf.slice(X,[0,0,0,0],[batch_size,H,W,1]),tf.slice(X,[0,0,0,1],[batch_size,H,W,1]))) def NP_addDim(X): return np.stack([X],axis=-1) def TF_addDim(X): return tf.stack([X],axis=-1) def TF_2d_to_3d(X): return tf.stack([X],axis=2) def TF_3d_to_4d(X): return tf.stack([X],axis=3) def TF_4d_to_5d(X): return tf.stack([X],axis=4) def TF_5d_to_6d(X): return tf.stack([X],axis=5) def TF_2d_to_4d(X): return TF_3d_to_4d(TF_2d_to_3d(X)) def TF_2d_to_5d(X): return TF_4d_to_5d(TF_3d_to_4d(TF_2d_to_3d(X))) def TF_3d_to_5d(X): return TF_4d_to_5d(TF_3d_to_4d(X)) def TF_fft2d_on5d(X): return tf.transpose(tf.fft2d(tf.transpose(X,[2,3,4,0,1])),[3,4,0,1,2]) def TF_ifft2d_on5d(X): return tf.transpose(tf.ifft2d(tf.transpose(X,[2,3,4,0,1])),[3,4,0,1,2]) def TF_fft2d_on6d(X): return tf.transpose(tf.fft2d(tf.transpose(X,[2,3,4,5,0,1])),[4,5,0,1,2,3]) def TF_ifft2d_on6d(X): return tf.transpose(tf.ifft2d(tf.transpose(X,[2,3,4,5,0,1])),[4,5,0,1,2,3]) def TF_fft2d_on7d(X): return tf.transpose(tf.fft2d(tf.transpose(X,[2,3,4,5,6,0,1])),[5,6,0,1,2,3,4]) def TF_ifft2d_on7d(X): return tf.transpose(tf.ifft2d(tf.transpose(X,[2,3,4,5,6,0,1])),[5,6,0,1,2,3,4]) def TF_fft2d_onNd(X,N): return tf.transpose(tf.fft2d(tf.transpose(X,np.concatenate((np.arange(2,N),[0,1]),axis=0))),np.concatenate(([N-2,N-1],np.arange(0,N-2)),axis=0)) def TF_ifft2d_onNd(X,N): return tf.transpose(tf.ifft2d(tf.transpose(X,np.concatenate((np.arange(2,N),[0,1]),axis=0))),np.concatenate(([N-2,N-1],np.arange(0,N-2)),axis=0)) def TF_fft2d_on3d(X): return tf.transpose(tf.fft2d(tf.transpose(X,[2,0,1])),[1,2,0]) def TF_ifft2d_on3d(X): return tf.transpose(tf.ifft2d(tf.transpose(X,[2,0,1])),[1,2,0]) def tfrm(X): return tf.reduce_mean(tf.abs(X)) def rms(X): return np.sqrt(np.mean(np.square(np.abs(X)))) def TF_rms(X): return tf.sqrt(tf.reduce_mean(tf.square(tf.abs(X)))) def QuickCompare(Ref,X): return [rms(Ref),rms(X),rms(Ref-X),rms(Ref)/rms(Ref-X)] def toep(X,Kern,H,W): return np.fft.ifft2(np.fft.fft2(np.pad(X,((0,H),(0,W)),'constant'),axes=(0,1))*Kern,axes=(0,1))[:H,:W] def TF_toep(X,Kern,H,W): return tf.ifft2d(tf.fft2d(tf.pad(X,((0,H),(0,W)),'constant'))*Kern)[:H,:W] def cgp(x0, A, b, mit, stol, bbA): # def [x, k] = cgp(x0, A, C, b, mit, stol, bbA, bbC): # https://en.wikipedia.org/wiki/Conjugate_gradient_method#Example_code_in_MATLAB_/_GNU_Octave_2 x = x0; ha = 0; hp = 0; hpp = 0; ra = 0; rp = 0; rpp = 0; u = 0; k = 0; ra = b - bbA(A, x0); # <--- ra = b - A * x0; while rms(ra) > stol: ha=ra k = k + 1; if (k == mit): print('GCP:MAXIT: mit reached, no conversion.'); return x,k hpp = hp; rpp = rp; hp = ha; rp = ra; t = np.sum(np.conj(rp)*hp) if k == 1: u = hp; else: u = hp + (t / np.sum(np.conj(rpp)*hpp)) * u; Au = bbA(A, u) # <--- Au = A * u; Fac=np.sum(np.conj(u)*Au) a = t / Fac x = x + a * u; ra = rp - a * Au; return x,k def TF_cgp(x0, A, b, mit, stol, bbA): x = x0; ha = 0; hp = 0; hpp = 0; ra = 0; rp = 0; rpp = 0; u = 0; k = 0; ra = b - bbA(A, x0); # <--- ra = b - A * x0; while TF_rms(ra) > stol: ha=ra k = k + 1; if (k == mit): print('GCP:MAXIT: mit reached, no conversion.'); return x,k hpp = hp; rpp = rp; hp = ha; rp = ra; t = tf.reduce_sum(tf.conj(rp)*hp) if k == 1: u = hp; else: u = hp + (t / tf.reduce_sum(tf.conj(rpp)*hpp)) * u; Au = bbA(A, u) # <--- Au = A * u; Fac=tf.reduce_sum(tf.conj(u)*Au) a = t / Fac x = x + a * u; ra = rp - a * Au; return x,k def NP_NUFFT_forw(X,SN,P,H,W): return P*np.reshape(np.fft.fft2(np.pad(X*SN,((0,H),(0,W)),'constant')),-1) # def back(X,SN,P,H,W): # return np.fft.ifft2(np.reshape(np.conj(P.T)*X,((H*2,W*2))),axes=(0,1))[:H,:W]*np.conj(SN) def NP_NUFFT_back(X,SN,P,H,W): return (np.fft.ifft2(np.reshape(np.conj(np.transpose(P))*X,(H*2,W*2)))[:H,:W])*np.conj(SN) def NP_NUFFT_forwWback(X,Wx,SN,P,H,W): return NP_NUFFT_back(NP_NUFFT_forw(X,SN,P,H,W)*Wx,SN,P,H,W) def NP_NUFFTHNUFFT_WithW(I,SN,P,CurW,H,W): Step1=I*SN Pad=np.pad(Step1,((0,H),(0,W)),'constant') F=np.fft.fft2(Pad) Col=np.reshape(F,(-1)) Sig=P*Col Sig=Sig*CurW # Out=back(Sig,SN,P,H,W) Step1=np.conj(np.transpose(P))*Sig Step1=np.reshape(Step1,(H*2,W*2)) F=np.fft.ifft2(Step1) Cropped=F[:H,:W] Out=Cropped*np.conj(SN) return Out def NUFFT_to_ToepKern(Wx,SN,P,H,W): # NUFFT to ToepKern v11=np.zeros((H,W),np.complex128) v12=np.zeros((H,W),np.complex128) v21=np.zeros((H,W),np.complex128) v22=np.zeros((H,W),np.complex128) v11[0,0]=1 v12[0,-1]=1 v21[-1,0]=1 v22[-1,-1]=1 block11=NP_NUFFTHNUFFT_WithW(v11,SN,P,Wx,H,W) block12=NP_NUFFTHNUFFT_WithW(v12,SN,P,Wx,H,W) block21=NP_NUFFTHNUFFT_WithW(v21,SN,P,Wx,H,W) block22=NP_NUFFTHNUFFT_WithW(v22,SN,P,Wx,H,W) Big=np.zeros((H*2,W*2),np.complex128) Big[:H,:W]=block22; Big[H-1:-1,W-1:-1]=block11; Big[:H,W-1:-1]=block21; Big[H-1:-1,:W]=block12; Bigc=np.roll(Big,(-H+1,-W+1),(0,1)) TKern=np.fft.fft2(Bigc) return TKern # QuickCompare(TKern,TKern1) def _glorot_initializer_g(units, stddev_factor=1.0): """Initialization in the style of Glorot 2010. stddev_factor should be 1.0 for linear activations, and 2.0 for ReLUs""" stddev = np.sqrt(stddev_factor / np.sqrt(np.prod(units))) return tf.truncated_normal(units,mean=0.0, stddev=stddev) """ Example use of TF_TSNUFFT: B0Data=scipy.io.loadmat('/media/a/H1/MoreDataForTFNUFT.mat') Sens=B0Data['Sens'] TSBF=B0Data['TSBF'] TSC=B0Data['TSC'] NUFTData=scipy.io.loadmat('/media/a/DATA/180628_AK/meas_MID244_gBP_VD11_U19_G35S155_4min_FID22439/TrajForNUFT.mat') Kd=NUFTData['Kd'] P=NUFTData['P'] SN=NUFTData['SN'] Trajm2=NUFTData['Trajm2'] SmpI=scipy.io.loadmat('/media/a/H1/SmpI.mat') SmpI=SmpI['SmpI'] nTraj=Trajm2.shape[1] nCh=Sens.shape[2] nTSC=TSC.shape[2] SNc,paddings,sp_R,sp_I,TSBFX=GT.TF_TSNUFFT_Prepare(SN,Sens,TSC,TSBF,Kd,P) Out=GT.TF_TSNUFFT_Run(SmpI,SNc,paddings,nTraj,nTSC,nCh,sp_R,sp_I,TSBFX) SOut={} SOut['Out']=Out scipy.io.savemat('/media/a/H1/TFTSNUFTOut.mat',SOut) """ # def TS_NUFFT_OPHOP(InImage,TSCSens,H,W,batch_size,paddingsY,nTSC,nCh,fftkernc5D): # InImage=tf.stack([tf.stack([InImage],axis=3)],axis=4) # InImage=tf.transpose(InImage,[1,2,3,4,0]) # Step1=tf.multiply(InImage,TSCSens) # Padded=tf.pad(Step1, paddingsY, "CONSTANT") # Step2=tf.transpose(tf.fft2d(tf.transpose(Padded,perm=[2,3,4,0,1])),[3,4,0,1,2]) # Step2=tf.multiply(Step2,fftkernc5D) # Step2=tf.transpose(tf.ifft2d(tf.transpose(Step2,perm=[2,3,4,0,1])),[3,4,0,1,2]) # Cropped=tf.slice(Step2,[0,0,0,0,0],[H,W,nTSC,nCh,batch_size]) # Step3=tf.multiply(Cropped,tf.conj(TSCSens)) # Step3=tf.reduce_sum(Step3,axis=[2,3]) # Step3=tf.transpose(Step3,[2,0,1]) # return Step3 def blocksToFftkern(block1,block2): (N1,N2)=block1.shape z1 = np.zeros((N1,1)) z2 = np.zeros((N1-1,1)) Row1=np.concatenate((block1,z1,np.conj(np.flip(np.concatenate((block1[0:1,1:],block2[1:,1:]),axis=0),axis=1)) ),axis=1) Row2=np.concatenate((np.flip(block2[1:,:],axis=0),z2,np.flip(np.flip(np.conj(block1[1:,1:]),axis=0),axis=1)),axis=1) tmp1a=np.concatenate((Row1,np.zeros((1,N2*2)),Row2),axis=0) tmp2a=np.conj(np.flip(np.flip(np.roll(np.roll(tmp1a,-1,axis=0),-1,axis=1),axis=0),axis=1)) kern=(tmp1a+tmp2a)/2 fftkerna=np.fft.fft2(kern) fftkerna=np.real(fftkerna) return fftkerna def GetTSCoeffsByLinear(N,L): M=np.zeros((N,L)) Ttimes=np.linspace(0,1,L); xnew = np.linspace(0, 1, N) for i in range(0,L): # print(i) tmp=np.zeros((L)) tmp[i]=1 f=scipy.interpolate.interp1d(Ttimes,tmp) M[:,i]=f(xnew) return M def NP_Cartesian_OPHOP_ITS_MB(InImage,Sens6,Msk): # InImage is batch_size,H,W,nTSC,MB # Sens6 is H,W,/nTSC/,nCh,MB,batch_size InImage=NP_addDim(InImage) InImage=np.transpose(InImage,(1,2,3,5,4,0)) # H,W,nTSC,/nCh/,MB,batch_size Step1=InImage*Sens6 # H,W,nTSC,nCh,MB,batch_size F=NP_fft2d_on6d(Step1) MF=F*Msk IMF=NP_ifft2d_on6d(MF) SIMF=IMF*np.conj(Sens6) Step2=np.sum(SIMF,axis=3) # H,W,nTSC,MB,batch_size Step3=np.transpose(Step2,(4,0,1,2,3)) # batch_size,H,W,nTSC,MB return Step3 # batch_size,H,W,nTSC,MB def Cartesian_OPHOP_ITS_MB(InImage,Sens6,Msk): # InImage is batch_size,H,W,nTSC,MB # Sens6 is H,W,/nTSC/,nCh,MB,batch_size InImage=TF_addDim(InImage) InImage=tf.transpose(InImage,[1,2,3,5,4,0]) # H,W,nTSC,/nCh/,MB,batch_size Step1=InImage*Sens6 # H,W,nTSC,nCh,MB,batch_size F=TF_fft2d_on6d(Step1) MF=F*Msk IMF=TF_ifft2d_on6d(MF) SIMF=IMF*tf.conj(Sens6) Step2=tf.reduce_sum(SIMF,axis=[3]) # H,W,nTSC,MB,batch_size Step3=tf.transpose(Step2,[4,0,1,2,3]) # batch_size,H,W,nTSC,MB return Step3 # batch_size,H,W,nTSC,MB def TS_NUFFT_OPHOP_ITS_MB(InImage,Sens6,H,W,batch_size,paddingsYMB,nTSC,nCh,fftkernc7): # InImage is batch_size,H,W,nTSC,MB # Sens6 is H,W,/nTSC/,nCh,MB,batch_size # fftkernc7 is # H*2,W*2,nTSC,/nCh/,MB,/batch_size/,MBaux InImage=TF_addDim(InImage) # batch_size,H,W,nTSC,MB,/nCh/ InImage=tf.transpose(InImage,[1,2,3,5,4,0]) # H,W,nTSC,/nCh/,MB,batch_size Step1=InImage*Sens6 # H,W,nTSC,nCh,MB,batch_size Padded=tf.pad(Step1, paddingsYMB, "CONSTANT") # H*2,W*2,nTSC,nCh,MB,batch_size Step2=TF_fft2d_on6d(Padded) # H*2,W*2,nTSC,nCh,MB,batch_size Step2=TF_addDim(Step2) # H*2,W*2,nTSC,nCh,MB,batch_size,/MBaux/ Step2=Step2*fftkernc7 # H*2,W*2,nTSC,nCh,MB,batch_size,MBaux Step2=TF_ifft2d_on7d(Step2) # H*2,W*2,nTSC,nCh,MB,batch_size,MBaux # Cropped=tf.slice(Step2,[0,0,0,0,0],[H,W,-1,-1,-1]) Cropped=Step2[:H,:W,:,:,:,:,:] # H,W,nTSC,nCh,MB,batch_size,MBaux Step3a=Cropped*tf.conj(TF_addDim(Sens6)) Step3=tf.reduce_sum(Step3a,axis=[3,4]) # H,W,nTSC,batch_size,MBaux Step3=tf.transpose(Step3,[3,0,1,2,4]) # batch_size,H,W,nTSC,MB?aux? return Step3 # batch_size,H,W,nTSC,MB?aux? def TS_NUFFT_OPHOP_ITS(InImage,Sens5,H,W,batch_size,paddingsY,nTSC,nCh,fftkernc5): # InImage is batch_size,H,W,nTSC # Sens5 is H,W,1,nCh,batch_size # fftkernc5D is H*2,W*2,nTSC,1,1 InImage=TF_addDim(InImage) # batch_size,H,W,nTSC,1 InImage=tf.transpose(InImage,[1,2,3,4,0]) # H,W,nTSC,1,batch_size Step1=InImage*Sens5 # H,W,nTSC,nCh,batch_size Padded=tf.pad(Step1, paddingsY, "CONSTANT") # H*2,W*2,nTSC,nCh,batch_size Step2=TF_fft2d_on5d(Padded) # Step2=tf.transpose(Step2,[1,0,2,3,4]) Step2=Step2*fftkernc5 # Step2=tf.transpose(Step2,[1,0,2,3,4]) Step2=TF_ifft2d_on5d(Step2) Cropped=tf.slice(Step2,[0,0,0,0,0],[H,W,-1,-1,-1]) Step3a=Cropped*tf.conj(Sens5) Step3=tf.reduce_sum(Step3a,axis=[3]) # H,W,nTSC,batch_size Step3=tf.transpose(Step3,[3,0,1,2]) # batch_size,H,W,nTSC return Step3 # batch_size,H,W,nTSC def TS_NUFFT_OPHOP(InImage,TSCSens,H,W,batch_size,paddingsY,nTSC,nCh,fftkernc5D,SumOver=True): InImage=TF_3d_to_5d(InImage) InImage=tf.transpose(InImage,[1,2,3,4,0]) Step1=tf.multiply(InImage,TSCSens) Padded=tf.pad(Step1, paddingsY, "CONSTANT") Step2=TF_fft2d_on5d(Padded) # Step2=tf.transpose(Step2,[1,0,2,3,4]) Step2=tf.multiply(Step2,fftkernc5D) # Step2=tf.transpose(Step2,[1,0,2,3,4]) Step2=TF_ifft2d_on5d(Step2) Cropped=tf.slice(Step2,[0,0,0,0,0],[H,W,nTSC,nCh,batch_size]) Step3a=tf.multiply(Cropped,tf.conj(TSCSens)) if SumOver: Step3=tf.reduce_sum(Step3a,axis=[2,3]) Step3=tf.transpose(Step3,[2,0,1]) return Step3 else: return Step3a def TS_NUFFT_OP(InImage,TSCSens,SNc,H,W,batch_size,paddingsX,nTraj,nTSC,nCh,sp_C,TSBFXc): InImage=tf.stack([tf.stack([InImage],axis=3)],axis=4) InImage=tf.transpose(InImage,[1,2,3,4,0]) Step1=tf.multiply(InImage,SNc) Step1=tf.multiply(Step1,TSCSens) Step1=tf.reshape(Step1,[H,W,nTSC*nCh*batch_size]) Padded=tf.pad(Step1, paddingsX, "CONSTANT") Step2a=TF_fft2d_on3d(Padded) Step2=tf.transpose(Step2a,[1,0,2]) Col=tf.reshape(Step2,[-1,nTSC*nCh*batch_size]) C=tf.sparse_tensor_dense_matmul(sp_C,Col) CX=tf.reshape(C,[nTraj,nTSC,nCh,batch_size]) WithTSB=CX*TSBFXc WithTSBR=tf.reduce_sum(WithTSB,axis=1) Sig=tf.transpose(WithTSBR,[2,0,1]) return Sig def TS_NUFFT_OP_H(Sig,TSCSens,SNc,H,W,batch_size,paddingsX,nTraj,nTSC,nCh,sp_C,TSBFXc,SumOver=True): SigP=tf.transpose(tf.stack([Sig],axis=3),[1,3,2,0]) SWithTSB=tf.multiply(tf.conj(TSBFXc),SigP) SWithTSB=tf.reshape(SWithTSB,[nTraj,nTSC*nCh*batch_size]) C=tf.conj(tf.sparse_tensor_dense_matmul(sp_C,tf.conj(SWithTSB),adjoint_a=True)) # C=tf.sparse_tensor_dense_matmul(sp_C,SWithTSB,adjoint_a=True) PaddedH=tf.reshape(C,[H*2,W*2,nTSC*nCh*batch_size]) PaddedH=tf.transpose(PaddedH,[1,0,2]) Step2=TF_ifft2d_on3d(PaddedH)*H*W*2*2 Cropped=tf.slice(Step2,[0,0,0],[H,W,nTSC*nCh*batch_size]) Cropped=tf.reshape(Cropped,[H,W,nTSC,nCh,batch_size]) Step1=tf.multiply(Cropped,tf.conj(TSCSens)) Step1=tf.multiply(Step1,tf.conj(SNc)) if SumOver: yNew=tf.reduce_sum(Step1,axis=[2,3]) yNew=tf.transpose(yNew,[2,0,1]) return yNew else: return Step1 # def TS_NUFFT_OP_H(Sig,TSCSens,SNc,H,W,batch_size,paddingsX,nTraj,nTSC,nCh,sp_C,TSBFXc): # SigP=tf.transpose(tf.stack([Sig],axis=3),[1,3,2,0]) # SWithTSB=tf.multiply(tf.conj(TSBFXc),SigP) # SWithTSB=tf.reshape(SWithTSB,[nTraj,nTSC*nCh*batch_size]) # C=tf.conj(tf.sparse_tensor_dense_matmul(sp_C,tf.conj(SWithTSB),adjoint_a=True)) # # C=tf.sparse_tensor_dense_matmul(sp_C,SWithTSB,adjoint_a=True) # PaddedH=tf.reshape(C,[H*2,W*2,nTSC*nCh*batch_size]) # Step2=tf.transpose(tf.ifft(tf.transpose(tf.ifft(tf.transpose(PaddedH,perm=[2,0,1])),perm=[0,2,1])),perm=[1,2,0])*np.sqrt(2*2*H*W) # Cropped=tf.slice(Step2,[0,0,0],[H,W,nTSC*nCh*batch_size]) # Cropped=tf.reshape(Cropped,[H,W,nTSC,nCh,batch_size]) # Step1=tf.multiply(Cropped,tf.conj(TSCSens)) # Step1=tf.multiply(Step1,tf.conj(SNc)) # yNew=tf.reduce_sum(Step1,axis=[2,3]) # yNew=tf.transpose(yNew,[2,0,1]) # return yNew # def TS_NUFFT_OP(InImage,TSCSens,SNc,H,W,batch_size,paddingsX,nTraj,nTSC,nCh,sp_C,TSBFXc): # InImage=tf.stack([tf.stack([InImage],axis=3)],axis=4) # InImage=tf.transpose(InImage,[1,2,3,4,0]) # Step1=tf.multiply(InImage,SNc) # Step1=tf.multiply(Step1,TSCSens) # Step1=tf.reshape(Step1,[H,W,nTSC*nCh*batch_size]) # Padded=tf.pad(Step1, paddingsX, "CONSTANT") # Step2=tf.transpose(tf.fft(tf.transpose(tf.fft(tf.transpose(Padded,perm=[2,0,1])),perm=[0,2,1])),perm=[1,2,0])/np.sqrt(2*2*H*W) # Col=tf.reshape(Step2,[-1,nTSC*nCh*batch_size]) # C=tf.sparse_tensor_dense_matmul(sp_C,Col) # CX=tf.reshape(C,[nTraj,nTSC,nCh,batch_size]) # WithTSB=CX*TSBFXc # WithTSBR=tf.reduce_sum(WithTSB,axis=1) # Sig=tf.transpose(WithTSBR,[2,0,1]) # return Sig def TF_TSNUFFT_Run_TSCin(InImage,TSCin,SNc,paddings,nTraj,nTSC,nCh,sp_R,sp_I,TSBFX): # SNx=tf.reshape(SNx,[SNx.shape[0],SNx.shape[1],1]) InImage=InImage*TSCin # InImage=tf.reshape(InImage,[InImage.shape[0],InImage.shape[1],1]) Step1=tf.multiply(InImage,SNc) Padded=tf.pad(Step1, paddings, "CONSTANT") Step2=tf.transpose(tf.fft(tf.transpose(tf.fft(tf.transpose(Padded,perm=[2,0,1])),perm=[0,2,1])),perm=[1,2,0]) # Step2=tf.fft(tf.transpose(tf.fft(Padded),perm=[1,0])) Col=tf.reshape(Step2,[-1,nTSC*nCh]) ColR=tf.real(Col) ColI=tf.imag(Col) RR=tf.sparse_tensor_dense_matmul(sp_R,ColR) RI=tf.sparse_tensor_dense_matmul(sp_R,ColI) IR=tf.sparse_tensor_dense_matmul(sp_I,ColR) II=tf.sparse_tensor_dense_matmul(sp_I,ColI) R=RR-II I=RI+IR C=tf.complex(R,I) # pdb.set_trace() # CX=np.reshape(C,(nTraj,nTSC,nCh)) CX=tf.reshape(C,[nTraj,nTSC,nCh]) WithTSB=CX*TSBFX WithTSBR=tf.reduce_sum(WithTSB,axis=1) return WithTSBR def TF_TSNUFFT_Run(InImage,SNc,paddings,nTraj,nTSC,nCh,sp_R,sp_I,TSBFX): # SNx=tf.reshape(SNx,[SNx.shape[0],SNx.shape[1],1]) InImage=tf.reshape(InImage,[InImage.shape[0],InImage.shape[1],1]) Step1=tf.multiply(InImage,SNc) Padded=tf.pad(Step1, paddings, "CONSTANT") Step2=tf.transpose(tf.fft(tf.transpose(tf.fft(tf.transpose(Padded,perm=[2,0,1])),perm=[0,2,1])),perm=[1,2,0]) # Step2=tf.fft(tf.transpose(tf.fft(Padded),perm=[1,0])) Col=tf.reshape(Step2,[-1,nTSC*nCh]) ColR=tf.real(Col) ColI=tf.imag(Col) RR=tf.sparse_tensor_dense_matmul(sp_R,ColR) RI=tf.sparse_tensor_dense_matmul(sp_R,ColI) IR=tf.sparse_tensor_dense_matmul(sp_I,ColR) II=tf.sparse_tensor_dense_matmul(sp_I,ColI) R=RR-II I=RI+IR C=tf.complex(R,I) # pdb.set_trace() # CX=np.reshape(C,(nTraj,nTSC,nCh)) CX=tf.reshape(C,[nTraj,nTSC,nCh]) WithTSB=CX*TSBFX WithTSBR=tf.reduce_sum(WithTSB,axis=1) return WithTSBR def TF_TSNUFFT_Run3(H,W,InImage,SNc,paddings,nTraj,nTSC,nCh,sp_R,sp_I,TSBFX): # SNx=tf.reshape(SNx,[SNx.shape[0],SNx.shape[1],1]) # InImage=tf.reshape(InImage,[InImage.shape[0],InImage.shape[1],1]) Step1=tf.multiply(InImage,SNc) Step1=tf.reshape(Step1,[H,W,nCh*nTSC]) Padded=tf.pad(Step1, paddings, "CONSTANT") Step2=tf.transpose(tf.fft(tf.transpose(tf.fft(tf.transpose(Padded,perm=[2,0,1])),perm=[0,2,1])),perm=[1,2,0]) # Step2=tf.fft(tf.transpose(tf.fft(Padded),perm=[1,0])) Col=tf.reshape(Step2,[-1,nTSC*nCh]) ColR=tf.real(Col) ColI=tf.imag(Col) RR=tf.sparse_tensor_dense_matmul(sp_R,ColR) RI=tf.sparse_tensor_dense_matmul(sp_R,ColI) IR=tf.sparse_tensor_dense_matmul(sp_I,ColR) II=tf.sparse_tensor_dense_matmul(sp_I,ColI) R=RR-II I=RI+IR C=tf.complex(R,I) # pdb.set_trace() # CX=np.reshape(C,(nTraj,nTSC,nCh)) CX=tf.reshape(C,[nTraj,nTSC,nCh]) WithTSB=CX*TSBFX WithTSBR=tf.reduce_sum(WithTSB,axis=1) return WithTSBR def TF_TSNUFFT_Prepare3(SN,Sens,TSBF,Kd,P): nTraj=TSBF.shape[1] nTSC=TSBF.shape[0] InputIShape=Sens.shape[0:2] nCh=Sens.shape[2] # TSCX=np.reshape(TSC,np.concatenate((TSC.shape,[1]),axis=0)) SensP=np.transpose(np.reshape(Sens,np.concatenate((Sens.shape,[1]),axis=0)),(0,1,3,2)) # SensWithTSC=SensP*TSCX # SensWithTSCX=np.reshape(SensWithTSC,(InputIShape[0],InputIShape[1],nCh*nTSC)) # SNX=np.reshape(SN,np.concatenate((SN.shape,[1]),axis=0)) SNX=NP_addDim(NP_addDim(SN)) SensWithSN=SensP*SNX # SensWithTSCXWithSN=SensWithTSCX*SNX # SNc=tf.constant(tf.cast(SensWithTSCXWithSN,tf.complex64)) # SNc=tf.constant(np.complex64(SensWithTSCXWithSN)) SNc=tf.constant(np.complex64(SensWithSN)) TSBFX=np.transpose(np.reshape(TSBF,(nTSC,1,nTraj)),axes=(2,0,1)) TSBFX=tf.constant(np.complex64(TSBFX)) ToPad=[Kd[0,0]-InputIShape[0],Kd[0,1]-InputIShape[1]] paddings = tf.constant([[0, ToPad[0]], [0, ToPad[1]],[0,0]]) # paddings = tf.constant([[0, 68], [0, 60]]) Idx=scipy.sparse.find(P) I2=np.vstack([Idx[0],Idx[1]]).T I2=tf.constant(np.int64(I2)) ValR=tf.constant(np.float32(np.real(Idx[2]))) ValI=tf.constant(np.float32(np.imag(Idx[2]))) sp_R = tf.SparseTensor(I2, ValR, [P.shape[0],P.shape[1]]) sp_I = tf.SparseTensor(I2, ValI, [P.shape[0],P.shape[1]]) # sp_R = tf.SparseTensor(I2, tf.cast(np.real(Idx[2]),tf.float32), [P.shape[0],P.shape[1]]) # sp_I = tf.SparseTensor(I2, tf.cast(np.imag(Idx[2]),tf.float32), [P.shape[0],P.shape[1]]) return SNc,paddings,sp_R,sp_I,TSBFX def TF_TSNUFFT_Prepare2(SN,Sens,TSC,TSBF,Kd,P): nTraj=TSBF.shape[1] nTSC=TSBF.shape[0] InputIShape=Sens.shape[0:2] nCh=Sens.shape[2] # TSCX=np.reshape(TSC,np.concatenate((TSC.shape,[1]),axis=0)) TSCX=tf.stack([TSC],axis=3) SensP=np.transpose(np.reshape(Sens,np.concatenate((Sens.shape,[1]),axis=0)),(0,1,3,2)) SensPT=tf.constant(np.complex64(SensP)) SensWithTSC=tf.multiply(SensPT,TSCX) SensWithTSCX=tf.reshape(SensWithTSC,[SN.shape[0],SN.shape[1],-1]) # SensWithTSCX=np.reshape(SensWithTSC,(InputIShape[0],InputIShape[1],nCh*nTSC)) SNX=np.reshape(SN,np.concatenate((SN.shape,[1]),axis=0)) SNXT=tf.constant(np.complex64(SNX)) SensWithTSCXWithSN=SensWithTSCX*SNXT #print('SensPT') #print(SensPT.shape) #print('TSCX') #print(TSCX.shape) #print('SensWithTSC') #print(SensWithTSC.shape) #print('SensWithTSCXWithSN') #print(SensWithTSCXWithSN.shape) # SNc=tf.constant(tf.cast(SensWithTSCXWithSN,tf.complex64)) # SNc=tf.constant(np.complex64(SensWithTSCXWithSN)) # SNc=tf.constant(SensWithTSCXWithSN) SNc=SensWithTSCXWithSN TSBFX=np.transpose(np.reshape(TSBF,(nTSC,1,nTraj)),axes=(2,0,1)) TSBFX=tf.constant(np.complex64(TSBFX)) ToPad=[Kd[0,0]-InputIShape[0],Kd[0,1]-InputIShape[1]] paddings = tf.constant([[0, ToPad[0]], [0, ToPad[1]],[0,0]]) # paddings = tf.constant([[0, 68], [0, 60]]) Idx=scipy.sparse.find(P) I2=np.vstack([Idx[0],Idx[1]]).T I2=tf.constant(np.int64(I2)) ValR=tf.constant(np.float32(np.real(Idx[2]))) ValI=tf.constant(np.float32(np.imag(Idx[2]))) ValC=tf.constant(np.complex64(Idx[2])) sp_R = tf.SparseTensor(I2, ValR, [P.shape[0],P.shape[1]]) sp_I = tf.SparseTensor(I2, ValI, [P.shape[0],P.shape[1]]) sp_C = tf.SparseTensor(I2, ValC, [P.shape[0],P.shape[1]]) # sp_R = tf.SparseTensor(I2, tf.cast(np.real(Idx[2]),tf.float32), [P.shape[0],P.shape[1]]) # sp_I = tf.SparseTensor(I2, tf.cast(np.imag(Idx[2]),tf.float32), [P.shape[0],P.shape[1]]) return SNc,paddings,sp_R,sp_I,TSBFX,sp_C def TF_TSNUFFT_Prepare(SN,Sens,TSC,TSBF,Kd,P): nTraj=TSBF.shape[1] nTSC=TSC.shape[2] InputIShape=Sens.shape[0:2] nCh=Sens.shape[2] TSCX=np.reshape(TSC,np.concatenate((TSC.shape,[1]),axis=0)) SensP=np.transpose(np.reshape(Sens,np.concatenate((Sens.shape,[1]),axis=0)),(0,1,3,2)) SensWithTSC=SensP*TSCX SensWithTSCX=np.reshape(SensWithTSC,(InputIShape[0],InputIShape[1],nCh*nTSC)) SNX=np.reshape(SN,np.concatenate((SN.shape,[1]),axis=0)) SensWithTSCXWithSN=SensWithTSCX*SNX # SNc=tf.constant(tf.cast(SensWithTSCXWithSN,tf.complex64)) SNc=tf.constant(np.complex64(SensWithTSCXWithSN)) TSBFX=np.transpose(np.reshape(TSBF,(nTSC,1,nTraj)),axes=(2,0,1)) TSBFX=tf.constant(np.complex64(TSBFX)) ToPad=[Kd[0,0]-InputIShape[0],Kd[0,1]-InputIShape[1]] paddings = tf.constant([[0, ToPad[0]], [0, ToPad[1]],[0,0]]) # paddings = tf.constant([[0, 68], [0, 60]]) Idx=scipy.sparse.find(P) I2=np.vstack([Idx[0],Idx[1]]).T I2=tf.constant(np.int64(I2)) ValR=tf.constant(np.float32(np.real(Idx[2]))) ValI=tf.constant(np.float32(np.imag(Idx[2]))) sp_R = tf.SparseTensor(I2, ValR, [P.shape[0],P.shape[1]]) sp_I = tf.SparseTensor(I2, ValI, [P.shape[0],P.shape[1]]) # sp_R = tf.SparseTensor(I2, tf.cast(np.real(Idx[2]),tf.float32), [P.shape[0],P.shape[1]]) # sp_I = tf.SparseTensor(I2, tf.cast(np.imag(Idx[2]),tf.float32), [P.shape[0],P.shape[1]]) return SNc,paddings,sp_R,sp_I,TSBFX def TF_NUFT(A,SN,Kd,P): # A is data, e.g. of size H,W,nMaps # SN should be from Fessler, .* Channel maps; so finally H,W,nMaps # Kd is the final size for the overFT, e.g. H*2,W*2 # P is a sparse matrix of nTraj x H*W ; <101x16320 sparse matrix of type '<class 'numpy.complex128'>' with 2525 stored elements in Compressed Sparse Column format> # MData=scipy.io.loadmat('/media/a/f38a5baa-d293-4a00-9f21-ea97f318f647/home/a/gUM/ForTFNUFT.mat') # A=MData['A'] # SN=MData['SN'] # Kd=MData['Kd'] # P=MData['P'] # NUbyFS3=MData['NUbyFS3'].T ToPad=[Kd[0,0]-A.shape[0],Kd[0,1]-A.shape[1]] paddings = tf.constant([[0, ToPad[0]], [0, ToPad[1]],[0,0]]) # paddings = tf.constant([[0, 68], [0, 60]]) nMaps=2 # A.shape[1] Idx=scipy.sparse.find(P) I2=np.vstack([Idx[0],Idx[1]]).T sp_R = tf.SparseTensor(I2, tf.cast(np.real(Idx[2]),tf.float32), [101,16320]) sp_I = tf.SparseTensor(I2, tf.cast(np.imag(Idx[2]),tf.float32), [101,16320]) SNx=tf.constant(tf.cast(SN,tf.complex64)) Ax=tf.constant(tf.cast(A,tf.complex64)) SNx=tf.reshape(SNx,[SNx.shape[0],SNx.shape[1],1]) Step1=tf.multiply(Ax,SNx) Padded=tf.pad(Step1, paddings, "CONSTANT") Step2=tf.transpose(tf.fft(tf.transpose(tf.fft(tf.transpose(Padded,perm=[2,0,1])),perm=[0,2,1])),perm=[1,2,0]) # Step2=tf.fft(tf.transpose(tf.fft(Padded),perm=[1,0])) Col=tf.reshape(Step2,[-1,nMaps]) ColR=tf.real(Col) ColI=tf.imag(Col) RR=tf.sparse_tensor_dense_matmul(sp_R,ColR) RI=tf.sparse_tensor_dense_matmul(sp_R,ColI) IR=tf.sparse_tensor_dense_matmul(sp_I,ColR) II=tf.sparse_tensor_dense_matmul(sp_I,ColI) R=RR-II I=RI+IR C=tf.complex(R,I) return C def GenerateNeighborsMapBaseExt(Traj,kMax,osN,nNeighbors): NMap=np.zeros([osN,osN,nNeighbors],dtype='int32') DMap=np.zeros([osN,osN,nNeighbors,2],dtype='float32') C=np.arange(-63,65) for i in np.arange(0,osN): for j in np.arange(0,osN): CurLoc=np.vstack([C[i], C[j]]) D=Traj-CurLoc D1=np.squeeze(D[0,:]) D2=np.squeeze(D[1,:]) R=np.linalg.norm(D,ord=2,axis=0)/np.sqrt(2) Idx=np.argsort(R) Idxs=Idx[0:nNeighbors] NMap[i,j,:]=Idxs DMap[i,j,:,0]=D1[Idxs] DMap[i,j,:,1]=D2[Idxs] return NMap, DMap def GenerateNeighborsMapBase(Traj,kMax,osN,nNeighbors): nTrajAct=Traj.shape[1] NMap=np.zeros([osN,osN,nNeighbors],dtype='int32') # C=linspaceWithHalfStep(-kMax,kMax,osN) C=np.arange(-63,65) for i in np.arange(0,osN): for j in np.arange(0,osN): CurLoc=np.vstack([C[i], C[j]]) D=Traj-CurLoc R=np.linalg.norm(D,ord=2,axis=0)/np.sqrt(2) Idx=np.argsort(R) NMap[i,j,:]=Idx[0:nNeighbors] return NMap def GenerateNeighborsMap(Traj,kMax,osN,ncc,nChToUseInNN,nNeighbors): # kMax=np.ceil(np.amax(np.abs(CurBartTraj))) # osfForNbrhd=1.3; # osN=(np.ceil(kMax*osfForNbrhd)*2+1).astype(int) # nChToUseInNN=8 # ncc=8 nTrajAct=Traj.shape[1] # nNeighbors=12 NMap=np.zeros([osN,osN,nNeighbors],dtype='int32') C=linspaceWithHalfStep(-kMax,kMax,osN) for i in np.arange(0,osN): for j in np.arange(0,osN): CurLoc=np.vstack([C[i], C[j]]) D=Traj-CurLoc R=np.linalg.norm(D,ord=2,axis=0)/np.sqrt(2) Idx=np.argsort(R) NMap[i,j,:]=Idx[0:nNeighbors] a=np.reshape(np.arange(0,nChToUseInNN)*nTrajAct,(1,1,1,nChToUseInNN)) NMapC=np.reshape(NMap,(NMap.shape[0],NMap.shape[1],NMap.shape[2],1))+a NMapC=np.transpose(NMapC,(0,1,2,3)) NMapCX=np.reshape(NMapC,(osN,osN,nNeighbors*nChToUseInNN)) NMapCR=np.concatenate((NMapCX,NMapCX+nTrajAct*ncc),axis=2) return NMapCR # T=scipy.io.loadmat('/media/a/H1/NMapTest.mat') # Traj=T['Traj'][0:2,:] # NMapRef=T['NMap']-1 # NMapCRef=T['NMapC']-1 # NMapCXRef=T['NMapCX']-1 # NMapCRRef=T['NMapCR'] # Out=np.amax(np.abs(NMap-NMapRef)) # OutC=np.amax(np.abs(NMapC-NMapCRef)) # OutCX=np.amax(np.abs(NMapCX-NMapCXRef)) # OutCR=np.amax(np.abs(NMapCR-NMapCRRef)) # [Out, OutC,OutCX,OutCR] # Result: [0, 0, 0, 0] def GenerateNeighborsMapC(Traj,kMax,osN,ncc,nChToUseInNN,nNeighbors): # kMax=np.ceil(np.amax(np.abs(CurBartTraj))) # osfForNbrhd=1.3; # osN=(np.ceil(kMax*osfForNbrhd)*2+1).astype(int) # nChToUseInNN=8 # ncc=8 nTrajAct=Traj.shape[1] # nNeighbors=12 NMap=np.zeros([osN,osN,nNeighbors],dtype='int32') C=linspaceWithHalfStep(-kMax,kMax,osN) for i in np.arange(0,osN): for j in np.arange(0,osN): CurLoc=np.vstack([C[i], C[j]]) D=Traj-CurLoc R=np.linalg.norm(D,ord=2,axis=0)/np.sqrt(2) Idx=np.argsort(R) NMap[i,j,:]=Idx[0:nNeighbors] a=np.reshape(np.arange(0,nChToUseInNN)*nTrajAct,(1,1,1,nChToUseInNN)) NMapC=np.reshape(NMap,(NMap.shape[0],NMap.shape[1],NMap.shape[2],1))+a NMapC=np.transpose(NMapC,(0,1,2,3)) NMapCX=np.reshape(NMapC,(osN,osN,nNeighbors*nChToUseInNN)) # NMapCR=np.concatenate((NMapCX,NMapCX+nTrajAct*ncc),axis=2) return NMapCX def MoveWithCopiedBackwards(N,L): out=tf.concat([tf.range(L,N), tf.range(N-2,N-2-L,-1)],axis=0) return out def MoveWithCopiedForwards(N,L): out=tf.concat([tf.range(L,0,-1), tf.range(0,N-L)],axis=0) return out def ExpandWithBackwardsOn2(A,N,K): B=A for x in range(1, K): CurMove=MoveWithCopiedBackwards(N,x) CurB=tf.gather(A,CurMove,axis=0) B=tf.concat([B, CurB],axis=2) return B def ExpandWithForwardsOn2(A,N,K): B=A for x in range(1, K): CurMove=MoveWithCopiedForwards(N,x) CurB=tf.gather(A,CurMove,axis=0) B=tf.concat([B, CurB],axis=2) return B def ExpandWithCopiesOn2(A,N,K): Back=ExpandWithBackwardsOn2(A,N,K) Forward=ExpandWithForwardsOn2(A,N,K) B=tf.concat([Back,A,Forward],axis=2) return B def gifft_TFOn3D(x,H,dim=0): HalfH=H/2 Id=np.hstack([np.arange(HalfH,H), np.arange(0,HalfH)]) Id=Id.astype(int) if dim==0 : x = tf.transpose(x, perm=[2,1,0]) if dim==1 : x = tf.transpose(x, perm=[0,2,1]) x = tf.gather(x,Id,axis=2) out=tf.ifft(x) out=tf.multiply(out,tf.sqrt(tf.cast(H,tf.complex64))) out = tf.gather(out,Id,axis=2) if dim==0 : out = tf.transpose(out, perm=[2,1, 0]) if dim==1 : out = tf.transpose(out, perm=[0,2,1]) return out def gfft_TFOn3D(x,H,dim=0): HalfH=H/2 Id=np.hstack([np.arange(HalfH,H), np.arange(0,HalfH)]) Id=Id.astype(int) if dim==0 : x = tf.transpose(x, perm=[2,1,0]) if dim==1 : x = tf.transpose(x, perm=[0,2,1]) x = tf.gather(x,Id,axis=2) out=tf.fft(x) out=tf.divide(out,tf.sqrt(tf.cast(H,tf.complex64))) out = tf.gather(out,Id,axis=2) if dim==0 : out = tf.transpose(out, perm=[2,1, 0]) if dim==1 : out = tf.transpose(out, perm=[0,2,1]) return out def gfft_TF(x,H,dim=0): HalfH=H/2 Id=np.hstack([np.arange(HalfH,H), np.arange(0,HalfH)]) Id=Id.astype(int) # IQ2=tf.reshape(IQ,IQ.shape[0:2]) if dim==1 : x = tf.transpose(x, perm=[1, 0]) x = tf.gather(x,Id,axis=1) out=tf.fft(x) out=tf.divide(out,tf.sqrt(tf.cast(H,tf.complex64))) out = tf.gather(out,Id,axis=1) if dim==1 : out = tf.transpose(out, perm=[1,0]) return out def gfft(x,dim=0): out=np.fft.fftshift(np.fft.fft(np.fft.ifftshift(x,axes=dim),axis=dim),axes=dim) out=out/np.sqrt(x.shape[dim]) return out def gifft(x,dim=0): out=np.fft.fftshift(np.fft.ifft(np.fft.ifftshift(x,axes=dim),axis=dim),axes=dim) out=out*np.sqrt(x.shape[dim]) return out def IDFT_matrix(N): HalfN=N/2 Id=np.hstack([np.arange(HalfN,N),
np.arange(0,HalfN)
numpy.arange
import shutil import numpy as np import math import pandas as pd from urllib.request import urlopen import cv2 from skimage import exposure import shapely import glob import os from osgeo import gdal import utm import itertools import geopandas as gpd import pathlib import matplotlib.pyplot as plt import matplotlib._color_data as mcd import contextily as ctx import time cycle = list(mcd.XKCD_COLORS.values()) import hsfm import bare """ Core data wrangling and preprocessing functions. """ # TODO # - break this up into seperate libraries and classes to better # accomodate other imagery and generealize upstream as much as possible. def get_gcp_polygon(fn): file_name = os.path.splitext(os.path.split(fn)[-1])[0] df = pd.read_csv(fn, header=None, sep=' ') df = df[[1,2]] df.columns=['lat','lon'] gdf = hsfm.geospatial.df_points_to_polygon_gdf(df) gdf['camera'] = file_name return gdf def create_overlap_list(gcp_directory, image_directory, output_directory): output_directory = os.path.join(output_directory, 'ba') hsfm.io.create_dir(output_directory) filename_out = os.path.join(output_directory,'overlaplist.txt') if os.path.exists(filename_out): os.remove(filename_out) gcp_files = glob.glob(os.path.join(gcp_directory,'*.gcp')) image_files = glob.glob(os.path.join(image_directory,'*.tif')) footprints = [] for fn in gcp_files: gdf = get_gcp_polygon(fn) footprints.append(gdf) pairs=[] for a, b in itertools.combinations(footprints, 2): result = hsfm.geospatial.compare_footprints(a, b) if result == 1: c = hsfm.io.retrieve_match(a['camera'].values[0] , image_files) d = hsfm.io.retrieve_match(b['camera'].values[0] , image_files) pairs.append((c,d)) pairs = sorted(list(set(pairs))) for i in pairs: with open(filename_out, 'a') as out: out.write(i[0] + ' '+ i[1]+'\n') return filename_out def create_overlap_list_from_match_files(match_files_directory, image_directory, output_directory, suffix='.match'): output_directory = os.path.join(output_directory, 'ba') hsfm.io.create_dir(output_directory) filename_out = os.path.join(output_directory,'overlaplist.txt') if os.path.exists(filename_out): os.remove(filename_out) match_files = sorted(glob.glob(os.path.join(match_files_directory, '*' + suffix))) match_files pairs = [] for match_file in match_files: img1_fn, img2_fn = bare.core.parse_image_names_from_match_file_name(match_file, image_directory, 'tif') pairs.append((img1_fn, img2_fn)) # creates full set from .match and clean.match pairs pairs = sorted(list(set(pairs))) for i in pairs: with open(filename_out, 'a') as out: out.write(i[0] + ' '+ i[1]+'\n') return filename_out def determine_flight_lines(df, cutoff_angle = 30, file_base_name_column = 'fileName', longitude_column = 'Longitude', latitude_column = 'Latitude'): df = hsfm.batch.calculate_heading_from_metadata(df, file_base_name_column = file_base_name_column, longitude_column = longitude_column, latitude_column = latitude_column) df['next_heading'] = df['heading'].shift(-1) df['heading_diff'] = abs(df['next_heading'] - df['heading']) df['heading_diff'] = df['heading_diff'].fillna(0) df = df.reset_index(drop=True) flights_tmp = [] tmp_df = pd.DataFrame() for row in df.iterrows(): if row[1]['heading_diff'] < cutoff_angle: tmp_df = pd.concat([tmp_df, pd.DataFrame(row[1])],axis=1) else: tmp_df = pd.concat([tmp_df, pd.DataFrame(row[1])],axis=1) tmp_df = tmp_df.T flights_tmp.append(tmp_df) tmp_df = pd.DataFrame() tmp_df = tmp_df.T if not tmp_df.empty: flights_tmp.append(tmp_df.reset_index(drop=True)) flights = [] for i,v in enumerate(flights_tmp): if len(v) == 1: tmp_df = pd.concat([flights_tmp[i-1],v]) flights.pop() flights.append(tmp_df.reset_index(drop=True)) else: flights.append(v.reset_index(drop=True)) return flights def evaluate_image_frame(grayscale_unit8_image_array,frame_size=0.07): x = grayscale_unit8_image_array.shape[1] y = grayscale_unit8_image_array.shape[0] img = grayscale_unit8_image_array window = [0,y,0,x] slice_left_top = frame_size slice_right_bottom = 1-frame_size x_slice_left = int(x * slice_left_top) x_slice_right = int(x * slice_right_bottom) y_slice_top = int(y * slice_left_top) y_slice_bottom = int(y * slice_right_bottom) left = img[0:y, 0:x_slice_left] top = img[0:y_slice_top, 0:x] right = img[0:y, x_slice_right:x] bottom = img[y_slice_bottom:y, 0:x] stats = {'left':np.median(left), 'right':np.median(right), 'top': np.median(top), 'bottom':np.median(bottom)} side = min(stats, key=lambda key: stats[key]) return side def calculate_distance_principal_point_to_image_edge(focal_length_mm, image_width_px, image_height_px, camera_lat_lon_wgs84_center_coordinates, reference_dem, flight_altitude_above_ground_m=1500, pixel_pitch=None): """ Function to calculate distance on ground from principal point to image edge. """ # TODO # - Sample elevation of reference DEM at camera center and subtract from # NAGAP altitude metadata to get altitude above ground. Assumes NAGAP # flights left from sea level. May not be necessary if 3000 meters (10,000 feet) # assumption is good enough for ASP bundle_adjust to correct from. elevation = hsfm.geospatial.sample_dem([camera_lat_lon_wgs84_center_coordinates[1],], [camera_lat_lon_wgs84_center_coordinates[0],], reference_dem) altitude_above_ground_m = flight_altitude_above_ground_m - elevation[0] c = 500 while altitude_above_ground_m < 500: altitude_above_ground_m = flight_altitude_above_ground_m + c - elevation[0] c = c+500 # print(elevation[0], altitude_above_ground_m) # Divide image width in pixels by pixel pitch to get distance in millimeters. image_width_mm = image_width_px * pixel_pitch image_height_mm = image_height_px * pixel_pitch # Calculate angle between principal point and image edge. angle_pp_img_edge_x = np.degrees(np.arctan((image_width_mm/2)/focal_length_mm)) angle_pp_img_edge_y = np.degrees(np.arctan((image_height_mm/2)/focal_length_mm)) # In theory, the distance to the sensor should be added to get the true sensor altitude # above ground. Likely does not make a difference here. sensor_altitude_above_ground_m = focal_length_mm/1000 + altitude_above_ground_m # Calculate x and y distances seperately in case images are not square. # This is needed for hsfm.trig.calculate_corner() distance_pp_img_edge_x_m = np.tan(
np.deg2rad(angle_pp_img_edge_x)
numpy.deg2rad
#----------------------------Reproducible---------------------------------------------------------------------------------------- import numpy as np import tensorflow as tf import random as rn import os seed=0 os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) rn.seed(seed) #session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) session_conf =tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) from keras import backend as K #tf.set_random_seed(seed) tf.compat.v1.set_random_seed(seed) #sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf) K.set_session(sess) #----------------------------Reproducible---------------------------------------------------------------------------------------- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' #-------------------------------------------------------------------------------------------------------------------------------- from keras.datasets import mnist from keras.models import Model from keras.layers import Dense, Input, Flatten, Activation, Dropout, Layer from keras.layers.normalization import BatchNormalization from keras.utils import to_categorical from keras import optimizers,initializers,constraints,regularizers from keras import backend as K from keras.callbacks import LambdaCallback,ModelCheckpoint from keras.utils import plot_model from sklearn.model_selection import StratifiedKFold from sklearn.ensemble import ExtraTreesClassifier from sklearn import svm from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.svm import SVC import h5py import math import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm #-------------------------------------------------------------------------------------------------------------------------------- def show_data_figures(p_data,w=20,h=20,columns = 20): # It shows the figures of digits, the input digits are "matrix version". This is the simple displaying in this codes rows = math.ceil(len(p_data)/columns) fig_show_w=columns fig_show_h=rows fig=plt.figure(figsize=(fig_show_w, fig_show_h)) for i in range(0, len(p_data)): fig.add_subplot(rows, columns, i+1) plt.axis('off') plt.imshow(p_data[i,:].reshape((w, h)),plt.cm.gray)# plt.show() #-------------------------------------------------------------------------------------------------------------------------------- def show_data_figures_with_keyfeature(p_data,p_key_feature_catch,w=20,h=20,columns = 20): # It shows the figures of digits, the input digits are "matrix version". This is the simple displaying in this codes rows = math.ceil(len(p_data)/columns) fig_show_w=columns fig_show_h=rows fig=plt.figure(figsize=(fig_show_w, fig_show_h)) for i in range(0, len(p_data)): fig.add_subplot(rows, columns, i+1) plt.axis('off') plt.imshow(p_data[i,:].reshape((w, h)),plt.cm.gray) for key_feature_catch_i in np.arange(len(p_key_feature_catch)): plt.scatter(p_key_feature_catch[key_feature_catch_i][1],p_key_feature_catch[key_feature_catch_i][0],s=0.5,color='r') plt.tight_layout() plt.show() #-------------------------------------------------------------------------------------------------------------------------------- def top_k_keep(p_arr_,p_top_k_): top_k_idx=p_arr_.argsort()[::-1][0:p_top_k_] top_k_value=p_arr_[top_k_idx] return np.where(p_arr_<top_k_value[-1],0,p_arr_) #-------------------------------------------------------------------------------------------------------------------------------- def show_feature_selection(p_file_name,p_test_data,p_sample_number=40,p_key_number=36): file = h5py.File(p_file_name,'r') data = file['feature_selection']['feature_selection']['kernel:0'] weight_top_k=top_k_keep(
np.array(data)
numpy.array
from typing import Any, Callable, Dict, List, TYPE_CHECKING, Tuple, Union, cast import numpy as np _operatorsIotaCounter = 0 def _operatorsIota() -> int: global _operatorsIotaCounter rv = _operatorsIotaCounter _operatorsIotaCounter = _operatorsIotaCounter+1 return rv TERM_ATOM=_operatorsIota() TERM_ADD=_operatorsIota() TERM_SUB=_operatorsIota() TERM_MUL=_operatorsIota() TERM_DIV=_operatorsIota() TERM_AND=_operatorsIota() TERM_EQUAL=_operatorsIota() TERM_GT=_operatorsIota() TERM_LT=_operatorsIota() TERM_SYMBOL=_operatorsIota() TERM_GETITEM=_operatorsIota() TERM_QUADRATIC=_operatorsIota() TERM_MAXIMIZE=_operatorsIota() TERM_MINIMIZE=_operatorsIota() TERM_MAXIMUM=_operatorsIota() TERM_MINIMUM=_operatorsIota() TERM_DECLARE=_operatorsIota() TERM_LABEL=_operatorsIota() TERM_OPT=_operatorsIota() TERM_TARGET=_operatorsIota() TERM_BITSIZE=_operatorsIota() _TermAdd_ : Callable[[Any,Any],Any] = lambda x,y: None _TermSub_ : Callable[[Any,Any],Any] = lambda x,y: None _TermMul_ : Callable[[Any,Any],Any] = lambda x,y: None _TermDiv_ : Callable[[Any,Any],Any] = lambda x,y: None _TermEqual_ : Callable[[Any,Any],Any] = lambda x,y: None _TermAnd_ : Callable[[Any,Any],Any] = lambda x,y: None _TermGt_ : Callable[[Any,Any],Any] = lambda x,y: None _TermLt_ : Callable[[Any,Any],Any] = lambda x,y: None _TermGetItem_ : Callable[[Any,Any],Any] = lambda x,y: None _TermQuadratic_ : Callable[[Any,Any],Any] = lambda x,y: None _Wrapper_ : Callable[[Any],Any] = lambda x: None class Term: def getTag(self)->int: pass def __add__(self, x)->"Term": return cast("Term",_TermAdd_(self, x)) def __sub__(self, x)->"Term": return cast("Term",_TermSub_(self, x)) def __mul__(self, x)->"Term": return cast("Term",_TermMul_(self, x)) def __div__(self, x)->"Term": return cast("Term",_TermDiv_(self, x)) def __pow__(self, exponent)->"Term": assert(exponent==2) return _TermQuadratic_(1, self) def __eq__(self, x)->"Term": return cast("Term",_TermEqual_(self, x)) def __gt__(self, x)->"Term": return cast("Term",_TermGt_(self, x)) def __lt__(self, x)->"Term": return cast("Term",_TermLt_(self, x)) def __and__(self, x)->"Term": return cast("Term", _TermAnd_(self,x)) def __getitem__(self, x)->"Term": return cast("Term", _TermGetItem_(self,x)) def __radd__(self, x)->"Term": return cast("Term",_TermAdd_(x, self)) def __rsub__(self, x)->"Term": return cast("Term",_TermSub_(x, self)) def __rmul__(self, x)->"Term": return cast("Term",_TermMul_(x,self)) def __rdiv__(self, x)->"Term": return cast("Term",_TermDiv_(x,self)) def __rpow__(self, exponent)->"Term": assert(exponent==2) return _TermQuadratic_(1, self) def __req__(self, x)->"Term": return cast("Term",_TermEqual_(x,self)) def __rgt__(self, x)->"Term": return cast("Term",_TermGt_(x,self)) def __rlt__(self, x)->"Term": return cast("Term",_TermLt_(x,self)) def __rand__(self, x)->"Term": return cast("Term", _TermAnd_(x,self)) class TermAtom(Term): def getTag(self)->int: return TERM_ATOM def __init__(self, x): self.tag = self.getTag() self.atom = x def __repr__(self): return "TermAtom(" + repr(self.atom) + ")" class TermSymbol(Term): def getTag(self)->int: return TERM_SYMBOL def __init__(self, name: str): self.tag = self.getTag() self.name = name def __repr__(self): return "TermSymbol('" + self.name +"')" class TermAdd(Term): def getTag(self)->int: return TERM_ADD def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermAdd(" + str(self.left) + "," + str(self.right) + ")" class TermSub(Term): def getTag(self)->int: return TERM_SUB def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermSub(" + str(self.left) + "," + str(self.right) + ")" class TermMul(Term): def getTag(self)->int: return TERM_MUL def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermMul(" + str(self.left) + "," + str(self.right) + ")" class TermDiv(Term): def getTag(self)->int: return TERM_DIV def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermDiv(" + str(self.left) + "," + str(self.right) + ")" class TermEqual(Term): def getTag(self)->int: return TERM_EQUAL def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermEqual(" + str(self.left) + "," + str(self.right) + ")" class TermGt(Term): def getTag(self)->int: return TERM_GT def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermGt(" + str(self.left) + "," + str(self.right) + ")" class TermLt(Term): def getTag(self)->int: return TERM_LT def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermLt(" + str(self.left) + "," + str(self.right) + ")" class TermAnd(Term): def getTag(self)->int: return TERM_AND def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermAnd(" + str(self.left) + "," + str(self.right) + ")" class TermGetItem(Term): def getTag(self)->int: return TERM_GETITEM def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermGetItem(" + str(self.left) + "," + str(self.right) + ")" class TermDeclare(Term): def getTag(self)->int: return TERM_DECLARE def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermDeclare(" + str(self.left) + "," + str(self.right) + ")" class TermBitsize(Term): def getTag(self)->int: return TERM_BITSIZE def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermBitsize(" + str(self.left) + "," + str(self.right) + ")" class TermLabel(Term): def getTag(self)->int: return TERM_LABEL def __init__(self, x, y): self.tag = self.getTag() self.left = cast(Term,_Wrapper_(x)) self.right = cast(Term,_Wrapper_(y)) def __repr__(self): return "TermLabel(" + str(self.left) + "," + str(self.right) + ")" class TermQuadratic(Term): def getTag(self)->int: return TERM_QUADRATIC def __init__(self, m, x): self.tag = self.getTag() self.m = cast(Term,_Wrapper_(m)) self.x = cast(Term,_Wrapper_(x)) def __repr__(self): return "TermQuadratic(" + str(self.m) + "," + str(self.x) + ")" class TermMaximize(Term): def getTag(self)->int: return TERM_MAXIMIZE def __init__(self, m, x): self.tag = self.getTag() self.m = cast(Term,_Wrapper_(m)) self.x = cast(Term,_Wrapper_(x)) def __repr__(self): return "TermMaximize(" + str(self.m) + "," + str(self.x) + ")" class TermMinimize(Term): def getTag(self)->int: return TERM_MINIMIZE def __init__(self, m, x): self.tag = self.getTag() self.m = cast(Term,_Wrapper_(m)) self.x = cast(Term,_Wrapper_(x)) def __repr__(self): return "TermMinimize(" + str(self.m) + "," + str(self.x) + ")" class TermMaximum(Term): def getTag(self)->int: return TERM_MAXIMUM def __init__(self, x): self.tag = self.getTag() self.x = cast(Term,_Wrapper_(x)) def __repr__(self): return "TermMaximum(" + str(self.x) + ")" class TermMinimum(Term): def getTag(self)->int: return TERM_MINIMUM def __init__(self, x): self.tag = self.getTag() self.x = cast(Term,_Wrapper_(x)) def __repr__(self): return "TermMinimum(" + str(self.x) + ")" OPT_TERM_EQ=_operatorsIota() OPT_TERM_GT=_operatorsIota() OPT_TERM_LT=_operatorsIota() OPT_TERM_MINIMIZE=_operatorsIota() OPT_TERM_MAXIMIZE=_operatorsIota() OPT_TERM_GT_MIN=_operatorsIota() OPT_TERM_LT_MIN=_operatorsIota() OPT_TERM_GT_MAX=_operatorsIota() OPT_TERM_LT_MAX=_operatorsIota() # operator, label, quad/lin part class OptTerm(Term): def getTag(self)->int: return TERM_OPT def __init__(self, quad, lin, op, cmp, label: str): self.quad = quad self.lin = lin self.op = op self.cmp = cmp self.label = label def __repr__(self): def opStr(op: int) -> str: if op == OPT_TERM_EQ: return "OPT_TERM_EQ" if op == OPT_TERM_GT: return "OPT_TERM_GT" if op == OPT_TERM_LT: return "OPT_TERM_LT" if op == OPT_TERM_MINIMIZE: return "OPT_TERM_MINIMIZE" if op == OPT_TERM_MAXIMIZE: return "OPT_TERM_MAXIMIZE" if op == OPT_TERM_GT_MIN: return "OPT_TERM_GT_MIN" if op == OPT_TERM_LT_MIN: return "OPT_TERM_LT_MIN" if op == OPT_TERM_GT_MAX: return "OPT_TERM_GT_MAX" if op == OPT_TERM_LT_MAX: return "OPT_TERM_LT_MAX" return str(op) return "OptTerm(" + repr(self.quad) + "," + repr(self.lin) + "," + opStr(self.op) + "," + repr(self.cmp) + "," + repr(self.label) + ")" # Opt terms & declare & weight declares class Target(Term): def getTag(self)->int: return TERM_TARGET def __init__(self, components: List[OptTerm], annotations: List[Term], positions: Dict[str,int], sizes: Dict[str,int]): self.components = components self.annotations = annotations self.positions = positions self.sizes = sizes def __repr__(self): return "Target(" + repr(self.components) + "," + repr(self.annotations) + "," + repr(self.positions) + "," + repr(self.sizes) + ")" # Links _TermAdd_ = TermAdd _TermSub_ = TermSub _TermMul_ = TermMul _TermDiv_ = TermDiv _TermAnd_ = TermAnd _TermEqual_ = TermEqual _TermGt_ = TermGt _TermLt_ = TermLt _TermQuadratic_ = TermQuadratic _TermGetItem_ = TermGetItem # helpers def sym(x:str)->TermSymbol: return TermSymbol(x) def wrap(x: Any)->Term: if isinstance(x, int): return TermAtom(x) if isinstance(x, float): return TermAtom(x) if isinstance(x, np.float32): return TermAtom(x) if isinstance(x, np.float64): return TermAtom(x) if isinstance(x, np.ndarray): return TermAtom(x) if isinstance(x, str): return TermSymbol(x) return x def quadratic(m: Any, x: Any)->Term: return TermQuadratic(m, x) def maximize(v,expr): return TermMaximize(v,expr) def minimize(v,expr): return TermMinimize(v,expr) def sum(expr): return wrap(1)*expr def minimum(expr): return TermMinimum(expr) def maximum(expr): return TermMaximum(expr) def declare(a,b): return TermDeclare(a,b) def label(a,b): return TermLabel(a,b) def bitsize(a,b): return TermBitsize(a,b) _Wrapper_ = wrap class PositionsHints: def __init__(self): self.at : Dict[str, int] = {} self.inside : Dict[str, str] = {} self.minSize : Dict[str, int] = {} def __repr__(self): return ("PositionHints(" + repr(self.at) + "," + repr(self.inside) + "," + repr(self.minSize) + ")") def getProblemSize(self): mm = 0 for k in self.at: mm = max(self.at[k] + self.minSize[k], mm) # ex: at 0, size=1 => 1 elt return mm def estimateShapeOfExpression(h: PositionsHints, t: Term) -> Tuple[int,int]: tag = t.getTag() if tag == TERM_ATOM: ta = cast(TermAtom, t) a = ta.atom if isinstance(a, np.ndarray): s = a.shape if len(s) == 2: return s return (s[0],1) return (1,1) if tag == TERM_SYMBOL: ts = cast(TermSymbol, t) s = ts.name if s in h.minSize: return (h.minSize[s],1) return (1,1) if tag == TERM_ADD: tadd = cast(TermAdd, t) s1 = estimateShapeOfExpression(h, tadd.left) s2 = estimateShapeOfExpression(h, tadd.right) return (max(s1[0],s2[0]), max(s1[1],s2[1])) if tag == TERM_SUB: tsub = cast(TermSub, t) s1 = estimateShapeOfExpression(h, tsub.left) s2 = estimateShapeOfExpression(h, tsub.right) return (max(s1[0],s2[0]), max(s1[1],s2[1])) if tag == TERM_MUL: # convention # vector * vector => scalar # v * matrix or matrix *v => matrix prod tmul = cast(TermMul, t) s1 = estimateShapeOfExpression(h, tmul.left) s2 = estimateShapeOfExpression(h, tmul.right) s1v = s1[1] == 1 s2v = s2[1] == 1 #print(s1v,s2v) if s1v and s2v: # vector/vector => scalar => 1 return (1,1) if not(s1v) and s2v: # matrix * vector: vector(lines(matrix)) return (s1[0],1) if s1v and not(s2v): # vector transpose * matrix => vector(cols(matrix)) return (s2[1],1) if not(s1v) and not(s2v): # matrix matrix return (s1[0], s2[1]) return (1,1) if tag == TERM_QUADRATIC: return (1,1) return (1,1) def propagateShape(h: PositionsHints, t: Term, sh: Tuple[int,int]): tag = t.getTag() if tag == TERM_ATOM: ta = cast(TermAtom, t) a = ta.atom if isinstance(a, np.ndarray): s = a.shape if len(s) == 2: if s == (1,1): v = s[0,0] a = np.diag([v for k in range(sh[0])], dtype=np.float64) a = ta.atom #print(" * resize matrix", a.shape) else: if sh[0] > s[0]: v = s[0] a = np.array([v for k in range(sh[0])]) ta.atom = a #print("resize matrix", a.shape) if isinstance(a, int) or isinstance(a, float) or isinstance(a, np.float32) or isinstance(a, np.float64): if sh[1]==1: a = np.array([a for k in range(sh[0])], dtype=np.float64) ta.atom = a #print("resize scalar to vector", a.shape) else: a = np.diag([a for k in range(sh[0])], dtype=np.float64) ta.atom = a #print("resize scalar to diag matrix", a.shape) pass if tag == TERM_SYMBOL: ts = cast(TermSymbol, t) s = ts.name if s in h.minSize: _s2 = h.minSize[s] _sf = max(sh[0], _s2) h.minSize[s] = _sf #print("symbol",s,"resized to",_sf) else: h.minSize[s] = sh[0] #print("symbol",s,"acquired size",sh[0]) if tag == TERM_ADD: tadd = cast(TermAdd, t) s1 = estimateShapeOfExpression(h, tadd.left) s2 = estimateShapeOfExpression(h, tadd.right) sf = (max(sh[0],max(s1[0],s2[0])), max(sh[1],max(s1[1],s2[1]))) propagateShape(h, tadd.left, sh) propagateShape(h, tadd.right, sh) if tag == TERM_SUB: tsub = cast(TermSub, t) s1 = estimateShapeOfExpression(h, tsub.left) s2 = estimateShapeOfExpression(h, tsub.right) sf = (max(sh[0],max(s1[0],s2[0])), max(sh[1],max(s1[1],s2[1]))) propagateShape(h, tsub.left, sh) propagateShape(h, tsub.right, sh) if tag == TERM_MUL: # convention # vector * vector => scalar # v * matrix or matrix *v => matrix prod tmul = cast(TermMul, t) s1 = estimateShapeOfExpression(h, tmul.left) s2 = estimateShapeOfExpression(h, tmul.right) s1v = s1[1] == 1 s2v = s2[1] == 1 #print(s1v,s2v) if s1v and s2v: # vector/vector => scalar => 1 # s1 and s2 must be equals~ sf = (max(sh[0],max(s1[0],s2[0])), 1) propagateShape(h, tmul.left, sf) propagateShape(h, tmul.right, sf) if not(s1v) and s2v: # matrix * vector: vector(lines(matrix)) ## return (s1[0],1) sz = max(s1[0], sh[0]) propagateShape(h,tmul.left,(sz,s1[1])) if s1v and not(s2v): # vector transpose * matrix => vector(cols(matrix)) ## return (s2[1],1) sz = max(s2[1], sh[0]) propagateShape(h,tmul.right, (sz,s2[1])) if not(s1v) and not(s2v): # matrix matrix ## return (s1[0], s2[1]) sz1 = max(s1[0], sh[0]) sz2 = max(s2[1], sh[1]) propagateShape(h, tmul.left, (sz1, s1[1])) propagateShape(h, tmul.right, (s2[0], sz2)) pass if tag == TERM_QUADRATIC: tq = cast(TermQuadratic, t) shM = estimateShapeOfExpression(h,tq.m) shX = estimateShapeOfExpression(h,tq.x) sz = max(shM[0], shX[0]) propagateShape(h, tq.m, (sz,sz)) propagateShape(h, tq.x, (sz,1)) # propagate to other types if tag == TERM_EQUAL: te = cast(TermEqual, t) s1 = estimateShapeOfExpression(h, te.left) s2 = estimateShapeOfExpression(h, te.right) sf = (max(sh[0],max(s1[0],s2[0])), max(sh[1],max(s1[1],s2[1]))) propagateShape(h, te.left, sh) propagateShape(h, te.right, sh) if tag == TERM_LT: tlt = cast(TermLt, t) s1 = estimateShapeOfExpression(h, tlt.left) s2 = estimateShapeOfExpression(h, tlt.right) sf = (max(sh[0],max(s1[0],s2[0])), max(sh[1],max(s1[1],s2[1]))) propagateShape(h, tlt.left, sh) propagateShape(h, tlt.right, sh) if tag == TERM_GT: tgt = cast(TermGt, t) s1 = estimateShapeOfExpression(h, tgt.left) s2 = estimateShapeOfExpression(h, tgt.right) sf = (max(sh[0],max(s1[0],s2[0])), max(sh[1],max(s1[1],s2[1]))) propagateShape(h, tgt.left, sh) propagateShape(h, tgt.right, sh) if tag == TERM_AND: tand = cast(TermAnd, t) propagateShape(h, tand.left, (1,1)) propagateShape(h, tand.right, (1,1)) if tag == TERM_GETITEM: tget = cast(TermGetItem, t) propagateShape(h, tget.left, (1,1)) propagateShape(h, tget.right, (1,1)) if tget.left.getTag() == TERM_SYMBOL and tget.right.getTag() == TERM_SYMBOL: sym1 = cast(TermSymbol, tget.left) sym2 = cast(TermSymbol, tget.right) h.inside[sym2.name] = sym1.name if tag == TERM_LABEL: tlabel = cast(TermLabel, t) # NO! propagateShape(h, tlabel.left, (1,1)) propagateShape(h, tlabel.right, sh) #!!!! if tag == TERM_MAXIMIZE: tmaxi = cast(TermMaximize, t) ##propagateShape(h, tmaxi.m, (1,1)) propagateShape(h, tmaxi.x, (1,1)) if tag == TERM_MINIMIZE: tmini = cast(TermMinimize, t) ##propagateShape(h, tmini.m, (1,1)) propagateShape(h, tmini.x, (1,1)) if tag == TERM_DECLARE: tdecl = cast(TermDeclare, t) if tdecl.left.getTag() == TERM_SYMBOL and tdecl.right.getTag() == TERM_ATOM: sym1 = cast(TermSymbol, tdecl.left) at1 = cast(TermAtom, tdecl.right) h.at[sym1.name] = int(at1.atom) pass def fillSlots(sizes: Dict[str,int], positions: Dict[str, int])->List[str]: rv: List[str] = [] def getAt(x: int)->str: if len(rv) > x: return rv[x] else: for i in range(x - len(rv) + 1): rv.append("") # => void return "" def setAt(x: int, v: str): if len(rv) > x: rv[x] = v else: for i in range(x - len(rv) + 1): rv.append("") # => void rv[x] = v for p in positions: setAt(positions[p], p) if sizes[p] > 1: for i in range(sizes[p]-1): setAt(positions[p]+1, "#") szs: List[Tuple[str,int]] = [] for k in sizes: szs.append((k, sizes[k])) szs.sort(key = lambda x:x[1]) #print("sorted", szs) def findPosition(n: str, s:int): if n in positions: return positions[n] cursor = 0 failedAt = 0 def isCursorOk() -> bool: nonlocal cursor nonlocal failedAt failedAt = 0 for i in range(s): if getAt(cursor + i) != "": failedAt = i #print("failed @ ", i) return False #print("accept, cursor = ", cursor) return True while not isCursorOk(): cursor = cursor + failedAt+1 #print("cursor updated = ", cursor) return cursor for i in range(len(szs)): #print("before insert, rv=", rv) n = szs[len(szs)-1-i][0] size = szs[len(szs)-1-i][1] pos = findPosition(n, size) positions[n] = pos setAt(pos, n) if sizes[n] > 1: for i in range(sizes[n]-1): setAt(pos+1+i, "#") #print("rv= ", rv) #print(n,size,"@",pos) #print("var map ", rv) return rv def findSizeAndPositions(h: PositionsHints, t: Term): propagateShape(h, t, (1,1)) propagateShape(h, t, (1,1)) #print(">>", h) hints: Dict[str,int] = {} pos: Dict[str, int] = {} for k in h.minSize: if k in h.inside: pass else: hints[k] = h.minSize[k] if k in h.at: pos[k] = h.at[k] #print("fillSlots", hints, pos) fillSlots(hints, pos) for k in pos: h.at[k] = pos[k] for k in hints: h2: Dict[str,int] = {} p2: Dict[str,int] = {} for p in h.inside: if h.inside[p] == k: h2[p] = h.minSize[p] if p in h.at: p2[p] = h.at[p] if len(h2) > 0: fillSlots(h2,p2) for p in p2: h.at[p] = p2[p] def extractSquareMatrix(h: PositionsHints, t: Term, windowBase: int, windowSize:int)->Union[None,np.ndarray]: tag = t.getTag() sz = h.getProblemSize() if tag==TERM_ATOM: ta=cast(TermAtom, t) atom=ta.atom if isinstance(atom, int): return np.array([[float(atom)]], dtype=np.float64) if isinstance(atom, float): return np.array([[float(atom)]], dtype=np.float64) if isinstance(atom, np.ndarray): if atom.shape == (1,): return atom if len(atom.shape) == 2: return atom return None def symmetrize(m: np.ndarray)->np.ndarray: return 0.5*(m+np.transpose(m)) # Affine def extractMultiDimLinearForm(h: PositionsHints, t: Term, windowBase: int, windowSize:int)->Tuple[np.ndarray, np.ndarray]: #print("extraMultiDimLinearForm", h, t, windowBase, windowSize) tag = t.getTag() sz = h.getProblemSize() if tag == TERM_SYMBOL: ts = cast(TermSymbol, t) n = ts.name pos = h.at[n] lsz = h.minSize[n] if pos >= windowBase + windowSize: ## TODO or .... pos < (and for other places like that) # no intersect return (np.zeros((sz,sz), dtype=np.float64), np.array((sz,), dtype=np.float64)) linear = np.zeros((sz,sz), dtype=np.float64) for i in range(lsz): if i+pos>=windowBase and i < windowBase+windowSize: linear[i+pos,i+pos] = 1.0 return (linear, np.zeros((sz,), dtype=np.float64)) if tag == TERM_MUL: tmul = cast(TermMul, t) mm1 = extractSquareMatrix(h, tmul.left, windowBase, windowSize) mm2 = extractSquareMatrix(h, tmul.right, windowBase, windowSize) def sizeUp(mm, Ax): #print("sizeUp", mm, Ax) # find indices, copy tgtSq = np.zeros((sz, sz),dtype=np.float64) hasLines = [] for i in range(sz): hasLine = False for j in range(sz): if abs(Ax[i,j]) > 1e-12: hasLine = True # NO! if abs(Bx[i]) > 1e-12: # hasLine = True hasLines.append(hasLine) #print("hasLines =", hasLines) cursori = 0 for i in range(sz): cursorj = 0 for j in range(sz): if hasLines[i] and hasLines[j]: tgtSq[i,j] = mm[cursori, cursorj] if hasLines[j]: cursorj = cursorj+1 if hasLines[i]: cursori = cursori+1 #print(tgtSq) return tgtSq (Ax, Bx) = (None, None) try: (Ax, Bx) = extractMultiDimLinearForm(h, tmul.left, windowBase, windowSize) except: pass (Ay, By) = (None, None) try: (Ay, By) = extractMultiDimLinearForm(h, tmul.right, windowBase, windowSize) except: pass if mm1 is None: if mm2 is None: # last resort/desperate and of course false in general # (Ax,Bx) (x) (Ay,By) ~ By^t (Ax,Bx) + Bx^t (Ay,By) + Bx .. By # will it even work? return (np.matmul(np.transpose(By),Ax) + np.matmul(np.transpose(Bx),Ay), np.matmul(np.transpose(Bx), By)) else: # (Ax,Bx) (x) matrix ~ matrix^t * (Ax,Bx) mm2_ = sizeUp(mm2, Ax) mm2t = np.transpose(mm2_) ##print("mul/757", mm2t, Ax, Bx) return (np.matmul(mm2t,Ax), np.matmul(mm2t, Bx)) else: if mm2 is None: mm1_ = sizeUp(mm1, Ay) ##print("mul/785", mm1_, Ay, By) return (np.matmul(mm1_, Ay), np.matmul(mm1_,By)) else: # panic! raise Exception("mat * mat => non linear") if tag == TERM_SUB: tsub = cast(TermSub, t) (Ax, Bx) = extractMultiDimLinearForm(h, tsub.left, windowBase, windowSize) (Ay, By) = extractMultiDimLinearForm(h, tsub.right, windowBase, windowSize) return (Ax-Ay, Bx-By) if tag == TERM_ADD: tadd = cast(TermAdd, t) (Ax, Bx) = extractMultiDimLinearForm(h, tadd.left, windowBase, windowSize) (Ay, By) = extractMultiDimLinearForm(h, tadd.right, windowBase, windowSize) return (Ax+Ay, Bx+By) if tag == TERM_ATOM: tatom = cast(TermAtom, t) atom = tatom.atom #print("804", atom) if isinstance(atom, int): return (np.zeros((sz,sz), dtype=np.float64), np.array([float(atom) for i in range(sz)], dtype=np.float64)) if isinstance(atom, float): return (np.zeros((sz,sz), dtype=np.float64), np.array([float(atom) for i in range(sz)], dtype=np.float64)) if isinstance(atom, np.ndarray): # here, better be sure that you are at 0... no time for it at this stage ~~~~ if len(atom.shape) == 2: raise Exception("lin terms only here!") rv = np.zeros((sz,), dtype=np.float64) for i in range(atom.shape[0]): rv[i] = atom[i] if (sz > atom.shape[0]): # UGLY, needed for expressions like (x-1)**2 + (y-2)**2, LT solution is to add a /range/ info the the args for i in range(sz - atom.shape[0]): rv[i+atom.shape[0]] = atom[0] return (np.zeros((sz,sz), dtype=np.float64), rv) raise Exception("Term type not supported") def extractQuadraticForm(h: PositionsHints, t: Term, windowBase: int, windowSize:int)->Tuple[np.ndarray,np.ndarray,float]: tag = t.getTag() sz = h.getProblemSize() if tag == TERM_SYMBOL: ts = cast(TermSymbol, t) n = ts.name pos = h.at[n] lsz = h.minSize[n] if pos >= windowBase + windowSize: # no intersect return (np.zeros((sz,sz), dtype=np.float64), np.array((sz,), dtype=np.float64), 0.0) linear = np.zeros((sz,), dtype=np.float64) quad = np.zeros((sz,sz), dtype=np.float64) for i in range(lsz): if pos+i>=windowBase and pos+i < windowBase+windowSize: linear[i+pos] = 1.0 return (quad, linear, 0.0) if tag == TERM_ADD: ta = cast(TermAdd, t) q1,l1,s1 = extractQuadraticForm(h, ta.left, windowBase, windowSize) q2,l2,s2 = extractQuadraticForm(h, ta.right, windowBase, windowSize) return (symmetrize(q1+q2), l1+l2, s1+s2) if tag == TERM_SUB: tsub = cast(TermSub, t) q1,l1,s1 = extractQuadraticForm(h, tsub.left, windowBase, windowSize) q2,l2,s2 = extractQuadraticForm(h, tsub.right, windowBase, windowSize) return (symmetrize(q1-q2), l1-l2, s1-s2) if tag == TERM_MUL: tm = cast(TermMul, t) try: q1,l1,s1 = extractQuadraticForm(h, tm.left, windowBase, windowSize) q2,l2,s2 = extractQuadraticForm(h, tm.right, windowBase, windowSize) # notice this makes quad * quad = 0 [sorry for this version: this is a demo] #print("quadratic mul:", (q1,l1,s1), (q2,l2,s2)) debug1 = np.matmul(np.transpose(np.reshape(l1, (l1.shape[0],1))),np.reshape(l2,(l2.shape[0],1))) debug2 = np.transpose(np.reshape(l1, (l1.shape[0],1))),np.reshape(l2,(l2.shape[0],1)) #print("debug", debug1, debug2) return (symmetrize(s1 * q2 + s2 * q2 + np.matmul(np.reshape(l1, (l1.shape[0],1)),np.transpose(np.reshape(l2,(l2.shape[0],1))))), l1*s2 + l2*s1, s1*s2) except: A1, B1 = extractMultiDimLinearForm(h, tm.left, windowBase, windowSize) A2, B2 = extractMultiDimLinearForm(h, tm.right, windowBase, windowSize) #print("MUL", (A1,B1), (A2,B2)) return (symmetrize(np.matmul(np.transpose(A1),A2)), np.matmul(np.transpose(B1), A2) + np.matmul(np.transpose(B2), A1), np.dot(B1,B2)) if tag == TERM_ATOM: tatom = cast(TermAtom, t) # refute non-scalar quantities a = tatom.atom if isinstance(a,int): return (np.zeros((sz,sz), dtype=np.float64), np.zeros((sz,), dtype=np.float64), float(a)) if isinstance(a,float): return (np.zeros((sz,sz), dtype=np.float64),
np.zeros((sz,), dtype=np.float64)
numpy.zeros
"""Operations for dannce.""" import numpy as np import cv2 import time from typing import Text import torch import torch.nn.functional as F class Camera: def __init__(self, R, t, K, tdist, rdist, name=""): self.R =
np.array(R)
numpy.array
def test_sinc_differentation(show=False): """Test the differentation routine of ChebyshevRationalGrid""" from psecas import SincGrid import numpy as np def psi(x, c): from numpy.polynomial.hermite import hermval return hermval(x, c) * np.exp(-x ** 2 / 2) def dpsi(x, c): """Derivative of psi""" from numpy.polynomial.hermite import hermval, hermder yp = hermval(x, hermder(c)) * np.exp(-x ** 2 / 2) - x * psi(x, c) return yp def d2psi(x, c): """Second derivative of psi""" from numpy.polynomial.hermite import hermval, hermder yp = hermval(x, hermder(hermder(c))) * np.exp(-x ** 2 / 2) yp += -x * hermval(x, hermder(c)) *
np.exp(-x ** 2 / 2)
numpy.exp
##### test 버전 만들 때 주의 사항 #### #### 1. test 시나리오 파일로 변경 #### 2. phase_txt 파일 만들기 위한 init 함수, step 함수 변경 import gym import shutil import uuid from gym import error, spaces, utils from gym.utils import seeding import sys import os import numpy as np from xml.etree.ElementTree import parse import collections import math from config import TRAIN_CONFIG print(TRAIN_CONFIG) sys.path.append(TRAIN_CONFIG['libsalt_dir']) import libsalt state_weight = 1 reward_weight = 1 addTime = 1 control_cycle = 3 IS_DOCKERIZE = True if IS_DOCKERIZE: import json import platform def getScenarioRelatedFilePath(args): abs_scenario_file_path = '{}/{}'.format(os.getcwd(), args.scenario_file_path) input_file_path = os.path.dirname(abs_scenario_file_path) if platform.system() == 'Windows': # one of { Windows, Linux , Darwin } dir_delimiter = "\\" else: dir_delimiter = "/" with open(abs_scenario_file_path, 'r') as json_file: json_data = json.load(json_file) node_file = json_data["scenario"]["input"]["node"] edge_file = json_data["scenario"]["input"]["link"] tss_file = json_data["scenario"]["input"]["trafficLightSystem"] node_file_path = input_file_path + dir_delimiter + node_file edge_file_path = input_file_path + dir_delimiter + edge_file tss_file_path = input_file_path + dir_delimiter + tss_file return abs_scenario_file_path, node_file_path, edge_file_path, tss_file_path def getScenarioRelatedBeginEndTime(scenario_file_path): abs_scenario_file_path = '{}/{}'.format(os.getcwd(), scenario_file_path) with open(abs_scenario_file_path, 'r') as json_file: json_data = json.load(json_file) begin_time = json_data["scenario"]["time"]["begin"] end_time = json_data["scenario"]["time"]["end"] return begin_time, end_time def H(s): probabilities = [n_x/len(s) for x,n_x in collections.Counter(s).items()] e_x = [-p_x*math.log(p_x,2) for p_x in probabilities] return sum(e_x) class SALT_doan_multi_PSA(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, args): self.state_weight = state_weight self.reward_weight = reward_weight self.addTime = addTime self.reward_func = args.reward_func self.actionT = args.action_t self.logprint = args.logprint if IS_DOCKERIZE: scenario_begin, scenario_end = getScenarioRelatedBeginEndTime(args.scenario_file_path) # self.startStep = args.trainStartTime if args.trainStartTime > scenario_begin else scenario_begin # self.endStep = args.trainEndTime if args.trainEndTime < scenario_end else scenario_end self.startStep = args.start_time if args.start_time > scenario_begin else scenario_begin self.endStep = args.end_time if args.end_time < scenario_end else scenario_end else: self.startStep = args.trainStartTime self.endStep = args.trainEndTime self.dir_path = os.path.dirname(os.path.realpath(__file__)) self.uid = str(uuid.uuid4()) if IS_DOCKERIZE: abs_scenario_file_path = '{}/{}'.format(os.getcwd(), args.scenario_file_path) self.src_dir = os.path.dirname(abs_scenario_file_path) self.dest_dir = os.path.split(self.src_dir)[0] self.dest_dir = '{}/data/{}/'.format(self.dest_dir, self.uid) os.makedirs(self.dest_dir, exist_ok=True) else: self.src_dir = os.getcwd() + "/data/envs/salt/doan" self.dest_dir = os.getcwd() + "/data/envs/salt/data/" + self.uid + "/" os.mkdir(self.dest_dir) src_files = os.listdir(self.src_dir) for file_name in src_files: full_file_name = os.path.join(self.src_dir, file_name) if os.path.isfile(full_file_name): shutil.copy(full_file_name, self.dest_dir) if IS_DOCKERIZE: scenario_file_name = args.scenario_file_path.split('/')[-1] self.salt_scenario = "{}/{}".format(self.dest_dir, scenario_file_name) if 0: _, _, edge_file_path, tss_file_path = getScenarioRelatedFilePath(args) else: edge_file_path = "magic/doan_20210401.edg.xml" tss_file_path = "magic/doan(without dan).tss.xml" tree = parse(tss_file_path) else: # self.salt_scenario = self.dest_dir + 'doan_2021_actionT{}.scenario.json'.format(self.actionT) self.salt_scenario = self.dest_dir + 'doan_2021.scenario.json' tree = parse(os.getcwd() + '/data/envs/salt/doan/doan(without dan).tss.xml') root = tree.getroot() trafficSignal = root.findall("trafficSignal") self.target_tl_obj = {} self.phase_numbers = [] i=0 if IS_DOCKERIZE: self.targetList_input = args.target_TL.split(',') else: self.targetList_input = args.targetTL.split(',') self.targetList_input2 = [] for tl_i in self.targetList_input: self.targetList_input2.append(tl_i) ## ex. SA 101 self.targetList_input2.append(tl_i.split(" ")[1]) ## ex.101 self.targetList_input2.append(tl_i.replace(" ", "")) ## ex. SA101 for x in trafficSignal: if x.attrib['signalGroup'] in self.targetList_input2: self.target_tl_obj[x.attrib['nodeID']] = {} self.target_tl_obj[x.attrib['nodeID']]['crossName'] = x.attrib['crossName'] self.target_tl_obj[x.attrib['nodeID']]['signalGroup'] = x.attrib['signalGroup'] self.target_tl_obj[x.attrib['nodeID']]['offset'] = int(x.find('schedule').attrib['offset']) self.target_tl_obj[x.attrib['nodeID']]['minDur'] = [int(y.attrib['minDur']) if 'minDur' in y.attrib else int(y.attrib['duration']) for y in x.findall("schedule/phase")] self.target_tl_obj[x.attrib['nodeID']]['maxDur'] = [int(y.attrib['maxDur']) if 'maxDur' in y.attrib else int(y.attrib['duration']) for y in x.findall("schedule/phase")] self.target_tl_obj[x.attrib['nodeID']]['cycle'] = np.sum([int(y.attrib['duration']) for y in x.findall("schedule/phase")]) self.target_tl_obj[x.attrib['nodeID']]['duration'] = [int(y.attrib['duration']) for y in x.findall("schedule/phase")] tmp_duration_list = np.array([int(y.attrib['duration']) for y in x.findall("schedule/phase")]) # self.target_tl_obj[x.attrib['nodeID']]['green_idx'] = np.where(tmp_duration_list > 5) self.target_tl_obj[x.attrib['nodeID']]['green_idx'] = np.where(
np.array(self.target_tl_obj[x.attrib['nodeID']]['minDur'])
numpy.array
import os from glob import glob import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.rcParams.update({'font.size': 5}) plt.rcParams.update({'lines.linewidth':0.35}) plt.rcParams.update({'axes.linewidth':0.35}) plt.rcParams.update({'lines.markersize':2.5}) plt.rcParams.update({'axes.labelpad':1.5}) fig = plt.figure(figsize=(7.2,6)) grid = plt.GridSpec(18, 10, wspace=4, hspace=15) ax = fig.add_subplot(grid[:9, :5]) ax.text(0.025, 0.966, 'a', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') var_dir = '/home/atom/ongoing/work_worldwide/variance' region_list = os.listdir(var_dir) region_nmad = [] region_nsamp = [] for region in region_list: list_fn_csv = [os.path.join(var_dir,region,f) for f in os.listdir(os.path.join(var_dir,region))] list_nmad = [] list_nsamp = [] for fn_csv in list_fn_csv: df = pd.read_csv(fn_csv) list_nmad.append(df.nmad.values) list_nsamp.append(df.nsamp.values) nmad_all = np.stack(list_nmad,axis=1) nsamp_all = np.stack(list_nsamp,axis=1) nan_mask = np.all(np.logical_or(np.isnan(nmad_all),nmad_all==0),axis=1) nmad_final = np.nansum(nmad_all * nsamp_all,axis=1) / np.nansum(nsamp_all,axis=1) nsamp_final = np.nansum(nsamp_all,axis=1) nmad_final[nan_mask] = np.nan nsamp_final[nan_mask] = 0 region_nmad.append(nmad_final) region_nsamp.append(nsamp_final) # ax.figure(figsize=(16,9)) slope = df.bin_slope.values corr = df.bin_corr.values bin_slope = sorted(list(set(list(slope)))) bin_corr = sorted(list(set(list(corr)))) nb_slope = len(bin_slope) nb_corr = len(bin_corr) color_list = ['tab:orange','tab:blue','tab:olive','tab:cyan','tab:red','tab:purple','tab:brown','tab:pink','tab:gray','tab:olive'] ls_list = ['solid','dashed','dotted'] # model_var = np.sqrt(3**2 + (20 * np.tan(np.array(5) * np.pi / 180))**2) + (((100-np.array(bin_corr))/100)*20)**1.25 # # for i in range(len(region_nmad)): # i = 0 # for j in range(nb_slope-2): # # nmad = region_nmad[i] # # ax.plot(corr[1:nb_corr],nmad[j*nb_corr+1:j*nb_corr+nb_corr],label='Slope category: '+str(bin_slope[j]-5)+'-'+str(bin_slope[j]+5)+' degrees',color=color_list[j],linestyle=ls_list[i]) # # # # ax.plot(bin_corr,model_var,label='model',linewidth=2) # # ax.xlabel('Correlation (percent)') # ax.ylabel('Stable terrain NMAD (m)') # ax.ylim([0,50]) # ax.legend() # x_slope = np.arange(5,45,0.1) model_var = np.sqrt(3**2 + (40 * np.tan(np.array(x_slope) * np.pi / 180))**2.5 + (((100-np.array(50))/100)*20)**2) i=0 # for i in range(len(region_nmad)-1): u=0 for j in np.arange(1,nb_corr,2): nmad = region_nmad[i] # ax.plot(bin_slope,nmad[np.arange(j,len(slope),nb_corr)],label='region: '+region_list[i]+', corr: '+str(bin_corr[j]),color=color_list[j],linestyle=ls_list[i]) ax.plot(bin_slope[:-2],nmad[np.arange(j,len(slope)-2*nb_corr,nb_corr)]**2,label='Empirical variance: $q$='+str(int(bin_corr[j]-5))+'-'+str(int(bin_corr[j]+5))+' %',color=color_list[u],linestyle=ls_list[i],marker='o',lw=0.5) u+=1 model_var = np.sqrt(3**2 + ((20+(((100-np.array(100))/100)*20)) * np.tan(np.array(x_slope) * np.pi / 180))**2 + (((100-np.array(95))/100)*15)**2.5) ax.plot(x_slope,model_var**2,label='Modelled: center of above\ncategories',linestyle='dashed',color='black',lw=0.5) model_var = np.sqrt(3**2 + ((20+(((100-np.array(80))/100)*20)) * np.tan(np.array(x_slope) * np.pi / 180))**2 + (((100-np.array(75))/100)*15)**2.5) ax.plot(x_slope,model_var**2,linestyle='dashed',color='black',lw=0.5) model_var = np.sqrt(3**2 + ((20+(((100-np.array(60))/100)*20)) * np.tan(np.array(x_slope) * np.pi / 180))**2 + (((100-np.array(55))/100)*15)**2.5) ax.plot(x_slope,model_var**2,linestyle='dashed',color='black',lw=0.5) model_var = np.sqrt(3**2 + ((20+(((100-np.array(40))/100)*20)) * np.tan(np.array(x_slope) * np.pi / 180))**2 + (((100-np.array(35))/100)*15)**2.5) ax.plot(x_slope,model_var**2,linestyle='dashed',color='black',lw=0.5) model_var = np.sqrt(3**2 + ((20+(((100-np.array(20))/100)*20)) * np.tan(np.array(x_slope) * np.pi / 180))**2 + (((100-np.array(15))/100)*15)**2.5) ax.plot(x_slope,model_var**2,linestyle='dashed',color='black',lw=0.5) ax.set_xlabel('Slope $\\alpha$ (degrees)') ax.set_ylabel('Variance of elevation differences (m$^{2}$)') ax.set_ylim([-100,2450]) ax.legend(loc='upper center',bbox_to_anchor=(0, 0., 0.75, 1),title='Elevation measurement error\nwith slope $\\alpha$ and quality\n of stereo-correlation $q$',title_fontsize=6) ax.grid(linewidth=0.25) ax.tick_params(width=0.35,length=2.5) ax = fig.add_subplot(grid[9:, :5]) ax.text(0.025, 0.966, 'b', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') csv_dir = '/home/atom/ongoing/work_worldwide/tvar/06_rgi60' list_in_csv = glob(os.path.join(csv_dir,'**/*dh_tvar.csv'),recursive=True) # in_csv = '/home/atom/ongoing/work_worldwide/tvar/06_rgi60/N64W018_dh_tvar.csv' for in_csv in list_in_csv: df = pd.read_csv(in_csv) df = df[df['bin_val']==-15] lags=df['lags'] vmean=df['vmean'] vstd=df['vstd'] ax.plot(lags, vmean, lw=0.75, label='Empirical variogram',color='tab:blue') sublag = np.linspace(0,20,200) white = np.ones(np.shape(sublag)) * 65 local = 50 * (1 - np.exp(-1/2*4*sublag**2)) period = 40 * (1 - np.exp(-2 * np.sin(np.pi/1*sublag)**2)) linear = 1.2 * sublag **2 rq = 150*(1 - (1+ sublag**2/(2*100000*3))**(-100000)) # ft.plot_vgm(df['lags'],df['vmean'],df['vstd']) ax.plot(sublag,white+local+period+linear, color='black', lw=0.75, linestyle='dashed',label = 'Modelled variogram: \nsum of individual models') ax.plot(sublag,white, color='tab:cyan', label = 'Model: white noise',linestyle='dashed',lw=0.5) ax.plot(sublag,local, color='tab:red', label = 'Model: local',linestyle='dashed',lw=0.5) ax.plot(sublag,period, color='tab:gray', label = 'Model: periodic',linestyle='dashed',lw=0.5) ax.plot(sublag,linear, color='tab:orange', label = 'Model: linear',linestyle='dashed',lw=0.5) # ax.plot(sublag,rq,color='magenta',label='local-linear kernel') # ax.fill_between(lags, vmean + vstd, vmean - vstd, facecolor='blue', alpha=0.5) # ax.set_title('Variogram: ') ax.set_xlabel('Temporal lag (years)') ax.set_ylabel('Variance of elevation differences (m$^{2}$)') ax.legend(loc='upper center',bbox_to_anchor=(0, 0., 0.75, 1),title='Temporal covariance\nof glacier elevation',title_fontsize=6) ax.set_xlim([0,12]) ax.grid(linewidth=0.25) ax.set_ylim([0,400]) ax.tick_params(width=0.35,length=2.5) # ax.set_xlim([0,10]) import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C, ExpSineSquared as ESS, PairwiseKernel, RationalQuadratic as RQ, WhiteKernel as WK import pyddem.fit_tools as ft import xarray as xr import matplotlib.pyplot as plt # fn_stack = '/home/atom/ongoing/N64W017.nc' # fn_stack = '/home/atom/ongoing/N77E016.nc' # Upsala fn_stack='/home/atom/ongoing/work_worldwide/figures/data_for_figs/S50W074.nc' ds=xr.open_dataset(fn_stack) ds.load() ref_dem_date=np.datetime64('2013-01-01') gla_mask = '/home/atom/data/inventory_products/RGI/rgi60_all.shp' # gla_mask = None nproc=10 clobber=True tstep=0.1 opt_gpr=False kernel=None filt_ref='both' filt_ls=False conf_filt_ls=0.99 #specify the exact temporal extent needed to be able to merge neighbouring stacks properly tlim=[np.datetime64('2000-01-01'),np.datetime64('2019-01-01')] #pixel # x=418930 # y=7107460 # x= 439900 # y=7099000 # x=530000 # y=8593000 # x=515300 # y=8601200 # x=510740 # y=8584920 # x=544674 # y=8580970 #Upsala x=623000 y=4471000 #filtering temporal values keep_vals = ds.uncert.values < 20 ds = ds.isel(time=keep_vals) t_vals = ds.time.values # dates_rm_dupli = sorted(list(set(list(t_vals)))) # ind_firstdate = [] # for i, date in enumerate(dates_rm_dupli): # ind_firstdate.append(list(t_vals).index(date)) # ds_filt = ds.isel(time=np.array(ind_firstdate)) # for i in range(len(dates_rm_dupli)): # t_ind = (t_vals == dates_rm_dupli[i]) # if np.count_nonzero(t_ind) > 1: # print('Here: '+str(i)) # print(ds.time.values[t_ind]) # # careful, np.nansum gives back zero for an axis full of NaNs # mask_nan = np.all(np.isnan(ds.z.values[t_ind, :]), axis=0) # ds_filt.z.values[i, :] = np.nansum(ds.z.values[t_ind, :] * 1. / ds.uncert.values[t_ind, None, None] ** 2, # axis=0) / np.nansum(1. / ds.uncert.values[t_ind, None, None] ** 2, axis=0) # # ds_filt.z.values[i, : ] = np.nanmean(ds.z.values[t_ind,:],axis=0) # ds_filt.z.values[i, mask_nan] = np.nan # # ds_filt.uncert.values[i] = np.nanmean(ds.uncert.values[t_ind]) # ds_filt.uncert.values[i] = np.nansum(ds.uncert.values[t_ind] * 1. / ds.uncert.values[t_ind] ** 2) / np.nansum( # 1. / ds.uncert.values[t_ind] ** 2) # ds = ds_filt #starting t_vals = ds['time'].values ds_pixel = ds.sel(x=x,y=y,method='pad') elev = ds_pixel.z.values filt = np.logical_and.reduce((np.isfinite(elev),elev>-420,elev<8900)) t_vals=t_vals[filt] elev=elev[filt] med_slope = 10. corr = ds_pixel.corr.values[filt] uncert = np.sqrt(ds.uncert.values[filt]**2 + (20 * np.tan(med_slope * np.pi / 180)) ** 2 + (((100-corr)/100)*20)**2.5) # fig, ax = plt.subplots(figsize=(16,9)) # ax.errorbar(t_vals, elev, uncert,fmt='o',color='black') # ax.set_title('Raw data') # ax.set_xlabel('Year after 2000') # ax.set_ylabel('Elevation (m)') # ax.legend(loc='lower left') # ax.grid() # plt.savefig('elev_raw.png',dpi=360) # plt.close() ref_arr = ds.ref_z.values ref_vals = ds_pixel.ref_z.values #spatial filtering cutoff_kern_size=500 cutoff_thr=400. res = 30 rad = int(np.floor(cutoff_kern_size / res)) max_arr, min_arr = ft.maxmin_disk_filter((ref_arr, rad)) ind_x = np.where(ds.x.values==ds_pixel.x.values)[0] ind_y = np.where(ds.y.values==ds_pixel.y.values)[0] max_elev = max_arr[ind_y,ind_x][0] min_elev = min_arr[ind_y,ind_x][0] ind = np.logical_or(elev > (max_elev + cutoff_thr), elev < (min_elev - cutoff_thr)) elev2 = np.copy(elev) elev2[ind] = np.nan #temporal filtering base_thresh=150. thresh=[-50,50] delta_t = (ref_dem_date - t_vals).astype('timedelta64[D]').astype(float) / 365.24 dh = ref_vals - elev2 dt_arr = np.ones(dh.shape) for i, d in enumerate(delta_t): dt_arr[i] = dt_arr[i] * d d_data = dh / dt_arr ind2 = np.logical_or(np.logical_and(dt_arr < 0, np.logical_or(dh < - base_thresh + dt_arr*thresh[1], dh > base_thresh + dt_arr*thresh[0])), np.logical_and(dt_arr > 0, np.logical_or(dh > base_thresh + dt_arr*thresh[1], dh < - base_thresh + dt_arr*thresh[0]))) vect1 = np.arange(np.datetime64('2000-01-01'),ref_dem_date,np.timedelta64(10)) dt1 = (ref_dem_date - vect1).astype('timedelta64[D]').astype(float)/365.24 vect2 = np.arange(ref_dem_date,np.datetime64('2020-01-01'),np.timedelta64(10)) dt2 = (ref_dem_date - vect2).astype('timedelta64[D]').astype(float)/365.24 vect = np.arange(
np.datetime64('2000-01-01')
numpy.datetime64
import numpy as np from superbol.fit_blackbody import (bb_flux_integrated, bb_total_flux, dbb_flux_integrated_dT, dbb_total_flux_dT) def integrate_fqbol(wavelengths, fluxes, flux_uncertainties): """Calculate the trapezoidal rule integral of the observed `fluxes`. The trapezoidal rule integrates the data by assuming the function is linear between observed points, and then integrates under those line segments. The numpy function `trapz` is used to perform the integration, but the uncertainty in the integral due to uncertainties in the observed flux is calculated by hand using standard error propagation techniques. Args: wavelengths (list): List of wavelengths at which the flux was observed. fluxes (list): List of observed fluxes. flux_uncertainties (list): List of uncertainties in each observed flux. Returns: tuple: 2-tuple of floats. * The value of the integral * The uncertainty in the integral due to uncertainties in the fluxes. (fqbol, fqbol_uncertainty) """ fqbol = np.trapz(fluxes, wavelengths) quad_terms = np.array([]) for i, uncertainty in enumerate(flux_uncertainties): if i == 0: term = 0.5 * (wavelengths[i + 1] - wavelengths[i]) * uncertainty quad_terms = np.append(quad_terms, term) elif i == len(flux_uncertainties) - 1: term = 0.5 * (wavelengths[i] - wavelengths[i - 1]) * uncertainty quad_terms = np.append(quad_terms, term) else: term = 0.5 * ( wavelengths[i + 1] - wavelengths[i - 1]) * uncertainty quad_terms = np.append(quad_terms, term) fqbol_uncertainty = np.sqrt(np.sum(x * x for x in quad_terms)) fqbol_uncertainty = fqbol_uncertainty return fqbol, fqbol_uncertainty def ir_correction(temperature, T_err, angular_radius, rad_err, longest_wl): """Apply correction for unobserved flux in the IR. After the temperature and angular radius has been found through fitting a blackbody to the observed fluxes, this function takes those values and integrates under the fitted blackbody function from the longest observed wavelength out to :math:`\\lambda = \\infty`. Args: temperature (float): Best fit blackbody temperature in Kelvin T_err (float): Uncertainty in best fit blackbody temperature in Kelvin angular_radius (float): Best fit blackbody angular radius rad_err (float): Uncertainty in best fit blackbody angular radius longest_wl (float): Longest observed wavelength Returns: tuple: 2-tuple * (float): The IR correction in :math:`erg \\; s^{-1} cm^{-2}` * (float): The uncertainty in the IR correction in the same units """ ir_correction = bb_total_flux(temperature, angular_radius) - bb_flux_integrated( longest_wl, temperature, angular_radius) T_errterm = (dbb_total_flux_dT(temperature, angular_radius) - dbb_flux_integrated_dT(longest_wl, temperature, angular_radius)) * T_err rad_errterm = 2 * ir_correction / angular_radius * rad_err ir_corr_err = np.sqrt(T_errterm**2 + rad_errterm**2) return ir_correction, ir_corr_err def uv_correction_blackbody(temperature, T_err, angular_radius, rad_err, shortest_wl): """Apply correction for unobserved flux in the UV using the blackbody fit. After the temperature and angular radius have been found through fitting a blackbody to the observed fluxes, this function takes those values and integrates under the fitted blackbody from the shortest observed wavelength down to :math:`\\lambda = 0`. Args: temperature (float): Best fit blackbody temperature in Kelvin T_err (float): Uncertainty in best fit blackbody temperature in Kelvin angular_radius (float): Best fit blackbody angular radius rad_err (float): Uncertainty in best fit blackbody angular radius shortest_wl (float): Shortest observed wavelength Returns: tuple: 2-tuple * (float): The UV correction in :math:`erg \\; s^{-1} cm^{-2}` * (float): The uncertainty in the UV correction in the same units """ uv_correction = bb_flux_integrated(shortest_wl, temperature, angular_radius) T_errterm = dbb_flux_integrated_dT(shortest_wl, temperature, angular_radius) * T_err rad_errterm = 2 * uv_correction / angular_radius * rad_err uv_corr_err =
np.sqrt(T_errterm**2 + rad_errterm**2)
numpy.sqrt
#!/usr/local/bin/python # -*- coding: utf-8 -*- from IPython import embed from multiprocessing import Pool, cpu_count #import mega_nn import numpy as np import scipy as sc import scipy.stats as stats import pandas as pd from itertools import product, chain import pickle import os import sys import time networks_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../networks')) NNDB_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../NNDB')) training_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../training')) qlk4D_path = os.path.abspath(os.path.join((os.path.abspath(__file__)), '../../../QLK4DNN')) sys.path.append(networks_path) sys.path.append(NNDB_path) sys.path.append(training_path) sys.path.append(qlk4D_path) from model import Network, NetworkJSON, PostprocessSlice, ComboNetwork, MultiNetwork, no_elements_in_list, any_element_in_list, db from run_model import QuaLiKizNDNN, QuaLiKizDuoNN from train_NDNN import shuffle_panda from functools import partial if __name__ == '__main__': import matplotlib as mpl mpl.use('pdf') import matplotlib.pyplot as plt from matplotlib import gridspec, cycler pretty = False from load_data import nameconvert from load_data import load_data, load_nn, prettify_df from collections import OrderedDict from peewee import AsIs, fn, SQL import re import gc def mode_to_settings(mode): settings = {} if mode == 'debug': settings['plot'] = True settings['plot_pop'] = True settings['plot_nns'] = True settings['plot_slice'] = True settings['plot_poplines'] = True settings['plot_threshlines'] = True settings['plot_zerocolors'] = False settings['plot_thresh1line'] = False settings['calc_thresh1'] = False settings['hide_qualikiz'] = False settings['debug'] = True settings['parallel'] = False settings['plot_threshslope'] = False elif mode == 'quick': settings['plot'] = False settings['plot_pop'] = False settings['plot_nns'] = False settings['plot_slice'] = False settings['plot_poplines'] = False settings['plot_threshlines'] = False settings['plot_zerocolors'] = False settings['plot_thresh1line'] = False settings['calc_thresh1'] = False settings['hide_qualikiz'] = False settings['debug'] = False settings['parallel'] = True settings['plot_threshslope'] = False elif mode == 'pretty': settings['plot'] = True settings['plot_pop'] = False settings['plot_nns'] = True settings['plot_slice'] = False settings['plot_poplines'] = False settings['plot_threshlines'] = False settings['plot_zerocolors'] = False settings['plot_thresh1line'] = False settings['calc_thresh1'] = False settings['hide_qualikiz'] = False settings['debug'] = True settings['parallel'] = False settings['plot_threshslope'] = True return settings def get_similar_not_in_table(table, max=20, only_dim=None, only_sep=False, no_particle=False, no_divsum=False, no_mixed=True): for cls, field_name in [(Network, 'network'), (ComboNetwork, 'combo_network'), (MultiNetwork, 'multi_network') ]: non_sliced = (cls .select() .where(~fn.EXISTS(table.select().where(getattr(table, field_name) == cls.id))) ) if only_dim is not None: non_sliced &= cls.select().where(SQL("array_length(feature_names, 1)=" + str(only_dim))) if no_mixed: non_sliced &= cls.select().where(~(SQL("(array_to_string(target_names, ',') like %s)", ['%pf%']) & (SQL("(array_to_string(target_names, ',') like %s)", ['%ef%']))) ) tags = [] if no_divsum is True: tags.extend(["div", "plus"]) if no_particle is True: tags.append('pf') if len(tags) != 0: non_sliced &= no_elements_in_list(cls, 'target_names', tags) if only_sep is True: non_sliced &= any_element_in_list(cls, 'target_names', ['TEM', 'ITG', 'ETG']) if non_sliced.count() > 0: network = non_sliced.get() break non_sliced &= (cls.select() .where(cls.target_names == AsIs(network.target_names)) .where(cls.feature_names == AsIs(network.feature_names)) ) non_sliced = non_sliced.limit(max) return non_sliced def nns_from_NNDB(max=20, only_dim=None): db.connect() non_sliced = get_similar_not_in_table(PostprocessSlice, max=max, only_sep=True, no_particle=False, no_divsum=True, only_dim=only_dim) network = non_sliced.get() style = 'mono' if len(network.target_names) == 2: match_0 = re.compile('^(.f)(.)(ITG|ETG|TEM)_GB').findall(network.target_names[0]) match_1 = re.compile('^(.f)(.)(ITG|ETG|TEM)_GB').findall(network.target_names[1]) if len(match_0) == 1 and len(match_1) == 1: group_0 = match_0[0] group_1 = match_1[0] if ((group_0[1] == 'e' and group_1[1] == 'i') or (group_0[1] == 'i' and group_1[1] == 'e')): style='duo' else: raise Exception('non-matching target_names. Not sure what to do.. {s}' .format(network.target_names)) matches = [] for target_name in network.target_names: matches.extend(re.compile('^.f.(ITG|ETG|TEM)_GB').findall(target_name)) if matches[1:] == matches[:-1]: if matches[0] == 'ITG': slicedim = 'Ati' elif matches[0] == 'TEM' or matches[0] == 'ETG': slicedim = 'Ate' else: raise Exception('Unequal stability regime. Cannot determine slicedim') nn_list = {network.id: str(network.id) for network in non_sliced} print('Found {:d} {!s} with target {!s}'.format(non_sliced.count(), network.__class__, network.target_names)) nns = OrderedDict() for dbnn in non_sliced: nn = dbnn.to_QuaLiKizNN() nn.label = '_'.join([str(el) for el in [dbnn.__class__.__name__ , dbnn.id]]) nns[nn.label] = nn db.close() return slicedim, style, nns def populate_nn_list(nn_set): if nn_set == 'c_L2': nn_list = OrderedDict([(61, '$c_{L2} = 0.0$'), # (48, '$c_{L2} = 0.05$'), (37, '$c_{L2} = 0.1$'), # (50, '$c_{L2} = 0.2$'), # (51, '$c_{L2} = 0.35$'), (49, '$c_{L2} = 0.5$'), # (52, '$c_{L2} = 1.0$'), (53, '$c_{L2} = 2.0$')]) slicedim = 'Ate' style = 'mono' elif nn_set == 'topo': nn_list = OrderedDict([(65, 'neurons = $(10, 10)$'), (64, 'neurons = $(30, 30)$'), (73, 'neurons = $(30, 30, 30)$'), (83, 'neurons = $(45, 45)$'), (34, 'neurons = $(60, 60)$'), (38, 'neurons = $(80, 80)$'), (66, 'neurons = $(120, 120)$')]) slicedim = 'Ate' style = 'mono' elif nn_set == 'filter': #nn_list = OrderedDict([(37, 'filter = 3'), # (58, 'filter = 4'), # (60, 'filter = 5')]) nn_list = OrderedDict([(37, '$max(\chi_{ETG,e}) = 60$'), (60, '$max(\chi_{ETG,e}) = 100$')]) slicedim = 'Ate' style = 'mono' elif nn_set == 'goodness': nn_list = OrderedDict([(62, 'goodness = mabse'), (37, 'goodness = mse')]) slicedim = 'Ate' style = 'mono' elif nn_set == 'early_stop': nn_list = OrderedDict([(37, 'stop measure = loss'), #(11, '$early_stop = mse'), (18, 'stop measure = MSE')]) slicedim = 'Ate' style = 'mono' elif nn_set == 'similar': nn_list = OrderedDict([ (37, '37'), (67, '67'), (68, '68'), (69, '69'), (70, '70'), (71, '71'), (72, '72'), (73, '73'), (74, '74'), ]) slicedim = 'Ate' style = 'mono' elif nn_set == 'best': nn_list = OrderedDict([(46, '')]) #efeETG nn_list = OrderedDict([(88, '')]) #efiITG slicedim = 'Ate' style = 'mono' elif nn_set == 'duo': nn_list = OrderedDict([ (205, 'es_20'), (204, 'es_5'), (203, 'es_wrong') ]) slicedim = 'Ati' style = 'duo' return slicedim, style, nn_list def nns_from_nn_list(nn_list, slicedim, labels=True): nns = OrderedDict() for nn_index, nn_label in nn_list.items(): nn = nns[nn_index] = load_nn(nn_index) if labels: nn.label = nn_label else: nn.label = '' return nns def nns_from_manual(): nns = OrderedDict() #div_nn = load_nn(405) #sum_nn = load_nn(406) #nn = QuaLiKizDuoNN(['efiITG_GB', 'efeITG_GB'], div_nn, sum_nn, [lambda x, y: x * y/(x + 1), lambda x, y: y/(x + 1)]) #nn.label = 'div_style' #nns[nn.label] = nn #nn_efi = load_nn(88) #nn_efe = load_nn(89) #nn = QuaLiKizDuoNN(['efiITG_GB', 'efeITG_GB'], nn_efi, nn_efe, [lambda x, y: x, lambda x, y: y]) #nn.label = 'sep_style' #nns[nn.label] = nn #nn = load_nn(205) #nn.label = 'combo_style' #nns[nn.label] = nn #subnn = (ComboNetwork.select() # .where(ComboNetwork.id == 78) # ).get() #nn = subnn.to_QuaLiKizComboNN() #nn.label = 'bla' #nns[nn.label] = nn #dbnn = Network.by_id(135).get() dbnns = [] #dbnns.append(MultiNetwork.by_id(119).get()) dbnns.append(ComboNetwork.by_id(3333).get()) #dbnns.append(ComboNetwork.by_id(1050).get()) #dbnns.append(MultiNetwork.by_id(102).get()) for dbnn in dbnns: nn = dbnn.to_QuaLiKizNN() nn.label = '_'.join([str(el) for el in [dbnn.__class__.__name__ , dbnn.id]]) nns[nn.label] = nn #nns[nn.label] = QuaLiKizNDNN.from_json('nn.json') slicedim = 'Ati' style='duo' style='mono' #from qlkANNk import QuaLiKiz4DNN #nns['4D'] = QuaLiKiz4DNN() #nns['4D'].label = '4D' #nns['4D']._target_names = ['efeITG_GB', 'efiITG_GB'] db.close() return slicedim, style, nns def prep_df(store, nns, unstack, filter_less=np.inf, filter_geq=-np.inf, shuffle=True, calc_maxgam=False, clip=False, slice=None, frac=1): nn0 = list(nns.values())[0] target_names = nn0._target_names feature_names = nn0._feature_names input = store['megarun1/input'] try: input['logNustar'] = np.log10(input['Nustar']) del input['Nustar'] except KeyError: print('No Nustar in dataset') if ('Zeffx' == feature_names).any() and not ('Zeffx' in input.columns): print('WARNING! creating Zeffx. You should use a 9D dataset') input['Zeffx'] = np.full_like(input['Ati'], 1.) raise Exception if ('logNustar' == feature_names).any() and not ('logNustar' in input.columns): print('WARNING! creating logNustar. You should use a 9D dataset') input['logNustar'] = np.full_like(input['Ati'], np.log10(0.009995)) if len(feature_names) == 4: print('WARNING! Slicing 7D to 4D dataset. You should use a 4D dataset') idx = input.index[( np.isclose(input['Ate'], 5.75, atol=1e-5, rtol=1e-3) & np.isclose(input['An'], 2, atol=1e-5, rtol=1e-3) & np.isclose(input['x'], .45, atol=1e-5, rtol=1e-3) )] else: idx = input.index input = input[feature_names] data = store.select('megarun1/flattened', columns=target_names) input = input.loc[idx] data = data.loc[input.index] df = input.join(data[target_names]) if calc_maxgam is True: df_gam = store.select('/megarun1/flattened', columns=['gam_leq_GB', 'gam_great_GB']) df_gam = (df_gam.max(axis=1) .to_frame('maxgam') ) df = df.join(df_gam) #itor = zip(['An', 'Ate', 'Ti_Te', 'qx', 'smag', 'x'], ['0.00', '10.00', '1.00', '5.00', '0.40', '0.45']) #itor = zip(['Zeffx', 'Ate', 'An', 'qx', 'smag', 'x', 'Ti_Te', 'logNustar'], [1.0, 5.75, 2.5, 2.0, 0.10000000149011612, 0.33000001311302185, 1.0, -2.000217201545864]) if slice is not None: for name, val in slice: df = df[np.isclose(df[name], float(val), atol=1e-5, rtol=1e-3)] if clip is True: df[target_names] = df[target_names].clip(filter_less, filter_geq, axis=1) else: # filter df = df[(df[target_names] < filter_less).all(axis=1)] df = df[(df[target_names] >= filter_geq).all(axis=1)] #print(np.sum(df['target'] < 0)/len(df), ' frac < 0') #print(np.sum(df['target'] == 0)/len(df), ' frac == 0') #print(np.sum(df['target'] > 0)/len(df), ' frac > 0') #uni = {col: input[col].unique() for col in input} #uni_len = {key: len(value) for key, value in uni.items()} #input['index'] = input.index df.set_index([col for col in input], inplace=True) df = df.astype('float64') df = df.sort_index(level=unstack) df = df.unstack(unstack) if shuffle: df = shuffle_panda(df) #df.sort_values('smag', inplace=True) #input, data = prettify_df(input, data) #input = input.astype('float64') # Filter if frac < 1: idx = int(frac * len(df)) df = df.iloc[:idx, :] #df = df.iloc[1040:2040,:] print('dataset loaded!') return df, target_names def is_unsafe(df, nns, slicedim): unsafe = True for nn in nns.values(): slicedim_idx = nn._feature_names[nn._feature_names == slicedim].index[0] varlist = list(df.index.names) varlist.insert(slicedim_idx, slicedim) try: if ~np.all(varlist == nn._feature_names): unsafe = False except ValueError: raise Exception('Dataset has features {!s} but dataset has features {!s}'.format(varlist, list(nn._feature_names))) return unsafe def calculate_thresh1(x, feature, target, debug=False): try: idx = target.index[target == 0][-1] #index of last zero slope, intercept, r_value, p_value, std_err = stats.linregress(feature[(target.index > idx) & ~target.isnull()], target[(target.index > idx) & ~target.isnull()]) thresh_pred = x * slope + intercept thresh1 = x[thresh_pred < 0][-1] except (ValueError, IndexError): thresh1 = np.NaN if debug: print('No threshold1') return thresh1 def calculate_thresh2(feature, target, debug=False): if len(target.shape) > 1: raise NotImplementedError('2D threshold not implemented yet') try: idx = np.where(target == 0)[0][-1] #Only works for 1D idx2 = np.where(~np.isnan(target[idx+1:]))[0][0] + idx + 1 #idx = np.arange(target.shape[0]),target.shape[1] - 1 - (target[:,::-1]==0).argmax(1) #Works for 2D thresh2 = (feature[idx] + feature[idx2]) / 2 except IndexError: thresh2 = np.NaN if debug: print('No threshold2') return thresh2 #5.4 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) total def process_chunk(target_names, chunck, settings=None, unsafe=False): res = [] for ii, row in enumerate(chunck.iterrows()): res.append(process_row(target_names, row, settings=settings, unsafe=unsafe)) return res def process_row(target_names, row, ax1=None, unsafe=False, settings=None): index, slice_ = row feature = slice_.index.levels[1] #target = slice.loc[target_names] target = slice_.values[:len(feature) * len(target_names)].reshape(len(target_names), len(feature)) if np.all(np.logical_or(target == 0, np.isnan(target))): return (1,) else: # 156 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) (no zerocolors) thresh_nn = np.empty(len(target_names) * len(nns)) thresh_nn_i = np.empty_like(thresh_nn, dtype='int64') popbacks = np.empty_like(thresh_nn) thresh1_misses = np.empty_like(thresh_nn) thresh2_misses = np.empty_like(thresh_nn) if settings['plot_zerocolors']: maxgam = slice_['maxgam'] # Create slice, assume sorted # 14.8 µs ± 1.27 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each) x = np.linspace(feature.values[0], feature.values[-1], 200) #if plot: if not ax1 and settings['plot']: fig = plt.figure() if settings['plot_pop'] and settings['plot_slice']: gs = gridspec.GridSpec(2, 2, height_ratios=[10, 1], width_ratios=[5,1], left=0.05, right=0.95, wspace=0.05, hspace=0.05) ax2 = plt.subplot(gs[1,0]) ax3 = plt.subplot(gs[0,1]) if not settings['plot_pop'] and settings['plot_slice']: gs = gridspec.GridSpec(2, 1, height_ratios=[10, 2], width_ratios=[1], left=0.05, right=0.95, wspace=0.05, hspace=0.05) ax2 = plt.subplot(gs[1,0]) if not settings['plot_pop'] and not settings['plot_slice']: gs = gridspec.GridSpec(1, 1, height_ratios=[1], width_ratios=[1], left=0.05, right=0.95, wspace=0.05, hspace=0.05) ax1 = plt.subplot(gs[0,0]) #ax1.set_prop_cycle(cycler('color', ['#f1eef6','#d7b5d8','#df65b0','#dd1c77','#980043'])) # http://tristen.ca/hcl-picker/#/clh/5/273/2A0A75/D59FEB #ax1.set_prop_cycle(cycler('color', ['#2A0A75','#6330B8','#9F63E2','#D59FEB'])) if len(nns) == 1: color_range =
np.array([.7])
numpy.array
import sys import operator import pytest import ctypes import gc import warnings import numpy as np from numpy.core._rational_tests import rational from numpy.core._multiarray_tests import create_custom_field_dtype from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT) from numpy.compat import pickle from itertools import permutations def assert_dtype_equal(a, b): assert_equal(a, b) assert_equal(hash(a), hash(b), "two equivalent types do not hash to the same value !") def assert_dtype_not_equal(a, b): assert_(a != b) assert_(hash(a) != hash(b), "two different types hash to the same value !") class TestBuiltin: @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object, np.compat.unicode]) def test_run(self, t): """Only test hash runs at all.""" dt = np.dtype(t) hash(dt) @pytest.mark.parametrize('t', [int, float]) def test_dtype(self, t): # Make sure equivalent byte order char hash the same (e.g. < and = on # little endian) dt = np.dtype(t) dt2 = dt.newbyteorder("<") dt3 = dt.newbyteorder(">") if dt == dt2: assert_(dt.byteorder != dt2.byteorder, "bogus test") assert_dtype_equal(dt, dt2) else: assert_(dt.byteorder != dt3.byteorder, "bogus test") assert_dtype_equal(dt, dt3) def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right)) def test_invalid_types(self): # Make sure invalid type strings raise an error assert_raises(TypeError, np.dtype, 'O3') assert_raises(TypeError, np.dtype, 'O5') assert_raises(TypeError, np.dtype, 'O7') assert_raises(TypeError, np.dtype, 'b3') assert_raises(TypeError, np.dtype, 'h4') assert_raises(TypeError, np.dtype, 'I5') assert_raises(TypeError, np.dtype, 'e3') assert_raises(TypeError, np.dtype, 'f5') if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16: assert_raises(TypeError, np.dtype, 'g12') elif np.dtype('g').itemsize == 12: assert_raises(TypeError, np.dtype, 'g16') if np.dtype('l').itemsize == 8: assert_raises(TypeError, np.dtype, 'l4') assert_raises(TypeError, np.dtype, 'L4') else:
assert_raises(TypeError, np.dtype, 'l8')
numpy.testing.assert_raises
#! /usr/bin/env python import logging import os import pickle import numpy as np from scipy import stats from astropy import table from astropy.io import fits import ptemcee # todo: don't hard code paths mag_sun = table.Table.read(os.path.expanduser('~') + '/sluggs/sps_models/mag_sun.fits') # how bright is the Sun in different filters and magnitide systems def get_mag_sun(name, AB=True): row = mag_sun[mag_sun['filter'] == name][0] if AB: return row['AB'] else: return row['Vega'] def prob_bi(theta, mags, metal, metal_ivar2, A_V, A_V_ivar2, A_V2, A_V2_ivar2): lnprob = (metal - theta[0])**2 * metal_ivar2 red = -(A_V - theta[3])**2 * A_V_ivar2 red_2 = -(A_V2 - theta[3])**2 * A_V2_ivar2 lnprob += -np.logaddexp(red, red_2) for mag, mag_ivars2, reddening_grid, grid in mags: lnprob += (mag - theta[3] * reddening_grid(theta[0], theta[1])[0][0] - grid(theta[0], theta[1])[0][0] + 2.5 * theta[2])**2 * mag_ivars2 return -lnprob def prob(theta, mags, metal, metal_ivar2, A_V, A_V_ivar2): lnprob = (metal - theta[0])**2 * metal_ivar2 lnprob += (A_V - theta[3])**2 * A_V_ivar2 for mag, mag_ivars2, reddening_grid, grid in mags: lnprob += (mag - theta[3] * reddening_grid(theta[0], theta[1])[0][0] - grid(theta[0], theta[1])[0][0] + 2.5 * theta[2])**2 * mag_ivars2 return -lnprob def prior(theta, metal_lower, metal_upper, age_lower, age_upper, A_V_lower, A_V_upper): if theta[0] > metal_upper or theta[0] < metal_lower: return -np.inf if theta[1] > age_upper or theta[1] < age_lower: return -np.inf if theta[3] > A_V_upper or theta[3] < A_V_lower: return -np.inf else: return 0. class ln_prior: def __init__(self, metal_lower=-3.0, metal_upper=0.7, age_lower=0.1, age_upper=15.84, A_V_lower=0., A_V_upper=np.inf): self.metal_lower = metal_lower self.metal_upper = metal_upper self.age_lower = age_lower self.age_upper = age_upper self.A_V_lower = A_V_lower self.A_V_upper = A_V_upper def __call__(self, x): return prior(x, self.metal_lower, self.metal_upper, self.age_lower, self.age_upper, self.A_V_lower, self.A_V_upper) class ln_prob_bi: def __init__(self, mags, metal, metal_e, A_V, A_V_e, A_V2, A_V2_e): self.mags = mags self.metal = metal self.metal_ivar2 = metal_e**-2. self.A_V = A_V self.A_V_ivar2 = A_V_e**-2. self.A_V2 = A_V2 self.A_V2_ivar2 = A_V2_e**-2. def __call__(self, x): return prob_bi(x, self.mags, self.metal, self.metal_ivar2, self.A_V, self.A_V_ivar2, self.A_V2, self.A_V2_ivar2) class ln_prob: def __init__(self, mags, metal, metal_e, A_V, A_V_e): self.mags = mags self.metal = metal self.metal_ivar2 = metal_e**-2. self.A_V = A_V self.A_V_ivar2 = A_V_e**-2. def __call__(self, x): return prob(x, self.mags, self.metal, self.metal_ivar2, self.A_V, self.A_V_ivar2) # takes a list of magnitudes, and samples the posterior distributions of metallicity, # age, mass and extinction subject to the Gaussian priors on metallicity and extinction def calc_age_mass(magnitudes, metal, metal_e, A_V, A_V_e, grids=None, reddening_grids=None, plot=False, nwalkers=1000, steps=500, thin=10, keep_chain=False, threads=4, metal_lower=-3.0, metal_upper=0.7, age_lower=0.001, age_upper=15.84, A_V_lower=0., A_V_upper=np.inf, A_V2=0, A_V2_e=0, ntemps=8, nburn=500, logger=None): if logger is None: logger = logging.getLogger() input_str = 'Input:\n' if metal is not None and metal_e is not None: input_str += '[Z/H] {:.3f} {:.3f}'.format(metal, metal_e) input_str += ' A_V {:.3f} {:.3f}'.format(A_V, A_V_e) if A_V2_e: input_str += ' {:.3f} {:.3f}'.format(A_V2, A_V2_e) input_str += '\n' input_str += magnitude_str(magnitudes) input_str += '\nPriors:\n' input_str += '{:.3f} < [Z/H] < {:.3f}\n'.format(metal_lower, metal_upper) input_str += '{:.3f} < Age < {:.3f}\n'.format(age_lower, age_upper) input_str += '{:.3f} < A_V < {:.3f}\n'.format(A_V_lower, A_V_upper) logger.info(input_str) # I should not hard code paths like this if grids is None: with open(os.path.expanduser('~') + '/sluggs/sps_models/fsps_mist_inter_mags.pickle', 'rb') as f: grids = pickle.load(f) if reddening_grids is None: with open(os.path.expanduser('~') + '/sluggs/sps_models/fsps_reddening_mist_inter_mags.pickle', 'rb') as f: reddening_grids = pickle.load(f) if metal is None or metal_e is None: metal = -1 metal_e = 10 mags = get_mags(magnitudes, reddening_grids, grids) metal_guess, age_guess, mass_guess, A_V_guess = grid_search(mags, metal, metal_e, A_V, A_V_e, A_V2, A_V2_e, age_lower, age_upper, metal_lower, metal_upper, A_V_lower, A_V_upper, logger) def start_array(guess, nwalkers, lower, upper): start = guess + 1e-2 * np.random.randn(nwalkers) start[start < lower] = lower start[start > upper] = upper return start start = [start_array(metal_guess, nwalkers, metal_lower, metal_upper), start_array(age_guess, nwalkers, age_lower, age_upper), start_array(mass_guess, nwalkers, -np.inf, np.inf), start_array(A_V_guess, nwalkers, A_V_lower, A_V_upper)] start = np.asarray(start).T if A_V2_e: logl = ln_prob_bi(mags, metal, metal_e, A_V, A_V_e, A_V2, A_V2_e) else: logl = ln_prob(mags, metal, metal_e, A_V, A_V_e) logprior = ln_prior(metal_lower, metal_upper, age_lower, age_upper, A_V_lower, A_V_upper) log_likely = logl([metal_guess, age_guess, mass_guess, A_V_guess]) start_str = 'Starting at:\n{:.3f} {:.3f} {:.3f} {:.3f}\nStarting log likelihood {:.3f}\n'.format(metal_guess, age_guess, mass_guess, A_V_guess, log_likely) logger.info(start_str) sampler = ptemcee.Sampler(nwalkers, start.shape[-1], logl, logprior, threads=threads, ntemps=ntemps) temp_start = [] for i in range(ntemps): temp_start.append(start) temp_start = np.array(temp_start) sampler.run_mcmc(temp_start, (nburn + steps)) samples = sampler.chain[0, :, nburn:, :].reshape((-1, start.shape[-1])) samples = samples[::thin] if threads > 1: sampler.pool.close() if keep_chain: np.save(open(str(keep_chain) + '_chain.npy', 'w'), np.asarray(sampler.chain)) norm_percentiles = stats.norm.cdf([-2, -1, 0, 1, 2]) * 100 Z_precentiles = np.percentile(samples[:,0], norm_percentiles) age_precentiles = np.percentile(samples[:,1], norm_percentiles) mass_precentiles = np.percentile(samples[:,2], norm_percentiles) A_V_precentiles = np.percentile(samples[:,3], norm_percentiles) output_str = 'Output:\n' output_str += '[Z/H] ' + ' '.join(['{:.3f}'.format(Z) for Z in Z_precentiles]) + '\n' output_str += ' {:.3f} \u00B1{:.3f}'.format(np.mean(samples[:,0]), np.std(samples[:,0])) + '\n' output_str += 'age ' + ' '.join(['{:.3f}'.format(age) for age in age_precentiles]) + '\n' output_str += ' {:.3f} \u00B1{:.3f}'.format(np.mean(samples[:,1]), np.std(samples[:,1])) + '\n' output_str += 'mass ' + ' '.join(['{:.3f}'.format(mass) for mass in mass_precentiles]) + '\n' output_str += ' {:.3f} \u00B1{:.3f}'.format(np.mean(samples[:,2]), np.std(samples[:,2])) + '\n' output_str += 'A_V ' + ' '.join(['{:.3f}'.format(red) for red in A_V_precentiles]) + '\n' output_str += ' {:.3f} \u00B1{:.3f}'.format(np.mean(samples[:,3]), np.std(samples[:,3])) + '\n' log_likely = logl([Z_precentiles[2], age_precentiles[2], mass_precentiles[2], A_V_precentiles[2]]) output_str += 'Log likelihood: {:.3f}\n'.format(log_likely) logger.info(output_str) if plot: import corner corner.corner(samples, labels=['[Z/H]', 'Age', 'Log Mass', 'A_V'], quantiles=[0.16, 0.50, 0.84], show_titles=True) return samples, Z_precentiles[1:-1], age_precentiles[1:-1], mass_precentiles, A_V_precentiles[1:-1] def get_mags(magnitudes, reddening_grids, grids): mags = [] for name, mag, mag_e in magnitudes: mags.append((mag, mag_e**-2., reddening_grids[name], grids[name])) return mags def magnitude_str(magnitudes): output = '' for magnitude in magnitudes: output += '{} {:.3f} {:.3f} '.format(*magnitude) return output def load_samples(catalogue, directory='.', verbose=False): samples = [] for entry in catalogue: path = os.path.join(directory, entry['output'] + '.fits') with fits.open(path) as hdul: sample = hdul[2].data if verbose: print(entry['output'], sample.shape) samples.append(sample) samples = np.vstack(samples) return samples def corner_array(array, names): return np.asarray([array[name] for name in names]).T def plot_posterior(filename, verbose=False): import corner with fits.open(filename) as hdul: entry = table.Table.read(hdul[1]) sample = hdul[2].data if verbose: print(entry[0]) corner.corner(corner_array(sample, ['Z', 'age', 'mass', 'A_V']), labels=['[Z/H]', 'age', 'mass', 'A_V'], quantiles=[0.02, 0.16, 0.5, 0.84, 0.98], show_titles=True) def plot_samples(samples, catalogue, name, metal_range=(-2.4, 0.7), age_range=(0, 15.8), bins=100): import matplotlib.pyplot as plt from matplotlib import colors h =
np.histogram2d(samples['age'], samples['Z'], bins=bins, range=(age_range, metal_range))
numpy.histogram2d
from scipy.io import netcdf_file import numpy as np from datetime import datetime from scipy.interpolate import griddata def grepValuesByMask(xi, data, mask): """ this grabs the values from data from entries with positive mask and interpolates it to numpy meshgrid xi """ X=data.getX() x=[] y=[] z=[] values=[] for i in range(mask.getNumberOfDataPoints()): if mask.getTupleForDataPoint(i)[0] > 0: x.append(X.getTupleForDataPoint(i)[0]) y.append(X.getTupleForDataPoint(i)[1]) z.append(X.getTupleForDataPoint(i)[2]) values.append(data.getTupleForDataPoint(i)[0]) if len(xi) == 2: r=griddata((np.array(x), np.array(y)), np.array(values), tuple(xi), method='linear', fill_value=np.nan, rescale=False) else: r=griddata((np.array(x), np.array(y),
np.array(z)
numpy.array
from __future__ import division, print_function, absolute_import import numpy from numpy import (atleast_1d, poly, polyval, roots, real, asarray, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array, mintypecode) from .filters import * from .helpers import fminbound, fmin, newton from mpmath import ellipk, ellipfun, besselk import numpy as np __all__ = ['iirfilter', 'cheb1ord', 'cheb2ord', 'buttord'] def iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba'): """ IIR digital and analog filter design given order and critical points. Design an Nth-order digital or analog filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). rp : float, optional For Chebyshev and elliptic filters, provides the maximum ripple in the passband. (dB) rs : float, optional For Chebyshev and elliptic filters, provides the minimum attenuation in the stop band. (dB) btype : {'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional The type of filter. Default is 'bandpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- butter : Filter design using order and critical points cheby1, cheby2, ellip, bessel buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord, ellipord iirdesign : General filter design using passband and stopband spec Notes ----- The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Generate a 17th-order Chebyshev II bandpass filter and plot the frequency response: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band', ... analog=True, ftype='cheby2') >>> w, h = signal.freqs(b, a, 1000) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.semilogx(w, 20 * np.log10(abs(h))) >>> ax.set_title('Chebyshev Type II bandpass frequency response') >>> ax.set_xlabel('Frequency [radians / second]') >>> ax.set_ylabel('Amplitude [dB]') >>> ax.axis((10, 1000, -100, 10)) >>> ax.grid(which='both', axis='both') >>> plt.show() """ ftype, btype, output = [x.lower() for x in (ftype, btype, output)] Wn = asarray(Wn) try: btype = band_dict[btype] except KeyError: raise ValueError("'%s' is an invalid bandtype for filter." % btype) try: typefunc = filter_dict[ftype][0] except KeyError: raise ValueError("'%s' is not a valid basic IIR filter." % ftype) if output not in ['ba', 'zpk']: raise ValueError("'%s' is not a valid output form." % output) if rp is not None and rp < 0: raise ValueError("passband ripple (rp) must be positive") if rs is not None and rs < 0: raise ValueError("stopband attenuation (rs) must be positive") # Get analog lowpass prototype if typefunc == buttap: z, p, k = typefunc(N) # elif typefunc == besselap: # z, p, k = typefunc(N, norm=bessel_norms[ftype]) elif typefunc == cheb1ap: if rp is None: raise ValueError("passband ripple (rp) must be provided to " "design a Chebyshev I filter.") z, p, k = typefunc(N, rp) elif typefunc == cheb2ap: if rs is None: raise ValueError("stopband attenuation (rs) must be provided to " "design an Chebyshev II filter.") z, p, k = typefunc(N, rs) # elif typefunc == ellipap: # if rs is None or rp is None: # raise ValueError("Both rp and rs must be provided to design an " # "elliptic filter.") # z, p, k = typefunc(N, rp, rs) else: raise NotImplementedError("'%s' not implemented in iirfilter." % ftype) # Pre-warp frequencies for digital filter design if not analog: if numpy.any(Wn <= 0) or numpy.any(Wn >= 1): raise ValueError("Digital filter critical frequencies " "must be 0 < Wn < 1") fs = 2.0 warped = 2 * fs *
tan(pi * Wn / fs)
numpy.tan
''' Created on Nov 1, 2016 @author: <NAME> and <NAME> ''' import logging import pickle import pandas as pd import datetime import os, subprocess import sklearn.metrics as skm import numpy as np import taggers.lample_lstm_tagger.lstm_wrapper as lstm_wrapper from baselines.dawid_and_skene import ds, ibccvb from evaluation.metrics import calculate_scores from evaluation.plots import SCORE_NAMES from baselines.hmmcrowd import HMM_crowd from baselines.util import crowd_data, data_to_hmm_crowd_format, subset_hmm_crowd_data from baselines import ibcc, clustering, majority_voting from bsc import bsc logging.basicConfig(level=logging.DEBUG) data_root_dir = '../../../data/bayesian_sequence_combination/' def _append_to_csv(outputdir, method, method_idx, new_data, filename, file_identifier): filename = os.path.join(outputdir, '%s_%s.csv' % (filename, file_identifier)) new_data = pd.DataFrame(new_data[:, method_idx], columns=[str(method).strip('[]')]) if os.path.isfile(filename): data = pd.read_csv(filename, delimiter=',') expanded_data = pd.concat((data, new_data), axis=1) else: expanded_data = new_data expanded_data.to_csv(filename, index=False) class Experiment(object): def __init__(self, outputdir, nclasses, annotations, gold, doc_start, text, annos_val=None, gold_val=None, doc_start_val=None, text_val=None, gold_nocrowd=None, doc_start_nocrowd=None, text_nocrowd=None, alpha0_factor=1.0, alpha0_diags=1.0, beta0_factor=0.1, begin_factor=1.0, max_iter=20, crf_probs=False, rep=0, bootstrapping=False ): ''' :param outputdir: the directory where results, predictions and any model files will be stored :param annotations: rows correspond to tokens, columns to annotators. :param gold: class labels for computing the performance metrics. Missing values should be set to -1. :param doc_start: binary vector indicating the start of each sequence/document/sentence. :param text: strings associated with each token. :param annos_val: crowdsourced labels for a validation set. :param gold_val: for tuning hyperparameters :param doc_start_val: :param text_val: :param gold_nocrowd: for evaluating on a second set of data points where crowd labels are not available :param doc_start_nocrowd: :param text_nocrowd: the features for testing the model trained on crowdsourced data to classify data with no labels at all :param nclasses: number of classes :param alpha0_factor: smoothing hyperparameter for annotator models. :param alpha0_diags: correctness bias hyperparameter for annotator models. :param beta0_factor: smoothing hyperparameter for prior over class labels. :param begin_factor: additional correctness bias for B tokens. :param max_iter: maximum iterations for iterative aggregation methods. :param crf_probs: LSTM method produces probabilities using a CRF output layer. :param rep: repetition number for an experiment that is carried out multiple times; sets a different random seed for each repetition. :param bootstrapping: calculate performance metrics using bootstrapping for small datasets ''' self.methods = None self.num_classes = nclasses self.postprocess = False # previous papers did not use this so we leave out to make results comparable. self.random_sampling = False self.outputdir = outputdir if not os.path.exists(outputdir): os.mkdir(outputdir) outputdir += '/' # Data ------------------------------------------------- self.annos_test = annotations self.gold_test = gold self.doc_start_test = doc_start self.text_test = text self.annos_val = annos_val self.gold_val = gold_val self.doc_start_val = doc_start_val self.text_val = text_val self.gold_nocrowd = gold_nocrowd self.doc_start_nocrowd = doc_start_nocrowd self.text_nocrowd = text_nocrowd # Method hyperparameters and settings --------------------------------- self.crf_probs = crf_probs self.opt_hyper = False self.use_lb = False self.alpha0_factor = alpha0_factor self.alpha0_diags = alpha0_diags self.begin_factor = begin_factor self.beta0_factor = beta0_factor self.max_internal_iter = 3 self.max_iter = max_iter # allow all methods to use a maximum no. iterations np.random.seed(3849) self.seed = np.random.randint(1, 1000, 100)[rep] # seeds for AL # Results ------------------------------------------------------- # save results from methods here. If we use compound methods, we can reuse these results in different # combinations of methods. self.aggs = {} self.probs = {} self.bootstrapping = bootstrapping self.scores = None self.scores_nocrowd = None def tune_alpha0(self, alpha0diag_proposals, alpha0factor_proposals, beta0factor_proposals, method, metric_idx_to_optimise=8, new_data=False): self.methods = [method] scores = np.zeros((len(beta0factor_proposals) * len(alpha0diag_proposals), len(alpha0factor_proposals))) best_scores = np.zeros(4) - np.inf best_idxs = np.zeros(4) for h, beta0factor in enumerate(beta0factor_proposals): self.beta0_factor = beta0factor for i, alpha0diag in enumerate(alpha0diag_proposals): self.alpha0_diags = alpha0diag for j, alpha0factor in enumerate(alpha0factor_proposals): self.alpha0_factor = alpha0factor # reset saved data so that models are run again. self.aggs = {} self.probs = {} outputdir_ij = self.outputdir + ('_%i_%i_%i_' % (h, i, j)) + method + '/' all_scores, _, _, _, _, _ = self.run_methods(outputdir_ij, new_data=new_data) if metric_idx_to_optimise != 5: # maximise these scores scores[(h*len(alpha0diag_proposals)) + i, j] = all_scores[metric_idx_to_optimise, :] else: # minimise this score scores[(h*len(alpha0diag_proposals)) + i, j] = -all_scores[metric_idx_to_optimise, :] print('Scores for %f, %f, %f: %f' % (beta0factor, alpha0diag, alpha0factor, scores[(h*len(alpha0diag_proposals)) + i, j])) if scores[(h*len(alpha0diag_proposals)) + i, j] > best_scores[0]: best_scores[0] = scores[(h*len(alpha0diag_proposals)) + i, j] best_scores[1] = beta0factor best_scores[2] = alpha0diag best_scores[3] = alpha0factor best_idxs[0] = scores[(h*len(alpha0diag_proposals)) + i, j] best_idxs[1] = h best_idxs[2] = i best_idxs[3] = j print('Saving scores for this setting to %s' % (self.outputdir + '/%s_scores.csv' % method)) np.savetxt(self.outputdir + '/%s_scores.csv' % method, scores, fmt='%s', delimiter=',', header=str(self.methods).strip('[]')) np.savetxt(self.outputdir + '/%s_bestscores.csv' % method, best_scores, fmt='%s', delimiter=',', header=str(self.methods).strip('[]')) self.aggs = {} self.probs = {} return best_idxs def run_methods(self, test_on_dev=False, new_data=False, active_learning=False, AL_batch_fraction=0.05, max_AL_iters=10, save_with_timestamp=True): ''' Run the aggregation methods and evaluate them. :param test_on_dev: use test rather than dev set :param new_data: set to true if all cached data files should be overwritten :param active_learning: set to true to run an AL simulation :param AL_batch_fraction: what proportion of labels are sampled at each AL iteration :param max_AL_iters: maximum number of AL rounds. :return: ''' if active_learning: print('Running active learning on the test dataset.') if not test_on_dev: self.annos_all = self.annos_test self.annos = self.annos_test self.doc_start_all = self.doc_start_test self.doc_start = self.doc_start_test self.text_all = self.text_test self.text = self.text_test self.gold = self.gold_test else: self.annos_all = self.annos_val self.annos = self.annos_val self.doc_start_all = self.doc_start_val self.doc_start = self.doc_start_val self.text_all = self.text_val self.text = self.text_val self.gold = self.gold_val # a second test set with no crowd labels was supplied directly if self.gold_nocrowd is not None and self.text_nocrowd is not None and self.doc_start_nocrowd is not None: self.N_nocrowd = self.gold_nocrowd.shape[0] else: self.N_nocrowd = 0 print('Running experiment on %s set%s' % ('dev' if test_on_dev else 'test', '.' if self.N_nocrowd==0 else ' and predicting on additional test data with no crowd labels')) Ntoks = self.annos.shape[0] Ndocs = np.sum(self.doc_start) # get total annotation count Nannos = np.sum(self.annos_all[(self.doc_start == 1).flatten(), :] != -1) print('Data set: %i documents, %i tokens, %i documents without crowd labels.' % (Ndocs, Ntoks, self.N_nocrowd)) preds = -np.ones((Ntoks, len(self.methods))) probs_allmethods = -np.ones((Ntoks, self.num_classes, len(self.methods))) preds_nocrowd = -np.ones((self.N_nocrowd, len(self.methods))) probs_allmethods_nocrowd = -np.ones((self.N_nocrowd, self.num_classes, len(self.methods))) # timestamp for when we started a run. Can be compared to file versions to check what was run. timestamp = datetime.datetime.now().strftime('started-%Y-%m-%d-%H-%M-%S') for method_idx, method in enumerate(self.methods): print('Running method: %s' % method) Nseen = 0 niter = 0 if active_learning: # get the number of labels to select each iteration self.batch_size = int(np.ceil(AL_batch_fraction * Nannos)) np.random.seed(self.seed) # for repeating with different methods with same initial set self.annos = None selected_docs, selected_toks, nselected_by_doc = self._uncertainty_sampling( np.ones(Ndocs, dtype=float) / self.num_classes, None, None) else: selected_docs = None nselected_by_doc = None while Nseen < Nannos and niter < max_AL_iters: print('Learning round %i' % niter) # the active learning loop if active_learning: # treat the unseen instances similarly to the no crowd instances -- get their posterior probabilities unseen_docs = np.arange(Ndocs) unseen_docs = unseen_docs[np.invert(np.in1d(unseen_docs, selected_docs))] unselected_toks = np.argwhere(np.in1d(np.cumsum(self.doc_start_test) - 1, unseen_docs)).flatten() self.N_unseentoks = len(unselected_toks) doc_start_unseen = self.doc_start_test[unselected_toks] text_unseen = self.text_test[unselected_toks] else: self.N_unseentoks = 0 doc_start_unseen = None text_unseen = None agg, probs, most_likely_seq_probs, agg_nocrowd, probs_nocrowd, agg_unseen, probs_unseen = \ self._run_method(method, timestamp, doc_start_unseen, text_unseen, selected_docs, nselected_by_doc, new_data if niter==0 else False) if np.any(self.gold != -1): # don't run this in the case that crowd-labelled data has no gold labels if active_learning and len(agg) < len(self.gold): agg_all = np.ones(len(self.gold)) agg_all[selected_toks] = agg.flatten() agg_all[unselected_toks] = agg_unseen.flatten() agg = agg_all probs_all = np.zeros((len(self.gold), self.num_classes)) probs_all[selected_toks, :] = probs probs_all[unselected_toks, :] = probs_unseen probs = probs_all self.calculate_experiment_scores(agg, probs, method_idx) preds[:, method_idx] = agg.flatten() probs_allmethods[:,:,method_idx] = probs if self.N_nocrowd > 0: self.calculate_nocrowd_scores(agg_nocrowd, probs_nocrowd, method_idx) preds_nocrowd[:, method_idx] = agg_nocrowd.flatten() probs_allmethods_nocrowd[:,:,method_idx] = probs_nocrowd print('...done') # Save the results so far after each method has completed. Nseen = np.sum(self.annos[self.doc_start.flatten()==1] != -1) # update the number of documents processed so far print('Nseen = %i' % Nseen) # change the timestamps to include AL loop numbers if save_with_timestamp: file_id = timestamp + ('-Nseen%i' % Nseen) else: file_id = '' _append_to_csv(self.outputdir, method, method_idx, self.scores, 'result', file_id) _append_to_csv(self.outputdir, method, method_idx, self.score_std, 'result_std', file_id) _append_to_csv(self.outputdir, method, method_idx, preds, 'pred', file_id) if self.N_nocrowd > 0: _append_to_csv(self.outputdir, method, method_idx, self.scores_nocrowd, 'result_nocrowd', file_id) _append_to_csv(self.outputdir, method, method_idx, self.score_std_nocrowd, 'result_std_nocrowd', file_id) _append_to_csv(self.outputdir, method, method_idx, preds_nocrowd, 'pred_nocrowd', file_id) with open(os.path.join(self.outputdir, 'probs_%s.pkl' % file_id), 'wb') as fh: pickle.dump(probs_allmethods, fh) if self.N_nocrowd > 0: with open(os.path.join(self.outputdir, 'probs_nocrowd_%s.pkl' % file_id), 'wb') as fh: pickle.dump(probs_allmethods_nocrowd, fh) # if model is not None and not active_learning and return_model: # with open(self.outputdir + 'model_%s.pkl' % method, 'wb') as fh: # pickle.dump(model, fh) if active_learning and Nseen < Nannos: # non-sequential methods just provide independent label probabilities. if most_likely_seq_probs is None: most_likely_seq_probs = [np.prod(seq_prob) for seq_prob in np.split(probs, self.doc_start.flatten())] selected_docs, selected_toks, nselected_by_doc = self._uncertainty_sampling( most_likely_seq_probs, selected_toks, selected_docs) print('**** Active learning: No. annos = %i' % self.annos.shape[0]) else: selected_docs = None niter += 1 return self.scores, preds, probs_allmethods, \ self.scores_nocrowd, preds_nocrowd, probs_allmethods_nocrowd def _run_method(self, method, timestamp, doc_start_unseen, text_unseen, selected_docs, nselected_by_doc, new_data): # Initialise the results because not all methods will fill these in most_likely_seq_probs = None # some methods can compute this agg_unseen = np.zeros(self.N_unseentoks) # default maximum entropy situation probs_unseen = np.ones((self.N_unseentoks, self.num_classes), dtype=float) / self.num_classes agg_nocrowd = np.zeros(self.N_nocrowd) probs_nocrowd = np.ones((self.N_nocrowd, self.num_classes)) if method.split('_')[0] == 'best': agg, probs = self._run_best_worker() elif method.split('_')[0] == 'worst': agg, probs = self._run_worst_worker() elif method.split('_')[0] == 'clustering': agg, probs = self._run_clustering() elif method.split('_')[0] == 'majority': agg, probs = majority_voting.MajorityVoting(self.annos, self.num_classes).vote() elif method.split('_')[0] == 'mace': agg, probs = self._run_mace(timestamp) elif method.split('_')[0] == 'ds': agg, probs = self._run_ds() elif method.split('_')[0] == 'ibcc': agg, probs = self._run_ibcc() elif method.split('_')[0] == 'ibcc2': # this is the newer and simpler implementation agg, probs = self._run_ibcc2() elif method.split('_')[0] == 'bsc' or method.split('_')[0] == 'bac': if method not in self.aggs: agg, probs, most_likely_seq_probs, agg_nocrowd, probs_nocrowd, agg_unseen, probs_unseen \ = self._run_bsc( method, doc_start_unseen=doc_start_unseen, text_unseen=text_unseen ) else: agg = self.aggs[method.replace('_thenLSTM', '')] probs = self.probs[method.replace('_thenLSTM', '')] elif 'HMM_crowd' in method: if 'HMM_crowd' not in self.aggs: # we pass all annos here so they can be saved and reloaded from a single file in HMMCrowd # format, then the relevant subset selected from that. agg, probs, model = self._run_hmmcrowd(selected_docs, nselected_by_doc, overwrite_data_file=new_data) most_likely_seq_probs = model.res_prob else: agg = self.aggs['HMM_crowd'] probs = self.probs['HMM_crowd'] elif 'gt' in method: agg = self.gold.flatten() probs = np.zeros((len(self.gold), self.num_classes)) probs[range(len(agg)), agg.astype(int)] = 1.0 if '_thenLSTM' in method: agg, probs, agg_nocrowd, probs_nocrowd, agg_unseen, probs_unseen = self._run_LSTM( agg, timestamp, doc_start_unseen, text_unseen) self.aggs[method] = agg self.probs[method] = probs return agg, probs, most_likely_seq_probs, agg_nocrowd, probs_nocrowd, agg_unseen, probs_unseen def calculate_experiment_scores(self, agg, probs, method_idx): if self.scores is None: self.scores = np.zeros((len(SCORE_NAMES), len(self.methods))) self.score_std = np.zeros((len(SCORE_NAMES) - 3, len(self.methods))) self.scores[:, method_idx][:, None], self.score_std[:, method_idx] = calculate_scores( self.postprocess, agg, self.gold.flatten(), probs, self.doc_start_all, self.bootstrapping, print_per_class_results=True) def calculate_nocrowd_scores(self, agg, probs, method_idx): if self.scores_nocrowd is None: # for the additional test set with no crowd labels self.scores_nocrowd = np.zeros((len(SCORE_NAMES), len(self.methods))) self.score_std_nocrowd = np.zeros((len(SCORE_NAMES) - 3, len(self.methods))) self.scores_nocrowd[:,method_idx][:,None], self.score_std_nocrowd[:, method_idx] = calculate_scores( self.postprocess, agg, self.gold_nocrowd.flatten(), probs, self.doc_start_nocrowd, self.bootstrapping, print_per_class_results=True) # Methods ----------------------------------------------------------------- def _run_best_worker(self): # choose the best classifier by f1-score f1scores = np.zeros_like(self.annos) - 1.0 print('F1 scores for individual workers:') individual_scores = [] for w in range(self.annos.shape[1]): valididxs = self.annos[:, w] != -1 if not np.any(valididxs): continue f1_by_class = skm.f1_score(self.gold.flatten()[valididxs], self.annos[valididxs, w], labels=range(self.num_classes), average=None) f1_w = np.mean(f1_by_class[np.unique(self.gold[valididxs]).astype(int)]) #print(f1_w) individual_scores.append(f1_w) f1scores[valididxs, w] = f1_w #print(sorted(individual_scores)) best_idxs = np.argmax(f1scores, axis=1) agg = self.annos[np.arange(self.annos.shape[0]), best_idxs] probs = np.zeros((self.gold.shape[0], self.num_classes)) for k in range(self.gold.shape[0]): probs[k, int(agg[k])] = 1 return agg, probs def _run_worst_worker(self): # choose the weakest classifier by f1-score f1scores = np.zeros_like(self.annos) + np.inf for w in range(self.annos.shape[1]): valididxs = self.annos[:, w] != -1 if not np.any(valididxs): continue f1_by_class = skm.f1_score(self.gold.flatten()[valididxs], self.annos[valididxs, w], labels=range(self.num_classes), average=None) f1scores[valididxs, w] = np.mean(f1_by_class[np.unique(self.gold[valididxs]).astype(int)]) worst_idxs = np.argmin(f1scores, axis=1) agg = self.annos[np.arange(self.annos.shape[0]), worst_idxs] probs = np.zeros((self.gold.shape[0], self.num_classes)) for k in range(self.gold.shape[0]): probs[k, int(agg[k])] = 1 return agg, probs def _run_clustering(self): cl = clustering.Clustering(self.gold, self.annos, self.doc_start) agg = cl.run() probs = np.zeros((self.gold.shape[0], self.num_classes)) for k in range(self.gold.shape[0]): probs[k, int(agg[k])] = 1 return agg, probs def _run_ds(self): probs = ds(self.annos, self.num_classes, self.beta0_factor, self.max_iter) agg = np.argmax(probs, axis=1) return agg, probs def _run_ibcc2(self): probs, _ = ibccvb(self.annos, self.num_classes, self.beta0_factor, self.alpha0_factor, self.alpha0_diags, self.begin_factor, self.max_iter) agg = np.argmax(probs, axis=1) return agg, probs def _run_ibcc(self, use_ml=False): if use_ml: alpha0 = np.ones((self.num_classes, self.num_classes)) + 0.1 # no prior information at all, just add a small regularization term ibc = ibcc.IBCC(nclasses=self.num_classes, nscores=self.num_classes, nu0=np.ones(self.num_classes), alpha0=alpha0, uselowerbound=True, use_ml=True) else: self.ibcc_beta0 = np.ones(self.num_classes) * self.beta0_factor self.ibcc_alpha0 = (self.alpha0_factor/float(self.num_classes-1)) * np.ones((self.num_classes, self.num_classes)) \ + (self.alpha0_diags + self.alpha0_factor *(1-1/float(self.num_classes-1))) * np.eye(self.num_classes) ibc = ibcc.IBCC(nclasses=self.num_classes, nscores=self.num_classes, nu0=self.ibcc_beta0, alpha0=self.ibcc_alpha0, uselowerbound=True) ibc.verbose = True ibc.max_iterations = self.max_iter # ibc.optimise_alpha0_diagonals = True if self.opt_hyper: probs = ibc.combine_classifications(self.annos, table_format=True, optimise_hyperparams=True, maxiter=10000) else: probs = ibc.combine_classifications(self.annos, table_format=True) # posterior class probabilities agg = probs.argmax(axis=1) # aggregated class labels return agg, probs def _run_mace(self, timestamp): anno_path = os.path.join(self.outputdir, 'annos_tmp_%s' % timestamp) annotations = pd.DataFrame(self.annos) annotations.replace(-1, np.nan) annotations.to_csv(anno_path, sep=',', header=False, index=False) subprocess.call(['java', '-jar', './src/baselines/MACE/MACE.jar', '--distribution', '--prefix', os.path.join(self.outputdir, 'mace'), anno_path]) # , stdout = devnull, stderr = devnull) result = np.genfromtxt(os.path.join(self.outputdir, 'mace.prediction')) probs = np.zeros((self.gold.shape[0], self.num_classes)) for i in range(result.shape[0]): for j in range(0, self.num_classes * 2, 2): probs[i, int(result[i, j])] = result[i, j + 1] os.remove(anno_path) # clean up tmp file agg = np.argmax(probs, 1) return agg, probs def _run_bsc(self, method, doc_start_unseen=None, text_unseen=None): method_bits = method.split('_') if method_bits[-1] == 'noHMM': transition_model = 'None' else: transition_model = 'HMM' # needs to run integrate method for task 2 as well if len(method_bits) > 2 and 'integrateLSTM' in method_bits: if len(method_bits) > 3 and 'atEnd' in method_bits: use_LSTM = 2 else: use_LSTM = 1 else: use_LSTM = 0 if len(method_bits) > 2 and 'integrateIF' in method_bits: use_IF = True else: use_IF = False worker_model = method_bits[1] L = self.num_classes num_types = (self.num_classes - 1) / 2 outside_label = 1 inside_labels = (np.arange(num_types) * 2 + 1).astype(int) inside_labels[0] = 0 begin_labels = (np.arange(num_types) * 2 + 2).astype(int) data_model = [] dev_sentences = [] if use_LSTM > 0: data_model.append('LSTM') if self.gold_val is not None and self.doc_start_val is not None and self.text_val is not None: dev_sentences, _, _ = lstm_wrapper.data_to_lstm_format(self.text_val, self.doc_start_val, self.gold_val) if use_IF: no_words = False else: no_words = True bsc_model = bsc.BSC(L=L, K=self.annos.shape[1], max_iter=self.max_iter, # eps=-1, inside_labels=inside_labels, outside_label=outside_label, beginning_labels=begin_labels, alpha0_diags=self.alpha0_diags, alpha0_factor=self.alpha0_factor, alpha0_B_factor=self.begin_factor, beta0_factor=self.beta0_factor, worker_model=worker_model, tagging_scheme='IOB2', data_model=data_model, transition_model=transition_model, no_words=no_words, use_lowerbound=False, model_dir=self.outputdir) bsc_model.verbose = True bsc_model.max_internal_iters = self.max_internal_iter if self.opt_hyper: np.random.seed(592) # for reproducibility probs, agg = bsc_model.optimize(self.annos, self.doc_start, self.text, maxfun=1000, converge_workers_first=use_LSTM==2, dev_sentences=dev_sentences) else: probs, agg, pseq = bsc_model.run(self.annos, self.doc_start, self.text, converge_workers_first=use_LSTM==2, crf_probs=self.crf_probs, dev_sentences=dev_sentences) if self.gold_nocrowd is not None and '_thenLSTM' not in method: probs_nocrowd, agg_nocrowd = bsc_model.predict(self.doc_start_nocrowd, self.text_nocrowd) else: probs_nocrowd = None agg_nocrowd = None if '_thenLSTM' not in method and doc_start_unseen is not None and len(doc_start_unseen) > 0: probs_unseen, agg_unseen = bsc_model.predict(doc_start_unseen, text_unseen) else: probs_unseen = None agg_unseen = None return agg, probs, pseq, agg_nocrowd, probs_nocrowd, agg_unseen, probs_unseen def _run_hmmcrowd(self, doc_subset, nselected_by_doc, overwrite_data_file=False): sentences, crowd_labels, nfeats = data_to_hmm_crowd_format(self.annos_all, self.text_all, self.doc_start_all, self.outputdir, overwrite=overwrite_data_file) sentences, crowd_labels = subset_hmm_crowd_data(sentences, crowd_labels, doc_subset, nselected_by_doc) data = crowd_data(sentences, crowd_labels) hc = HMM_crowd(self.num_classes, nfeats, data, None, None, n_workers=self.annos_all.shape[1], vb=[self.beta0_factor, self.alpha0_factor], smooth=self.alpha0_factor) hc.init(init_type='dw', wm_rep='cv', dw_em=5, wm_smooth=self.alpha0_factor) print('Running HMM-crowd inference...') hc.em(self.max_iter) # performance goes down with more iterations...?! print('Computing most likely sequence...') hc.mls() print('HMM-crowd complete.') # agg = np.array(hc.res).flatten() agg = np.concatenate(hc.res)[:, None] probs = [] for sentence_post_arr in hc.sen_posterior: for tok_post_arr in sentence_post_arr: probs.append(tok_post_arr) probs = np.array(probs) return agg.flatten(), probs, hc def _run_LSTM(self, train_labs, timestamp, doc_start_unseen=None, text_unseen=None): valididxs = np.any(self.annos != -1, axis=1) labelled_sentences, IOB_map, IOB_label = lstm_wrapper.data_to_lstm_format( self.text[valididxs], self.doc_start[valididxs], train_labs.flatten()[valididxs], self.num_classes) np.random.seed(592) # for reproducibility if self.gold_val is None or self.doc_start_val is None or self.text_val is None: # If validation set is unavailable, select a random subset of combined data to use for validation # Simulates a scenario where all we have available are crowd labels. train_sentences, dev_sentences, self.gold_val = lstm_wrapper.split_train_to_dev(labelled_sentences) all_sentences = labelled_sentences else: train_sentences = labelled_sentences dev_sentences, _, _ = lstm_wrapper.data_to_lstm_format(self.text_val, self.doc_start_val, self.gold_val) all_sentences = np.concatenate((train_sentences, dev_sentences), axis=0) lstm = lstm_wrapper.LSTMWrapper(os.path.join(self.outputdir, 'models_LSTM_%s' % timestamp)) print('Running LSTM with crf probs = %s' % self.crf_probs) lstm.train_LSTM(all_sentences, train_sentences, dev_sentences, self.gold_val, IOB_map, IOB_label, self.num_classes, freq_eval=5, n_epochs=self.max_internal_iter, crf_probs=self.crf_probs, max_niter_no_imprv=2) # now make predictions for all sentences test_sentences, _, _ = lstm_wrapper.data_to_lstm_format( self.text, self.doc_start, np.ones(len(train_labs)), self.num_classes) agg, probs = lstm.predict_LSTM(test_sentences) if self.N_nocrowd > 0: test_sentences, _, _ = lstm_wrapper.data_to_lstm_format( self.text_nocrowd, self.doc_start_nocrowd, np.ones(self.N_nocrowd), self.num_classes) agg_nocrowd, probs_nocrowd = lstm.predict_LSTM(test_sentences) else: agg_nocrowd = None probs_nocrowd = None if doc_start_unseen is not None: N_unseen = len(doc_start_unseen) test_sentences, _, _ = lstm_wrapper.data_to_lstm_format( text_unseen, doc_start_unseen, np.ones(N_unseen), self.num_classes) agg_unseen, probs_unseen = lstm.predict_LSTM(test_sentences) else: agg_unseen = None probs_unseen = None return agg, probs, agg_nocrowd, probs_nocrowd, agg_unseen, probs_unseen def _uncertainty_sampling(self, most_likely_probs, selected_toks, selected_docs): unfinished_toks = np.ones(self.annos_test.shape[0], dtype=bool) if self.annos is not None: unfinished_toks[selected_toks] = (np.sum(self.annos_test[selected_toks] != -1, axis=1) -
np.sum(self.annos != -1, axis=1)
numpy.sum
import cv2 import numpy as np from numpy.core.defchararray import array #import matplotlib.pyplot as plt # import speech_recognition as sr # import time # from gtts import gTTS # import os from scipy.spatial import distance as dist from collections import OrderedDict from contextlib import nullcontext import sys import cv2 as cv2 import math import numpy as np from numpy.core.fromnumeric import shape import scipy from skimage import data from skimage.color import rgb2gray import matplotlib.pyplot as pp import matplotlib as mpl import matplotlib.pyplot as plt from PIL import Image, ImageEnhance import seaborn as sns from scipy.signal import argrelextrema from scipy.signal import argrelmin from scipy.signal import argrelmax from scipy.signal import find_peaks from sklearn.cluster import KMeans from sklearn.cluster import MeanShift, estimate_bandwidth import skimage.io from numpy import ones, vstack from numpy.linalg import lstsq from sklearn.cluster import AgglomerativeClustering from PIL import Image, ImageEnhance import scipy from scipy import ndimage import matplotlib.pyplot as plt ################################################### old start def Slope(y2, y1, x2, x1): m = (y2 - y1)/(x2-x1) return m def canny(image): blur = cv2.GaussianBlur(image, (5, 5), 0) canny = cv2.Canny(blur, 0, 70) return canny def GroupLines(image, lines8, labels): line_image = np.zeros_like(image) for l in labels: if(l == 0): x1, y1, x2, y2 = lines8[l].reshape(4) cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 2) # red elif(l == 1): x1, y1, x2, y2 = lines8[l].reshape(4) cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 2) # blue elif(l == 2): x1, y1, x2, y2 = lines8[l].reshape(4) cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 2) # green elif(l == 3): x1, y1, x2, y2 = lines8[l].reshape(4) cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 2) # pink return line_image def draw_lines_on_image(image, lines): line_image = np.zeros_like(image) if lines is not None: for line in lines: x1, y1, x2, y2 = line.reshape(4) cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 2) return line_image def threshold_color(image): lowerbound = (145, 145, 145) upperbound = (255, 255, 255) mask = cv2.inRange(image, lowerbound, upperbound) return mask def getBackgroundImage(videoName): array = [] cap = cv2.VideoCapture(videoName) frameCount = 60 frameWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frameHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) buf = np.empty((frameCount, frameHeight, frameWidth, 3), np.dtype('uint8')) fc = 0 # used for iteration ret = True while (fc < frameCount and ret): ret, img = cap.read() cap.read() cap.read() cap.read() gray = rgb2gray(img) array.append(gray) fc += 1 cap.release() array = np.asarray(array, dtype=np.float16) med = np.median(array, axis=0) med = np.asarray(med, dtype=np.float32) return med region_of_interest_vertices = [ #(992, 232), (829, 106), #(1322, 232), (1163, 106), #(1952, 1296), (1163, 1080), #(285, 1296) (268, 1080) ] region_of_interest_vertices_for_lanes = [ (842, 106), (1140, 106), (1669, 1080), (323, 1080) ] def get_hi_n_lo_y(box): hi = 0 lo = 0 for point in box: _, y = point if(y > hi): lo = hi hi = y return hi, lo def region_of_interest(img, vertices): mask = np.zeros_like(img) match_mask_color = 255 cv2.fillPoly(mask, vertices, match_mask_color) masked_image = cv2.bitwise_and(img, mask) return masked_image def hole_filling(img): floddedImg = img.copy() h, w = floddedImg.shape mask = np.zeros((h+2, w+2), np.uint8) cv2.floodFill(floddedImg, mask, (0, 0), 255) invOfFlodded = cv2.bitwise_not(floddedImg) return invOfFlodded def get_m_c(line): x1, y1, x2, y2 = line.reshape(4) P = [x1, y1] Q = [x2, y2] points = [(x1, y1), (x2, y2)] x_coords, y_coords = zip(*points) A = vstack([x_coords, ones(len(x_coords))]).T m, c = lstsq(A, y_coords,rcond=-1)[0] return m,c def get_average_line(lines,img): val=scipy.stats.mode(lines) h, w = img.shape x,_=val y1=0 y2=h print(x[0]) return x,y1,x,y2 def get_lines(img): FilteredLines = [] UltimateLines = np.array(FilteredLines) lines = cv2.HoughLinesP(img, 6, np.pi/360, 100, np.array([]), minLineLength=50, maxLineGap=1000) return lines def get_inv(img): pts1 = np.float32([[842, 106], [1140, 106], [323, 1080],[1669, 1080]]) pts2 = np.float32([[0, 0], [298, 0], [0, 947], [298, 947]]) matrix = cv2.getPerspectiveTransform(pts1, pts2) matrix2 = cv2.getPerspectiveTransform(pts2, pts1) inverse_prespective = cv2.warpPerspective( img, matrix, (298, 947)) return img def filterLines(lines): flag = 0 filtered_lines = [] if lines is not None: for line in lines: x1, y1, x2, y2 = line.reshape(4) deltaY = abs(y2 - y1) deltaX = abs(x2 - x1) angleInDegrees = math.atan2(deltaY, deltaX) * 180 / math.pi if angleInDegrees > 85: if flag == 0: flag = 1 filtered_lines = np.array([line]) else: filtered_lines = np.append(filtered_lines, [line]) filtered_lines = filtered_lines.reshape(-1, 1, 4) return filtered_lines def findCoutours(img, height=0, area=0): contours, _ = cv2.findContours( img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contoursImg = np.zeros_like(img) filtered_cnts = [] bounding_pic = contoursImg.copy() flag = 0 count = 0 for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) a = cv2.contourArea(cnt) if h > height and a > area: rect = cv2.minAreaRect(cnt) box = cv2.boxPoints(rect) box = np.int0(box) filtered_cnts = np.append(filtered_cnts, box) cv2.drawContours(bounding_pic, [box], 0, (255, 255, 255), 1) cv2.drawContours(contoursImg, [cnt], -1, (255, 255, 255), 1) #cv2.rectangle(bounding_pic, (x, y), (x+w, y+h), (255, 255, 255), 1) bounding_pic = bounding_pic | contoursImg filtered_cnts = filtered_cnts.reshape(-1, 4, 2) filtered_cnts = filtered_cnts.astype(int) return contoursImg, filtered_cnts, bounding_pic def findCoutours_again(img, height=0, area=0): # merge with uper wala contours, _ = cv2.findContours( img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contoursImg = np.zeros_like(img) filtered_cnts = [] bounding_pic = contoursImg.copy() flag = 0 count = 0 for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) a = cv2.contourArea(cnt) if h > height and a > area: rect = cv2.minAreaRect(cnt) box = cv2.boxPoints(rect) box = np.int0(box) filtered_cnts = np.append(filtered_cnts, x) filtered_cnts = np.append(filtered_cnts, y) filtered_cnts = np.append(filtered_cnts, x+w) filtered_cnts = np.append(filtered_cnts, y) filtered_cnts = np.append(filtered_cnts, x+w) filtered_cnts = np.append(filtered_cnts, y+h) filtered_cnts = np.append(filtered_cnts, x) filtered_cnts = np.append(filtered_cnts, y+h) cv2.drawContours(bounding_pic, [box], 0, (255, 255, 255), 1) cv2.drawContours(contoursImg, [cnt], -1, (255, 255, 255), 1) #cv2.rectangle(bounding_pic, (x, y), (x+w, y+h), (255, 255, 255), 1) bounding_pic = bounding_pic | contoursImg filtered_cnts = filtered_cnts.reshape(-1, 4, 2) filtered_cnts = filtered_cnts.astype(int) return contoursImg, filtered_cnts, bounding_pic def display_lines(image, lines): line_image =
np.zeros_like(image)
numpy.zeros_like
""" Image Deconvolution functions """ import numpy import logging import time log = logging.getLogger(__name__) def hogbom(dirty, psf, window, gain, thresh, niter, fracthresh, prefix=''): """ Clean the point spread function from a dirty image See Hogbom CLEAN (1974A&AS...15..417H) This version operates on numpy arrays. :param fracthresh: :param prefix: :param dirty: The dirty Image, i.e., the Image to be deconvolved :param psf: The point spread-function :param window: Regions where clean components are allowed. If True, entire dirty Image is allowed :param gain: The "loop gain", i.e., the fraction of the brightest pixel that is removed in each iteration :param thresh: Cleaning stops when the maximum of the absolute deviation of the residual is less than this value :param niter: Maximum number of components to make if the threshold `thresh` is not hit :return: clean component Image, residual Image """ starttime = time.time() assert 0.0 < gain < 2.0 assert niter > 0 log.info("hogbom %s Max abs in dirty image = %.6f Jy/beam" % (prefix, numpy.max(numpy.abs(dirty)))) absolutethresh = max(thresh, fracthresh * numpy.fabs(dirty).max()) log.info("hogbom %s Start of minor cycle" % prefix) log.info("hogbom %s This minor cycle will stop at %d iterations or peak < %.6f (Jy/beam)" % (prefix, niter, absolutethresh)) comps =
numpy.zeros(dirty.shape)
numpy.zeros
from __future__ import division, absolute_import, print_function import unittest import numpy.testing as testing import numpy as np import healpy as hp from numpy import random import healsparse class BuildMapsTestCase(unittest.TestCase): def test_build_maps_single(self): """ Test building a map for a single-value field """ random.seed(seed=12345) nside_coverage = 32 nside_map = 64 n_rand = 1000 ra = np.random.random(n_rand) * 360.0 dec = np.random.random(n_rand) * 180.0 - 90.0 # Create an empty map sparse_map = healsparse.HealSparseMap.make_empty(nside_coverage, nside_map, np.float64) # Look up all the values, make sure they're all UNSEEN testing.assert_almost_equal(sparse_map.get_values_pos(ra, dec, lonlat=True), hp.UNSEEN) # Fail to append because of wrong dtype pixel = np.arange(4000, 20000) values = np.ones_like(pixel, dtype=np.float32) self.assertRaises(ValueError, sparse_map.update_values_pix, pixel, values) # Append a bunch of pixels values = np.ones_like(pixel, dtype=np.float64) sparse_map.update_values_pix(pixel, values) # Make a healpix map for comparison hpmap = np.zeros(hp.nside2npix(nside_map)) + hp.UNSEEN hpmap[pixel] = values theta = np.radians(90.0 - dec) phi = np.radians(ra) ipnest_test = hp.ang2pix(nside_map, theta, phi, nest=True) testing.assert_almost_equal(sparse_map.get_values_pos(ra, dec, lonlat=True), hpmap[ipnest_test]) # Replace the pixels values += 1 sparse_map.update_values_pix(pixel, values) hpmap[pixel] = values testing.assert_almost_equal(sparse_map.get_values_pos(ra, dec, lonlat=True), hpmap[ipnest_test]) # Replace and append more pixels # Note that these are lower-number pixels, so the map is out of order pixel2 = np.arange(3000) + 2000 values2 = np.ones_like(pixel2, dtype=np.float64) sparse_map.update_values_pix(pixel2, values2) hpmap[pixel2] = values2 testing.assert_almost_equal(sparse_map.get_values_pos(ra, dec, lonlat=True), hpmap[ipnest_test]) # Test making empty maps sparse_map2 = healsparse.HealSparseMap.make_empty_like(sparse_map) self.assertEqual(sparse_map2.nside_coverage, sparse_map.nside_coverage) self.assertEqual(sparse_map2.nside_sparse, sparse_map.nside_sparse) self.assertEqual(sparse_map2.dtype, sparse_map.dtype) self.assertEqual(sparse_map2._sentinel, sparse_map._sentinel) sparse_map2b = healsparse.HealSparseMap.make_empty_like(sparse_map, cov_pixels=[0, 2]) self.assertEqual(sparse_map2b.nside_coverage, sparse_map.nside_coverage) self.assertEqual(sparse_map2b.nside_sparse, sparse_map.nside_sparse) self.assertEqual(sparse_map2b.dtype, sparse_map.dtype) self.assertEqual(sparse_map2b._sentinel, sparse_map._sentinel) self.assertEqual(len(sparse_map2b._sparse_map), sparse_map2._cov_map.nfine_per_cov*3)
testing.assert_array_equal(sparse_map2b._sparse_map, sparse_map._sentinel)
numpy.testing.assert_array_equal
from bs4 import BeautifulSoup import re from os import listdir from os.path import isfile, join import numpy as np from scipy.optimize import curve_fit # Initialise some arrays for analyses later exam_difficulties = [] master_questions_arr = [] # Allow user to choose which folder to ultimately extract converted pdf->html files from. yn = input("methods (y) or spec (n): ") if yn.lower() == "y": folder = 'Methods-Exams' else: folder = 'Spec-Exams' allPDFs = [f for f in listdir(folder) if isfile(join(folder, f))] #Get list of files in spec-exams folder for file in range(0,len(allPDFs)): #Setup Variables code = data = open(folder+"/"+allPDFs[file], encoding="utf8") html = code.read() allQuestions = [] allTables = [] allH3 = [] # # EXTRACT DATA AND FILTER DATA # soup = BeautifulSoup(html, "html.parser") tabletag = soup.body.findAll('table') exam_id = soup.findAll('title')[0].text #Info about this exam #print(exam_id) #required funciton def hasNumbers(inputString): return any(char.isdigit() for char in inputString) #filter tables for table in tabletag: if table.text.find("Marks") != -1: allTables.append(table) # Identify questions for i in range(2,6): h3tag = soup.body.findAll('h'+str(i)) for h3 in h3tag: if h3.text.find("Question") != -1 and hasNumbers(h3.text): allH3.append(h3) if len(allH3) > 0: break # # ACCOUNT FOR POSSIBLE HOLES IN THE DATA # if len(allH3) != len(allTables): #ONLY IF THERE IS NO 'One-to-one' RELATIONSHIP (else the data has holes) indexes_of_elements = [] #array to store 'positions' of each element in html # Fill array of positions for titles for i in range(0,len(allH3)): if html.count(allH3[i].text) > 1: if html.strip().find(allH3[i].text+"</h3") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</h3"),"h3"]) elif html.strip().find(allH3[i].text+"</a") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</a"),"h3"]) elif html.strip().find(allH3[i].text+"</h4") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</h4"),"h3"]) elif html.strip().find(allH3[i].text+"</h2") != -1: indexes_of_elements.append([html.strip().find(allH3[i].text+"</h2"),"h3"]) elif html.count(allH3[i].text) == 1: indexes_of_elements.append([html.strip().find(allH3[i].text),"h3"]) previous_search_s = indexes_of_elements[0][0] index1 = 0 # Fill array of positions for tables while index1 != -1: index1 = html.strip().find("<table",previous_search_s) #the left point if index1 != -1: indexes_of_elements.append([index1, "table"]) previous_search_s = index1+1 #Sort by order of appearance indexes_of_elements = sorted(indexes_of_elements,key=lambda x: x[0]) running_index = 0 output = [] #Iterate with a running index to find inconsistencies in the data for i in range(0,len(indexes_of_elements)): #print(indexes_of_elements[i][1] + " ----- " + str(indexes_of_elements[i][0]) + " ------- " + html[indexes_of_elements[i][0]:indexes_of_elements[i][0]+20]) if indexes_of_elements[i][1] == "table": running_index = running_index - 1 output.append("T") elif indexes_of_elements[i][1] != "table": running_index = running_index + 1 output.append("H") if running_index == -1: #Mismatch has occured, input a dummy title output[len(output)-1] = "E" output.append("T") running_index = 0 elif running_index == 2: #Mismatch has occured, input a dummy title output[len(output)-1] = "M" output.append("H") running_index = 1 #Create one-to-one relationship array j1=0 j2=0 #print(output) for i in range(1, len(output)+1): if i % 2 == 0: #Every H-T pair if output[i-2] != "E" and output[i-1] != "M": #print(j1,len(allH3),j2,len(allTables)) allQuestions.append([allH3[j1].text,allTables[j2]]) j1+=1 j2+=1 elif output[i-2] == "E": try: allQuestions.append(["Missing (between " + allH3[j1-1].text + " and " + allH3[j1].text + ")",allTables[j2]]) except: allQuestions.append(["Missing (Unknown location)",allTables[j2]]) j2+=1 elif output[i-1] == "M": allQuestions.append([allH3[j1].text,"Missing"]) j1+=1 else: for i in range(0, len(allH3)): allQuestions.append([allH3[i].text,allTables[i]]) #print(str(len(allQuestions)) + " Questions. From Hardest-Easiest:") #print the length (i.e-#of questions) # #DATA MANIPULATION # #Calculate difficulty ratings for i in range(0, len(allQuestions)): if allQuestions[i][1] != "Missing": marks = int(allQuestions[i][1].text.split('A')[0].strip()[-1]) try: marks = int(allQuestions[i][1].text.split('A')[0].strip()[-1]) data = [] table = allQuestions[i][1] rows = table.find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) # Get rid of empty values percentages = data[1] average = 0 mark = 0 for j in range(1,marks+2): average += (int(percentages[j])/100)*mark mark += 1 diff = average/marks allQuestions[i].append(diff) except: try: avg = float(re.findall("\d\.\d", allQuestions[i][1].text)[0]) diff = avg/marks allQuestions[i].append(diff) except: try: avg = float(allQuestions[i][1].text[len(allQuestions[i][1].text)-1:len(allQuestions[i][1].text)]) diff = avg/marks if diff <= 1: allQuestions[i].append(diff) else: print("error" + 1) except: avg = -1 else: allQuestions[i].append(-2) #Sort allQuestions list by difficulty #allQuestions = sorted(allQuestions,key=lambda x: x[2]) sum_diff = 0 #Add exam year to allQuestions and display questions for i in range(0, len(allQuestions)): allQuestions[i].append(exam_id) #print(allQuestions[i][0], "-", allQuestions[i][2]) sum_diff += allQuestions[i][2] master_questions_arr.append(allQuestions[i]) avgDiff = sum_diff/len(allQuestions) exam_difficulties.append([avgDiff,exam_id]) #print("Overall Difficulty: ", avgDiff) master_questions_arr = sorted(master_questions_arr,key=lambda x: x[2]) #Sort all questions by difficulty print("Loaded " + str(len(master_questions_arr)) + " total questions from " + str(len(exam_difficulties)) + " exams.") user = input("Do you want questions with missing tables to be displayed? (y/n): ") #Display ALL QUESTIONS: for question in master_questions_arr: if question[2] == -2: #Lost data if user.lower() == "y": print(question[0], "-", "MISSING TABULAR DATA", " from: ", question[3]) elif question[2] == -1 or question[2] > 1: #Edge Case print(question[0], " - EXTREME EDGE CASE, from: ", question[3]) elif question[2] >= 0 and question[2] <= 1: print(question[0], "-", question[2], " from: ", question[3]) #Display difficulty distribution graph import csv import matplotlib.pyplot as plt import numpy as np average_list = [] for question in master_questions_arr: if question[2] > 0 and question[2] <= 1: average_list.append(question[2]) plt.hist(average_list, bins = 10) plt.show() np.mean(average_list) np.median(average_list) def prob(lst, mini, maxi): ctr = 0 for x in lst: if mini<= x <=maxi: ctr += 1 return ctr/len(lst) prob(average_list, 0, 0.597) lst = [] def analyse(lst): plt.hist(lst, bins = 20, density=True) if yn.lower() == "y": plt.title("Methods*") else: plt.title("Specialist*") plt.xlabel("Proportion of Marks") plt.xticks(np.arange(0, 1.0, 0.1)) plt.show() print("Mean: " + str(
np.mean(lst)
numpy.mean
import csv import os import cv2 import numpy as np from numpy.random import shuffle import pickle CSV_FILENAME= 'driving_log.csv' def load_image(filename): """loads an image with opencv2.""" separator = '\\' if os.name in ['nt'] else '/' chunk = filename.split(separator)[-3:] image = cv2.imread("/".join(chunk)) return image def batches(dirname, data, batch_size, steering_correction): num_samples = len(data) while True: shuffle(data) for offset in range(0, num_samples, batch_size): batch = data[offset: offset + batch_size] images = [] angles = [] for row in batch: flip_steering = lambda s: -1.0 * s steering = [float(row[3]), float(row[3]) + steering_correction, float(row[3]) - steering_correction] for i in range(0, 3): img = load_image(row[i]) images.append(img) images.append(cv2.flip(img, 1)) angles.append(steering[i]) angles.append(flip_steering(steering[i])) yield np.array(images),
np.array(angles)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 28 21:10:21 2020 @author: pengning does the Green's function Arnoldi iteration over a shell domain for spherical waves nice analytical properties of polynomial representation lost when using shell domain leaving out origin try going back to spatial discretization idea instead """ import numpy as np import matplotlib.pyplot as plt import scipy.special as sp from .shell_domain import shell_rho_M, shell_rho_N import mpmath from mpmath import mp def grid_integrate_trap(integrandgrid,diffgrid): #integrate a spatial grid representation of the integrand using trapezoid rule return np.sum((integrandgrid[:-1]+integrandgrid[1:])*diffgrid/2.0) def rgrid_Mmn_normsqr(vecMgrid, rsqrgrid, rdiffgrid): return np.real(grid_integrate_trap(np.conj(vecMgrid)*vecMgrid*rsqrgrid, rdiffgrid)) def rgrid_Mmn_dot(vecM1grid, vecM2grid, rsqrgrid, rdiffgrid): return grid_integrate_trap(vecM1grid*vecM2grid*rsqrgrid, rdiffgrid) def rgrid_Mmn_vdot(vecM1grid, vecM2grid, rsqrgrid, rdiffgrid): return grid_integrate_trap(np.conj(vecM1grid)*vecM2grid*rsqrgrid, rdiffgrid) def rgrid_Mmn_plot(vecMgrid, rgrid): fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2) ax1.plot(rgrid,np.real(vecMgrid)) ax2.plot(rgrid,np.imag(vecMgrid)) plt.show() def shell_Green_grid_Mmn_vec(n,k, rsqrgrid,rdiffgrid, RgMgrid, ImMgrid, vecMgrid): """ evaluates G(r,r')*vecM(r') over a shell region from R1 to R2 the region coordinates are contained in rsqrgrid, a grid of r^2, and rdiffgrid, the distances between neighboring grid points; these instead of the original rgrid are given so that they only need to be computed once in main Arnoldi method """ #rsqrgrid = rgrid**2 #rdiffgrid = np.diff(rgrid) RgMvecMrsqr_grid = RgMgrid*vecMgrid*rsqrgrid Im_newvecMgrid = k**3 * grid_integrate_trap(RgMvecMrsqr_grid, rdiffgrid) * RgMgrid Re_ImMfactgrid = np.zeros_like(rsqrgrid, dtype=np.complex) Re_ImMfactgrid[1:] = k**3 * np.cumsum((RgMvecMrsqr_grid[:-1]+RgMvecMrsqr_grid[1:])*rdiffgrid/2.0) rev_ImMvecMrsqr_grid = np.flip(ImMgrid*vecMgrid*rsqrgrid) #reverse the grid direction to evaluate integrands of the form kr' to kR2 Re_RgMfactgrid = np.zeros_like(rsqrgrid, dtype=np.complex) Re_RgMfactgrid[:-1] = k**3 * np.flip(np.cumsum( (rev_ImMvecMrsqr_grid[:-1]+rev_ImMvecMrsqr_grid[1:])*np.flip(rdiffgrid)/2.0 )) Re_newvecMgrid = -ImMgrid*Re_ImMfactgrid - RgMgrid*Re_RgMfactgrid return Re_newvecMgrid + 1j*Im_newvecMgrid def shell_Green_grid_Arnoldi_Mmn_oneshot(n,k,R1,R2, invchi, vecnum, gridpts=200): rgrid = np.linspace(R1,R2,gridpts) rsqrgrid = rgrid**2 rdiffgrid = np.diff(rgrid) RgMgrid = sp.spherical_jn(n, k*rgrid) #the argument for radial part of spherical waves is kr ImMgrid = sp.spherical_yn(n, k*rgrid) RgMgrid = RgMgrid.astype(np.complex) ImMgrid = ImMgrid.astype(np.complex) vecMgrid = RgMgrid / np.sqrt(rgrid_Mmn_normsqr(RgMgrid, rsqrgrid,rdiffgrid)) rgrid_Mmn_plot(vecMgrid, rgrid) unitMvecs = [vecMgrid] for i in range(1,vecnum): newvecMgrid = shell_Green_grid_Mmn_vec(n,k, rsqrgrid,rdiffgrid, RgMgrid, ImMgrid, unitMvecs[-1]) newvecMgrid[:] = np.real(newvecMgrid) print('before orthogonalization and normalization:') rgrid_Mmn_plot(newvecMgrid, rgrid) for j in range(len(unitMvecs)): unitMvec = unitMvecs[j] coeff = rgrid_Mmn_vdot(unitMvec, newvecMgrid, rsqrgrid,rdiffgrid) newvecMgrid -= coeff*unitMvec newvecMgrid /= np.sqrt(rgrid_Mmn_normsqr(newvecMgrid, rsqrgrid,rdiffgrid)) rgrid_Mmn_plot(newvecMgrid, rgrid) print(rgrid_Mmn_vdot(RgMgrid, newvecMgrid, rsqrgrid,rdiffgrid)) unitMvecs.append(newvecMgrid) Green = np.zeros((vecnum,vecnum), dtype=np.complex) for i in range(vecnum): for j in range(vecnum): GMjgrid = shell_Green_grid_Mmn_vec(n,k, rsqrgrid,rdiffgrid, RgMgrid, ImMgrid, unitMvecs[j]) Green[i,j] = rgrid_Mmn_vdot(unitMvecs[i],GMjgrid, rsqrgrid,rdiffgrid) print(Green) Umat = np.eye(vecnum)*invchi - Green return Green, Umat def shell_Green_grid_Arnoldi_Mmn_step(n,k, invchi, rgrid,rsqrgrid,rdiffgrid, RgMgrid, ImMgrid, unitMvecs, Gmat, plotVectors=False): """ this method does one more Arnoldi step, given existing Arnoldi vectors in unitMvecs the last entry in unitMvecs is G*unitMvecs[-2] without orthogonalization and normalization so len(unitMvecs) = len(Gmat)+1 going in and going out of the method this is setup for most efficient iteration since G*unitMvec is only computed once the unitMvecs list is modified on spot; a new enlarged Gmat nparray is returned at the end """ #first, begin by orthogonalizing and normalizing unitMvecs[-1] #use relation U = V^{-1} - G """ see comment for analogous method for N waves, shell_Green_grid_Arnoldi_Nmn_step coef1 = Gmat[-1,-1] unitMvecs[-1] -= coef1*unitMvecs[-2] if Gmat.shape[0]>1: #since G has symmetric Arnoldi representation (so tridiagonal), G*M_j has non-zero overlap with M_j and M_{j-1} coef2 = Gmat[-2,-1] unitMvecs[-1] -= coef2*unitMvecs[-3] unitMvecs[-1][:] = np.real(unitMvecs[-1][:]) """ vecnum = Gmat.shape[0] for i in range(vecnum): coef = rgrid_Mmn_vdot(unitMvecs[i], unitMvecs[-1], rsqrgrid,rdiffgrid) unitMvecs[-1] -= coef*unitMvecs[i] unitMvecs[-1][:] = np.real(unitMvecs[-1][:]) norm = np.sqrt(rgrid_Mmn_normsqr(unitMvecs[-1], rsqrgrid,rdiffgrid)) unitMvecs[-1] /= norm if plotVectors: rgrid_Mmn_plot(unitMvecs[-1], rgrid) #get new vector newvecM = shell_Green_grid_Mmn_vec(n,k, rsqrgrid,rdiffgrid, RgMgrid,ImMgrid, unitMvecs[-1]) newvecM[:] = np.real(newvecM) newGmat = np.zeros((Gmat.shape[0]+1,Gmat.shape[1]+1), dtype=np.complex) newGmat[:-1,:-1] = Gmat[:,:] newGmat[-1,-1] = rgrid_Mmn_vdot(unitMvecs[-1], newvecM, rsqrgrid,rdiffgrid) newGmat[-2,-1] = rgrid_Mmn_vdot(unitMvecs[-2], newvecM, rsqrgrid,rdiffgrid) newGmat[-1,-2] = newGmat[-2,-1] unitMvecs.append(newvecM) #append to end of unitMvecs for next round of iteration return newGmat def shell_Green_grid_Arnoldi_Mmn_Uconverge(n,k,R1,R2, invchi, gridpts=1000, Unormtol=1e-10, veclim=3, delveclim=2, plotVectors=False): rgrid = np.linspace(R1,R2,gridpts) rsqrgrid = rgrid**2 rdiffgrid = np.diff(rgrid) RgMgrid = sp.spherical_jn(n, k*rgrid) #the argument for radial part of spherical waves is kr ImMgrid = sp.spherical_yn(n, k*rgrid) RgMgrid = RgMgrid.astype(np.complex) ImMgrid = ImMgrid.astype(np.complex) vecMgrid = RgMgrid / np.sqrt(rgrid_Mmn_normsqr(RgMgrid, rsqrgrid,rdiffgrid)) unitMvecs = [vecMgrid] if plotVectors: rgrid_Mmn_plot(vecMgrid, rgrid) GvecMgrid = shell_Green_grid_Mmn_vec(n,k, rsqrgrid,rdiffgrid, RgMgrid,ImMgrid, vecMgrid) Gmat = np.array([[rgrid_Mmn_vdot(vecMgrid, GvecMgrid, rsqrgrid,rdiffgrid)]], dtype=np.complex) Uinv = invchi*np.eye(1)-Gmat unitMvecs.append(GvecMgrid) #append unorthogonalized, unnormalized Arnoldi vector for further iterations prevUnorm = 1.0/Uinv[0,0] i=1 while i<veclim: Gmat = shell_Green_grid_Arnoldi_Mmn_step(n,k,invchi, rgrid,rsqrgrid,rdiffgrid, RgMgrid, ImMgrid, unitMvecs, Gmat, plotVectors=plotVectors) i += 1 if i==veclim: #solve for first column of U and see if its norm has converged Uinv = invchi*np.eye(Gmat.shape[0])-Gmat b = np.zeros((Uinv.shape[0],1)) b[0] = 1.0 x = np.linalg.solve(Uinv,b) Unorm = np.linalg.norm(x) print('Unorm:', Unorm) if np.abs(Unorm-prevUnorm) > np.abs(Unorm)*Unormtol: veclim += delveclim prevUnorm = Unorm return RgMgrid, ImMgrid, unitMvecs, Uinv, Gmat def rgrid_Nmn_dot(vecB1grid,vecP1grid, vecB2grid,vecP2grid, rsqrgrid,rdiffgrid): return grid_integrate_trap((vecB1grid*vecB2grid+vecP1grid*vecP2grid)*rsqrgrid, rdiffgrid) def rgrid_Nmn_vdot(vecB1grid,vecP1grid, vecB2grid,vecP2grid, rsqrgrid,rdiffgrid): return grid_integrate_trap((np.conj(vecB1grid)*vecB2grid+np.conj(vecP1grid)*vecP2grid)*rsqrgrid, rdiffgrid) def rgrid_Nmn_normsqr(vecBgrid,vecPgrid, rsqrgrid,rdiffgrid): return np.real(rgrid_Nmn_vdot(vecBgrid,vecPgrid, vecBgrid,vecPgrid, rsqrgrid,rdiffgrid)) def rgrid_Nmn_plot(vecBgrid,vecPgrid, rgrid): fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1, ncols=4,figsize=(10,4)) ax1.plot(rgrid,np.real(vecBgrid)) ax2.plot(rgrid,np.real(vecPgrid)) ax3.plot(rgrid,np.imag(vecBgrid)) ax4.plot(rgrid,np.imag(vecPgrid)) ax1.set_title('B real'); ax2.set_title('P real'); ax3.set_title('B imag'); ax4.set_title('P imag') plt.show() def shell_Green_grid_Nmn_vec(n,k, rsqrgrid,rdiffgrid, RgBgrid,RgPgrid, ImBgrid,ImPgrid, vecBgrid,vecPgrid): """ evaluates G(r,r')*vecN(r') over a shell region from R1 to R2 the region coordinates are contained in rsqrgrid, a grid of r^2, and rdiffgrid, the distances between neighboring grid points; these instead of the original rgrid are given so that they only need to be computed once in main Arnoldi method """ #rsqrgrid = rgrid**2 #rdiffgrid = np.diff(rgrid) RgNvecNrsqr_grid = (RgBgrid*vecBgrid+RgPgrid*vecPgrid)*rsqrgrid imfac = k**3 * grid_integrate_trap(RgNvecNrsqr_grid, rdiffgrid) Im_newvecBgrid = imfac * RgBgrid Im_newvecPgrid = imfac * RgPgrid Re_ImNfactgrid = np.zeros_like(rsqrgrid, dtype=np.complex) Re_ImNfactgrid[1:] = k**3 * np.cumsum((RgNvecNrsqr_grid[:-1]+RgNvecNrsqr_grid[1:])*rdiffgrid/2.0) rev_ImNvecNrsqr_grid = np.flip((ImBgrid*vecBgrid + ImPgrid*vecPgrid) * rsqrgrid) #reverse the grid direction to evaluate integrands of the form kr' to kR2 Re_RgNfactgrid = np.zeros_like(rsqrgrid, dtype=np.complex) Re_RgNfactgrid[:-1] = k**3 * np.flip(np.cumsum( (rev_ImNvecNrsqr_grid[:-1]+rev_ImNvecNrsqr_grid[1:])*np.flip(rdiffgrid)/2.0 )) Re_newvecBgrid = -ImBgrid*Re_ImNfactgrid - RgBgrid*Re_RgNfactgrid Re_newvecPgrid = -ImPgrid*Re_ImNfactgrid - RgPgrid*Re_RgNfactgrid - vecPgrid #last term is delta contribution return Re_newvecBgrid + 1j*Im_newvecBgrid, Re_newvecPgrid + 1j*Im_newvecPgrid def shell_Green_grid_Arnoldi_Nmn_oneshot(n,k,R1,R2, invchi, vecnum, gridpts=200): rgrid = np.linspace(R1,R2,gridpts) rsqrgrid = rgrid**2 rdiffgrid = np.diff(rgrid) RgBgrid = sp.spherical_jn(n, k*rgrid)/(k*rgrid) + sp.spherical_jn(n,k*rgrid,derivative=True) #the argument for radial part of spherical waves is kr RgPgrid = np.sqrt(n*(n+1))*sp.spherical_jn(n, k*rgrid)/(k*rgrid) ImBgrid = sp.spherical_yn(n, k*rgrid)/(k*rgrid) + sp.spherical_yn(n,k*rgrid,derivative=True) ImPgrid = np.sqrt(n*(n+1))*sp.spherical_yn(n, k*rgrid)/(k*rgrid) RgBgrid = RgBgrid.astype(np.complex) RgPgrid = RgPgrid.astype(np.complex) ImBgrid = ImBgrid.astype(np.complex) ImPgrid = ImPgrid.astype(np.complex) normvec = np.sqrt(rgrid_Nmn_normsqr(RgBgrid,RgPgrid, rsqrgrid,rdiffgrid)) vecBgrid = RgBgrid / normvec vecPgrid = RgPgrid / normvec rgrid_Nmn_plot(vecBgrid,vecPgrid, rgrid) unitBvecs = [vecBgrid]; unitPvecs = [vecPgrid] for i in range(1,vecnum): newvecBgrid, newvecPgrid = shell_Green_grid_Nmn_vec(n,k, rsqrgrid,rdiffgrid, RgBgrid,RgPgrid, ImBgrid,ImPgrid, unitBvecs[-1],unitPvecs[-1]) newvecBgrid[:] = np.real(newvecBgrid) newvecPgrid[:] = np.real(newvecPgrid) print('before orthogonalization and normalization:') rgrid_Nmn_plot(newvecBgrid,newvecPgrid, rgrid) for j in range(len(unitBvecs)): unitBvec = unitBvecs[j]; unitPvec = unitPvecs[j] coeff = rgrid_Nmn_vdot(unitBvec,unitPvec, newvecBgrid,newvecPgrid, rsqrgrid,rdiffgrid) newvecBgrid -= coeff*unitBvec; newvecPgrid -= coeff*unitPvec normvec = np.sqrt(rgrid_Nmn_normsqr(newvecBgrid,newvecPgrid, rsqrgrid,rdiffgrid)) newvecBgrid /= normvec; newvecPgrid /= normvec rgrid_Nmn_plot(newvecBgrid,newvecPgrid, rgrid) #print(rgrid_Mmn_vdot(RgMgrid, newvecMgrid, rsqrgrid,rdiffgrid)) unitBvecs.append(newvecBgrid); unitPvecs.append(newvecPgrid) Green = np.zeros((vecnum,vecnum), dtype=np.complex) for i in range(vecnum): for j in range(vecnum): GNj_Bgrid, GNj_Pgrid = shell_Green_grid_Nmn_vec(n,k, rsqrgrid,rdiffgrid, RgBgrid,RgPgrid, ImBgrid,ImPgrid, unitBvecs[j],unitPvecs[j]) Green[i,j] = rgrid_Nmn_vdot(unitBvecs[i],unitPvecs[i], GNj_Bgrid,GNj_Pgrid, rsqrgrid,rdiffgrid) #print(Green) Umat = np.eye(vecnum)*invchi - Green Umatw,Umatv = np.linalg.eig(Umat) print(Umatw) print('v0', Umatv[:,0]) for i in range(len(Umatw)): #if np.abs(Umatw[i]-1-invchi)<1e-2*np.abs(1+invchi): if np.abs(np.imag(Umatw[i])-np.imag(invchi))<1e-4*np.abs(np.imag(invchi)): print(Umatw[i]) print('v', Umatv[:,i]) testvecB = np.zeros_like(unitBvecs[0],dtype=np.complex) testvecP = np.zeros_like(unitPvecs[0],dtype=np.complex) for j in range(vecnum): testvecB += Umatv[j,i]*unitBvecs[j] testvecP += Umatv[j,i]*unitPvecs[j] rgrid_Nmn_plot(testvecB,testvecP,rgrid) rgrid_Nmn_plot(ImBgrid,ImPgrid,rgrid) print(rgrid_Nmn_vdot(testvecB,testvecP,ImBgrid,ImPgrid,rsqrgrid,rdiffgrid)) return Green, Umat def shell_Green_grid_Arnoldi_Nmn_step(n,k,invchi, rgrid,rsqrgrid,rdiffgrid, RgBgrid,RgPgrid, ImBgrid,ImPgrid, unitBvecs,unitPvecs, Gmat, plotVectors=False): """ this method does one more Arnoldi step, given existing N-type Arnoldi vectors stored in (unitBvecs, unitPvecs) the last entry in unitB/Pvecs is G*unitNvecs[-2] without orthogonalization and normalization so len(unitBvecs) = len(Gmat)+1 going in and going out of the method this is setup for most efficient iteration since G*unitNvec is only computed once the unitNvecs lists is modified on spot; a new enlarged Gmat nparray is returned at the end """ #first, begin by orthogonalizing and normalizing unitMvecs[-1] #use relation U = V^{-1} - G """ it seems that when using grid based discretization, discretization error pushes the Arnoldi process away from true tridiagonality; there is small non-zero values in Gmat off the tri-diagonal. We take a middle ground: ignore the non-tridiagonal parts of Gmat due to discretization error, but when orthogonalizing the Arnoldi vectors apply all previous vectors instead of just the closest two, to maintain orthogonality up to eps for the Arnoldi vectors in the grid representation coef1 = Gmat[-1,-1] unitBvecs[-1] -= coef1*unitBvecs[-2]; unitPvecs[-1] -= coef1*unitPvecs[-2] if Gmat.shape[0]>1: #since G has symmetric Arnoldi representation (so tridiagonal), G*N_j has non-zero overlap with N_j and N_{j-1} coef2 = Gmat[-2,-1] unitBvecs[-1] -= coef2*unitBvecs[-3]; unitPvecs[-1] -= coef2*unitPvecs[-3] unitBvecs[-1][:] = np.real(unitBvecs[-1][:]); unitPvecs[-1][:] = np.real(unitPvecs[-1][:]) """ vecnum = Gmat.shape[0] for i in range(vecnum): coef = rgrid_Nmn_vdot(unitBvecs[i],unitPvecs[i], unitBvecs[-1],unitPvecs[-1], rsqrgrid,rdiffgrid) unitBvecs[-1] -= coef*unitBvecs[i]; unitPvecs[-1] -= coef*unitPvecs[i] unitBvecs[-1][:] = np.real(unitBvecs[-1][:]); unitPvecs[-1][:] = np.real(unitPvecs[-1][:]) norm = np.sqrt(rgrid_Nmn_normsqr(unitBvecs[-1],unitPvecs[-1], rsqrgrid,rdiffgrid)) unitBvecs[-1] /= norm; unitPvecs[-1] /= norm if plotVectors: rgrid_Nmn_plot(unitBvecs[-1],unitPvecs[-1], rgrid) #get new vector newvecB,newvecP = shell_Green_grid_Nmn_vec(n,k, rsqrgrid,rdiffgrid, RgBgrid,RgPgrid, ImBgrid,ImPgrid, unitBvecs[-1],unitPvecs[-1]) newvecB[:] = np.real(newvecB); newvecP[:] = np.real(newvecP) newGmat = np.zeros((Gmat.shape[0]+1,Gmat.shape[1]+1), dtype=np.complex) newGmat[:-1,:-1] = Gmat[:,:] newGmat[-1,-1] = rgrid_Nmn_vdot(unitBvecs[-1],unitPvecs[-1], newvecB,newvecP, rsqrgrid,rdiffgrid) newGmat[-2,-1] = rgrid_Nmn_vdot(unitBvecs[-2],unitPvecs[-2], newvecB,newvecP, rsqrgrid,rdiffgrid) newGmat[-1,-2] = newGmat[-2,-1] unitBvecs.append(newvecB); unitPvecs.append(newvecP) #append to end of unitB/Pvecs for next round of iteration return newGmat def shell_Green_grid_Arnoldi_Nmn_Uconverge(n,k,R1,R2, invchi, gridpts=1000, Unormtol=1e-10, veclim=3, delveclim=2, plotVectors=False): rgrid = np.linspace(R1,R2,gridpts) rsqrgrid = rgrid**2 rdiffgrid = np.diff(rgrid) RgBgrid = sp.spherical_jn(n, k*rgrid)/(k*rgrid) + sp.spherical_jn(n,k*rgrid,derivative=True) #the argument for radial part of spherical waves is kr RgPgrid =
np.sqrt(n*(n+1))
numpy.sqrt
# Compatibility Python 3 # Import project files import utils_data # Import External Packages import numpy as np import math from sklearn.model_selection import train_test_split from sklearn import linear_model from sklearn.preprocessing import StandardScaler, MinMaxScaler # torch packages import torch from torch.autograd import Variable from model_general_nn import predict_nn import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import WeightedRandomSampler import copy # for copying models in ensembleNN class LeastSquares: ''' fits gathered data to the form x_(t+1) = Ax + Bu .train() to train the fit .predict() to predict the next state from the current state and inputs ''' def __init__(self, dt_x, x_dim = 12, u_dim = 4): self.reg = linear_model.LinearRegression() self.x_dim = x_dim self.u_dim = u_dim self.dt_x = dt_x def train(self, change_states, states_prev, actions_prev): # need to make sure data here is normalized AND the states are all # formed as change of state, rather than arbitary values (this makes sure # that the features are not fit to large vlaues) # Xw = y # this works if we stack a array # z = [x, u] # then can make a matrix # w ~ [A, B] Z = np.hstack([states_prev, actions_prev]) y = change_states self.reg.fit(Z,y) return self.reg.coef_ def predict(self, state, action): # predicts next state of a state, action pairing # forces one dimensional vector, transpose to allign with .fit dimensions vect = np.hstack((state, action)).reshape(-1,1).T pred = self.reg.predict(vect) return self.dt_x*pred[0] @property def A_B(self): # function that prints a readable form print('Not Implemented lol') class NeuralNet(nn.Module): """ - layer_sizes is a list of layer sizes, first layer size should be input dimension, last layer size should be output dimension - layer_types is a list of activation functions for the middle layers. Note that current implementation sets the first layer to be linear regardless. - learn_list is a list of state variables to use in training the dynamics. The model will learn and predict this variables. """ def __init__(self, layer_sizes, layer_types, dynam, state_learn_list, input_learn_list): super(NeuralNet, self).__init__() #To keep track of what the mean and variance are at all times for transformations # self.scalarX = StandardScaler() # self.scalarU = StandardScaler() # self.scalardX = StandardScaler() self.scalarX = MinMaxScaler(feature_range=(-1, 1)) self.scalarU = MinMaxScaler(feature_range=(-1, 1)) self.scalardX = MinMaxScaler(feature_range=(-1, 1)) # list of states and inputs to learn dynamics from self.state_learn_list = state_learn_list self.input_learn_list = input_learn_list # dynam file for reference self.dynam = dynam if (len(layer_sizes) != len(layer_types)): raise ValueError('Number of layer sizes does not match number of layer types passed.') # num_angles = sum(1 for x in dynam.x_dict.values() if x[1] == 'angle') num_angles = 0 for state in state_learn_list: key = dynam.x_dict[state] if key[1] == 'angle': num_angles +=1 if ((len(state_learn_list)+len(input_learn_list)+num_angles) != layer_sizes[0]): raise ValueError('Dimension of states and inputs to learn from does not match the first layer dimension.') # Add linear layer with activations l=0 # label iterator for i in range(len(layer_sizes) - 1): # add linear layers of size [n_in, n_out] self.add_module(str(l), nn.Linear(layer_sizes[i], layer_sizes[i+1])) l+= 1 # for all but last layer add activation function if (layer_types[i] != 'nn.Linear()'): if (layer_types[i] == 'nn.ReLU()'): self.add_module(str(l), nn.LeakyReLU()) l =+ 1 else: raise ValueError('Layer Type Not Implemented') """ Standard forward function necessary if extending nn.Module. Basically a copy of nn.Sequential """ def forward(self, x): for module in self._modules.values(): #.values(): # print(module) x = module(x) return x """ Preprocess X and U (as they would be outputted by dynamics.generate_data) so they can be passed into the neural network for training X and U should be numpy arrays with dimensionality X.shape = (num_iter, sequence_len, 12) U.shape = (num_iter, sequence_len, 4) return: A """ def preprocess(self, X, U): #Getting output dX dX = np.array([utils_data.states2delta(val) for val in X]) # Ignore last element of X and U sequences because do not see next state X = X[:,:-1,:] U = U[:,:-1,:] #translating from [psi theta phi] to [sin(psi) sin(theta) sin(phi) cos(psi) cos(theta) cos(phi)] # modX = np.concatenate((X[:, :, 0:6], np.sin(X[:, :, 6:9]), np.cos(X[:, :, 6:9]), X[:, :, 9:]), axis=2) # dX = np.concatenate((dX[:, :, 0:6], np.sin(dX[:, :, 6:9]), np.cos(dX[:, :, 6:9]), dX[:, :, 9:]), axis=2) # Adds the desired variables to the X data to learn modX = [] moddX = [] # Adds the desired inputs to the U data to learn X with modU = [] for i in range(np.shape(X)[0]): seqX = X[i,:,:] seqdX = dX[i,:,:] seqU = U[i,:,:] # intialize empty arrays to make slicing easier arr_X = [] arr_dX = [] arr_U = [] for state in self.state_learn_list: # grabs state information from dictionary key = self.dynam.x_dict[state] # concatenate required variables for states if (key[1] != 'angle'): arr_X.append(seqX[:, key[0]]) arr_dX.append(seqdX[:, key[0]]) else: arr_X.append(np.sin(seqX[:, key[0]]) ) arr_X.append(np.cos(seqX[:, key[0]]) ) arr_dX.append(np.sin(seqdX[:, key[0]])) arr_dX.append(np.cos(seqdX[:, key[0]]) ) for inp in self.input_learn_list: # grabs state information from dictionary key = self.dynam.u_dict[inp] # concatenate required variables for states arr_U.append(seqU[:, key[0]]) # append the slice onto the array modX.append(arr_X) moddX.append(arr_dX) modU.append(arr_U) # cast to numpy arrays modX = np.array(modX) moddX = np.array(moddX) modU = np.array(modU) # swap axes for easy flatten & tensor modX = np.swapaxes(modX, 1, 2) moddX = np.swapaxes(moddX, 1, 2) modU = np.swapaxes(modU, 1, 2) #Follow by flattening the matrices so they look like input/output pairs modX = modX.reshape(modX.shape[0]*modX.shape[1], -1) modU = modU.reshape(modU.shape[0]*modU.shape[1], -1) moddX = moddX.reshape(dX.shape[0]*dX.shape[1], -1) #at this point they should look like input output pairs if moddX.shape != modX.shape: raise ValueError('Something went wrong, modified X shape:' + str(modX.shape) + ' dX shape:' + str(dX.shape)) #update mean and variance of the dataset with each training pass self.scalarX.partial_fit(modX) self.scalarU.partial_fit(modU) self.scalardX.partial_fit(moddX) #Normalizing to zero mean and unit variance normX = self.scalarX.transform(modX) normU = self.scalarU.transform(modU) normdX = self.scalardX.transform(moddX) print(np.shape(normX)) print(np.shape(normU)) print(np.shape(normdX)) # quit() # print(self.scalarX.mean_) # print(self.scalarU.mean_) # print(self.scalardX.mean_) # print(self.scalarX.var_) # print(self.scalarU.var_) # print(self.scalardX.var_) # print(self.scalarX.n_samples_seen_) # print(self.scalarU.n_samples_seen_) # print(self.scalardX.n_samples_seen_) # print(np.mean(normX)) # print(np.mean(normU)) # print(np.mean(normdX)) inputs = torch.Tensor(np.concatenate((normX, normU), axis=1)) outputs = torch.Tensor(normdX) return list(zip(inputs, outputs)) """ Given the raw output from the neural network, post process it by rescaling by the mean and variance of the dataset and converting from cos, sin to actual angle """ def postprocess(self, dX): # de-normalize so to say dX = self.scalardX.inverse_transform(dX.reshape(1, -1)) dX = dX.ravel() # print(np.shape(dX)) out = [] ang_idx = 0 def NNout2State(dX): # helper function for transforming the output of the NN back to useable state information out = [] # Again needs to remove cos/sin of the correct variables the desired variables to the X data to learn l = 0 # grabs state information from dictionary for (i,state) in enumerate(self.state_learn_list): # grabs state information from dictionary key = self.dynam.x_dict[state] # concatenate required variables for states if (key[1] != 'angle'): out.append(dX[i+l]) else: # out.append(np.arctan2(dX[1+i+l], dX[i+l])) out.append(np.arctan2(dX[i+l], dX[1+i+l])) l+= 1 return out # Call normalization on each state predicted if len(np.shape(dX)) > 1: for state in dX: out.append(NNout2State(state)) else: out = NNout2State(dX) return np.array(out) # out = np.concatenate((dX[:, :6], np.arctan2(dX[:, 6:9], dX[:, 9:12]), dX[:, 12:]), axis=1) """ Train the neural network. if preprocess = False dataset is a list of tuples to train on, where the first value in the tuple is the training data (should be implemented as a torch tensor), and the second value in the tuple is the label/action taken if preprocess = True dataset is simply the raw output of generate data (X, U) Epochs is number of times to train on given training data, batch_size is hyperparameter dicating how large of a batch to use for training, optim is the optimizer to use (options are "Adam", "SGD") split is train/test split ratio """ def train(self, dataset, learning_rate = 1e-3, epochs=50, batch_size=50, optim="Adam", loss_fn=nn.MSELoss(), split=0.9, preprocess=True): if preprocess: dataset = self.preprocess(dataset[0], dataset[1]) print('Shape of dataset is:', len(dataset)) trainLoader = DataLoader(dataset[:int(split*len(dataset))], batch_size=batch_size, shuffle=True) testLoader = DataLoader(dataset[int(split*len(dataset)):], batch_size=batch_size) #Unclear if we should be using SGD or ADAM? Papers seem to say ADAM works better if(optim=="Adam"): optimizer = torch.optim.Adam(super(NeuralNet, self).parameters(), lr=learning_rate) elif(optim=="SGD"): optimizer = torch.optim.SGD(super(NeuralNet, self).parameters(), lr=learning_rate) else: raise ValueError(optim + " is not a valid optimizer type") return self._optimize(loss_fn, optimizer, epochs, batch_size, trainLoader, testLoader) """ Given a state X and input U, predict the change in state dX. This function does all pre and post processing for the neural net """ def predict(self, X, U): #Converting to sin/cos form # state_in = np.concatenate((X[0:6], np.sin(X[6:9]), np.cos(X[6:9]), X[9:])) state_in = [] input_in = [] for state in self.state_learn_list: # grabs state information from dictionary key = self.dynam.x_dict[state] # concatenate required variables for states if (key[1] != 'angle'): state_in.append(X[key[0]]) else: state_in.append(np.sin(X[key[0]]) ) state_in.append(np.cos(X[key[0]]) ) for inp in self.input_learn_list: # grabs state information from dictionary key = self.dynam.u_dict[inp] # concatenate required variables for states input_in.append(U[key[0]]) # make numpy array state_in = np.array(state_in) input_in = np.array(input_in) #normalizing and converting to single sample normX = self.scalarX.transform(state_in.reshape(1, -1)) normU = self.scalarU.transform(input_in.reshape(1, -1)) input = Variable(torch.Tensor(np.concatenate((normX, normU), axis=1))) NNout = self.postprocess(self.forward(input).data[0]) # need to make it so you can still simulate sequences on the learned sequences of not all variables. Our definition is for now that prediction is set to 0 for states we did not learn out = np.zeros(self.dynam.x_dim) idx_out = 0 for state in self.dynam.x_dict: key = self.dynam.x_dict[state] if state in self.state_learn_list: out[key[0]] = NNout[idx_out] idx_out += 1 # Debug # print(np.shape(X)) # print(np.shape(U)) # print(np.shape(out)) # print(out) return out def _optimize(self, loss_fn, optim, epochs, batch_size, trainLoader, testLoader): errors = [] for epoch in range(epochs): avg_loss = Variable(torch.zeros(1)) num_batches = len(trainLoader)/batch_size for i, (input, target) in enumerate(trainLoader): #input = Variable(input.view(batch_size, -1)) # the input comes as a batch of 2d images which we flatten; # view(-1) tells pytorch to fill in a dimension; here it's 784 input = Variable(input) target = Variable(target, requires_grad=False) #Apparently the target can't have a gradient? kinda weird, but whatever optim.zero_grad() # zero the gradient buffers output = self.forward(input) # compute the output loss = loss_fn(output, target) # compute the loss loss.backward() # backpropagate from the loss to fill the gradient buffers optim.step() # do a gradient descent step if not loss.data.numpy() == loss.data.numpy(): # Some errors make the loss NaN. this is a problem. print("loss is NaN") # This is helpful: it'll catch that when it happens, return output, input, loss # and give the output and input that made the loss NaN avg_loss += loss.data[0]/num_batches # update the overall average loss with this batch's loss # Debugging: # print('NN Output: ', output) # print('Target: ', target) # print(np.shape(output)) # print(np.shape(target)) test_error = 0 for (input, target) in testLoader: # compute the testing test_error input = Variable(input) target = Variable(target, requires_grad=False) output = self.forward(input) loss = loss_fn(output, target) test_error += loss.data[0] test_error = test_error / len(testLoader) #print("Epoch:", '%04d' % (epoch + 1), "loss=", "{:.9f}".format(avg_loss.data[0]), # "test_error={:.9f}".format(test_error)) print("Epoch:", '%04d' % (epoch + 1), "train loss=", "{:.6f}".format(avg_loss.data[0]), "test loss=", "{:.6f}".format(test_error)) errors.append(test_error) return errors def save_model(self, filepath): # torch.save(self.state_dict(), filepath) # only param torch.save(self, filepath) # full model state # print(self.scalarX.get_params()) def load_model(self, filepath): self.load_state_dict(torch.load(filepath)) class EnsembleNN(nn.Module): """ Creates an ensembleNN of parameters optimized from the standard NN Dropout """ def __init__(self, base_net, num_nets): # super(NeuralNet, self).__init__() #To keep track of what the mean and variance are at all times for transformations self.scalarX = StandardScaler() self.scalarU = StandardScaler() self.scalardX = StandardScaler() # list of states and inputs to learn dynamics from self.state_learn_list = base_net.state_learn_list self.input_learn_list = base_net.input_learn_list layer_sizes = [12, 100, 100, 9] layer_types = ['nn.Linear()','nn.ReLU()', 'nn.ReLU()', 'nn.Linear()'] states_learn = ['yaw', 'pitch', 'roll', 'ax', 'ay', 'az'] # ['X', 'Y', 'Z', 'vx', 'vy', 'vz', 'yaw', 'pitch', 'roll', 'w_z', 'w_x', 'w_y'] forces_learn = ['Thrust', 'taux', 'tauy'] # dynam file for reference self.dynam = base_net.dynam # Creates list of nueral nets for processing self.num_nets = num_nets self.nets = [] for i in range(num_nets): self.nets.append(copy.deepcopy(base_net)) def forward_ens(self, x): """ Standard forward function necessary if extending nn.Module. Basically a copy of nn.Sequential. Updated for bootstrap method to pass each net once """ xs = [] for net in self.nets: x_sub = x for module in net._modules.values(): x_sub = module(x_sub) xs.append(x_sub) # print(np.shape(xs)) x = torch.mean(torch.stack(xs), 0) return x def preprocess(self, X, U): """ Preprocess X and U (as they would be outputted by dynamics.generate_data) so they can be passed into the neural network for training X and U should be numpy arrays with dimensionality X.shape = (num_iter, sequence_len, 12) U.shape = (num_iter, sequence_len, 4) return: A """ #Getting output dX dX = np.array([utils_data.states2delta(val) for val in X]) # Ignore last element of X and U sequences because do not see next state X = X[:,:-1,:] U = U[:,:-1,:] #translating from [psi theta phi] to [sin(psi) sin(theta) sin(phi) cos(psi) cos(theta) cos(phi)] # modX = np.concatenate((X[:, :, 0:6], np.sin(X[:, :, 6:9]), np.cos(X[:, :, 6:9]), X[:, :, 9:]), axis=2) # dX = np.concatenate((dX[:, :, 0:6], np.sin(dX[:, :, 6:9]), np.cos(dX[:, :, 6:9]), dX[:, :, 9:]), axis=2) # Adds the desired variables to the X data to learn modX = [] moddX = [] # Adds the desired inputs to the U data to learn X with modU = [] for i in range(np.shape(X)[0]): seqX = X[i,:,:] seqdX = dX[i,:,:] seqU = U[i,:,:] # intialize empty arrays to amke slicing easier arr_X = [] arr_dX = [] arr_U = [] for state in self.state_learn_list: # grabs state information from dictionary key = self.dynam.x_dict[state] # concatenate required variables for states if (key[1] != 'angle'): arr_X.append(seqX[:, key[0]]) arr_dX.append(seqdX[:, key[0]]) else: arr_X.append(np.sin(seqX[:, key[0]]) ) arr_X.append(np.cos(seqX[:, key[0]]) ) arr_dX.append(np.sin(seqdX[:, key[0]])) arr_dX.append(np.cos(seqdX[:, key[0]]) ) for inp in self.input_learn_list: # grabs state information from dictionary key = self.dynam.u_dict[inp] # concatenate required variables for states arr_U.append(seqU[:, key[0]]) # append the slice onto the array modX.append(arr_X) moddX.append(arr_dX) modU.append(arr_U) # cast to numpy arrays modX = np.array(modX) moddX = np.array(moddX) modU = np.array(modU) # swap axes for easy flatten & tensor modX = np.swapaxes(modX, 1, 2) moddX = np.swapaxes(moddX, 1, 2) modU = np.swapaxes(modU, 1, 2) #Follow by flattening the matrices so they look like input/output pairs modX = modX.reshape(modX.shape[0]*modX.shape[1], -1) modU = modU.reshape(modU.shape[0]*modU.shape[1], -1) moddX = moddX.reshape(dX.shape[0]*dX.shape[1], -1) #at this point they should look like input output pairs if moddX.shape != modX.shape: raise ValueError('Something went wrong, modified X shape:' + str(modX.shape) + ' dX shape:' + str(dX.shape)) #update mean and variance of the dataset with each training pass self.scalarX.partial_fit(modX) self.scalarU.partial_fit(modU) self.scalardX.partial_fit(moddX) #Normalizing to zero mean and unit variance normX = self.scalarX.transform(modX) normU = self.scalarU.transform(modU) normdX = self.scalardX.transform(moddX) inputs = torch.Tensor(np.concatenate((normX, normU), axis=1)) outputs = torch.Tensor(normdX) # debugging print('Preprocessing sizes:') print(' ', np.shape(inputs)) print(' ', np.shape(outputs)) print(' ------') return list(zip(inputs, outputs)) def postprocess(self, dX): """ Given the raw output from the neural network, post process it by rescaling by the mean and variance of the dataset and converting from cos, sin to actual angle """ # de-normalize so to say dX = self.scalardX.inverse_transform(dX) out = [] ang_idx = 0 def NNout2State(dX): # helper function for transforming the output of the NN back to useable state information out = [] # Again needs to remove cos/sin of the correct variables the desired variables to the X data to learn l = 0 # grabs state information from dictionary for (i,state) in enumerate(self.state_learn_list): # grabs state information from dictionary key = self.dynam.x_dict[state] # concatenate required variables for states if (key[1] != 'angle'): out.append(dX[i+l]) else: out.append(np.arctan2(dX[i+l], dX[1+i+l])) l+= 1 return out # Call normalization on each state predicted if len(np.shape(dX)) > 1: for state in dX: out.append(NNout2State(state)) else: out = NNout2State(dX) return np.array(out) # out = np.concatenate((dX[:, :6], np.arctan2(dX[:, 6:9], dX[:, 9:12]), dX[:, 12:]), axis=1) def train_ens(self, dataset, learning_rate = 1e-3, epochs=50, batch_size=50, optim="Adam", loss_fn=nn.MSELoss(), split=0.9, preprocess=True): """ Train the neural network. if preprocess = False dataset is a list of tuples to train on, where the first value in the tuple is the training data (should be implemented as a torch tensor), and the second value in the tuple is the label/action taken if preprocess = True dataset is simply the raw output of generate data (X, U) Epochs is number of times to train on given training data, batch_size is hyperparameter dicating how large of a batch to use for training, optim is the optimizer to use (options are "Adam", "SGD") split is train/test split ratio """ if preprocess: dataset = self.preprocess(dataset[0], dataset[1]) print('Length of dataset is:', len(dataset)) num_samples = len(dataset) weights = (1/(num_samples+1))*np.ones((int(split*num_samples))) # TODO: Update datasets by sampling with replacement for each net # Make random sampling with replacement by using a evenly weighted random sampler with replacement sampler = WeightedRandomSampler(weights, num_samples, replacement=True) # Training loader has the sampler, testing does not matter. trainLoader = DataLoader(dataset[:int(split*len(dataset))], sampler = sampler, batch_size=batch_size) testLoader = DataLoader(dataset[int(split*len(dataset)):], batch_size=batch_size) # TODO: Train each net separately #Unclear if we should be using SGD or ADAM? Papers seem to say ADAM works better # train each net errors = [] for i, net in enumerate(self.nets): if(optim=="Adam"): optimizer = torch.optim.Adam(super(NeuralNet, net).parameters(), lr=learning_rate) elif(optim=="SGD"): optimizer = torch.optim.SGD(super(NeuralNet, net).parameters(), lr=learning_rate) else: raise ValueError(optim + " is not a valid optimizer type") print('Training net ', i+1) error = net._optimize(loss_fn, optimizer, epochs, batch_size, trainLoader, testLoader) errors.append(error) print('-------------------------------------------------------') print(np.shape(errors)) return errors def predict(self, X, U): """ Given a state X and input U, predict the change in state dX. This function does all pre and post processing for the neural net """ #Converting to sin/cos form # state_in = np.concatenate((X[0:6], np.sin(X[6:9]), np.cos(X[6:9]), X[9:])) state_in = [] input_in = [] for state in self.state_learn_list: # grabs state information from dictionary key = self.dynam.x_dict[state] # concatenate required variables for states if (key[1] != 'angle'): state_in.append(X[key[0]]) else: state_in.append(np.sin(X[key[0]]) ) state_in.append(np.cos(X[key[0]]) ) for inp in self.input_learn_list: # grabs state information from dictionary key = self.dynam.u_dict[inp] # concatenate required variables for states input_in.append(U[key[0]]) # make numpy array state_in =
np.array(state_in)
numpy.array
import os import warnings from six import BytesIO from six.moves import cPickle import numpy as np from numpy.testing import assert_almost_equal, assert_allclose import pandas as pd import pandas.util.testing as tm import pytest from sm2 import datasets from sm2.regression.linear_model import OLS from sm2.tsa.arima_model import AR, ARMA, ARIMA from sm2.tsa.arima_process import arma_generate_sample from sm2.tools.sm_exceptions import MissingDataError from .results import results_arma, results_arima DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 current_path = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(current_path, 'results', 'y_arma_data.csv') y_arma = pd.read_csv(path, float_precision='high').values cpi_dates = pd.PeriodIndex(start='1959q1', end='2009q3', freq='Q') sun_dates = pd.PeriodIndex(start='1700', end='2008', freq='A') cpi_predict_dates = pd.PeriodIndex(start='2009q3', end='2015q4', freq='Q') sun_predict_dates = pd.PeriodIndex(start='2008', end='2033', freq='A') @pytest.mark.not_vetted @pytest.mark.skip(reason="fa, Arma not ported from upstream") def test_compare_arma(): # dummies to avoid flake8 warnings until porting fa = None Arma = None # import statsmodels.sandbox.tsa.fftarma as fa # from statsmodels.tsa.arma_mle import Arma # this is a preliminary test to compare # arma_kf, arma_cond_ls and arma_cond_mle # the results returned by the fit methods are incomplete # for now without random.seed np.random.seed(9876565) famod = fa.ArmaFft([1, -0.5], [1., 0.4], 40) x = famod.generate_sample(nsample=200, burnin=1000) modkf = ARMA(x, (1, 1)) reskf = modkf.fit(trend='nc', disp=-1) dres = reskf modc = Arma(x) resls = modc.fit(order=(1, 1)) rescm = modc.fit_mle(order=(1, 1), start_params=[0.4, 0.4, 1.], disp=0) # decimal 1 corresponds to threshold of 5% difference # still different sign corrected assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape), decimal=1) # TODO: Is the next comment still accurate. It is retained from upstream # where there was a commented-out assertion after the comment # rescm also contains variance estimate as last element of params assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1) @pytest.mark.not_vetted class CheckArmaResultsMixin(object): """ res2 are the results from gretl. They are in results/results_arma. res1 are from sm2 """ decimal_params = DECIMAL_4 def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, self.decimal_params) decimal_aic = DECIMAL_4 def test_aic(self): assert_almost_equal(self.res1.aic, self.res2.aic, self.decimal_aic) decimal_bic = DECIMAL_4 def test_bic(self): assert_almost_equal(self.res1.bic, self.res2.bic, self.decimal_bic) decimal_arroots = DECIMAL_4 def test_arroots(self): assert_almost_equal(self.res1.arroots, self.res2.arroots, self.decimal_arroots) decimal_maroots = DECIMAL_4 def test_maroots(self): assert_almost_equal(self.res1.maroots, self.res2.maroots, self.decimal_maroots) decimal_bse = DECIMAL_2 def test_bse(self): assert_almost_equal(self.res1.bse, self.res2.bse, self.decimal_bse) decimal_cov_params = DECIMAL_4 def test_covparams(self): assert_almost_equal(self.res1.cov_params(), self.res2.cov_params, self.decimal_cov_params) decimal_hqic = DECIMAL_4 def test_hqic(self): assert_almost_equal(self.res1.hqic, self.res2.hqic, self.decimal_hqic) decimal_llf = DECIMAL_4 def test_llf(self): assert_almost_equal(self.res1.llf, self.res2.llf, self.decimal_llf) decimal_resid = DECIMAL_4 def test_resid(self): assert_almost_equal(self.res1.resid, self.res2.resid, self.decimal_resid) decimal_fittedvalues = DECIMAL_4 def test_fittedvalues(self): assert_almost_equal(self.res1.fittedvalues, self.res2.fittedvalues, self.decimal_fittedvalues) decimal_pvalues = DECIMAL_2 def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, self.decimal_pvalues) decimal_t = DECIMAL_2 # only 2 decimal places in gretl output def test_tvalues(self): assert_almost_equal(self.res1.tvalues, self.res2.tvalues, self.decimal_t) decimal_sigma2 = DECIMAL_4 def test_sigma2(self): assert_almost_equal(self.res1.sigma2, self.res2.sigma2, self.decimal_sigma2) @pytest.mark.smoke def test_summary(self): self.res1.summary() @pytest.mark.not_vetted class CheckForecastMixin(object): decimal_forecast = DECIMAL_4 def test_forecast(self): assert_almost_equal(self.res1.forecast_res, self.res2.forecast, self.decimal_forecast) decimal_forecasterr = DECIMAL_4 def test_forecasterr(self): assert_almost_equal(self.res1.forecast_err, self.res2.forecasterr, self.decimal_forecasterr) @pytest.mark.not_vetted class CheckDynamicForecastMixin(object): decimal_forecast_dyn = 4 def test_dynamic_forecast(self): assert_almost_equal(self.res1.forecast_res_dyn, self.res2.forecast_dyn, self.decimal_forecast_dyn) #def test_forecasterr(self): # assert_almost_equal(self.res1.forecast_err_dyn, # self.res2.forecasterr_dyn, # DECIMAL_4) @pytest.mark.not_vetted class CheckArimaResultsMixin(CheckArmaResultsMixin): def test_order(self): assert self.res1.k_diff == self.res2.k_diff assert self.res1.k_ar == self.res2.k_ar assert self.res1.k_ma == self.res2.k_ma decimal_predict_levels = DECIMAL_4 def test_predict_levels(self): assert_almost_equal(self.res1.predict(typ='levels'), self.res2.linear, self.decimal_predict_levels) @pytest.mark.not_vetted class Test_Y_ARMA11_NoConst(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 0] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend='nc', disp=-1) fc_res, fc_err, ci = cls.res1.forecast(10) cls.res1.forecast_res = fc_res cls.res1.forecast_err = fc_err cls.res2 = results_arma.Y_arma11() # TODO: share with test_ar? other test classes? def test_pickle(self): fh = BytesIO() # test wrapped results load save pickle self.res1.save(fh) fh.seek(0, 0) res_unpickled = self.res1.__class__.load(fh) assert type(res_unpickled) is type(self.res1) # noqa:E721 # TODO: Test equality instead of just type equality? @pytest.mark.not_vetted class Test_Y_ARMA14_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 1] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma14() @pytest.mark.not_vetted @pytest.mark.slow class Test_Y_ARMA41_NoConst(CheckArmaResultsMixin, CheckForecastMixin): decimal_maroots = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 2] cls.res1 = ARMA(endog, order=(4, 1)).fit(trend='nc', disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma41() @pytest.mark.not_vetted class Test_Y_ARMA22_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 3] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma22() @pytest.mark.not_vetted class Test_Y_ARMA50_NoConst(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 4] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend='nc', disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma50() @pytest.mark.not_vetted class Test_Y_ARMA02_NoConst(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 5] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend='nc', disp=-1) cls.res2 = results_arma.Y_arma02() @pytest.mark.not_vetted class Test_Y_ARMA11_Const(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma11c() @pytest.mark.not_vetted class Test_Y_ARMA14_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 7] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma14c() @pytest.mark.not_vetted class Test_Y_ARMA41_Const(CheckArmaResultsMixin, CheckForecastMixin): decimal_cov_params = DECIMAL_3 decimal_fittedvalues = DECIMAL_3 decimal_resid = DECIMAL_3 decimal_params = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 8] cls.res2 = results_arma.Y_arma41c() cls.res1 = ARMA(endog, order=(4, 1)).fit(trend="c", disp=-1, start_params=cls.res2.params) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) @pytest.mark.not_vetted class Test_Y_ARMA22_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 9] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma22c() @pytest.mark.not_vetted class Test_Y_ARMA50_Const(CheckArmaResultsMixin, CheckForecastMixin): @classmethod def setup_class(cls): endog = y_arma[:, 10] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma50c() @pytest.mark.not_vetted class Test_Y_ARMA02_Const(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 11] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend="c", disp=-1) cls.res2 = results_arma.Y_arma02c() # cov_params and tvalues are off still but not as much vs. R @pytest.mark.not_vetted class Test_Y_ARMA11_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 0] cls.res1 = ARMA(endog, order=(1, 1)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma11("css") # better vs. R @pytest.mark.not_vetted class Test_Y_ARMA14_NoConst_CSS(CheckArmaResultsMixin): decimal_fittedvalues = DECIMAL_3 decimal_resid = DECIMAL_3 decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 1] cls.res1 = ARMA(endog, order=(1, 4)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma14("css") # bse, etc. better vs. R # maroot is off because maparams is off a bit (adjust tolerance?) @pytest.mark.not_vetted class Test_Y_ARMA41_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_pvalues = 0 decimal_cov_params = DECIMAL_3 decimal_maroots = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 2] cls.res1 = ARMA(endog, order=(4, 1)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma41("css") # same notes as above @pytest.mark.not_vetted class Test_Y_ARMA22_NoConst_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_resid = DECIMAL_3 decimal_pvalues = DECIMAL_1 decimal_fittedvalues = DECIMAL_3 @classmethod def setup_class(cls): endog = y_arma[:, 3] cls.res1 = ARMA(endog, order=(2, 2)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma22("css") # NOTE: gretl just uses least squares for AR CSS # so BIC, etc. is # -2*res1.llf + np.log(nobs)*(res1.q+res1.p+res1.k) # with no adjustment for p and no extra sigma estimate # NOTE: so our tests use x-12 arima results which agree with us and are # consistent with the rest of the models @pytest.mark.not_vetted class Test_Y_ARMA50_NoConst_CSS(CheckArmaResultsMixin): decimal_t = 0 decimal_llf = DECIMAL_1 # looks like rounding error? @classmethod def setup_class(cls): endog = y_arma[:, 4] cls.res1 = ARMA(endog, order=(5, 0)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma50("css") @pytest.mark.not_vetted class Test_Y_ARMA02_NoConst_CSS(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 5] cls.res1 = ARMA(endog, order=(0, 2)).fit(method="css", trend="nc", disp=-1) cls.res2 = results_arma.Y_arma02("css") # NOTE: our results are close to --x-12-arima option and R @pytest.mark.not_vetted class Test_Y_ARMA11_Const_CSS(CheckArmaResultsMixin): decimal_params = DECIMAL_3 decimal_cov_params = DECIMAL_3 decimal_t = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARMA(endog, order=(1, 1)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma11c("css") @pytest.mark.not_vetted class Test_Y_ARMA14_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_pvalues = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 7] cls.res1 = ARMA(endog, order=(1, 4)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma14c("css") @pytest.mark.not_vetted class Test_Y_ARMA41_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_cov_params = DECIMAL_1 decimal_maroots = DECIMAL_3 decimal_bse = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 8] cls.res1 = ARMA(endog, order=(4, 1)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma41c("css") @pytest.mark.not_vetted class Test_Y_ARMA22_Const_CSS(CheckArmaResultsMixin): decimal_t = 0 decimal_pvalues = DECIMAL_1 @classmethod def setup_class(cls): endog = y_arma[:, 9] cls.res1 = ARMA(endog, order=(2, 2)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma22c("css") @pytest.mark.not_vetted class Test_Y_ARMA50_Const_CSS(CheckArmaResultsMixin): decimal_t = DECIMAL_1 decimal_params = DECIMAL_3 decimal_cov_params = DECIMAL_2 @classmethod def setup_class(cls): endog = y_arma[:, 10] cls.res1 = ARMA(endog, order=(5, 0)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma50c("css") @pytest.mark.not_vetted class Test_Y_ARMA02_Const_CSS(CheckArmaResultsMixin): @classmethod def setup_class(cls): endog = y_arma[:, 11] cls.res1 = ARMA(endog, order=(0, 2)).fit(trend="c", method="css", disp=-1) cls.res2 = results_arma.Y_arma02c("css") @pytest.mark.not_vetted class Test_ARIMA101(CheckArmaResultsMixin): # just make sure this works @classmethod def setup_class(cls): endog = y_arma[:, 6] cls.res1 = ARIMA(endog, (1, 0, 1)).fit(trend="c", disp=-1) (cls.res1.forecast_res, cls.res1.forecast_err, confint) = cls.res1.forecast(10) cls.res2 = results_arma.Y_arma11c() cls.res2.k_diff = 0 cls.res2.k_ar = 1 cls.res2.k_ma = 1 @pytest.mark.not_vetted class Test_ARIMA111(CheckArimaResultsMixin, CheckForecastMixin, CheckDynamicForecastMixin): decimal_llf = 3 decimal_aic = 3 decimal_bic = 3 decimal_cov_params = 2 # this used to be better? decimal_t = 0 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 1)).fit(disp=-1) cls.res2 = results_arima.ARIMA111() # make sure endog names changes to D.cpi (cls.res1.forecast_res, cls.res1.forecast_err, conf_int) = cls.res1.forecast(25) # TODO: fix the indexing for the end here, I don't think this is right # if we're going to treat it like indexing # the forecast from 2005Q1 through 2009Q4 is indices # 184 through 227 not 226 # note that the first one counts in the count so 164 + 64 is 65 # predictions cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=164 + 63, typ='levels', dynamic=True) def test_freq(self): assert_almost_equal(self.res1.arfreq, [0.0000], 4) assert_almost_equal(self.res1.mafreq, [0.0000], 4) @pytest.mark.not_vetted class Test_ARIMA111CSS(CheckArimaResultsMixin, CheckForecastMixin, CheckDynamicForecastMixin): decimal_forecast = 2 decimal_forecast_dyn = 2 decimal_forecasterr = 3 decimal_arroots = 3 decimal_cov_params = 3 decimal_hqic = 3 decimal_maroots = 3 decimal_t = 1 decimal_fittedvalues = 2 # because of rounding when copying decimal_resid = 2 decimal_predict_levels = DECIMAL_2 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 1)).fit(disp=-1, method='css') cls.res2 = results_arima.ARIMA111(method='css') cls.res2.fittedvalues = - cpi[1:-1] + cls.res2.linear # make sure endog names changes to D.cpi (fc_res, fc_err, conf_int) = cls.res1.forecast(25) cls.res1.forecast_res = fc_res cls.res1.forecast_err = fc_err cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=164 + 63, typ='levels', dynamic=True) @pytest.mark.not_vetted class Test_ARIMA112CSS(CheckArimaResultsMixin): decimal_llf = 3 decimal_aic = 3 decimal_bic = 3 decimal_arroots = 3 decimal_maroots = 2 decimal_t = 1 decimal_resid = 2 decimal_fittedvalues = 3 decimal_predict_levels = DECIMAL_3 @classmethod def setup_class(cls): cpi = datasets.macrodata.load_pandas().data['cpi'].values cls.res1 = ARIMA(cpi, (1, 1, 2)).fit(disp=-1, method='css', start_params=[.905322, -.692425, 1.07366, 0.172024]) cls.res2 = results_arima.ARIMA112(method='css') cls.res2.fittedvalues = - cpi[1:-1] + cls.res2.linear # make sure endog names changes to D.cpi #(cls.res1.forecast_res, # cls.res1.forecast_err, # conf_int) = cls.res1.forecast(25) #cls.res1.forecast_res_dyn = cls.res1.predict(start=164, end=226, # typ='levels', # dynamic=True) # TODO: fix the indexing for the end here, I don't think this is right # if we're going to treat it like indexing # the forecast from 2005Q1 through 2009Q4 is indices # 184 through 227 not 226 # note that the first one counts in the count so 164 + 64 is 65 # predictions #cls.res1.forecast_res_dyn = self.predict(start=164, end=164+63, # typ='levels', dynamic=True) # since we got from gretl don't have linear prediction in differences def test_freq(self): assert_almost_equal(self.res1.arfreq, [0.5000], 4) assert_almost_equal(self.res1.mafreq, [0.5000, 0.5000], 4) #class Test_ARIMADates(CheckArmaResults, CheckForecast, CheckDynamicForecast): # @classmethod # def setup_class(cls): # cpi = datasets.macrodata.load_pandas().data['cpi'].values # dates = pd.date_range('1959', periods=203, freq='Q') # cls.res1 = ARIMA(cpi, dates=dates, freq='Q').fit(order=(1, 1, 1), # disp=-1) # cls.res2 = results_arima.ARIMA111() # # make sure endog names changes to D.cpi # cls.decimal_llf = 3 # cls.decimal_aic = 3 # cls.decimal_bic = 3 # (cls.res1.forecast_res, # cls.res1.forecast_err, # conf_int) = cls.res1.forecast(25) @pytest.mark.not_vetted @pytest.mark.slow def test_start_params_bug(): data = np.array([ 1368., 1187, 1090, 1439, 2362, 2783, 2869, 2512, 1804, 1544, 1028, 869, 1737, 2055, 1947, 1618, 1196, 867, 997, 1862, 2525, 3250, 4023, 4018, 3585, 3004, 2500, 2441, 2749, 2466, 2157, 1847, 1463, 1146, 851, 993, 1448, 1719, 1709, 1455, 1950, 1763, 2075, 2343, 3570, 4690, 3700, 2339, 1679, 1466, 998, 853, 835, 922, 851, 1125, 1299, 1105, 860, 701, 689, 774, 582, 419, 846, 1132, 902, 1058, 1341, 1551, 1167, 975, 786, 759, 751, 649, 876, 720, 498, 553, 459, 543, 447, 415, 377, 373, 324, 320, 306, 259, 220, 342, 558, 825, 994, 1267, 1473, 1601, 1896, 1890, 2012, 2198, 2393, 2825, 3411, 3406, 2464, 2891, 3685, 3638, 3746, 3373, 3190, 2681, 2846, 4129, 5054, 5002, 4801, 4934, 4903, 4713, 4745, 4736, 4622, 4642, 4478, 4510, 4758, 4457, 4356, 4170, 4658, 4546, 4402, 4183, 3574, 2586, 3326, 3948, 3983, 3997, 4422, 4496, 4276, 3467, 2753, 2582, 2921, 2768, 2789, 2824, 2482, 2773, 3005, 3641, 3699, 3774, 3698, 3628, 3180, 3306, 2841, 2014, 1910, 2560, 2980, 3012, 3210, 3457, 3158, 3344, 3609, 3327, 2913, 2264, 2326, 2596, 2225, 1767, 1190, 792, 669, 589, 496, 354, 246, 250, 323, 495, 924, 1536, 2081, 2660, 2814, 2992, 3115, 2962, 2272, 2151, 1889, 1481, 955, 631, 288, 103, 60, 82, 107, 185, 618, 1526, 2046, 2348, 2584, 2600, 2515, 2345, 2351, 2355, 2409, 2449, 2645, 2918, 3187, 2888, 2610, 2740, 2526, 2383, 2936, 2968, 2635, 2617, 2790, 3906, 4018, 4797, 4919, 4942, 4656, 4444, 3898, 3908, 3678, 3605, 3186, 2139, 2002, 1559, 1235, 1183, 1096, 673, 389, 223, 352, 308, 365, 525, 779, 894, 901, 1025, 1047, 981, 902, 759, 569, 519, 408, 263, 156, 72, 49, 31, 41, 192, 423, 492, 552, 564, 723, 921, 1525, 2768, 3531, 3824, 3835, 4294, 4533, 4173, 4221, 4064, 4641, 4685, 4026, 4323, 4585, 4836, 4822, 4631, 4614, 4326, 4790, 4736, 4104, 5099, 5154, 5121, 5384, 5274, 5225, 4899, 5382, 5295, 5349, 4977, 4597, 4069, 3733, 3439, 3052, 2626, 1939, 1064, 713, 916, 832, 658, 817, 921, 772, 764, 824, 967, 1127, 1153, 824, 912, 957, 990, 1218, 1684, 2030, 2119, 2233, 2657, 2652, 2682, 2498, 2429, 2346, 2298, 2129, 1829, 1816, 1225, 1010, 748, 627, 469, 576, 532, 475, 582, 641, 605, 699, 680, 714, 670, 666, 636, 672, 679, 446, 248, 134, 160, 178, 286, 413, 676, 1025, 1159, 952, 1398, 1833, 2045, 2072, 1798, 1799, 1358, 727, 353, 347, 844, 1377, 1829, 2118, 2272, 2745, 4263, 4314, 4530, 4354, 4645, 4547, 5391, 4855, 4739, 4520, 4573, 4305, 4196, 3773, 3368, 2596, 2596, 2305, 2756, 3747, 4078, 3415, 2369, 2210, 2316, 2263, 2672, 3571, 4131, 4167, 4077, 3924, 3738, 3712, 3510, 3182, 3179, 2951, 2453, 2078, 1999, 2486, 2581, 1891, 1997, 1366, 1294, 1536, 2794, 3211, 3242, 3406, 3121, 2425, 2016, 1787, 1508, 1304, 1060, 1342, 1589, 2361, 3452, 2659, 2857, 3255, 3322, 2852, 2964, 3132, 3033, 2931, 2636, 2818, 3310, 3396, 3179, 3232, 3543, 3759, 3503, 3758, 3658, 3425, 3053, 2620, 1837, 923, 712, 1054, 1376, 1556, 1498, 1523, 1088, 728, 890, 1413, 2524, 3295, 4097, 3993, 4116, 3874, 4074, 4142, 3975, 3908, 3907, 3918, 3755, 3648, 3778, 4293, 4385, 4360, 4352, 4528, 4365, 3846, 4098, 3860, 3230, 2820, 2916, 3201, 3721, 3397, 3055, 2141, 1623, 1825, 1716, 2232, 2939, 3735, 4838, 4560, 4307, 4975, 5173, 4859, 5268, 4992, 5100, 5070, 5270, 4760, 5135, 5059, 4682, 4492, 4933, 4737, 4611, 4634, 4789, 4811, 4379, 4689, 4284, 4191, 3313, 2770, 2543, 3105, 2967, 2420, 1996, 2247, 2564, 2726, 3021, 3427, 3509, 3759, 3324, 2988, 2849, 2340, 2443, 2364, 1252, 623, 742, 867, 684, 488, 348, 241, 187, 279, 355, 423, 678, 1375, 1497, 1434, 2116, 2411, 1929, 1628, 1635, 1609, 1757, 2090, 2085, 1790, 1846, 2038, 2360, 2342, 2401, 2920, 3030, 3132, 4385, 5483, 5865, 5595, 5485, 5727, 5553, 5560, 5233, 5478, 5159, 5155, 5312, 5079, 4510, 4628, 4535, 3656, 3698, 3443, 3146, 2562, 2304, 2181, 2293, 1950, 1930, 2197, 2796, 3441, 3649, 3815, 2850, 4005, 5305, 5550, 5641, 4717, 5131, 2831, 3518, 3354, 3115, 3515, 3552, 3244, 3658, 4407, 4935, 4299, 3166, 3335, 2728, 2488, 2573, 2002, 1717, 1645, 1977, 2049, 2125, 2376, 2551, 2578, 2629, 2750, 3150, 3699, 4062, 3959, 3264, 2671, 2205, 2128, 2133, 2095, 1964, 2006, 2074, 2201, 2506, 2449, 2465, 2064, 1446, 1382, 983, 898, 489, 319, 383, 332, 276, 224, 144, 101, 232, 429, 597, 750, 908, 960, 1076, 951, 1062, 1183, 1404, 1391, 1419, 1497, 1267, 963, 682, 777, 906, 1149, 1439, 1600, 1876, 1885, 1962, 2280, 2711, 2591, 2411]) with warnings.catch_warnings(): warnings.simplefilter("ignore") ARMA(data, order=(4, 1)).fit(start_ar_lags=5, disp=-1) @pytest.mark.not_vetted def test_arima_predict_mle_dates(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1), dates=cpi_dates, freq='Q').fit(disp=-1) path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_mle.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] start, end = 2, 51 fv = res1.predict('1959Q3', '1971Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_dates[start:end + 1]) start, end = 202, 227 fv = res1.predict('2009Q3', '2015Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_predict_dates) # make sure dynamic works start, end = '1960q2', '1971q4' fv = res1.predict(start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn[5:51 + 1], DECIMAL_4) start, end = '1965q1', '2015q4' fv = res1.predict(start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn2[24:227 + 1], DECIMAL_4) @pytest.mark.not_vetted def test_arma_predict_mle_dates(): sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values mod = ARMA(sunspots, (9, 0), dates=sun_dates, freq='A') mod.method = 'mle' with pytest.raises(ValueError): mod._get_prediction_index('1701', '1751', True) start, end = 2, 51 mod._get_prediction_index('1702', '1751', False) tm.assert_index_equal(mod.data.predict_dates, sun_dates[start:end + 1]) start, end = 308, 333 mod._get_prediction_index('2008', '2033', False) tm.assert_index_equal(mod.data.predict_dates, sun_predict_dates) @pytest.mark.not_vetted def test_arima_predict_css_dates(): cpi = datasets.macrodata.load_pandas().data['cpi'].values res1 = ARIMA(cpi, (4, 1, 1), dates=cpi_dates, freq='Q').fit(disp=-1, method='css', trend='nc') params = np.array([1.231272508473910, -0.282516097759915, 0.170052755782440, -0.118203728504945, -0.938783134717947]) path = os.path.join(current_path, 'results', 'results_arima_forecasts_all_css.csv') arima_forecasts = pd.read_csv(path).values fc = arima_forecasts[:, 0] fcdyn = arima_forecasts[:, 1] fcdyn2 = arima_forecasts[:, 2] start, end = 5, 51 fv = res1.model.predict(params, '1960Q2', '1971Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_dates[start:end + 1]) start, end = 202, 227 fv = res1.model.predict(params, '2009Q3', '2015Q4', typ='levels') assert_almost_equal(fv, fc[start:end + 1], DECIMAL_4) tm.assert_index_equal(res1.data.predict_dates, cpi_predict_dates) # make sure dynamic works start, end = 5, 51 fv = res1.model.predict(params, '1960Q2', '1971Q4', typ='levels', dynamic=True) assert_almost_equal(fv, fcdyn[start:end + 1], DECIMAL_4) start, end = '1965q1', '2015q4' fv = res1.model.predict(params, start, end, dynamic=True, typ='levels') assert_almost_equal(fv, fcdyn2[24:227 + 1], DECIMAL_4) @pytest.mark.not_vetted def test_arma_predict_css_dates(): # TODO: GH reference? sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values mod = ARMA(sunspots, (9, 0), dates=sun_dates, freq='A') mod.method = 'css' with pytest.raises(ValueError): mod._get_prediction_index('1701', '1751', False) def test_arima_wrapper(): # test that names get attached to res.params correctly # TODO: GH reference? cpi = datasets.macrodata.load_pandas().data['cpi'] cpi.index = pd.Index(cpi_dates) res = ARIMA(cpi, (4, 1, 1), freq='Q').fit(disp=-1) expected_index = pd.Index(['const', 'ar.L1.D.cpi', 'ar.L2.D.cpi', 'ar.L3.D.cpi', 'ar.L4.D.cpi', 'ma.L1.D.cpi']) assert expected_index.equals(res.params.index) tm.assert_index_equal(res.params.index, expected_index) assert res.model.endog_names == 'D.cpi' @pytest.mark.not_vetted @pytest.mark.smoke def test_1dexog(): # smoke test, this will raise an error if broken dta = datasets.macrodata.load_pandas().data endog = dta['realcons'].values exog = dta['m1'].values.squeeze() with warnings.catch_warnings(): warnings.simplefilter("ignore") mod = ARMA(endog, (1, 1), exog).fit(disp=-1) mod.predict(193, 203, exog[-10:]) # check for dynamic is true and pandas Series see GH#2589 mod.predict(193, 202, exog[-10:], dynamic=True) dta.index = pd.Index(cpi_dates) mod = ARMA(dta['realcons'], (1, 1), dta['m1']) res = mod.fit(disp=-1) res.predict(dta.index[-10], dta.index[-1], exog=dta['m1'][-10:], dynamic=True) mod = ARMA(dta['realcons'], (1, 1), dta['m1']) res = mod.fit(trend='nc', disp=-1) res.predict(dta.index[-10], dta.index[-1], exog=dta['m1'][-10:], dynamic=True) @pytest.mark.not_vetted def test_arima_predict_bug(): # predict_start_date wasn't getting set on start = None # TODO: GH reference? dta = datasets.sunspots.load_pandas().data['SUNACTIVITY'] dta.index = pd.DatetimeIndex(start='1700', end='2009', freq='A')[:309] arma_mod20 = ARMA(dta, (2, 0)).fit(disp=-1) arma_mod20.predict(None, None) # test prediction with time stamp, see GH#2587 predict = arma_mod20.predict(dta.index[-20], dta.index[-1]) assert predict.index.equals(dta.index[-20:]) predict = arma_mod20.predict(dta.index[-20], dta.index[-1], dynamic=True) assert predict.index.equals(dta.index[-20:]) # partially out of sample predict_dates = pd.DatetimeIndex(start='2000', end='2015', freq='A') predict = arma_mod20.predict(predict_dates[0], predict_dates[-1]) assert predict.index.equals(predict_dates) @pytest.mark.not_vetted def test_arima_predict_q2(): # bug with q > 1 for arima predict # TODO: GH reference? inv = datasets.macrodata.load().data['realinv'] arima_mod = ARIMA(np.log(inv), (1, 1, 2)).fit(start_params=[0, 0, 0, 0], disp=-1) fc, stderr, conf_int = arima_mod.forecast(5) # values copy-pasted from gretl assert_almost_equal(fc, [7.306320, 7.313825, 7.321749, 7.329827, 7.337962], 5) @pytest.mark.not_vetted def test_arima_predict_pandas_nofreq(): # GH#712 dates = ["2010-01-04", "2010-01-05", "2010-01-06", "2010-01-07", "2010-01-08", "2010-01-11", "2010-01-12", "2010-01-11", "2010-01-12", "2010-01-13", "2010-01-17"] close = [626.75, 623.99, 608.26, 594.1, 602.02, 601.11, 590.48, 587.09, 589.85, 580.0, 587.62] data = pd.DataFrame(close, index=pd.DatetimeIndex(dates), columns=["close"]) # TODO: fix this names bug for non-string names names arma = ARMA(data, order=(1, 0)).fit(disp=-1) # first check that in-sample prediction works predict = arma.predict() assert predict.index.equals(data.index) # check that this raises an exception when date not on index with pytest.raises(KeyError): arma.predict(start="2010-1-9", end=10) with pytest.raises(KeyError): arma.predict(start="2010-1-9", end="2010-1-17") # raise because end not on index with pytest.raises(KeyError): arma.predict(start="2010-1-4", end="2010-1-10") # raise because end not on index with pytest.raises(KeyError): arma.predict(start=3, end="2010-1-10") predict = arma.predict(start="2010-1-7", end=10) # should be of length 10 assert len(predict) == 8 assert predict.index.equals(data.index[3:10 + 1]) predict = arma.predict(start="2010-1-7", end=14) assert predict.index.equals(pd.Index(range(3, 15))) predict = arma.predict(start=3, end=14) assert predict.index.equals(pd.Index(range(3, 15))) # end can be a date if it's in the sample and on the index # predict dates is just a slice of the dates index then predict = arma.predict(start="2010-1-6", end="2010-1-13") assert predict.index.equals(data.index[2:10]) predict = arma.predict(start=2, end="2010-1-13") assert predict.index.equals(data.index[2:10]) @pytest.mark.not_vetted def test_arima_predict_exog(): # check GH#625 and GH#626 # Note: upstream there is a bunch of commented-out code after this point; # I have not been able to get an explanation as to if/why it is worth # keeping. # TODO: At some point check back to see if it has been addressed. path = os.path.join(current_path, 'results', 'results_arima_exog_forecasts_mle.csv') arima_forecasts = pd.read_csv(path) y = arima_forecasts["y"].dropna() X = np.arange(len(y) + 25) / 20. predict_expected = arima_forecasts["predict"] arma_res = ARMA(y.values, order=(2, 1), exog=X[:100]).fit(trend="c", disp=-1) # params from gretl params = np.array([2.786912485145725, -0.122650190196475, 0.533223846028938, -0.319344321763337, 0.132883233000064]) assert_almost_equal(arma_res.params, params, 5) # no exog for in-sample predict = arma_res.predict() assert_almost_equal(predict, predict_expected.values[:100], 5) # check GH#626 assert len(arma_res.model.exog_names) == 5 # exog for out-of-sample and in-sample dynamic predict = arma_res.model.predict(params, end=124, exog=X[100:]) assert_almost_equal(predict, predict_expected.values, 6) # conditional sum of squares #arima_forecasts = pd.read_csv(current_path + "/results/" # "results_arima_exog_forecasts_css.csv") #predict_expected = arima_forecasts["predict"].dropna() #arma_res = ARMA(y.values, order=(2, 1), exog=X[:100]).fit(trend="c", # method="css", # disp=-1) #params = np.array([2.152350033809826, -0.103602399018814, # 0.566716580421188, -0.326208009247944, # 0.102142932143421]) #predict = arma_res.model.predict(params) # in-sample #assert_almost_equal(predict, predict_expected.values[:98], 6) #predict = arma_res.model.predict(params, end=124, exog=X[100:]) # exog for out-of-sample and in-sample dynamic #assert_almost_equal(predict, predict_expected.values, 3) @pytest.mark.not_vetted def test_arimax(): dta = datasets.macrodata.load_pandas().data dta.index = cpi_dates dta = dta[["realdpi", "m1", "realgdp"]] y = dta.pop("realdpi") # 1 exog #X = dta.iloc[1:]["m1"] #res = ARIMA(y, (2, 1, 1), X).fit(disp=-1) #params = [23.902305009084373, 0.024650911502790, -0.162140641341602, # 0.165262136028113, -0.066667022903974] #assert_almost_equal(res.params.values, params, 6) # 2 exog X = dta res = ARIMA(y, (2, 1, 1), X).fit(disp=False, solver="nm", maxiter=1000, ftol=1e-12, xtol=1e-12) # from gretl; we use the versions from stata below instead # params = [13.113976653926638, -0.003792125069387, 0.004123504809217, # -0.199213760940898, 0.151563643588008, -0.033088661096699] # from stata using double stata_llf = -1076.108614859121 params = [13.1259220104, -0.00376814509403812, 0.00411970083135622, -0.19921477896158524, 0.15154396192855729, -0.03308400760360837] # we can get close assert_almost_equal(res.params.values, params, 4) # This shows that it's an optimizer problem and not a problem in the code assert_almost_equal(res.model.loglike(np.array(params)), stata_llf, 6) X = dta.diff() X.iloc[0] = 0 res = ARIMA(y, (2, 1, 1), X).fit(disp=False) # gretl won't estimate this - looks like maybe a bug on their part, # but we can just fine, we're close to Stata's answer # from Stata params = [19.5656863783347, 0.32653841355833396198, 0.36286527042965188716, -1.01133792126884, -0.15722368379307766206, 0.69359822544092153418] assert_almost_equal(res.params.values, params, 3) @pytest.mark.not_vetted def test_bad_start_params(): # TODO: what is bad about these params?? # TODO: GH reference? endog = np.array([ 820.69093, 781.0103028, 785.8786988, 767.64282267, 778.9837648, 824.6595702, 813.01877867, 751.65598567, 753.431091, 746.920813, 795.6201904, 772.65732833, 793.4486454, 868.8457766, 823.07226547, 783.09067747, 791.50723847, 770.93086347, 835.34157333, 810.64147947, 738.36071367, 776.49038513, 822.93272333, 815.26461227, 773.70552987, 777.3726522, 811.83444853, 840.95489133, 777.51031933, 745.90077307, 806.95113093, 805.77521973, 756.70927733, 749.89091773, 1694.2266924, 2398.4802244, 1434.6728516, 909.73940427, 929.01291907, 769.07561453, 801.1112548, 796.16163313, 817.2496376, 857.73046447, 838.849345, 761.92338873, 731.7842242, 770.4641844]) mod = ARMA(endog, (15, 0)) with pytest.raises(ValueError): mod.fit() inv = datasets.macrodata.load().data['realinv'] arima_mod = ARIMA(np.log(inv), (1, 1, 2)) with pytest.raises(ValueError): # TODO: Upstream this incorrectly re-tries `mod.fit()` arima_mod.fit() @pytest.mark.not_vetted def test_armax_predict_no_trend(): # GH#1123 test ARMAX predict doesn't ignore exog when trend is none arparams = np.array([.75, -.25]) maparams = np.array([.65, .35]) nobs = 20 np.random.seed(12345) y = arma_generate_sample(arparams, maparams, nobs) X = np.random.randn(nobs) y += 5 * X mod = ARMA(y[:-1], order=(1, 0), exog=X[:-1]) res = mod.fit(trend='nc', disp=False) fc = res.forecast(exog=X[-1:]) # results from gretl assert_almost_equal(fc[0], 2.200393, 6) assert_almost_equal(fc[1], 1.030743, 6) assert_almost_equal(fc[2][0, 0], 0.180175, 6) assert_almost_equal(fc[2][0, 1], 4.220611, 6) mod = ARMA(y[:-1], order=(1, 1), exog=X[:-1]) res = mod.fit(trend='nc', disp=False) fc = res.forecast(exog=X[-1:]) assert_almost_equal(fc[0], 2.765688, 6) assert_almost_equal(fc[1], 0.835048, 6) assert_almost_equal(fc[2][0, 0], 1.129023, 6) assert_almost_equal(fc[2][0, 1], 4.402353, 6) # make sure this works to. code looked fishy. mod = ARMA(y[:-1], order=(1, 0), exog=X[:-1]) res = mod.fit(trend='c', disp=False) fc = res.forecast(exog=X[-1:]) assert_almost_equal(fc[0], 2.481219, 6) assert_almost_equal(fc[1], 0.968759, 6) assert_almost_equal(fc[2][0], [0.582485, 4.379952], 6) @pytest.mark.not_vetted def test_small_data(): # GH#1146 y = [-1214.360173, -1848.209905, -2100.918158, -3647.483678, -4711.186773] # refuse to estimate these with pytest.raises(ValueError): ARIMA(y, (2, 0, 3)) with pytest.raises(ValueError): ARIMA(y, (1, 1, 3)) mod = ARIMA(y, (1, 0, 3)) with pytest.raises(ValueError): mod.fit(trend="c") # TODO: mark these as smoke? # try to estimate these...leave it up to the user to check for garbage # and be clear, these are garbage parameters. # X-12 arima will estimate, gretl refuses to estimate likely a problem # in start params regression. mod.fit(trend="nc", disp=0, start_params=[.1, .1, .1, .1]) mod = ARIMA(y, (1, 0, 2)) with warnings.catch_warnings(): warnings.simplefilter("ignore") mod.fit(disp=0, start_params=[np.mean(y), .1, .1, .1]) @pytest.mark.not_vetted class TestARMA00(object): @classmethod def setup_class(cls): sunspots = datasets.sunspots.load_pandas().data['SUNACTIVITY'].values cls.y = y = sunspots cls.arma_00_model = ARMA(y, order=(0, 0)) cls.arma_00_res = cls.arma_00_model.fit(disp=-1) def test_parameters(self): params = self.arma_00_res.params assert_almost_equal(self.y.mean(), params) def test_predictions(self): predictions = self.arma_00_res.predict() assert_almost_equal(self.y.mean() * np.ones_like(predictions), predictions) def test_arroots(self): # TODO: Belongs in test_wold? # GH#4559 # regression test; older implementation of arroots returned None # instead of en empty array roots = self.arma_00_res.arroots assert roots.size == 0 def test_maroots(self): # TODO: Belongs in test_wold? # GH#4559 # regression test; older implementation of arroots returned None # instead of en empty array roots = self.arma_00_res.maroots assert roots.size == 0 @pytest.mark.skip(reason=' This test is invalid since the ICs differ due ' 'to df_model differences between OLS and ARIMA') def test_information_criteria(self): # This test is invalid since the ICs differ due to df_model differences # between OLS and ARIMA res = self.arma_00_res y = self.y ols_res = OLS(y, np.ones_like(y)).fit(disp=-1) ols_ic = np.array([ols_res.aic, ols_res.bic]) arma_ic = np.array([res.aic, res.bic]) assert_almost_equal(ols_ic, arma_ic, DECIMAL_4) def test_arma_00_nc(self): arma_00 = ARMA(self.y, order=(0, 0)) with pytest.raises(ValueError): arma_00.fit(trend='nc', disp=-1) def test_css(self): arma = ARMA(self.y, order=(0, 0)) fit = arma.fit(method='css', disp=-1) predictions = fit.predict() assert_almost_equal(self.y.mean() * np.ones_like(predictions), predictions) def test_arima(self): yi = np.cumsum(self.y) arima = ARIMA(yi, order=(0, 1, 0)) fit = arima.fit(disp=-1) assert_almost_equal(np.diff(yi).mean(), fit.params, DECIMAL_4) def test_arma_ols(self): y = self.y y_lead = y[1:] y_lag = y[:-1] T = y_lag.shape[0] X = np.hstack((np.ones((T, 1)), y_lag[:, None])) ols_res = OLS(y_lead, X).fit() arma_res = ARMA(y_lead, order=(0, 0), exog=y_lag).fit(trend='c', disp=-1) assert_almost_equal(ols_res.params, arma_res.params) def test_arma_exog_no_constant(self): y = self.y y_lead = y[1:] y_lag = y[:-1] X = y_lag[:, None] ols_res = OLS(y_lead, X).fit() arma_res = ARMA(y_lead, order=(0, 0), exog=y_lag).fit(trend='nc', disp=-1) assert_almost_equal(ols_res.params, arma_res.params) @pytest.mark.not_vetted def test_arima_dates_startatend(): # TODO: GH reference? np.random.seed(18) x = pd.Series(np.random.random(36), index=pd.DatetimeIndex(start='1/1/1990', periods=36, freq='M')) res = ARIMA(x, (1, 0, 0)).fit(disp=0) pred = res.predict(start=len(x), end=len(x)) assert pred.index[0] == x.index.shift(1)[-1] fc = res.forecast()[0] assert_almost_equal(pred.values[0], fc) @pytest.mark.not_vetted def test_arima_diff2(): dta = datasets.macrodata.load_pandas().data['cpi'] dta.index = cpi_dates mod = ARIMA(dta, (3, 2, 1)).fit(disp=-1) fc, fcerr, conf_int = mod.forecast(10) # forecasts from gretl conf_int_res = [(216.139, 219.231), (216.472, 221.520), (217.064, 223.649), (217.586, 225.727), (218.119, 227.770), (218.703, 229.784), (219.306, 231.777), (219.924, 233.759), (220.559, 235.735), (221.206, 237.709)] fc_res = [217.685, 218.996, 220.356, 221.656, 222.945, 224.243, 225.541, 226.841, 228.147, 229.457] fcerr_res = [0.7888, 1.2878, 1.6798, 2.0768, 2.4620, 2.8269, 3.1816, 3.52950, 3.8715, 4.2099] assert_almost_equal(fc, fc_res, 3) assert_almost_equal(fcerr, fcerr_res, 3) assert_almost_equal(conf_int, conf_int_res, 3) predicted = mod.predict('2008Q1', '2012Q1', typ='levels') predicted_res = [214.464, 215.478, 221.277, 217.453, 212.419, 213.530, 215.087, 217.685, 218.996, 220.356, 221.656, 222.945, 224.243, 225.541, 226.841, 228.147, 229.457] assert_almost_equal(predicted, predicted_res, 3) @pytest.mark.not_vetted def test_arima111_predict_exog_2127(): # regression test for issue GH#2127 ef = [0.03005, 0.03917, 0.02828, 0.03644, 0.03379, 0.02744, 0.03343, 0.02621, 0.03050, 0.02455, 0.03261, 0.03507, 0.02734, 0.05373, 0.02677, 0.03443, 0.03331, 0.02741, 0.03709, 0.02113, 0.03343, 0.02011, 0.03675, 0.03077, 0.02201, 0.04844, 0.05518, 0.03765, 0.05433, 0.03049, 0.04829, 0.02936, 0.04421, 0.02457, 0.04007, 0.03009, 0.04504, 0.05041, 0.03651, 0.02719, 0.04383, 0.02887, 0.03440, 0.03348, 0.02364, 0.03496, 0.02549, 0.03284, 0.03523, 0.02579, 0.03080, 0.01784, 0.03237, 0.02078, 0.03508, 0.03062, 0.02006, 0.02341, 0.02223, 0.03145, 0.03081, 0.02520, 0.02683, 0.01720, 0.02225, 0.01579, 0.02237, 0.02295, 0.01830, 0.02356, 0.02051, 0.02932, 0.03025, 0.02390, 0.02635, 0.01863, 0.02994, 0.01762, 0.02837, 0.02421, 0.01951, 0.02149, 0.02079, 0.02528, 0.02575, 0.01634, 0.02563, 0.01719, 0.02915, 0.01724, 0.02804, 0.02750, 0.02099, 0.02522, 0.02422, 0.03254, 0.02095, 0.03241, 0.01867, 0.03998, 0.02212, 0.03034, 0.03419, 0.01866, 0.02623, 0.02052] ue = [4.9, 5.0, 5.0, 5.0, 4.9, 4.7, 4.8, 4.7, 4.7, 4.6, 4.6, 4.7, 4.7, 4.5, 4.4, 4.5, 4.4, 4.6, 4.5, 4.4, 4.5, 4.4, 4.6, 4.7, 4.6, 4.7, 4.7, 4.7, 5.0, 5.0, 4.9, 5.1, 5.0, 5.4, 5.6, 5.8, 6.1, 6.1, 6.5, 6.8, 7.3, 7.8, 8.3, 8.7, 9.0, 9.4, 9.5, 9.5, 9.6, 9.8, 10., 9.9, 9.9, 9.7, 9.8, 9.9, 9.9, 9.6, 9.4, 9.5, 9.5, 9.5, 9.5, 9.8, 9.4, 9.1, 9.0, 9.0, 9.1, 9.0, 9.1, 9.0, 9.0, 9.0, 8.8, 8.6, 8.5, 8.2, 8.3, 8.2, 8.2, 8.2, 8.2, 8.2, 8.1, 7.8, 7.8, 7.8, 7.9, 7.9, 7.7, 7.5, 7.5, 7.5, 7.5, 7.3, 7.2, 7.2, 7.2, 7.0, 6.7, 6.6, 6.7, 6.7, 6.3, 6.3] ue = np.array(ue) / 100 model = ARIMA(ef, (1, 1, 1), exog=ue) res = model.fit(transparams=False, pgtol=1e-8, iprint=0, disp=0) assert res.mle_retvals['warnflag'] == 0 predicts = res.predict(start=len(ef), end=len(ef) + 10, exog=ue[-11:], typ='levels') # regression test, not verified numbers predicts_res = np.array([ 0.02591095, 0.02321325, 0.02436579, 0.02368759, 0.02389753, 0.02372, 0.0237481, 0.0236738, 0.023644, 0.0236283, 0.02362267])
assert_allclose(predicts, predicts_res, atol=5e-6)
numpy.testing.assert_allclose
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.signal import find_peaks import scipy.signal from ..signal import (signal_zerocrossings, signal_resample, signal_detrend, signal_smooth, signal_filter, signal_findpeaks, signal_formatpeaks) from .ecg_peaks import ecg_peaks from .ecg_segment import ecg_segment from ..epochs import epochs_create from ..epochs import epochs_to_df from ..events import events_plot from ..stats import standardize def ecg_delineate(ecg_cleaned, rpeaks=None, sampling_rate=1000, method="peak", show=False, show_type='peaks', check=False): """Delineate QRS complex. Function to delineate the QRS complex. - **Cardiac Cycle**: A typical ECG heartbeat consists of a P wave, a QRS complex and a T wave.The P wave represents the wave of depolarization that spreads from the SA-node throughout the atria. The QRS complex reflects the rapid depolarization of the right and left ventricles. Since the ventricles are the largest part of the heart, in terms of mass, the QRS complex usually has a much larger amplitude than the P-wave. The T wave represents the ventricular repolarization of the ventricles. On rare occasions, a U wave can be seen following the T wave. The U wave is believed to be related to the last remnants of ventricular repolarization. Parameters ---------- ecg_cleaned : list, array or Series The cleaned ECG channel as returned by `ecg_clean()`. rpeaks : list, array or Series The samples at which R-peaks occur. Accessible with the key "ECG_R_Peaks" in the info dictionary returned by `ecg_findpeaks()`. sampling_rate : int The sampling frequency of `ecg_signal` (in Hz, i.e., samples/second). Defaults to 500. method : str Can be one of 'peak' (default) for a peak-based method, 'cwt' for continuous wavelet transform or 'dwt' for discrete wavelet transform. show : bool If True, will return a plot to visualizing the delineated waves information. show_type: str The type of delineated waves information showed in the plot Returns ------- waves : dict A dictionary containing additional information. For derivative method, the dictionary contains the samples at which P-peaks, Q-peaks, S-peaks, T-peaks, P-onsets and T- offsets occur, accessible with the key "ECG_P_Peaks", "ECG_Q_Peaks", "ECG_S_Peaks", "ECG_T_Peaks", "ECG_P_Onsets", "ECG_T_Offsets" respectively. For wavelet methods, the dictionary contains the samples at which P-peaks, T-peaks, P-onsets, P-offsets, T-onsets, T-offsets, QRS- onsets and QRS-offsets occur, accessible with the key "ECG_P_Peaks", "ECG_T_Peaks", "ECG_P_Onsets", "ECG_P_Offsets", "ECG_T_Onsets", "ECG_T_Offsets", "ECG_R_Onsets", "ECG_R_Offsets" respectively. signals : DataFrame A DataFrame of same length as the input signal in which occurences of peaks, onsets and offsets marked as "1" in a list of zeros. See Also -------- ecg_clean, ecg_fixpeaks, ecg_peaks, ecg_rate, ecg_process, ecg_plot Examples -------- >>> import neurokit2 as nk >>> >>> ecg = nk.ecg_simulate(duration=10, sampling_rate=1000) >>> cleaned = nk.ecg_clean(ecg, sampling_rate=1000) >>> _, rpeaks = nk.ecg_peaks(cleaned) >>> signals, waves = nk.ecg_delineate(cleaned, rpeaks, sampling_rate=1000, method="peak") >>> nk.events_plot(waves["ECG_P_Peaks"], cleaned) >>> nk.events_plot(waves["ECG_T_Peaks"], cleaned) References -------------- - <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2004). A wavelet-based ECG delineator: evaluation on standard databases. IEEE Transactions on biomedical engineering, 51(4), 570-581. """ # Sanitize input for ecg_cleaned if isinstance(ecg_cleaned, pd.DataFrame): cols = [col for col in ecg_cleaned.columns if 'ECG_Clean' in col] if len(cols) == 0: raise ValueError("NeuroKit error: ecg_delineate(): Wrong input," "we couldn't extract cleaned signal.") else: ecg_cleaned = ecg_cleaned[cols[0]].values elif isinstance(ecg_cleaned, dict): for i in ecg_cleaned: cols = [col for col in ecg_cleaned[i].columns if 'ECG_Clean' in col] if len(cols) == 0: raise ValueError("NeuroKit error: ecg_delineate(): Wrong input," "we couldn't extract cleaned signal.") else: signals = epochs_to_df(ecg_cleaned) ecg_cleaned = signals[cols[0]].values # Sanitize input for rpeaks if rpeaks is None: _, rpeaks = ecg_peaks(ecg_cleaned, sampling_rate=sampling_rate) rpeaks = rpeaks["ECG_R_Peaks"] if isinstance(rpeaks, dict): rpeaks = rpeaks["ECG_R_Peaks"] method = method.lower() # remove capitalised letters if method in ["peak", "peaks", "derivative", "gradient"]: waves = _ecg_delineator_peak(ecg_cleaned, rpeaks=rpeaks, sampling_rate=sampling_rate) elif method in ["cwt", "continuous wavelet transform"]: waves = _ecg_delinator_cwt(ecg_cleaned, rpeaks=rpeaks, sampling_rate=sampling_rate) elif method in ["dwt", "discrete wavelet transform"]: waves = _dwt_ecg_delinator(ecg_cleaned, rpeaks, sampling_rate=sampling_rate) else: raise ValueError("NeuroKit error: ecg_delineate(): 'method' should be " "one of 'peak', 'cwt' or 'dwt'.") # Remove NaN in Peaks, Onsets, and Offsets waves_noNA = waves.copy() for feature in waves_noNA.keys(): waves_noNA[feature] = [int(x) for x in waves_noNA[feature] if ~np.isnan(x)] instant_peaks = signal_formatpeaks(waves_noNA, desired_length=len(ecg_cleaned)) signals = instant_peaks if show is True: _ecg_delineate_plot(ecg_cleaned, rpeaks=rpeaks, signals=signals, signal_features_type=show_type, sampling_rate=sampling_rate) if check is True: waves = _ecg_delineate_check(waves, rpeaks) return signals, waves # ============================================================================= # WAVELET METHOD (DWT) # ============================================================================= def _dwt_resample_points(peaks, sampling_rate, desired_sampling_rate): """Resample given points to a different sampling rate.""" peaks_resample = (np.array(peaks) * desired_sampling_rate / sampling_rate) peaks_resample = [np.nan if np.isnan(x) else int(x) for x in peaks_resample.tolist()] return peaks_resample def _dwt_ecg_delinator(ecg, rpeaks, sampling_rate, analysis_sampling_rate=2000): """Delinate ecg signal using discrete wavelet transforms. Args: ecg: Signal. sampling_rate: Sampling rate of input signal. analysis_sampling_rate: Sampling rate for analysis. Returns: Dictionary of the points. """ ecg = signal_resample(ecg, sampling_rate=sampling_rate, desired_sampling_rate=analysis_sampling_rate) dwtmatr = _dwt_compute_multiscales(ecg, 9) # # only for debugging # for idx in [0, 1, 2, 3]: # plt.plot(dwtmatr[idx + 3], label=f'W[{idx}]') # plt.plot(ecg, '--') # plt.legend() # plt.grid(True) # plt.show() rpeaks_resampled = _dwt_resample_points(rpeaks, sampling_rate, analysis_sampling_rate) tpeaks, ppeaks = _dwt_delinate_tp_peaks( ecg, rpeaks_resampled, dwtmatr, sampling_rate=analysis_sampling_rate, debug=False) qrs_onsets, qrs_offsets = _dwt_delinate_qrs_bounds( ecg, rpeaks_resampled, dwtmatr, ppeaks, tpeaks, sampling_rate=analysis_sampling_rate, debug=False) ponsets, poffsets = _dwt_delinate_tp_onsets_offsets( ecg, ppeaks, dwtmatr, sampling_rate=analysis_sampling_rate, debug=False) tonsets, toffsets = _dwt_delinate_tp_onsets_offsets( ecg, tpeaks, dwtmatr, sampling_rate=analysis_sampling_rate, debug=False, onset_weight=0.6, duration=0.6 ) return dict( ECG_T_Peaks=_dwt_resample_points(tpeaks, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_T_Onsets=_dwt_resample_points(tonsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_T_Offsets=_dwt_resample_points(toffsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_P_Peaks=_dwt_resample_points(ppeaks, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_P_Onsets=_dwt_resample_points(ponsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_P_Offsets=_dwt_resample_points(poffsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_R_Onsets=_dwt_resample_points(qrs_onsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ECG_R_Offsets=_dwt_resample_points(qrs_offsets, analysis_sampling_rate, desired_sampling_rate=sampling_rate), ) def _dwt_compensate_degree(sampling_rate): return int(np.log2(sampling_rate / 250)) def _dwt_delinate_tp_peaks(ecg, rpeaks, dwtmatr, sampling_rate=250, debug=False, dwt_delay=0.0, qrs_width=0.13, p2r_duration=0.2, rt_duration=0.25, degree_tpeak=3, degree_ppeak=2, epsilon_T_weight=0.25, epsilon_P_weight=0.02): srch_bndry = int(0.5 * qrs_width * sampling_rate) degree_add = _dwt_compensate_degree(sampling_rate) tpeaks = [] for i in range(len(rpeaks)): if np.isnan(rpeaks[i]): tpeaks.append(np.nan) continue # search for T peaks from R peaks srch_idx_start = rpeaks[i] + srch_bndry srch_idx_end = rpeaks[i] + 2 * int(rt_duration * sampling_rate) dwt_local = dwtmatr[degree_tpeak + degree_add, srch_idx_start:srch_idx_end] height = epsilon_T_weight * np.sqrt(np.mean(np.square(dwt_local))) if len(dwt_local) == 0: tpeaks.append(np.nan) continue ecg_local = ecg[srch_idx_start:srch_idx_end] peaks, peak_heights = scipy.signal.find_peaks(np.abs(dwt_local), height=height) peaks = list(filter(lambda p: np.abs(dwt_local[p]) > 0.025 * max(dwt_local), peaks)) if dwt_local[0] > 0: # just append peaks = [0] + peaks # detect morphology candidate_peaks = [] candidate_peaks_scores = [] for idx_peak, idx_peak_nxt in zip(peaks[:-1], peaks[1:]): correct_sign = dwt_local[idx_peak] > 0 and dwt_local[idx_peak_nxt] < 0 if correct_sign: idx_zero = signal_zerocrossings(dwt_local[idx_peak: idx_peak_nxt])[0] + idx_peak # This is the score assigned to each peak. The peak with the highest score will be # selected. score = ecg_local[idx_zero] \ - (float(idx_zero) / sampling_rate - (rt_duration - 0.5 * qrs_width)) candidate_peaks.append(idx_zero) candidate_peaks_scores.append(score) if len(candidate_peaks) == 0: tpeaks.append(np.nan) continue tpeaks.append(candidate_peaks[np.argmax(candidate_peaks_scores)] + srch_idx_start) ppeaks = [] for i in range(len(rpeaks)): if np.isnan(rpeaks[i]): ppeaks.append(np.nan) continue # search for P peaks from Rpeaks srch_idx_start = rpeaks[i] - 2 * int(p2r_duration * sampling_rate) srch_idx_end = rpeaks[i] - srch_bndry dwt_local = dwtmatr[degree_ppeak + degree_add, srch_idx_start:srch_idx_end] height = epsilon_P_weight * np.sqrt(np.mean(np.square(dwt_local))) if len(dwt_local) == 0: ppeaks.append(np.nan) continue ecg_local = ecg[srch_idx_start:srch_idx_end] peaks, peak_heights = scipy.signal.find_peaks(np.abs(dwt_local), height=height) peaks = list(filter(lambda p: np.abs(dwt_local[p]) > 0.025 * max(dwt_local), peaks)) if dwt_local[0] > 0: # just append peaks = [0] + peaks # detect morphology candidate_peaks = [] candidate_peaks_scores = [] for idx_peak, idx_peak_nxt in zip(peaks[:-1], peaks[1:]): correct_sign = dwt_local[idx_peak] > 0 and dwt_local[idx_peak_nxt] < 0 if correct_sign: idx_zero = signal_zerocrossings(dwt_local[idx_peak: idx_peak_nxt])[0] + idx_peak # This is the score assigned to each peak. The peak with the highest score will be # selected. score = ecg_local[idx_zero] \ - abs(float(idx_zero) / sampling_rate - p2r_duration) # Minus p2r because of the srch_idx_start candidate_peaks.append(idx_zero) candidate_peaks_scores.append(score) if len(candidate_peaks) == 0: ppeaks.append(np.nan) continue ppeaks.append(candidate_peaks[np.argmax(candidate_peaks_scores)] + srch_idx_start) return tpeaks, ppeaks def _dwt_delinate_tp_onsets_offsets(ecg, peaks, dwtmatr, sampling_rate=250, debug=False, duration=0.3, duration_offset=0.3, onset_weight=0.4, offset_weight=0.4, degree_onset=2, degree_offset=2): degree = _dwt_compensate_degree(sampling_rate) onsets = [] offsets = [] for i in range(len(peaks)): if np.isnan(peaks[i]): onsets.append(np.nan) offsets.append(np.nan) continue # look for onsets srch_idx_start = peaks[i] - int(duration * sampling_rate) srch_idx_end = peaks[i] if srch_idx_start is np.nan or srch_idx_end is np.nan: onsets.append(np.nan) offsets.append(np.nan) continue dwt_local = dwtmatr[degree_onset + degree, srch_idx_start: srch_idx_end] onset_slope_peaks, onset_slope_data = scipy.signal.find_peaks(dwt_local) try: epsilon_onset = onset_weight * dwt_local[onset_slope_peaks[-1]] candidate_onsets = np.where(dwt_local[:onset_slope_peaks[-1]] < epsilon_onset)[0] onsets.append(candidate_onsets[-1] + srch_idx_start) except IndexError: onsets.append(np.nan) # # only for debugging # events_plot([candidate_onsets, onset_slope_peaks], dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.show() # look for offset srch_idx_start = peaks[i] srch_idx_end = peaks[i] + int(duration_offset * sampling_rate) if srch_idx_start is np.nan or srch_idx_end is np.nan: offsets.append(np.nan) continue dwt_local = dwtmatr[degree_offset + degree, srch_idx_start: srch_idx_end] offset_slope_peaks, offset_slope_data = scipy.signal.find_peaks(-dwt_local) try: epsilon_offset = - offset_weight * dwt_local[offset_slope_peaks[0]] candidate_offsets = np.where(-dwt_local[offset_slope_peaks[0]:] < epsilon_offset)[0] + offset_slope_peaks[0] offsets.append(candidate_offsets[0] + srch_idx_start) except IndexError: offsets.append(np.nan) # # only for debugging # events_plot([candidate_offsets, offset_slope_peaks], dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.show() return onsets, offsets def _dwt_delinate_qrs_bounds(ecg, rpeaks, dwtmatr, ppeaks, tpeaks, sampling_rate=250, debug=False): degree = int(np.log2(sampling_rate / 250)) onsets = [] for i in range(len(rpeaks)): # look for onsets srch_idx_start = ppeaks[i] srch_idx_end = rpeaks[i] if srch_idx_start is np.nan or srch_idx_end is np.nan: onsets.append(np.nan) continue dwt_local = dwtmatr[2 + degree, srch_idx_start: srch_idx_end] onset_slope_peaks, onset_slope_data = scipy.signal.find_peaks(-dwt_local) epsilon_onset = 0.5 * -dwt_local[onset_slope_peaks[-1]] candidate_onsets = np.where(- dwt_local[:onset_slope_peaks[-1]] < epsilon_onset)[0] onsets.append(candidate_onsets[-1] + srch_idx_start) # # only for debugging # events_plot(candidate_onsets, -dwt_local) # plt.plot(ecg[srch_idx_start: srch_idx_end], '--', label='ecg') # plt.legend() # plt.show() offsets = [] for i in range(len(rpeaks)): # look for offsets srch_idx_start = rpeaks[i] srch_idx_end = tpeaks[i] if srch_idx_start is np.nan or srch_idx_end is np.nan: offsets.append(np.nan) continue dwt_local = dwtmatr[2 + degree, srch_idx_start: srch_idx_end] onset_slope_peaks, onset_slope_data = scipy.signal.find_peaks(dwt_local) if len(onset_slope_peaks) == 0: offsets.append(np.nan) continue epsilon_offset = 0.5 * dwt_local[onset_slope_peaks[0]] if not (dwt_local[onset_slope_peaks[0]:] < epsilon_offset).any(): offsets.append(np.nan) continue candidate_offsets = np.where(dwt_local[onset_slope_peaks[0]:] < epsilon_offset)[0] + onset_slope_peaks[0] offsets.append(candidate_offsets[0] + srch_idx_start) return onsets, offsets def _dwt_compute_multiscales(ecg: np.ndarray, max_degree): """Return multiscales wavelet transforms. Args: ecg (FIXME): FIXME max_degree (FIXME): FIXME Returns: out (FIXME): FIXME """ def _apply_H_filter(signal_i, power=0): zeros = np.zeros(2 ** power - 1) timedelay = 2 ** power banks = np.r_[ 1.0 / 8, zeros, 3.0 / 8, zeros, 3.0 / 8, zeros, 1.0 / 8, ] signal_f = scipy.signal.convolve(signal_i, banks, mode='full') signal_f[:-timedelay] = signal_f[timedelay:] # timeshift: 2 steps return signal_f def _apply_G_filter(signal_i, power=0): zeros = np.zeros(2 ** power - 1) timedelay = 2 ** power banks = np.r_[2, zeros, -2] signal_f = scipy.signal.convolve(signal_i, banks, mode='full') signal_f[:-timedelay] = signal_f[timedelay:] # timeshift: 1 step return signal_f dwtmatr = [] intermediate_ret = np.array(ecg) for deg in range(max_degree): S_deg = _apply_G_filter(intermediate_ret, power=deg) T_deg = _apply_H_filter(intermediate_ret, power=deg) dwtmatr.append(S_deg) intermediate_ret = np.array(T_deg) dwtmatr = [arr[:len(ecg)] for arr in dwtmatr] # rescale transforms to the same length return np.array(dwtmatr) # ============================================================================= # WAVELET METHOD (CWT) # ============================================================================= def _ecg_delinator_cwt(ecg, rpeaks=None, sampling_rate=1000): # P-Peaks and T-Peaks tpeaks, ppeaks = _peaks_delineator(ecg, rpeaks, sampling_rate=sampling_rate) # qrs onsets and offsets qrs_onsets, qrs_offsets = _onset_offset_delineator(ecg, rpeaks, peak_type="rpeaks", sampling_rate=sampling_rate) # ppeaks onsets and offsets p_onsets, p_offsets = _onset_offset_delineator(ecg, ppeaks, peak_type="ppeaks", sampling_rate=sampling_rate) # tpeaks onsets and offsets t_onsets, t_offsets = _onset_offset_delineator(ecg, tpeaks, peak_type="tpeaks", sampling_rate=sampling_rate) info = {"ECG_P_Peaks": ppeaks, "ECG_T_Peaks": tpeaks, "ECG_R_Onsets": qrs_onsets, "ECG_R_Offsets": qrs_offsets, "ECG_P_Onsets": p_onsets, "ECG_P_Offsets": p_offsets, "ECG_T_Onsets": t_onsets, "ECG_T_Offsets": t_offsets} return info # Internals # --------------------- def _onset_offset_delineator(ecg, peaks, peak_type="rpeaks", sampling_rate=1000): # Try loading pywt try: import pywt except ImportError: raise ImportError("NeuroKit error: ecg_delineator(): the 'PyWavelets' " "module is required for this method to run. ", "Please install it first (`pip install PyWavelets`).") # first derivative of the Gaissian signal scales = np.array([1, 2, 4, 8, 16]) cwtmatr, freqs = pywt.cwt(ecg, scales, 'gaus1', sampling_period=1.0/sampling_rate) half_wave_width = int(0.1*sampling_rate) # NEED TO CHECK onsets = [] offsets = [] for index_peak in peaks: # find onset if peak_type == "rpeaks": search_window = cwtmatr[2, index_peak - half_wave_width: index_peak] prominence = 0.20*max(search_window) height = 0.0 wt_peaks, wt_peaks_data = find_peaks(search_window, height=height, prominence=prominence) elif peak_type == "tpeaks" or peak_type == "ppeaks": search_window = - cwtmatr[4, index_peak - half_wave_width: index_peak] prominence = 0.10*max(search_window) height = 0.0 wt_peaks, wt_peaks_data = find_peaks(search_window, height=height, prominence=prominence) if len(wt_peaks) == 0: # print("Fail to find onset at index: %d", index_peak) continue # The last peak is nfirst in (Martinez, 2004) nfirst = wt_peaks[-1] + index_peak - half_wave_width if peak_type == "rpeaks": if wt_peaks_data['peak_heights'][-1] > 0: epsilon_onset = 0.05 * wt_peaks_data['peak_heights'][-1] elif wt_peaks_data['peak_heights'][-1] > 0: epsilon_onset = 0.07 * wt_peaks_data['peak_heights'][-1] elif peak_type == "ppeaks": epsilon_onset = 0.50 * wt_peaks_data['peak_heights'][-1] elif peak_type == "tpeaks": epsilon_onset = 0.25 * wt_peaks_data['peak_heights'][-1] leftbase = wt_peaks_data['left_bases'][-1] + index_peak - half_wave_width if peak_type == "rpeaks": candidate_onsets = np.where(cwtmatr[2, nfirst-100: nfirst] < epsilon_onset)[0] + nfirst - 100 elif peak_type == "tpeaks" or peak_type == "ppeaks": candidate_onsets = np.where(-cwtmatr[4, nfirst-100: nfirst] < epsilon_onset)[0] + nfirst - 100 candidate_onsets = candidate_onsets.tolist() + [leftbase] if len(candidate_onsets) == 0: onsets.append(np.nan) else: onsets.append(max(candidate_onsets)) # find offset if peak_type == "rpeaks": search_window = - cwtmatr[2, index_peak: index_peak + half_wave_width] prominence = 0.50*max(search_window) wt_peaks, wt_peaks_data = scipy.signal.find_peaks(search_window, height=height, prominence=prominence) elif peak_type == "tpeaks" or peak_type == "ppeaks": search_window = cwtmatr[4, index_peak: index_peak + half_wave_width] prominence = 0.10*max(search_window) wt_peaks, wt_peaks_data = find_peaks(search_window, height=height, prominence=prominence) if len(wt_peaks) == 0: # print("Fail to find offsets at index: %d", index_peak) continue nlast = wt_peaks[0] + index_peak if peak_type == "rpeaks": if wt_peaks_data['peak_heights'][0] > 0: epsilon_offset = 0.125 * wt_peaks_data['peak_heights'][0] elif wt_peaks_data['peak_heights'][0] > 0: epsilon_offset = 0.71 * wt_peaks_data['peak_heights'][0] elif peak_type == "ppeaks": epsilon_offset = 0.9 * wt_peaks_data['peak_heights'][0] elif peak_type == "tpeaks": epsilon_offset = 0.4 * wt_peaks_data['peak_heights'][0] rightbase = wt_peaks_data['right_bases'][0] + index_peak if peak_type == "rpeaks": candidate_offsets = np.where((-cwtmatr[2, nlast: nlast + 100]) < epsilon_offset)[0] + nlast elif peak_type == "tpeaks" or peak_type == "ppeaks": candidate_offsets = np.where((cwtmatr[4, nlast: nlast + 100]) < epsilon_offset)[0] + nlast candidate_offsets = candidate_offsets.tolist() + [rightbase] if len(candidate_offsets) == 0: offsets.append(np.nan) else: offsets.append(min(candidate_offsets)) onsets = np.array(onsets, dtype='int') offsets = np.array(offsets, dtype='int') return onsets, offsets def _peaks_delineator(ecg, rpeaks, cleaning=False, sampling_rate=1000): # Try loading pywt try: import pywt except ImportError: raise ImportError("NeuroKit error: ecg_delineator(): the 'PyWavelets' " "module is required for this method to run. ", "Please install it first (`pip install PyWavelets`).") # first derivative of the Gaissian signal scales = np.array([1, 2, 4, 8, 16]) cwtmatr, freqs = pywt.cwt(ecg, scales, 'gaus1', sampling_period=1.0/sampling_rate) qrs_duration = 0.1 search_boundary = int(0.9 * qrs_duration * sampling_rate / 2) significant_peaks_groups = [] tppeaks_pairs = [] tppeaks = [] for i in range(len(rpeaks)-1): # search for T peaks and P peaks from R peaks start = rpeaks[i] + search_boundary end = rpeaks[i + 1] - search_boundary search_window = cwtmatr[4, start:end] height = 0.25*np.sqrt(np.mean(np.square(search_window))) peaks_tp, heights_tp = scipy.signal.find_peaks(np.abs(search_window), height=height) peaks_tp = peaks_tp + rpeaks[i] + search_boundary # set threshold for heights of peaks to find significant peaks in wavelet threshold = 0.125*max(search_window) significant_index = [] significant_index = [j for j in range(len(peaks_tp)) if heights_tp["peak_heights"][j] > threshold] significant_peaks_tp = [] for index in significant_index: significant_peaks_tp.append(peaks_tp[index]) significant_peaks_groups.append(_find_tppeaks(ecg, significant_peaks_tp, sampling_rate=sampling_rate)) tpeaks, ppeaks = zip(*[(g[0], g[-1]) for g in significant_peaks_groups]) tpeaks = np.array(tpeaks, dtype='int') ppeaks =
np.array(ppeaks, dtype='int')
numpy.array
""" NeuroLearn Statistics Tools =========================== Tools to help with statistical analyses. """ __all__ = [ "pearson", "zscore", "fdr", "holm_bonf", "threshold", "multi_threshold", "winsorize", "trim", "calc_bpm", "downsample", "upsample", "fisher_r_to_z", "fisher_z_to_r", "one_sample_permutation", "two_sample_permutation", "correlation_permutation", "matrix_permutation", "make_cosine_basis", "summarize_bootstrap", "regress", "procrustes", "procrustes_distance", "align", "find_spikes", "correlation", "distance_correlation", "transform_pairwise", "double_center", "u_center", "_bootstrap_isc", "isc", "isfc", "isps", "_compute_matrix_correlation", "_phase_mean_angle", "_phase_vector_length", "_butter_bandpass_filter", "_phase_rayleigh_p", "align_states", ] import numpy as np from numpy.fft import fft, ifft import pandas as pd from scipy.stats import pearsonr, spearmanr, kendalltau, norm from scipy.stats import t as t_dist from scipy.spatial.distance import squareform, pdist from scipy.linalg import orthogonal_procrustes from scipy.spatial import procrustes as procrust from scipy.signal import hilbert, butter, filtfilt from scipy.optimize import linear_sum_assignment from copy import deepcopy import nibabel as nib from scipy.interpolate import interp1d import warnings import itertools from joblib import Parallel, delayed from .utils import attempt_to_import, check_square_numpy_matrix from .external.srm import SRM, DetSRM from sklearn.utils import check_random_state from sklearn.metrics import pairwise_distances MAX_INT = np.iinfo(np.int32).max # Optional dependencies sm = attempt_to_import("statsmodels.tsa.arima_model", name="sm") def pearson(x, y): """Correlates row vector x with each row vector in 2D array y. From neurosynth.stats.py - author: <NAME> """ data = np.vstack((x, y)) ms = data.mean(axis=1)[(slice(None, None, None), None)] datam = data - ms datass = np.sqrt(np.sum(datam * datam, axis=1)) # datass = np.sqrt(ss(datam, axis=1)) temp = np.dot(datam[1:], datam[0].T) return temp / (datass[1:] * datass[0]) def zscore(df): """zscore every column in a pandas dataframe or series. Args: df: (pd.DataFrame) Pandas DataFrame instance Returns: z_data: (pd.DataFrame) z-scored pandas DataFrame or series instance """ if isinstance(df, pd.DataFrame): return df.apply(lambda x: (x - x.mean()) / x.std()) elif isinstance(df, pd.Series): return (df - np.mean(df)) / np.std(df) else: raise ValueError("Data is not a Pandas DataFrame or Series instance") def fdr(p, q=0.05): """Determine FDR threshold given a p value array and desired false discovery rate q. Written by <NAME> Args: p: (np.array) vector of p-values q: (float) false discovery rate level Returns: fdr_p: (float) p-value threshold based on independence or positive dependence """ if not isinstance(p, np.ndarray): raise ValueError("Make sure vector of p-values is a numpy array") if any(p < 0) or any(p > 1): raise ValueError("array contains p-values that are outside the range 0-1") if np.any(p > 1) or np.any(p < 0): raise ValueError("Does not include valid p-values.") s = np.sort(p) nvox = p.shape[0] null = np.array(range(1, nvox + 1), dtype="float") * q / nvox below = np.where(s <= null)[0] return s[max(below)] if len(below) else -1 def holm_bonf(p, alpha=0.05): """Compute corrected p-values based on the Holm-Bonferroni method, i.e. step-down procedure applying iteratively less correction to highest p-values. A bit more conservative than fdr, but much more powerful thanvanilla bonferroni. Args: p: (np.array) vector of p-values alpha: (float) alpha level Returns: bonf_p: (float) p-value threshold based on bonferroni step-down procedure """ if not isinstance(p, np.ndarray): raise ValueError("Make sure vector of p-values is a numpy array") s = np.sort(p) nvox = p.shape[0] null = 0.05 / (nvox - np.arange(1, nvox + 1) + 1) below = np.where(s <= null)[0] return s[max(below)] if len(below) else -1 def threshold(stat, p, thr=0.05, return_mask=False): """Threshold test image by p-value from p image Args: stat: (Brain_Data) Brain_Data instance of arbitrary statistic metric (e.g., beta, t, etc) p: (Brain_Data) Brain_data instance of p-values threshold: (float) p-value to threshold stat image return_mask: (bool) optionall return the thresholding mask; default False Returns: out: Thresholded Brain_Data instance """ from nltools.data import Brain_Data if not isinstance(stat, Brain_Data): raise ValueError("Make sure stat is a Brain_Data instance") if not isinstance(p, Brain_Data): raise ValueError("Make sure p is a Brain_Data instance") # Create Mask mask = deepcopy(p) if thr > 0: mask.data = (mask.data < thr).astype(int) else: mask.data = np.zeros(len(mask.data), dtype=int) # Apply Threshold Mask out = deepcopy(stat) if np.sum(mask.data) > 0: out = out.apply_mask(mask) out.data = out.data.squeeze() else: out.data = np.zeros(len(mask.data), dtype=int) if return_mask: return out, mask else: return out def multi_threshold(t_map, p_map, thresh): """Threshold test image by multiple p-value from p image Args: stat: (Brain_Data) Brain_Data instance of arbitrary statistic metric (e.g., beta, t, etc) p: (Brain_Data) Brain_data instance of p-values threshold: (list) list of p-values to threshold stat image Returns: out: Thresholded Brain_Data instance """ from nltools.data import Brain_Data if not isinstance(t_map, Brain_Data): raise ValueError("Make sure stat is a Brain_Data instance") if not isinstance(p_map, Brain_Data): raise ValueError("Make sure p is a Brain_Data instance") if not isinstance(thresh, list): raise ValueError("Make sure thresh is a list of p-values") affine = t_map.to_nifti().get_affine() pos_out = np.zeros(t_map.to_nifti().shape) neg_out = deepcopy(pos_out) for thr in thresh: t = threshold(t_map, p_map, thr=thr) t_pos = deepcopy(t) t_pos.data = np.zeros(len(t_pos.data)) t_neg = deepcopy(t_pos) t_pos.data[t.data > 0] = 1 t_neg.data[t.data < 0] = 1 pos_out = pos_out + t_pos.to_nifti().get_data() neg_out = neg_out + t_neg.to_nifti().get_data() pos_out = pos_out + neg_out * -1 return Brain_Data(nib.Nifti1Image(pos_out, affine)) def winsorize(data, cutoff=None, replace_with_cutoff=True): """Winsorize a Pandas DataFrame or Series with the largest/lowest value not considered outlier Args: data: (pd.DataFrame, pd.Series) data to winsorize cutoff: (dict) a dictionary with keys {'std':[low,high]} or {'quantile':[low,high]} replace_with_cutoff: (bool) If True, replace outliers with cutoff. If False, replaces outliers with closest existing values; (default: False) Returns: out: (pd.DataFrame, pd.Series) winsorized data """ return _transform_outliers( data, cutoff, replace_with_cutoff=replace_with_cutoff, method="winsorize" ) def trim(data, cutoff=None): """Trim a Pandas DataFrame or Series by replacing outlier values with NaNs Args: data: (pd.DataFrame, pd.Series) data to trim cutoff: (dict) a dictionary with keys {'std':[low,high]} or {'quantile':[low,high]} Returns: out: (pd.DataFrame, pd.Series) trimmed data """ return _transform_outliers(data, cutoff, replace_with_cutoff=None, method="trim") def _transform_outliers(data, cutoff, replace_with_cutoff, method): """This function is not exposed to user but is called by either trim or winsorize. Args: data: (pd.DataFrame, pd.Series) data to transform cutoff: (dict) a dictionary with keys {'std':[low,high]} or {'quantile':[low,high]} replace_with_cutoff: (bool) If True, replace outliers with cutoff. If False, replaces outliers with closest existing values. (default: False) method: 'winsorize' or 'trim' Returns: out: (pd.DataFrame, pd.Series) transformed data """ df = data.copy() # To not overwrite data make a copy def _transform_outliers_sub(data, cutoff, replace_with_cutoff, method="trim"): if not isinstance(data, pd.Series): raise ValueError( "Make sure that you are applying winsorize to a pandas dataframe or series." ) if isinstance(cutoff, dict): # calculate cutoff values if "quantile" in cutoff: q = data.quantile(cutoff["quantile"]) elif "std" in cutoff: std = [ data.mean() - data.std() * cutoff["std"][0], data.mean() + data.std() * cutoff["std"][1], ] q = pd.Series(index=cutoff["std"], data=std) # if replace_with_cutoff is false, replace with true existing values closest to cutoff if method == "winsorize" and not replace_with_cutoff: q.iloc[0] = data[data > q.iloc[0]].min() q.iloc[1] = data[data < q.iloc[1]].max() else: raise ValueError("cutoff must be a dictionary with quantile or std keys.") if method == "trim": data[data < q.iloc[0]] = np.nan data[data > q.iloc[1]] = np.nan elif method == "winsorize": if isinstance(q, pd.Series) and len(q) == 2: data[data < q.iloc[0]] = q.iloc[0] data[data > q.iloc[1]] = q.iloc[1] return data # transform each column if a dataframe, if series just transform data if isinstance(df, pd.DataFrame): for col in df.columns: df.loc[:, col] = _transform_outliers_sub( df.loc[:, col], cutoff=cutoff, replace_with_cutoff=replace_with_cutoff, method=method, ) return df elif isinstance(df, pd.Series): return _transform_outliers_sub( df, cutoff=cutoff, replace_with_cutoff=replace_with_cutoff, method=method ) else: raise ValueError("Data must be a pandas DataFrame or Series") def calc_bpm(beat_interval, sampling_freq): """Calculate instantaneous BPM from beat to beat interval Args: beat_interval: (int) number of samples in between each beat (typically R-R Interval) sampling_freq: (float) sampling frequency in Hz Returns: bpm: (float) beats per minute for time interval """ return 60 * sampling_freq * (1 / (beat_interval)) def downsample( data, sampling_freq=None, target=None, target_type="samples", method="mean" ): """Downsample pandas to a new target frequency or number of samples using averaging. Args: data: (pd.DataFrame, pd.Series) data to downsample sampling_freq: (float) Sampling frequency of data in hertz target: (float) downsampling target target_type: type of target can be [samples,seconds,hz] method: (str) type of downsample method ['mean','median'], default: mean Returns: out: (pd.DataFrame, pd.Series) downsmapled data """ if not isinstance(data, (pd.DataFrame, pd.Series)): raise ValueError("Data must by a pandas DataFrame or Series instance.") if not (method == "median") | (method == "mean"): raise ValueError("Metric must be either 'mean' or 'median' ") if target_type == "samples": n_samples = target elif target_type == "seconds": n_samples = target * sampling_freq elif target_type == "hz": n_samples = sampling_freq / target else: raise ValueError('Make sure target_type is "samples", "seconds", ' ' or "hz".') idx = np.sort(np.repeat(np.arange(1, data.shape[0] / n_samples, 1), n_samples)) # if data.shape[0] % n_samples: if data.shape[0] > len(idx): idx = np.concatenate([idx, np.repeat(idx[-1] + 1, data.shape[0] - len(idx))]) if method == "mean": return data.groupby(idx).mean().reset_index(drop=True) elif method == "median": return data.groupby(idx).median().reset_index(drop=True) def upsample( data, sampling_freq=None, target=None, target_type="samples", method="linear" ): """Upsample pandas to a new target frequency or number of samples using interpolation. Args: data: (pd.DataFrame, pd.Series) data to upsample (Note: will drop non-numeric columns from DataFrame) sampling_freq: Sampling frequency of data in hertz target: (float) upsampling target target_type: (str) type of target can be [samples,seconds,hz] method: (str) ['linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'] where 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order (default: linear) Returns: upsampled pandas object """ methods = ["linear", "nearest", "zero", "slinear", "quadratic", "cubic"] if method not in methods: raise ValueError( "Method must be 'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'" ) if target_type == "samples": n_samples = target elif target_type == "seconds": n_samples = target * sampling_freq elif target_type == "hz": n_samples = float(sampling_freq) / float(target) else: raise ValueError('Make sure target_type is "samples", "seconds", or "hz".') orig_spacing = np.arange(0, data.shape[0], 1) new_spacing = np.arange(0, data.shape[0] - 1, n_samples) if isinstance(data, pd.Series): interpolate = interp1d(orig_spacing, data, kind=method) return interpolate(new_spacing) elif isinstance(data, pd.DataFrame): numeric_data = data._get_numeric_data() if data.shape[1] != numeric_data.shape[1]: warnings.warn( "Dropping %s non-numeric columns" % (data.shape[1] - numeric_data.shape[1]), UserWarning, ) out = pd.DataFrame(columns=numeric_data.columns, index=None) for i, x in numeric_data.iteritems(): interpolate = interp1d(orig_spacing, x, kind=method) out.loc[:, i] = interpolate(new_spacing) return out else: raise ValueError("Data must by a pandas DataFrame or Series instance.") def fisher_r_to_z(r): """Use Fisher transformation to convert correlation to z score""" # return .5*np.log((1 + r)/(1 - r)) return np.arctanh(r) def fisher_z_to_r(z): """Use Fisher transformation to convert correlation to z score""" return np.tanh(z) def correlation(data1, data2, metric="pearson"): """This function calculates the correlation between data1 and data2 Args: data1: (np.array) x data2: (np.array) y metric: (str) type of correlation ["spearman" or "pearson" or "kendall"] Returns: r: (np.array) correlations p: (float) p-value """ if metric == "spearman": func = spearmanr elif metric == "pearson": func = pearsonr elif metric == "kendall": func = kendalltau else: raise ValueError('metric must be "spearman" or "pearson" or "kendall"') return func(data1, data2) def _permute_sign(data, random_state=None): random_state = check_random_state(random_state) return np.mean(data * random_state.choice([1, -1], len(data))) def _permute_group(data, random_state=None): random_state = check_random_state(random_state) perm_label = random_state.permutation(data["Group"]) return
np.mean(data.loc[perm_label == 1, "Values"])
numpy.mean
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import numpy as np import scipy.sparse as sp import GridCal.Engine.Core.topology as tp class BatteryData: def __init__(self, nbatt, nbus, ntime=1): """ :param nbatt: :param nbus: """ self.nbatt = nbatt self.ntime = ntime self.battery_names = np.empty(nbatt, dtype=object) self.battery_controllable = np.zeros(nbatt, dtype=bool) self.battery_installed_p = np.zeros(nbatt) self.battery_active = np.zeros((nbatt, ntime), dtype=bool) self.battery_p = np.zeros((nbatt, ntime)) self.battery_pf = np.zeros((nbatt, ntime)) self.battery_v = np.zeros((nbatt, ntime)) self.battery_qmin = np.zeros(nbatt) self.battery_qmax = np.zeros(nbatt) self.C_bus_batt = sp.lil_matrix((nbus, nbatt), dtype=int) def slice(self, elm_idx, bus_idx, time_idx=None): """ :param elm_idx: :param bus_idx: :param time_idx: :return: """ if time_idx is None: tidx = elm_idx else: tidx = np.ix_(elm_idx, time_idx) data = BatteryData(nbatt=len(elm_idx), nbus=len(bus_idx)) data.battery_names = self.battery_names[elm_idx] data.battery_controllable = self.battery_controllable[elm_idx] data.battery_active = self.battery_active[tidx] data.battery_p = self.battery_p[tidx] data.battery_pf = self.battery_pf[tidx] data.battery_v = self.battery_v[tidx] data.battery_qmin = self.battery_qmin[elm_idx] data.battery_qmax = self.battery_qmax[elm_idx] data.C_bus_batt = self.C_bus_batt[np.ix_(bus_idx, elm_idx)] return data def get_island(self, bus_idx): return tp.get_elements_of_the_island(self.C_bus_batt.T, bus_idx) def get_injections(self): """ Compute the active and reactive power of non-controlled batteries (assuming all) :return: """ pf2 = np.power(self.battery_pf, 2.0) pf_sign = (self.battery_pf + 1e-20) / np.abs(self.battery_pf + 1e-20) Q = pf_sign * self.battery_p * np.sqrt((1.0 - pf2) / (pf2 + 1e-20)) return self.battery_p + 1.0j * Q def get_injections_per_bus(self): return self.C_bus_batt * (self.get_injections() * self.battery_active) def get_bus_indices(self): return self.C_bus_batt.tocsc().indices def get_voltages_per_bus(self): n_per_bus = self.C_bus_batt.sum(axis=1) n_per_bus[n_per_bus == 0] = 1 # the division by n_per_bus achieves the averaging of the voltage control # value if more than 1 battery is present per bus # return self.C_bus_batt * (self.battery_v * self.battery_active) / n_per_bus return np.array((self.C_bus_batt * self.battery_v) / n_per_bus) def get_installed_power_per_bus(self): return self.C_bus_batt * self.battery_installed_p def get_qmax_per_bus(self): return self.C_bus_batt * (self.battery_qmax.reshape(-1, 1) * self.battery_active) def get_qmin_per_bus(self): return self.C_bus_batt * (self.battery_qmin.reshape(-1, 1) * self.battery_active) def __len__(self): return self.nbatt class BatteryOpfData(BatteryData): def __init__(self, nbatt, nbus, ntime=1): """ :param nbatt: :param nbus: :param ntime: """ BatteryData.__init__(self, nbatt, nbus, ntime) self.battery_dispatchable = np.zeros(nbatt, dtype=bool) self.battery_pmax = np.zeros(nbatt) self.battery_pmin = np.zeros(nbatt) self.battery_enom = np.zeros(nbatt) self.battery_min_soc = np.zeros(nbatt) self.battery_max_soc = np.zeros(nbatt) self.battery_soc_0 =
np.zeros(nbatt)
numpy.zeros
from collections import namedtuple import netCDF4 import numpy as np import pytest from numpy.testing import assert_array_almost_equal, assert_array_equal from cloudnetpy.categorize import atmos from cloudnetpy.products.lwc import CloudAdjustor, Lwc, LwcError, LwcSource DIMENSIONS = ("time", "height", "model_time", "model_height") TEST_ARRAY = np.arange(3) CategorizeBits = namedtuple("CategorizeBits", ["category_bits", "quality_bits"]) @pytest.fixture(scope="session") def lwc_source_file(tmpdir_factory, file_metadata): file_name = tmpdir_factory.mktemp("data").join("file.nc") with netCDF4.Dataset(file_name, "w", format="NETCDF4_CLASSIC") as root_grp: _create_dimensions(root_grp) _create_dimension_variables(root_grp) var = root_grp.createVariable("altitude", "f8") var[:] = 1 var.units = "km" var = root_grp.createVariable("lwp", "f8", "time") var[:] = [1, 1, 0.5] var = root_grp.createVariable("lwp_error", "f8", "time") var[:] = [0.2, 0.2, 0.1] var = root_grp.createVariable("rain_rate", "i4", "time") var[:] = [0, 1, 1] var = root_grp.createVariable("category_bits", "i4", "time") var[:] = [0, 1, 2] var = root_grp.createVariable("quality_bits", "i4", "time") var[:] = [8, 16, 32] var = root_grp.createVariable("temperature", "f8", ("time", "height")) var[:] = np.array([[282, 280, 278], [286, 284, 282], [284, 282, 280]]) var = root_grp.createVariable("pressure", "f8", ("time", "height")) var[:] = np.array([[1010, 1000, 990], [1020, 1010, 1000], [1030, 1020, 1010]]) return file_name def _create_dimensions(root_grp): n_dim = len(TEST_ARRAY) for dim_name in DIMENSIONS: root_grp.createDimension(dim_name, n_dim) def _create_dimension_variables(root_grp): for dim_name in DIMENSIONS: x = root_grp.createVariable(dim_name, "f8", (dim_name,)) x[:] = TEST_ARRAY if dim_name == "height": x.units = "m" def test_get_atmosphere_t(lwc_source_file): obj = LwcSource(lwc_source_file) expected = np.array([[282, 280, 278], [286, 284, 282], [284, 282, 280]]) assert_array_equal(obj.atmosphere[0], expected) def test_get_atmosphere_p(lwc_source_file): obj = LwcSource(lwc_source_file) expected = np.array([[1010, 1000, 990], [1020, 1010, 1000], [1030, 1020, 1010]]) assert_array_equal(obj.atmosphere[-1], expected) class LwcSourceObj(LwcSource): def __init__(self): self.dheight = 10 self.categorize_bits = CategorizeBits( category_bits={"droplet": np.asarray([[1, 0, 1], [0, 1, 1]], dtype=bool)}, quality_bits={ "radar": np.asarray([[1, 0, 1], [0, 1, 1]], dtype=bool), "lidar": np.asarray([[1, 0, 1], [0, 1, 1]], dtype=bool), }, ) self.atmosphere = ( np.array([[282, 281, 280], [280, 279, 278]]), np.array([[101000, 100500, 100000], [100000, 99500, 99000]]), ) self.lwp = np.array([2, 0]) self.lwp_error = np.array([0.1, 0.2]) self.is_rain = np.array([0, 1]) LWC_OBJ = Lwc(LwcSourceObj()) STATUS_OBJ = CloudAdjustor(LwcSourceObj(), LWC_OBJ) ERROR_OBJ = LwcError(LwcSourceObj(), LWC_OBJ) @pytest.mark.parametrize("value", [0, 1]) def test_get_liquid(value): assert value in LWC_OBJ.is_liquid def test_init_lwc_adiabatic(): lwc_source = LwcSourceObj() expected = atmos.fill_clouds_with_lwc_dz(lwc_source.atmosphere, LWC_OBJ.is_liquid) expected[0, 0] *= 10 expected[0, 2] *= 10 expected[1, 1] *= 10 expected[1, 2] *= 20 assert_array_almost_equal(LWC_OBJ._init_lwc_adiabatic(), expected) def test_screen_rain_lwc(): expected = np.ma.array([[5, 1, 2], [3, 6, 0]], mask=[[0, 0, 0], [1, 1, 1]]) assert_array_equal(expected.mask, LWC_OBJ.lwc.mask) @pytest.mark.parametrize("value", [0, 1]) def test_init_status(value): assert value in STATUS_OBJ._init_status() @pytest.mark.parametrize("key", ["radar", "lidar"]) def test_get_echo(key): assert key in STATUS_OBJ.echo.keys() @pytest.mark.parametrize("value", [0, 1, 2]) def test_update_status(value): time = np.array([0]) STATUS_OBJ._update_status(time) assert value in STATUS_OBJ.status @pytest.mark.parametrize("value", [0, 1, 2, 3]) def test_adjust_lwc(value): time = 0 base = 0 STATUS_OBJ.status = np.array([[1, 0, 2], [0, 0, 2]]) STATUS_OBJ._adjust_lwc(time, base) assert value in STATUS_OBJ.status def test_has_converged(): ind = 1 assert STATUS_OBJ._has_converged(ind) is True def test_out_of_bound(): ind = 2 assert STATUS_OBJ._out_of_bound(ind) is True def test_find_adjustable_clouds(): assert 1 not in STATUS_OBJ._find_adjustable_clouds() def test_find_topmost_clouds(): expected = np.asarray([[0, 0, 1], [0, 1, 1]], dtype=bool) assert_array_equal(STATUS_OBJ._find_topmost_clouds(), expected) def test_find_echo_combinations_in_liquid(): STATUS_OBJ.echo["lidar"] = np.array([[0, 1, 0], [1, 1, 0]]) STATUS_OBJ.echo["radar"] = np.array([[0, 0, 0], [0, 1, 1]]) STATUS_OBJ.is_liquid = np.array([[1, 1, 1], [0, 1, 1]]) expected =
np.array([[0, 1, 0], [0, 3, 2]])
numpy.array
import numpy as np import matplotlib.pyplot as plt import torch ################################################# # sinusoid regression, from original MAML paper # ################################################# # Quote from the paper: # the amplitude varies within [0.1, 5.0] and the phase varies within [0, π], # and the input and output both have a dimensionality of 1. # During training and testing, datapoints x are sampled uniformly from [−5.0, 5.0]. # The loss is the mean-squared error # between the prediction f(x) and true value. # The regressor is a neural network model with 2 hidden layers of size # 40 with ReLU nonlinearities. When training with MAML, # we use one gradient update with K = 10 examples with # a fixed step size α = 0.01, and use Adam as the metaoptimizer" def sinusoid_get_random_task(): amplitude = np.random.uniform(0.1, 5.0) phase = np.random.uniform(0, np.pi) return amplitude,phase def sinusoid_get_random_task_batch(amplitude,phase,support_k,query_k): support_x = torch.from_numpy( np.random.uniform(-5.0, 5.0,(support_k,1))).float() query_x = torch.from_numpy( np.random.uniform(-5.0, 5.0,(query_k,1))).float() support_y = amplitude * torch.sin(support_x - phase) query_y = amplitude * torch.sin(query_x - phase) return support_x,support_y,query_x,query_y # Will return data in the shape: [meta_batch_size, k , 1] def sinusoid_get_meta_batch(meta_batch_size,n_way,support_k,query_k,is_test=False): # n_way is always one for sinusoidal regression, so it is ignored here # is_test is to differentiate between test and train tasks, for sinusoid regression, we dont differentiate. tasks = [sinusoid_get_random_task() for _ in range(meta_batch_size)] support_x,support_y,query_x,query_y = [],[],[],[] for amplitude,phase in tasks: a,b,c,d = sinusoid_get_random_task_batch(amplitude,phase,support_k,query_k) support_x.append(a) support_y.append(b) query_x.append(c) query_y.append(d) support_x = torch.stack(support_x) support_y = torch.stack(support_y) query_x = torch.stack(query_x) query_y = torch.stack(query_y) return support_x,support_y,query_x,query_y # OMNIGLOT from MAML PAPER # we also provide results for a non-convolutional network. For this, we use a # network with 4 hidden layers with sizes 256, 128, 64, 64, # each including batch normalization and ReLU nonlinearities, followed by a linear layer and softmax. For all models, # the loss function is the cross-entropy error between the predicted and true class. # Additional hyperparameter details are included in Appendix A.1. # For N-way, K-shot classification, each gradient is computed using a batch size of NK examples. For Omniglot, # the 5-way convolutional and non-convolutional MAML # models were each trained with 1 gradient step with step size # α = 0.4 and a meta batch-size of 32 tasks. The network # was evaluated using 3 gradient steps with the same step # size α = 0.4. The 20-way convolutional MAML model # was trained and evaluated with 5 gradient steps with step # size α = 0.1. During training, the meta batch-size was set # to 16 tasks. For MiniImagenet, both models were trained # using 5 gradient steps of size α = 0.01, and evaluated using # 10 gradient steps at test time. Following Ravi & Larochelle # (2017), 15 examples per class were used for evaluating the # post-update meta-gradient. We used a meta batch-size of # 4 and 2 tasks for 1-shot and 5-shot training respectively. # All models were trained for 60000 iterations on a single # NVIDIA Pascal Titan X GPU def omniglot_get_meta_batch(meta_batch_size,n_way,support_k,query_k,is_test=False): # imort the module the last moment before use, the first import will trigger the load of the whole dataset to memory import es_maml.omniglot.omniglot_data_singleton data = es_maml.omniglot.omniglot_data_singleton.dataset omniglot_shuffled_indicies = es_maml.omniglot.omniglot_data_singleton.omniglot_shuffled_indicies SHUFFLE_CLASSES = True AUGMENT_WITH_ROTATION = True if SHUFFLE_CLASSES is True: train_indicies = omniglot_shuffled_indicies[:1200] test_indicies = omniglot_shuffled_indicies[1200:] else: train_indicies = list(range(1200)) test_indicies = list(range(1200,data.shape[0])) class_indicies = train_indicies if is_test is True: class_indicies = test_indicies support_x = [] query_x = [] support_y = [] query_y = [] for meta_batch_i in range(meta_batch_size): selected_class_indicies = np.random.choice(class_indicies,n_way,replace=False) task_support_x = [] task_query_x = [] task_support_y = [] task_query_y = [] for class_i_in_batch,class_i in enumerate(selected_class_indicies): selected_images = np.random.choice(list(range(20)),support_k+query_k,replace=False) # if support_k+query_k = 20, this will be a permutation class_data = data[class_i,selected_images] # Each class can be augmented by rotation, we select the rotation after selecting distinct classes # This means we cannot have a task with the same charater with different rotations, which is what we want if AUGMENT_WITH_ROTATION is True: selected_rotation = np.random.choice([0,1,2,3]) # multiples of 90 degree # np.rot90 cannot handle channels, take the one channel, channel 0, and add it back after rotation class_data = [np.rot90(class_data[i,0],selected_rotation).reshape(1,28,28) for i in range(len(selected_images))] class_data = np.stack(class_data) # we are back to the original shape class_support_x = class_data[:support_k] class_query_x = class_data[support_k:] class_support_y = np.repeat(class_i_in_batch,support_k) class_query_y = np.repeat(class_i_in_batch,query_k) task_support_x.append(class_support_x) task_query_x.append(class_query_x) task_support_y.append(class_support_y) task_query_y.append(class_query_y) task_support_x = np.stack(task_support_x) task_query_x = np.stack(task_query_x) task_support_y = np.stack(task_support_y) task_query_y =
np.stack(task_query_y)
numpy.stack
""" Module to detect and process lanes """ import numpy as np import matplotlib.pyplot as plt import cv2 import os class Line: """ Class to store characteristics of each line detection """ def __init__(self): # Has the line been detected earlier self.iterations = 0 # Polynomial coefficients averaged over the last n iterations self.best_fit = np.array([0, 0, 0]) # Polynomial coefficients for the most recent fit self.current_fit = np.array([0, 0, 0]) # Curvature self.curvature = 0 class LaneDetector: """ Module to detect and process lanes from binary images """ def __init__(self, nwindows = 10, margin = 100, minpix = 100, recalculate_margin = 150, smoothing_parameter = 10): self.nwindows = nwindows self.margin = margin self.minpix = minpix self.recalculate_margin = recalculate_margin self.smoothing_parameter = smoothing_parameter self.left_line = Line() self.right_line = Line() def pipeline(self, image_file, output_file, output_file_poly): """ image_file: binary image file to detect lanes on """ image = cv2.imread(image_file, cv2.IMREAD_UNCHANGED) leftx, lefty, rightx, righty = self._calculate_lane_pixels(image) output_image, ploty, left_fit, right_fit = self._fit_polynomial(image, leftx, lefty, rightx, righty) cv2.imwrite(output_file, output_image) plt.imshow(output_image) plt.savefig(output_file_poly) plt.clf() self.left_line.iterations = 0 self.right_line.iterations = 0 curvature, center = self._calculate_curvature(ploty, left_fit, right_fit, image.shape) def pipeline_image(self, image): if self.left_line.iterations == 0: leftx, lefty, rightx, righty = self._calculate_lane_pixels(image) else: leftx, lefty, rightx, righty = self._recalculate_lane_pixels(image) # Check to see the lanes are correct if self._sanity_check(leftx, lefty, rightx, righty): self.left_line.iterations = 0 self.right_line.iterations = 0 leftx, lefty, rightx, righty = self._calculate_lane_pixels(image) output_image, ploty, left_fit, right_fit = self._fit_polynomial(image, leftx, lefty, rightx, righty) curvature, center = self._calculate_curvature(ploty, left_fit, right_fit, image.shape) return output_image, curvature, center def _calculate_lane_pixels(self, image): """ Private function to calculate lane pixels """ # Reset the line data self.left_line = Line() self.right_line = Line() # Histogram based method to detect lanes bottom_half = image[3 * image.shape[0] // 5:, :] histogram = np.sum(bottom_half, axis = 0) # Define variables for the detection loop midpoint = np.int32(histogram.shape[0] // 2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint window_height = np.int32(image.shape[0] // self.nwindows) nonzero = image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) leftx_current = leftx_base rightx_current = rightx_base left_lane_indices = [] right_lane_indices = [] # Loop through the number of windows to detect for window in range(self.nwindows): # Calculate the boundaries win_y_low = image.shape[0] - (window + 1) * window_height win_y_high = image.shape[0] - window * window_height win_xleft_low = leftx_current - self.margin win_xleft_high = leftx_current + self.margin win_xright_low = rightx_current - self.margin win_xright_high = rightx_current + self.margin # Identify the nonzero pixels good_left_indices = ((nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high) \ & (nonzeroy >= win_y_low) & (nonzeroy < win_y_high)).nonzero()[0] good_right_indices = ((nonzerox >= win_xright_low) & (nonzerox < win_xright_high) \ & (nonzeroy >= win_y_low) & (nonzeroy < win_y_high)).nonzero()[0] left_lane_indices.append(good_left_indices) right_lane_indices.append(good_right_indices) # Recenter pixels if len(good_left_indices) > self.minpix: leftx_current = np.int32(np.mean(nonzerox[good_left_indices])) if len(good_right_indices) > self.minpix: rightx_current = np.int32(np.mean(nonzerox[good_right_indices])) # Concatenate arrays of indices try: left_lane_indices = np.concatenate(left_lane_indices) right_lane_indices = np.concatenate(right_lane_indices) except: pass # Extract left and right lane pixel positions leftx = nonzerox[left_lane_indices] lefty = nonzeroy[left_lane_indices] rightx = nonzerox[right_lane_indices] righty = nonzeroy[right_lane_indices] return leftx, lefty, rightx, righty def _recalculate_lane_pixels(self, image): """ Private function to recalculate lane pixels using previously derived polynomials """ # Get the non zero pixels nonzero = image.nonzero() nonzeroy =
np.array(nonzero[0])
numpy.array
from __future__ import division from pymer4.models import Lmer, Lm from pymer4.utils import get_resource_path import pandas as pd import numpy as np import os from scipy.special import logit def test_gaussian_lm(): df = pd.read_csv(os.path.join(get_resource_path(), 'sample_data.csv')) model = Lm('DV ~ IV1 + IV3', data=df) model.fit(summarize=False) assert model.coefs.shape == (3, 8) estimates = np.array([42.24840439, 0.24114414, -3.34057784]) assert np.allclose(model.coefs['Estimate'], estimates, atol=.001) # Test robust SE against statsmodels standard_se = np.array([6.83783939, 0.30393886, 3.70656475]) assert np.allclose(model.coefs['SE'], standard_se, atol=.001) hc0_se =
np.array([7.16661817, 0.31713064, 3.81918182])
numpy.array
# Author: <NAME> import superimport import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize, line_search def aoki_vectorized(x): """ F(x,y) = 0.5 (x^2 - y)^2 + 0.5 (x-1)^2 """ f = 0.5 * np.square(np.square(x[:][0]) - x[:][1]) + 0.5 * np.square(x[:][0] - 1) return f def aoki(x): """ F(x,y) = 0.5 (x^2 - y)^2 + 0.5 (x-1)^2 """ f = 0.5 * np.square(np.square(x[0]) - x[1]) + 0.5 * np.square(x[0] - 1) return f def aoki_gd(x): """ First-Order derivative of aoki function(Nabia - 1) """ g_x = 2 * np.dot((np.square(x[0]) - x[1]), x[0]) + x[0] - 1 g_y = -1 * (np.square(x[0]) - x[1]) return np.array((g_x, g_y)) def aoki_hess(x): """ Second-Order derivative - Hessian Matrix of aoki function(Nabia - 2) """ g_xx = 6 * np.square(x[0]) - 2*x[1] + 1 g_xy = -2 * x[0] g_yy = 1 H =
np.diag((2,2))
numpy.diag
import MPImfp import MPLn23d import cv2 import sys import random import numpy as np import json import math as m from PyQt5 import QtCore, QtGui, QtWidgets from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas """ Image Scene """ class ImageScene(QtWidgets.QGraphicsScene): addLine = QtCore.pyqtSignal(float, float, float, float) addRect = QtCore.pyqtSignal(float, float, float, float) clearRect = QtCore.pyqtSignal(float, float, float, float) measurePixel = QtCore.pyqtSignal(float) mouseNone = 0 mouseLine = 1 mouseRect = 2 mouseClear = 3 mouseMeasure = 4 def __init__(self, *argv, **keywords): super(ImageScene, self).__init__(*argv, **keywords) self.cvimg = None self.imageItem = None self.roiItem = None self.scale = 1.0 self.startPos = None self.mouseMode = self.mouseNone def setImage(self, cvimg): self.cvimg = cvimg if len(cvimg.shape) == 2: height, width = cvimg.shape qimg = QtGui.QImage(cvimg.data, width, height, width, QtGui.QImage.Format_Indexed8) elif len(cvimg.shape) == 3: height, width, dim = cvimg.shape qimg = QtGui.QImage(cvimg.data, width, height, dim * width, QtGui.QImage.Format_RGB888) qimg = qimg.rgbSwapped() pixmap = QtGui.QPixmap.fromImage(qimg) if self.imageItem: self.removeItem(self.imageItem) self.imageItem = QtWidgets.QGraphicsPixmapItem(pixmap) self.addItem(self.imageItem) self.__Scale() def clearImage(self): self.cvimg = None if self.imageItem: self.removeItem(self.imageItem) self.imageItem = None def __Scale(self): if self.imageItem: self.imageItem.setScale(self.scale) w = self.scale * self.cvimg.shape[1] h = self.scale * self.cvimg.shape[0] self.setSceneRect(0, 0, w, h) if self.roiItem: self.roiItem.setScale(self.scale) def setScale(self, scale): self.scale = scale self.__Scale() def calcFitScale(self): if self.cvimg is not None: view = self.views()[0] sw = float(view.width()) / float(self.cvimg.shape[1]) sh = float(view.height()) / float(self.cvimg.shape[0]) if sw < sh: return sw else: return sh else: return 1.0 def drawROI(self, x, y, w, h): if self.roiItem: self.removeItem(self.roiItem) self.roiItem = QtWidgets.QGraphicsRectItem() pen = QtGui.QPen(QtGui.QColor(255,0,0)) self.roiItem.setPen(pen) self.roiItem.setRect(x, y, w, h) self.roiItem.setScale(self.scale) self.addItem(self.roiItem) def clearROI(self): if self.roiItem: self.removeItem(self.roiItem) self.roiItem = None def clearAll(self): self.clearImage() self.clearROI() def mousePressEvent(self, event): if self.imageItem and event.button() == QtCore.Qt.LeftButton: self.startPos = event.scenePos() if self.mouseMode == self.mouseLine: self.line_item = QtWidgets.QGraphicsLineItem() pen = QtGui.QPen(QtGui.QColor(0,255,0)) self.line_item.setPen(pen) self.addItem(self.line_item) elif self.mouseMode == self.mouseRect: self.rect_item = QtWidgets.QGraphicsRectItem() pen = QtGui.QPen(QtGui.QColor(0,255,0)) self.rect_item.setPen(pen) self.addItem(self.rect_item) elif self.mouseMode == self.mouseClear: self.rect_item = QtWidgets.QGraphicsRectItem() pen = QtGui.QPen(QtGui.QColor(0,0,255)) self.rect_item.setPen(pen) self.addItem(self.rect_item) elif self.mouseMode == self.mouseMeasure: self.line_item = QtWidgets.QGraphicsLineItem() pen = QtGui.QPen(QtGui.QColor(255,0,0)) self.line_item.setPen(pen) self.addItem(self.line_item) def mouseMoveEvent(self, event): if self.startPos: start = self.startPos cur = event.scenePos() if self.mouseMode == self.mouseLine: self.line_item.setLine(start.x(), start.y(), cur.x(), cur.y()) elif self.mouseMode == self.mouseRect: self.rect_item.setRect(start.x(), start.y(), cur.x() - start.x(), cur.y() - start.y()) elif self.mouseMode == self.mouseClear: self.rect_item.setRect(start.x(), start.y(), cur.x() - start.x(), cur.y() - start.y()) elif self.mouseMode == self.mouseMeasure: self.line_item.setLine(start.x(), start.y(), cur.x(), cur.y()) def mouseReleaseEvent(self, event): if self.startPos: sx = self.startPos.x() / self.scale sy = self.startPos.y() / self.scale ex = event.scenePos().x() / self.scale ey = event.scenePos().y() / self.scale if self.mouseMode == self.mouseLine: self.removeItem(self.line_item) self.addLine.emit(sx, sy, ex, ey) elif self.mouseMode == self.mouseRect: self.removeItem(self.rect_item) self.addRect.emit(sx, sy, ex, ey) elif self.mouseMode == self.mouseClear: self.removeItem(self.rect_item) self.clearRect.emit(sx, sy, ex, ey) elif self.mouseMode == self.mouseMeasure: self.removeItem(self.line_item) dx = ex - sx dy = ey - sy dis = m.sqrt(dx * dx + dy * dy) self.measurePixel.emit(dis) self.startPos = None super(ImageScene, self).mouseReleaseEvent(event) def setMouseMode(self, mode): self.mouseMode = mode """ Graphics View """ class GraphicsView(QtWidgets.QGraphicsView): def __init__(self): super(GraphicsView, self).__init__() self.setCacheMode(QtWidgets.QGraphicsView.CacheBackground) self.setRenderHints(QtGui.QPainter.Antialiasing | QtGui.QPainter.SmoothPixmapTransform | QtGui.QPainter.TextAntialiasing) def sizeHint(self): return QtCore.QSize(1024, 768) """ File Widget """ class FileWidget(QtWidgets.QWidget): imageChanged = QtCore.pyqtSignal(np.ndarray) roiChanged = QtCore.pyqtSignal(int, int, int, int) Units = ['px', 'km', 'm', 'cm', 'mm', 'um', 'nm'] def __init__(self, parent): super(FileWidget, self).__init__(parent) self.org_img = None self.insitu = True vbox = QtWidgets.QVBoxLayout(self) self.name_label = QtWidgets.QLabel('Name :') vbox.addWidget(self.name_label) self.size_label = QtWidgets.QLabel('Size :') vbox.addWidget(self.size_label) vbox.addWidget(QtWidgets.QLabel('Resize :')) hbox = QtWidgets.QHBoxLayout() vbox.addLayout(hbox) self.spin5 = QtWidgets.QSpinBox() self.spin5.valueChanged[int].connect(self.changeWidth) hbox.addWidget(self.spin5) self.spin6 = QtWidgets.QSpinBox() self.spin6.valueChanged[int].connect(self.changeHeight) hbox.addWidget(self.spin6) vbox.addWidget(QtWidgets.QLabel('ROI :')) glay = QtWidgets.QGridLayout() vbox.addLayout(glay) self.spin1 = QtWidgets.QSpinBox() self.spin1.valueChanged[int].connect(self.changeROI) glay.addWidget(self.spin1, 0, 0) self.spin2 = QtWidgets.QSpinBox() self.spin2.valueChanged[int].connect(self.changeROI) glay.addWidget(self.spin2, 0, 1) self.spin3 = QtWidgets.QSpinBox() self.spin3.valueChanged[int].connect(self.changeROI) glay.addWidget(self.spin3, 1, 0) self.spin4 = QtWidgets.QSpinBox() self.spin4.valueChanged[int].connect(self.changeROI) glay.addWidget(self.spin4, 1, 1) button2 = QtWidgets.QPushButton('Reset ROI') button2.clicked[bool].connect(self.resetROI) vbox.addWidget(button2) vbox.addWidget(QtWidgets.QLabel('Pixels in Scale :')) hbox0 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox0) self.line1 = QtWidgets.QLineEdit() self.line1.setValidator(QtGui.QDoubleValidator()) self.line1.setText('1.0') hbox0.addWidget(self.line1) self.button3 = QtWidgets.QPushButton('Measure') self.button3.setCheckable(True) hbox0.addWidget(self.button3) vbox.addWidget(QtWidgets.QLabel('Scale :')) hbox1 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox1) self.line2 = QtWidgets.QLineEdit() self.line2.setValidator(QtGui.QDoubleValidator()) self.line2.setText('1.0') hbox1.addWidget(self.line2) self.combo = QtWidgets.QComboBox() for unit in self.Units: self.combo.addItem(unit) hbox1.addWidget(self.combo) self.check1 = QtWidgets.QCheckBox('Measure') self.check1.setChecked(True) vbox.addWidget(self.check1) vbox.addStretch() def clearFile(self): self.insitu = False self.org_img = None self.name_label.setText('Name :') self.size_label.setText('Size :') self.spin1.setValue(0) self.spin2.setValue(0) self.spin3.setValue(0) self.spin4.setValue(0) self.line1.setText('1.0') self.line2.setText('1.0') self.combo.setCurrentIndex(0) self.check1.setChecked(True) self.insitu = True def setInfo(self, info): self.insitu = False roi = info['FileROI'] size = info['FileSize'] resize = info['FileResize'] fname = info['FileName'] filename = QtCore.QFileInfo(fname).fileName() self.name_label.setText('Name : ' + filename) self.size_label.setText('Size : ' + str(size[0]) + ' x ' + str(size[1])) self.spin1.setMinimum(0) self.spin1.setMaximum(resize[0]) self.spin1.setValue(roi[0]) self.spin2.setMinimum(0) self.spin2.setMaximum(resize[1]) self.spin2.setValue(roi[1]) self.spin3.setMinimum(0) self.spin3.setMaximum(resize[0]) self.spin3.setValue(roi[2]) self.spin4.setMinimum(0) self.spin4.setMaximum(resize[1]) self.spin4.setValue(roi[3]) self.spin5.setMinimum(1) self.spin5.setMaximum(10 * size[0]) self.spin5.setValue(resize[0]) self.spin6.setMinimum(1) self.spin6.setMaximum(10 * size[1]) self.spin6.setValue(resize[1]) self.insitu = True self.line1.setText(str(info['FilePixels'])) self.line2.setText(str(info['FileScale'])) self.combo.setCurrentIndex(info['FileUnit']) self.check1.setChecked(info['FileMeasure']) def getInfo(self, fname=None): info = {} if fname == None: if self.org_img is not None: height, width, dim = self.org_img.shape info['FileSize'] = [width, height] else: info['FileSize'] = [0, 0] info['FileResize'] = [self.spin5.value(), self.spin6.value()] info['FileROI'] = [self.spin1.value(), self.spin2.value(), self.spin3.value(), self.spin4.value()] else: img = cv2.imread(str(fname), 1) height, width, dim = img.shape info['FileSize'] = [width, height] info['FileResize'] = [width, height] info['FileROI'] = [0, 0, width, height] info['FilePixels'] = float(self.line1.text()) info['FileScale'] = float(self.line2.text()) info['FileUnit'] = self.combo.currentIndex() info['FileMeasure'] = self.check1.isChecked() return info def changeROI(self): if self.insitu: sx = self.spin1.value() sy = self.spin2.value() ex = self.spin3.value() ey = self.spin4.value() self.roiChanged.emit(sx, sy, ex - sx, ey - sy) def resetROI(self): self.initROI() self.changeROI() def initROI(self): width = self.spin5.value() height = self.spin6.value() self.insitu = False self.spin1.setMaximum(width) self.spin1.setValue(0) self.spin2.setMaximum(height) self.spin2.setValue(0) self.spin3.setMaximum(width) self.spin3.setValue(width) self.spin4.setMaximum(height) self.spin4.setValue(height) self.insitu = True def changeWidth(self): if self.insitu: height, width, dim = self.org_img.shape self.insitu = False self.spin6.setValue(self.spin5.value() * height / width) self.insitu = True self.initROI() self.setImage() def changeHeight(self): if self.insitu: height, width, dim = self.org_img.shape self.insitu = False self.spin5.setValue(self.spin6.value() * width / height) self.insitu = True self.initROI() self.setImage() def setImage(self): if self.org_img is not None: height, width, dim = self.org_img.shape if self.spin5.value() == width and self.spin6.value() == height: self.imageChanged.emit(self.org_img) else: res_img = cv2.resize(self.org_img, (self.spin5.value(), self.spin6.value())) self.imageChanged.emit(res_img) sx = self.spin1.value() sy = self.spin2.value() ex = self.spin3.value() ey = self.spin4.value() self.roiChanged.emit(sx, sy, ex - sx, ey - sy) def measurePixel(self, dis): if self.button3.isChecked(): mdis = dis * self.org_img.shape[1] / self.spin5.value() self.line1.setText(str(mdis)) @staticmethod def Process(src_img, info): if src_img is not None: height, width, dim = src_img.shape roi = info['FileROI'] resize = info['FileResize'] if resize[0] == width and resize[1] == height: return src_img[roi[1]:roi[3], roi[0]:roi[2]] else: res_img = cv2.resize(src_img, (resize[0], resize[1])) return res_img[roi[1]:roi[3], roi[0]:roi[2]] else: return None @staticmethod def PixelSize(info): size = info['FileSize'] resize = info['FileResize'] pixels = info['FilePixels'] scale = info['FileScale'] unit = info['FileUnit'] ps = scale / pixels * size[0] / resize[0] return [ps, FileWidget.Units[unit]] """ Contrast Widget """ class ContrastWidget(QtWidgets.QWidget): imageChanged = QtCore.pyqtSignal(np.ndarray) def __init__(self, parent): super(ContrastWidget, self).__init__(parent) self.src_img = None self.insitu = True vbox = QtWidgets.QVBoxLayout(self) self.figure = Figure(figsize=(1,2)) self.figure.subplots_adjust(bottom=0.1, top=0.98, left=0.02, right=0.98, hspace=0.02) self.canvas = FigureCanvas(self.figure) vbox.addWidget(self.canvas) self.check1 = QtWidgets.QCheckBox('Background Subtraction') self.check1.stateChanged[int].connect(self.setImage) vbox.addWidget(self.check1) vbox.addWidget(QtWidgets.QLabel('Filter Size :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(1) self.spin1.setMaximum(1999) self.spin1.setSingleStep(2) self.spin1.setValue(255) self.spin1.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin1) vbox.addWidget(QtWidgets.QLabel('LUT Min. and Max. :')) hbox = QtWidgets.QHBoxLayout() vbox.addLayout(hbox) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(0) self.spin2.setMaximum(255) self.spin2.setValue(0) self.spin2.valueChanged[int].connect(self.setImage) hbox.addWidget(self.spin2) self.spin3 = QtWidgets.QSpinBox() self.spin3.setMinimum(0) self.spin3.setMaximum(255) self.spin3.setValue(255) self.spin3.valueChanged[int].connect(self.setImage) hbox.addWidget(self.spin3) vbox.addStretch() def setInfo(self, info): self.insitu = False self.check1.setChecked(info['ContBGSubtract']) self.spin1.setValue(info['ContFilterSize']) self.spin2.setValue(info['ContLUTMin']) self.spin3.setValue(info['ContLUTMax']) self.insitu = True def getInfo(self): info = {} info['ContBGSubtract'] = self.check1.isChecked() info['ContFilterSize'] = self.spin1.value() info['ContLUTMin'] = self.spin2.value() info['ContLUTMax'] = self.spin3.value() return info def setImage(self): if self.insitu: dst_img = self.Process(self.src_img, self.getInfo()) if dst_img is not None: self.drawGraph(self.src_img, dst_img) self.imageChanged.emit(dst_img) def drawHist(self, img, ax): lv = range(256) if len(img.shape) == 2: hist = cv2.calcHist([img], [0], None, [256], [0,256]) ax.plot(lv, hist, 'k') elif len(img.shape) == 3: col = ['b', 'g', 'r'] for i in range(3): hist = cv2.calcHist([img], [i], None, [256], [0,256]) ax.plot(lv, hist, col[i]) ax.set_xlim(0, 255) def drawGraph(self, src_img, dst_img): self.figure.clf() ax1 = self.figure.add_subplot(2,1,1) ax1.xaxis.set_ticklabels([]) ax1.yaxis.set_ticklabels([]) self.drawHist(src_img, ax1) ax2 = self.figure.add_subplot(2,1,2) ax2.yaxis.set_ticklabels([]) self.drawHist(dst_img, ax2) self.canvas.draw() @staticmethod def Process(src_img, info): if src_img is None: return None if info['ContBGSubtract']: fsize = info['ContFilterSize'] fore = src_img.astype(np.int32) back = cv2.blur(src_img, (fsize, fsize)).astype(np.int32) sub = fore - back + 127 img = sub.astype(np.uint8) else: img = src_img lutmin = info['ContLUTMin'] lutmax = info['ContLUTMax'] diff = lutmax - lutmin lut = np.empty((256, 1), dtype='uint8') for i in range(256): if i <= lutmin: lut[i][0] = 0 elif i >= lutmax: lut[i][0] = 255 else: lut[i][0] = 255 * (i - lutmin) / diff return cv2.LUT(img, lut) """ Filter Widget """ class FilterWidget(QtWidgets.QWidget): imageChanged = QtCore.pyqtSignal(np.ndarray) def __init__(self, parent): super(FilterWidget, self).__init__(parent) self.src_img = None self.insitu = True vbox = QtWidgets.QVBoxLayout(self) vbox.addWidget(QtWidgets.QLabel('Type :')) self.combo1 = QtWidgets.QComboBox() self.combo1.addItem('None') self.combo1.addItem('Blur') self.combo1.addItem('Gaussian') self.combo1.addItem('Median') self.combo1.addItem('Bilateral') self.combo1.currentIndexChanged[int].connect(self.filterChanged) vbox.addWidget(self.combo1) vbox.addWidget(QtWidgets.QLabel('Size :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(1) self.spin1.setMaximum(99) self.spin1.setValue(1) self.spin1.setSingleStep(2) self.spin1.setEnabled(False) self.spin1.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin1) vbox.addWidget(QtWidgets.QLabel('Sigma0 :')) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(0) self.spin2.setMaximum(300) self.spin2.setValue(0) self.spin2.setEnabled(False) self.spin2.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin2) vbox.addWidget(QtWidgets.QLabel('Sigma1 :')) self.spin3 = QtWidgets.QSpinBox() self.spin3.setMinimum(0) self.spin3.setMaximum(300) self.spin3.setValue(0) self.spin3.setEnabled(False) self.spin3.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin3) vbox.addStretch() def setInfo(self, info): self.insitu = False self.combo1.setCurrentIndex(info['FilterType']) self.spin1.setValue(info['FilterSize']) self.spin2.setValue(info['FilterSigma0']) self.spin3.setValue(info['FilterSigma1']) self.insitu = True def getInfo(self): info = {} info['FilterType'] = self.combo1.currentIndex() info['FilterSize'] = self.spin1.value() info['FilterSigma0'] = self.spin2.value() info['FilterSigma1'] = self.spin3.value() return info def filterChanged(self): ftype = self.combo1.currentIndex() flag = [[False, False, False], [True, False, False],\ [True, True, True], [True, False, False], [True, True, True]] self.spin1.setEnabled(flag[ftype][0]) self.spin2.setEnabled(flag[ftype][1]) self.spin3.setEnabled(flag[ftype][2]) self.setImage() def setImage(self): if self.insitu: dst_img = self.Process(self.src_img, self.getInfo()) if dst_img is not None: self.imageChanged.emit(dst_img) @staticmethod def Process(src_img, info): if src_img is None: return None ftype = info['FilterType'] size = info['FilterSize'] sigma0 = float(info['FilterSigma0']) sigma1 = float(info['FilterSigma1']) if ftype == 1: return cv2.blur(src_img, (size, size)) elif ftype == 2: return cv2.GaussianBlur(src_img, (size, size), sigma0, sigma1) elif ftype == 3: return cv2.medianBlur(src_img, size) elif ftype == 4: return cv2.bilateralFilter(src_img, size, sigma0, sigma1) else: return src_img.copy() """ Threshold Widget """ class ThresholdWidget(QtWidgets.QWidget): imageChanged = QtCore.pyqtSignal(np.ndarray) def __init__(self, parent): super(ThresholdWidget, self).__init__(parent) self.src_img = None self.dst_img = None self.insitu = True vbox = QtWidgets.QVBoxLayout(self) vbox.addWidget(QtWidgets.QLabel('Type :')) self.combo1 = QtWidgets.QComboBox() self.combo1.addItem('Simple') self.combo1.addItem('Otsu') self.combo1.addItem('Adaptive Mean') self.combo1.addItem('Adaptive Gauss') self.combo1.currentIndexChanged[int].connect(self.methodChanged) vbox.addWidget(self.combo1) vbox.addWidget(QtWidgets.QLabel('Threshold :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(0) self.spin1.setMaximum(255) self.spin1.setValue(127) self.spin1.setEnabled(True) self.spin1.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin1) vbox.addWidget(QtWidgets.QLabel('Adaptive Block Size :')) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(3) self.spin2.setMaximum(999) self.spin2.setValue(123) self.spin2.setSingleStep(2) self.spin2.setEnabled(False) self.spin2.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin2) vbox.addWidget(QtWidgets.QLabel('Adaptive Parm :')) self.spin3 = QtWidgets.QSpinBox() self.spin3.setMinimum(-128) self.spin3.setMaximum(128) self.spin3.setValue(0) self.spin3.setEnabled(False) self.spin3.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin3) self.check1 = QtWidgets.QCheckBox('Invert') self.check1.stateChanged[int].connect(self.setImage) vbox.addWidget(self.check1) vbox.addStretch() def setInfo(self, info): self.insitu = False self.combo1.setCurrentIndex(info['ThreshType']) self.spin1.setValue(info['ThreshThreshold']) self.spin2.setValue(info['ThreshAdaptiveBlockSize']) self.spin3.setValue(info['ThreshAdaptiveParm']) self.check1.setChecked(info['ThreshInvert']) self.insitu = True def getInfo(self): info = {} info['ThreshType'] = self.combo1.currentIndex() info['ThreshThreshold'] = self.spin1.value() info['ThreshAdaptiveBlockSize'] = self.spin2.value() info['ThreshAdaptiveParm'] = self.spin3.value() info['ThreshInvert'] = self.check1.isChecked() return info def methodChanged(self): ttype = self.combo1.currentIndex() flag = [[True, False, False], [False, False, False],\ [False, True, True], [False, True, True]] self.spin1.setEnabled(flag[ttype][0]) self.spin2.setEnabled(flag[ttype][1]) self.spin3.setEnabled(flag[ttype][2]) self.setImage() def setImage(self): if self.insitu: dst_img = self.Process(self.src_img, self.getInfo()) if dst_img is not None: self.imageChanged.emit(dst_img) @staticmethod def Process(src_img, info): if src_img is None: return None if len(src_img.shape) == 3: src_img = cv2.cvtColor(src_img, cv2.COLOR_RGB2GRAY) ttype = info['ThreshType'] thres = info['ThreshThreshold'] bsize = info['ThreshAdaptiveBlockSize'] parm = info['ThreshAdaptiveParm'] inv = info['ThreshInvert'] if inv: sty = cv2.THRESH_BINARY_INV else: sty = cv2.THRESH_BINARY if ttype == 0: ret, dst_img = cv2.threshold(src_img, thres, 255, sty) elif ttype == 1: ret, dst_img = cv2.threshold(src_img, 0, 255, sty + cv2.THRESH_OTSU) elif ttype == 2: dst_img = cv2.adaptiveThreshold(src_img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, sty, bsize, parm) elif ttype == 3: dst_img = cv2.adaptiveThreshold(src_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, sty, bsize, parm) return dst_img """ Morphology Widget """ class MorphologyWidget(QtWidgets.QWidget): imageChanged = QtCore.pyqtSignal(np.ndarray) def __init__(self, parent): super(MorphologyWidget, self).__init__(parent) self.src_img = None self.insitu = True vbox = QtWidgets.QVBoxLayout(self) vbox.addWidget(QtWidgets.QLabel('Type :')) self.combo1 = QtWidgets.QComboBox() self.combo1.addItem('Opening') self.combo1.addItem('Closing') self.combo1.currentIndexChanged[int].connect(self.setImage) vbox.addWidget(self.combo1) vbox.addWidget(QtWidgets.QLabel('Iterations :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(0) self.spin1.setMaximum(32) self.spin1.setValue(0) self.spin1.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin1) vbox.addStretch() self.label1 = QtWidgets.QLabel('Black :') vbox.addWidget(self.label1) self.label2 = QtWidgets.QLabel('White :') vbox.addWidget(self.label2) def setInfo(self, info): self.insitu = False self.combo1.setCurrentIndex(info['MorpholType']) self.spin1.setValue(info['MorpholIterations']) self.insitu = True def getInfo(self): info = {} info['MorpholType'] = self.combo1.currentIndex() info['MorpholIterations'] = self.spin1.value() return info def setImage(self): if self.insitu: dst_img = self.Process(self.src_img, self.getInfo()) if dst_img is not None: self.imageChanged.emit(dst_img) hist = cv2.calcHist([dst_img], [0], None, [256], [0,256]) tot = hist[0][0] + hist[255][0] self.label1.setText('Black : ' + str(100.0 * hist[0][0] / tot) + ' %') self.label2.setText('White : ' + str(100.0 * hist[255][0] / tot) + ' %') def clearLabel(self): self.label1.setText('Black :') self.label2.setText('White :') @staticmethod def Process(src_img, info): if src_img is None: return None mtype = info['MorpholType'] it = info['MorpholIterations'] kernel = np.ones((3,3), np.uint8) if it > 0: if mtype == 0: return cv2.morphologyEx(src_img, cv2.MORPH_OPEN, kernel, iterations=it) elif mtype == 1: return cv2.morphologyEx(src_img, cv2.MORPH_CLOSE, kernel, iterations=it) else: return src_img """ Modify Widget """ class ModifyWidget(QtWidgets.QWidget): imageChanged = QtCore.pyqtSignal(np.ndarray) mouseModeChanged = QtCore.pyqtSignal(int) def __init__(self, parent): super(ModifyWidget, self).__init__(parent) self.src_img = None self.org_img = None self.mod_objects = [] self.insitu = True vbox = QtWidgets.QVBoxLayout(self) vbox.addWidget(QtWidgets.QLabel('Source weight :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(0) self.spin1.setMaximum(255) self.spin1.setValue(255) self.spin1.valueChanged[int].connect(self.setImage) vbox.addWidget(self.spin1) self.check1 = QtWidgets.QCheckBox('Contour draw') self.check1.setChecked(True) self.check1.stateChanged[int].connect(self.setImage) vbox.addWidget(self.check1) self.check2 = QtWidgets.QCheckBox('Center draw') self.check2.setChecked(True) self.check2.stateChanged[int].connect(self.setImage) vbox.addWidget(self.check2) self.check4 = QtWidgets.QCheckBox('BoundRect draw') self.check4.setChecked(True) self.check4.stateChanged[int].connect(self.setImage) vbox.addWidget(self.check4) self.check3 = QtWidgets.QCheckBox('Modify draw') self.check3.setChecked(True) self.check3.stateChanged[int].connect(self.setImage) vbox.addWidget(self.check3) vbox.addWidget(QtWidgets.QLabel('Modify color :')) hbox1 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox1) self.group1 = QtWidgets.QButtonGroup() button1 = QtWidgets.QPushButton('Black') button1.setCheckable(True) button1.setChecked(True) self.group1.addButton(button1, 0) hbox1.addWidget(button1) button2 = QtWidgets.QPushButton('White') button2.setCheckable(True) self.group1.addButton(button2, 1) hbox1.addWidget(button2) vbox.addWidget(QtWidgets.QLabel('Modify mode :')) hbox2 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox2) self.group2 = QtWidgets.QButtonGroup() self.group2.buttonClicked.connect(self.setMouseMode) button3 = QtWidgets.QPushButton('Line') button3.setCheckable(True) button3.setChecked(True) self.group2.addButton(button3, 0) hbox2.addWidget(button3) button4 = QtWidgets.QPushButton('Rect') button4.setCheckable(True) self.group2.addButton(button4, 1) hbox2.addWidget(button4) button5 = QtWidgets.QPushButton('Clear') button5.setCheckable(True) self.group2.addButton(button5, 2) hbox2.addWidget(button5) vbox.addWidget(QtWidgets.QLabel('Line width :')) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(1) self.spin2.setMaximum(16) self.spin2.setValue(1) vbox.addWidget(self.spin2) vbox.addStretch() def addLine(self, sx, sy, ex, ey): thickness = self.spin2.value() if self.group1.checkedId() == 0: self.mod_objects.append([0, int(sx), int(sy), int(ex), int(ey), 0, thickness]) elif self.group1.checkedId() == 1: self.mod_objects.append([0, int(sx), int(sy), int(ex), int(ey), 255, thickness]) self.setImage() def addRect(self, sx, sy, ex, ey): if self.group1.checkedId() == 0: self.mod_objects.append([1, int(sx), int(sy), int(ex), int(ey), 0, -1]) elif self.group1.checkedId() == 1: self.mod_objects.append([1, int(sx), int(sy), int(ex), int(ey), 255, -1]) self.setImage() def clearRect(self, sx, sy, ex, ey): ids = [] for i in range(len(self.mod_objects)): obj = self.mod_objects[i] if obj[1] > sx and obj[2] > sy and obj[3] < ex and obj[4] < ey: ids.append(i) for i in ids[::-1]: self.mod_objects.pop(i) self.setImage() def setMouseMode(self): if self.insitu: if self.group2.checkedId() == 0: self.mouseModeChanged.emit(ImageScene.mouseLine) elif self.group2.checkedId() == 1: self.mouseModeChanged.emit(ImageScene.mouseRect) elif self.group2.checkedId() == 2: self.mouseModeChanged.emit(ImageScene.mouseClear) def setInfo(self, info): self.insitu = False self.spin1.setValue(info['ModSourceWeight']) self.check1.setChecked(info['ModContourDraw']) self.check2.setChecked(info['ModCenterDraw']) self.check3.setChecked(info['ModModifyDraw']) self.check4.setChecked(info['ModBoundRectDraw']) self.group1.button(info['ModModifyColor']).setChecked(True) self.group2.button(info['ModModifyMode']).setChecked(True) self.spin2.setValue(info['ModLineWidth']) self.mod_objects = info['ModModifyObjects'] self.insitu = True def getInfo(self, with_mod=True): info = {} info['ModSourceWeight'] = self.spin1.value() info['ModContourDraw'] = self.check1.isChecked() info['ModCenterDraw'] = self.check2.isChecked() info['ModModifyDraw'] = self.check3.isChecked() info['ModBoundRectDraw'] = self.check4.isChecked() info['ModModifyColor'] = self.group1.checkedId() info['ModModifyMode'] = self.group2.checkedId() info['ModLineWidth'] = self.spin2.value() if with_mod: info['ModModifyObjects'] = self.mod_objects else: info['ModModifyObjects'] = [] return info def setImage(self): if self.insitu: dst_img = self.Process(self.src_img, self.org_img, self.getInfo()) if dst_img is not None: self.imageChanged.emit(dst_img) @staticmethod def ProcessMod(src_img, info): if src_img is None: return None mod_img = src_img.copy() for obj in info['ModModifyObjects']: if obj[0] == 0: cv2.line(mod_img, (obj[1], obj[2]), (obj[3], obj[4]), (obj[5], obj[5], obj[5]), thickness=obj[6]) elif obj[0] == 1: cv2.rectangle(mod_img, (obj[1], obj[2]), (obj[3], obj[4]), (obj[5], obj[5], obj[5]), thickness=obj[6]) return mod_img @staticmethod def Process(src_img, org_img, info): if src_img is None: return None mod_img = ModifyWidget.ProcessMod(src_img, info) conts, hier = cv2.findContours(mod_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) draw_img = np.zeros(org_img.shape, dtype=np.uint8) subw = 255 - info['ModSourceWeight'] cv2.subtract(org_img, (subw, subw, subw, subw), draw_img) if info['ModModifyDraw']: for obj in info['ModModifyObjects']: if obj[0] == 0: cv2.line(draw_img, (obj[1], obj[2]), (obj[3], obj[4]), (obj[5], obj[5], obj[5]), thickness=obj[6]) elif obj[0] == 1: cv2.rectangle(draw_img, (obj[1], obj[2]), (obj[3], obj[4]), (obj[5], obj[5], obj[5]), thickness=obj[6]) if info['ModCenterDraw']: for cont in conts: mom = cv2.moments(cont) if mom['m00'] != 0: x = int(mom['m10'] / mom['m00']) y = int(mom['m01'] / mom['m00']) cv2.line(draw_img, (x, y - 3), (x, y + 3), (0, 0, 255)) cv2.line(draw_img, (x - 3, y), (x + 3, y), (0, 0, 255)) if info['ModBoundRectDraw']: for cont in conts: rect = cv2.minAreaRect(cont) box = cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(draw_img, [box], 0, (255, 0, 0), 1) if info['ModContourDraw']: cv2.drawContours(draw_img, conts, -1, (255,255,0), 1) return draw_img """ Misc Functions """ def PlotUnitText(unit): if unit == 'um': return '$\mu$m' else: return unit def BinaryImage(info): org_img = cv2.imread(info['FileName'], 1) roi_img = FileWidget.Process(org_img, info) cont_img = ContrastWidget.Process(roi_img, info) filter_img = FilterWidget.Process(cont_img, info) thresh_img = ThresholdWidget.Process(filter_img, info) morphol_img = MorphologyWidget.Process(thresh_img, info) mod_img = ModifyWidget.ProcessMod(morphol_img, info) return mod_img """ Measure IMFP Thread """ class MeasureIMFPThread(QtCore.QThread): Progress = QtCore.pyqtSignal(int, str, list) def __init__(self, parent=None): super(MeasureIMFPThread, self).__init__(parent) self.barrier = 255 self.dpix = None self.nsample = 0 self.seed = 0 self.freq = None self.stat = None self.psmax = None self.image_info = None def setup(self, barrier, nsample, pixmax, seed, image_info): self.image_info = [] self.psmax = [0.0, 'pixel'] for info in image_info: if info['FileMeasure']: self.image_info.append(info) ps = FileWidget.PixelSize(info) if ps[0] > self.psmax[0]: self.psmax = ps self.barrier = barrier self.nsample = nsample self.freq = np.zeros((2, pixmax), dtype=np.uint32) self.seed = seed def run(self): inc = 100 / len(self.image_info) for info in self.image_info: fname = info['FileName'] ps = FileWidget.PixelSize(info) filename = QtCore.QFileInfo(fname).fileName() bimg = BinaryImage(info) dpix = self.psmax[0] / ps[0] MPImfp.measure(bimg, self.barrier, self.freq[0], dpix, self.nsample, self.seed, 0) self.seed = MPImfp.measure(bimg, self.barrier, self.freq[1], dpix, self.nsample, self.seed, 1) self.Progress.emit(inc, filename, ps) self.stat = [self.Statistics(self.freq[0], self.psmax),\ self.Statistics(self.freq[1], self.psmax)] self.finished.emit() @staticmethod def RelativeFrequency(freq): return np.array(freq, dtype=np.float) / np.sum(freq) @staticmethod def Statistics(freq, ps): tot = np.sum(freq) rfreq = np.array(freq, dtype=np.float) / tot length = np.arange(len(freq)) * ps[0] ave = np.sum(length * rfreq) var = np.sum(np.power(length - ave, 2) * rfreq) std = m.sqrt(var) return [tot, ave, std] """ IMFP Dialog """ class IMFPDialog(QtWidgets.QDialog): def __init__(self, parent): QtWidgets.QDialog.__init__(self, parent) self.setWindowTitle("IMFP") self.parent = parent self.insitu = True self.freq = None self.stat = None self.psmax = None self.measure = MeasureIMFPThread() self.measure.finished.connect(self.measureFinish) self.measure.Progress.connect(self.measureProgress) # self.pdlg = QtWidgets.QProgressDialog(self) # self.pdlg.setWindowTitle("Measuring IMFP ...") # self.pdlg.canceled.connect(self.measureCancel) hbox = QtWidgets.QHBoxLayout(self) vbox = QtWidgets.QVBoxLayout() hbox.addLayout(vbox) self.viewer = QtWidgets.QGraphicsView() self.scene = QtWidgets.QGraphicsScene() self.viewer.setScene(self.scene) self.figure = Figure() self.canvas = FigureCanvas(self.figure) self.scene.addWidget(self.canvas) hbox.addWidget(self.viewer) vbox.addWidget(QtWidgets.QLabel('Barrier :')) self.combo0 = QtWidgets.QComboBox() self.combo0.addItem('White') self.combo0.addItem('Black') vbox.addWidget(self.combo0) vbox.addWidget(QtWidgets.QLabel('NSample (x10000) :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(1) self.spin1.setMaximum(1000) self.spin1.setValue(100) vbox.addWidget(self.spin1) vbox.addWidget(QtWidgets.QLabel('NClass :')) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(100) self.spin2.setMaximum(10000) self.spin2.setValue(5000) vbox.addWidget(self.spin2) vbox.addWidget(QtWidgets.QLabel('Seed :')) self.line1 = QtWidgets.QLineEdit() seed = random.randint(1, 1000000000) self.line1.setText(str(seed)) vbox.addWidget(self.line1) self.button1 = QtWidgets.QPushButton('Measure') self.button1.clicked[bool].connect(self.measureIMFP) vbox.addWidget(self.button1) self.treeview = QtWidgets.QTreeView() self.treemodel = QtGui.QStandardItemModel() self.treemodel.setHorizontalHeaderLabels(['Files', 'PS', 'Unit']) self.treeview.setModel(self.treemodel) self.treeview.header().setStretchLastSection(False) # self.treeview.header().setResizeMode(0, QtWidgets.QHeaderView.Stretch) # self.treeview.header().setResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) # self.treeview.header().setResizeMode(2, QtWidgets.QHeaderView.ResizeToContents) vbox.addWidget(self.treeview) vbox.addWidget(QtWidgets.QLabel('Type :')) self.combo1 = QtWidgets.QComboBox() self.combo1.addItem('Single') self.combo1.addItem('Double') self.combo1.currentIndexChanged.connect(self.drawGraph) vbox.addWidget(self.combo1) vbox.addWidget(QtWidgets.QLabel('Plot NClass :')) self.spin3 = QtWidgets.QSpinBox() self.spin3.setMinimum(10) self.spin3.setMaximum(10000) self.spin3.setValue(5000) self.spin3.valueChanged.connect(self.drawGraph) vbox.addWidget(self.spin3) self.check1 = QtWidgets.QCheckBox('Relative Frequency') self.check1.setChecked(True) self.check1.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check1) self.check2 = QtWidgets.QCheckBox('Show Statistics') self.check2.setChecked(True) self.check2.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check2) vbox.addWidget(QtWidgets.QLabel('DPI :')) self.spin4 = QtWidgets.QSpinBox() self.spin4.setMinimum(10) self.spin4.setMaximum(3000) self.spin4.setValue(100) vbox.addWidget(self.spin4) vbox.addStretch() hbox1 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox1) self.button2 = QtWidgets.QPushButton('Save CSV') self.button2.clicked[bool].connect(self.saveCSV) hbox1.addWidget(self.button2) self.button3 = QtWidgets.QPushButton('Save Graph') self.button3.clicked[bool].connect(self.saveGraph) hbox1.addWidget(self.button3) self.button4 = QtWidgets.QPushButton('Close') self.button4.clicked[bool].connect(self.close) hbox1.addWidget(self.button4) def setInfo(self, info): self.combo0.setCurrentIndex(info['Barrier']) self.spin1.setValue(info['NSample']) self.spin2.setValue(info['NClass']) self.line1.setText(info['Seed']) self.insitu = False self.combo1.setCurrentIndex(info['Type']) self.spin3.setValue(info['PlotClassMax']) self.check1.setChecked(info['RelativeFrequency']) self.check2.setChecked(info['ShowStatistics']) self.insitu = True self.spin4.setValue(info['DPI']) self.treemodel.removeRows(0, self.treemodel.rowCount()) def getInfo(self): info = {} info['Barrier'] = self.combo0.currentIndex() info['NSample'] = self.spin1.value() info['NClass'] = self.spin2.value() info['Seed'] = str(self.line1.text()) info['Type'] = self.combo1.currentIndex() info['PlotClassMax'] = self.spin3.value() info['RelativeFrequency'] = self.check1.isChecked() info['ShowStatistics'] = self.check2.isChecked() info['DPI'] = self.spin4.value() return info def measureIMFP(self): if len(self.parent.image_info) > 0: if self.combo0.currentIndex() == 1: barrier = 0 else: barrier = 255 nsample = self.spin1.value() * 10000 pixmax = self.spin2.value() seed = int(self.line1.text()) self.clearFreq() self.pdlg = QtWidgets.QProgressDialog(self) self.pdlg.setWindowTitle("Measuring IMFP ...") self.pdlg.canceled.connect(self.measureCancel) self.pdlg.setValue(0) self.measure.setup(barrier, nsample, pixmax, seed, self.parent.image_info) self.measure.start() def measureProgress(self, inc, filename, ps): val = self.pdlg.value() self.pdlg.setValue(val + inc) root = self.treemodel.invisibleRootItem() item1 = QtGui.QStandardItem(filename) item1.setEditable(False) item2 = QtGui.QStandardItem('%.3f' % ps[0]) item2.setEditable(False) item3 = QtGui.QStandardItem(ps[1]) item3.setEditable(False) root.appendRow([item1, item2, item3]) def measureFinish(self): self.pdlg.close() if self.measure.freq is not None and self.measure.stat is not None: self.freq = self.measure.freq self.stat = self.measure.stat self.psmax = self.measure.psmax self.drawGraph() def measureCancel(self): self.measure.terminate() def drawIMFP(self, freq, pixmax, dsize, xlabel, ylabel, stat): self.figure.clf() ax = self.figure.add_subplot(1,1,1) length = np.arange(freq.size) * dsize ax.plot(length, freq, 'k-', lw=1) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim(0, pixmax * dsize) if stat is not None: ax.text(0.6, 0.95, 'NSample : ' + str(stat[0]), transform=ax.transAxes) ax.text(0.6, 0.9, 'Mean : ' + str(stat[1]), transform=ax.transAxes) ax.text(0.6, 0.85, 'STD : ' + str(stat[2]), transform=ax.transAxes) self.canvas.draw() def drawGraph(self): if self.freq is None or self.insitu == False: return if self.combo1.currentIndex() == 0: find = 0 xlabel = 'Single length (%s)' % PlotUnitText(self.psmax[1]) elif self.combo1.currentIndex() == 1: find = 1 xlabel = 'Double length (%s)' % PlotUnitText(self.psmax[1]) if self.check1.isChecked(): freq = MeasureIMFPThread.RelativeFrequency(self.freq[find]) ylabel = 'Relative Frequency' else: freq = self.freq[find] ylabel = 'Frequency' if self.check2.isChecked(): stat = self.stat[find] else: stat = None pixmax = self.spin3.value() self.drawIMFP(freq, pixmax, self.psmax[0], xlabel, ylabel, stat) def saveCSV(self): if self.freq is None: return fname = QtWidgets.QFileDialog.getSaveFileName(self, 'Save CSV', filter='CSV Files (*.csv);;All Files (*.*)')[0] if fname: fout = open(fname, 'w') nimg = self.treemodel.rowCount() fout.write('Images,' + str(nimg) + '\n') fout.write('ImageID, FileName, PixelSize, Unit\n') for i in range(nimg): fname = self.treemodel.item(i,0).text() ps = self.treemodel.item(i,1).text() unit = self.treemodel.item(i,2).text() fout.write('%d, %s, %s, %s\n' % (i, fname, ps, unit)) fout.write('Statistics, Total, Mean, STD\n') tt = ['Single', 'Double'] c = 0 for st in self.stat: fout.write('%s, %d, %f, %f\n' % (tt[c], st[0], st[1], st[2])) c += 1 fout.write('Class, Length, SingleF, SingleRF, DoubleF, DoubleRF\n') f0 = self.freq[0] f1 = self.freq[1] rf0 = MeasureIMFPThread.RelativeFrequency(f0) rf1 = MeasureIMFPThread.RelativeFrequency(f1) for i in range(len(f0)): length = i * self.psmax[0] fout.write('%d, %f, %d, %f, %d, %f\n' % (i, length, f0[i], rf0[i], f1[i], rf1[i])) def saveGraph(self): if self.freq is None: return fname = QtWidgets.QFileDialog.getSaveFileName(self, 'Save Graph', filter='Image Files (*.png *.pdf *.svg);;All Files (*.*)')[0] if fname: self.figure.savefig(str(fname), dpi=self.spin4.value()) def clearFreq(self): self.freq = None self.stat = None self.psmax = None self.treemodel.removeRows(0, self.treemodel.rowCount()) self.figure.clf() self.canvas.draw() """ Measure LN2D Thread """ class MeasureLN2DThread(QtCore.QThread): Progress = QtCore.pyqtSignal(int, str, list) def __init__(self, parent=None): super(MeasureLN2DThread, self).__init__(parent) self.nsample = 0 self.freq = None self.image_info = None self.ln2d = None self.af = 0 self.stat = None def setup(self, nsample, lnmax, seed, image_info): self.image_info = [] for info in image_info: if info['FileMeasure']: self.image_info.append(info) self.nsample = nsample self.freq = np.zeros((2, lnmax), dtype=np.uint32) self.ln2d = MPLn23d.ln2d_new(len(self.image_info)) self.ln2d.seed = seed def run(self): inc = 100 / len(self.image_info) for info in self.image_info: fname = info['FileName'] ps = FileWidget.PixelSize(info) filename = QtCore.QFileInfo(fname).fileName() img = BinaryImage(info) conts, hier = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) self.AddSec(self.ln2d, img, conts, ps) self.Progress.emit(inc, filename, ps) self.ln2d.measure_gc(self.freq[0]) self.ln2d.measure_random(self.freq[1], self.nsample) self.af = self.ln2d.area_fraction() self.stat = [self.Statistics(self.freq[0]), self.Statistics(self.freq[1])] self.finished.emit() @staticmethod def AddSec(ln2d, img, conts, ps): sx = img.shape[1] * ps[0] sy = img.shape[0] * ps[0] sid = ln2d.add_sec(len(conts), sx, sy) for cont in conts: mom = cv2.moments(cont) if mom['m00'] != 0: x = mom['m10'] / mom['m00'] * ps[0] y = mom['m01'] / mom['m00'] * ps[0] area = cv2.contourArea(cont) r = m.sqrt(area / m.pi) * ps[0] ln2d.add_gc(sid, x, y, r) return sid @staticmethod def RelativeFrequency(freq): return np.array(freq, dtype=np.float) / np.sum(freq) @staticmethod def Statistics(freq): tot = np.sum(freq) rfreq = np.array(freq, dtype=np.float) / tot length = np.arange(len(freq)) ave = np.sum(length * rfreq) var = np.sum(np.power(length - ave, 2) * rfreq) return [tot, ave, var] """ LN2D Dialog """ class LN2DDialog(QtWidgets.QDialog): def __init__(self, parent): QtWidgets.QDialog.__init__(self, parent) self.setWindowTitle("LN2D") self.parent = parent self.insitu = True self.freq = None self.stat = None self.measure = MeasureLN2DThread() self.measure.finished.connect(self.measureFinish) self.measure.Progress.connect(self.measureProgress) hbox = QtWidgets.QHBoxLayout(self) vbox = QtWidgets.QVBoxLayout() hbox.addLayout(vbox) self.viewer = QtWidgets.QGraphicsView() self.scene = QtWidgets.QGraphicsScene() self.viewer.setScene(self.scene) self.figure = Figure() self.canvas = FigureCanvas(self.figure) self.scene.addWidget(self.canvas) hbox.addWidget(self.viewer) vbox.addWidget(QtWidgets.QLabel('NSample (x10000) :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(1) self.spin1.setMaximum(1000) self.spin1.setValue(100) vbox.addWidget(self.spin1) vbox.addWidget(QtWidgets.QLabel('LN Max :')) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(10) self.spin2.setMaximum(1000) self.spin2.setValue(100) vbox.addWidget(self.spin2) vbox.addWidget(QtWidgets.QLabel('Seed :')) self.line1 = QtWidgets.QLineEdit() seed = random.randint(1, 1000000000) self.line1.setText(str(seed)) vbox.addWidget(self.line1) self.button1 = QtWidgets.QPushButton('Measure') self.button1.clicked[bool].connect(self.measureLN2D) vbox.addWidget(self.button1) self.treeview = QtWidgets.QTreeView() self.treemodel = QtGui.QStandardItemModel() self.treemodel.setHorizontalHeaderLabels(['Files', 'PS', 'Unit']) self.treeview.setModel(self.treemodel) self.treeview.header().setStretchLastSection(False) # self.treeview.header().setResizeMode(0, QtWidgets.QHeaderView.Stretch) # self.treeview.header().setResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) # self.treeview.header().setResizeMode(2, QtWidgets.QHeaderView.ResizeToContents) vbox.addWidget(self.treeview) vbox.addWidget(QtWidgets.QLabel('Type :')) self.combo1 = QtWidgets.QComboBox() self.combo1.addItem('Gravity center') self.combo1.addItem('Random') self.combo1.currentIndexChanged.connect(self.drawGraph) vbox.addWidget(self.combo1) vbox.addWidget(QtWidgets.QLabel('Plot LN Max :')) self.spin3 = QtWidgets.QSpinBox() self.spin3.setMinimum(1) self.spin3.setMaximum(1000) self.spin3.setValue(30) self.spin3.valueChanged.connect(self.drawGraph) vbox.addWidget(self.spin3) vbox.addWidget(QtWidgets.QLabel('Area fraction :')) self.spin4 = QtWidgets.QSpinBox() self.spin4.setMinimum(0) self.spin4.setMaximum(100) self.spin4.setValue(0) self.spin4.valueChanged.connect(self.drawGraph) vbox.addWidget(self.spin4) self.check1 = QtWidgets.QCheckBox('Relative Frequency') self.check1.setChecked(True) self.check1.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check1) self.check2 = QtWidgets.QCheckBox('Show Statistics') self.check2.setChecked(True) self.check2.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check2) self.check3 = QtWidgets.QCheckBox('Show Reference') self.check3.setChecked(True) self.check3.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check3) vbox.addWidget(QtWidgets.QLabel('DPI :')) self.spin5 = QtWidgets.QSpinBox() self.spin5.setMinimum(10) self.spin5.setMaximum(3000) self.spin5.setValue(100) vbox.addWidget(self.spin5) vbox.addStretch() hbox1 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox1) self.button2 = QtWidgets.QPushButton('Save CSV') self.button2.clicked[bool].connect(self.saveCSV) hbox1.addWidget(self.button2) self.button3 = QtWidgets.QPushButton('Save Graph') self.button3.clicked[bool].connect(self.saveGraph) hbox1.addWidget(self.button3) self.button4 = QtWidgets.QPushButton('Close') self.button4.clicked[bool].connect(self.close) hbox1.addWidget(self.button4) def setInfo(self, info): self.spin1.setValue(info['NSample']) self.spin2.setValue(info['LNMax']) self.line1.setText(info['Seed']) self.insitu = False self.combo1.setCurrentIndex(info['Type']) self.spin3.setValue(info['PlotLNMax']) self.spin4.setValue(info['AreaFraction']) self.check1.setChecked(info['RelativeFrequency']) self.check2.setChecked(info['ShowStatistics']) self.check3.setChecked(info['ShowReference']) self.insitu = True self.spin5.setValue(info['DPI']) self.treemodel.removeRows(0, self.treemodel.rowCount()) def getInfo(self): info = {} info['NSample'] = self.spin1.value() info['LNMax'] = self.spin2.value() info['Seed'] = str(self.line1.text()) info['Type'] = self.combo1.currentIndex() info['PlotLNMax'] = self.spin3.value() info['AreaFraction'] = self.spin4.value() info['RelativeFrequency'] = self.check1.isChecked() info['ShowStatistics'] = self.check2.isChecked() info['ShowReference'] = self.check3.isChecked() info['DPI'] = self.spin5.value() return info def measureLN2D(self): if len(self.parent.image_info) > 0: nsample = self.spin1.value() * 10000 lnmax = self.spin2.value() seed = int(self.line1.text()) self.clearFreq() self.pdlg = QtWidgets.QProgressDialog(self) self.pdlg.setWindowTitle("Measuring LN2D ...") self.pdlg.canceled.connect(self.measureCancel) self.pdlg.setValue(0) self.measure.setup(nsample, lnmax, seed, self.parent.image_info) self.measure.start() def measureProgress(self, inc, filename, ps): val = self.pdlg.value() self.pdlg.setValue(val + inc) root = self.treemodel.invisibleRootItem() item1 = QtGui.QStandardItem(filename) item1.setEditable(False) item2 = QtGui.QStandardItem('%.3f' % ps[0]) item2.setEditable(False) item3 = QtGui.QStandardItem(ps[1]) item3.setEditable(False) root.appendRow([item1, item2, item3]) def measureFinish(self): self.pdlg.close() if self.measure.freq is not None and self.measure.stat is not None: self.freq = self.measure.freq self.stat = self.measure.stat self.spin4.setValue(int(self.measure.af * 100.0)) self.drawGraph() def measureCancel(self): self.measure.terminate() def drawLN2D(self, freq, lnmax, xlabel, ylabel, stat, prob): self.figure.clf() ax = self.figure.add_subplot(1,1,1) ax.bar(np.arange(freq.size) - 0.4, freq, color='white', edgecolor='black') if prob != None: ax.plot(prob[0], prob[1], 'k-', lw=1) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim(-0.5, lnmax) if stat is not None: ax.text(0.5, 0.95, 'NSample : ' + str(stat[0]), transform=ax.transAxes) ax.text(0.5, 0.9, 'Av. : ' + str(stat[1]), transform=ax.transAxes) ax.text(0.5, 0.85, 'Var. : ' + str(stat[2]), transform=ax.transAxes) if prob != None: ax.text(0.5, 0.80, 'Ref. Av. : ' + str(prob[2]), transform=ax.transAxes) ax.text(0.5, 0.75, 'Ref. Var. : ' + str(prob[3]), transform=ax.transAxes) self.canvas.draw() def drawGraph(self): if self.freq is None or self.insitu == False: return if self.combo1.currentIndex() == 0: find = 0 xlabel = 'LN2D' prob = self.ln2d_prob(0.01 * self.spin4.value()) elif self.combo1.currentIndex() == 1: find = 1 xlabel = 'LN2DR' prob = self.ln2dr_prob(0.01 * self.spin4.value()) if self.check1.isChecked(): freq = self.measure.RelativeFrequency(self.freq[find]) ylabel = 'Relative Frequency' else: freq = self.freq[find] prob[1] = prob[1] * np.sum(freq) ylabel = 'Frequency' if self.check2.isChecked(): stat = self.stat[find] else: stat = None if self.check3.isChecked() is not True: prob = None lnmax = self.spin3.value() self.drawLN2D(freq, lnmax, xlabel, ylabel, stat, prob) def poisson_prob(self, a, b): x = np.arange(b - 1 + 0.1, 100, 0.1) y = np.zeros(x.size, dtype=np.float) for i in range(x.size): y[i] = m.pow(a, x[i] - b) / m.gamma(x[i] - b + 1) * m.exp(-a) return [x, y, a + b, a] def ln2d_prob(self, af): p, q, r, s = 6.1919, 5.8194, 5.1655, 5.7928 a = p * (m.exp(-q * af) - 1) + 7 b = r * (1 - m.exp(-s * af)) + 1 return self.poisson_prob(a, b) def ln2dr_prob(self, af): p, q = 5.8277, 6.0755 a = p * (m.exp(-q * af) - 1) + 7 b = p * (1 - m.exp(-q * af)) return self.poisson_prob(a, b) def saveCSV(self): fname = QtWidgets.QFileDialog.getSaveFileName(self, 'Save CSV', filter='CSV Files (*.csv);;All Files (*.*)')[0] if fname: fout = open(fname, 'w') nimg = self.treemodel.rowCount() fout.write('Images,' + str(nimg) + '\n') fout.write('ImageID, FileName, PixelSize, Unit\n') for i in range(nimg): fname = self.treemodel.item(i,0).text() ps = self.treemodel.item(i,1).text() unit = self.treemodel.item(i,2).text() fout.write('%d, %s, %s, %s\n' % (i, fname, ps, unit)) fout.write('Statistics, Total, Average, Variance\n') tt = ['GC', 'Random'] c = 0 for st in self.stat: fout.write('%s, %d, %f, %f\n' % (tt[c], st[0], st[1], st[2])) c += 1 fout.write('LN, GC, GCRF, Random, RandomRF\n') rf0 = self.measure.RelativeFrequency(self.freq[0]) rf1 = self.measure.RelativeFrequency(self.freq[1]) for i in range(len(self.freq[0])): fout.write('%d, %d, %f, %d, %f\n' % (i, self.freq[0,i], rf0[i], self.freq[1,i], rf1[i])) def saveGraph(self): fname = QtWidgets.QFileDialog.getSaveFileName(self, 'Save Graph', filter='Image Files (*.png *.pdf *.svg);;All Files (*.*)')[0] if fname: self.figure.savefig(str(fname), dpi=self.spin5.value()) def clearFreq(self): self.freq = None self.stat = None self.treemodel.removeRows(0, self.treemodel.rowCount()) self.figure.clf() self.canvas.draw() """ Measure Size Thread """ class MeasureSizeThread(QtCore.QThread): Progress = QtCore.pyqtSignal(int, str, list) def __init__(self, parent=None): super(MeasureSizeThread, self).__init__(parent) self.image_info = None self.data = None self.stat = None self.psmin = None self.afnd = None def setup(self, image_info): self.image_info = [] for info in image_info: if info['FileMeasure']: self.image_info.append(info) def run(self): inc = 100 / len(self.image_info) self.data = [] imgarea = 0.0 self.psmin = [1.0e12, 'pixel'] ind = 0 for info in self.image_info: fname = info['FileName'] filename = QtCore.QFileInfo(fname).fileName() ps = FileWidget.PixelSize(info) img = BinaryImage(info) conts, hier = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) self.data.extend(self.Measure(conts, ps, ind)) if ps[0] < self.psmin[0]: self.psmin = ps imgarea += img.shape[1] * img.shape[0] * ps[0] * ps[0] self.Progress.emit(inc, filename, ps) ind += 1 self.stat = self.Statistics(self.data) self.afnd = [self.AreaFraction(self.data, imgarea),\ self.NumberDensity(self.data, imgarea)] self.finished.emit() @staticmethod def AreaFraction(data, imgarea): ta = 0.0 for dt in data: r = dt[3] / 2.0 ta += m.pi * r * r return 100.0 * ta / imgarea @staticmethod def NumberDensity(data, imgarea): return len(data) / imgarea @staticmethod def Measure(conts, ps, index): data = [] for cont in conts: mom = cv2.moments(cont) if mom['m00'] != 0: x = mom['m10'] / mom['m00'] * ps[0] y = mom['m01'] / mom['m00'] * ps[0] area = cv2.contourArea(cont) dia = 2.0 * m.sqrt(area / m.pi) * ps[0] pos, size, ang = cv2.minAreaRect(cont) per = cv2.arcLength(cont, True) cir = 4.0 * m.pi * area / (per * per) if size[0] >= size[1]: ls = size[0] * ps[0] ns = size[1] * ps[0] asp = size[1] / size[0] ang += 90 else: ls = size[1] * ps[0] ns = size[0] * ps[0] asp = size[0] / size[1] ang += 180 data.append([index, x, y, dia, ls, ns, asp, cir, ang]) return data @staticmethod def Statistics(data): dia = np.empty(len(data)) ls = np.empty(len(data)) ns = np.empty(len(data)) asp = np.empty(len(data)) cir = np.empty(len(data)) ang = np.empty(len(data)) for i in range(len(data)): dia[i] = data[i][3] ls[i] = data[i][4] ns[i] = data[i][5] asp[i] = data[i][6] cir[i] = data[i][7] ang[i] = data[i][8] stat = [] stat.append([np.mean(dia), np.std(dia)]) stat.append([np.mean(ls), np.std(ls)]) stat.append([np.mean(ns), np.std(ns)]) stat.append([np.mean(asp), np.std(asp)]) stat.append([np.mean(cir), np.std(cir)]) stat.append([np.mean(ang), np.std(ang)]) return stat @staticmethod def Frequency(data, col, nclass, dsize): freq = np.zeros(nclass, dtype=np.uint32) for dat in data: ind = int(dat[col] / dsize) if ind < nclass: freq[ind] += 1 return freq @staticmethod def RelativeFrequency(data, col, nclass, dsize): freq = MeasureSizeThread.Frequency(data, col, nclass, dsize) rfreq = np.array(freq, dtype=np.float) / np.sum(freq) return rfreq """ Size Dialog """ class SizeDialog(QtWidgets.QDialog): def __init__(self, parent): QtWidgets.QDialog.__init__(self, parent) self.setWindowTitle("Size") self.parent = parent self.insitu = True self.data = None self.stat = None self.psmin = None self.afnd = None self.measure = MeasureSizeThread() self.measure.finished.connect(self.measureFinish) self.measure.Progress.connect(self.measureProgress) hbox = QtWidgets.QHBoxLayout(self) vbox = QtWidgets.QVBoxLayout() hbox.addLayout(vbox) self.viewer = QtWidgets.QGraphicsView() self.scene = QtWidgets.QGraphicsScene() self.viewer.setScene(self.scene) self.figure = Figure() self.canvas = FigureCanvas(self.figure) self.scene.addWidget(self.canvas) hbox.addWidget(self.viewer) self.button1 = QtWidgets.QPushButton('Measure') self.button1.clicked[bool].connect(self.measureSize) vbox.addWidget(self.button1) self.treeview = QtWidgets.QTreeView() self.treemodel = QtGui.QStandardItemModel() self.treemodel.setHorizontalHeaderLabels(['Files', 'PS', 'Unit']) self.treeview.setModel(self.treemodel) self.treeview.header().setStretchLastSection(False) # self.treeview.header().setResizeMode(0, QtWidgets.QHeaderView.Stretch) # self.treeview.header().setResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) # self.treeview.header().setResizeMode(2, QtWidgets.QHeaderView.ResizeToContents) vbox.addWidget(self.treeview) self.labelaf = QtWidgets.QLabel('AF :') vbox.addWidget(self.labelaf) self.labelnd = QtWidgets.QLabel('ND :') vbox.addWidget(self.labelnd) vbox.addWidget(QtWidgets.QLabel('Type :')) self.combo1 = QtWidgets.QComboBox() self.combo1.addItem('Diameter') self.combo1.addItem('Long side') self.combo1.addItem('Narrow side') self.combo1.addItem('Aspect ratio') self.combo1.addItem('Circularity') self.combo1.addItem('Angle') self.combo1.currentIndexChanged.connect(self.drawGraph) vbox.addWidget(self.combo1) vbox.addWidget(QtWidgets.QLabel('NClass :')) self.spin1 = QtWidgets.QSpinBox() self.spin1.setMinimum(1) self.spin1.setMaximum(500) self.spin1.setValue(100) self.spin1.valueChanged.connect(self.drawGraph) vbox.addWidget(self.spin1) vbox.addWidget(QtWidgets.QLabel('DSize :')) self.line1 = QtWidgets.QLineEdit() self.line1.setValidator(QtGui.QDoubleValidator()) self.line1.textChanged[str].connect(self.drawGraph) self.line1.setText('1.0') vbox.addWidget(self.line1) self.check1 = QtWidgets.QCheckBox('Relative Frequency') self.check1.setChecked(True) self.check1.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check1) self.check2 = QtWidgets.QCheckBox('Show Statistics') self.check2.setChecked(True) self.check2.stateChanged[int].connect(self.drawGraph) vbox.addWidget(self.check2) vbox.addWidget(QtWidgets.QLabel('DPI :')) self.spin2 = QtWidgets.QSpinBox() self.spin2.setMinimum(10) self.spin2.setMaximum(3000) self.spin2.setValue(100) vbox.addWidget(self.spin2) vbox.addStretch() hbox1 = QtWidgets.QHBoxLayout() vbox.addLayout(hbox1) self.button2 = QtWidgets.QPushButton('Save CSV') self.button2.clicked[bool].connect(self.saveCSV) hbox1.addWidget(self.button2) self.button3 = QtWidgets.QPushButton('Save Graph') self.button3.clicked[bool].connect(self.saveGraph) hbox1.addWidget(self.button3) self.button4 = QtWidgets.QPushButton('Close') self.button4.clicked[bool].connect(self.close) hbox1.addWidget(self.button4) def setInfo(self, info): self.insitu = False self.combo1.setCurrentIndex(info['Type']) self.spin1.setValue(info['NClass']) self.line1.setText(info['DSize']) self.check1.setChecked(info['RelativeFrequency']) self.check2.setChecked(info['ShowStatistics']) self.insitu = True self.spin2.setValue(info['DPI']) self.treemodel.removeRows(0, self.treemodel.rowCount()) def getInfo(self): info = {} info['Type'] = self.combo1.currentIndex() info['NClass'] = self.spin1.value() info['DSize'] = str(self.line1.text()) info['RelativeFrequency'] = self.check1.isChecked() info['ShowStatistics'] = self.check2.isChecked() info['DPI'] = self.spin2.value() return info def measureSize(self): if len(self.parent.image_info) > 0: self.clearData() self.pdlg = QtWidgets.QProgressDialog(self) self.pdlg.setWindowTitle("Measuring Size ...") self.pdlg.canceled.connect(self.measureCancel) self.pdlg.setValue(0) self.measure.setup(self.parent.image_info) self.measure.start() def measureProgress(self, inc, filename, ps): val = self.pdlg.value() self.pdlg.setValue(val + inc) root = self.treemodel.invisibleRootItem() item1 = QtGui.QStandardItem(filename) item1.setEditable(False) item2 = QtGui.QStandardItem('%.3f' % ps[0]) item2.setEditable(False) item3 = QtGui.QStandardItem(ps[1]) item3.setEditable(False) root.appendRow([item1, item2, item3]) def measureFinish(self): self.pdlg.close() if self.measure.data is not None and self.measure.stat is not None: self.data = self.measure.data self.stat = self.measure.stat self.psmin = self.measure.psmin self.afnd = self.measure.afnd self.labelaf.setText('AF : %f' % self.afnd[0]) self.labelnd.setText('ND : %f' % self.afnd[1]) self.line1.setText('%.3f' % self.psmin[0]) self.drawGraph() def measureCancel(self): self.measure.terminate() def drawSize(self, freq, nclass, dsize, xlabel, ylabel, nsample, stat): self.figure.clf() ax = self.figure.add_subplot(1,1,1) length =
np.arange(freq.size)
numpy.arange
from sklearn.datasets import load_files import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from scipy.optimize import minimize import bz2; from tqdm import tqdm; from math import exp; from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectFromModel from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier, LogisticRegression from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics from sklearn.metrics import classification_report,confusion_matrix from sklearn.calibration import CalibratedClassifierCV class Options: resample = True weighting = 'score' score="f1" opts = Options() from abstaining import aCL, NI def grid_search(P,y, verbose=False): ''' A pretty simple grid search with visualization of the 2D space''' img = np.zeros([25,25]); r = np.linspace(0,1,25); best_indices=None best_NI = 0 for i1,t1 in enumerate(r): for i2,t2 in enumerate(r): c = aCL(P,np.array([t1,t2])) ni= NI(y,c,2) this_NI = ni.NI() img[i1,i2] = this_NI if this_NI > best_NI: best_NI = this_NI best_T = np.array([t1,t2]) if verbose: print("%f %f --- %f" % (t1,t2,ni.NI())) print( "Optimization Result (Grid Search):%f %f --- %f" %(best_T[0],best_T[1], best_NI) ) return best_NI, best_T, img def optimize_kernel(x,args): ''' A kernel to be minimized, args are P and y and verbose ''' c=aCL(args[0], np.array(x)) if (args[2]): print("params",x); ni = NI(args[1],c,2) # information with respect to target. return 1-ni.NI(); # minimizing this maximizes the function def vote(X_train, y_train, X_test, y_test): for clf, name in ( (MultinomialNB(alpha=.001),"Multinomial Naive Bayes"), (MultinomialNB(alpha=.01),"Multinomial Naive Bayes"), (MultinomialNB(alpha=.1),"Multinomial Naive Bayes"), (BernoulliNB(alpha=.001), "Bernoulli Bayes"), (BernoulliNB(alpha=.01), "Bernoulli Bayes"), (BernoulliNB(alpha=.1), "Bernoulli Bayes"), #- (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), #- (Perceptron(n_iter=50), "Perceptron"), #- (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), # (KNeighborsClassifier(n_neighbors=10), "kNN"), # (RandomForestClassifier(n_estimators=100), "Random forest"), #- (ExtraTreesClassifier(n_estimators=100), "ExtraTree"), (SGDClassifier(alpha=.001, max_iter=500,loss="modified_huber",penalty="l2"), "SGD-l2"), (SGDClassifier(alpha=.001, max_iter=500,loss="modified_huber",penalty="l1"), "SGD-l1"), (LogisticRegression(penalty="l2", dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver="liblinear", max_iter=100, multi_class="ovr", verbose=0, warm_start=False, n_jobs=1), "MaxEnt"), # (SGDClassifier(alpha=.001, n_iter=500,loss="log",penalty="elasticnet"), "SGD-elastic"), # (CalibratedClassifierCV(SGDClassifier(alpha=.001, n_iter=500,penalty="elasticnet")), "SGD-elastic"), # (CalibratedClassifierCV(LinearSVC(penalty="l2", dual=False,tol=1e-3)),"L-SVC-l2"), # turns decision_function to predict_proba ): print(clf) clf.fit(X_train, y_train) pred = clf.predict(X_train) print("Training error (BIAS)") print(metrics.classification_report(y_train, pred)) pred = clf.predict(X_test) print("Validation") print(pred.shape) print(y_test.shape) print(metrics.classification_report(y_test, pred)) P = clf.predict_proba(X_test) direc = np.random.rand(10,2) res = minimize(optimize_kernel, [0.01,0.01],[P,y_test,False], method='Powell', tol=1e-4, options={'disp':False, 'direc':direc}) pred = aCL(P,res.x) print("Abstained Validation") print(metrics.classification_report(y_test, pred)) print("abstained in %d of %d cases (%f)" % (np.sum(pred==2), len(y_test),np.sum(pred==2)/ len(y_test) )) print(metrics.confusion_matrix(y_test, pred)) if opts.score=="precision": ps = metrics.precision_score(y_test, pred, average=None) elif opts.score=="f1": ps = metrics.f1_score(y_test, pred, average=None) elif opts.score=='f1squared': ps = metrics.f1_score(y_test, pred, average=None) ps = [ x*x for x in ps] elif opts.score=='f1exp': ps = metrics.f1_score(y_test, pred, average=None) ps = [ exp(x) for x in ps] else: raise "unknown score "+opts.score yield ps, pred print("Load...") with bz2.BZ2File("la-large-full/single-file.txt.bz2") as f: lines = f.readlines() print("Found %d records" % len(lines)) print("Transform to NPY") lines = [x.decode() for x in tqdm(lines)] ds = [[l.split(" ")[0], l.split(" ")[1]," ".join(l.split(" ")[2:])] for l in tqdm(lines)] ds = np.array(ds) print(ds.shape) print("Transform to sklearn sets") class TextDataset: target=None data=None target_names=None data_train = TextDataset(); data_train.target = (ds[ds[:,0] == 'left',1]=='residential')*1.0 data_train.data = ds[ds[:,0] == 'left',2] data_train.target_names = ["commercial", "residential"] data_test = TextDataset(); data_test.target=(ds[ds[:,0] == 'right',1]=='residential')*1.0 data_test.data = ds[ds[:,0] == 'right',2] data_test.target_names=["commercial", "residential"] #possibly resample here: _, counts = np.unique(data_train.target, return_counts=True) print(counts) N = np.min(counts) _, counts = np.unique(data_test.target, return_counts=True) print(counts) N = min(N, np.min(counts)) print("Sampling to %d" % (N)) np.random.seed(42); if opts.resample: print("resampling") # selector for N select = np.hstack([ np.random.choice(np.argwhere(data_train.target==0).squeeze(),N), np.random.choice(np.argwhere(data_train.target==1).squeeze(),N) ]) data_train.target = data_train.target[select] data_train.data = data_train.data[select] select = np.hstack([ np.random.choice(np.argwhere(data_test.target==0).squeeze(),N), np.random.choice(np.argwhere(data_test.target==1).squeeze(),N) ]) data_test.target = data_test.target[select] data_test.data = data_test.data[select] print("finished resampling") print("Data Setup complete") print("Vectorize") vectorizer = TfidfVectorizer(sublinear_tf=True, min_df = 0.001, max_df=0.2, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) y_train = data_train.target X_test = vectorizer.transform(data_test.data) y_test = data_test.target print(X_train.shape) print(X_test.shape) # votes = [x for x in vote(X_train,y_train, X_test,y_test)] v = [x[1] for x in votes] w_0 = [x[0][0] for x in votes] # focus weight on residential layer w_1 = [x[0][1] for x in votes] # focus weight on residential layer w_0 = w_0 / np.sum(w_0) w_1 = w_1 / np.sum(w_1) if opts.weighting is None: votes_for_0 = np.average((np.array(v) == 0),axis=0) votes_for_1 = np.average((np.array(v) == 1),axis=0) elif opts.weighting=='score': print("Using score" + opts.score) votes_for_0 = np.average((
np.array(v)
numpy.array
# -*- coding: utf-8 -*- """ Created on Fri Aug 31 12:26:53 2018 @author: <NAME> & <NAME> """ from __future__ import print_function import sklearn.ensemble from sklearn import metrics from myo import init, Hub, DeviceListener, StreamEmg from time import sleep import numpy as np import threading import collections import math import _pickle as cPickle X=[] ges3 = ["Spread Fingers", "Wave Out", "Wave In", "Fist", "Rest"] ges = ges3 class Listener(DeviceListener): def __init__(self, queue_size=1): self.lock = threading.Lock() self.emg_data_queue = collections.deque(maxlen=queue_size) self.ori_data_queue = collections.deque(maxlen=queue_size) def on_connect(self, myo, timestamp, firmware_version): myo.set_stream_emg(StreamEmg.enabled) def on_emg_data(self, myo, timestamp, emg): if(status): X.append(np.asarray(emg)) def on_orientation_data(self, myo, timestamp, quat): # print("Orientation:", quat.x, quat.y, quat.z, quat.w) with self.lock: self.ori_data_queue.append(quat) def get_ori_data(self): with self.lock: return list(self.ori_data_queue) def rms(array): n = len(array) sum = 0 for a in array: sum =+ a*a return np.sqrt((1/float(n))*sum) def iav(array): sum = 0 for a in array: sum += np.abs(a) return sum def ssi(array): sum = 0 for a in array: sum += a*a return sum def var(array): n = len(array) sum = 0 for a in array: sum += a*a return ((1/float(n-1))*sum) def tm3(array): n = len(array) print('n : ', n) sum = 0 for a in array: sum =+ a*a*a return np.power((1/float(n))*sum,1/float(3)) def wl(array): sum = 0 for a in range(0,len(array)-1): sum =+ array[a+1] - array[a] return sum def aac(array): n = len(array) sum = 0 for a in range(0,n-1): sum =+ array[0+1] - array[0] return sum/float(n) def toEuler(quat): quat = quat[0] # Roll sin = 2.0 * (quat.w * quat.w + quat.y * quat.z) cos = +1.0 - 2.0 * (quat.x * quat.x + quat.y * quat.y) roll = math.atan2(sin, cos) # Pitch pitch = math.asin(2 * (quat.w * quat.y - quat.z * quat.x)) # Yaw sin = 2.0 * (quat.w * quat.z + quat.x * quat.y) cos = +1.0 - 2.0 * (quat.y * quat.y + quat.z * quat.z) yaw = math.atan2(sin, cos) return [pitch, roll, yaw] init() hub = Hub() listener = Listener() hub.run(1000, listener) status = 9999 # load it again with open('META001.pkl', 'rb') as fid: gnb_loaded1 = cPickle.load(fid) with open('META002.pkl', 'rb') as fid: gnb_loaded2 = cPickle.load(fid) with open('META003.pkl', 'rb') as fid: gnb_loaded3 = cPickle.load(fid) X = [] #toEuler(listener.get_ori_data()) while(1): # myo = feed.get_connected_devices() if len(X) > 20: x_f_h = [] X1 =
np.asarray(X)
numpy.asarray
from openmdao.api import ExplicitComponent import numpy as np from scipy.integrate import cumtrapz from wisdem.commonse import gravity, eps, DirectionVector, NFREQ from wisdem.commonse.utilities import assembleI, unassembleI from .map_mooring import NLINES_MAX class SubstructureGeometry(ExplicitComponent): """ OpenMDAO Component class for substructure geometry for floating offshore wind turbines. """ def initialize(self): self.options.declare('nFull') self.options.declare('nFullTow') def setup(self): nFull = self.options['nFull'] nFullTow = self.options['nFullTow'] # Design variables self.add_input('main_d_full', val=np.zeros((nFull,)), units='m', desc='outer radius at each section node bottom to top (length = nsection + 1)') self.add_input('offset_d_full', val=np.zeros((nFull,)), units='m', desc='outer radius at each section node bottom to top (length = nsection + 1)') self.add_input('offset_z_nodes', val=np.zeros((nFull,)), units='m', desc='z-coordinates of section nodes (length = nsection+1)') self.add_input('offset_freeboard', val=0.0, units='m', desc='Length of column above water line') self.add_input('offset_draft', val=0.0, units='m', desc='Length of column below water line') self.add_input('main_z_nodes', val=np.zeros((nFull,)), units='m', desc='z-coordinates of section nodes (length = nsection+1)') self.add_input('fairlead_location', val=0.0, desc='Fractional length from column bottom to top for mooring line attachment') self.add_input('fairlead_offset_from_shell', val=0.0, units='m',desc='fairlead offset from shell') self.add_input('radius_to_offset_column', val=0.0, units='m',desc='Distance from main column centerpoint to offset column centerpoint') self.add_input('number_of_offset_columns', val=0, desc='Number of offset columns evenly spaced around main column') self.add_input('tower_d_full', val=np.zeros((nFullTow,)), units='m', desc='outer radius at each section node bottom to top (length = nsection + 1)') self.add_input('Rhub', val=0.0, units='m', desc='rotor hub radius') self.add_input('Hs', val=0.0, units='m', desc='significant wave height') self.add_input('max_survival_heel', val=0.0, units='deg', desc='max heel angle for turbine survival') # Output constraints self.add_output('fairlead', val=0.0, units='m', desc='Depth below water line for mooring line attachment') self.add_output('fairlead_radius', val=0.0, units='m', desc='Outer spar radius at fairlead depth (point of mooring attachment)') self.add_output('main_offset_spacing', val=0.0, desc='Radius of main and offset columns relative to spacing') self.add_output('tower_transition_buffer', val=0.0, units='m', desc='Buffer between substructure main and tower main') self.add_output('nacelle_transition_buffer', val=0.0, units='m', desc='Buffer between tower top and nacelle main') self.add_output('offset_freeboard_heel_margin', val=0.0, units='m', desc='Margin so offset column does not submerge during max heel') self.add_output('offset_draft_heel_margin', val=0.0, units='m', desc='Margin so offset column does not leave water during max heel') self.add_output('wave_height_fairlead_ratio', val=0.0, desc='Ratio of maximum wave height (avg of top 1%) to fairlead') # Derivatives self.declare_partials('*', '*', method='fd', form='central', step=1e-6) def compute(self, inputs, outputs): """Sets nodal points and sectional centers of mass in z-coordinate system with z=0 at the waterline. Nodal points are the beginning and end points of each section. Nodes and sections start at bottom and move upwards. INPUTS: ---------- params : dictionary of input parameters outputs : dictionary of output parameters OUTPUTS : none (all unknown dictionary values set) """ # Unpack variables ncolumns = int(inputs['number_of_offset_columns']) R_od_main = 0.5*inputs['main_d_full'] R_od_offset = 0.5*inputs['offset_d_full'] R_semi = inputs['radius_to_offset_column'] R_tower = 0.5*inputs['tower_d_full'] R_hub = inputs['Rhub'] z_nodes_offset = inputs['offset_z_nodes'] z_nodes_main = inputs['main_z_nodes'] location = inputs['fairlead_location'] fair_off = inputs['fairlead_offset_from_shell'] off_freeboard = inputs['offset_freeboard'] off_draft = inputs['offset_draft'] max_heel = inputs['max_survival_heel'] # Set spacing constraint outputs['main_offset_spacing'] = R_semi - R_od_main.max() - R_od_offset.max() # Determine location and radius at mooring connection point (fairlead) if ncolumns > 0: z_fairlead = location * (z_nodes_offset[-1] - z_nodes_offset[0]) + z_nodes_offset[0] outputs['fairlead_radius'] = R_semi + fair_off + np.interp(z_fairlead, z_nodes_offset, R_od_offset) else: z_fairlead = location * (z_nodes_main[-1] - z_nodes_main[0]) + z_nodes_main[0] outputs['fairlead_radius'] = fair_off + np.interp(z_fairlead, z_nodes_main, R_od_main) outputs['fairlead'] = -z_fairlead # Fairlead defined as positive below waterline outputs['wave_height_fairlead_ratio'] = inputs['Hs'] / np.abs(z_fairlead) # Constrain spar top to be at least greater than tower main outputs['tower_transition_buffer'] = R_od_main[-1] - R_tower[0] outputs['nacelle_transition_buffer'] = (R_hub + 1.0) - R_tower[-1] # Guessing at 6m size for nacelle # Make sure semi columns don't get submerged heel_deflect = R_semi*np.sin(np.deg2rad(max_heel)) outputs['offset_freeboard_heel_margin'] = off_freeboard - heel_deflect outputs['offset_draft_heel_margin'] = off_draft - heel_deflect class Substructure(ExplicitComponent): def initialize(self): self.options.declare('nFull') self.options.declare('nFullTow') def setup(self): nFull = self.options['nFull'] nFullTow = self.options['nFullTow'] # Environment self.add_input('water_density', val=0.0, units='kg/m**3', desc='density of water') self.add_input('wave_period_range_low', val=2.0, units='s', desc='Lower bound of typical ocean wavve period') self.add_input('wave_period_range_high', val=20.0, units='s', desc='Upper bound of typical ocean wavve period') # From other components self.add_input('operational_heel', val=0.0, units='deg',desc='Maximum angle of heel allowable') self.add_input('mooring_mass', val=0.0, units='kg', desc='Mass of mooring lines') self.add_input('mooring_moments_of_inertia', val=np.zeros(6), units='kg*m**2', desc='mass moment of inertia of mooring system about fairlead-centerline point [xx yy zz xy xz yz]') self.add_input('mooring_neutral_load', val=np.zeros((NLINES_MAX,3)), units='N', desc='z-force of mooring lines on structure') self.add_input('mooring_surge_restoring_force', val=0.0, units='N', desc='Restoring force from mooring system after surge motion') self.add_input('mooring_pitch_restoring_force', val=np.zeros((NLINES_MAX,3)), units='N', desc='Restoring force from mooring system after pitch motion') self.add_input('mooring_cost', val=0.0, units='USD', desc='Cost of mooring system') self.add_input('mooring_stiffness', val=np.zeros((6,6)), units='N/m', desc='Linearized stiffness matrix of mooring system at neutral (no offset) conditions.') self.add_input('fairlead', val=1.0, units='m', desc='Depth below water for mooring line attachment') self.add_input('fairlead_radius', val=0.0, units='m', desc='Outer spar radius at fairlead depth (point of mooring attachment)') self.add_input('number_of_offset_columns', val=0, desc='Number of offset columns evenly spaced around main column') self.add_input('radius_to_offset_column', val=0.0, units='m',desc='Distance from main column centerpoint to offset column centerpoint') self.add_input('main_Iwaterplane', val=0.0, units='m**4', desc='Second moment of area of waterplane cross-section') self.add_input('main_Awaterplane', val=0.0, units='m**2', desc='Area of waterplane cross-section') self.add_input('main_cost', val=0.0, units='USD', desc='Cost of spar structure') self.add_input('main_mass', val=np.zeros((nFull-1,)), units='kg', desc='mass of main column by section') self.add_input('main_freeboard', val=0.0, units='m', desc='Length of spar above water line') self.add_input('main_center_of_buoyancy', val=0.0, units='m', desc='z-position of center of column buoyancy force') self.add_input('main_center_of_mass', val=0.0, units='m', desc='z-position of center of column mass') self.add_input('main_moments_of_inertia', val=np.zeros(6), units='kg*m**2', desc='mass moment of inertia of column about main [xx yy zz xy xz yz]') self.add_input('main_added_mass', val=np.zeros(6), units='kg', desc='Diagonal of added mass matrix- masses are first 3 entries, moments are last 3') self.add_input('offset_Iwaterplane', val=0.0, units='m**4', desc='Second moment of area of waterplane cross-section') self.add_input('offset_Awaterplane', val=0.0, units='m**2', desc='Area of waterplane cross-section') self.add_input('offset_cost', val=0.0, units='USD', desc='Cost of spar structure') self.add_input('offset_mass', val=np.zeros((nFull-1,)), units='kg', desc='mass of offset column by section') self.add_input('offset_center_of_buoyancy', val=0.0, units='m', desc='z-position of center of column buoyancy force') self.add_input('offset_center_of_mass', val=0.0, units='m', desc='z-position of center of column mass') self.add_input('offset_moments_of_inertia', val=np.zeros(6), units='kg*m**2', desc='mass moment of inertia of column about main [xx yy zz xy xz yz]') self.add_input('offset_added_mass', val=np.zeros(6), units='kg', desc='Diagonal of added mass matrix- masses are first 3 entries, moments are last 3') self.add_input('tower_mass', val=0.0, units='kg', desc='Mass of tower') self.add_input('tower_shell_cost', val=0.0, units='USD', desc='Cost of tower') self.add_input('tower_I_base', val=np.zeros(6), units='kg*m**2', desc='Moments about tower main') self.add_input('tower_z_full', val=np.zeros((nFullTow,)), units='m', desc='z-coordinates of section nodes (length = nsection+1)') self.add_input('rna_mass', val=0.0, units='kg', desc='Mass of RNA') self.add_input('rna_cg', val=np.zeros(3), units='m', desc='Location of RNA center of mass relative to tower top') self.add_input('rna_I', val=np.zeros(6), units='kg*m**2', desc='Moments about turbine main') self.add_input('water_ballast_zpts_vector', val=np.zeros((nFull,)), units='m', desc='z-points of potential ballast mass') self.add_input('water_ballast_radius_vector', val=np.zeros((nFull,)), units='m', desc='Inner radius of potential ballast mass') self.add_input('structural_mass', val=0.0, units='kg', desc='Mass of whole turbine except for mooring lines') self.add_input('structure_center_of_mass', val=np.zeros(3), units='m', desc='xyz-position of center of gravity of whole turbine') self.add_input('structural_frequencies', val=np.zeros(NFREQ), units='Hz', desc='') self.add_input('z_center_of_buoyancy', val=0.0, units='m', desc='z-position of center of gravity (x,y = 0,0)') self.add_input('total_displacement', val=0.0, units='m**3', desc='Total volume of water displaced by floating turbine (except for mooring lines)') self.add_input('total_force', val=np.zeros(3), units='N', desc='Net forces on turbine') self.add_input('total_moment', val=np.zeros(3), units='N*m', desc='Moments on whole turbine') self.add_input('pontoon_cost', val=0.0, units='USD', desc='Cost of pontoon elements and connecting truss') # Outputs self.add_output('substructure_moments_of_inertia', val=np.zeros(6), units='kg*m**2', desc='mass moment of inertia of substructure (no tower or rna or mooring) [xx yy zz xy xz yz]') self.add_output('total_mass', val=0.0, units='kg', desc='total mass of spar and moorings') self.add_output('total_cost', val=0.0, units='USD', desc='total cost of spar and moorings') self.add_output('metacentric_height', val=0.0, units='m', desc='measure of static overturning stability') self.add_output('buoyancy_to_gravity', val=0.0, desc='static stability margin based on position of centers of gravity and buoyancy') self.add_output('offset_force_ratio', val=0.0, desc='total surge force divided by restoring force') self.add_output('heel_moment_ratio', val=0.0, desc='total pitch moment divided by restoring moment') self.add_output('Iwaterplane_system', val=0.0, units='m**4', desc='Second moment of area of waterplane cross-section for whole structure') self.add_output('center_of_mass', val=np.zeros(3), units='m', desc='xyz-position of center of gravity (x,y = 0,0)') self.add_output('variable_ballast_mass', val=0.0, units='kg', desc='Amount of variable water ballast') self.add_output('variable_ballast_center_of_mass', val=0.0, units='m', desc='Center of mass for variable ballast') self.add_output('variable_ballast_moments_of_inertia', val=
np.zeros(6)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import time def pixel_rgb_distance_map(img_arr, kernel, points=None): sub_pooled_scores_list = [] pooled_scores_list = [] for i in range(kernel.shape[0]): for j in range(kernel.shape[1]): if i != j: continue kpix = kernel[i, j, :] norm_matrix = np.expand_dims(
np.linalg.norm(img_arr, axis=2)
numpy.linalg.norm
import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy.sparse import csr_matrix, identity, kron from scipy.sparse.linalg import eigs, eigsh import itertools from scipy.linalg import block_diag, eig, expm, eigh from scipy.sparse import save_npz, load_npz, csr_matrix, csc_matrix import scipy.sparse as sp from scipy.special import binom import yaml import copy import warnings import os import time from .Hamiltonians import DisplacedAnharmonicOscillator, PolymerVibrations, Polymer, DiagonalizeHamiltonian, LadderOperators from .general_Liouvillian_classes import LiouvillianConstructor class OpenPolymer(Polymer,LiouvillianConstructor): def __init__(self,site_energies,site_couplings,dipoles): """Extends Polymer object to an open systems framework, using the Lindblad formalism to describe bath coupling """ super().__init__(site_energies,site_couplings,dipoles) # Values that need to be set self.optical_dephasing_gamma = 0 self.optical_relaxation_gamma = 0 self.site_to_site_dephasing_gamma = 0 self.site_to_site_relaxation_gamma = 0 self.exciton_relaxation_gamma = 0 self.exciton_exciton_dephasing_gamma = 0 self.kT = 0 def optical_dephasing_operator(self): total_deph = self.occupied_list[0].copy() for i in range(1,len(self.occupied_list)): total_deph += self.occupied_list[i] return total_deph def optical_dephasing_instructions(self): O = self.optical_dephasing_operator() gamma = self.optical_dephasing_gamma return self.make_Lindblad_instructions(gamma,O) def optical_dephasing_Liouvillian(self): instructions = self.optical_dephasing_instructions() return self.make_Liouvillian(instructions) def boltzmann_factors(self,E1,E2): if E1 == E2: return 0.5,0.5 if E1 < E2: return self.boltzmann_factors_ordered_inputs(E1,E2) else: E1_to_E2, E2_to_E1 = self.boltzmann_factors_ordered_inputs(E2,E1) return E2_to_E1, E1_to_E2 def boltzmann_factors_ordered_inputs(self,E1,E2): """E1 must be less than E2""" if self.kT == 0: return 1, 0 Z = np.exp(-E1/self.kT) + np.exp(-E2/self.kT) if np.isclose(Z,0): E2_to_E1 = 1 E1_to_E2 = 0 else: E2_to_E1 = np.exp(-E1/self.kT)/Z E1_to_E2 = np.exp(-E2/self.kT)/Z return E2_to_E1, E1_to_E2 def optical_relaxation_instructions(self): eg = 0 ins_list = [] gamma = self.optical_relaxation_gamma for n in range(len(self.energies)): en = self.energies[n] bg, bn = self.boltzmann_factors(eg,en) O = self.up_list[n] instructions2 = self.make_Lindblad_instructions(gamma * bg,O.T) ins_list += instructions2 if np.isclose(bn,0): pass else: instructions1 = self.make_Lindblad_instructions(gamma * bn,O) ins_list += instructions1 return ins_list def optical_relaxation_Liouvillian(self): inst_list = self.optical_relaxation_instructions() L = self.make_Liouvillian(inst_list) return L def site_to_site_relaxation_instructions(self): nm = itertools.combinations(range(len(self.energies)),2) i = 0 ins_list = [] gamma = self.site_to_site_relaxation_gamma for n,m in nm: en = self.energies[n] em = self.energies[m] bn,bm = self.boltzmann_factors(en,em) O = self.exchange_list[i] instructions1 = self.make_Lindblad_instructions(gamma * bn,O) instructions2 = self.make_Lindblad_instructions(gamma * bm,O.T) ins_list += instructions1 ins_list += instructions2 i+=1 return ins_list def site_to_site_relaxation_Liouvillian(self): inst_list = self.site_to_site_relaxation_instructions() L = self.make_Liouvillian(inst_list) return L def site_to_site_dephasing_operator_list(self): s_deph_list = [] for (i,j) in itertools.combinations(range(self.num_sites),2): s_deph_list.append(self.occupied_list[i] - self.occupied_list[j]) return s_deph_list def all_site_dephasing_instructions(self): s_deph_list = self.site_to_site_dephasing_operator_list() Lindblad_instruction_list = [] gamma = self.site_to_site_dephasing_gamma for O in s_deph_list: Lindblad_instruction_list += self.make_Lindblad_instructions(gamma,O) return Lindblad_instruction_list def all_site_dephasing_Liouvillian(self): inst_list = self.all_site_dephasing_instructions() L = self.make_Liouvillian(inst_list) return L/(2*self.num_sites) def set_electronic_dissipation_instructions(self): inst_list = [] if self.optical_dephasing_gamma != 0: inst_list += self.optical_dephasing_instructions() if self.site_to_site_dephasing_gamma != 0: inst_list += self.all_site_dephasing_instructions() if self.site_to_site_relaxation_gamma != 0: inst_list += self.site_to_site_relaxation_instructions() if self.optical_relaxation_gamma != 0: inst_list += self.optical_relaxation_instructions() self.electronic_dissipation_instructions = inst_list def make_manifold_hamiltonian_instructions(self,ket_manifold,bra_manifold): Hket = self.get_electronic_hamiltonian(manifold_num = ket_manifold) Hbra = self.get_electronic_hamiltonian(manifold_num = bra_manifold) return self.make_commutator_instructions2(-1j*Hket,-1j*Hbra) def make_total_Liouvillian(self): drho = self.make_Liouvillian(self.make_manifold_hamiltonian_instructions('all','all')) if self.num_sites > 1: drho += self.all_exciton_dephasing_Liouvillian() drho += self.exciton_relaxation_Liouvillian() # drho += self.optical_relaxation_Liouvillian() drho += self.optical_dephasing_Liouvillian() self.L = drho def eigfun(self,L,*,check_eigenvectors = True,invert = True,populations_only = False): eigvals, eigvecs = np.linalg.eig(L) eigvals = np.round(eigvals,12) sort_indices = eigvals.argsort() eigvals.sort() eigvecs = eigvecs[:,sort_indices] for i in range(eigvals.size): max_index = np.argmax(np.abs(eigvecs[:,i])) if np.real(eigvecs[max_index,i]) < 0: eigvecs[:,i] *= -1 if eigvals[i] == 0: # eigenvalues of 0 correspond to thermal distributions, # which should have unit trace in the Hamiltonian space if populations_only: trace_norm = eigvecs[:,i].sum() eigvecs[:,i] = eigvecs[:,i] / trace_norm else: shape = int(np.sqrt(eigvals.size)) trace_norm = eigvecs[:,i].reshape(shape,shape).trace() if np.isclose(trace_norm,0): pass else: eigvecs[:,i] = eigvecs[:,i] / trace_norm if invert: eigvecs_left = np.linalg.pinv(eigvecs) else: eigvals_left, eigvecs_left = np.linalg.eig(L.T) eigvals_left = np.round(eigvals_left,12) sort_indices_left = eigvals_left.argsort() eigvals_left.sort() eigvecs_left = eigvecs_left[:,sort_indices_left] eigvecs_left = eigvecs_left.T for i in range(eigvals_left.size): norm = np.dot(eigvecs_left[i,:],eigvecs[:,i]) eigvecs_left[i,:] *= 1/norm if check_eigenvectors: LV = L.dot(eigvecs) D = eigvecs_left.dot(LV) if np.allclose(D,np.diag(eigvals),rtol=1E-10,atol=1E-10): pass else: warnings.warn('Using eigenvectors to diagonalize Liouvillian does not result in the expected diagonal matrix to tolerance, largest deviation is {}'.format(np.max(np.abs(D - np.diag(eigvals))))) self.eigenvalues = eigvals self.eigenvectors = {'left':eigvecs_left,'right':eigvecs} return eigvals, eigvecs, eigvecs_left def save_L(self,dirname): save_npz(os.path.join(dirname,'L.npz'),csr_matrix(self.L)) def save_L_by_manifold(self): np.savez(os.path.join(self.base_path,'L.npz'),**self.L_by_manifold) def save_eigsystem(self,dirname): np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds = self.eigenvectors['right']) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds = self.eigenvectors['left']) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds = self.eigenvalues) def save_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu.shape[0]) mu_ket = np.kron(self.mu,II.T) mu_bra = np.kron(II,self.mu.T) mu_mask_tol = 10 mu_ket_t = np.dot(np.dot(evl,mu_ket),ev) mu_ket_3d = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_ket_3d[:,:,0] = mu_ket_t mu_bra_t = np.dot(np.dot(evl,mu_bra),ev) mu_bra_3d = np.zeros((mu_bra_t.shape[0],mu_bra_t.shape[0],3),dtype='complex') mu_bra_3d[:,:,0] = mu_bra_t if mask: ket_mask = np.zeros(mu_ket_t.shape,dtype='bool') ket_mask[:,:] = np.round(mu_ket_t,mu_mask_tol)[:,:] mu_ket_t_masked = mu_ket_t * ket_mask mu_ket_3d_masked = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_ket_3d_masked[:,:,0] = mu_ket_t_masked bra_mask = np.zeros(mu_bra_t.shape,dtype='bool') bra_mask[:,:] = np.round(mu_bra_t,mu_mask_tol)[:,:] mu_bra_t_masked = mu_bra_t * bra_mask mu_bra_3d_masked = np.zeros((mu_ket_t.shape[0],mu_ket_t.shape[0],3),dtype='complex') mu_bra_3d_masked[:,:,0] = mu_bra_t_masked np.savez(os.path.join(dirname,'mu.npz'),ket=mu_ket_3d,bra=mu_bra_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket=ket_mask,bra=bra_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket=mu_ket_3d_masked,bra=mu_bra_3d_masked) else: np.savez(os.path.join(dirname,'mu.npz'),ket=mu_ket_3d,bra=mu_bra_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) def save_RWA_mu(self,dirname,*,mask=True): evl = self.eigenvectors['left'] ev = self.eigenvectors['right'] II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up = np.kron(self.mu_ket_up,II.T) mu_ket_down = np.kron(self.mu_ket_up.T,II.T) mu_bra_up = np.kron(II,self.mu_ket_up) mu_bra_down = np.kron(II,self.mu_ket_up.T) mu_mask_tol = 10 mu_ket_up_t = np.dot(np.dot(evl,mu_ket_up),ev) mu_ket_up_3d = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d[:,:,0] = mu_ket_up_t mu_bra_up_t = np.dot(np.dot(evl,mu_bra_up),ev) mu_bra_up_3d = np.zeros((mu_bra_up_t.shape[0],mu_bra_up_t.shape[0],3),dtype='complex') mu_bra_up_3d[:,:,0] = mu_bra_up_t mu_ket_down_t = np.dot(np.dot(evl,mu_ket_down),ev) mu_ket_down_3d = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d[:,:,0] = mu_ket_down_t mu_bra_down_t = np.dot(np.dot(evl,mu_bra_down),ev) mu_bra_down_3d = np.zeros((mu_bra_down_t.shape[0],mu_bra_down_t.shape[0],3),dtype='complex') mu_bra_down_3d[:,:,0] = mu_bra_down_t if mask: ket_up_mask = np.zeros(mu_ket_up_t.shape,dtype='bool') ket_up_mask[:,:] = np.round(mu_ket_up_t,mu_mask_tol)[:,:] mu_ket_up_t_masked = mu_ket_up_t * ket_up_mask mu_ket_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_ket_up_3d_masked[:,:,0] = mu_ket_up_t_masked bra_up_mask = np.zeros(mu_bra_up_t.shape,dtype='bool') bra_up_mask[:,:] = np.round(mu_bra_up_t,mu_mask_tol)[:,:] mu_bra_up_t_masked = mu_bra_up_t * bra_up_mask mu_bra_up_3d_masked = np.zeros((mu_ket_up_t.shape[0],mu_ket_up_t.shape[0],3),dtype='complex') mu_bra_up_3d_masked[:,:,0] = mu_bra_up_t_masked ket_down_mask = np.zeros(mu_ket_down_t.shape,dtype='bool') ket_down_mask[:,:] = np.round(mu_ket_down_t,mu_mask_tol)[:,:] mu_ket_down_t_masked = mu_ket_down_t * ket_down_mask mu_ket_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_ket_down_3d_masked[:,:,0] = mu_ket_down_t_masked bra_down_mask = np.zeros(mu_bra_down_t.shape,dtype='bool') bra_down_mask[:,:] = np.round(mu_bra_down_t,mu_mask_tol)[:,:] mu_bra_down_t_masked = mu_bra_down_t * bra_down_mask mu_bra_down_3d_masked = np.zeros((mu_ket_down_t.shape[0],mu_ket_down_t.shape[0],3),dtype='complex') mu_bra_down_3d_masked[:,:,0] = mu_bra_down_t_masked np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) np.savez(os.path.join(dirname,'mu_boolean.npz'),ket_up=ket_up_mask,bra_up=bra_up_mask, ket_down=ket_down_mask,bra_down=bra_down_mask) np.savez(os.path.join(dirname,'mu_pruned.npz'),ket_up=mu_ket_up_3d_masked, bra_up=mu_bra_up_3d_masked,ket_down=mu_ket_down_3d_masked, bra_down=mu_bra_down_3d_masked) else: np.savez(os.path.join(dirname,'mu.npz'),ket_up=mu_ket_up_3d,bra_up=mu_bra_up_3d, ket_down=mu_ket_down_3d,bra_down=mu_bra_down_3d) np.savez(os.path.join(dirname,'eigenvalues.npz'),all_manifolds=self.eigenvalues) np.savez(os.path.join(dirname,'right_eigenvectors.npz'),all_manifolds=ev) np.savez(os.path.join(dirname,'left_eigenvectors.npz'),all_manifolds=evl) def save_RWA_mu_site_basis(self,dirname): II = np.eye(self.mu_ket_up.shape[0]) mu_ket_up =
np.kron(self.mu_ket_up,II.T)
numpy.kron
import os from rpgpy import spectra2moments from rpgpy import spcutil from rpgpy import read_rpg import numpy as np from time import time from numpy.testing import assert_array_almost_equal FILE_PATH = os.path.dirname(os.path.realpath(__file__)) class TestFindPeaks: def test_main_peak_1(self): data = np.array([0, 0, 0, 0.3, 0, 0, 0.2, 0.3, 0.5, 0.2, 0, 0, 0, 0.2]) ind_left, ind_right = spcutil.find_peak_edges(data) assert ind_left == 6 assert ind_right == 10 def test_find_single_value(self): data = np.array([0, 0, 0, 0.3, 0, 0]) ind_left, ind_right = spcutil.find_peak_edges(data) assert ind_left == 3 assert ind_right == 4 def test_find_left_edge(self): data = np.array([0.1, 0.2, 0.3, 0.5, 0, 0]) ind_left, ind_right = spcutil.find_peak_edges(data) assert ind_left == 0 assert ind_right == 4 def test_find_right_edge(self): data = np.array([0, 0.2, 0.3, 0.5, 0.4, 0.3]) ind_left, ind_right = spcutil.find_peak_edges(data) assert ind_left == 1 assert ind_right == 6 # is this OK, or should be 5 ? def test_find_peak_with_secondary_peak(self): data =
np.array([0, 0.1, 0.3, 0.2, 0.35, 0.5, 0.3, 0.1, 0])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 16 08:50:54 2018 @author: nsde """ #%% Packages to use from __future__ import print_function import tensorflow as tf import os import numpy as np import datetime from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier from sklearn.decomposition import PCA from dlmnn.helper.tf_funcs import tf_makePairwiseFunc from dlmnn.helper.utility import get_optimizer, progressBar from dlmnn.helper.neighbor_funcs import _weight_func as weight_func from dlmnn.helper.logger import stat_logger #%% Main Class class lmnn(object): def __init__(self, tf_transformer, margin=1, session=None, dir_loc=None, optimizer='adam', verbose = 1): ''' Class for running the Large Margin Nearest Neighbour algorithm. Arguments: tf_transformer: a callable function that takes a single i.e: X_trans = tf_transformer(X). It is this function that is optimized during training, and should therefore include some trainable parameters margin: margin threshold for the algorithm. Determines the scaling of the feature space session: tensorflow session which the computations are runned within. If None then a new is opened dir_loc: directory to store tensorboard files. If None, a folder will be created named lmnn optimizer: str, which optimizer to use for the training verbose: integer, in range [0,2], controls the level of output ''' # Initilize session and tensorboard dirs self.trans_name = tf_transformer.__name__ self.session = tf.Session() if session is None else session self.dir_loc = (dir_loc+'/'+self.trans_name) if dir_loc is not None \ else self.trans_name self.train_writer = None self.val_writer = None # Set variables for later training self.optimizer = get_optimizer(optimizer) self.verbose = verbose self.margin = margin # Set transformer and create a pairwise distance metric function self.transformer = tf_transformer self.metric_func = tf_makePairwiseFunc(tf_transformer) def tf_findImposters(self, X, y, tN, margin=None): ''' Function for finding imposters in LMNN For a set of observations X and that sets target neighbours in tN, find all points that violate the following two equations D(i, imposter) <= D(i, target_neighbour) + 1, y(imposter) == y(target_neibour) for a given distance measure Arguments: X: N x ? matrix or tensor of data y: N x 1 vector, with class labels L: d x d matrix, mahalanobis parametrization where M = L^T*L tN: (N*k) x 2 matrix, where the first column in each row is the observation index and the second column is the index of one of the k target neighbours Output: tup: M x 3, where M is the number of triplets that where found to fullfill the imposter equation. First column in each row is the observation index, second column is the target neighbour index and the third column is the imposter index ''' with tf.name_scope('findImposters'): margin = self.margin if margin is None else margin N = tf.shape(X)[0] n_tN = tf.shape(tN)[0] # Calculate distance D = self.metric_func(X, X) # d x d # Create all combination of [points, targetneighbours, imposters] possible_imp_array = tf.expand_dims(tf.reshape( tf.ones((n_tN, N), tf.int32)*tf.range(N), (-1, )), 1) tN_tiled = tf.reshape(tf.tile(tN, [1, N]), (-1, 2)) full_idx = tf.concat([tN_tiled, possible_imp_array], axis=1) # Find distances for all combinations tn_index = full_idx[:,:2] im_index = full_idx[:,::2] D_tn = tf.gather_nd(D, tn_index) D_im = tf.gather_nd(D, im_index) # Find actually imposter by evaluating equation y = tf.cast(y, tf.float32) # tf.gather do not support first input.dtype=int32 on GPU cond = tf.logical_and(D_im <= margin + D_tn, tf.logical_not(tf.equal( tf.gather(y,tn_index[:,1]),tf.gather(y,im_index[:,1])))) full_idx = tf.cast(full_idx, tf.float32) # tf.gather do not support first input.dtype=int32 on GPU tup = tf.boolean_mask(full_idx, cond) tup = tf.cast(tup, tf.int32) # tf.gather do not support first input.dtype=int32 on GPU return tup def tf_LMNN_loss(self, X, y, tN, tup, mu, margin=None): ''' Calculates the LMNN loss (eq. 13 in paper) Arguments: X: N x ? matrix or tensor of data y: N x 1 vector, with class labels tN: (N*k) x 2 matrix, with targetmetric, neighbour index tup: ? x 3, where M is the number of triplets that where found to fullfill the imposter equation. First column in each row is the observation index, second column is the target neighbour index and the third column is the imposter index mu: scalar, weighting coefficient between the push and pull term margin: scalar, margin for the algorithm Output: loss: scalar, the LMNN loss D_pull: ? x 1 vector, with pull distance terms D_tN: ? x 1 vector, with the first push distance terms D_im: ? x 1 vector, with the second push distance terms ''' with tf.name_scope('LMNN_loss'): margin = self.margin if margin is None else margin # Calculate distance D = self.metric_func(X, X) # N x N # Gather relevant distances D_pull = tf.gather_nd(D, tN) D_tn = tf.gather_nd(D, tup[:,:2]) D_im = tf.gather_nd(D, tup[:,::2]) # Calculate pull and push loss pull_loss = tf.reduce_sum(D_pull) push_loss = tf.reduce_sum(margin + D_tn - D_im) # Total loss loss = (1-mu) * pull_loss + mu * push_loss return loss, D_pull, D_tn, D_im def fit(self, Xtrain, ytrain, k, mu=0.5, maxEpoch=100, learning_rate=1e-4, batch_size=50, val_set=None, run_id = None, snapshot=10): """ Function for training the LMNN algorithm Arguments: Xtrain: Tensor of data [N, ?] ytrain: Vector of labels [N, ] k: integer, number of target neighbours mu: float, in interval [0, 1]. Weighting between push and pull term maxEpoch: integer, maximum number of iterations to train learning_rate: float>0, learning rate for optimizer batch_size: integer, number of samples to evaluate in each step val_set: tuple, with two elements with same format as Xtrain, ytrain run_id: str, name of the folder where results are stored snapshot: integer, determining how often the accuracy should be evaluated """ # Tensorboard file writers run_id = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M') if run_id \ is None else run_id loc = self.dir_loc + '/' + run_id if not os.path.exists(self.dir_loc): os.makedirs(self.dir_loc) if self.verbose == 2: self.train_writer = tf.summary.FileWriter(loc + '/train') # Check for validation set validation = False if val_set: validation = True Xval, yval = val_set if self.verbose == 2: self.val_writer = tf.summary.FileWriter(loc + '/val') # Training parameters Xtrain = Xtrain.astype('float32') ytrain = ytrain.astype('int32') N_train = Xtrain.shape[0] n_batch_train = int(np.ceil(N_train / batch_size)) print(50*'-') print('Number of training samples: ', N_train) if validation: Xval = Xval.astype('float32') yval = yval.astype('int32') N_val = Xval.shape[0] n_batch_val = int(np.ceil(N_val / batch_size)) print('Number of validation samples: ', N_val) print(50*'-') # Target neighbours tN = self.findTargetNeighbours(Xtrain, ytrain, k, name='Training') if validation: tN_val = self.findTargetNeighbours(Xval, yval, k, name='Validation') # Placeholders for data global_step = tf.Variable(0, trainable=False) Xp = tf.placeholder(tf.float32, shape=(None, *Xtrain.shape[1:]), name='In_features') yp = tf.placeholder(tf.int32, shape=(None,), name='In_targets') tNp = tf.placeholder(tf.int32, shape=(None, 2), name='In_targetNeighbours') # Imposters tup = self.tf_findImposters(Xp, yp, tNp) # Loss func and individual distance terms LMNN_loss, D_1, D_2, D_3 = self.tf_LMNN_loss(Xp, yp, tNp, tup, mu) # Optimizer optimizer = self.optimizer(learning_rate = learning_rate) trainer = optimizer.minimize(LMNN_loss, global_step=global_step) # Summaries n_tup = tf.shape(tup)[0] true_imp = tf.cast(tf.less(D_3, D_2), tf.float32) tf.summary.scalar('Loss', LMNN_loss) tf.summary.scalar('Num_imp', n_tup) tf.summary.scalar('Loss_pull', tf.reduce_sum(D_1)) tf.summary.scalar('Loss_push', tf.reduce_sum(self.margin + D_2 - D_3)) tf.summary.histogram('Rel_push_dist', D_3 / (D_2 + self.margin)) tf.summary.scalar('True_imp', tf.reduce_sum(true_imp)) tf.summary.scalar('Frac_true_imp', tf.reduce_mean(true_imp)) merged = tf.summary.merge_all() # Initilize init = tf.global_variables_initializer() self.session.run(init) if self.verbose==2: self.train_writer.add_graph(self.session.graph) # Training stats = stat_logger(maxEpoch, n_batch_train, verbose=self.verbose) stats.on_train_begin() # Start training for e in range(maxEpoch): stats.on_epoch_begin() # Start epoch # Permute target neighbours tN = np.random.permutation(tN) # Do backpropagation for b in range(n_batch_train): stats.on_batch_begin() # Start batch # Sample target neighbours and extract data from these tN_batch = tN[k*batch_size*b:k*batch_size*(b+1)] idx, inv_idx =
np.unique(tN_batch, return_inverse=True)
numpy.unique
# -*- coding: utf-8 -*- """ Created on Sat Jul 29 13:35:12 2017 @author: yu """ import os import numpy as np import scipy.linalg as linalg import cv2 import operator import matplotlib.pyplot as plt def ComputeNorm(x): # function r=ComputeNorm(x) # computes vector norms of x # x: d x m matrix, each column a vector # r: 1 x m matrix, each the corresponding norm (L2) [row, col] = x.shape r = np.zeros((1,col)) for i in range(col): r[0,i] = linalg.norm(x[:,i])#求每一个列向量的范数 return r def myLDA(A,Labels): # function [W,m]=myLDA(A,Label) # computes LDA of matrix A # A: D by N data matrix. Each column is a random vector # W: D by K matrix whose columns are the principal components in decreasing order # m: mean of each projection classLabels = np.unique(Labels) classNum = len(classLabels) dim,datanum = A.shape totalMean = np.mean(A,1) partition = [np.where(Labels==label)[0] for label in classLabels] classMean = [(np.mean(A[:,idx],1),len(idx)) for idx in partition] #compute the within-class scatter matrix W =
np.zeros((dim,dim))
numpy.zeros
from __future__ import print_function import string import sys import os from collections import deque import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.switch_backend('Agg') import tensorflow as tf import keras keras.backend.image_data_format() from keras import backend as K from keras import regularizers from keras.layers import Input, Dense, Reshape, Lambda, Conv1D, Flatten, MaxPooling1D, UpSampling1D, GlobalMaxPooling1D from keras.layers import LSTM, Bidirectional, BatchNormalization, Dropout, Concatenate, Embedding, Activation, Dot, dot from keras.models import Model, clone_model, Sequential from keras.optimizers import Adam from keras.callbacks import EarlyStopping,ModelCheckpoint from keras.constraints import unitnorm from keras_layer_normalization import LayerNormalization tf.keras.backend.set_floatx('float32') import sklearn as sk from sklearn.base import BaseEstimator, _pprint from sklearn.utils import check_array, check_random_state from sklearn.utils.validation import check_is_fitted from sklearn.preprocessing import StandardScaler from sklearn.manifold import LocallyLinearEmbedding, MDS, Isomap, TSNE from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA, SparsePCA, TruncatedSVD, FastICA, NMF, MiniBatchDictionaryLearning from sklearn.random_projection import GaussianRandomProjection, SparseRandomProjection from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import KFold, GroupKFold, train_test_split from sklearn.metrics import mean_squared_error, explained_variance_score, mean_absolute_error, median_absolute_error, r2_score from sklearn.metrics import average_precision_score, precision_score, recall_score, f1_score, roc_auc_score, matthews_corrcoef from sklearn.metrics import roc_curve, precision_recall_curve, RocCurveDisplay, PrecisionRecallDisplay from sklearn.metrics import roc_auc_score,accuracy_score,matthews_corrcoef from scipy import stats from scipy.stats import multivariate_normal, kurtosis, skew, pearsonr, spearmanr import processSeq from processSeq import load_seq_1, kmer_dict, load_signal_1, load_seq_2, load_seq_2_kmer, load_seq_altfeature import xgboost import pickle import os.path from optparse import OptionParser import time from timeit import default_timer as timer import utility_1 from utility_1 import mapping_Idx import h5py import json # generate sequences # idx_sel_list: chrom, serial # seq_list: relative positions def generate_sequences(idx_sel_list, gap_tol=5, region_list=[]): chrom = idx_sel_list[:,0] chrom_vec = np.unique(chrom) chrom_vec = np.sort(chrom_vec) seq_list = [] print(len(chrom),chrom_vec) for chrom_id in chrom_vec: b1 = np.where(chrom==chrom_id)[0] t_serial = idx_sel_list[b1,1] prev_serial = t_serial[0:-1] next_serial = t_serial[1:] distance = next_serial-prev_serial b2 = np.where(distance>gap_tol)[0] if len(b2)>0: if len(region_list)>0: # print('region_list',region_list,len(b2)) b_1 = np.where(region_list[:,0]==chrom_id)[0] # print(b2) t_serial = idx_sel_list[b2,1] if len(b_1)>0: # b2 = np.setdiff1d(b2,region_list[b_1,1]) # print(region_list,region_list[b_1,1],len(b2)) t_id1 = utility_1.mapping_Idx(t_serial,region_list[b_1,1]) t_id1 = t_id1[t_id1>=0] t_id2 = b2[t_id1] b2 = np.setdiff1d(b2,t_id2) # print(len(b2)) # print(idx_sel_list[b2]) # return # print('gap',len(b2)) if len(b2)>0: t_seq = list(np.vstack((b2[0:-1]+1,b2[1:])).T) t_seq.insert(0,np.asarray([0,b2[0]])) t_seq.append(np.asarray([b2[-1]+1,len(b1)-1])) else: t_seq = [np.asarray([0,len(b1)-1])] # print(t_seq) # print(chrom_id,len(t_seq),max(distance)) seq_list.extend(b1[np.asarray(t_seq)]) return np.asarray(seq_list) # select sample def sample_select2a1(x_mtx, y, idx_sel_list, seq_list, tol=5, L=5): num_sample = len(idx_sel_list) num1 = len(seq_list) size1 = 2*L+1 print(num_sample,num1,size1) feature_dim = x_mtx.shape[1] vec1_local = np.zeros((num_sample,size1),dtype=int) vec1_serial = np.zeros((num_sample,size1),dtype=int) feature_mtx = np.zeros((num_sample,size1,feature_dim),dtype=np.float32) signal_mtx = np.zeros((num_sample,size1)) ref_serial = idx_sel_list[:,1] id_vec = np.zeros(num_sample,dtype=np.int8) for i in range(0,num1): s1, s2 = seq_list[i][0], seq_list[i][1]+1 serial = ref_serial[s1:s2] id_vec[s1:s2] = 1 # print('start stop',s1,s2,serial) num2 = len(serial) t1 = np.outer(list(range(s1,s2)),np.ones(size1)) t2 = t1 + np.outer(np.ones(num2),list(range(-L,L+1))) t2[t2<s1] = s1 t2[t2>=s2] = s2-1 idx = np.int64(t2) # print(idx) vec1_local[s1:s2] = idx vec1_serial[s1:s2] = ref_serial[idx] feature_mtx[s1:s2] = x_mtx[idx] signal_mtx[s1:s2] = y[idx] # if i%10000==0: # print(i,num2,vec1_local[s1],vec1_serial[s1]) id1 = np.where(id_vec>0)[0] num2 = len(id1) if num2<num_sample: feature_mtx, signal_mtx = feature_mtx[id1], signal_mtx[id1] # vec1_serial, vec1_local = vec1_serial[id1], vec1_local[id1] vec1_serial = vec1_serial[id1] id_1 = -np.ones(sample_num,dtype=np.int64) id_1[id1] = np.arange(num2) vec1_local = id_1[vec1_local] b1 = np.where(vec1_local<0)[0] if len(b1)>0: print('error!',b1) return -1 # signal_mtx = signal_mtx[:,np.newaxis] signal_mtx = np.expand_dims(signal_mtx, axis=-1) # signal_mtx = np.expand_dims(signal_ntx, axis=-1) return feature_mtx, signal_mtx, vec1_serial, vec1_local def score_2a(y, y_predicted): score1 = mean_squared_error(y, y_predicted) score2 = pearsonr(y, y_predicted) score3 = explained_variance_score(y, y_predicted) score4 = mean_absolute_error(y, y_predicted) score5 = median_absolute_error(y, y_predicted) score6 = r2_score(y, y_predicted) score7, pvalue = spearmanr(y,y_predicted) # vec1 = [score1, score2[0], score2[1], score3, score4, score5, score6] vec1 = [score1, score2[0], score2[1], score3, score4, score5, score6, score7, pvalue] return vec1 def read_phyloP(species_name): path1 = './' filename1 = '%s/estimate_rt/estimate_rt_%s.txt'%(path1,species_name) # filename2a = 'test_seq_%s.1.txt'%(species_name) file1 = pd.read_csv(filename1,sep='\t') col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) chrom_ori, start_ori, stop_ori, serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1['serial']) num_sample = len(chrom_ori) chrom_vec = np.unique(chrom_ori) chrom_vec = ['chr22'] for chrom_id in chrom_vec: filename1 = '%s/phyloP/hg19.phyloP100way.%s.bedGraph'%(path1,chrom_id) data1 = pd.read_csv(filename1,header=None,sep='\t') chrom, start, stop, score = data1[0], data1[1], data1[2], data1[3] len1 = stop-start b = np.where(chrom_ori==chrom_id)[0] num_sample1 = len(b) vec1 = np.zeros((num_sample1,16)) print(chrom_id,len(chrom),len(b)) cnt = 0 b1 = [-1] for i in b: t1 = b1[-1]+1 b1 = np.where((start[t1:]>=start_ori[i])&(stop[t1:]<stop_ori[i]))[0]+t1 if len(b1)==0: b1 = [-1] continue t_len1, t_score = np.asarray(len1[b1]), np.asarray(score[b1]) s1 = 0 s2 = np.sum(t_len1) i1 = cnt for j in range(0,12): temp1 = (j-8)*2.5 b2 = np.where((t_score<temp1+2.5)&(t_score>=temp1))[0] print(b2) vec1[i1,j] = np.sum(t_len1[b2])*1.0/s2 s1 = s1+temp1*vec1[i1,j] vec1[i1,12] = s1 # average vec1[i1,13] = np.median(t_score) vec1[i1,14] = np.max(t_score) vec1[i1,15] = np.min(t_score) cnt += 1 if cnt%1000==0: print(cnt,len(b1),s2,vec1[i1,12:16]) break # dict1 = dict() # dict1['vec'], dict1['index'] = vec1,b # np.save('phyloP_%s'%(chrom_id),dict1,allow_pickle=True) fields = ['index'] for j in range(0,12): temp1 = (j-8)*2.5 fields.append('%s-%s'%(temp1,temp1+2.5)) fields.extend(range(0,4)) data1 = pd.DataFrame(data = np.hstack((b[:,np.newaxis],vec1)),columns=fields) data1.to_csv('phyloP_%s.txt'%(chrom_id),sep='\t',index=False) return vec1 def read_phyloP_1(ref_filename,header,file_path,chrom_vec,n_level=15,offset=10,magnitude=2): file1 = pd.read_csv(ref_filename,header=header,sep='\t') # col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) colnames = list(file1) col1, col2, col3, col4 = colnames[0], colnames[1], colnames[2], colnames[3] chrom_ori, start_ori, stop_ori, serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1[col4]) num_sample = len(chrom_ori) # chrom_vec = np.unique(chrom_ori) # chrom_vec = [chrom_id] # n_level, offset, magnitude = 15, 10, 2 score_max = (n_level-offset)*magnitude for chrom_id in chrom_vec: # filename1 = '%s/hg19.phyloP100way.%s.bedGraph'%(file_path,chrom_id) filename1 = '%s/chr%s.phyloP100way.bedGraph'%(file_path,chrom_id) data1 = pd.read_csv(filename1,header=None,sep='\t') chrom, start, stop, score = data1[0], data1[1], data1[2], data1[3] len1 = stop-start chrom_id1 = 'chr%s'%(chrom_id) b = np.where(chrom_ori==chrom_id1)[0] num_sample1 = len(b) vec1 = np.zeros((num_sample1,n_level+4)) print(chrom_id,len(chrom),len(b)) cnt = 0 m_idx = len(start)-1 start_idx = 0 print("number of regions", len(b)) for i in b: t_start, t_stop = start_ori[i], stop_ori[i] # position of zero region position = [t_start,t_stop] if start_idx<=m_idx: b1, start_idx = utility_1.search_region_include(position, start, stop, m_idx, start_idx) # print(count,t_start,t_stop,t_stop-t_start,start_idx,len(id3)) if len(b1)==0: continue t_len1, t_score = np.asarray(len1[b1]), np.asarray(score[b1]) t_score[t_score>score_max] = score_max-1e-04 s1 = 0 s2 = np.sum(t_len1) for j in range(0,n_level): temp1 = (j-offset)*magnitude b2 = np.where((t_score<temp1+magnitude)&(t_score>=temp1))[0] # print(b2) vec1[cnt,j] = np.sum(t_len1[b2])*1.0/s2 s1 = s1+temp1*vec1[cnt,j] vec1[cnt,n_level:n_level+4] = [s1,np.median(t_score),np.max(t_score),np.min(t_score)] cnt += 1 pre_b1 = b1 if cnt%1000==0: print(chrom_id,cnt,len(b1),s2,vec1[cnt,-4:]) # break # dict1 = dict() # dict1['vec'], dict1['index'] = vec1,b # np.save('phyloP_%s'%(chrom_id),dict1,allow_pickle=True) fields = ['index'] for j in range(0,n_level): temp1 = (j-offset)*magnitude fields.append('%s-%s'%(temp1,temp1+magnitude)) fields.extend(range(0,4)) idx = serial_ori[b] data1 = pd.DataFrame(data = np.hstack((idx[:,np.newaxis],vec1)),columns=fields) data1.to_csv('phyloP_%s.txt'%(chrom_id),sep='\t',index=False) return vec1 def read_motif_1(filename,output_filename=-1): data1 = pd.read_csv(filename,sep='\t') colnames = list(data1) col1, col2, col3 = colnames[0], colnames[1], colnames[2] chrom, start, stop = np.asarray(data1[col1]), np.asarray(data1[col2]), np.asarray(data1[col3]) region_len = stop-start m1, m2, median_len = np.max(region_len), np.min(region_len), np.median(region_len) b1 = np.where(region_len!=median_len)[0] print(m1,m2,median_len,len(b1)) bin_size = median_len motif_name = colnames[3:] mtx1 = np.asarray(data1.loc[:,motif_name]) mtx1 = mtx1*1000.0/np.outer(region_len,np.ones(mtx1.shape[1])) print('motif',len(motif_name)) print(mtx1.shape) print(np.max(mtx1),np.min(mtx1),np.median(mtx1)) if output_filename!=-1: fields = colnames data1 = pd.DataFrame(columns=fields) data1[colnames[0]], data1[colnames[1]], data1[colnames[2]] = chrom, start, stop num1 = len(fields)-3 for i in range(0,num1): data1[colnames[i+3]] = mtx1[:,i] data1.to_csv(output_filename,header=True,index=False,sep='\t') print(output_filename, data1.shape) return mtx1, chrom, start, stop, colnames def read_gc_1(ref_filename,header,filename,output_filename): sel_idx = [] file1 = pd.read_csv(ref_filename,header=header,sep='\t') f_list = load_seq_altfeature(filename,sel_idx) # col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) colnames = list(file1) col1, col2, col3, col4 = colnames[0], colnames[1], colnames[2], colnames[3] chrom_ori, start_ori, stop_ori, serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1[col4]) num_sample = len(chrom_ori) if num_sample!=f_list.shape[0]: print('error!',num_sample,f_list.shape[0]) fields = ['chrom','start','stop','serial','GC','GC_N','GC_skew'] file2 = pd.DataFrame(columns=fields) file2['chrom'], file2['start'], file2['stop'], file2['serial'] = chrom_ori, start_ori, stop_ori, serial_ori for i in range(0,3): file2[fields[i+4]] = f_list[:,i] file2.to_csv(output_filename,index=False,sep='\t') return f_list def generate_serial(filename1,chrom,start,stop): # chrom_vec = np.sort(np.unique(chrom)) # print(chrom_vec) chrom_vec = [] for i in range(1,23): chrom_vec.append('chr%d'%(i)) chrom_vec += ['chrX'] chrom_vec += ['chrY'] print(chrom_vec) # print(chrom) print(len(chrom)) data1 = pd.read_csv(filename1,header=None,sep='\t') ref_chrom, chrom_size = np.asarray(data1[0]), np.asarray(data1[1]) serial_start = 0 serial_vec = np.zeros(len(chrom)) bin_size = stop[1]-start[1] print(bin_size) for chrom_id in chrom_vec: b1 = np.where(ref_chrom==chrom_id)[0] t_size = chrom_size[b1[0]] b2 = np.where(chrom==chrom_id)[0] if len(b1)>0: size1 = int(np.ceil(t_size*1.0/bin_size)) serial = np.int64(start[b2]/bin_size)+serial_start serial_vec[b2] = serial print(chrom_id,b2,len(serial),serial_start,size1) serial_start = serial_start+size1 else: print("error!") return return np.int64(serial_vec) def generate_serial_local(filename1,chrom,start,stop,chrom_num): # chrom_vec = np.sort(np.unique(chrom)) # print(chrom_vec) chrom_vec = [] for i in range(1,chrom_num+1): chrom_vec.append('chr%d'%(i)) chrom_vec += ['chrX'] chrom_vec += ['chrY'] chrom_vec += ['chrM'] print(chrom_vec) print(chrom) print(len(chrom)) t_chrom = np.unique(chrom) data1 = pd.read_csv(filename1,header=None,sep='\t') ref_chrom, chrom_size = np.asarray(data1[0]), np.asarray(data1[1]) # serial_start = np.zeros(len(chrom)) serial_start = 0 serial_start_1 = dict() serial_vec = np.zeros(len(chrom)) bin_size = stop[1]-start[1] print(bin_size) for chrom_id in chrom_vec: b1 = np.where(ref_chrom==chrom_id)[0] t_size = chrom_size[b1[0]] serial_start_1[chrom_id] = serial_start size1 = int(np.ceil(t_size*1.0/bin_size)) serial_start = serial_start+size1 for chrom_id in t_chrom: b2 = np.where(chrom==chrom_id) serial = np.int64(start[b2]/bin_size)+serial_start_1[chrom_id] serial_vec[b2] = serial return np.int64(serial_vec) def generate_serial_start(filename1,chrom,start,stop,chrom_num=19): # chrom_vec = np.sort(np.unique(chrom)) # print(chrom_vec) chrom_vec = [] for i in range(1,chrom_num+1): chrom_vec.append('chr%d'%(i)) chrom_vec += ['chrX'] chrom_vec += ['chrY'] print(chrom_vec) print(chrom) print(len(chrom)) data1 = pd.read_csv(filename1,header=None,sep='\t') ref_chrom, chrom_size = np.asarray(data1[0]), np.asarray(data1[1]) serial_start = 0 serial_vec = -np.ones(len(chrom)) bin_size = stop[1]-start[1] print(bin_size) start_vec = dict() for chrom_id in chrom_vec: start_vec[chrom_id] = serial_start b1 = np.where(ref_chrom==chrom_id)[0] t_size = chrom_size[b1[0]] b2 = np.where(chrom==chrom_id)[0] if len(b1)>0: size1 = int(np.ceil(t_size*1.0/bin_size)) serial = np.int64(start[b2]/bin_size)+serial_start serial_vec[b2] = serial print(chrom_id,b2,len(serial),serial_start,size1) serial_start = serial_start+size1 else: print("error!") return return np.int64(serial_vec), start_vec def shuffle_array(vec): num1 = len(vec) idx = np.random.permutation(num1) vec = vec[idx] return vec, idx # input: estimated attention, type_id: training, validation, or test data # output: ranking of attention def select_region1_sub(filename,type_id): data1 = pd.read_csv(filename,sep='\t') colnames = list(data1) # chrom start stop serial signal predicted_signal predicted_attention chrom, start, serial = data1['chrom'], data1['start'], data1['serial'] chrom, start, serial = np.asarray(chrom), np.asarray(start), np.asarray(serial) predicted_attention = data1['predicted_attention'] predicted_attention = np.asarray(predicted_attention) ranking = stats.rankdata(predicted_attention,'average')/len(predicted_attention) rank1 = np.zeros((len(predicted_attention),2)) rank1[:,0] = ranking chrom_vec = np.unique(chrom) for t_chrom in chrom_vec: b1 = np.where(chrom==t_chrom)[0] t_attention = predicted_attention[b1] t_ranking = stats.rankdata(t_attention,'average')/len(t_attention) rank1[b1,1] = t_ranking data1['Q1'] = rank1[:,0] # rank across all the included chromosomes data1['Q2'] = rank1[:,1] # rank by each chromosome data1['typeId'] = np.int8(type_id*np.ones(len(rank1))) return data1,chrom_vec # merge estimated attention from different training/test splits # type_id1: chromosome order; type_id2: training: 0, test: 1, valid: 2 def select_region1_merge(filename_list,output_filename,type_id1=0,type_id2=1): list1 = [] chrom_numList = [] # b1 = np.where((self.chrom!='chrX')&(self.chrom!='chrY'))[0] # ref_chrom, ref_start, ref_serial = self.chrom[b1], self.start[b1], self.serial[b1] # num_sameple = len(ref_chrom) i = 0 serial1 = [] num1 = len(filename_list) vec1 = list(range(num1)) if type_id1==1: vec1 = list(range(num1-1,-1,-1)) for i in vec1: filename1 = filename_list[i] # data1: chrom, start, stop, serial, signal, predicted_signal, predicted_attention, Q1, Q2, typeId # typeId: training: 0, test: 1, valid: 2 data1, chrom_vec = select_region1_sub(filename1,type_id2) print(filename1,len(data1)) # list1.append(data1) # if i==0: # serial1 = np.asarray(data1['serial']) t_serial = np.asarray(data1['serial'],dtype=np.int64) t_serial2 = np.setdiff1d(t_serial,serial1) serial1 = np.union1d(serial1,t_serial) id1 = mapping_Idx(t_serial,t_serial2) colnames = list(data1) data1 = data1.loc[id1,colnames] list1.append(data1) chrom_numList.append(chrom_vec) data2 = pd.concat(list1, axis=0, join='outer', ignore_index=True, keys=None, levels=None, names=None, verify_integrity=False, copy=True) print('sort') data2 = data2.sort_values(by=['serial']) data2.to_csv(output_filename,index=False,sep='\t') return data2, chrom_numList class Reader(object): def __init__(self, ref_filename, feature_idvec = [1,1,1,1]): # Initializes RepliSeq self.ref_filename = ref_filename self.feature_idvec = feature_idvec def generate_serial(self,filename1,filename2,output_filename,header=None): data1 = pd.read_csv(filename2, header=header, sep='\t') colnames = list(data1) chrom, start, stop = np.asarray(data1[colnames[0]]), np.asarray(data1[colnames[1]]), np.asarray(data1[colnames[2]]) serial_vec, start_vec = generate_serial_start(filename1,chrom,start,stop) if output_filename!=None: colnames2 = colnames[0:3]+['serial']+colnames[3:] data2 = pd.DataFrame(columns=colnames2) data2['serial'] = serial_vec for colname1 in colnames: data2[colname1] = data1[colname1] flag = False if header!=None: flag = True data2.to_csv(output_filename,header=flag,index=False,sep='\t') return serial_vec, start_vec def load_motif(self,filename1,motif_filename,output_filename): # output_filename = None # ref_filename = 'hg38.5k.serial.bed' # motif_filename = 'hg38.motif.count.txt' # output_filename1 = None mtx1, chrom, start, stop, colnames = read_motif_1(motif_filename) serial_vec, start_vec = generate_serial_start(filename1,chrom,start,stop) if output_filename!=None: colnames2 = ['chrom','start','stop','serial'] data2 = pd.DataFrame(columns=colnames2) data2['chrom'], data2['start'], data2['stop'], data2['serial'] = chrom, start, stop, serial_vec data3 = pd.DataFrame(columns=colnames[3:],data=mtx1) data1 = pd.concat([data2,data3], axis=1, join='outer', ignore_index=True, keys=None, levels=None, names=None, verify_integrity=False, copy=True) data1.to_csv(output_filename,header=True,index=False,sep='\t') print('data1',data1.shape) return True class ConvergenceMonitor(object): _template = "{iter:>10d} {logprob:>16.4f} {delta:>+16.4f}" def __init__(self, tol, n_iter, verbose): self.tol = tol self.n_iter = n_iter self.verbose = verbose self.history = deque(maxlen=2) self.iter = 0 def __repr__(self): class_name = self.__class__.__name__ params = dict(vars(self), history=list(self.history)) return "{0}({1})".format( class_name, _pprint(params, offset=len(class_name))) def report(self, logprob): if self.verbose: delta = logprob - self.history[-1] if self.history else np.nan message = self._template.format( iter=self.iter + 1, logprob=logprob, delta=delta) print(message, file=sys.stderr) self.history.append(logprob) self.iter += 1 @property def converged(self): return (self.iter == self.n_iter or (len(self.history) == 2 and self.history[1] - self.history[0] < self.tol)) class _Base1(BaseEstimator): def __init__(self, file_path, species_id, resolution, run_id, generate, chromvec,test_chromvec, featureid,type_id,cell,method,ftype,ftrans,tlist, flanking,normalize, config, attention=1,feature_dim_motif=1, kmer_size=[6,5]): # Initializes RepliSeq self.run_id = run_id self.cell = cell self.generate = generate self.train_chromvec = chromvec self.chromosome = chromvec[0] print('train_chromvec',train_chromvec) print('test_chromvec',test_chromvec) self.test_chromvec = test_chromvec self.config = config self.n_epochs = config['n_epochs'] self.species_id = species_id self.type_id = type_id self.cell_type = cell self.cell_type1 = config['celltype_id'] self.method = method self.ftype = ftype self.ftrans = ftrans[0] self.ftrans1 = ftrans[1] self.t_list = tlist self.flanking = flanking self.flanking1 = 3 self.normalize = normalize self.batch_size = config['batch_size'] # config = dict(output_dim=hidden_unit,fc1_output_dim=fc1,fc2_output_dim=fc2,units1=units1[0], # units2=units1[1],n_epochs=n_epochs,batch_size=batch_size) # config['feature_dim_vec'] = units1[2:] self.tol = config['tol'] self.attention = attention self.attention_vec = [12,17,22,32,51,52,58,60] self.attention_vec1 = [1] self.lr = config['lr'] self.step = config['step'] self.feature_type = -1 self.kmer_size = kmer_size self.activation = config['activation'] self.min_delta = config['min_delta'] self.chromvec_sel = chromvec self.feature_dim_transform = config['feature_dim_transform'] feature_idvec = [1,1,1,1] # ref_filename = 'hg38_5k_serial.bed' if 'ref_filename' in config: ref_filename = config['ref_filename'] else: ref_filename = 'hg38_5k_serial.bed' self.reader = Reader(ref_filename, feature_idvec) self.predict_type_id = 0 self.method = method self.train = self.config['train_mode'] self.path = file_path self.model_path = '%s/test_%d.h5'%(self.path,run_id) self.pos_code = config['pos_code'] self.feature_dim_select1 = config['feature_dim_select'] self.method_vec = [[11,31],[22,32,52,17,51,58,60],[56,62]] self.resolution = resolution # if self.species_id=='mm10': # self.cell_type1 = config['cell_type1'] if 'cell_type1' in self.config: self.cell_type1 = config['cell_type1'] if ('load_type' in self.config) and (self.config['load_type']==1): self.load_type = 1 else: self.load_type = 0 if (method>10) and not(method in [56]) : self.predict_context = 1 else: self.predict_context = 0 if ftype[0]==-5: self.feature_idx1= -5 # full dimensions elif ftype[0]==-6: self.feature_idx1 = -6 # frequency dimensions else: self.feature_idx1 = ftype if 'est_attention_type1' in self.config: self.est_attention_type1 = self.config['est_attention_type1'] else: self.est_attention_type1 = 1 if 'est_attention_sel1' in self.config: self.est_attention_sel1 = self.config['est_attention_sel1'] else: self.est_attention_sel1 = 0 # self.feature_idx = [0,2] self.feature_idx = featureid self.x, self.y = dict(), dict() # feature matrix and signals self.vec = dict() # serial self.vec_local = dict() if self.species_id.find('hg')>=0: self.chrom_num = 22 elif self.species_id.find('mm')>=0: self.chrom_num = 19 else: self.chrom_num = -1 self.region_list_test, self.region_list_train, self.region_list_valid = [],[],[] if 'region_list_test' in config: self.region_list_test = config['region_list_test'] if 'region_list_train' in config: self.region_list_train = config['region_list_train'] if 'region_list_valid' in config: self.region_list_valid = config['region_list_valid'] flag = False if 'scale' in config: flag = True self.scale = config['scale'] else: self.scale = [0,1] if ('activation_basic' in config) and (config['activation_basic']=='tanh'): if (flag==True) and (self.scale[0]>=0): flag = False if flag==False: self.scale = [-1,1] self.region_boundary = [] self.serial_vec = [] self.f_mtx = [] print('scale',self.scale) print(self.test_chromvec) filename1 = '%s_chr%s-chr%s_chr%s-chr%s'%(self.cell_type, self.train_chromvec[0], self.train_chromvec[-1], self.test_chromvec[0], self.test_chromvec[-1]) self.filename_load = filename1 print(self.filename_load,self.method,self.predict_context,self.attention) self.set_generate(generate,filename1) def load_ref_serial(self, ref_filename, header=None): if header==None: file1 = pd.read_csv(ref_filename,header=header,sep='\t') else: file1 = pd.read_csv(ref_filename,sep='\t') colnames = list(file1) # col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) col1, col2, col3, col_serial = colnames[0], colnames[1], colnames[2], colnames[3] self.chrom_ori, self.start_ori, self.stop_ori, self.serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1[col_serial]) print('load ref serial', self.serial_ori.shape) return self.serial_ori # load local serial and signal def load_local_serial(self, filename1, header=None, region_list=[], type_id2=1, signal_normalize=1,region_list_1=[]): if header==None: file2 = pd.read_csv(filename1,header=header,sep='\t') else: file2 = pd.read_csv(filename1,sep='\t') colnames = list(file2) col1, col2, col3, col_serial = colnames[0], colnames[1], colnames[2], colnames[3] # sort the table by serial file2 = file2.sort_values(by=[col_serial]) self.chrom, self.start, self.stop, self.serial = np.asarray(file2[col1]), np.asarray(file2[col2]), np.asarray(file2[col3]), np.asarray(file2[col_serial]) b = np.where((self.chrom!='chrX')&(self.chrom!='chrY')&(self.chrom!='chrM'))[0] self.chrom, self.start, self.stop, self.serial = self.chrom[b], self.start[b], self.stop[b], self.serial[b] if self.chrom_num>0: chrom_num = self.chrom_num else: chrom_num = len(np.unique(self.chrom)) chrom_vec = [str(i) for i in range(1,chrom_num+1)] print('chrom_vec', chrom_vec) self.bin_size = self.stop[1]-self.start[1] scale = self.scale if len(colnames)>=5: col_signal = colnames[4] self.signal = np.asarray(file2[col_signal]) self.signal = self.signal[b] self.signal_pre = self.signal.copy() if signal_normalize==1: if self.run_id>10: # self.signal = signal_normalize(self.signal,[0,1]) # normalize signals self.signal_pre1, id1, signal_vec1 = self.signal_normalize_chrom(self.chrom,self.signal,chrom_vec,scale) if not('train_signal_update' in self.config) or (self.config['train_signal_update']==1): train_signal, id2, signal_vec2 = self.signal_normalize_chrom(self.chrom,self.signal,self.train_chromvec,scale) id_1 = mapping_Idx(id1,id2) self.signal = self.signal_pre1.copy() self.signal[id_1] = train_signal else: self.signal = self.signal_pre1.copy() else: print('signal_normalize_bychrom') self.signal, id1, signal_vec = self.signal_normalize_bychrom(self.chrom,self.signal,chrom_vec,scale) else: self.signal = np.ones(len(b)) # print(self.signal.shape) print('load local serial', self.serial.shape, self.signal.shape, np.max(self.signal), np.min(self.signal)) if 'tol_region_search' in self.config: tol = self.config['tol_region_search'] else: tol = 2 # only train or predict on some regions print('load_local_serial',len(self.chrom)) if len(region_list_1)>0: num1 = len(region_list_1) list1 = [] for i in range(num1): t_region = region_list_1[i] t_chrom, t_start, t_stop = 'chr%d'%(t_region[0]), t_region[1], t_region[2] t_id1 = np.where((self.chrom==t_chrom)&(self.start<t_stop)&(self.stop>t_start))[0] list1.extend(t_id1) b1 = np.asarray(list1) self.chrom, self.start, self.stop, self.serial = self.chrom[b1], self.start[b1], self.stop[b1], self.serial[b1] print('load_local_serial',num1,len(self.chrom)) print(region_list_1) if len(region_list)>0: # print('load_local_serial',region_list) # id1, region_list = self.region_search_1(chrom,start,stop,serial,region_list) id1, region_list = self.region_search_1(self.chrom,self.start,self.stop,self.serial,region_list,type_id2,tol) self.chrom, self.start, self.stop, self.serial, self.signal = self.chrom[id1], self.start[id1], self.stop[id1], self.serial[id1], self.signal[id1] id2 = self.region_search_boundary(self.chrom,self.start,self.stop,self.serial,region_list) # print('region_search_boundary', id2[:,0], self.start[id2[:,1:3]],self.stop[id2[:,1:3]]) self.region_boundary = id2 # print(self.serial[id2[:,1:3]]) print('region_boundary',id2) # return else: print('load_local_serial',region_list) # assert len(region_list)>0 # return return self.serial, self.signal # training, validation and test data index def prep_training_test(self,train_sel_list_ori): train_id1, test_id1, y_signal_train1, y_signal_test, train1_sel_list, test_sel_list = self.generate_train_test_1(train_sel_list_ori) self.idx_list = {'test':test_id1} self.y_signal = {'test':y_signal_test} if len(y_signal_test)>0: print('y_signal_test',np.max(y_signal_test),np.min(y_signal_test)) if len(y_signal_train1)>0: print('y_signal_train',np.max(y_signal_train1),np.min(y_signal_train1)) self.idx_list.update({'train':[],'valid':[]}) else: return # y_signal_test_ori = signal_normalize(y_signal_test,[0,1]) # shuffle array # x_test_trans, shuffle_id2 = shuffle_array(x_test_trans) # test_sel_list = test_sel_list[shuffle_id2] # x_train1_trans, shuffle_id1 = shuffle_array(x_train1_trans) # train_sel_list = train_sel_list[shuffle_id1] print(train1_sel_list[0:5]) # split training and validation data if 'ratio1' in self.config: ratio = self.config['ratio1'] else: ratio = 0.95 if 'type_id1' in self.config: type_id_1 = self.config['type_id1'] else: type_id_1 = 0 idx_train, idx_valid, idx_test = self.generate_index_1(train1_sel_list, test_sel_list, ratio, type_id_1) print('idx_train,idx_valid,idx_test', len(idx_train), len(idx_valid), len(idx_test)) if (len(self.region_list_train)>0) or (len(self.region_list_valid)>0): idx_train, idx_valid = self.generate_train_test_2(train1_sel_list,idx_train,idx_valid) print('idx_train,idx_valid', len(idx_train), len(idx_valid)) train_sel_list, val_sel_list = train1_sel_list[idx_train], train1_sel_list[idx_valid] self.idx_list.update({'train':train_id1[idx_train],'valid':train_id1[idx_valid]}) self.idx_train_val = {'train':idx_train,'valid':idx_valid} self.y_signal.update({'train':y_signal_train1[idx_train],'valid':y_signal_train1[idx_valid]}) return train_sel_list, val_sel_list, test_sel_list # prepare data from predefined features: kmer frequency feature and motif feature def prep_data_sub2(self,path1,file_prefix,type_id2,feature_dim1,feature_dim2,flag_1): species_id = self.species_id celltype_id = self.cell_type1 if species_id=='mm10': kmer_dim_ori, motif_dim_ori = 100, 50 filename1 = '%s/%s_%d_%d_%d.npy'%(path1,file_prefix,type_id2,kmer_dim_ori,motif_dim_ori) # filename2 = 'test_%s_genome%d_kmer7.h5'%(species_id,celltype_id) filename2 = '%s_%d_kmer7_0_200_trans.h5'%(species_id,celltype_id) else: kmer_dim_ori, motif_dim_ori = 50, 50 filename1 = '%s/%s_%d_%d_%d.npy'%(path1,file_prefix,type_id2,kmer_dim_ori,motif_dim_ori) # filename2 = 'test_%s_kmer7.h5'%(species_id) filename2 = '%s_kmer7_0_200_trans.h5'%(species_id) kmer_size1, kmer_size2, kmer_size3 = 5,6,7 x_train1_trans, train_sel_list_ori = [], [] flag1, flag2 = 0, 0 flag3 = True # if kmer_size2 in self.kmer_size: if flag3==True: if os.path.exists(filename1)==True: print("loading data...") data1 = np.load(filename1,allow_pickle=True) data_1 = data1[()] x_train1_trans_ori, train_sel_list_ori = np.asarray(data_1['x1']), np.asarray(data_1['idx']) print('train_sel_list',train_sel_list_ori.shape) print('x_train1_trans',x_train1_trans_ori.shape) if kmer_size2 in self.kmer_size: flag1 = 1 serial1 = train_sel_list_ori[:,1] dim1 = x_train1_trans_ori.shape[1] if (self.feature_dim_motif==0) or (flag_1==True): x_train1_trans = x_train1_trans_ori[:,0:-motif_dim_ori] else: # d1 = np.min((dim1-motif_dim_ori+feature_dim2,d1)) # d2 = dim1-motif_dim_ori # sel_id1 = list(range(21))+list(range(21,21+feature_dim1)) # x_train1_trans_1 = x_train1_trans[:,sel_id1] # x_train1_trans_2 = x_train1_trans[:,d2:d1] x_train1_trans_1 = x_train1_trans_ori[:,0:dim1-motif_dim_ori] x_train1_trans_2 = x_train1_trans_ori[:,dim1-motif_dim_ori:] else: print('data not found!') print(filename1) return x_train1_trans, trans_sel_list_ori if kmer_size3 in self.kmer_size: with h5py.File(filename2,'r') as fid: serial2 = fid["serial"][:] feature_mtx = fid["vec"][:] # feature_mtx = feature_mtx[:,0:kmer_dim_ori] print(serial2) print(len(serial2),feature_mtx.shape) flag2 = 1 if flag1==1: if flag2==1: t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial) id2 = mapping_Idx(serial2,t_serial) if 'feature_dim_transform_1' in self.config: sel_idx = self.config['feature_dim_transform_1'] sel_id1, sel_id2 = list(0,21)+list(range(sel_idx[0])), range(sel_idx[1]) else: sel_id1 = list(0,21)+list(range(10)) sel_id2 = range(feature_dim1-sel_idx1) if (self.feature_dim_motif==0) or (flag_1==True): x_train1_trans = np.hstack((x_train1_trans[id1,sel_id1],feature_mtx[id2,sel_id2])) else: x_train1_trans = np.hstack((x_train1_trans_1[id1,sel_id1],feature_mtx[id2,sel_id2],x_train1_trans_2[id1,0:feature_dim2])) train_sel_list_ori = train_sel_list_ori[id1] else: pass elif flag2==1: t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial) id2 = mapping_Idx(serial2,t_serial) x_train1_trans = np.hstack((x_train1_trans_ori[id1,0:2],feature_mtx[id2,0:feature_dim1])) train_sel_list_ori = train_sel_list_ori[id1] self.feature_dim_select1 = -1 if (self.feature_dim_motif==1) and (flag_1==False): x_train1_trans = np.hstack((x_train1_trans,x_train1_trans_2[id1,0:feature_dim2])) # id1 = mapping_Idx(self.serial_ori,serial2) # b1 = (id1>=0) # id1 = id1[b1] # serial2, feature_mtx = serial2[b1], feature_mtx[b1] # chrom1 = self.chrom_ori[id1] # chrom2 = np.zeros(len(serial2),dtype=np.int32) # chrom_vec = np.unique(chrom1) # for chrom_id in chrom_vec: # b2 = np.where(chrom1==chrom_id)[0] # chrom_id1 = int(chrom_id[3:]) # chrom2[b2] = chrom_id1 # x_train1_trans = feature_mtx[:,0:feature_dim1] # trans_sel_list_ori = np.vstack((chrom2,serial2)).T else: print('data not found!') return x_train1_trans, train_sel_list_ori # prepare data from predefined features def prep_data_sub1(self,path1,file_prefix,type_id2,feature_dim_transform,load_type=0): self.feature_dim_transform = feature_dim_transform # map_idx = mapping_Idx(serial_ori,serial) sub_sample_ratio = 1 shuffle = 0 normalize, flanking, attention, run_id = self.normalize, self.flanking, self.attention, self.run_id config = self.config vec2 = dict() tol = self.tol L = flanking # np.save(filename1) print("feature transform") # filename1 = '%s/%s_%d_%d_%d.npy'%(path1,file_prefix,type_id2,feature_dim_transform[0],feature_dim_transform[1]) print(self.species_id) t_featuredim1, t_featuredim2 = feature_dim_transform[0], feature_dim_transform[1] flag1 = False if self.species_id=='hg38': if 'motif_trans_typeid' in self.config: flag1 = True if (self.species_id=='mm10'): flag1 = True if (t_featuredim1>0) or (flag1==False): x_train1_trans, train_sel_list_ori = self.prep_data_sub2(path1,file_prefix,type_id2,t_featuredim1,t_featuredim2,flag1) if len(x_train1_trans)==0: print('data not found!') return -1 if t_featuredim2>0: print('train_sel_list',train_sel_list_ori.shape) print('x_train1_trans',x_train1_trans.shape) if (self.feature_dim_motif>=1) and (flag1==True): if self.species_id=='mm10': annot1 = '%s_%d_motif'%(self.species_id,self.cell_type1) else: annot1 = '%s_motif'%(self.species_id) motif_trans_typeid = self.config['motif_trans_typeid'] motif_featuredim = self.config['motif_featuredim'] motif_filename = '%s_%d_%d_trans.h5'%(annot1,motif_trans_typeid,motif_featuredim) if motif_featuredim<t_featuredim2: print('error! %d %d',motif_featuredim,t_featuredim2) t_featuredim2 = motif_featuredim with h5py.File(motif_filename,'r') as fid: serial_1 = fid["serial"][:] motif_data = fid["vec"][:] print(len(serial_1),motif_data.shape) serial1 = train_sel_list_ori[:,1] serial2 = serial_1 t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial) id2 = mapping_Idx(serial2,t_serial) x_train1_trans = np.hstack((x_train1_trans[id1],motif_data[id2,0:t_featuredim2])) train_sel_list_ori = train_sel_list_ori[id1] # train_sel_list_ori2 = serial_1[id2] else: print("data not found!") return x_train1_trans = self.feature_dim_select(x_train1_trans,feature_dim_transform) # feature loaded not specific to cell type if load_type==1: return x_train1_trans, train_sel_list_ori list1 = ['motif_feature','feature2'] for t_feature in list1: if (t_feature in self.config) and (self.config[t_feature]==1): if t_feature=='feature2': pre_config = self.config['pre_config'] if self.chrom_num>0: chrom_num = self.chrom_num else: chrom_num = len(np.unique(self.chrom)) chrom_vec = list(range(1,chrom_num+1)) feature_mtx2, serial_2 = self.prep_data_sequence_3(pre_config,chrom_vec) else: x = 1 x_train1_trans_ori1 = x_train1_trans.copy() train_sel_list_ori1 = train_sel_list_ori.copy() serial1 = train_sel_list_ori[:,1] serial2 = serial_2[:,1] t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial)[0] id2 = mapping_Idx(serial2,t_serial)[0] x_train1_trans = np.hstack((x_train1_trans[id1],feature_mtx2[id2])) train_sel_list_ori = train_sel_list_ori[id1] train_sel_list_ori2 = serial_2[id2] b1 = np.where(train_sel_list_ori[:,0]!=train_sel_list_ori2[:,0])[0] if len(b1)>0: print('error! train_sel_list_ori',len(b1)) if ('centromere' in self.config) and (self.config['centromere']==1): regionlist_filename = 'hg38.centromere.bed' serial1 = train_sel_list_ori[:,1] serial_list1, centromere_serial = self.select_region(serial1, regionlist_filename) id1 = mapping_Idx(serial1,serial_list1) id1 = id1[id1>=0] x_train1_trans = x_train1_trans[id1] train_sel_list_ori = train_sel_list_ori[id1] print(x_train1_trans.shape,train_sel_list_ori.shape) print('positional encoding', self.pos_code) print('feature dim',x_train1_trans.shape) self.feature_dim = x_train1_trans.shape[1] start = time.time() if self.pos_code ==1: x_train1_trans = self.positional_encoding1(x_train1_trans,train_sel_list_ori,self.feature_dim) print(x_train1_trans.shape) stop = time.time() print('positional encoding', stop-start) ## shuffle array if ('shuffle' in self.config) and (self.config['shuffle']==1): x_train1_trans, shuffle_id1 = shuffle_array(x_train1_trans) print('array shuffled') # np.random.shuffle(x_tran1_trans) # train_sel_list = train_sel_list[shuffle_id1] elif ('noise' in self.config) and (self.config['noise']>0): if self.config['noise']==1: x_train1_trans = np.zeros_like(x_train1_trans) print('x_train1_trans, noise 1', x_train1_trans[0:5]) elif self.config['noise']==2: x_train1_trans = np.random.uniform(0,1,x_train1_trans.shape) else: x_train1_trans = np.random.normal(0,1,x_train1_trans.shape) else: pass if 'sub_sample_ratio' in self.config: sub_sample_ratio = self.config['sub_sample_ratio'] num_sample = len(train_sel_list_ori) sub_sample = int(num_sample*sub_sample_ratio) train_sel_list_ori = train_sel_list_ori[0:sub_sample] x_train1_trans = x_train1_trans[0:sub_sample] # align train_sel_list_ori and serial print(train_sel_list_ori.shape,len(self.serial)) id1 = mapping_Idx(train_sel_list_ori[:,1],self.serial) id2 = (id1>=0) print('mapping',len(self.serial),np.sum(id2),len(self.serial),len(id2)) # self.chrom, self.start, self.stop, self.serial, self.signal = self.chrom[id2], self.start[id2], self.stop[id2], self.serial[id2], self.signal[id2] self.local_serial_1(id2) id1 = id1[id2] train_sel_list_ori = train_sel_list_ori[id1] x_train1_trans = x_train1_trans[id1] self.x_train1_trans = x_train1_trans self.train_sel_list = train_sel_list_ori return x_train1_trans, train_sel_list_ori def output_generate_sequences(self,idx_sel_list,seq_list): num1 = len(seq_list) t_serial1 = idx_sel_list[:,1] seq_list = np.asarray(seq_list) t_serial = t_serial1[seq_list] id1 = mapping_Idx(self.serial,t_serial[:,0]) chrom1, start1, stop1 = self.chrom[id1], self.start[id1], self.stop[id1] id2 = mapping_Idx(self.serial,t_serial[:,1]) chrom2, start2, stop2 = self.chrom[id2], self.start[id2], self.stop[id2] fields = ['chrom','start','stop','serial1','serial2'] data1 = pd.DataFrame(columns=fields) data1['chrom'], data1['start'], data1['stop'] = chrom1, start1, stop2 data1['serial1'], data1['serial2'] = t_serial[:,0], t_serial[:,1] data1['region_len'] = t_serial[:,1]-t_serial[:,0]+1 output_filename = 'test_seqList_%d_%d.txt'%(idx_sel_list[0][0],idx_sel_list[0][1]) data1.to_csv(output_filename,index=False,sep='\t') return True # prepare data from predefined features def prep_data(self,path1,file_prefix,type_id2,feature_dim_transform): x_train1_trans, train_sel_list_ori = self.prep_data_sub1(path1,file_prefix,type_id2,feature_dim_transform) train_sel_list, val_sel_list, test_sel_list = self.prep_training_test(train_sel_list_ori) # keys = ['train','valid','test'] keys = ['train','valid'] # self.idx_sel_list = {'train':train1_sel_list,'valid':val_sel_list,'test':test_sel_list} idx_sel_list = {'train':train_sel_list,'valid':val_sel_list,'test':test_sel_list} # self.idx_sel_list = idx_sel_list # seq_list_train, seq_list_valid: both locally calculated self.seq_list = dict() start = time.time() for i in keys: self.seq_list[i] = generate_sequences(idx_sel_list[i],region_list=self.region_boundary) print(len(self.seq_list[i])) self.output_generate_sequences(idx_sel_list[i],self.seq_list[i]) stop = time.time() print('generate_sequences', stop-start) # generate initial state index self.init_id = dict() self.init_index(keys) # training and validation data # x_train1_trans = self.x_train1_trans for i in keys: idx = self.idx_list[i] if self.method<5 or self.method in [56]: self.x[i] = x_train1_trans[idx] self.y[i] = self.y_signal[i] print(self.x[i].shape, self.y[i].shape) else: idx_sel_list = self.train_sel_list[idx] start = time.time() x, y, self.vec[i], self.vec_local[i] = sample_select2a1(x_train1_trans[idx],self.y_signal[i], idx_sel_list, self.seq_list[i], self.tol, self.flanking) stop = time.time() print('sample_select2a1',stop-start) # concate context for baseline methods if self.method<=10: # x_train, x_valid, y_train, y_valid = train_test_split(x_train1, y_train1, test_size=0.2, random_state=42) x = x.reshape(x.shape[0],x.shape[1]*x.shape[-1]) y = y[:,self.flanking] self.x[i], self.y[i] = x, y print(self.x[i].shape, self.y[i].shape) return True # prepare data from predefined features def prep_data_1(self,path1,file_prefix,type_id2,feature_dim_transform, n_fold=5, ratio=0.9, type_id=1): x_train1_trans, train_sel_list_ori = self.prep_data_sub1(path1,file_prefix,type_id2,feature_dim_transform) print(train_sel_list_ori) id1 = mapping_Idx(train_sel_list_ori[:,1],self.serial) id2 = (id1>=0) print('mapping',len(self.serial),np.sum(id2)) self.chrom, self.start, self.stop, self.serial, self.signal = self.chrom[id2], self.start[id2], self.stop[id2], self.serial[id2], self.signal[id2] id1 = id1[id2] train_sel_list_ori = train_sel_list_ori[id1] self.x_train1_trans = self.x_train1_trans[id1] print(train_sel_list_ori.shape,self.x_train1_trans.shape) id_vec = self.generate_index_2(train_sel_list_ori, n_fold=n_fold, ratio=ratio, type_id=type_id) return id_vec def find_serial_ori_1_local(self,chrom_vec,type_id2=1): # filename1 = 'mm10_%d_%s_encoded1.h5'%(self.config['cell_type1'],chrom_id1) self.species_id = 'mm10' self.cell_type1 = self.config['cell_type1'] file_path1 = '/work/magroup/yy3/data1/replication_timing3/mouse' # filename1 = '%s/mm10_5k_seq_genome%d_1.txt'%(file_path1,self.config['cell_type1']) chrom_id1 = 'chr1' filename1 = '%s_%d_%s_encoded1.h5'%(self.species_id,self.cell_type1,chrom_id1) list1, list2 = [], [] serial_vec = [] print(filename1) if os.path.exists(filename1)==False: # prepare data from predefined features # one hot encoded feature vectors for each chromosome self.prep_data_sequence_ori() print('prep_data_sequence_ori',filename1) for chrom_id in chrom_vec: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) # if self.config['species_id']==0: # filename2 = 'mm10_%d_%s_encoded1.h5'%(self.config['cell_type1'],chrom_id1) # else: # filename2 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) filename2 = '%s_%d_%s_encoded1.h5'%(self.species_id,self.cell_type1,chrom_id1) with h5py.File(filename2,'r') as fid: serial1 = fid["serial"][:] if type_id2==1: seq1 = fid["vec"][:] list2.extend(seq1) list1.extend([chrom_id]*len(serial1)) serial_vec.extend(serial1) print(chrom_id,len(serial1)) list1, serial_vec = np.asarray(list1), np.asarray(serial_vec) serial_vec = np.hstack((list1[:,np.newaxis],serial_vec)) f_mtx = np.asarray(list2) # data_1 = pd.read_csv(filename1,sep='\t') # colnames = list(data_1) # local_serial = np.asarray(data_1['serial']) # local_seq = np.asarray(data_1['seq']) # print('local_seq', local_seq.shape) # serial_vec = local_serial # f_mtx = local_seq # filename2 = '%s/mm10_5k_serial.bed'%(file_path1) # file2 = pd.read_csv(filename2,header=None,sep='\t') # ref_chrom, ref_start, ref_stop, ref_serial = np.asarray(file2[0]), np.asarray(file2[1]), np.asarray(file2[2]), np.asarray(file2[3]) # # assert list(local_serial==list(ref_serial)) # id_vec1 = [] # for chrom_id in chrom_vec: # # if chrom_id<22: # # continue # # chrom_id1 = 'chr%s'%(chrom_id) # id1 = np.where(ref_chrom=='chr%d'%(chrom_id))[0] # id_vec1.extend(id1) # print(chrom_id,len(id1)) # id_vec1 = np.asarray(id_vec1) # ref_chrom_1, ref_serial_1 = ref_chrom[id_vec1], ref_serial[id_vec1] # print('ref chrom local', len(ref_chrom_1), len(ref_serial_1)) # id1 = utility_1.mapping_Idx(ref_serial_1,local_serial) # id2 = np.where(id1>=0)[0] # id1 = id1[id2] # # assert len(id2)==len(id1) # chrom1 = ref_chrom_1[id1] # local_chrom = [int(chrom1[3:]) for chrom1 in ref_chrom_1] # local_chrom = np.asarray(local_chrom) # local_serial, local_seq = local_serial[id2], local_seq[id2] # serial_vec = np.column_stack((local_chrom,local_serial)) # f_mtx = np.asarray(local_seq) return serial_vec, f_mtx # find serial and feature vectors # input: type_id1: load sequence feature or kmer frequency feature, motif feature # type_id2: load serial or feature vectors def find_serial_ori_1(self,file_path,file_prefix,chrom_vec,type_id1=0,type_id2=0,select_config={}): # load the sequences if type_id1==0: # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) filename1 = '%s_serial_2.txt'%(self.species_id) list1, list2 = [], [] serial_vec = [] if (os.path.exists(filename1)==False) or (type_id2==1): if self.config['species_id']==0: serial_vec, list2 = self.find_serial_ori_1_local(chrom_vec) else: for chrom_id in chrom_vec: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) filename2 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) with h5py.File(filename2,'r') as fid: serial1 = fid["serial"][:] if type_id2==1: seq1 = fid["vec"][:] list2.extend(seq1) list1.extend([chrom_id]*len(serial1)) serial_vec.extend(serial1) print(chrom_id,len(serial1)) list1, serial_vec = np.asarray(list1), np.asarray(serial_vec) serial_vec = np.hstack((list1[:,np.newaxis],serial_vec)) np.savetxt(filename1,serial_vec,fmt='%d',delimiter='\t') else: serial_vec = np.loadtxt(filename1,dtype=np.int64) if serial_vec.shape[-1]>2: cnt1 = serial_vec[:,-1] b1 = np.where(cnt1>0)[0] ratio1 = len(b1)/len(serial_vec) print('sequence with N', len(b1),len(serial_vec),ratio1) # serial_vec = serial_vec[:,0] f_mtx = np.asarray(list2) elif type_id1==2: filename1 = select_config['input_filename1'] layer_name = select_config['layer_name'] with h5py.File(filename1,'r') as fid: f_mtx = np.asarray(fid[layer_name][:],dtype=np.float32) print(f_mtx.shape) serial_vec = fid["serial"][:] assert len(serial_vec )==f_mtx.shape[0] print(serial_vec[0:5]) else: # load kmer frequency features and motif features load_type_id2 = 0 x_train1_trans, train_sel_list_ori = self.prep_data_sub1(file_path,file_prefix,load_type_id2,self.feature_dim_transform,load_type=1) # serial_vec = train_sel_list_ori[:,1] serial_vec = np.asarray(train_sel_list_ori) f_mtx = np.asarray(x_train1_trans) return serial_vec, f_mtx def find_serial_ori(self,file_path,file_prefix,type_id1=0,type_id2=0,select_config={}): chrom_vec = np.unique(self.chrom) chrom_vec1 = [] for chrom_id in chrom_vec: try: id1 = chrom_id.find('chr') if id1>=0: chrom_id1 = int(chrom_id[3:]) chrom_vec1.append(chrom_id1) except: continue chrom_vec1 = np.sort(chrom_vec1) serial_vec, f_mtx = self.find_serial_ori_1(file_path,file_prefix,chrom_vec1, type_id1=type_id1,type_id2=type_id2, select_config=select_config) self.serial_vec = serial_vec self.f_mtx = f_mtx # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) print(len(self.chrom),len(self.serial)) # cnt1 = serial_vec[:,1] # b1 = np.where(cnt1>0)[0] # ratio1 = len(b1)/len(serial_vec) # print(len(b1),len(serial_vec),ratio1) id1 = mapping_Idx(serial_vec[:,1],self.serial) b1 = np.where(id1>=0)[0] self.local_serial_1(b1,type_id=0) print(len(self.chrom),len(self.serial)) return True def prep_data_2(self,file_path,file_prefix,seq_len_thresh=50): self.find_serial_ori(file_path,file_prefix) chrom_vec = np.unique(self.chrom) chrom_vec1 = [] for chrom_id in chrom_vec: try: id1 = chrom_id.find('chr') if id1>=0: chrom_id1 = int(chrom_id[3:]) chrom_vec1.append(chrom_id1) except: continue chrom_vec1 = np.sort(chrom_vec1) sample_num = len(self.chrom) idx_sel_list = -np.ones((sample_num,2),dtype=np.int64) for chrom_id in chrom_vec1: chrom_id1 = 'chr%d'%(chrom_id) b1 = np.where(self.chrom==chrom_id1)[0] idx_sel_list[b1,0] = [chrom_id]*len(b1) idx_sel_list[b1,1] = self.serial[b1] id1 = idx_sel_list[:,0]>=0 idx_sel_list = idx_sel_list[id1] sample_num = len(id1) y = self.signal[id1] x_mtx = idx_sel_list[id1] seq_list = generate_sequences(idx_sel_list, gap_tol=5, region_list=[]) seq_len = seq_list[:,1]-seq_list[:,0]+1 thresh1 = seq_len_thresh b1 = np.where(seq_len>thresh1)[0] print(len(seq_list),len(b1)) seq_list = seq_list[b1] seq_len1 = seq_list[:,1]-seq_list[:,0]+1 print(sample_num,np.sum(seq_len1),seq_list.shape,np.max(seq_len),np.min(seq_len),np.median(seq_len),np.max(seq_len1),np.min(seq_len1),np.median(seq_len1)) self.output_generate_sequences(idx_sel_list,seq_list) t_mtx, signal_mtx, vec1_serial, vec1_local = sample_select2a1(x_mtx, y, idx_sel_list, seq_list, tol=self.tol, L=self.flanking) t_serial = vec1_serial[:,self.flanking] context_size = vec1_serial.shape[1] id1 = mapping_Idx(idx_sel_list[:,1],t_serial) b1 = np.where(id1>=0)[0] if len(b1)!=len(vec1_serial): print('error!',len(b1),len(vec1_serial)) return -1 sel_id1 = id1[b1] # idx_sel_list1 = idx_sel_list[sel_id1] # label1 = y[sel_id1] t_chrom = idx_sel_list[sel_id1,0] print(t_chrom,t_serial) print(t_chrom.shape,t_serial.shape) print(vec1_serial.shape) list_ID = [] cnt1 = 0 interval = 200 list1, list2 = [],[] list3 = [] # region_unit_size = 5000 # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) for chrom_id in chrom_vec1: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) filename1 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) t_id1 = np.where(t_chrom==chrom_id)[0] t_serial1 = t_serial[t_id1] # serial by chromosome sample_num1 = len(t_serial1) num_segment = np.int(np.ceil(sample_num1/interval)) print(chrom_id1,num_segment,interval,sample_num1) with h5py.File(filename1,'r') as fid: serial1 = fid["serial"][:] seq1 = fid["vec"][:] serial1 = serial1[:,0] print(serial1.shape, seq1.shape) id1 = utility_1.mapping_Idx(serial1,t_serial1) id2 = np.where(id1>=0)[0] num1 = len(id2) segment_id = 0 t_signal_mtx = signal_mtx[t_id1[id2]] list3.extend(t_signal_mtx) for i in range(num1): cnt2 = i+1 t_id2 = id2[i] label_serial = t_serial1[t_id2] t_vec1_serial = vec1_serial[t_id1[t_id2]] id_1 = mapping_Idx(serial1,t_vec1_serial) b1 = np.where(id_1>=0)[0] if len(b1)!=context_size: b2 = np.where(id_1<0)[0] print('error!',chrom_id1,label_serial,t_vec1_serial[b2],len(b1),context_size) np.savetxt('temp1.txt',serial1,fmt='%d',delimiter='\t') np.savetxt('temp2.txt',t_vec1_serial,fmt='%d',delimiter='\t') return -1 t_mtx = seq1[id_1[b1]] list1.append(t_vec1_serial) list2.append(t_mtx) local_id = cnt2%interval label_id = cnt1 output_filename = 'test1_%s_%s_%d.h5'%(self.cell,chrom_id1,segment_id) if (cnt2%interval==0) or (cnt2==num1): output_filename1 = '%s/%s'%(file_path,output_filename) list1 = np.asarray(list1) list2 = np.asarray(list2,dtype=np.int8) print(chrom_id1,segment_id,local_id,label_id,label_serial,list1.shape,list2.shape) # with h5py.File(output_filename1,'w') as fid: # fid.create_dataset("serial", data=list1, compression="gzip") # fid.create_dataset("vec", data=list2, compression="gzip") # dict1 = {'serial':list1.tolist(),'vec':list2.tolist()} # np.save(output_filename,dict1,allow_pickle=True) # with open(output_filename, "w") as fid: # json.dump(dict1,fid) # with open(output_filename,"w",encoding='utf-8') as fid: # json.dump(dict1,fid,separators=(',', ':'), sort_keys=True, indent=4) list1, list2 = [], [] segment_id += 1 cnt1 = cnt1+1 list_ID.append([label_id,label_serial,output_filename,local_id]) # if cnt2%interval==0: # break # with open(output_filename, "r") as fid: # dict1 = json.load(fid) # serial1, vec1 = np.asarray(dict1['serial']), np.asarray(dict1['vec']) # print(serial1.shape,vec1.shape) # with h5py.File(output_filename1,'r') as fid: # serial1 = fid["serial"][:] # vec1 = fid["vec"][:] # print(serial1.shape,vec1.shape) fields = ['label_id','label_serial','filename','local_id'] list_ID = np.asarray(list_ID) data1 = pd.DataFrame(columns=fields,data=list_ID) output_filename = '%s/%s_label_ID_1'%(file_path,self.cell) data1.to_csv(output_filename+'.txt',index=False,sep='\t') # np.save(output_filename,data1,allow_pickle=True) output_filename = '%s/%s_label.h5'%(file_path,self.cell) list3 = np.asarray(list3) print(list3.shape) with h5py.File(output_filename,'w') as fid: fid.create_dataset("vec", data=np.asarray(list3), compression="gzip") return list_ID # find serial for training and validation data def prep_data_2_sub1(self,file_path,file_prefix,type_id1=0,type_id2=0,gap_tol=5,seq_len_thresh=5,select_config={}): if type_id1>=0: self.find_serial_ori(file_path,file_prefix, type_id1=type_id1,type_id2=type_id2, select_config=select_config) chrom_vec = np.unique(self.chrom) chrom_vec1 = [] for chrom_id in chrom_vec: try: id1 = chrom_id.find('chr') if id1>=0: chrom_id1 = int(chrom_id[3:]) chrom_vec1.append(chrom_id1) except: continue chrom_vec1 = np.sort(chrom_vec1) sample_num = len(self.chrom) idx_sel_list = -np.ones((sample_num,2),dtype=np.int64) if 'gap_thresh' in self.config: gap_tol = self.config['gap_thresh'] if 'seq_len_thresh' in self.config: seq_len_thresh = self.config['seq_len_thresh'] for chrom_id in chrom_vec1: chrom_id1 = 'chr%d'%(chrom_id) b1 = np.where(self.chrom==chrom_id1)[0] idx_sel_list[b1,0] = [chrom_id]*len(b1) idx_sel_list[b1,1] = self.serial[b1] id1 = idx_sel_list[:,0]>=0 idx_sel_list = idx_sel_list[id1] sample_num = len(id1) y = self.signal[id1] x_mtx = idx_sel_list[id1] self.train_sel_list_ori = idx_sel_list self.y_signal_1 = self.signal[id1] ref_serial = idx_sel_list[:,1] # train_sel_list, val_sel_list = train1_sel_list[idx_train], train1_sel_list[idx_valid] # self.idx_list.update({'train':train_id1[idx_train],'valid':train_id1[idx_valid]}) # self.idx_train_val = {'train':idx_train,'valid':idx_valid} # self.y_signal.update({'train':y_signal_train1[idx_train],'valid':y_signal_train1[idx_valid]}) train_sel_list, val_sel_list, test_sel_list = self.prep_training_test(idx_sel_list) print(len(train_sel_list),len(val_sel_list),len(test_sel_list)) keys = ['train','valid','test'] # keys = ['train','valid'] # self.idx_sel_list = {'train':train1_sel_list,'valid':val_sel_list,'test':test_sel_list} self.idx_sel_list_ori = {'train':train_sel_list,'valid':val_sel_list,'test':test_sel_list} # self.idx_sel_list = idx_sel_list # seq_list_train, seq_list_valid: both locally calculated self.seq_list = dict() start = time.time() # seq_len_thresh = 20 self.local_serial_dict = dict() for i in keys: # self.seq_list[i] = generate_sequences(idx_sel_list1[i],region_list=self.region_boundary) # print(len(self.seq_list[i])) # self.output_generate_sequences(idx_sel_list[i],self.seq_list[i]) idx_sel_list1 = self.idx_sel_list_ori[i] # region_list_id = 'region_list_%s'%(i) # if region_list_id in self.config: # region_list = self.config[region_list_id] # else: # region_list = [] # region_list = np.asarray(region_list) # print(region_list_id,region_list) # if i=='test': # region_boundary = self.region_boundary # else: # region_boundary = [] region_boundary = self.region_boundary print('region_boundary',region_boundary) # assert len(region_boundary)==0 seq_list = generate_sequences(idx_sel_list1, gap_tol=gap_tol, region_list=region_boundary) # seq_len = seq_list[:,1]-seq_list[:,0]+1 # thresh1 = seq_len_thresh # b1 = np.where(seq_len>thresh1)[0] # print(len(seq_list),len(b1)) # seq_list = seq_list[b1] # seq_len1 = seq_list[:,1]-seq_list[:,0]+1 # print(sample_num,np.sum(seq_len1),len(seq_list),np.max(seq_len),np.min(seq_len),np.median(seq_len),np.max(seq_len1),np.min(seq_len1),np.median(seq_len1)) # reselect the regions according to the subsequence length # recalculate seq_list idx_sel_list1, seq_list = self.select_region_local_1(idx_sel_list1,seq_list, gap_tol=gap_tol, seq_len_thresh=seq_len_thresh, region_list=[]) self.idx_sel_list_ori[i] = idx_sel_list1 self.seq_list[i] = seq_list x1 = idx_sel_list1 sel_id = utility_1.mapping_Idx(ref_serial,idx_sel_list1[:,1]) y1 = self.y_signal_1[sel_id] x, y, t_vec_serial, t_vec_local = sample_select2a1(x1,y1, idx_sel_list1, seq_list, self.tol, self.flanking) t_serial1 = t_vec_serial[:,self.flanking] # if np.sum(t_serial1!=sel_idx_list1[:,1])>0: # print('error!',i) # return id1 = utility_1.mapping_Idx(idx_sel_list1[:,1],t_serial1) b1 = np.where(id1>=0)[0] if len(b1)!=len(t_serial1): print('error!',i) return idx_sel_list1 = idx_sel_list1[id1[b1]] self.local_serial_dict[i] = [idx_sel_list1,y1,y,t_vec_serial,t_vec_local] print(i,t_serial1.shape,y.shape) stop = time.time() print('generate_sequences', stop-start) return self.local_serial_dict # load feature def load_feature_local(self,chrom_vec,type_id=0,select_config={}): # load sequences if type_id==0: serial_vec = [] list1, list2 = [],[] # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) if self.config['species_id']==0: serial_vec, f_mtx = self.find_serial_ori_1_local(chrom_vec) else: for chrom_id in chrom_vec: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) filename1 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) with h5py.File(filename1,'r') as fid: serial1 = fid["serial"][:] seq1 = fid["vec"][:] serial_vec.extend(serial1) list1.extend([chrom_id]*len(serial1)) list2.extend(seq1) print(len(serial1),seq1.shape) list1 = np.asarray(list1) serial_vec = np.hstack((list1[:,np.newaxis],serial_vec)) f_mtx = np.asarray(list2) # kmer frequency and motif feature elif type_id==1: if len(self.serial_vec)>0 and (len(self.f_mtx)>0): serial_vec = self.serial_vec f_mtx = self.f_mtx else: type_id2 = 0 x_train1_trans, train_sel_list_ori = self.prep_data_sub1(self.file_path,self.file_prefix,type_id2,self.feature_dim_transform,load_type=1) # serial_vec = train_sel_list_ori[:,1] serial_vec = np.asarray(train_sel_list_ori) f_mtx = np.asarray(x_train1_trans) else: filename1 = select_config['input_filename1'] layer_name = select_config['layer_name'] with h5py.File(filename1,'r') as fid: f_mtx = np.asarray(fid[layer_name][:],dtype=np.float32) print(f_mtx.shape) serial_vec = fid["serial"][:] assert len(serial_vec )==f_mtx.shape[0] print(serial_vec[0:5]) return serial_vec, f_mtx # find serial def find_serial_local(self,ref_serial,vec_serial_ori,sel_id): serial_1 = vec_serial_ori[:,self.flanking] # print(len(ref_serial),ref_serial) # print(len(serial_1),serial_1) assert np.max(np.abs(ref_serial-serial_1))==0 t_vec_serial = np.ravel(vec_serial_ori[sel_id]) serial1 = np.unique(t_vec_serial) id1 = mapping_Idx(ref_serial,serial1) b1 = np.where(id1<0)[0] if len(b1)>0: print('error!',len(b1)) print(serial1[b1]) b_1 = np.where(id1>=0)[0] id1 = id1[b_1] sample_num = len(ref_serial) id2 = np.setdiff1d(np.arange(sample_num),id1) if len(id2)>0: t_serial2 = ref_serial[id2] id_2 = mapping_Idx(serial_1,t_serial2) sel_id = list(sel_id)+list(id_2) sel_id = np.unique(sel_id) print('find serial local',len(sel_id),len(id_2)) return sel_id # load training and validation data def prep_data_2_sub2(self,type_id1=0,keys=['train','valid'],stride=1,type_id=0,select_config={}): chrom1 = [] for i in range(0,len(keys)): key1 = keys[i] idx_sel_list, y_ori, y, vec_serial, vec_local = self.local_serial_dict[key1] chrom1.extend(idx_sel_list[:,0]) chrom_vec1 = np.sort(np.unique(chrom1)) serial_vec, f_mtx = self.load_feature_local(chrom_vec1,type_id=type_id1,select_config=select_config) print('load feature local', serial_vec.shape, f_mtx.shape) if serial_vec.shape[1]>2: cnt1 = serial_vec[:,-1] b1 = np.where(cnt1>0)[0] ratio1 = len(b1)/len(serial_vec) print(len(b1),len(serial_vec),ratio1) ref_serial = serial_vec[:,1] for i in range(0,len(keys)): key1 = keys[i] idx_sel_list, y_ori, y, vec_serial, vec_local = self.local_serial_dict[key1] num1 = len(idx_sel_list) if stride>1: id1 = list(range(0,num1,stride)) # the windows cover the positions print(num1,stride) if type_id==1: id1 = self.find_serial_local(idx_sel_list[:,1],vec_serial,id1) y, vec_serial, vec_local = y[id1], vec_serial[id1], vec_local[id1] self.local_serial_dict[key1] = [idx_sel_list, y_ori, y, vec_serial, vec_local] id2 = mapping_Idx(ref_serial,idx_sel_list[:,1]) print(key1,len(ref_serial),len(idx_sel_list)) print(ref_serial[0:5]) print(idx_sel_list[0:5,1]) b1 = np.where(id2<0)[0] if len(b1)>0: print('error!',len(b1),key1) # return print('mapping',len(id2)) # update b_1 = np.where(id2>=0)[0] id2 = id2[b_1] idx_sel_list, y_ori = idx_sel_list[b_1], y_ori[b_1] y, vec_serial, vec_local = y[b_1], vec_serial[b_1], vec_local[b_1] self.local_serial_dict[key1] = [idx_sel_list, y_ori, y, vec_serial, vec_local] self.x[key1] = f_mtx[id2] self.idx[key1] = id2 return True # training and predition with sequences def control_pre_test1_repeat(self,path1,file_prefix,run_id_load=-1): self.prep_data_2_sub1(path1,file_prefix) config = self.config.copy() units1=[50,50,32,25,50,25,0,0] flanking = 50 context_size = 2*flanking+1 n_step_local_ori = 5000 region_unit_size = 1 feature_dim = 4 local_conv_list1 = [] regularizer2, bnorm, activation = 1e-04, 1, 'relu' if self.run_id==110001: config_vec1 = [[64, 15, 5, 1, 2, 2, 0.2, 0], [32, 5, 1, 1, 10, 10, 0.2, 0], [32, 3, 1, 1, 5, 5, 0.2, 0]] for t1 in config_vec1: n_filters, kernel_size1, stride, dilation_rate1, pool_length1, stride1, drop_out_rate, boundary = t1 conv_1 = [n_filters, kernel_size1, stride, regularizer2, dilation_rate1, boundary, bnorm, activation, pool_length1, stride1, drop_out_rate] local_conv_list1.append(conv_1) config['local_conv_list1'] = local_conv_list1 print(local_conv_list1) feature_dim1, feature_dim2, return_sequences_flag1, sample_local, pooling_local = 32, 25, True, 0, 0 n_step_local1 = 10 feature_dim3 = [] local_vec_1 = [feature_dim1, feature_dim2, feature_dim3, return_sequences_flag1, sample_local, pooling_local] attention2_local = 0 select2 = 1 concatenate_1, concatenate_2 = 0, 1 hidden_unit = 32 regularizer2_2 = 1e-04 config.update({'attention1':0,'attention2':1,'select2':select2,'context_size':context_size,'n_step_local':n_step_local1,'n_step_local_ori':n_step_local_ori}) config.update({'local_vec_1':local_vec_1,'attention2_local':attention2_local}) config['feature_dim_vec'] = units1[2:] config['feature_dim_vec_basic'] = units1[2:] config.update({'local_conv_list1':local_conv_list1,'local_vec_1':local_vec_1}) config.update({'attention1':0,'attention2':1,'context_size':context_size, 'n_step_local_ori':n_step_local_ori}) config.update({'select2':select2,'attention2_local':attention2_local}) config.update({'concatenate_1':concatenate_1,'concatenate_2':concatenate_2}) config.update({'feature_dim':feature_dim,'output_dim':hidden_unit,'regularizer2_2':regularizer2_2}) model = utility_1.get_model2a1_attention_1_2_2_sample5(config) # find feature vectors with the serial self.x = dict() self.idx = dict() self.prep_data_2_sub2(type_id1=0,keys=['train','valid'],stride=1) mtx_train = self.x['train'] idx_sel_list_train, y_train_ori_1, y_train_ori, vec_serial_train, vec_local_train = self.local_serial_dict['train'] mtx_valid = self.x['valid'] idx_sel_list_valid, y_valid_ori_1, y_valid_ori, vec_serial_valid, vec_local_valid = self.local_serial_dict['valid'] train_num1, valid_num1 = len(y_train_ori), len(y_valid_ori) print('train',len(idx_sel_list_train),len(y_train_ori),mtx_train.shape) print('valid',len(idx_sel_list_valid),len(y_valid_ori),mtx_valid.shape) x_valid = mtx_valid[vec_local_valid] y_valid = y_valid_ori print(x_valid.shape,y_valid.shape) type_id2 = 2 MODEL_PATH = 'test%d.h5'%(self.run_id) n_epochs = 1 BATCH_SIZE = 32 n_step_local = n_step_local_ori earlystop = EarlyStopping(monitor='val_loss', min_delta=self.min_delta, patience=self.step, verbose=1, mode='auto') checkpointer = ModelCheckpoint(filepath=MODEL_PATH, monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False) num_sample1 = 1 interval = 2500 select_num = np.int(np.ceil(train_num1/interval)) # select_num1 = select_num*interval # print(num_sample1,select_num,interval,select_num1) if select_num>1: t1 = np.arange(0,train_num1,interval) pos = np.vstack((t1,t1+interval)).T pos[-1][1] = train_num1 print(train_num1,select_num,interval) print(pos) else: pos = [[0,train_num1]] start2 = time.time() train_id_1 = np.arange(train_num1) valid_id_1 = np.arange(valid_num1) np.random.shuffle(valid_id_1) cnt1 = 0 mse1 = 1e5 decay_rate = 0.95 decay_step = 1 init_lr = self.config['lr'] for i1 in range(50): self.config['lr'] = init_lr*((decay_rate)**(int(i1/decay_step))) np.random.shuffle(train_id_1) start1 = time.time() valid_num2 = 2500 num2 = np.min([valid_num1,valid_num2]) valid_id2 = valid_id_1[0:num2] x_valid1, y_valid1 = x_valid[valid_id2], y_valid[valid_id2] for l in range(select_num): s1, s2 = pos[l] print(l,s1,s2) sel_id = train_id_1[s1:s2] x_train = mtx_train[vec_local_train[sel_id]] y_train = y_train_ori[sel_id] x_train, y_train = np.asarray(x_train), np.asarray(y_train) print(x_train.shape,y_train.shape) n_epochs = 1 train_num = x_train.shape[0] print('x_train, y_train', x_train.shape, y_train.shape) print('x_valid, y_valid', x_valid1.shape, y_valid1.shape) # model.fit(x_train,y_train,epochs = n_epochs,batch_size = BATCH_SIZE,validation_data = [x_valid,y_valid],callbacks=[earlystop,checkpointer]) model.fit(x_train,y_train,epochs = n_epochs, batch_size = BATCH_SIZE, validation_data = [x_valid1,y_valid1], callbacks=[earlystop,checkpointer]) # model.load_weights(MODEL_PATH) model_path2 = '%s/model_%d_%d_%d_%d.h5'%(self.path,self.run_id,type_id2,context_size,i1) model.save(model_path2) # model_path2 = MODEL_PATH if l%5==0: print('loading weights... ', MODEL_PATH) model.load_weights(MODEL_PATH) # load model with the minimum training error y_predicted_valid1 = model.predict(x_valid) y_predicted_valid =
np.ravel(y_predicted_valid1[:,flanking])
numpy.ravel
import argparse import time import cv2.cv2 as cv import numpy as np from scipy.signal import find_peaks h_bins = 8 s_bins = 4 v_bins = 4 num_of_bins = h_bins + s_bins + v_bins def check_time(args, cap): frame_count = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) start_frame = int(args.start_sec * cap.get(cv.CAP_PROP_FPS)) if args.end_sec < 0: end_frame = frame_count else: end_frame = int(args.end_sec * cap.get(cv.CAP_PROP_FPS)) if end_frame > frame_count: end_frame = frame_count print('[w] End time greater than the length of the video.') if end_frame < start_frame: print('[f] End time must larger than start time.') raise ValueError cap.set(cv.CAP_PROP_POS_FRAMES, start_frame) return start_frame, end_frame def get_intersection(cap, numFrame, shape): eof_flag = False hists = np.zeros((numFrame, num_of_bins)) for k in range(numFrame): _, img = cap.read() if img is None: eof_flag = True break img = cv.resize(img, (shape[1], shape[0])) hsv_img = cv.cvtColor(img, cv.COLOR_BGR2HSV) h, _ = np.histogram(hsv_img[:, :, 0], h_bins, (0, 255)) s, _ = np.histogram(hsv_img[:, :, 1], s_bins, (0, 255)) v, _ = np.histogram(hsv_img[:, :, 2], v_bins, (0, 255)) hists[k] = np.concatenate((h, s, v)) if img is None: hists = hists[0:k] numFrame = k # compute intersection hists = hists / (3 * shape[0] * shape[1]) hists_shift = hists[[0] + [x for x in range(numFrame - 1)]] hists_pair = np.stack((hists, hists_shift), 2) hists_min = np.min(hists_pair, axis=2) S =
np.sum(hists_min, axis=1)
numpy.sum
''' Define OLS class ''' ################################################################################ # 1: Setup ################################################################################ # Import necessary packages import numpy as np import pandas as pd import scipy.linalg as scl import scipy.stats as scs ################################################################################ # 2: Auxiliary functions ################################################################################ # Define a function which turn a list or vector-like object into a proper two # dimensional column vector def cvec(a): """ Turn a list or vector-like object into a proper column vector Input a: List or vector-like object, has to be a potential input for np.array() Output vec: two dimensional NumPy array, with the first dimension weakly greater than the second (resulting in a column vector for a vector-like input) """ # Conver input into a two dimensional NumPy array vec = np.array(a, ndmin=2) # Check whether the second dimension is strictly greater than the first # (remembering Python's zero indexing) if vec.shape[0] < vec.shape[1]: # If so, transpose the input vector vec = vec.T # Return the column vector return vec ################################################################################ # 3: Define OLS class ################################################################################ # Define OLS model class ols(): """ Runs OLS regressions """ # Define initialization function def __init__(self, name_gen_X='X', name_gen_y='y', add_intercept=True, name_gen_icept='(Intercept)', coef_only=False, no_joint=False, covariance_estimator=None, freq_weights=False, level=.05, df_adjust=None, verbose=True, fprec=np.float64, nround=4): """ Initialize ols() class Inputs name_gen_x: String, generic name prefix for X (RHS) variables, used if no variable names are provided in ols.fit() name_gen_y: String, generic name prefix for y (LHS) variable, used if no variable name is provided in ols.fit() add_intercept: Boolean, if True, an intercept will be added to the model name_gen_icept: String, name to use for the intercept variable coef_only: Boolean, if True, the model only calculates coefficients (and not the covariance matrix, which is computationally costly) no_joint: Boolean, if True, the model does not (by default) calculate a Wald test of joint significane of all coefficients covariance_estimator: String or None, covariance estimator to use. Possible choices are: 'homoskedastic': The homoskedastic covariance estimator 'hc1': The heteroskedasticity robust covariance estimator of MacKinnon and White (1985) 'cluster': The cluster robust covariance estimator proved to be unbiased in Williams (2000) If None, uses the default provided in ols.ols_cov(), which is either 'hc1', if cluster IDs were not provided in ols.fit(), or 'cluster', if cluster IDs were provided level: Scalar in [0,1], level for confidence intervals verbose: Boolean, if True, some notes and warnings are printed (e.g. if X'X is not invertible, and a pseudo inverse needs to be used) fprec: Float data type, all floats will be cast to this type. The default value is np.float64, to ensure high precision. Using np.float32 instead can speed up NumPy's linear algebra in some settings. nround: Integer, results of ols.summarize() will be rounded to this number of decimal points """ # Instantiate parameters # # Instantiate verbose flag self.verbose = verbose # Instantiate float precision data type self.fprec = fprec # Instantiate parameters for ols.fit() self.name_gen_X = name_gen_X self.name_gen_y = name_gen_y self.n = None self.k = None self.add_icept = add_intercept self.name_gen_icept = name_gen_icept self.freq_weights = freq_weights self.coef_only = coef_only self.no_joint = no_joint self.df_adjust = df_adjust # Parameters for self.ols_ci() self.level = level # Parameters for self.summarize() self.nround = nround # Instantiate variables created by various methods # # Variables from ols_fit() self.names_X = None self.name_y = None self.coef = None self.est = None # Variables created by self.ols_cov() self.cov_est = covariance_estimator self.V_hat = None self.se = None # Variables created by self.ols_t() self.t = None # Variables created by self.ols_ci() self.ci = None # Variables created by self.ols_p() self.p = None # Variables created by self.summarize() self.regtable = None # Variables created by self.score() self.R2 = None self.R2adj = None # Variables created by self.wald() self.W = None self.pW = None self.waldtable = None # Define a function to fit the model def fit(self, X, y, clusters=None, weights=None, names_X=None, name_y=None, name_gen_X=None, name_gen_y=None, add_intercept=None, coef_only=None, freq_weights=None, level=None, df_adjust=None, no_joint=None, copy=True, **kwargs_wald): """ Fit OLS model Inputs y: n by 1 vector-like, outcome variable X: n by k matrix-like, RHS variables clusters: n by 1 vector-like or None, cluster IDs weights: n by 1 vector-like or None, weights names_X: length n list or None, names for variables in X. If names_X is None and X is a pandas DataFrame or Series, column names will be used. name_y: length n list or None, name for outcome variable. As with X, this can be inferred if y is a pandas Series or DataFrame. name_gen_x: String or None, see __init()__; if None, uses the value provided in __init()__ name_gen_y: String or None, see __init()__; if None, uses the value provided in __init()__ add_intercept: Boolean or None, see __init()__; if None, uses the value provided in __init()__ coef_only: Boolean or None, see __init()__; if None, uses the value provided in __init()__ no_joint: Boolean or None, see __init()__; if None, use the value provided in __init()__ """ # Check whether the generic name for X variables was changed if name_gen_X is not None: # If so, adjust self.name_gen_X self.name_gen_X = name_gen_X # Check whether the generic name for the y variable was changed if name_gen_y is not None: # If so, adjust self.name_gen_y self.name_gen_y = name_gen_y # Check whether the intercept paramter was changed if add_intercept is not None: # If so, adjust it add_icept = add_intercept else: # Otherwise, use stored value from __init__() add_icept = self.add_icept # Check whether the coefficients only paramter was changed if coef_only is None: # If so, adjust it coef_only = self.coef_only if level is None: level = self.level if df_adjust is None: df_adjust = self.df_adjust # Check whether the joint significance parameter was changed if no_joint is None: # If so, adjust it no_joint = self.no_joint # Variables names # # Check whether names for X were provided if names_X is not None: # If so, adjust names_X self.names_X = names_X # Alternatively, check whether any data were provided as pandas objects, # and get their names if necessary; otherwise, instantiate names # automatically # # Check whether X is a pandas DataFrame elif isinstance(X, pd.DataFrame): # If so, set names_X to the the column names self.names_X = X.columns # Check whether X is a pandas Series elif isinstance(X, pd.Series): # If so, set names_X to the Series name self.names_X = [X.name] # If all else fails... else: # ... use generic names self.names_X = [ self.name_gen_X+str(i+1) for i in np.arange(X.shape[1]) ] # Check whether names for y were provided if name_y is not None: # If so, adjust name_y self.name_y = name_y # Check whether y is a pandas Data Frame and name_y was not provided elif isinstance(y, pd.DataFrame): # If use, set name_y to the column name self.name_y = y.columns[0] # Check whether y is a pandas Series and name_y was not provided elif isinstance(y, pd.Series): # If so, set name_y to the Series name self.name_y = y.name # If all else fails... else: # ... use generic names self.name_y = self.name_gen_y # Copy X if necessary if copy: X = X.copy() # Instantiate data matrices # # Start by instantiating the X data as is if np.ndim(X) == 1: # For one dimensional X, make sure this is a proper vector X = cvec(X) else: # Otherwise, make sure it's a proper NumPy array X = np.array(X) # Check whether to add an intercept if add_icept: # If so, set up an intercept cons = np.ones(shape=(X.shape[0], 1)) # Add it to the data matrix X = np.concatenate([cons, X], axis=1) # Add the intercept to the variables names self.names_X = [self.name_gen_icept] + list(self.names_X) # For speed considerations, make sure these are self.fprec types X = X.astype(self.fprec) # Get number of observations n and variables p self.n, self.k = X.shape # Instantiate y data elements y = cvec(y).astype(self.fprec) # Check whether clusters were not provided, but clustered errors are # supposed to be used if clusters is None and self.cov_est == 'cluster': raise ValueError( "Error in ols.fit(): The covariance estimator was set to" + " 'cluster', but clusters were not provided; please provide" + " cluster IDs, or change the covariance estimator" ) # Check whether a cluster variable was provided if clusters is not None: # If so, adjust the cluster variable clustvar = cvec(clusters) # Otherwise, just set clustvar to None else: clustvar = None # Check whether the frequency weights flag was changed from its standard # None if freq_weights is None: # If not, use the provided value freq_weights = self.freq_weights # Instantiate weights matrix (this needs to be a diagonal matrix, and # np.diag() only works as expected with a one dimensional input, so for # once, I have to make sure this is one dimensional if weights is not None: # Start by instantiating the weights as is if np.ndim(weights) == 1: # For one dimensional weights, use them as is W = np.array(weights) else: # Otherwise, make sure they're one dimensional W = cvec(W)[:, 0] # Check whether frequency weights need to be used if not freq_weights: # If not, normalize weights W = W * (self.n / W.sum()) else: # If these are frequency weights, update the number of # observations self.n = np.int(W.sum()) # Get diagonal weights matrix W = np.diag(weights).astype(self.fprec) else: # If weights were not specified, use identity matrix #W = np.eye(self.n) W = None # Calculate coefficient vector if W is not None: self.coef = ( cvec(scl.lstsq(np.sqrt(W) @ X, np.sqrt(W) @ y)[0]) ).astype(self.fprec) else: self.coef = cvec(scl.lstsq(X, y)[0]).astype(self.fprec) # Check whether to calculate anything besides the coefficients if not coef_only: # Calculate some inputs for covariance estimators # # Get residuals U_hat = y - X @ self.coef # Get other elements of the OLS model # # Get the covariance sedf, Vdf = self.ols_cov( X=X, residuals=U_hat, clusters=clustvar, weights=W, df_adjust=df_adjust ) # Get t-statistics tdf = self.ols_t() # Get confidence intervals cidf = self.ols_ci(level=level, df_adjust=df_adjust) # Get p-values pdf = self.ols_p(df_adjust=df_adjust) # Check whether to do a Wald test if not no_joint: # Do a Wald test walddf = self.wald(**kwargs_wald) waldstat = walddf.loc['Wald statistic', :] waldp = walddf.loc['p-value', :] else: waldstat = None waldp = None else: # Otherwise, set all other results to NAN. (This is important for # coef_only=True to provide a speed-up. If this does not happen, # some of the pandas DataFrames containing results are created # automatically, and automatically inferring their shape and size # takes a while. Without pre-setting these here, coef_only=True # actually slows down the program.) sedf = None tdf = None cidf = None pdf = None waldstat = None waldp = None Vdf = None # Combine results into a dictionary self.est = { 'coefficients': pd.DataFrame( self.coef, index=self.names_X, columns=['Estimated coefficient'] ), 'se': sedf, 'covariance estimator': self.cov_est, 't': tdf, 'ci': cidf, 'level': self.level, 'p': pdf, 'wald': waldstat, 'wald p': waldp, 'covariance matrix': Vdf#, #'residuals': pd.DataFrame(U_hat, columns=['Residuals']), #'clusters': pd.DataFrame(clustvar, columns=['Cluster ID']) } # Define a function to calculate the covariance matrix plus standard errors def ols_cov(self, X, residuals, clusters=None, weights=None, covariance_estimator=None, df_adjust=None): """ Calculate covariance matrix and standard errors Input covariance_estimator: String or None, see __init()__; if None, uses the value provided in __init()__ """ # Instantiate weights (this function should never be called without W # having been instantiated in self.__init__(), but just in case) if weights is None: W = None else: W = weights if df_adjust is None: kappa = 0 else: kappa = df_adjust # Calculate (X'X)^(-1) if W is not None: XXinv = scl.pinv(X.T @ W @ X) else: XXinv = scl.pinv(X.T @ X) # Get residuals and clusters U_hat = residuals clustvar = clusters # Check whether covariance_estimator was changed from the default None if covariance_estimator is not None: # If so, set cov_est to the specified covariance estimator cov_est = covariance_estimator # Otherwise, check whether the original value provided to __init__() was # left at the default None, and no cluster IDs were provided elif (self.cov_est is None) and (clustvar is None): # If so, use HC1 as the default covariance estimator cov_est = 'hc1' # Otherwise, check whether the original value provided to __init__() was # left at the default None, and cluster IDs were provided elif (self.cov_est is None) and (clustvar is not None): # If so, use clustered standard errors cov_est = 'cluster' else: # Otherwise, use the specified covariance estimator cov_est = self.cov_est # Check whether clusters were provided, but a non-clustered covariance # estimator is being used, and the class is set to be talkative if ( (clustvar is not None) and (cov_est != 'cluster') and self.verbose ): print('\nNote in ols(): Cluster IDs were provided, but a', 'non-clustered covariance estimator is being used') # Check which covariance estimator to use # # Homoskedastic if cov_est.lower() == 'homoskedastic': # For the homoskedastic estimator, just calculate the standard # variance if W is not None: self.V_hat = ( (1 / (self.n - self.k - kappa)) * XXinv * (U_hat.T @ W @ U_hat) ) else: self.V_hat = ( (1 / (self.n - self.k - kappa)) * XXinv * (U_hat.T @ U_hat) ) # HC1 elif cov_est.lower() == 'hc1': # Calculate component of middle part of EHW sandwich, # S_i = X_i u_i, which makes it very easy to calculate # sum_i X_i X_i' u_i^2 = S'S S = (U_hat @
np.ones(shape=(1, self.k))
numpy.ones
import numpy as np from HamiltonianModule import spin_operators class QES_1D: def __init__(self, d, chi, D, l_phys, tau, spin='half', operators=None): # l_phys: number of sites in the bulk to simulate the bath self.d = d self.chi = chi # bath dimension self.D = D self.l_phys = l_phys self.tau = tau self.gate_phys = np.zeros(0) self.tensors_gate_phys = [np.zeros(0), np.zeros(0)] # two tensors of the physical gates, by SVD or QR self.gate_bath = [np.zeros(0), np.zeros(0)] # the two physical-bath Hamiltonians self.hamilt_bath = [np.zeros(0), np.zeros(0)] if operators is None: op_half = spin_operators(spin) self.operators = [op_half['id'], op_half['sx'], op_half['sy'], op_half['sz'], op_half['su'], op_half['sd']] else: self.operators = operators def obtain_physical_gate_tensors(self, hamilt): """ gate_phys: physical gate (or shifted physical Hamiltonian) is 4-th tensor 0 1 \ / G / \ 2 3 """ self.gate_phys = np.eye(self.d ** 2) - self.tau * hamilt self.gate_phys = self.gate_phys.reshape(self.d, self.d, self.d, self.d) u, s, v = np.linalg.svd(self.gate_phys.transpose(0, 2, 1, 3).reshape(self.d**2, self.d**2)) s = np.diag(s ** 0.5) self.tensors_gate_phys[0] = u.dot(s).reshape(self.d, self.d, self.d**2).transpose(0, 2, 1) self.tensors_gate_phys[1] = s.dot(v).reshape(self.d**2, self.d, self.d).transpose(1, 0, 2) def obtain_bath_h(self, env, which, way='shift'): """ h_bath is 4-th tensor 0 1 \ / G / \ 2 3 """ if (which is 'left') or (which is 'both'): self.gate_bath[0] = np.tensordot(env[0], self.tensors_gate_phys[1], ([1], [1])) self.gate_bath[0] = self.gate_bath[0].transpose(0, 2, 1, 3) s = self.gate_bath[0].shape self.hamilt_bath[0] = self.gate_bath[0].reshape(s[0] * s[1], s[2] * s[3]).copy() lm, u = np.linalg.eigh(self.hamilt_bath[0]) lm /= np.max(lm) if way is 'shift': self.hamilt_bath[0] = u.dot(np.diag((np.ones(( s[0] * s[1],)) - lm) / self.tau)).dot(u.T.conj()) else: self.hamilt_bath[0] = u.dot(np.diag(-np.log(abs(lm))/self.tau)).dot(u.T.conj()) self.hamilt_bath[0] = self.hamilt_bath[0] - np.trace(self.hamilt_bath[0]) * np.eye( s[0]*s[1]) / (s[0]*s[1]) self.hamilt_bath[0] = (self.hamilt_bath[0] + self.hamilt_bath[0].T.conj())/2 if (which is 'right') or (which is 'both'): self.gate_bath[1] = np.tensordot(self.tensors_gate_phys[0], env[1], ([1], [1])) self.gate_bath[1] = self.gate_bath[1].transpose(0, 2, 1, 3) s = self.gate_bath[1].shape self.hamilt_bath[1] = self.gate_bath[1].reshape(s[0] * s[1], s[2] * s[3]).copy() lm, u = np.linalg.eigh(self.hamilt_bath[1]) lm /=
np.max(lm)
numpy.max
# -*- coding: utf-8 -*- import csdmpy as cp import numpy as np from mrinversion.kernel import T1 from mrinversion.kernel import T2 kernel_dimension = cp.Dimension(type="linear", count=96, increment="20 ms") inverse_kernel_dimension = cp.Dimension( type="monotonic", coordinates=["1ms", "10ms", "100ms", "1s", "2s"] ) def test_T2_kernel(): T2_obj = T2( kernel_dimension=kernel_dimension, inverse_kernel_dimension=inverse_kernel_dimension, ) K = T2_obj.kernel(supersampling=1) x = kernel_dimension.coordinates x_inverse = inverse_kernel_dimension.coordinates amp = np.exp(np.tensordot(-x, (1 / x_inverse), 0)) amp /= amp[:, 0].sum() assert np.allclose(K, amp) def test_T1_kernel(): T1_obj = T1( kernel_dimension=kernel_dimension, inverse_kernel_dimension=inverse_kernel_dimension, ) K = T1_obj.kernel(supersampling=1) x = kernel_dimension.coordinates x_inverse = inverse_kernel_dimension.coordinates amp = 1 - np.exp(np.tensordot(-x, (1 / x_inverse), 0)) amp /= amp[:, 0].sum() assert
np.allclose(K, amp)
numpy.allclose
#!/usr/bin/env python3 # # Copyright 2020, Deepwave Digital, Inc. # SPDX-License-Identifier: BSD-3-Clause import numpy as np from matplotlib import pyplot as plt import SoapySDR from SoapySDR import SOAPY_SDR_RX, SOAPY_SDR_CS16, errToStr ############################################################################################ # Settings ############################################################################################ # Data transfer settings rx_chan = 0 # RX1 = 0, RX2 = 1 N = 16384 # Number of complex samples per transfer fs = 31.25e6 # Radio sample Rate freq = 2.4e9 # LO tuning frequency in Hz use_agc = True # Use or don't use the AGC timeout_us = int(5e6) rx_bits = 16 # The AIR-T's ADC is 16 bits ############################################################################################ # Receive Signal ############################################################################################ # Initialize the AIR-T receiver using SoapyAIRT sdr = SoapySDR.Device(dict(driver="SoapyAIRT")) # Create AIR-T instance sdr.setSampleRate(SOAPY_SDR_RX, 0, fs) # Set sample rate sdr.setGainMode(SOAPY_SDR_RX, 0, use_agc) # Set the gain mode sdr.setFrequency(SOAPY_SDR_RX, 0, freq) # Tune the LO # Create data buffer and start streaming samples to it rx_buff = np.empty(2 * N, np.int16) # Create memory buffer for data stream rx_stream = sdr.setupStream(SOAPY_SDR_RX, SOAPY_SDR_CS16, [rx_chan]) # Setup data stream sdr.activateStream(rx_stream) # this turns the radio on # Read the samples from the data buffer sr = sdr.readStream(rx_stream, [rx_buff], N, timeoutUs=timeout_us) rc = sr.ret # number of samples read or the error code assert rc == N, 'Error {}: {}'.format(rc.ret, errToStr(rc.ret)) # Stop streaming sdr.deactivateStream(rx_stream) sdr.closeStream(rx_stream) ############################################################################################ # Plot Signal ############################################################################################ # Convert interleaved shorts (received signal) to numpy.complex64 normalized between [-1, 1] s0 = rx_buff.astype(float) / np.power(2.0, rx_bits-1) s = (s0[::2] + 1j*s0[1::2]) # Take the fourier transform of the signal and perform FFT Shift S = np.fft.fftshift(
np.fft.fft(s, N)
numpy.fft.fft
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> Module with routines for conductivity problem. """ # Computation import numpy as np # Plotting import matplotlib.pyplot as plt # My stuff from . import tensors as ten # %% Bounds def voigt_iso(v, K): ''' Voigt bound for isotropic phases with volume fractions v and conductivities K in dimension d in {2,3}. Returns a scalar. Example: v = [0.1,0.2,0.7] K = [10,2,5] ''' return np.sum(np.array(v) * np.array(K)) def voigt(v, K): ''' Voigt bound with volume fractions v and conductivities K for anisotorpic 3d problems. Returns a matrix. Example: v = [0.1,0.2,0.7] K = [np.array([[10,2,0],[2,5,0],[0,0,8]]),2*np.eye(3),5*np.eye(3)] ''' return ten.av(v, K) def reuss_iso(v, K): ''' Reuss bound for isotropic phases. Returns a scalar. ''' return 1 / np.sum(np.array(v) / np.array(K)) def reuss(v, K): ''' Reuss for anisotropic phases. Returns a matrix. ''' return np.linalg.inv(ten.av(v, np.linalg.inv(K))) def hs_iso(v, K, d=2): ''' Hashin-Shtrikman bounds for isotropic phases in dimension d. Torquato (2002), equation (21.23). ''' Kmin = np.min(K) Kmins = (d - 1) * Kmin Kmax = np.max(K) Kmaxs = (d - 1) * Kmax low = 1 / np.sum(v * (1 / (K + Kmins))) - Kmins upp = 1 / np.sum(v * (1 / (K + Kmaxs))) - Kmaxs return np.array([low, upp]) def rP0(K0): ''' Return polarization tensor from Willis 1977 for hs in 2/3-dimensional thermal conductivity. (Willis 1977, i.e., isotropic 2-point statistics, no long-range order, isotropic C0,...) ''' k0 = K0[0, 0] d = len(K0) return
np.eye(d)
numpy.eye
"""This module defines the replay buffers. A replay buffer is a data structure that stores transitions coming from the environment, and allows sampling. This module provides a base class BaseReplayBuffer that defines the minimal interface that any replay buffer implementation should provide. Contents: Base classes: - BaseReplayBuffer Implementations: -FIFOReplayBuffer """ import collections import random import abc import numbers import numpy as np # --------------------------------------- REPLAY BUFFERS ------------------------------------------# class BaseReplayBuffer(abc.ABC, collections.UserList): """The base class for replay buffers. Any derived replay buffer must present an Iterable interface, therefore allowing iteration, sampling, etc. """ def add_iterable(self, iterable): for i in iterable: self.remember(i) def __add__(self, e): if hasattr(e, '__iter__'): return self.add_iterable(e) else: return self.remember(e) def append(self, e): self.remember(e) def extend(self, e): return self.add_iterable(e) @abc.abstractmethod def remember(self, transition, *args, **kwargs): """Remember the given transition. Args: transition (tuple): A transition in the form (s, a, r, s', *info). After s' any additional information can be passed. """ pass @abc.abstractmethod def sample(self, size, *args, **kwargs): """Sampling operation on the replay buffer. Args: size (int): Number of transitions to sample. Returns: A tuple (transitions, info) where transitions is a list of sampled transitions, and info is a dictionary with additional information. """ pass class FIFOReplayBuffer(BaseReplayBuffer): """Defines a simple fixed-size, FIFO evicted replay buffer, that stores transitions and allows sampling. Transitions are tuples in the form (s, a, r, s', ...), where after s' any additional information can be stored. """ def __init__(self, maxlen): """Instantiate the replay buffer. Args: maxlen (int): Maximum number of transitions to be stored. """ super().__init__() self.buffer = collections.deque(maxlen=maxlen) def remember(self, transition, *args, **kwargs): """Store the given transition Args: transition (list): List in the form [s, a, r, s', ...]. Note that s' should be None if the episode ended. After s' any additional information can be passed. Raises: AssertionError if given shapes do not match with those declared at initialization. """ self.buffer.append(transition) def sample(self, size, *args, **kwargs): """Sample uniformly from the replay buffer. Args: size (int): Number of transitions to sample. Returns: A tuple (transitions, info). transitions is a list with the sampled transitions. info is an empty dictionary. """ if size > len(self.buffer): raise ValueError( 'Trying to sample ' + str(size) + ' items when buffer has only ' + str(len(self.buffer)) + ' items.' ) indices = np.arange(len(self.buffer)) sampled_indices = np.random.choice(a=indices, size=size, replace=False) return [self.buffer[i] for i in sampled_indices], {} # Empty dict for compatibility class PrioritizedReplayBuffer(FIFOReplayBuffer): """Implementation of a prioritized replay buffer. This replay buffer stores transitions (s, a, r, s', w) where w is the weight. The sampling is done by sampling a chunk of the given chunk_size, and performing a weighted sampling on it. This allows sampling to be done in constant time. The probability of a transition i is given by w_i^alpha / sum w_k^alpha. If exceeding the maximum length, samples are evicted with a FIFO policy. """ def __init__(self, maxlen, alpha=0.8, chunk_size=2000): """Instantiate the replay buffer. Args: maxlen (int): Maximum number of transitions that the replay buffer will keep. alpha (float): Level of prioritization, between 0 and 1. chunk_size (int): Dimension of the random chunk from which transitions will be sampled. """ super().__init__(maxlen=maxlen) self.alpha = alpha self.chunk_size = chunk_size self.avg_td_error = 0 def remember(self, transition, *args, **kwargs): """Add the transition to the buffer. Args: transition (list): Transition in the form [s, a, r, s', w, ...] where w is the un-normalized weight of the transition. """ assert len(transition) >= 5, 'The given transition must be [s, a, r, s\', w, ...].' super().remember(transition) def sample(self, size, *args, **kwargs): """Sample the given number of transitions with probability proportional to the weights. Args: size (int): Number of transitions to sample. Returns: A tuple (transitions, info) where transitions is a list of the sampled transitions and info is a dictionary {'weights': weights} with weights being the normalized weights of the sampled transitions. """ if size > len(self.buffer): raise ValueError( 'Trying to sample ' + str(size) + ' items when buffer has only ' + str(len(self.buffer)) ) chunk = np.random.choice(a=np.arange(len(self.buffer)), size=self.chunk_size, replace=False) td_errors = np.array([self.buffer[i][4] + 1e-6 for i in chunk]) self.avg_td_error = td_errors.mean() # Update statistics # Compute probabilities and sample probabilities = np.power(td_errors, self.alpha) probabilities /=
np.sum(probabilities)
numpy.sum
import numpy as np import warnings try: import matplotlib.pyplot as pl except ImportError: warnings.warn("matplotlib could not be loaded!") pass from . import colors from ..utils._legacy import kmeans # .shape[0] messes up pylint a lot here # pylint: disable=unsubscriptable-object def image(shap_values, pixel_values=None, labels=None, width=20, aspect=0.2, hspace=0.2, labelpad=None, show=True): """ Plots SHAP values for image inputs. Parameters ---------- shap_values : [numpy.array] List of arrays of SHAP values. Each array has the shap (# samples x width x height x channels), and the length of the list is equal to the number of model outputs that are being explained. pixel_values : numpy.array Matrix of pixel values (# samples x width x height x channels) for each image. It should be the same shape as each array in the shap_values list of arrays. labels : list List of names for each of the model outputs that are being explained. This list should be the same length as the shap_values list. width : float The width of the produced matplotlib plot. labelpad : float How much padding to use around the model output labels. show : bool Whether matplotlib.pyplot.show() is called before returning. Setting this to False allows the plot to be customized further after it has been created. """ # support passing an explanation object if str(type(shap_values)).endswith("Explanation'>"): shap_exp = shap_values feature_names = [shap_exp.feature_names] ind = 0 if len(shap_exp.base_values.shape) == 2: shap_values = [shap_exp.values[..., i] for i in range(shap_exp.values.shape[-1])] else: raise Exception("Number of outputs needs to have support added!! (probably a simple fix)") if pixel_values is None: pixel_values = shap_exp.data if labels is None: labels = shap_exp.output_names multi_output = True if type(shap_values) != list: multi_output = False shap_values = [shap_values] # make sure labels if labels is not None: labels =
np.array(labels)
numpy.array
import numpy as np import pandas as pd from keras.layers import Dense, Dropout, Activation, Input from keras.models import Model baseInput = pd.read_csv('Inputs_VOPQ.csv') baseOutput = pd.read_csv('Output_DL2.csv') # Apagar alguns campos baseInput = baseInput.drop('V1',axis = 1) # Apaga a coluna baseInput = baseInput.drop('V2',axis = 1) baseInput = baseInput.drop('V3',axis = 1) baseInput = baseInput.drop('V6',axis = 1) baseInput = baseInput.drop('V8',axis = 1) baseInput = baseInput.drop('O1',axis = 1) # Apaga a coluna baseInput = baseInput.drop('O2',axis = 1) baseInput = baseInput.drop('O3',axis = 1) baseInput = baseInput.drop('O6',axis = 1) baseInput = baseInput.drop('O8',axis = 1) baseInput = baseInput.iloc[:,0:18].values baseOutput = baseOutput.drop('DL1',axis = 1) baseOutput = baseOutput.drop('DL2',axis = 1) baseOutput = baseOutput.drop('DL3',axis = 1) baseOutput = baseOutput.drop('DL6',axis = 1) baseOutput = baseOutput.drop('DL8',axis = 1) # base = base.Output.drop('Developer',axis = 1) # base = base.dropna(axis = 0) # Apaga todas as linhas que tiverem 'Nan' # base = base.loc[base['NA_Sales'] > 1] # Pega somente valores maiores que 1 na coluna 'NA_Sales' # base = base.loc[base['EU_Sales'] > 1] # Pega somente valores maiores que 1 na coluna 'EU_Sales' # base['Name'].value_counts() # nome_jogos = base.Name # base = base.drop('Name',axis = 1) # previsores = base.iloc[:,[0,1,2,3,7,8,9,10,11]].values # venda_na = base.iloc[:,4].values # venda_eu = base.iloc[:,5].values # venda_jp = base.iloc[:,6].values DL4 = baseOutput.iloc[:,0].values DL5 = baseOutput.iloc[:,1].values DL7 = baseOutput.iloc[:,2].values DL9 = baseOutput.iloc[:,3].values DL10 = baseOutput.iloc[:,4].values DL11 = baseOutput.iloc[:,5].values DL12 = baseOutput.iloc[:,6].values DL13 = baseOutput.iloc[:,7].values DL14 = baseOutput.iloc[:,8].values #Outra maneira alternativa ao SKlearn camada_entrada = Input(shape=(18,)) camada_oculta1 = Dense(units = 14, activation='sigmoid')(camada_entrada) # (input+output)/2 -> (28+14)/2 camada_oculta2 = Dense(units = 14, activation='sigmoid')(camada_oculta1) #Nome camada de saída = topologia de rede neural(parâmetros)(camada a qual está ligada) out4 = Dense(units = 1, activation='linear')(camada_oculta2) out5 = Dense(units = 1, activation='linear')(camada_oculta2) out7 = Dense(units = 1, activation='linear')(camada_oculta2) out9 = Dense(units = 1, activation='linear')(camada_oculta2) out10 = Dense(units = 1, activation='linear')(camada_oculta2) out11 = Dense(units = 1, activation='linear')(camada_oculta2) out12 = Dense(units = 1, activation='linear')(camada_oculta2) out13 = Dense(units = 1, activation='linear')(camada_oculta2) out14 = Dense(units = 1, activation='linear')(camada_oculta2) regressor = Model(inputs = camada_entrada, outputs = [out4,out5,out7,out9,out10,out11,out12,out13,out14]) regressor.compile(optimizer = 'adam', loss = 'mse') regressor.fit(baseInput, [DL4,DL5,DL7,DL9,DL10,DL11,DL12,DL13,DL14], epochs = 15000, batch_size = 20) #Batch_size = quantidade de testes antes de atualizar os pesos out4, out5, out7, out9, out10, out11, out12, out13, out14 = regressor.predict(baseInput) #Predicao = regressor.predict(baseInput) #Predicao = pd.DataFrame((out4, out5, out7, out9, out10, out11, out12, out13, out14), columns=['out4', 'out5', 'out7', 'out9', 'out10', 'out11', 'out12', 'out13', 'out14']) Predicao =
np.concatenate((out4, out5, out7, out9, out10, out11, out12, out13, out14),axis=1)
numpy.concatenate
# pylint: disable=unsubscriptable-object import os import argparse import numpy as np import tensorflow as tf from sklearn.datasets import load_iris def quantize_data(header, dtypes, X): for i, (h, dtype) in enumerate(zip(header, dtypes)): if h[0] != 'f' or dtype != np.int32: continue x = X[:, i].copy() nan_mask = np.isnan(x) bins = np.quantile(x[~nan_mask], np.arange(33)/32) bins = np.unique(bins) X[:, i][~nan_mask] = np.digitize( x[~nan_mask], bins, right=True) X[:, i][nan_mask] = 33 return np.asarray([tuple(i) for i in X], dtype=list(zip(header, dtypes))) def write_tfrecord_data(filename, data, header, dtypes): fout = tf.io.TFRecordWriter(filename) for i in range(data.shape[0]): example = tf.train.Example() for h, d, x in zip(header, dtypes, data[i]): if d == np.int32: example.features.feature[h].int64_list.value.append(x) else: example.features.feature[h].float_list.value.append(x) fout.write(example.SerializeToString()) def write_data(output_type, filename, X, y, role, verify_example_ids): if role == 'leader': data = np.concatenate((X[:, :X.shape[1]//2], y), axis=1) N = data.shape[1]-1 header = ['f%05d'%i for i in range(N)] + ['label'] dtypes = [np.float]*(N//2) + [np.int32]*(N - N//2) + [np.int32] elif role == 'follower': data = X[:, X.shape[1]//2:] N = data.shape[1] header = ['f%05d'%i for i in range(N)] dtypes = [np.float]*(N//2) + [np.int32]*(N - N//2) else: data = np.concatenate((X, y), axis=1) N = data.shape[1]-1 header = ['f%05d'%i for i in range(N)] + ['label'] dtypes = [np.float]*(N//2) + [np.int32]*(N - N//2) + [np.int32] if verify_example_ids: data = np.concatenate( [[[i] for i in range(data.shape[0])], data], axis=1) header = ['example_id'] + header dtypes = [np.int32] + dtypes data = quantize_data(header, dtypes, data) if output_type == 'tfrecord': write_tfrecord_data(filename, data, header, dtypes) else: np.savetxt( filename, data, delimiter=',', header=','.join(header), fmt=['%d' if i == np.int32 else '%f' for i in dtypes], comments='') def process_mnist(X, y): X = X.reshape(X.shape[0], -1) X = np.asarray([X[i] for i, yi in enumerate(y) if yi in (2, 3)]) y = np.asarray([[y[i] == 3] for i, yi in enumerate(y) if yi in (2, 3)], dtype=np.int32) return X, y def make_data(args): if args.dataset == 'mnist': (x_train, y_train), (x_test, y_test) = \ tf.keras.datasets.mnist.load_data() x_train, y_train = process_mnist(x_train, y_train) x_test, y_test = process_mnist(x_test, y_test) else: data = load_iris() x_train = x_test = data.data y_train = y_test =
np.minimum(data.target, 1)
numpy.minimum
import numpy as np from stl import mesh import cv2 def convert_image(gray_img, out_dir, invert=False): """ takes image and converts it to STL based off of pixel value @param {numpy image array} gray_img - numpy array with gray image @param {string} out_dir - The file for the stl to be saved to @param {boolean} invert - invert the heights. dark and light switches heights @returns {None} """ #creates vertices from image with the height of the cube being based off of the pixels height vertices_array = [] faces_array = [] for x,row in enumerate(gray_img): for y,pixel in enumerate(row): if pixel > 0: if invert: vertices = np.array([\ [x, y, 0], [x+1, y, 0], [x+1, y+1, 0], [x, y+1, 0], [x, y, 255-pixel], [x+1, y, 255-pixel], [x+1, y+1, 255-pixel], [x, y+1, 255-pixel], ]) else: vertices = np.array([\ [x, y, 0], [x+1, y, 0], [x+1, y+1, 0], [x, y+1, 0], [x, y, pixel], [x+1, y, pixel], [x+1, y+1, pixel], [x, y+1, pixel], ]) vertices_array.append(vertices) faces = np.array([[0,3,1],[1,3,2],[0,4,7],[0,7,3],[4,5,6],[4,6,7],[5,1,2],[5,2,6],[2,3,6],[3,7,6],[0,1,5],[0,5,4]]) #creates meshes from vertices meshes = [] for vertice in vertices_array: cube = mesh.Mesh(
np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)
numpy.zeros
'''This script contains all of the functions used in our study''' from __future__ import print_function import math import numpy as np import scipy as sp from scipy import special as spsp from scipy import sparse as sparse from scipy import stats as stats from scipy import optimize as opt from scipy import interpolate as interpolate import time import mpmath import random def poisson_loglh(data,lmbd): ''' Calculate log likelihood of Poisson parameter lambda given data. Parameters ---------- data : list sample dataset lmbd : float estimated Poisson parameter Returns ------- llh : float log likelihood of lmbd given data ''' llh=0 for x in data: llh+=np.log(stats.poisson.pmf(x,lmbd)) return llh def geo_loglh(data,lmbd): ''' Calculate log likelihood of geometric parameter lambda given data. Parameters ---------- data : list sample dataset lmbd : float estimated geometric parameter Returns ------- llh : float log likelihood of lmbd given data ''' llh=0 for x in data: llh+=np.log(stats.geom.pmf(x,1/(lmbd+1),-1)) return llh def neg_bin_loglh_theta(data,lmbd,theta): ''' Calculate log likelihood of negative binomial parameters given data. Parameters ---------- data : list sample dataset lmbd : float estimated mean of negative binomial distribution theta : float estimated overdispersion of negative binomial distribution Returns ------- llh : float log likelihood of lmbd and theta given data ''' llh=0 for x in data: llh+=np.log(stats.nbinom.pmf(x,lmbd/theta,1/(theta+1))) return llh def get_theta_mle(data,theta_0): ''' Calculate maximum likelihood estimate of negative binomial overdispersion parameter theta given sample data. Parameters ---------- data : list sample dataset theta_0 : float initial estimate of overdispersion parameter Returns ------- : float maximum likelihood estimate of overdispersion parameter ''' def f(theta): lmbd=np.mean(data) return -neg_bin_loglh_theta(data,lmbd,theta) mle=sp.optimize.minimize(f,[theta_0],bounds=((1e-6,50),)) return mle.x[0] def beta_poisson_pmf(x,lmbd,Phi,N): ''' Evaluate the probability mass function for beta-Poisson distribution. Parameters ---------- x : int or array point(s) at which to evaluate function lmbd : float Phi : float N : float Returns ------- P : float or array probability of each point in x ''' if type(x)==int: P=spsp.hyp1f1(x+Phi*lmbd,x+Phi*N,-N) for n in range(1,x+1): # This loop gives us the N^x/gamma(x+1 term) P=(N/n)*P for m in range(x): # This loop gives us the term with the two gamma functions in numerator and denominator P=((m+Phi*lmbd)/(m+Phi*N))*P else: P=[] for i in range(0,len(x)): p=spsp.hyp1f1(x[i]+Phi*lmbd,x[i]+Phi*N,-N) for n in range(1,x[i]+1): # This loop gives us the N^x/gamma(x+1 term) p=(N/n)*p for m in range(x[i]): # This loop gives us the term with the two gamma functions in numerator and denominator p=((m+Phi*lmbd)/(m+Phi*N))*p P=P+[p] return P hyp1f1_alt=np.frompyfunc(mpmath.hyp1f1,3,1) def beta_poisson_loglh(data,lmbd,phi,N): ''' Calculate log likelihood of beta-Poisson parameters given data. Parameters ---------- data : list sample dataset lmbd : float phi : float N : float Returns ------- llh : float log likelihood of parameters given data ''' llh=0 for x in data: llh+=x*np.log(N)-np.real(spsp.loggamma(x+1))+np.real(spsp.loggamma(phi*N))+np.real(spsp.loggamma(x+phi*lmbd))-np.real(spsp.loggamma(x+phi*N))-np.real(spsp.loggamma(phi*lmbd)) if x+phi*N<50: llh+=np.log(spsp.hyp1f1(x+phi*lmbd,x+phi*N,-N)) else: llh+=np.log(float(hyp1f1_alt(x+phi*lmbd,x+phi*N,-N))) return llh def neg_bin_loglh(data,lmbd,phi): ''' Calculate log likelihood of negative binomial parameters given data, with negative binomial parameterised with phi rather than theta. Parameters ---------- data : list sample dataset lmbd : float estimated mean of negative binomial distribution phi : float Returns ------- llh : float log likelihood of lmbd and theta given data ''' llh=0 for x in data: llh+=np.log(stats.nbinom.pmf(x,lmbd*phi,phi/(phi+1))) return llh def get_phi_and_N_mles(data,phi_0,N_0): ''' Calculate maximum likelihood estimates of beta-Poisson parameters Phi and N. Parameters ---------- data : list sample dataset phi_0 : float initial estimate of Phi N_0 : float initial estimate of N Returns ------- : float maximum likelihood estimate of Phi : float maximum likelihood estimate of N ''' def f(params): lmbd=np.mean(data) phi=params[0] if params[1]>0.1e-3: N=1/params[1] return -beta_poisson_loglh(data,lmbd,phi,N) else: return -neg_bin_loglh(data,lmbd,phi) mle=sp.optimize.minimize(f,[phi_0,N_0],bounds=((1e-6,50),(0,1/np.mean(data)))) if mle.x[1]<0: mle.x[1]=0 return mle.x[0],mle.x[1] def zip_pmf(x,lmbd,sigma): ''' Evaluate the probability mass function for zero-inflated Poisson distribution. Parameters ---------- x : int or array point(s) at which to evaluate function lmbd : float mean of Poisson component sigma : float degree of zero inflation Returns ------- P : float or array probability of each point in x ''' if type(x)==int: return sigma*(x==0)+(1-sigma)*stats.poisson.pmf(x,lmbd) else: return sigma*np.equal(x,np.zeros(len(x)))+(1-sigma)*stats.poisson.pmf(x,lmbd) def zip_loglh(data,lmbd,sigma): ''' Calculate log likelihood of zero-inflated Poisson parameters given data. Parameters ---------- data : list sample dataset lmbd : float mean of Poisson component sigma : float degree of zero inflation Returns ------- llh : float log likelihood of lmbd and sigma given data ''' llh=0 for x in data: if x==0: llh+=np.log(sigma+(1-sigma)*np.exp(-lmbd)) else: llh+=np.log(1-sigma)+np.log(stats.poisson.pmf(x,lmbd)) return llh def get_zip_mles(data,lmbd_0,sigma_0): ''' Calculate maximum likelihood estimates of ZIP parameters lambda and sigma. Parameters ---------- data : list sample dataset lmbd_0 : float initial estimate of lambda sigma_0 : float initial estimate of sigma Returns ------- : float maximum likelihood estimate of lambda : float maximum likelihood estimate of sigma ''' def f(params): lmbd=params[0] sigma=params[1] return -zip_loglh(data,lmbd,sigma) mle=sp.optimize.minimize(f,[lmbd_0,sigma_0],bounds=((np.mean(data),50),(0,1-1e-6))) return mle.x[0],mle.x[1] def beta_poisson_pgf(s,lmbd,phi,N): ''' Probability generating function of the beta-Poisson distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float Phi : float N : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=spsp.hyp1f1(lmbd*phi,N*phi,N*(s-1)); else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[spsp.hyp1f1(lmbd*phi,N*phi,N*(s[i]-1))] return G def poisson_pgf(s,lmbd): ''' Probability generating function of the Poisson distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=np.exp(lmbd*(s-1)) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[np.exp(lmbd*(s[i]-1))] return G def geom_pgf(s,lmbd): ''' Probability generating function of the geometric distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=1/(lmbd+1-lmbd*s) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[1/(lmbd+1-lmbd*s[i])] return G def neg_bin_pgf(s,lmbd,theta): ''' Probability generating function of the negative binomial distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float theta : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=(theta+1-s*theta)**(-lmbd/theta) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[(theta+1-s[i]*theta)**(-lmbd/theta)] return G def zip_pgf(s,lmbd,sigma): ''' Probability generating function of the zero-inflated Poisson distribution. Parameters ---------- s : float point at which to evaluate PGF lmbd : float sigma : float Returns ------- G : float or array PGF evaluated at s ''' if np.size(np.asarray(s))==1: G=sigma+(1-sigma)*np.exp(lmbd*(s-1)) else: G=[] for i in range(0,np.size(np.asarray(s))): G=G+[sigma+(1-sigma)*np.exp(lmbd*(s[i]-1))] return G def beta_poisson_extinction_prob( lmbd,phi,N ): ''' Calculate the probability that the beta-Poisson branching process becomes extinct. Parameters ---------- lmbd : float phi : float N : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return beta_poisson_pgf(s,lmbd,phi,N)-s q=opt.brentq( f, 0, 1-1e-4); return q def poisson_extinction_prob( lmbd ): ''' Calculate the probability that the Poisson branching process becomes extinct. Parameters ---------- lmbd : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return poisson_pgf(s,lmbd)-s q=opt.brentq( f, 0, 1-1e-6) return q def geom_extinction_prob( lmbd ): ''' Calculate the probability that the geometric branching process becomes extinct. Parameters ---------- lmbd : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return geom_pgf(s,lmbd)-s q=opt.brentq( f, 0, 1-1e-6) return q def neg_bin_extinction_prob( lmbd,theta ): ''' Calculate the probability that the negative binomial branching process becomes extinct. Parameters ---------- lmbd : float theta : float Returns ------- q : float extinction probability ''' if lmbd<=1: return 1 else: def f(s): return neg_bin_pgf(s,lmbd,theta)-s q=opt.brentq( f, 0, 1-1e-6) return q def zip_extinction_prob( lmbd,sigma ): ''' Calculate the probability that the zero-inflated Poisson branching process becomes extinct. Parameters ---------- lmbd : float sigma : float Returns ------- q : float extinction probability ''' if (1-sigma)*lmbd<=1: return 1 else: def f(s): return zip_pgf(s,lmbd,sigma)-s q=opt.brentq( f, 0, 1-1e-6) return q def empirical_loglh(data): ''' Calculate upper bound on log likelihood by using empirical distribution based on observed frequencies in data. Parameters ---------- data : list sample data Returns ------- llh : float log likelihood ''' counts,bins=np.histogram(data,max(data)+1) dist=counts/len(data) llh=0 for x in data: llh+=np.log(dist[x]) return llh def get_lambda_and_phi_mles(data,lmbd_0,phi_0,N_emp): ''' Calculate maximum likelihood estimates of beta-Poisson parameters lambda and Phi given empirical estimate of contact parameter N. Parameters ---------- data : list sample dataset lmbd_0 : float initial estimate of lambda phi_0 : float initial estimate of Phi N_emp : float empirical estimate of N Returns ------- : float maximum likelihood estimate of lambda : float maximum likelihood estimate of Phi ''' def f(params): lmbd=params[0] phi=params[1] return -beta_poisson_loglh(data,lmbd,phi,N_emp) mle=sp.optimize.minimize(f,[lmbd_0,phi_0],bounds=((1e-6,10),(1e-6,50))) return mle.x[0],mle.x[1] def generate_mle_dict(data, theta_0, phi_0, N_0, lmbd_0, sigma_0): ''' Calculate maximum likelihood estimates of parameters for each offspring distribution and output them as a dictionary. Parameters ---------- data : list sample data to fit to theta_0 : float initial estimate of negative binomial overdispersion parameter phi_0 : float initial estimate of beta-Poisson parameter Phi N_0 : float initial estimate of beta-Poisson parameter Phi lmbd_0 : float initial estimate of ZIP baseline lambda sigma_0 : float initial estimate of ZIP inflation parameter sigma Returns ------- mle_dict : dictionary dictionary containing maximum likelihood estimates of parameters for each model. ''' theta_mle=get_theta_mle(data,1.5) phi_mle,N_inv_mle=get_phi_and_N_mles(data,0.5,1/2) lmbd_mle,sigma_mle=get_zip_mles(data,1.5,0.5) mle_dict = { 'poisson' : np.mean(data), 'geometric' : np.mean(data), 'negative binomial' : [np.mean(data), theta_mle], 'zip' : [lmbd_mle, sigma_mle], 'beta-Poisson' : [np.mean(data), phi_mle, N_inv_mle] } return mle_dict def poisson_mle_grid(data, interval, points): ''' Calculate a confidence interval for the MLE of the Poisson distribution given some data using a grid calculation. Parameters ---------- data : list sample dataset interval : list list containing the lower and upper bounds on which to perform the grid calculation points : int number of points to use in the grid calculation Returns ------- lmbd : array value of lambda over grid llh : array log likelihood of lambda values over grid mle : float maximum likelihood estimate of lambda ci : list 95% confidence interval for lambda given data ''' lmbd=np.linspace(interval[0],interval[1],points) llh=np.zeros(points) for x in data: llh=llh+np.log(stats.poisson.pmf(x,lmbd)) mle_loc=np.argmax(llh) mle=lmbd[mle_loc] lh_normed=np.exp(llh)/np.sum(
np.exp(llh)
numpy.exp
import sys import time import visa import numpy as np import matplotlib.pyplot as plt TCP_HOST = '169.254.70.102' if len(sys.argv) < 2 else sys.argv[1] TCP_PORT = 5000 rm = visa.ResourceManager('@py') inst = rm.open_resource(f'TCPIP0::{TCP_HOST}::{TCP_PORT}::SOCKET') inst.write_termination = '\r\n' inst.read_termination = '\r\n' BUFFER_SIZE = 2**14 # samples BASE_SAMPLERATE = 125e6 # samples per second DECIMATIONS = np.array([1, 8, 64, 1024, 8192, 65536]) def acquire_data(f, amp=1, delay=8192, inst=inst, quiet=False): # Choose decimation factor where f is oversampled by just about a # factor of 20. targetdecimation = BASE_SAMPLERATE / (f * 100) decimation = DECIMATIONS[DECIMATIONS <= targetdecimation].max(initial=1) buffertime = BUFFER_SIZE / (BASE_SAMPLERATE / decimation) # s ncyc = 10 + int(f * buffertime) #print(f, targetdecimation, decimation, buffertime, ncyc) inst.write('GEN:RST') # reset function generator inst.write('ACQ:RST') # reset analog input inst.write('DIG:PIN LED0,1') # setup function generator inst.write('SOUR1:FUNC SINE') inst.write('SOUR1:FREQ:FIX {:f}'.format(f)) inst.write('SOUR1:VOLT {:f}'.format(amp)) # inst.write('SOUR1:BURS:STAT OFF') # print(inst.query('*IDN?')) inst.write('SOUR1:BURS:NCYC {:d}'.format(ncyc)) inst.write('OUTPUT1:STATE ON') # setup oscilloscope inst.write('ACQ:DEC {:f}'.format(decimation)) inst.write('ACQ:TRIG:LEV {:f}'.format(amp/10)) inst.write('ACQ:TRIG:DLY {:d}'.format(delay)) inst.write('ACQ:START') # wait for buffer to fill if BUFFER_SIZE/2 - delay > 0: time.sleep(1.1 * (BUFFER_SIZE/2 - delay) / (BASE_SAMPLERATE / decimation)) inst.write('DIG:PIN LED0,0') inst.write('DIG:PIN LED1,1') # trigger from function generator inst.write('ACQ:TRIG AWG_PE') inst.write('SOUR1:TRIG:IMM') # wait for trigger while True: trig_rsp = inst.query('ACQ:TRIG:STAT?') if not quiet: sys.stdout.write(trig_rsp + ' ') sys.stdout.flush() if trig_rsp == 'TD': if not quiet: sys.stdout.write('\n') break inst.write('DIG:PIN LED1,0') inst.write('DIG:PIN LED2,1') # read data from IN1 inst.write('ACQ:SOUR1:DATA?') data1 = inst.read() assert data1[0] == '{' and data1[-1] == '}' data1 = np.array(list(float(v) for v in data1[1:-1].split(','))) # read data from IN2 inst.write('ACQ:SOUR2:DATA?') data2 = inst.read() assert data2[0] == '{' and data2[-1] == '}' data2 = np.array(list(float(v) for v in data2[1:-1].split(','))) inst.write('GEN:RST') inst.write('ACQ:RST') inst.write('DIG:PIN LED2,0') return BASE_SAMPLERATE/decimation, data1, data2 def demodulate(signal, f, samplerate): # cut to multiple of cycles ncycles = np.floor(len(signal) / (samplerate/f)) nsamples = int(ncycles * (samplerate/f)) dat = signal[:nsamples] # remove mean dat = dat - np.mean(dat) # reference oscillator refc = np.cos(np.arange(len(dat)) * 2*np.pi * f/samplerate) refs = np.sin(np.arange(len(dat)) * 2*np.pi * f/samplerate) I = np.trapz(dat * refc) # noqa Q = np.trapz(dat * refs) A = np.sqrt(I**2 + Q**2) * 2 / len(dat) φ = n
p.arctan2(-Q, I)
numpy.arctan2
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core from caffe2.python import gradient_checker from caffe2.python import workspace def test_forward_and_gradient(): X = np.random.randn(1, 7, 56, 56).astype(np.float32) Y = np.random.randn(1, 7, 56, 56).astype(np.float32) Weights = np.random.randn(1, 7).astype(np.float32) scale =
np.random.random()
numpy.random.random
import os import argparse import time import numpy as np import torch from tqdm import tqdm from sklearn.metrics import precision_recall_curve from sklearn.metrics import roc_auc_score from datasets.mvtec import MVTecDataset from models.resnet_backbone import modified_resnet18 from utils.util import time_string, convert_secs2time, AverageMeter from utils.functions import cal_anomaly_maps, cal_loss from utils.visualization import plt_fig class STPM(): def __init__(self, args): self.device = args.device self.data_path = args.data_path self.obj = args.obj self.img_resize = args.img_resize self.img_cropsize = args.img_cropsize self.validation_ratio = args.validation_ratio self.num_epochs = args.num_epochs self.lr = args.lr self.batch_size = args.batch_size self.vis = args.vis self.model_dir = args.model_dir self.img_dir = args.img_dir self.load_model() self.load_dataset() # self.criterion = torch.nn.MSELoss(reduction='sum') self.optimizer = torch.optim.SGD(self.model_s.parameters(), lr=self.lr, momentum=0.9, weight_decay=0.0001) def load_dataset(self): kwargs = {'num_workers': 4, 'pin_memory': True} if torch.cuda.is_available() else {} train_dataset = MVTecDataset(self.data_path, class_name=self.obj, is_train=True, resize=self.img_resize, cropsize=self.img_cropsize) img_nums = len(train_dataset) valid_num = int(img_nums * self.validation_ratio) train_num = img_nums - valid_num train_data, val_data = torch.utils.data.random_split(train_dataset, [train_num, valid_num]) self.train_loader = torch.utils.data.DataLoader(train_data, batch_size=self.batch_size, shuffle=True, **kwargs) self.val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False, **kwargs) def load_model(self): self.model_t = modified_resnet18().to(self.device) self.model_s = modified_resnet18(pretrained=False).to(self.device) for param in self.model_t.parameters(): param.requires_grad = False self.model_t.eval() def train(self): self.model_s.train() best_score = None start_time = time.time() epoch_time = AverageMeter() for epoch in range(1, self.num_epochs+1): need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * ((self.num_epochs+1) - epoch)) need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs) print('{:3d}/{:3d} ----- [{:s}] {:s}'.format(epoch, self.num_epochs, time_string(), need_time)) losses = AverageMeter() for (data, _, _) in tqdm(self.train_loader): data = data.to(self.device) self.optimizer.zero_grad() with torch.set_grad_enabled(True): features_t = self.model_t(data) features_s = self.model_s(data) loss = cal_loss(features_s, features_t) losses.update(loss.sum().item(), data.size(0)) loss.backward() self.optimizer.step() print('Train Epoch: {} loss: {:.6f}'.format(epoch, losses.avg)) val_loss = self.val(epoch) if best_score is None: best_score = val_loss self.save_checkpoint() elif val_loss < best_score: best_score = val_loss self.save_checkpoint() epoch_time.update(time.time() - start_time) start_time = time.time() print('Training end.') def val(self, epoch): self.model_s.eval() losses = AverageMeter() for (data, _, _) in tqdm(self.val_loader): data = data.to(self.device) with torch.set_grad_enabled(False): features_t = self.model_t(data) features_s = self.model_s(data) loss = cal_loss(features_s, features_t) losses.update(loss.item(), data.size(0)) print('Val Epoch: {} loss: {:.6f}'.format(epoch, losses.avg)) return losses.avg def save_checkpoint(self): print('Save model !!!') state = {'model':self.model_s.state_dict()} torch.save(state, os.path.join(self.model_dir, 'model_s.pth')) def test(self): try: checkpoint = torch.load(os.path.join(self.model_dir, 'model_s.pth')) except: raise Exception('Check saved model path.') self.model_s.load_state_dict(checkpoint['model']) self.model_s.eval() kwargs = {'num_workers': 4, 'pin_memory': True} if torch.cuda.is_available() else {} test_dataset = MVTecDataset(self.data_path, class_name=self.obj, is_train=False, resize=self.img_resize, cropsize=self.img_cropsize) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False, **kwargs) scores = [] test_imgs = [] gt_list = [] gt_mask_list = [] print('Testing') for (data, label, mask) in tqdm(test_loader): test_imgs.extend(data.cpu().numpy()) gt_list.extend(label.cpu().numpy()) gt_mask_list.extend(mask.squeeze().cpu().numpy()) data = data.to(self.device) with torch.set_grad_enabled(False): features_t = self.model_t(data) features_s = self.model_s(data) score = cal_anomaly_maps(features_s, features_t, self.img_cropsize) scores.extend(score) scores = np.asarray(scores) max_anomaly_score = scores.max() min_anomaly_score = scores.min() scores = (scores - min_anomaly_score) / (max_anomaly_score - min_anomaly_score) img_scores = scores.reshape(scores.shape[0], -1).max(axis=1) gt_list = np.asarray(gt_list) img_roc_auc = roc_auc_score(gt_list, img_scores) print('image ROCAUC: %.3f' % (img_roc_auc)) precision, recall, thresholds = precision_recall_curve(gt_list.flatten(), img_scores.flatten()) a = 2 * precision * recall b = precision + recall f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0) cls_threshold = thresholds[np.argmax(f1)] gt_mask =
np.asarray(gt_mask_list)
numpy.asarray
import shutil import util.util as util_ import os import cv2 import open3d as o3d import pickle import numpy as np from scipy.optimize import linear_sum_assignment import trimesh from skimage import measure import scipy from sklearn.neighbors import KDTree from scipy.ndimage.measurements import label import data_augmentation from genre.voxelization import voxel import traceback from genre.util import util_sph from scipy import stats from dm_control.mujoco.engine import Camera from trajopt.mujoco_utils import add_object_to_mujoco, remove_objects_from_mujoco, get_mesh_list, compute_mujoco_int_transform mesh_level=0.5 def chamfer_distance(pcd_1, pcd_2): pcd_tree = KDTree(pcd_2) nearest_distances_1, _=pcd_tree.query(pcd_1) pcd_tree = KDTree(pcd_1) nearest_distances_2, _=pcd_tree.query(pcd_2) return np.sum(nearest_distances_1)/pcd_1.shape[0]+np.sum(nearest_distances_2)/pcd_2.shape[0] #return outher shell of voxel shape def hollow_dense_pointcloud(ptcld): conv=scipy.ndimage.convolve(ptcld, np.ones((3,3,3))) ptcld=np.where(conv<27, ptcld, 0) return ptcld def compute_xyz(depth_img, camera_params): """ Compute ordered point cloud from depth image and camera parameters @param depth_img: a [H x W] numpy array of depth values in meters @param camera_params: a dictionary with parameters of the camera used """ # Compute focal length from camera parameters if 'fx' in camera_params and 'fy' in camera_params: fx = camera_params['fx'] fy = camera_params['fy'] else: # simulated data aspect_ratio = camera_params['img_width'] / camera_params['img_height'] e = 1 / (np.tan(np.radians(camera_params['fov']/2.))) t = camera_params['near'] / e; b = -t r = t * aspect_ratio; l = -r alpha = camera_params['img_width'] / (r-l) # pixels per meter focal_length = camera_params['near'] * alpha # focal length of virtual camera (frustum camera) fx = focal_length; fy = focal_length if 'x_offset' in camera_params and 'y_offset' in camera_params: x_offset = camera_params['x_offset'] y_offset = camera_params['y_offset'] else: # simulated data x_offset = camera_params['img_width']/2 y_offset = camera_params['img_height']/2 indices = util_.build_matrix_of_indices(camera_params['img_height'], camera_params['img_width']) indices[..., 0] = np.flipud(indices[..., 0]) # pixel indices start at top-left corner. for these equations, it starts at bottom-left z_e = depth_img x_e = (indices[..., 1] - x_offset) * z_e / fx y_e = (indices[..., 0] - y_offset) * z_e / fy xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3] return xyz_img upsample=1 xmap = np.array([[j for i in range(int(upsample*640))] for j in range(int(upsample*480))]) ymap = np.array([[i for i in range(int(upsample*640))] for j in range(int(upsample*480))]) #make pointcloud from depth image def make_pointcloud_all_points(depth_image): cam_scale = 1.0 cam_cx = 320.0 cam_cy = 240.0 camera_params={'fx':579.411255, 'fy':579.411255, 'img_width':640, 'img_height': 480} depth_masked = depth_image.flatten()[:, np.newaxis].astype(np.float32) xmap_masked = xmap.flatten()[:, np.newaxis].astype(np.float32) ymap_masked = ymap.flatten()[:, np.newaxis].astype(np.float32) pt2 = depth_masked / cam_scale pt0 = (ymap_masked/upsample - cam_cx) * pt2 / (camera_params['fx']) pt1 = (xmap_masked/upsample - cam_cy) * pt2 / (camera_params['fy']) cloud = np.concatenate((pt0, -pt1, -pt2), axis=1) return cloud def color_code_objects(frame, state_id_to_model_pixels, display=False): #generate object color mapping labels=np.unique(frame) exec_dir=os.path.dirname(os.path.realpath(__file__)) color_map_file_name=exec_dir+'/data/object_color_maps/object_color_map_size_'+str(labels.shape[0])+'.p' if os.path.isfile(color_map_file_name): object_color_map=pickle.load(open(color_map_file_name, "rb" )) else: self.object_color_map=glasbey.get_colors(len(state_id_to_model_pixels)) pickle.dump(self.object_color_map, open(color_map_file_name, "wb" )) #create labelled image labelled_frame=np.zeros((frame.shape[0], frame.shape[1], 3)) for label in range(labels.shape[0]): object_pixel_positions_exact=np.argwhere(frame==label) object_pixel_positions_exact_in_bounds=object_pixel_positions_exact.astype(int) if len(object_pixel_positions_exact_in_bounds.shape)==2 and object_pixel_positions_exact_in_bounds.shape[0]>0 and object_pixel_positions_exact_in_bounds.shape[1]==2: object_color=object_color_map[label] labelled_frame[object_pixel_positions_exact_in_bounds[:, 0], object_pixel_positions_exact_in_bounds[:, 1]]=object_color if display: cv2.imshow('object labels', labelled_frame) cv2.waitKey(20) return labelled_frame border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680] def get_bbox(bbx): if bbx[0] < 0: bbx[0] = 0 if bbx[1] >= 480: bbx[1] = 479 if bbx[2] < 0: bbx[2] = 0 if bbx[3] >= 640: bbx[3] = 639 rmin, rmax, cmin, cmax = bbx[0], bbx[1], bbx[2], bbx[3] r_b = rmax - rmin for tt in range(len(border_list)): if r_b > border_list[tt] and r_b < border_list[tt + 1]: r_b = border_list[tt + 1] break c_b = cmax - cmin for tt in range(len(border_list)): if c_b > border_list[tt] and c_b < border_list[tt + 1]: c_b = border_list[tt + 1] break center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)] rmin = center[0] - int(r_b / 2) rmax = center[0] + int(r_b / 2) cmin = center[1] - int(c_b / 2) cmax = center[1] + int(c_b / 2) if rmin < 0: delt = -rmin rmin = 0 rmax += delt if cmin < 0: delt = -cmin cmin = 0 cmax += delt if rmax > 480: delt = rmax - 480 rmax = 480 rmin -= delt if cmax > 640: delt = cmax - 640 cmax = 640 cmin -= delt return rmin, rmax, cmin, cmax #transform robot meshes into current position def make_known_meshes(known_meshes, physics, geom_names): transformed_known_meshes=[] for known_mesh_ind in range(len(known_meshes)): transformed_known_mesh=known_meshes[known_mesh_ind].copy() transform=np.eye(4) transform[0:3,0:3]=np.reshape(physics.named.data.geom_xmat[geom_names[known_mesh_ind]],(3,3)) transformed_known_mesh.apply_transform(transform) transform=np.eye(4) transform[0:3,3]=physics.named.data.geom_xpos[geom_names[known_mesh_ind]] transformed_known_mesh.apply_transform(transform) transformed_known_meshes.append(transformed_known_mesh) return transformed_known_meshes #select voxel points in cube around target object, also compute table surface height def select_points_in_cube_voxelize_sphr_proj(self, all_points, i, grid_size=128, estimate_table=False, sub_vox=0, min_z=None, unocc=None): low=np.array([-0.5,-0.5,-0.5]) hi=np.array([0.5,0.5,0.5]) points=all_points[np.argwhere(np.all(np.logical_and(all_points>=low, all_points<=hi), axis=1))][:,0,:] voxels=np.zeros((grid_size,grid_size,grid_size)) inds=np.floor((points + 0.5) * grid_size).astype(int) if sub_vox!=0: inds[:,2]=inds[:,2]-sub_vox/(128/grid_size) az_inds=np.argwhere(inds[:,2]>=0) inds=inds[az_inds[:,0]] inds=np.clip(inds, 0, grid_size-1) if inds.shape[0]==0: if estimate_table: return np.zeros((128,128,128)), np.zeros((160,160)), None, 0 else: return np.zeros((128,128,128)), np.zeros((160,160)), None voxels[inds[:, 0], inds[:, 1], inds[:, 2]] = 1.0 if unocc is not None: voxels=np.clip(voxels-unocc, 0, 1) if estimate_table: more_points=all_points[np.argwhere(np.all(np.logical_and(all_points>=np.array([-3,-3,-1]), all_points<=np.array([2,2,min_z+0.01])), axis=1))][:,0,:] more_inds=np.floor((more_points + 0.5) * grid_size).astype(int) a=more_inds[:,2] max_inds=scipy.stats.mode(more_inds[:,2], axis=None)[0][0] inds[:,2]=inds[:,2]-max_inds az_inds=np.argwhere(inds[:,2]>=0) inds=inds[az_inds[:,0]] voxels=np.zeros((grid_size,grid_size,grid_size)) voxels[:,:,0]=1 voxels[inds[:, 0], inds[:, 1], inds[:, 2]] = 1.0 no_points=False verts, faces, normals, values = measure.marching_cubes_lewiner( voxels, spacing=(1 / grid_size, 1 / grid_size, 1 / grid_size)) mesh = trimesh.Trimesh(vertices=verts - 0.5, faces=faces, vertex_normals=normals) trimesh.repair.fix_inversion(mesh) if verts.shape[0]>50000: mesh.export(f'/dev/shm/temp_mesh_conv_{i}.ply') o3d_mesh=o3d.io.read_triangle_mesh(f'/dev/shm/temp_mesh_conv_{i}.ply') o3d_mesh=o3d_mesh.simplify_vertex_clustering(0.05) mesh=trimesh.Trimesh(vertices=np.asarray(o3d_mesh.vertices), faces=np.asarray(o3d_mesh.triangles), face_normals=np.asarray(o3d_mesh.triangle_normals), process=False) os.remove(f'/dev/shm/temp_mesh_conv_{i}.ply') proj=util_sph.proj_spherical(mesh) if grid_size!=128: full_voxels=np.zeros((128,128,128)) voxels=np.zeros((128,128,128)) inds=np.floor((points + 0.5) * 128).astype(int) inds=np.clip(inds, 0, 128-1) if sub_vox!=0: inds[:,2]=inds[:,2]-sub_vox az_inds=np.argwhere(inds[:,2]>=0) inds=inds[az_inds[:,0]] full_voxels[inds[:, 0], inds[:, 1], inds[:, 2]] = 1.0 voxels=full_voxels if estimate_table: return voxels, proj, no_points, max_inds else: return voxels, proj, no_points class pose_model_estimator(): def __init__(self, physics, seg_send, seg_receive, recon_send, recon_receive, project_dir, mj_scene_xml, save_id, use_cuda_vox, extrusion_baseline, custom_recon_net=False, max_known_body_id=70, voxels_per_meter=256, model=None, simulate_model_quality=False, model_quality=0, quality_type='', four_channel=False):# self.obs_cds=[] self.past_filled_voxels=None self.top_dir=project_dir self.scene_xml_file=mj_scene_xml self.save_id=save_id self.simulate_model_quality=simulate_model_quality self.model_quality=model_quality self.quality_type=quality_type self.four_channel=four_channel self.custom_recon_net=custom_recon_net self.seg_send=seg_send self.seg_receive=seg_receive self.recon_send=recon_send self.recon_receive=recon_receive #1: load and voxelize all known meshes mesh_list, self.mesh_name_to_file, self.name_to_scale_dict=get_mesh_list(mj_scene_xml)[:max_known_body_id] mesh_list=mesh_list[:69] self.included_meshes=[] self.geom_names=[] self.pred_obj_meshes=[] self.use_cuda_vox=use_cuda_vox self.extrusion_baseline=extrusion_baseline self.upsample=1 self.palm_mesh_verts=None self.xmap = np.array([[j for i in range(int(self.upsample*640))] for j in range(int(self.upsample*480))]) self.geom_ids=[] self.ymap = np.array([[i for i in range(int(self.upsample*640))] for j in range(int(self.upsample*480))]) for geom_name in model.named.data.geom_xpos.axes.row.names: num_voxels=256 geom_id=model.model.name2id(geom_name, "geom") self.geom_ids.append(geom_id) if geom_id<71: if model.model.geom_dataid[geom_id]>-1: mesh_name=model.model.id2name(model.model.geom_dataid[geom_id], "mesh") mesh=trimesh.load_mesh(self.mesh_name_to_file[model.model.id2name(model.model.geom_dataid[geom_id], "mesh")]) mesh_off_trans, mesh_off_rot=compute_mujoco_int_transform(self.mesh_name_to_file[model.model.id2name(model.model.geom_dataid[geom_id], "mesh")], save_id) if geom_name=="herb/wam_1/bhand//unnamed_geom_0": c_mesh=mesh.convex_hull scale=2*np.amax(np.abs(c_mesh.bounds)) print('cmesh bounds', c_mesh.bounds) scale_mat=np.eye(4) scale_mat=scale_mat/scale scale_mat[3,3]=1.0 s_palm_mesh_vertices=c_mesh.copy().apply_transform(scale_mat) self.palm_mesh_verts=voxel.voxelize_model_binvox(s_palm_mesh_vertices, 32, self.save_id, binvox_add_param='-bb -.5 -.5 -.5 .5 .5 .5', use_cuda_vox=False) a=np.argwhere(self.palm_mesh_verts) self.palm_mesh_verts=(np.argwhere(hollow_dense_pointcloud(self.palm_mesh_verts))/32.0-0.5)*scale self.palm_mesh_verts=self.palm_mesh_verts[np.argwhere(self.palm_mesh_verts[:,2]>0.075)][:,0,:] self.palm_mesh_verts=self.palm_mesh_verts[np.argwhere(np.abs(self.palm_mesh_verts[:,1])<0.025)][:,0,:] self.palm_mesh_verts=self.palm_mesh_verts[np.argwhere(np.abs(self.palm_mesh_verts[:,0])<0.02)][:,0,:] self.palm_mesh_verts=np.matmul(mesh_off_rot.T, (self.palm_mesh_verts-mesh_off_trans).T).T trans_mat=np.eye(4) trans_mat[0:3, 3]=-mesh_off_trans mesh.apply_transform(trans_mat) trans_mat=np.eye(4) trans_mat[0:3, 0:3]=mesh_off_rot.transpose() mesh.apply_transform(trans_mat) self.included_meshes.append(mesh) self.geom_names.append(geom_name) elif geom_id<len(mesh_list) and mesh_list[geom_id] is not None: mesh=mesh_list[geom_id] self.included_meshes.append(mesh) self.geom_names.append(geom_name) #2: transform voxel grids into scene, round into global voxel grid #3: transform predicted voxel into global grid, comput intersection with known voxels, return non-intersecting #4: marching cubes to convert voxels to mesh self.camera_params={'fx':579.4112549695428, 'fy':579.4112549695428, 'img_width':640, 'img_height': 480} self.past_poses=None self.past_voxels_scales_translations=None self.tracking_max_distance=0.25 make_known_meshes(self.included_meshes, physics, self.geom_names) #remove intersections between predicted objects def subtract_mesh_hull_no_stability_loss(self, resolve_dense_pointcloud, meshes_sub, cam_mat, translation, cam_pos, scale, inv_cm): world_translation=np.matmul(cam_mat, translation) dense_ptcld_cpy=resolve_dense_pointcloud-cam_pos-world_translation dense_ptcld_cpy=np.round((dense_ptcld_cpy/scale+0.5)*128.0).astype(int) voxels=np.zeros((128,128,128), dtype=int) voxels[dense_ptcld_cpy[:, 0],dense_ptcld_cpy[:, 1],dense_ptcld_cpy[:, 2]]=1 verts, faces, normals, values = measure.marching_cubes_lewiner( voxels, mesh_level, spacing=(1 / 128, 1 / 128, 1 / 128)) verts=(verts-0.5)*scale verts=verts+cam_pos+world_translation outside_mesh=np.ones(resolve_dense_pointcloud.shape[0]) for known_mesh in meshes_sub: outside_mesh=np.logical_and(outside_mesh, 1-known_mesh.ray.contains_points(resolve_dense_pointcloud).astype(int)) pcd_tree = KDTree(known_mesh.vertices) gt_pred_nn_dists, gt_pred_nn_inds=pcd_tree.query(resolve_dense_pointcloud) outside_mesh=np.where(np.ndarray.flatten(gt_pred_nn_dists)<0.05, 0, outside_mesh) dense_ptcld=resolve_dense_pointcloud[np.argwhere(outside_mesh)[:, 0]] dense_ptcld=dense_ptcld-cam_pos-world_translation dense_ptcld=np.round((dense_ptcld/scale+0.5)*128.0).astype(int) voxels=np.zeros((128,128,128), dtype=int) voxels[dense_ptcld[:, 0],dense_ptcld[:, 1],dense_ptcld[:, 2]]=1 if dense_ptcld.shape[0]>0: verts, faces, normals, values = measure.marching_cubes_lewiner( voxels, mesh_level, spacing=(1 / 128, 1 / 128, 1 / 128)) verts=(verts-0.5)*scale else: verts=np.zeros([0,3]) faces=np.zeros([0,3]) normals=np.zeros([0,3]) if verts.shape[0]>0: mesh = trimesh.Trimesh(vertices=verts, faces=faces, vertex_normals=normals) trimesh.repair.fix_inversion(mesh) mesh.visual.face_colors = [109, 95, 119, 255] if mesh.faces.shape[0]>0 and mesh.mass>10e-6: combined_mesh=None decomps=trimesh.decomposition.convex_decomposition(mesh, maxNumVerticesPerCH=1024, concavity=0.0025, resolution=500000) if not isinstance(decomps, list): decomps=[decomps] new_decomps=[] num_vertices=0 for decomp in decomps: if decomp.mass>10e-9: new_decomps.append(decomp) num_vertices+=decomp.vertices.shape[0] if combined_mesh==None: combined_mesh=decomp else: combined_mesh+=decomp print('num_vertices', num_vertices) decomps=new_decomps return decomps, combined_mesh else: return None, None else: return None, None def projection_baseline(self, pointcloud): projected_pointcloud=np.copy(pointcloud) occupied_z_inds=np.argwhere(np.any(pointcloud, axis=2)) projected_pointcloud[occupied_z_inds[:,0], occupied_z_inds[:,1], 0]=1 return projected_pointcloud #remove predicted mesh itnersections with robot and table def refine_mesh_no_stability_loss(self, cam_mat, translation, gt_mesh, cam_pos, scale, pred_voxels, inv_cm, known_meshes, refine=False): world_translation=np.matmul(cam_mat, translation) transform_mesh=gt_mesh.copy() transform=np.eye(4) transform[:3,3]=-cam_pos-world_translation transform_mesh.apply_transform(transform) inv_cam_mat=np.linalg.inv(cam_mat) transform=np.eye(4) transform[:3, :3]=inv_cam_mat transform_mesh.apply_transform(transform) scale_mat=np.eye(4) scale_mat=scale_mat/scale scale_mat[3,3]=1.0 transform_mesh.apply_transform(scale_mat) ground_truth_voxels=voxel.voxelize_model_binvox(transform_mesh, 128, self.save_id, binvox_add_param='-bb -.5 -.5 -.5 .5 .5 .5', use_cuda_vox=self.use_cuda_vox) mesh_losses={} try: gt_points=np.argwhere(ground_truth_voxels) pred_voxels=pred_voxels[0] if self.simulate_model_quality: pred_voxels, self.cd=self.change_model_quality(pred_voxels, ground_truth_voxels, scale/128.0) thres_pred_voxels=pred_voxels>=mesh_level thres_pred_points=np.argwhere(thres_pred_voxels) if refine: pcd_tree = KDTree(gt_points) pred_gt_nn_dists, pred_gt_nn_inds=pcd_tree.query(thres_pred_points) pred_gt_nn_dists=(pred_gt_nn_dists/128.0)*scale pred_gt_nn_inds=pred_gt_nn_inds[:,0] pcd_tree = KDTree(thres_pred_points) gt_pred_nn_dists, gt_pred_nn_inds=pcd_tree.query(gt_points) gt_pred_nn_dists=(gt_pred_nn_dists/128.0)*scale gt_pred_nn_inds=gt_pred_nn_inds[:,0] pg_loss=np.sum(pred_gt_nn_dists)/thres_pred_points.shape[0] gp_loss=np.sum(gt_pred_nn_dists)/gt_points.shape[0] mesh_losses['chamfer']=pg_loss+gp_loss except: print('gt voxels projection error!') traceback.print_exc() thres_pred_points=np.argwhere(pred_voxels>=mesh_level) dense_ptcld=(thres_pred_points/128.0-0.5)*scale dense_ptcld=dense_ptcld+world_translation+cam_pos outside_mesh=np.ones(dense_ptcld.shape[0]) for known_mesh in known_meshes: outside_mesh=np.logical_and(outside_mesh, 1-known_mesh.ray.contains_points(dense_ptcld).astype(int)) dense_ptcld=dense_ptcld[np.argwhere(outside_mesh)[:, 0]] dense_ptcld=dense_ptcld[np.argwhere(dense_ptcld[:,2]>=0.3)[:, 0]] resolve_dense_ptcld=np.copy(dense_ptcld) dense_ptcld=dense_ptcld-cam_pos-world_translation dense_ptcld=np.round((dense_ptcld/scale+0.5)*128.0).astype(int) voxels=
np.zeros((128,128,128), dtype=int)
numpy.zeros
# -*- coding: utf-8 -*- """ @author: <NAME> @description: Module containing functions to calculate derivatives, averages, decompositions, vorticity. @contact: <EMAIL> """ # Imports import numpy as np import warnings # Functions def avg_z(u): """ Return the span-wise spatial average of a three-dimensional field. If the passed u is spanwise periodic use trapz()/(n-1). Otherwise mean(). :param u: The field to be spanwise-averaged. :return: Return the span-wise spatial average of a three-dimensional field. """ from scipy.integrate import trapz, simps if not len(u.shape)==3: warnings.warn("Field not 3D. Returning same array.") return u else: if np.array_equal(u[..., 0], u[..., -1]): # Periodic on last axis return trapz(u, axis=2)/(u.shape[2]-1) # return simps(u, axis=2)/(u.shape[2]-1) else: print('hi') return u.mean(axis=2) def avg_z2(u): """ Return the span-wise spatial average of a three-dimensional field using Simpson rule. If the passed u is spanwise periodic use trapz()/(n-1). Otherwise mean(). :param u: The field to be spanwise-averaged. :return: Return the span-wise spatial average of a three-dimensional field. """ from scipy.integrate import trapz, simps if not len(u.shape)==3: warnings.warn("Field not 3D. Returning same array.") return u else: sum = np.zeros(u.shape[:2]) for i in np.arange(u.shape[0]): print(i) for j in np.arange(u.shape[1]): for k in np.arange(4, u.shape[2]-4): sum[i,j] = sum[i,j] + u[i,j,k] sum[i,j] = sum[i,j] + 1/48*(17*u[i,j,0]+59*u[i,j,1]+43*u[i,j,2]+49*u[i,j,3]+ 49*u[i,j,-4]+43*u[i,j,-3]+59*u[i,j,-2]+17*u[i,j,-1]) sum[i,j] = sum[i,j]/(u.shape[2]-1) return sum def avg_z_1D(u): """ Return the span-wise spatial average of a three-dimensional field. If the passed u is spanwise periodic use trapz()/(n-1). Otherwise mean(). :param u: The field to be spanwise-averaged. :return: Return the span-wise spatial average of a three-dimensional field. """ from scipy.integrate import trapz, simps, quadrature from scipy.interpolate import Rbf,InterpolatedUnivariateSpline N = len(u) print(N) # Mean a1 = np.mean(u) # Rectangular rule a2 = 0 for i in range(0,len(u)-1): a2 = a2 + (u[i]+u[i+1])/2 a2 = a2/(N-1) # Trapz a3 = trapz(u)/(u.size-1) # Simps a4 = simps(u)/(u.size-1) # Simps2 a5 = 0 for i in range(4,len(u)-4): a5 = a5 + u[i] a5 = a5 + 1/48*(17*u[0]+59*u[1]+43*u[2]+49*u[3]+49*u[-4]+43*u[-3]+59*u[-2]+17*u[-1]) a5 = a5/(N-1) # Gaussian quad with rbf f = InterpolatedUnivariateSpline(np.arange(N),u) a6, err = quadrature(f, 0, N-1) a6 = a6/(N-1) return a1, a2, a3, a4, a5, a6 def make_periodicZ(u, **kwargs): # Methods t = True (add layer), t = False (substitue last layer with 1st layer) add = kwargs.get('add', True) if add: u_temp = np.zeros((u.shape[0], u.shape[1], u.shape[2] + 1)) u_temp[..., :-1], u_temp[..., -1] = u, u[..., 0] u = u_temp else: u[..., -1] = u[..., 0] return u def make_periodic(a, axis): b = np.expand_dims(np.take(a, indices=0, axis=axis), axis=axis) return np.concatenate((a, b), axis=axis) def decomp_z(u): """ :param u: field to be decomposed in z direction. :return: the average and the fluctuating parts of a three-dimensional field spatially averaged in the span-wise direction. """ if not len(u.shape)==3: raise ValueError("Fields must be three-dimensional") else: u_avg = avg_z(u) u_f = u-u_avg[:, :, None] return u_avg, u_f def ddx(u, x=None, acc=1): """ :param u: n-dimensional field. :return: the first- or second-acc derivative in the i direction of (n>=1 dimensional) field. """ if x is not None: if acc == 2: return np.gradient(u, x, axis=0, edge_order=2) else: raise ValueError('Only 2nd accuracy acc considered when x is included') else: if acc == 2: return np.gradient(u, axis=0, edge_order=2) elif acc == 1: a = np.diff(u, n=1, axis=0) if u.ndim == 1: return np.append(0, a) elif u.ndim == 2: return np.concatenate((np.zeros(u.shape[1])[None, :,], a), axis=0) elif u.ndim == 3: return np.concatenate((np.zeros(u.shape[1:])[None, :, :], a), axis=0) else: raise ValueError('Only arrays with dimensions <=3 considered.') else: raise ValueError('Only 1st or 2nd accuracy acc considered.') def ddy(u, y=None, acc=1): """ :param u: n-dimensional field. :return: the first-acc derivative in the j direction of (n>=2 dimensional) field. """ if y is not None: if acc == 2: return np.gradient(u, y, axis=1, edge_order=2) else: raise ValueError('Only 2nd accuracy acc considered when y is included') else: if acc == 2: return np.gradient(u, axis=1, edge_order=2) elif acc == 1: a = np.diff(u, n=1, axis=1) if u.ndim == 2: return np.concatenate((np.zeros(u.shape[0])[:, None], a), axis=1) elif u.ndim == 3: return np.concatenate((np.zeros((u.shape[0], u.shape[2]))[:, None, :], a), axis=1) else: raise ValueError('Only arrays with dimensions >=2 considered.') else: raise ValueError('Only 1st or 2nd accuracy acc considered.') def ddz(u, z=None, acc=1): """ :param u: n-dimensional field. :return: the first-acc derivative in the j direction of (n>=2 dimensional) field. """ if not np.array_equal(u[..., 0], u[..., -1]): # Field is not periodic if z is not None: if acc == 2: return np.gradient(u, z, axis=2, edge_order=2) else: raise ValueError('Only 2nd accuracy acc considered when z is included') else: if acc == 2: return np.gradient(u, axis=2, edge_order=2) elif acc == 1: a = np.diff(u, n=1, axis=2) if u.ndim == 3: return np.concatenate((np.zeros((u.shape[0], u.shape[1]))[:, :, None], a), axis=2) # Return same shape with zeros in k=0 else: raise ValueError('Only arrays with dimensions =3 considered.') else: raise ValueError('Only 1st or 2nd accuracy order considered.') else: # Field is periodic if z is not None: if acc == 2: return np.gradient(u, z, axis=2, edge_order=2) else: raise ValueError('Only 2nd accuracy acc considered when z is included') else: u_temp = np.zeros((u.shape[0], u.shape[1], u.shape[2] + 2)) u_temp[:, :, 1:-1], u_temp[:, :, 0], u_temp[:, :, -1] = u, u[:, :, -2], u[:, :, 1] del u if z is not None: if acc == 2: dudz =
np.gradient(u_temp, z, axis=2, edge_order=2)
numpy.gradient
"""Script for sampling COV, burstiness and memory coeficient, and their uncertainties, on many faults and plotting them <NAME> University of Otago 2020 """ import os, sys import ast from glob import glob from operator import itemgetter from re import finditer import numpy as np from scipy.optimize import curve_fit from scipy.odr import Model, RealData, ODR import scipy.odr.odrpack as odrpack from scipy.stats import expon, gamma, weibull_min, ks_2samp, kstest # !!! Dangerous hack to swap Weibull for gamma #from scipy.stats import weibull_min as gamma # # !!! from matplotlib import pyplot from matplotlib.patches import PathPatch import matplotlib.gridspec as gridspec from matplotlib.ticker import FormatStrFormatter from scipy.stats import binom, kde from adjustText import adjust_text from QuakeRates.dataman.event_dates import EventSet from QuakeRates.dataman.parse_oxcal import parse_oxcal from QuakeRates.dataman.parse_age_sigma import parse_age_sigma from QuakeRates.dataman.parse_params import parse_param_file, \ get_event_sets, file_len from QuakeRates.utilities.bilinear import bilinear_reg_zero_slope, \ bilinear_reg_fix, bilinear_reg_fix_zero_slope from QuakeRates.utilities.memory_coefficient import burstiness, memory_coefficient filepath = '../params' param_file_list = glob(os.path.join(filepath, '*.txt')) param_file_list_NZ = ['Akatore_TaylorSilva_2019.txt', 'AlpineHokuriCk_Berryman_2012_simple.txt', 'AlpineSouthWestland_Cochran_2017_simple.txt', 'AwatereEast_Nicol_2016_simple.txt', 'ClarenceEast_Nicol_2016_simple.txt', 'CloudyFault_Nicol_2016_simple.txt', 'Dunstan_GNS_unpub_simple.txt', 'HopeConway_Hatem_2019_simple.txt', 'Hope_Khajavi_2016_simple.txt', 'Ihaia_Nicol_2016_simple.txt', 'Oaonui_Nicol_2016_simple.txt', 'Ohariu_Nicol_2016_simple.txt', 'Paeroa_Nicol_2016_simple.txt', 'Pihama_Nicol_2016_simple.txt', 'PortersPassEast_Nicol_2016_simple.txt', 'Ngakuru_Nicol_2016_simple.txt', 'Mangatete_Nicol_2016_simple.txt', 'Rangipo_Nicol_2016_simple.txt', 'Rotoitipakau_Nicol_2016_simple.txt', 'Rotohauhau_Nicol_2016_simple.txt', 'Snowden_Nicol_2016_simple.txt', 'Vernon_Nicol_2016_simple.txt', 'WairarapaSouth_Nicol_2016_simple.txt', 'Wairau_Nicol_2018_simple.txt', 'Waimana_Nicol_2016_simple.txt', 'Wellington_Langridge_2011_simple.txt', 'Waitangi_GNS_unpub_simple.txt', 'Whakatane_Nicol_2016_simple.txt', 'Whirinaki_Nicol_2016_simple.txt'] # List of faults in study by Williams et al 2019 # Note this is not entirely the same, as there are some records from # that study that are not included in ours. param_file_list_W = ['AlpineHokuriCk_Berryman_2012_simple.txt', 'HaywardTysons_Lienkaemper_2007_simple.txt', 'SanJacintoMysticLake_Onderdonk_2018_simple.txt', 'NorthAnatolianElmacik_Fraser_2010_simple.txt', 'SanAndreasWrightwood_Weldon_2004_simple.txt', 'SanAndreasCarizzo_Akciz_2010_simple.txt', 'SanJacintoHogLake_Rockwell_2015_simple.txt', 'SanAndreasMissionCk_Fumal_2002_simple.txt', 'SanAndreasPalletCk_Scharer_2011_simple.txt', 'Xorkoli_Altyn_Tagh_Yuan_2018.txt', 'NorthAnatolianYaylabeli_Kozaci_2011_simple.txt', 'ElsinoreTemecula_Vaughan_1999_simple.txt', 'DeadSeaJordan_Ferry_2011_simple.txt', 'SanAndreasBigBend_Scharer_2017_simple.txt', 'WasatchBrigham_McCalpin_1996_simple.txt', 'Irpinia_Pantosti_1993_simple.txt', 'WasatchWeber_Duross_2011_simple.txt', 'WasatchNilphi_Duross_2017_simple.txt', 'LomaBlanca_Williams_2017_simple.txt', 'AlaskaPWSCopper_Plafker_1994_simple.txt', 'NankaiTrough_Hori_2004_simple.txt', 'CascadiaNth_Adams_1994_simple.txt', 'CascadiaSth_Goldfinger_2003_simple.txt', 'JavonCanyon_SarnaWojicki_1987_simple.txt', 'NewGuinea_Ota_1996_simple.txt', 'ChileMargin_Moernaut_2018_simple.txt'] #param_file_list = [] #for f in param_file_list_NZ: #for f in param_file_list_W: # param_file_list.append(os.path.join(filepath, f)) n_samples = 10000 # Number of Monte Carlo samples of the eq chronologies half_n = int(n_samples/2) print(half_n) annotate_plots = False # If True, lable each fault on the plot plot_folder = './plots' if not os.path.exists(plot_folder): os.makedirs(plot_folder) # Define subset to take #faulting_styles = ['Reverse'] #faulting_styles = ['Normal'] #faulting_styles = ['Strike_slip'] faulting_styles = ['all'] tectonic_regions = ['all'] #tectonic_regions = ['Intraplate_noncratonic', 'Intraplate_cratonic', 'Near_plate_boundary'] #tectonic_regions = ['Plate_boundary_master', 'Plate_boundary_network'] #tectonic_regions = ['Plate_boundary_network', 'Near_plate_boundary'] #tectonic_regions = ['Plate_boundary_master'] #tectonic_regions = ['Subduction'] #tectonic_regions = ['Near_plate_boundary'] min_number_events = 5 # Use for all other calculations. min_num_events_mem = 6 # Use for memory coefficient #Summarise for comment to add to figure filename fig_comment = '' #fig_comment = 'NZ_examples_' #fig_comment = 'Williams2019_' for f in faulting_styles: fig_comment += f fig_comment += '_' for t in tectonic_regions: fig_comment += t fig_comment += '_' fig_comment += str(min_number_events) #fig_comment += 'test_add_event_data' def piecewise_linear(x, x0, y0, k1, k2): return np.piecewise(x, [x < x0], [lambda x:k1*x + y0-k1*x0, lambda x:k2*x + y0-k2*x0]) def camel_case_split(identifier): matches = finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', identifier) return [m.group(0) for m in matches] plot_colours = [] all_ie_times = [] added_events = [] # Store names of records where we've added an event due to # exceptionally long current open interval covs = [] cov_bounds = [] burstinesses = [] burstiness_bounds = [] burstiness_stds = [] burstinesses_expon = [] burstinesses_gamma = [] ie_gamma_alpha = [] memory_coefficients = [] memory_bounds = [] memory_stds = [] memory_spearman_coefficients = [] memory_spearman_bounds = [] memory_spearman_lag2_coef = [] memory_spearman_lag2_bounds = [] long_term_rates = [] long_term_rate_stds = [] slip_rates = [] slip_rate_stds = [] slip_rate_bounds = [] max_interevent_times = [] min_interevent_times = [] min_paired_interevent_times = [] std_min_paired_interevent_times = [] std_min_interevent_times = [] std_max_interevent_times = [] max_interevent_times_bounds = [] min_interevent_times_bounds = [] min_paired_interevent_times_bounds = [] ratio_min_pair_max = [] ratio_min_max = [] std_ratio_min_pair_max = [] std_ratio_min_max = [] ratio_min_pair_max_bounds =[] ratio_min_max_bounds = [] names, event_sets, event_certainties, num_events, tect_regions, fault_styles = \ get_event_sets(param_file_list, tectonic_regions, faulting_styles, min_number_events) references = [] # Get citations for each dataset from filename for s in param_file_list: sp = s.split('_') if sp[0].split('/')[2] in names: references.append(sp[1] + ' ' + sp[2]) n_faults = len(names) print('Number of faults', n_faults) for i, event_set in enumerate(event_sets): # Handle cases with uncertain number of events. Where events identification is # unsure, event_certainty is given a value of 0, compared with 1 for certain # events # First generate chronologies assuming all events are certain # event_set.name = names[i] event_set.gen_chronologies(n_samples, observation_end=2020, min_separation=1) event_set.calculate_cov() event_set.cov_density() event_set.memory_coefficient() event_set.memory_spearman_rank_correlation() # Store all inter-event times for global statistics all_ie_times.append(event_set.interevent_times) # Now calculate some statistics on the sampled chronologies event_set.basic_chronology_stats() # Plot histogram of interevent times figfile = os.path.join(plot_folder, ('interevent_times_%s.png' % names[i])) event_set.plot_interevent_time_hist(fig_filename=figfile) # Fit gamma distirbution to event set data event_set.fit_gamma() ie_gamma_alpha.append(event_set.mean_gamma_alpha_all) # Get mean estimate of alpha min_paired_interevent_times.append(event_set.mean_minimum_pair_interevent_time) max_interevent_times.append(event_set.mean_maximum_interevent_time) min_interevent_times.append(event_set.mean_minimum_interevent_time) std_min_paired_interevent_times.append(event_set.std_minimum_pair_interevent_time) std_min_interevent_times.append(event_set.std_minimum_interevent_time) std_max_interevent_times.append(event_set.std_maximum_interevent_time) if event_set.std_maximum_interevent_time == 0: print('Zero std_maximum_interevent_time for ', names[i]) slip_rates.append(event_set.slip_rates[0]) slip_rate_bounds.append([event_set.slip_rates[1], event_set.slip_rates[2]]) slip_rate_stds.append(abs(np.log10(event_set.slip_rates[2]) - \ np.log10(event_set.slip_rates[1]))/4) # Approx from 95% intervals max_interevent_times_bounds.append([abs(event_set.mean_maximum_interevent_time - event_set.maximum_interevent_time_lb), abs(event_set.mean_maximum_interevent_time - event_set.maximum_interevent_time_ub)]) min_interevent_times_bounds.append([abs(event_set.mean_minimum_interevent_time - event_set.minimum_interevent_time_lb), abs(event_set.mean_minimum_interevent_time - event_set.minimum_interevent_time_ub)]) min_paired_interevent_times_bounds.append([abs(event_set.mean_minimum_pair_interevent_time - event_set.minimum_pair_interevent_time_lb), abs(event_set.mean_minimum_pair_interevent_time - event_set.minimum_pair_interevent_time_ub)]) ratio_min_pair_max.append(event_set.mean_ratio_min_pair_max) ratio_min_max.append(event_set.mean_ratio_min_max) std_ratio_min_pair_max.append(event_set.std_ratio_min_pair_max) std_ratio_min_max.append(event_set.std_ratio_min_max) ratio_min_pair_max_bounds.append([abs(event_set.mean_ratio_min_pair_max - event_set.ratio_min_pair_max_lb), abs(event_set.mean_ratio_min_pair_max - event_set.ratio_min_pair_max_ub)]) ratio_min_max_bounds.append([abs(event_set.mean_ratio_min_max - event_set.ratio_min_max_lb), abs(event_set.mean_ratio_min_max - event_set.ratio_min_max_ub)]) # Generate random exponentially and gamma distributed samples of length num_events - 1 # i.e. the number of inter-event times in the chronology. These will be used # later for testing scale = 100 # Fix scale, as burstiness is independent of scale for exponentiall distribution ie_times_expon = expon(scale=scale).rvs(size=(n_samples*(event_set.num_events-1))) ie_times_expon = np.reshape(np.array(ie_times_expon), (n_samples, (event_set.num_events-1))) ie_times_expon_T = ie_times_expon.T burst_expon = burstiness(ie_times_expon_T) # Gamma alpha_g = 2.3 #2.2 #1.6 ##2.35 #2.4 #2.0 ie_times_g = gamma(alpha_g, scale=scale).rvs(size=(n_samples*(event_set.num_events-1))) ie_times_g = np.reshape(np.array(ie_times_g), (n_samples, (event_set.num_events-1))) ie_times_g_T = ie_times_g.T burst_g = burstiness(ie_times_g_T) # Now generate chronologies assuming uncertain events did not occur if sum(event_certainties[i]) < event_set.num_events: indices = np.where(event_certainties[i] == 1) indices = list(indices[0]) # print(indices[0], type(indices)) events_subset = list(itemgetter(*indices)(event_set.event_list)) event_set_certain = EventSet(events_subset) event_set_certain.name = names[i] event_set_certain.gen_chronologies(n_samples, observation_end=2019, min_separation=1) event_set_certain.calculate_cov() event_set_certain.cov_density() event_set_certain.basic_chronology_stats() event_set_certain.memory_coefficient() event_set_certain.memory_spearman_rank_correlation() # Generate random exponentially distributed samples of length num_events - 1 # i.e. the number of inter-event times in the chronology. These will be used # later for testing ie_times_expon_certain = expon(scale=scale).rvs(size=(n_samples*(len(indices)-1))) ie_times_expon_certain = np.reshape(np.array(ie_times_expon_certain), (n_samples, (len(indices)-1))) ie_times_expon_certain_T = ie_times_expon_certain.T burst_expon_certain = burstiness(ie_times_expon_certain_T) ie_times_g_certain = gamma(alpha_g, scale=scale).rvs(size=(n_samples*(event_set.num_events-1))) ie_times_g_certain = np.reshape(np.array(ie_times_g_certain), (n_samples, (event_set.num_events-1))) ie_times_g_certain_T = ie_times_g_certain.T burst_g_certain = burstiness(ie_times_g_T) # Now combine results from certain chronolgies with uncertain ones combined_covs = np.concatenate([event_set.covs[:half_n], event_set_certain.covs[:half_n]]) combined_burstiness = np.concatenate([event_set.burstiness[:half_n], event_set_certain.burstiness[:half_n]]) combined_memory = np.concatenate([event_set.mem_coef[:half_n], event_set_certain.mem_coef[:half_n]]) combined_memory_spearman = np.concatenate([event_set.rhos[:half_n], event_set_certain.rhos[:half_n]]) combined_memory_spearman_lag2 = np.concatenate([event_set.rhos2[:half_n], event_set_certain.rhos2[:half_n]]) combined_burst_expon = np.concatenate([burst_expon[:half_n], burst_expon_certain[:half_n]]) combined_burst_g = np.concatenate([burst_g[:half_n], burst_g_certain[:half_n]]) covs.append(combined_covs) burstinesses.append(combined_burstiness) memory_coefficients.append(combined_memory) memory_stds.append(np.std(np.array(combined_memory))) memory_spearman_coefficients.append(combined_memory_spearman) memory_spearman_lag2_coef.append(combined_memory_spearman_lag2) burstinesses_expon.append(combined_burst_expon) burstinesses_gamma.append(combined_burst_g) cov_bounds.append([abs(np.mean(combined_covs) - \ min(event_set.cov_lb, event_set_certain.cov_lb)), abs(np.mean(combined_covs) - \ max(event_set.cov_ub, event_set_certain.cov_ub))]) burstiness_bounds.append([abs(np.mean(combined_burstiness) - \ min(event_set.burstiness_lb, event_set_certain.burstiness_lb)), abs(np.mean(combined_burstiness) - \ max(event_set.burstiness_ub, event_set_certain.burstiness_ub))]) memory_bounds.append([abs(np.mean(combined_memory) - \ min(event_set.memory_lb, event_set_certain.memory_lb)), abs(np.mean(combined_memory) - \ max(event_set.memory_ub, event_set_certain.memory_ub))]) memory_spearman_bounds.append([abs(np.mean(combined_memory_spearman) - \ min(event_set.rho_lb, event_set_certain.rho_lb)), abs(np.mean(combined_memory_spearman) - \ max(event_set.rho_ub, event_set_certain.rho_ub))]) memory_spearman_lag2_bounds.append([abs(np.mean(combined_memory_spearman_lag2) - \ min(event_set.rho2_lb, event_set_certain.rho2_lb)), abs(np.mean(combined_memory_spearman_lag2) - \ max(event_set.rho2_ub, event_set_certain.rho2_ub))]) # Combine, taking n/2 samples from each set combined_ltrs = np.concatenate([event_set.long_term_rates[:half_n], event_set_certain.long_term_rates[:half_n]]) burstiness_stds.append(np.std(combined_burstiness)) print(len(combined_ltrs)) long_term_rates.append(combined_ltrs) long_term_rate_stds.append(np.std(combined_ltrs)) else: covs.append(event_set.covs) burstinesses.append(event_set.burstiness) memory_coefficients.append(event_set.mem_coef) memory_stds.append(np.std(np.array(event_set.mem_coef))) memory_spearman_coefficients.append(event_set.rhos) memory_spearman_lag2_coef.append(event_set.rhos2) long_term_rates.append(event_set.long_term_rates) burstinesses_expon.append(burst_expon) burstinesses_gamma.append(burst_g) cov_bounds.append([abs(event_set.mean_cov - event_set.cov_lb), abs(event_set.mean_cov - event_set.cov_ub)]) burstiness_bounds.append([abs(event_set.mean_burstiness - event_set.burstiness_lb), abs(event_set.mean_burstiness - event_set.burstiness_ub)]) memory_bounds.append([abs(event_set.mean_mem_coef - event_set.memory_lb), abs(event_set.mean_mem_coef - event_set.memory_ub)]) memory_spearman_bounds.append([abs(event_set.mean_rho - event_set.rho_lb), abs(event_set.mean_rho - event_set.rho_ub)]) memory_spearman_lag2_bounds.append([abs(event_set.mean_rho2 - event_set.rho2_lb), abs(event_set.mean_rho2 - event_set.rho2_ub)]) burstiness_stds.append(event_set.std_burstiness) long_term_rate_stds.append(np.mean(long_term_rates)) # Get colours for plotting later if event_set.faulting_style == 'Normal': plot_colours.append('r') elif event_set.faulting_style == 'Reverse': plot_colours.append('b') elif event_set.faulting_style == 'Strike_slip': plot_colours.append('g') else: plot_colours.append('k') if event_set.add_events: # List of records where we model long open interval added_events.append(event_set.name) # Convert to numpy arrays and transpose where necessary num_events = np.array(num_events) all_ie_times = np.array(all_ie_times) max_interevent_times = np.array(max_interevent_times) min_interevent_times = np.array(min_interevent_times) min_paired_interevent_times = np.array(min_paired_interevent_times) std_max_interevent_times = np.array(std_max_interevent_times) std_min_interevent_times = np.array(std_min_interevent_times) std_min_paired_interevent_times = np.array(std_min_paired_interevent_times) max_interevent_times_bounds = np.array(max_interevent_times_bounds).T min_interevent_times_bounds = np.array(min_interevent_times_bounds).T min_paired_interevent_times_bounds = np.array(min_paired_interevent_times_bounds).T long_term_rates_T = np.array(long_term_rates).T mean_ltr = np.mean(long_term_rates_T, axis = 0) long_term_rate_stds = np.array(long_term_rate_stds) slip_rates = np.array(slip_rates).T slip_rate_bounds = np.array(slip_rate_bounds).T slip_rate_stds = np.array(slip_rate_stds).T print('Mean_ltr', mean_ltr) std_ltr = np.std(long_term_rates_T, axis = 0) ltr_bounds = np.array([abs(mean_ltr - (np.percentile(long_term_rates_T, 2.5, axis=0))), abs(mean_ltr - (np.percentile(long_term_rates_T, 97.5, axis=0)))]) ratio_min_pair_max = np.array(ratio_min_pair_max) ratio_min_max = np.array(ratio_min_max) std_ratio_min_pair_max = np.array(std_ratio_min_pair_max) std_ratio_min_max = np.array(std_ratio_min_max) ratio_min_pair_max_bounds = np.array(ratio_min_pair_max_bounds).T ratio_min_max_bounds = np.array(ratio_min_max_bounds).T cov_bounds = np.array(cov_bounds).T burstiness_bounds = np.array(burstiness_bounds).T burstiness_stds = np.array(burstiness_stds) burstiness_expon = np.array(burstinesses_expon) burstiness_gamma = np.array(burstinesses_gamma) inds = np.where(num_events >= min_num_events_mem) # Get memory coefficients for more than 6 events memory_coefficients = np.array(memory_coefficients) memory_coefficients_min = memory_coefficients[inds] memory_stds = np.array(memory_stds) memory_stds_min = memory_stds[inds] memory_bounds_min = np.array(memory_bounds)[inds].T memory_bounds = np.array(memory_bounds).T memory_spearman_bounds = np.array(memory_spearman_bounds).T memory_spearman_lag2_bounds = np.array(memory_spearman_lag2_bounds).T ie_gamma_alpha = np.array(ie_gamma_alpha) # Now plot the means and 95% error bars of COV pyplot.clf() ax = pyplot.subplot(111) mean_covs = [] for i, cov_set in enumerate(covs): mean_cov = np.mean(cov_set) mean_covs.append(mean_cov) colours = [] for mean_cov in mean_covs: if mean_cov <= 0.9: colours.append('b') elif mean_cov > 0.9 and mean_cov <= 1.1: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_covs, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_covs, yerr = cov_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_covs, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_covs[i]), fontsize=8) ax.set_ylim([0, 2.5]) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('COV') figname = 'mean_cov_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) ################################ # Plot burstiness against mean ltr pyplot.clf() ax = pyplot.subplot(111) mean_bs = [] for i, b_set in enumerate(burstinesses): mean_b = np.mean(b_set) mean_bs.append(mean_b) colours = [] for mean_b in mean_bs: if mean_b <= -0.05: colours.append('b') elif mean_b > -0.05 and mean_b <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_bs, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_bs, yerr = burstiness_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_bs, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_bs[i]), fontsize=8) # Add B=0 linear pyplot.plot([1./1000000, 1./40], [0, 0], linestyle='dashed', linewidth=1, c='0.5') ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('B') # Now do a bi-linear fit to the data mean_bs = np.array(mean_bs) indices = np.flatnonzero(mean_ltr > 3e-4) indices = indices.flatten() indices_slow_faults = np.flatnonzero(mean_ltr <= 3e-4) indices_slow_faults = indices_slow_faults.flatten() # Fit fast rate faults lf = np.polyfit(np.log10(mean_ltr[indices]), mean_bs[indices], 1) # Now force to be a flat line1 lf[0] = 0. lf[1] = np.mean(mean_bs[indices]) std_lf = np.std(mean_bs[indices]) xvals_short = np.arange(1.5e-4, 2e-2, 1e-4) yvals = lf[0]*np.log10(xvals_short) + lf[1] pyplot.plot(xvals_short, yvals, c='0.2') # Fit slow faults if len(indices_slow_faults > 1): lf_slow = np.polyfit(np.log10(mean_ltr[indices_slow_faults]), mean_bs[indices_slow_faults], 1) xvals_short = np.arange(1e-6, 1.5e-4, 1e-6) yvals = lf_slow[0]*np.log10(xvals_short) + lf_slow[1] pyplot.plot(xvals_short, yvals, c='0.2') # Add formula for linear fits of data print('Fits for B vs LTR') txt = 'Y = {:=+6.2f} +/- {:4.2f}'.format(lf[1], std_lf) print(txt) ax.annotate(txt, (2e-4, 0.2), fontsize=8) try: txt = 'Y = {:4.2f}Log(x) {:=+6.2f}'.format(lf_slow[0], lf_slow[1]) print(txt) ax.annotate(txt, (1.5e-6, 0.75), fontsize=8) except: pass # Now try bilinear ODR linear fit data = odrpack.RealData(np.log10(mean_ltr), mean_bs, sx=np.log10(long_term_rate_stds), sy=burstiness_stds) bilin = odrpack.Model(bilinear_reg_zero_slope) odr = odrpack.ODR(data, bilin, beta0=[-3, -1.0, -4]) # array are starting values odr.set_job(fit_type=0) out = odr.run() print(out.sum_square) out.pprint() a = out.beta[0] b = out.beta[1] hx = out.beta[2] xvals = np.arange(1.e-6, 2e-2, 1e-6) yrng = a*np.log10(xvals) + b #10**(b + a * xvals) ylevel = a*hx + b #10**(b + a * hx) print('ylevel', ylevel) print(10**ylevel) idx = xvals > 10**hx yrng[idx] = (ylevel) print('yrng', yrng) print('hx', hx) pyplot.plot(xvals, yrng, c='g') # Bilinear fixed hinge hxfix = np.log10(2e-4) bilin_hxfix_cons_slope = odrpack.Model(bilinear_reg_fix_zero_slope) odr = odrpack.ODR(data, bilin_hxfix_cons_slope, beta0=[-3, -1.0]) odr.set_job(fit_type=0) out = odr.run() print('bilinear hxfix_cons_slope') print(out.sum_square) out.pprint() a = out.beta[0] b = out.beta[1] yrng = a*np.log10(xvals) + b ylevel = a*hxfix + b print('ylevel hxfix zero slope', ylevel) print(10**ylevel) idx = xvals > 10**hxfix yrng[idx] = (ylevel) print('yrng', yrng) print('hx', hxfix) pyplot.plot(xvals, yrng, c='r') figname = 'burstiness_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) ######################### # Plot burstiness against slip rate pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(slip_rates, mean_bs, xerr = slip_rate_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(slip_rates, mean_bs, yerr = burstiness_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(slip_rates, mean_bs, marker = 's', c=plot_colours, s=25, zorder=2) ax.set_ylim([-1, 1]) ax.set_xlim([1./1000, 100]) # Add B=0 linear pyplot.plot([1./1000, 100], [0, 0], linestyle='dashed', linewidth=1, c='0.5') ax.set_xscale('log') ax.set_xlabel('Slip rate (mm/yr)') ax.set_ylabel('B') # Now try linear ODR linear fit def f(B, x): return B[0]*x + B[1] print(slip_rates) print(np.log10(slip_rates)) print(slip_rate_stds) print(np.log10(slip_rate_stds)) print(burstiness_stds) wd = 1./np.power(burstiness_stds, 2) print(wd) we = 1./np.power(slip_rate_stds, 2) print(we) # Std dev already in log-space data = odrpack.RealData(np.log10(slip_rates), mean_bs, sx=np.sqrt(slip_rate_stds), sy=np.sqrt(burstiness_stds)) linear = odrpack.Model(f) odr = odrpack.ODR(data, linear, beta0=[-1, -1.0,]) odr.set_job(fit_type=0) out = odr.run() out.pprint() a = out.beta[0] b = out.beta[1] xvals = np.arange(1.e-4, 1e2, 1e-2) yrng = a*np.log10(xvals) + b #10**(b + a * xvals) pyplot.plot(xvals, yrng, c='0.6') txt = 'Y = {:4.2f}Log(x) {:=+6.2f}'.format(a, b) print(txt) ax.annotate(txt, (1e0, 0.9), color='0.6') # Now try bilinear fixed hinge bilin = odrpack.Model(bilinear_reg_fix_zero_slope) odr = odrpack.ODR(data, bilin, beta0=[-1, -1.0, -1]) odr.set_job(fit_type=0) out = odr.run() out.pprint() a = out.beta[0] b = out.beta[1] yrng = a*np.log10(xvals) + b ylevel = a*hxfix + b print('ylevel hxfix zero slope', ylevel) print(10**ylevel) idx = xvals > 10**hxfix yrng[idx] = (ylevel) print('yrng', yrng) print('hx', hxfix) pyplot.plot(xvals, yrng, c='0.2') txt = 'Y = {:4.2f}Log(x) {:=+6.2f}, x < {:4.2f}'.format(a, b, np.power(10,hxfix)) print(txt) ax.annotate(txt, (2e-3, 0.9), color='0.2') txt = 'Y = {:4.2f}, x >= {:4.2f}'.format(ylevel, np.power(10,hxfix)) print(txt) ax.annotate(txt, (1.2e-2, 0.8), color='0.2') figname = 'burstiness_vs_slip_rate_%s.png' % fig_comment pyplot.savefig(figname) figname = 'burstiness_vs_slip_rate_%s.pdf' % fig_comment pyplot.savefig(figname) # Plot memory coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) mean_mems = [] mean_ltr_mem = mean_ltr[inds] ltr_bounds_mem = ltr_bounds.T[inds].T for i, mem_set in enumerate(memory_coefficients): mean_mem = np.mean(mem_set) # print('Mean memory coefficient combined', mean_mem) mean_mems.append(mean_mem) mean_mems = np.array(mean_mems) colours = [] plot_colours_mem = list(np.array(plot_colours)[inds]) for mean_mem in mean_mems: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr_mem, mean_mems[inds], xerr = ltr_bounds_mem, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr_mem, mean_mems[inds], yerr = memory_bounds_min, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr_mem, mean_mems[inds], marker = 's', c=plot_colours_mem, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_mems[i]), fontsize=8) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('M') figname = 'memory_coefficient_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) # Plot Spearman Rank coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) mean_mems_L1 = [] for i, mem_set in enumerate(memory_spearman_coefficients): mean_mem = np.mean(mem_set) mean_mems_L1.append(mean_mem) colours = [] for mean_mem in mean_mems_L1: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_mems_L1, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_mems_L1, yerr = memory_spearman_bounds, elinewidth=0.7, ecolor = '0.3', linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_mems_L1, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_mems_L1[i]), fontsize=8) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('M (Spearman Rank)') figname = 'memory_coefficient_Spearman_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) # Plot Spearman Rank (Lag-2) coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) mean_mems_L2 = [] for i, mem_set in enumerate(memory_spearman_lag2_coef): mean_mem = np.mean(mem_set) mean_mems_L2.append(mean_mem) colours = [] for mean_mem in mean_mems_L2: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_ltr, mean_mems_L2, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_mems_L2, yerr = memory_spearman_lag2_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_mems_L2, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], mean_mems_L2[i]), fontsize=8) ax.set_xlim([1./1000000, 1./40]) ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)') ax.set_ylabel('M (Spearman Rank Lag-2)') figname = 'memory_coefficient_Spearman_Lag2_vs_lt_rate_%s.png' % fig_comment pyplot.savefig(figname) # Plot Spearman rank Lag-1 against Lag-2 # Plot Spearman Rank coefficients against long term rates pyplot.clf() ax = pyplot.subplot(111) colours = [] for mean_mem in mean_mems_L1: if mean_mem <= -0.05: colours.append('b') elif mean_mem > -0.05 and mean_mem <= 0.05: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_mems_L1, mean_mems_L2, xerr = memory_spearman_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_mems_L1, mean_mems_L2, yerr = memory_spearman_lag2_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_mems_L1, mean_mems_L2, marker = 's', c=plot_colours, s=25, zorder=2) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_mems_L1[i], mean_mems_L2[i]), fontsize=8) ax.set_xlabel('M (Spearman Rank Lag-1)') ax.set_ylabel('M (Spearman Rank Lag-2)') figname = 'memory_coefficient_Spearman_L1_vs_L2_%s.png' % fig_comment pyplot.savefig(figname) # Plot COV against number of events to look at sampling biases pyplot.clf() ax = pyplot.subplot(111) mean_covs = [] for i, cov_set in enumerate(covs): mean_cov = np.mean(cov_set) mean_covs.append(mean_cov) colours = [] for mean_cov in mean_covs: if mean_cov <= 0.9: colours.append('b') elif mean_cov > 0.9 and mean_cov <= 1.1: colours.append('g') else: colours.append('r') pyplot.errorbar(mean_covs, num_events, xerr = cov_bounds, ecolor = '0.6', linestyle="None") pyplot.scatter(mean_covs, num_events, marker = 's', c=plot_colours, s=25) for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_covs[i], num_events[i]), fontsize=8) ax.set_xlabel('COV') ax.set_ylabel('Number of events in earthquake record') figname = 'mean_cov_vs_number_events_%s.png' % fig_comment pyplot.savefig(figname) # Now plot basic statistics pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(max_interevent_times, min_interevent_times, yerr = min_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(max_interevent_times, min_interevent_times, xerr = max_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(max_interevent_times, min_interevent_times, marker = 's', c=colours, s=25, zorder=2) ax.set_xlabel('Maximum interevent time') ax.set_ylabel('Minimum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (max_interevent_times[i], min_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(max_interevent_times < 10000).flatten() indices_slow_faults = np.argwhere(max_interevent_times >= 10000).flatten() lf = np.polyfit(np.log10(max_interevent_times[indices]), np.log10(min_interevent_times[indices]), 1) xvals_short = np.arange(100, 1e4, 100) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (800, 10000)) figname = 'min_vs_max_interevent_time_%s.png' % fig_comment pyplot.savefig(figname) # Plot minimum pairs pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(max_interevent_times, min_paired_interevent_times, yerr = min_paired_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(max_interevent_times, min_paired_interevent_times, xerr = max_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(max_interevent_times, min_paired_interevent_times, marker = 's', c=colours, s=25, zorder=2) ax.set_xlabel('Maximum interevent time') ax.set_ylabel('Minimum interevent time \n(mean of two shortest consecutive interevent times)') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (max_interevent_times[i], min_paired_interevent_times[i]), fontsize=8) # Now fit with a regression in log-log space xvals = np.arange(100, 2e6, 100) # For plotting # Linear fit lf = np.polyfit(np.log10(max_interevent_times), np.log10(min_paired_interevent_times), 1) log_yvals = lf[0]*np.log10(xvals) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals, yvals) # Linear fit only bottom end of data indices = np.argwhere(max_interevent_times < 10000).flatten() lf = np.polyfit(np.log10(max_interevent_times[indices]), np.log10(min_paired_interevent_times[indices]), 1) xvals_short = np.arange(100, 1e4, 100) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (100, 10000)) # Quadratic fit qf = np.polyfit(np.log10(max_interevent_times), np.log10(min_paired_interevent_times), 2) print(qf) log_yvals = qf[0]*np.log10(xvals)**2 + qf[1]*np.log10(xvals) + qf[2] yvals = np.power(10, log_yvals) pyplot.plot(xvals, yvals) figname = 'min_pair_vs_max_interevent_time_%s.png' % fig_comment pyplot.savefig(figname) # Similar plots, against long term rates pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, min_interevent_times, yerr = min_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, min_interevent_times, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, min_interevent_times, marker='s', c=colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Minimum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], min_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 2e-4).flatten() lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(min_interevent_times[indices]), 1) xvals_short = np.arange(5e-4, 1e-2, 1e-4) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) ax.annotate(txt, (1e-4, 10000)) figname = 'min_interevent_time_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) # Plot long term rate against minimum pair pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, min_paired_interevent_times, yerr = min_paired_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, min_paired_interevent_times, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, min_paired_interevent_times, marker='s', c=colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Minimum interevent time \n(mean of two shortest consecutive interevent times)') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], min_paired_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 2e-4).flatten() lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(min_paired_interevent_times[indices]), 1) xvals_short = np.arange(5e-4, 1e-2, 1e-4) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (1e-4, 10000)) figname = 'min_pair_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) # Plot long term rate against maximum interevent time pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, max_interevent_times, yerr = max_interevent_times_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, max_interevent_times, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, max_interevent_times, marker='s', c=plot_colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Maximum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], max_interevent_times[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 2e-10).flatten() # All data for now lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(max_interevent_times[indices]), 1) xvals_short = np.arange(2e-6, 1e-2, 1e-6) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals) # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (1e-4, 100000)) figname = 'max_interevent_time_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) # Now plot ratios against long term rates pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, ratio_min_pair_max, yerr = ratio_min_pair_max_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, ratio_min_pair_max, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, ratio_min_pair_max, marker='s', c=plot_colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Minimum pair interevent time: maximum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], ratio_min_pair_max[i]), fontsize=8) # Linear fit high and low long term rate data separately indices = np.argwhere(mean_ltr > 4e-4).flatten() indices_slow_faults = np.argwhere(mean_ltr <= 4e-4).flatten() lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(ratio_min_pair_max[indices]), 1) xvals_short = np.arange(2e-4, 5e-2, 1e-4) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals, c='k') # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (5e-4, 1e-2)) # Slow long-term rates print('At if statement') if len(indices_slow_faults) > 0: print('Plotting slow faults') lf = np.polyfit(np.log10(mean_ltr[indices_slow_faults]), np.log10(ratio_min_pair_max[indices_slow_faults]), 1) xvals_short = np.arange(2e-6, 4e-4, 1e-6) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals, c='k') # Add formula for linear fit to low-end of data txt = 'Log(Y) = %.2fLog(x) + %.2f' % (lf[0], lf[1]) print(txt) ax.annotate(txt, (1e-5, 5e-3)) figname = 'min_pair_max_ratio_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) # Now plot ratios against long term rates pyplot.clf() ax = pyplot.subplot(111) pyplot.errorbar(mean_ltr, ratio_min_max, yerr = ratio_min_max_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, ratio_min_max, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.7, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, ratio_min_max, marker = 's', c=plot_colours, s=25, zorder=2) ax.set_xlabel('Long-term rate') ax.set_ylabel('Minimum interevent time: maximum interevent time') ax.set_xscale('log') ax.set_yscale('log') # Label low-slip rate faults for i, txt in enumerate(names): if max_interevent_times[i] > 10 and annotate_plots: ax.annotate(txt[:4], (mean_ltr[i], ratio_min_max[i]), fontsize=8) # Linear fit only bottom end of data indices = np.argwhere(mean_ltr > 9e-5).flatten() indices_slow_faults = np.argwhere(mean_ltr <= 9e-5).flatten() lf = np.polyfit(np.log10(mean_ltr[indices]), np.log10(ratio_min_max[indices]), 1) # Now just plot as constant mean value lf[0] = 0 lf[1] = np.mean(np.log10(ratio_min_max[indices])) xvals_short = np.arange(3.46e-5, 1e-2, 1e-4) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals, c='k') # Add formula for linear fit to low-end of data txt = 'Log(Y) = {:4.2f}Log(x) {:=+6.2f}'.format(lf[0], lf[1]) print(txt) ax.annotate(txt, (1e-4, 1e-3)) # Slow long-term rates if len(indices_slow_faults) > 0: lf = np.polyfit(np.log10(mean_ltr[indices_slow_faults]), np.log10(ratio_min_max[indices_slow_faults]), 1) xvals_short = np.arange(2e-6, 3.47e-5, 1e-6) log_yvals = lf[0]*np.log10(xvals_short) + lf[1] yvals = np.power(10, log_yvals) pyplot.plot(xvals_short, yvals, c='k') # Add formula for linear fit to low-end of data # txt = 'Log(Y) = %.2fLog(x) %+.2f' % (lf[0], lf[1]) txt = 'Log(Y) = {:4.2f} {:=+6.2f}'.format(lf[0], lf[1]) print(txt) ax.annotate(txt, (3e-6, 8e-1)) figname = 'min_max_ratio_vs_ltr_%s.png' % fig_comment pyplot.savefig(figname) ############################################# # Make multipanel figure plot pyplot.clf() fig = pyplot.figure(1) # set up subplot grid gridspec.GridSpec(3, 2) #First plot pyplot.subplot2grid((3, 2), (0,0), colspan=1, rowspan=1) ax = pyplot.gca() # Plot burstiness against mean ltr pyplot.errorbar(mean_ltr, mean_bs, xerr = ltr_bounds, ecolor = '0.3', elinewidth=0.5, linestyle="None", zorder=1) pyplot.errorbar(mean_ltr, mean_bs, yerr = burstiness_bounds, ecolor = '0.3', elinewidth=0.5, linestyle="None", zorder=1) pyplot.scatter(mean_ltr, mean_bs, marker = 's', c=plot_colours, s=18, zorder=2) ax.set_ylim([-1, 1]) ax.set_xlim([1./1000000, 1./40]) pyplot.plot([1./1000000, 1./40], [0, 0], linestyle='dashed', linewidth=1, c='0.5') ax.set_xscale('log') ax.set_xlabel('Long-term rate (events per year)', fontsize=10) ax.set_ylabel('B', fontsize=10) # Add a legend using some dummy data line1 = ax.scatter([1], [100], marker = 's', c = 'r', s=18) line2 = ax.scatter([1], [100], marker = 's', c = 'g', s=18) line3 = ax.scatter([1], [100], marker = 's', c = 'b', s=18) pyplot.legend((line1, line2, line3), ('Normal', 'Strike slip', 'Reverse')) # Bilinear fixed hinge and constant slope ODR hxfix =
np.log10(2e-4)
numpy.log10
import numpy as np def prn_list(l): for t in range(len(l)): print(t, l[t]) # 时间序列循环 p = [] for t in range(100): p.append(t+1) # 历史hln:每一段hln做一次操作 # 以[0:t]的数据,预测t+1的值,然后存到新list的t位置 # 例如,t=[0:14]的数据,预测t=15的值,然后存到新list的t=14位置 hln = 15 p1 = [] for t in range(hln, len(p)+1): tmp = p[t-hln:t] p1.append(tmp) #len(p1)=len(p)-hln+1 p2 = [np.mean(p[t-hln:t]) for t in range(hln, len(p)+1)] #fill historical value with zero or nan p3 = [np.nan for t in range(0, hln-1)] + p2 # 未来ftn:每一段ftn做一次操作 # 以[t+1:t+ftn]的数据,计算t+1的值,然后存到新list的t位置 # 例如,t=[1:15]的数据,计算t=1的值,然后存到新list的t=0位置 ftn = 25 f1 = [] for t in range(1, len(p)-ftn+1): tmp = p[t:t+ftn] f1.append(tmp) #len(f1)=len(p)-ftn+1 f2 = [np.mean(p[t:t+ftn]) for t in range(1, len(p)-ftn+1)] f3 = f2 + [np.nan for t in range(0, ftn)] # 历史hln与未来ftn:每段操作 # 以[0:t]的数据,预测t+1的值,然后存到新list的t位置 # 同时以[t+1:t+ftn]的数据,计算t+1的值,然后也存到新list的t位置 # [0:14]和[15:39]的数据,计算t=15的值,存到t=14的位置 hln = 15 ftn = 25 pf1 = [] for t in range(hln, len(p)-ftn+1): tmp = p[t-hln:t+ftn] pf1.append(tmp) #len(pf1)=len(p)-hln-ftn+1 pf2 = [np.mean(p[t-hln:t+ftn]) for t in range(hln, len(p)-ftn+1)] pf3 = [np.nan for t in range(0, hln-1)] + \ pf2 + \ [np.nan for t in range(0, ftn)] # find and remove nan from list pf4 = [] for t in range(len(pf3)): if ~
np.isnan(pf3[t])
numpy.isnan
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den =
N.array([1,4,4])
numpy.array
# -*- coding:utf-8 -*- from __future__ import division, absolute_import from simple_ml.base.base_model import * from simple_ml.base.base_enum import * from simple_ml.base.base_error import * import numpy as np from collections import Counter from simple_ml.evaluation import * __all__ = [ 'ID3', 'CART' ] class ID3(BaseClassifier): __doc__ = "ID3 Decision Tree" def __init__(self, max_depth=None, min_samples_leaf=3): """ 决策树ID3算法 :param max_depth: 树最大深度 :param min_samples_leaf: 叶子节点最大样本数(最好是奇数,用以投票) """ super(ID3, self).__init__() self.max_depth = max_depth if max_depth is not None else np.inf self.min_samples_leaf = min_samples_leaf self._root = None @property def root(self): return self._root def fit(self, x, y): super(ID3, self).fit(x, y) if self.label_type != LabelType.binary and self.label_type != LabelType.multi_class: raise LabelTypeError("ID3算法只支持离散标签") if LabelType.continuous in self.feature_type: raise FeatureTypeError("ID3算法只支持离散特征") self._root = self._gen_tree(MultiTreeNode(data_id=np.arange(self.x.shape[0])), 0) def _gen_tree(self, node, depth): if depth >= self.max_depth or len(node.data_id) <= self.min_samples_leaf: node.leaf_label = np.argmax(np.bincount(self.y[node.data_id])) return node split_feature = self._get_best_split(node.data_id) feature = self.x[node.data_id, split_feature] nodes = [] for value in np.unique(feature): new_node = MultiTreeNode(None, node.data_id[feature == value], split_feature, value) new_node = self._gen_tree(new_node, depth + 1) nodes.append(new_node) node.child = nodes return node def _get_best_split(self, data_id): data = self.x[data_id] y = self.y[data_id] best_split_feature = None y_entropy = self._get_entropy(y) _max_gain = -np.inf for i in range(data.shape[1]): unique = np.unique(data[:, i]) if len(unique) <= 1: continue entropy = 0 for feature_value in unique: y_temp = y[data[:, i] == feature_value] entropy += len(y_temp) / len(data_id) * self._get_entropy(y_temp) gain = y_entropy - entropy if gain > _max_gain: _max_gain = gain best_split_feature = i return best_split_feature @staticmethod def _get_entropy(arr): count = Counter(arr) s = 0 for i in count: p = count[i] / len(arr) s += -p * np.log(p) return s def predict(self, x): if self._root is None: raise ModelNotFittedError super(ID3, self).predict(x) return np.array([self._predict_single(i, self._root) for i in x]) def _predict_single(self, x, node): if node.leaf_label is not None: return node.leaf_label for child_node in node.child: feature_id = child_node.feature_id value = child_node.value if x[feature_id] == value: return self._predict_single(x, child_node) return np.random.choice(self.y, 1) def score(self, x, y): super(ID3, self).score(x, y) y_predict = self.predict(x) return classify_f1(y_predict, y) def classify_plot(self, x, y, title=""): classify_plot(self.new(), self.x, self.y, x, y, title=self.__doc__ + title) def new(self): return ID3(self.max_depth, self.min_samples_leaf) class CART(BaseClassifier): __doc__ = "Classify and Regression Tree" def __init__(self, max_depth=10, min_samples_leaf=5): """ 分类回归树 :param max_depth: 树最大深度 :param min_samples_leaf: 叶子节点最大样本数(最好是奇数,用以投票) """ super(CART, self).__init__() self._function = Function.cls_and_reg self.max_depth = max_depth if max_depth is not None else np.inf self.min_samples_leaf = min_samples_leaf self._root = None @property def root(self): return self._root def fit(self, x, y): super(CART, self).fit(x, y) self._root = self._gen_tree(BinaryTreeNode(None, None,
np.arange(self.x.shape[0])
numpy.arange
__author__ = 'yzhu' __version__ = '0.1' import json import datetime import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon import numpy as np from skimage.draw import polygon import urllib import copy import itertools import os from pycocotools.coco import COCO from pycocotools import mask import PIL.ImageDraw as ImageDraw import PIL.Image as Image import cv2 class Amodal(COCO): def __init__(self, annotation_file=None, verbose=True): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ COCO.__init__(self, annotation_file) self.verbose = verbose def createIndex(self): # create index print('creating index...') anns = {} imgToAnns = {} imgs = {} regions = [] if 'annotations' in self.dataset: imgToAnns = {ann['image_id']: [] for ann in self.dataset['annotations']} anns = {ann['id']: [] for ann in self.dataset['annotations']} for ann in self.dataset['annotations']: imgToAnns[ann['image_id']] += [ann] anns[ann['id']] = ann for region in ann['regions']: region['image_id'] = ann['image_id'] regions.append(region) if 'images' in self.dataset: imgs = {im['id']: {} for im in self.dataset['images']} for img in self.dataset['images']: imgs[img['id']] = img print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.imgs = imgs self.regions = regions def getAmodalAnnIds(self, imgIds=[]): """ Get amodal ann id that satisfy given fiter conditions. :param imgIds (int array): get anns for given imgs :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if type(imgIds) == list else [imgIds] if len(imgIds) == 0: anns = self.dataset['annotations'] else: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) ids = [ann['id'] for ann in anns] return ids def getImgIds(self, imgIds=[], catIds=[]): ''' Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids ''' imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def showAmodalAnns(self, anns): """ Display a set of amodal Ann object. :param anns: a dict object return: None """ if type(anns) == list: print("anns cannot be a list! Should be a dict.") return 0 ax = plt.gca() polygons = [] lines = [] color = [] for ann in reversed(anns['regions']): c = np.random.random((1, 3)).tolist()[0] if type(ann['segmentation']) == list: # polygon seg = ann['segmentation'] poly = np.array(seg).reshape((len(seg)//2, 2)) polygons.append(Polygon(poly, True, alpha=0.2)) color.append(c) p = PatchCollection(polygons, facecolors=color, edgecolors=(1,1,1,1), linewidths=3, alpha=0.2) ax.add_collection(p) #color.append(c) else: self.showMask(ann['segmentation'], ax,c) #raise NotImplementedError def showEdgeMap(self, anns): """ Show edge map for an annontation :param anns: a dict object return: None """ if type(anns) == list: print("anns cannot be a list! Should be a dict") return 0 ax = plt.gca() polygons = [] lines = [] color = [] for ann in reversed(anns['regions']): c = np.zeros([1, 3]).tolist()[0] if type(ann['segmentation']) == list: # polygon seg = ann['segmentation'] poly = np.array(seg).reshape((len(seg)//2, 2)) polygons.append(Polygon(poly, True, alpha=0.2)) p = PatchCollection(polygons, facecolors=color, edgecolors=(1,1,1,1), linewidths=1, alpha=1) ax.add_collection(p) #color.append(c) else: self.showMask(ann['segmentation'], ax) def getMask(self, M): m = mask.decode([M]) img = np.ones( (m.shape[0], m.shape[1], 3) ) # get boundary quickly kernel_size = m.shape[0]//40 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) dilation = cv2.dilate(m, kernel) B = dilation[:,:,None] - m # B = np.zeros( (m.shape[0], m.shape[1]) ) # for aa in range(m.shape[0]-1): # for bb in range(m.shape[1]-1): # #kk = aa*m.shape[1]+bb # if m[aa,bb] != m[aa,bb+1]: # B[aa,bb], B[aa,bb+1] = 1,1 # if m[aa,bb] != m[aa+1,bb]: # B[aa,bb], B[aa+1,bb] = 1,1 # if m[aa,bb] != m[aa+1,bb+1]: # B[aa,bb], B[aa+1,bb+1] = 1,1 return m,B def showMask(self, M, ax, c = [0, 1, 0]): m,B = self.getMask(M) img = np.ones( (m.shape[0], m.shape[1], 3) ) for i in range(3): img[:, :, i] = c[i];ax.imshow(np.dstack( (img, m*0.5) )) img[:, :, i] = 1;ax.imshow(np.dstack( (img, B*1) )) def getAnnMask(self,ann,w,h,fill_color=255): if type(ann['segmentation']) == list: # polygon seg = ann['segmentation'] img = Image.new("L", (w, h)) draw = ImageDraw.Draw(img) draw.polygon(seg, fill= int(fill_color)) all_mask = np.asarray( img, dtype="uint8" ) else: all_mask,B = self.getMask(ann['segmentation']) all_mask = np.squeeze(all_mask) if 'invisible_mask' in ann: invisible_mask,boundary = self.getMask(ann['invisible_mask']) invisible_mask[invisible_mask>0] = fill_color invisible_mask = np.squeeze(invisible_mask) invisible_mask = np.squeeze(invisible_mask) return all_mask,invisible_mask.astype('uint8') else: return all_mask,[] def getAnnMask2(self,ann,w,h,fill_color=255): if type(ann['segmentation']) == list: # polygon seg = ann['segmentation'] img = Image.new("L", (w, h)) draw = ImageDraw.Draw(img) draw.polygon(seg, fill= int(fill_color)) all_mask = np.asarray( img, dtype="uint8" ) else: all_mask,B = self.getMask(ann['segmentation']) all_mask = np.squeeze(all_mask) if 'visible_mask' in ann: visible_mask,boundary = self.getMask(ann['visible_mask']) visible_mask[visible_mask>0] = fill_color visible_mask = np.squeeze(visible_mask) visible_mask = np.squeeze(visible_mask) return all_mask,visible_mask.astype('uint8') else: return all_mask,[] def getAmodalInstance(self,anns,w,h,k=-1): """ return k-th visualable/unvisualable mask k: the depth order of anns, 1-index. If k = -1, just visulize mask """ fill_color = 255 if type(anns) == list: print("ann cannot be a list! Should be a dict") return 0 if k < 0: layer_visible_mask = np.ones((h,w))*255 for ann in anns['regions']: all_mask,invisible_mask,_ = self.getAnnMask(ann,w,h,fill_color) if type(invisible_mask)==list: layer_visible_mask += all_mask else: layer_visible_mask += all_mask-invisible_mask return layer_visible_mask.astype('uint8') else: ann = anns['regions'][k] return self.getAnnMask(ann,w,h,fill_color) def showAmodalInstance(self, anns, k=-1): """ Display k-th instance only: print segmentation first, then print invisible_mask anns: a single annotation k: the depth order of anns, 1-index. If k = -1, just visulize input """ ax = plt.gca() c =
np.random.random((1,3))
numpy.random.random
import tensorflow as tf import numpy as np import time import datetime import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec class VAE(object): def __init__(self): # VAE parameters self.z_dim = 10 # Iterations parameters self.max_it = 300000 self.stat_every = 500 self.saving_every = 1e8 # Directories date = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") model_name = 'vae_dsprites' self.data_path = 'database/' self.model_path = 'results/' + model_name + '_' + date + '/' self.checkpoint_path = self.model_path + 'checkpoints/model' self.tb_path = self.model_path + 'tb_summaries/' # Data self.data_file = self.data_path + 'dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz' self.data_train, self.data_test, self.all_imgs, self.all_factors, self.n_classes = self._data_init() self.iterator, self.handle, self.train_img_ph, self.iterator_train, self.test_img_ph, self.iterator_test =\ self._iterator_init(batch_size=64) # Model setup self.input_vae, self.enc_mean, self.enc_logvar, self.z_sample, self.dec_logit, self.dec_sigm, \ self.dec_mean_logit, self.dec_mean_sigm = self._vae_init(inputs=self.iterator.get_next()) self.vae_loss, self.recon_loss = self._loss_init() self.vae_train_step = self._optimizer_init() # Savers self.sess = tf.Session() self.saver = tf.train.Saver(keep_checkpoint_every_n_hours=1) self.train_writer = tf.summary.FileWriter(self.tb_path + 'train', self.sess.graph) self.test_writer = tf.summary.FileWriter(self.tb_path + 'test') tf.summary.scalar('vae_loss', self.vae_loss) tf.summary.scalar('recon_loss', self.recon_loss) # Initialization of variables self.sess.run(tf.global_variables_initializer()) # Initialization of iterators self.sess.run([self.iterator_train.initializer, self.iterator_test.initializer], feed_dict={self.train_img_ph: self.data_train, self.test_img_ph: self.data_test}) # Initialization of handles self.train_handle = self.sess.run(self.iterator_train.string_handle()) self.test_handle = self.sess.run(self.iterator_test.string_handle()) def train(self, final_evaluation=False): start_time = time.time() merged = tf.summary.merge_all() print("Beginning training") print("Beginning training", file=open(self.model_path + 'train.log', 'w')) it = 0 while it < self.max_it: it += 1 self.sess.run(self.vae_train_step, feed_dict={self.handle: self.train_handle}) if it % self.stat_every == 0: # Train evaluation vae_loss, recon_loss, summ = self.sess.run([self.vae_loss, self.recon_loss, merged], feed_dict={self.handle: self.train_handle}) print("Iteration %i (train):\n VAE loss %f - Recon loss %f" % (it, vae_loss, recon_loss), flush=True) print("Iteration %i (train):\n VAE loss %f - Recon loss %f" % (it, vae_loss, recon_loss), flush=True, file=open(self.model_path + 'train.log', 'a')) self.train_writer.add_summary(summ, it) # Test evaluation vae_loss, recon_loss, summ = self.sess.run([self.vae_loss, self.recon_loss, merged], feed_dict={self.handle: self.test_handle}) print("Iteration %i (test):\n VAE loss %f - Recon loss %f" % (it, vae_loss, recon_loss), flush=True) print("Iteration %i (test):\n VAE loss %f - Recon loss %f" % (it, vae_loss, recon_loss), flush=True, file=open(self.model_path + 'train.log', 'a')) self.test_writer.add_summary(summ, it) time_usage = str(datetime.timedelta(seconds=int(round(time.time() - start_time)))) print("Time usage: " + time_usage) print("Time usage: " + time_usage, file=open(self.model_path + 'train.log', 'a')) if it % self.saving_every == 0: save_path = self.saver.save(self.sess, self.checkpoint_path, global_step=it) print("Model saved to: %s" % save_path) print("Model saved to: %s" % save_path, file=open(self.model_path + 'train.log', 'a')) save_path = self.saver.save(self.sess, self.checkpoint_path, global_step=it) print("Model saved to: %s" % save_path) print("Model saved to: %s" % save_path, file=open(self.model_path + 'train.log', 'a')) # Closing savers self.train_writer.close() self.test_writer.close() # Total time time_usage = str(datetime.timedelta(seconds=int(round(time.time() - start_time)))) print("Total training time: " + time_usage) print("Total training time: " + time_usage, file=open(self.model_path + 'train.log', 'a')) if final_evaluation: print("Evaluating final model...") mean_dis_metric = self.evaluate_mean_disentanglement() recon_loss_test = self.evaluate_test_recon_loss() print("Mean Disentanglement Metric: " + str(mean_dis_metric), file=open(self.model_path + 'train.log', 'a')) print("Test Reconstruction Loss: " + str(recon_loss_test), file=open(self.model_path + 'train.log', 'a')) def load_latest_checkpoint(self, params_path): self.saver.restore(self.sess, tf.train.latest_checkpoint(params_path)) def _data_init(self): # Find dataset here: https://github.com/deepmind/dsprites-dataset with np.load(self.data_file, encoding='bytes') as data: all_imgs = data['imgs'] all_imgs = all_imgs[:, :, :, None] # make into 4d tensor all_factors = data['latents_classes'] all_factors = all_factors[:, 1:] # Remove color factor n_classes = np.array([3, 6, 40, 32, 32]) # 90% random test/train split n_data = all_imgs.shape[0] idx_random = np.random.permutation(n_data) data_train = all_imgs[idx_random[0: (9 * n_data) // 10]] data_test = all_imgs[idx_random[(9 * n_data) // 10:]] return data_train, data_test, all_imgs, all_factors, n_classes def _iterator_init(self, batch_size=64): with tf.name_scope("iterators"): # Generate TF Dataset objects for each split train_img_ph = tf.placeholder(dtype=tf.float32, shape=self.data_train.shape) test_img_ph = tf.placeholder(dtype=tf.float32, shape=self.data_test.shape) dataset_train = tf.data.Dataset.from_tensor_slices(train_img_ph) dataset_test = tf.data.Dataset.from_tensor_slices(test_img_ph) dataset_train = dataset_train.repeat() dataset_test = dataset_test.repeat() # Random batching dataset_train = dataset_train.shuffle(buffer_size=5000) dataset_train = dataset_train.batch(batch_size=batch_size) dataset_test = dataset_test.shuffle(buffer_size=1000) dataset_test = dataset_test.batch(batch_size=batch_size) # Prefetch dataset_train = dataset_train.prefetch(buffer_size=4) dataset_test = dataset_test.prefetch(buffer_size=4) # Iterator for each split iterator_train = dataset_train.make_initializable_iterator() iterator_test = dataset_test.make_initializable_iterator() # Global iterator handle = tf.placeholder(tf.string, shape=[]) iterator = tf.data.Iterator.from_string_handle( handle, dataset_train.output_types, dataset_train.output_shapes) return iterator, handle, train_img_ph, iterator_train, test_img_ph, iterator_test def _vae_init(self, inputs): with tf.name_scope("vae"): # Input input_vae = inputs # Encoder network enc_mean, enc_logvar = self._encoder_init(inputs=input_vae) with tf.name_scope("sampling"): # Reparameterisation trick with tf.name_scope("noise"): noise = tf.random_normal(shape=tf.shape(enc_mean)) with tf.name_scope("variance"): variance = tf.exp(enc_logvar / 2) with tf.name_scope("reparam_trick"): z_sample = tf.add(enc_mean, (variance * noise)) # Decoder network dec_logit, dec_sigm = self._decoder_init(inputs=z_sample) # Non-random decoder dec_mean_logit, dec_mean_sigm = self._decoder_init(inputs=enc_mean, reuse=True) return input_vae, enc_mean, enc_logvar, z_sample, dec_logit, dec_sigm, dec_mean_logit, dec_mean_sigm def _encoder_init(self, inputs, reuse=False): with tf.variable_scope("encoder"): e_1 = tf.layers.conv2d(inputs=inputs, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="enc_conv_1", reuse=reuse) e_2 = tf.layers.conv2d(inputs=e_1, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="enc_conv_2", reuse=reuse) e_3 = tf.layers.conv2d(inputs=e_2, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="enc_conv_3", reuse=reuse) e_4 = tf.layers.conv2d(inputs=e_3, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="enc_conv_4", reuse=reuse) with tf.name_scope("enc_flatten"): dim = np.prod(e_4.get_shape().as_list()[1:]) e_4_flat = tf.reshape(e_4, shape=(-1, dim)) e_5 = tf.layers.dense(inputs=e_4_flat, units=128, activation=None, name="enc_fc_1", reuse=reuse) enc_mean = tf.layers.dense(inputs=e_5, units=self.z_dim, activation=None, name="enc_fc_2_mean", reuse=reuse) enc_logvar = tf.layers.dense(inputs=e_5, units=self.z_dim, activation=None, name="enc_fc_2_logvar", reuse=reuse) return enc_mean, enc_logvar def _decoder_init(self, inputs, reuse=False): with tf.variable_scope("decoder"): d_1 = tf.layers.dense(inputs=inputs, units=128, activation=tf.nn.relu, name="dec_fc_1", reuse=reuse) d_2 = tf.layers.dense(inputs=d_1, units=4*4*64, activation=tf.nn.relu, name="dec_fc_2", reuse=reuse) with tf.name_scope("dec_reshape"): d_2_reshape = tf.reshape(d_2, shape=[-1, 4, 4, 64]) d_3 = tf.layers.conv2d_transpose(inputs=d_2_reshape, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="dec_upconv_1", reuse=reuse) d_4 = tf.layers.conv2d_transpose(inputs=d_3, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="dec_upconv_2", reuse=reuse) d_5 = tf.layers.conv2d_transpose(inputs=d_4, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", name="dec_upconv_3", reuse=reuse) dec_logit = tf.layers.conv2d_transpose(inputs=d_5, filters=1, kernel_size=4, strides=2, activation=None, padding="same", name="dec_upconv_4", reuse=reuse) dec_sigm = tf.sigmoid(dec_logit, name="dec_sigmoid_out") return dec_logit, dec_sigm def _loss_init(self): with tf.name_scope("loss"): with tf.name_scope("reconstruction_loss"): # Reconstruction loss is bernoulli in each pixel im_flat = tf.reshape(self.input_vae, shape=[-1, 64 * 64 * 1]) logits_flat = tf.reshape(self.dec_logit, shape=[-1, 64 * 64 * 1]) by_pixel_recon = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_flat, labels=im_flat) by_example_recon = tf.reduce_sum(by_pixel_recon, axis=1) recon_loss = tf.reduce_mean(by_example_recon, name="recon_loss") with tf.name_scope("kl_loss"): # KL against N(0,1) is 0.5 * sum_j ( var_j - logvar_j + mean^2_j - 1 ) with tf.name_scope("variance"): variance = tf.exp(self.enc_logvar) with tf.name_scope("squared_mean"): squared_mean = self.enc_mean ** 2 with tf.name_scope("kl_divergence"): sum_argument = variance - self.enc_logvar + squared_mean by_example_kl = 0.5 * tf.reduce_sum(sum_argument, axis=1) - self.z_dim kl_divergence = tf.reduce_mean(by_example_kl, name="kl_divergence") with tf.name_scope("total_vae_loss"): vae_loss = recon_loss + kl_divergence return vae_loss, recon_loss def _optimizer_init(self): with tf.name_scope("optimizer"): with tf.name_scope("vae_optimizer"): enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder') dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder') vae_vars = enc_vars + dec_vars vae_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.9, beta2=0.999) vae_train_step = vae_optimizer.minimize(self.vae_loss, var_list=vae_vars) return vae_train_step def evaluate_mean_disentanglement(self): n_tries = 5 dis_metric = 0 print("Evaluating disentanglement with "+str(n_tries)+" tries.") for i in range(n_tries): this_disen_metric = self.evaluate_disentanglement() print(str(i+1)+"/"+str(n_tries)+" Disentanglement Metric: "+str(this_disen_metric)) dis_metric = dis_metric + this_disen_metric dis_metric = dis_metric / n_tries print("Mean Disentanglement Metric: "+str(dis_metric)) return dis_metric def evaluate_test_recon_loss(self): print("Evaluating reconstruction loss in test set.") recon_loss = 0 batch_size = 64 n_data_test = self.data_test.shape[0] n_batches = int(n_data_test/batch_size) print("Total batches:", n_batches) for i in range(n_batches): start_img = i*batch_size end_img = (i+1)*batch_size batch_imgs = self.data_test[start_img:end_img, :, :, :] # Reconstruction without random sampling dec_mean_logit = self.sess.run(self.dec_mean_logit, feed_dict={self.input_vae: batch_imgs}) # Error according to non-random reconstruction this_recon_loss = self.sess.run(self.recon_loss, feed_dict={self.dec_logit: dec_mean_logit, self.input_vae: batch_imgs}) recon_loss = recon_loss + this_recon_loss if (i + 1) % 100 == 0: print(str(i+1)+"/"+str(n_batches)+" evaluated.") recon_loss = recon_loss / n_batches print("Reconstruction loss: "+str(recon_loss)) return recon_loss def compute_mean_kl_dim_wise(self, batch_mu, batch_logvar): # Shape of batch_mu is [batch, z_dim], same for batch_logvar # KL against N(0,1) is 0.5 * ( var_j - logvar_j + mean^2_j - 1 ) variance = np.exp(batch_logvar) squared_mean = np.square(batch_mu) batch_kl = 0.5 * (variance - batch_logvar + squared_mean - 1) mean_kl = np.mean(batch_kl, axis=0) return mean_kl def evaluate_disentanglement(self, verbose=False): n_examples_per_vote = 100 # Generated examples when we fix a factor (L in paper) n_votes = 800 # Total number of training pairs for the classifier n_factors = self.n_classes.shape[0] n_votes_per_factor = int(n_votes / n_factors) # First, we get all the necessary codes at once all_mus = [] all_logvars = [] code_list = [] # Fix a factor k for k_fixed in range(n_factors): code_list_per_factor = [] # Generate training examples for this factor for _ in range(n_votes_per_factor): # Fix a value for this factor fixed_value = np.random.choice(self.n_classes[k_fixed]) # Generate data with this factor fixed but all other factors varying randomly. Sample L examples. useful_examples_idx = np.where(self.all_factors[:, k_fixed] == fixed_value)[0] sampled_examples_idx = np.random.choice(useful_examples_idx, n_examples_per_vote) sampled_imgs = self.all_imgs[sampled_examples_idx, :, :, :] # Obtain their representations with the encoder feed_dict = {self.input_vae: sampled_imgs} code_mu, code_logvar = self.sess.run([self.enc_mean, self.enc_logvar], feed_dict=feed_dict) all_mus.append(code_mu) all_logvars.append(code_logvar) code_list_per_factor.append((code_mu, code_logvar)) code_list.append(code_list_per_factor) # Concatenate every code all_mus = np.concatenate(all_mus, axis=0) all_logvars = np.concatenate(all_logvars, axis=0) # Now, lets compute the KL divergence of each dimension wrt the prior emp_mean_kl = self.compute_mean_kl_dim_wise(all_mus, all_logvars) # Throw the dimensions that collapsed to the prior kl_tol = 1e-2 useful_dims = np.where(emp_mean_kl > kl_tol)[0] # Compute scales for useful dims scales = np.std(all_mus[:, useful_dims], axis=0) if verbose: print("Empirical mean for kl dimension-wise:") print(np.reshape(emp_mean_kl, newshape=(-1, 1))) print("Useful dimensions:", useful_dims, " - Total:", useful_dims.shape[0]) print("Empirical Scales:", scales) # Dataset for classifier: d_values = [] k_values = [] # Fix a factor k for k_fixed in range(n_factors): # Generate training examples for this factor for i in range(n_votes_per_factor): # Get previously generated codes codes = code_list[k_fixed][i][0] # Keep only useful dims codes = codes[:, useful_dims] # Normalise each dimension by its empirical standard deviation over the full data # (or a large enough random subset) norm_codes = codes / scales # dimension (L, z_dim) # Take the empirical variance in each dimension of these normalised representations emp_variance = np.var(norm_codes, axis=0) # dimension (z_dim,), variance for each dimension of code # Then the index of the dimension with the lowest variance... d_min_var = np.argmin(emp_variance) # ...and the target index k provide one training input/output example for the classifier majority vote d_values.append(d_min_var) k_values.append(k_fixed) d_values = np.array(d_values) k_values = np.array(k_values) # Since both inputs and outputs lie in a discrete space, the optimal classifier is the majority-vote classifier # and the metric is the error rate of the classifier (actually they show the accuracy in the paper lol) v_matrix = np.zeros((useful_dims.shape[0], n_factors)) for j in range(useful_dims.shape[0]): for k in range(n_factors): v_matrix[j, k] = np.sum((d_values == j) & (k_values == k)) if verbose: print("Votes:") print(v_matrix) # Majority vote is C_j = argmax_k V_jk classifier = np.argmax(v_matrix, axis=1) predicted_k = classifier[d_values] accuracy = np.sum(predicted_k == k_values) / n_votes return accuracy def get_traversals(self, example_index, show_figure=False): # Return a list of arrays (n_travers, 64, 64), one per dimension. # Dimensions are sorted in descending order of KL divergence feed_dict = {self.input_vae: self.all_imgs[[example_index], :, :, :]} z_base, logvar_base = self.sess.run([self.enc_mean, self.enc_logvar], feed_dict=feed_dict) # Sort by KL (in descending order) mean_kl = self.compute_mean_kl_dim_wise(z_base, logvar_base) sorted_dims = np.argsort(-mean_kl) trav_values =
np.arange(-2, 2.1, 0.5)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_SF Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 #parameters for secondary forest. Sourc: Busch et al. (2019) coeff_MF_nonpl = 11.47 coeff_DF_nonpl = 11.24 coeff_GL_nonpl = 9.42 coeff_MF_pl =17.2 tf = 201 a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_S1') df3 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') t = range(0,tf,1) c_firewood_energy_S1 = df1['Firewood_other_energy_use'].values c_firewood_energy_E = df3['Firewood_other_energy_use'].values #print(c_loss_S1) #print(c_loss_E) #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') c_pellets_E = df3['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition #S1 df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_S1') tf = 201 t = np.arange(tf) def decomp_S1(t,remainAGB_S1): return (1-(1-np.exp(-a*t))**b)*remainAGB_S1 #set zero matrix output_decomp_S1 = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S1 in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S1[i:,i] = decomp_S1(t[:len(t)-i],remain_part_S1) print(output_decomp_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S1 = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S1[:,i] = np.diff(output_decomp_S1[:,i]) i = i + 1 print(subs_matrix_S1[:,:4]) print(len(subs_matrix_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S1 = subs_matrix_S1.clip(max=0) print(subs_matrix_S1[:,:4]) #make the results as absolute values subs_matrix_S1 = abs(subs_matrix_S1) print(subs_matrix_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S1 = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S1) subs_matrix_S1 = np.vstack((zero_matrix_S1, subs_matrix_S1)) print(subs_matrix_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S1 = (tf,1) decomp_tot_S1 = np.zeros(matrix_tot_S1) i = 0 while i < tf: decomp_tot_S1[:,0] = decomp_tot_S1[:,0] + subs_matrix_S1[:,i] i = i + 1 print(decomp_tot_S1[:,0]) #E df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') tf = 201 t = np.arange(tf) def decomp_E_trial(t,remainAGB_E): return (1-(1-np.exp(-a*t))**b)*remainAGB_E #set zero matrix output_decomp_E = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_E in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_E[i:,i] = decomp_E_trial(t[:len(t)-i],remain_part_E) print(output_decomp_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_E = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_E[:,i] = np.diff(output_decomp_E[:,i]) i = i + 1 print(subs_matrix_E[:,:4]) print(len(subs_matrix_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_E = subs_matrix_E.clip(max=0) print(subs_matrix_E[:,:4]) #make the results as absolute values subs_matrix_E = abs(subs_matrix_E) print(subs_matrix_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_E_trial = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_E_trial) subs_matrix_E = np.vstack((zero_matrix_E_trial, subs_matrix_E)) print(subs_matrix_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_E = (tf,1) decomp_tot_E = np.zeros(matrix_tot_E) i = 0 while i < tf: decomp_tot_E[:,0] = decomp_tot_E[:,0] + subs_matrix_E[:,i] i = i + 1 print(decomp_tot_E[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_S1,label='S1') plt.plot(t,decomp_tot_E,label='E') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() type(decomp_tot_E[:,0]) #%% #Step (4): Dynamic stock model of in-use wood materials #HWP from primary forest, 35 year-old building materials lifetime from dynamic_stock_model import DynamicStockModel df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_S1') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') #product lifetime #building materials B = 35 TestDSM1 = DynamicStockModel(t = df1['Year'].values, i = df1['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSME = DynamicStockModel(t = dfE['Year'].values, i = dfE['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) CheckStr1, ExitFlag1 = TestDSM1.dimension_check() CheckStrE, ExitFlagE = TestDSME.dimension_check() Stock_by_cohort1, ExitFlag1 = TestDSM1.compute_s_c_inflow_driven() Stock_by_cohortE, ExitFlagE = TestDSME.compute_s_c_inflow_driven() S1, ExitFlag1 = TestDSM1.compute_stock_total() SE, ExitFlagE = TestDSME.compute_stock_total() O_C1, ExitFlag1 = TestDSM1.compute_o_c_from_s_c() O_CE, ExitFlagE = TestDSME.compute_o_c_from_s_c() O1, ExitFlag1 = TestDSM1.compute_outflow_total() OE, ExitFlagE = TestDSME.compute_outflow_total() DS1, ExitFlag1 = TestDSM1.compute_stock_change() DSE, ExitFlagE = TestDSME.compute_stock_change() Bal1, ExitFlag1 = TestDSM1.check_stock_balance() BalE, ExitFlagE = TestDSME.check_stock_balance() #print output flow print(TestDSM1.o) print(TestDSME.o) #%% #Step (5): Biomass growth t = range(0,tf,1) #calculate the biomass and carbon content of moist forest def Cgrowth_1(t): return (44/12*1000*coeff_MF_nonpl*(np.sqrt(t))) flat_list_moist = Cgrowth_1(t) #calculate the biomass and carbon content of moist forest def Cgrowth_2(t): return (44/12*1000*coeff_DF_nonpl*(np.sqrt(t))) flat_list_dry = Cgrowth_2(t) #plotting plt.plot (t,flat_list_moist, label = 'Moist Forest, non-plantation') plt.plot (t,flat_list_dry, label = 'Dry forest, non-plantation') plt.xlim([0, 200]) plt.xlabel('Year') plt.ylabel('Carbon stock (tC/ha)') plt.title('') plt.legend(loc='upper left') plt.savefig('C:\Work\Programming\C_removal_fig.png', dpi=300) plt.show() ###Yearly Sequestration ###Moist Forest #find the yearly sequestration by calculating the differences between elements in list 'flat_list_moist'(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_moist = [p - q for q, p in zip(flat_list_moist, flat_list_moist[1:])] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_moist.insert(0,var) #make 'flat_list_moist' elements negative numbers to denote sequestration flat_list_moist = [ -x for x in flat_list_moist] print(flat_list_moist) #Dry forest #find the yearly sequestration by calculating the differences between elements in list 'flat_list_dry'(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_dry = [t - u for u, t in zip(flat_list_dry, flat_list_dry[1:])] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_dry.insert(0,var) #make 'flat_list_dry' elements negative numbers to denote sequestration flat_list_dry = [ -x for x in flat_list_dry] print(flat_list_dry) #%% #Step(6): post-harvest processing of wood #post-harvest wood processing df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_S1') df3 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') t = range(0,tf,1) PH_Emissions_HWP1_S1 = df1['PH_Emissions_HWP'].values PH_Emissions_HWP1_E = df3['PH_Emissions_HWP'].values #%% #Step (7_1): landfill gas decomposition (CH4) #CH4 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1 df1_CH4 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_S1') tf = 201 t = np.arange(tf) def decomp_CH4_S1(t,Landfill_decomp_CH4_S1): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CH4_S1 #set zero matrix output_decomp_CH4_S1 = np.zeros((len(t),len(df1_CH4['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S1 in enumerate(df1_CH4['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S1[i:,i] = decomp_CH4_S1(t[:len(t)-i],remain_part_CH4_S1) print(output_decomp_CH4_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S1 = np.zeros((len(t)-1,len(df1_CH4['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S1[:,i] = np.diff(output_decomp_CH4_S1[:,i]) i = i + 1 print(subs_matrix_CH4_S1[:,:4]) print(len(subs_matrix_CH4_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S1 = subs_matrix_CH4_S1.clip(max=0) print(subs_matrix_CH4_S1[:,:4]) #make the results as absolute values subs_matrix_CH4_S1 = abs(subs_matrix_CH4_S1) print(subs_matrix_CH4_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S1 = np.zeros((len(t)-200,len(df1_CH4['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S1) subs_matrix_CH4_S1 = np.vstack((zero_matrix_CH4_S1, subs_matrix_CH4_S1)) print(subs_matrix_CH4_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S1 = (tf,1) decomp_tot_CH4_S1 = np.zeros(matrix_tot_CH4_S1) i = 0 while i < tf: decomp_tot_CH4_S1[:,0] = decomp_tot_CH4_S1[:,0] + subs_matrix_CH4_S1[:,i] i = i + 1 print(decomp_tot_CH4_S1[:,0]) #E dfE_CH4 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') tf = 201 t = np.arange(tf) def decomp_CH4_E(t,Landfill_decomp_CH4_E): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CH4_E #set zero matrix output_decomp_CH4_E = np.zeros((len(t),len(dfE_CH4['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_E in enumerate(dfE_CH4['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_E[i:,i] = decomp_CH4_E(t[:len(t)-i],remain_part_CH4_E) print(output_decomp_CH4_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_E = np.zeros((len(t)-1,len(dfE_CH4['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_E[:,i] = np.diff(output_decomp_CH4_E[:,i]) i = i + 1 print(subs_matrix_CH4_E[:,:4]) print(len(subs_matrix_CH4_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_E = subs_matrix_CH4_E.clip(max=0) print(subs_matrix_CH4_E[:,:4]) #make the results as absolute values subs_matrix_CH4_E = abs(subs_matrix_CH4_E) print(subs_matrix_CH4_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_E = np.zeros((len(t)-200,len(dfE_CH4['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_E) subs_matrix_CH4_E = np.vstack((zero_matrix_CH4_E, subs_matrix_CH4_E)) print(subs_matrix_CH4_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_E = (tf,1) decomp_tot_CH4_E = np.zeros(matrix_tot_CH4_E) i = 0 while i < tf: decomp_tot_CH4_E[:,0] = decomp_tot_CH4_E[:,0] + subs_matrix_CH4_E[:,i] i = i + 1 print(decomp_tot_CH4_E[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CH4_S1,label='S1') plt.plot(t,decomp_tot_CH4_E,label='E') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() type(decomp_tot_CH4_S1[:,0]) #%% #Step (7_2): landfill gas decomposition (CO2) #CO2 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1 df1_CO2 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_S1') tf = 201 t = np.arange(tf) def decomp_CO2_S1(t,Landfill_decomp_CO2_S1): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CO2_S1 #set zero matrix output_decomp_CO2_S1 = np.zeros((len(t),len(df1_CO2['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S1 in enumerate(df1_CO2['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S1[i:,i] = decomp_CO2_S1(t[:len(t)-i],remain_part_CO2_S1) print(output_decomp_CO2_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S1 = np.zeros((len(t)-1,len(df1_CO2['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S1[:,i] = np.diff(output_decomp_CO2_S1[:,i]) i = i + 1 print(subs_matrix_CO2_S1[:,:4]) print(len(subs_matrix_CO2_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S1 = subs_matrix_CO2_S1.clip(max=0) print(subs_matrix_CO2_S1[:,:4]) #make the results as absolute values subs_matrix_CO2_S1 = abs(subs_matrix_CO2_S1) print(subs_matrix_CO2_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S1 = np.zeros((len(t)-200,len(df1_CO2['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S1) subs_matrix_CO2_S1 = np.vstack((zero_matrix_CO2_S1, subs_matrix_CO2_S1)) print(subs_matrix_CO2_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S1 = (tf,1) decomp_tot_CO2_S1 = np.zeros(matrix_tot_CO2_S1) i = 0 while i < tf: decomp_tot_CO2_S1[:,0] = decomp_tot_CO2_S1[:,0] + subs_matrix_CO2_S1[:,i] i = i + 1 print(decomp_tot_CO2_S1[:,0]) #E dfE_CO2 = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_SF_EC.xlsx', 'PF_SF_E') tf = 201 t = np.arange(tf) def decomp_CO2_E(t,Landfill_decomp_CO2_E): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CO2_E #set zero matrix output_decomp_CO2_E = np.zeros((len(t),len(dfE_CO2['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_E in enumerate(dfE_CO2['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_E[i:,i] = decomp_CO2_E(t[:len(t)-i],remain_part_CO2_E) print(output_decomp_CO2_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_E = np.zeros((len(t)-1,len(dfE_CO2['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_E[:,i] = np.diff(output_decomp_CO2_E[:,i]) i = i + 1 print(subs_matrix_CO2_E[:,:4]) print(len(subs_matrix_CO2_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_E = subs_matrix_CO2_E.clip(max=0) print(subs_matrix_CO2_E[:,:4]) #make the results as absolute values subs_matrix_CO2_E = abs(subs_matrix_CO2_E) print(subs_matrix_CO2_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_E = np.zeros((len(t)-200,len(dfE_CO2['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_E) subs_matrix_CO2_E = np.vstack((zero_matrix_CO2_E, subs_matrix_CO2_E)) print(subs_matrix_CO2_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_E = (tf,1) decomp_tot_CO2_E = np.zeros(matrix_tot_CO2_E) i = 0 while i < tf: decomp_tot_CO2_E[:,0] = decomp_tot_CO2_E[:,0] + subs_matrix_CO2_E[:,i] i = i + 1 print(decomp_tot_CO2_E[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CO2_S1,label='S1') plt.plot(t,decomp_tot_CO2_E,label='E') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() type(decomp_tot_CO2_S1[:,0]) #%% #Step (8): Sum the emissions and sequestration (net carbon balance), CO2 and CH4 are separated #https://stackoverflow.com/questions/52703442/python-sum-values-from-multiple-lists-more-than-two #C_loss + C_remainAGB + C_remainHWP + PH_Emissions_PO Emissions_PF_SF_S1 = [c_firewood_energy_S1, decomp_tot_S1[:,0], TestDSM1.o, PH_Emissions_HWP1_S1, decomp_tot_CO2_S1[:,0]] Emissions_PF_SF_E = [c_firewood_energy_E, c_pellets_E, decomp_tot_E[:,0], TestDSME.o, PH_Emissions_HWP1_E, decomp_tot_CO2_E[:,0]] Emissions_PF_SF_S1 = [sum(x) for x in zip(*Emissions_PF_SF_S1)] Emissions_PF_SF_E = [sum(x) for x in zip(*Emissions_PF_SF_E)] #CH4_S1 Emissions_CH4_PF_SF_S1 = decomp_tot_CH4_S1[:,0] #CH4_E Emissions_CH4_PF_SF_E = decomp_tot_CH4_E[:,0] #%% #Step (9): Generate the excel file (emissions_seq_scenarios.xlsx) from Step (8) calculation #print year column year = [] for x in range (0, tf): year.append(x) print (year) #print CH4 emission column import itertools lst = [0] Emissions_CH4 = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst)) print(Emissions_CH4) #print emission ref lst1 = [0] Emission_ref = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst1)) print(Emission_ref) #replace the first element with 1 to denote the emission reference as year 0 (for dynGWP calculation) Emission_ref[0] = 1 print(Emission_ref) Col1 = year Col2_1 = Emissions_PF_SF_S1 Col2_E = Emissions_PF_SF_E Col3_1 = Emissions_CH4_PF_SF_S1 Col3_E = Emissions_CH4_PF_SF_E Col4 = flat_list_moist Col5 = Emission_ref Col6 = flat_list_dry #S1 df1_moi = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_1,'kg_CH4':Col3_1,'kg_CO2_seq':Col4,'emission_ref':Col5}) df1_dry = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_1,'kg_CH4':Col3_1,'kg_CO2_seq':Col6,'emission_ref':Col5}) #E dfE_moi = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_E,'kg_CH4':Col3_E,'kg_CO2_seq':Col4,'emission_ref':Col5}) dfE_dry = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_E,'kg_CH4':Col3_E,'kg_CO2_seq':Col6,'emission_ref':Col5}) writer = pd.ExcelWriter('emissions_seq_PF_SF_EC.xlsx', engine = 'xlsxwriter') df1_moi.to_excel(writer, sheet_name = 'S1_moist', header=True, index=False ) df1_dry.to_excel(writer, sheet_name = 'S1_dry', header=True, index=False) dfE_moi.to_excel(writer, sheet_name = 'E_moist', header=True, index=False) dfE_dry.to_excel(writer, sheet_name = 'E_dry', header=True, index=False) writer.save() writer.close() #%% ## DYNAMIC LCA, for wood-based scenarios # Step (10): Set General Parameters for Dynamic LCA calculation # General Parameters aCH4 = 0.129957e-12; # methane - instantaneous radiative forcing per unit mass [W/m2 /kgCH4] TauCH4 = 12; # methane - lifetime (years) aCO2 = 0.0018088e-12; # CO2 - instantaneous radiative forcing per unit mass [W/m2 /kgCO2] TauCO2 = [172.9, 18.51, 1.186]; # CO2 parameters according to Bern carbon cycle-climate model aBern = [0.259, 0.338, 0.186]; # CO2 parameters according to Bern carbon cycle-climate model a0Bern = 0.217; # CO2 parameters according to Bern carbon cycle-climate model tf = 202 #until 202 because we want to get the DCF(t-i) until DCF(201) to determine the impact from the emission from the year 200 (There is no DCF(0)) #%% #Step (11): Bern 2.5 CC Model, determine atmospheric load (C(t)) for GHG (CO2 and CH4) t = range(0,tf,1) ## CO2 calculation formula # time dependant atmospheric load for CO2, Bern model def C_CO2(t): return a0Bern + aBern[0]*np.exp(-t/TauCO2[0]) + aBern[1]*np.exp(-t/TauCO2[1]) + aBern[2]*np.exp(-t/TauCO2[2]) output_CO2 = np.array([C_CO2(ti) for ti in t]) print(output_CO2) ## CH4 calculation formula # time dependant atmospheric load for non-CO2 GHGs (Methane) def C_CH4(t): return np.exp(-t/TauCH4) output_CH4 = np.array([C_CH4(ti) for ti in t]) plt.xlim([0, 200]) plt.ylim([0,1.1]) plt.plot(t, output_CO2, output_CH4) plt.xlabel('Time (year)') plt.ylabel('Fraction of CO$_2$') plt.show() output_CH4.size #%% #determine the C(t) for CO2 s = [] t = np.arange(0,tf,1) for i in t: s.append(quad(C_CO2,i-1,i)) res_list_CO2 = [x[0] for x in s] len(res_list_CO2) #%% #determine the C(t) for CH4 s = [] for i in t: s.append(quad(C_CH4,i-1,i)) res_list_CH4 = [p[0] for p in s] #plot plt.xlim([0, 200]) plt.ylim([0,1.5]) plt.plot(t, res_list_CO2, res_list_CH4) plt.show() #%% #Step (12): Determine dynamic characterization factors (DCF) for CO2 and CH4 DCF_inst_CO2 = aCO2 * np.array(res_list_CO2) print(DCF_inst_CO2) DCF_inst_CH4 = aCH4 * np.array(res_list_CH4) plt.xlim([0, 200]) plt.ylim([0,4e-15]) plt.plot(t, DCF_inst_CO2, DCF_inst_CH4) plt.xlabel('Time (year)') plt.ylabel('DCF_inst (10$^{-15}$ W/m$^2$.kg CO$_2$)') plt.show() len(DCF_inst_CO2) #%% #Step (13): import emission data from emissions_seq_scenarios.xlsx (Step (9)) #wood-based #read S1_moist df = pd.read_excel('emissions_seq_PF_SF_EC.xlsx', 'S1_moist') # can also index sheet by name or fetch all sheets emission_CO2_S1moi = df['kg_CO2'].tolist() emission_CH4_S1moi = df['kg_CH4'].tolist() emission_CO2_seq_S1moi = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read S1_dry df = pd.read_excel('emissions_seq_PF_SF_EC.xlsx', 'S1_dry') emission_CO2_S1dry = df['kg_CO2'].tolist() emission_CH4_S1dry = df['kg_CH4'].tolist() emission_CO2_seq_S1dry = df['kg_CO2_seq'].tolist() #read E_moist df = pd.read_excel('emissions_seq_PF_SF_EC.xlsx', 'E_moist') # can also index sheet by name or fetch all sheets emission_CO2_Emoi = df['kg_CO2'].tolist() emission_CH4_Emoi = df['kg_CH4'].tolist() emission_CO2_seq_Emoi = df['kg_CO2_seq'].tolist() #read E_dry df = pd.read_excel('emissions_seq_PF_SF_EC.xlsx', 'E_dry') emission_CO2_Edry = df['kg_CO2'].tolist() emission_CH4_Edry = df['kg_CH4'].tolist() emission_CO2_seq_Edry = df['kg_CO2_seq'].tolist() #%% #Step (14): import emission data from the counter-use of non-renewable materials/energy scenarios (NR) #read S1 df = pd.read_excel('PF_SF_EC.xlsx', 'NonRW_PF_SF_S1') # can also index sheet by name or fetch all sheets emission_NonRW_PF_SF_S1 = df['NonRW_emissions'].tolist() emission_NonRW_PF_SF_S1_seq = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read E df = pd.read_excel('PF_SF_EC.xlsx', 'NonRW_PF_SF_E') # can also index sheet by name or fetch all sheets emission_NonRW_PF_SF_E = df['NonRW_emissions'].tolist() emission_NonRW_PF_SF_E_seq = df['kg_CO2_seq'].tolist() #%% #Step (15): Determine the time elapsed dynamic characterization factors, DCF(t-ti), for CO2 and CH4 #DCF(t-i) CO2 matrix = (tf-1,tf-1) DCF_CO2_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CO2_ti[i+1,t] = DCF_inst_CO2[t-i] i = i + 1 print(DCF_CO2_ti) #sns.heatmap(DCF_CO2_ti) DCF_CO2_ti.shape #DCF(t-i) CH4 matrix = (tf-1,tf-1) DCF_CH4_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CH4_ti[i+1,t] = DCF_inst_CH4[t-i] i = i + 1 print(DCF_CH4_ti) #sns.heatmap(DCF_CH4_ti) DCF_CH4_ti.shape #%% # Step (16): Calculate instantaneous global warming impact (GWI) ##wood-based #S1_moist t = np.arange(0,tf-1,1) matrix_GWI_S1moi = (tf-1,3) GWI_inst_S1moi = np.zeros(matrix_GWI_S1moi) for t in range(0,tf-1): GWI_inst_S1moi[t,0] = np.sum(np.multiply(emission_CO2_S1moi,DCF_CO2_ti[:,t])) GWI_inst_S1moi[t,1] = np.sum(np.multiply(emission_CH4_S1moi,DCF_CH4_ti[:,t])) GWI_inst_S1moi[t,2] = np.sum(np.multiply(emission_CO2_seq_S1moi,DCF_CO2_ti[:,t])) matrix_GWI_tot_S1moi = (tf-1,1) GWI_inst_tot_S1moi = np.zeros(matrix_GWI_tot_S1moi) GWI_inst_tot_S1moi[:,0] = np.array(GWI_inst_S1moi[:,0] + GWI_inst_S1moi[:,1] + GWI_inst_S1moi[:,2]) print(GWI_inst_tot_S1moi[:,0]) t =
np.arange(0,tf-1,1)
numpy.arange
import os import cv2 import json import torch import argparse import numpy as np from db import Test_Transform, MVTEC from factory import load_test_model_from_factory from tools import * def parse_args(): parser = argparse.ArgumentParser(description='Unsupervised defect segmentaion base on auto-encoder.') parser.add_argument('--cfg', help="Path of config file", type=str, required=True) parser.add_argument('--model_path', help="Path of model", type=str, required=True) parser.add_argument('--gpu_id', help="ID of GPU", type=int, default=0) parser.add_argument('--res_dir', help="Directory path of result", type=str, default='./eval_result') parser.add_argument('--retest', default=False, type=bool) return parser.parse_args() def load_params(net, path): from collections import OrderedDict new_state_dict = OrderedDict() w_dict = torch.load(path) for k, v in w_dict.items(): head = k[:7] if head == 'module.': name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v net.load_state_dict(new_state_dict) if __name__ == '__main__': args = parse_args() # load config file cfg_file = os.path.join('./config', args.cfg + '.json') with open(cfg_file, "r") as f: configs = json.load(f) if not os.path.exists(args.res_dir): os.mkdir(args.res_dir) # load data set test_set = MVTEC(root=configs['db']['data_dir'], set=configs['db']['test_split'], preproc=None) transform = Test_Transform() print('Data set: {} has been loaded'.format(configs['db']['name'])) # load model net = load_test_model_from_factory(configs) load_params(net, args.model_path) net = net.eval().cuda(args.gpu_id) print('Model: {} has been loaded'.format(configs['model']['name'])) print('Start Testing... ') _t = Timer() cost_time = list() for item in test_set.test_dict: item_dict = test_set.test_dict[item] if not os.path.exists(os.path.join(args.res_dir, item)): os.mkdir(os.path.join(args.res_dir, item)) for type in item_dict: if not os.path.exists(os.path.join(args.res_dir, item, type)): os.mkdir(os.path.join(args.res_dir, item, type)) _time = list() img_list = item_dict[type] for img_info in img_list: path = img_info[0] IsTexture = img_info[1] image = cv2.imread(path, cv2.IMREAD_GRAYSCALE) img_id = path.split('.')[0][-3:] _t.tic() ori_img, input_tensor = transform(image, IsTexture) with torch.no_grad(): input_tensor = input_tensor.cuda(args.gpu_id) re_img = net(input_tensor) inference_time = _t.toc() _time.append(inference_time) # fetech from GPU re_img = torch.squeeze(re_img) re_img = re_img.cpu().numpy() # re_img = re_img.transpose((1, 2, 0)) # projected to Grayscale image re_img = re_img * 255 re_img = re_img.astype(np.uint8) # save rebuilt image if IsTexture is True: con_img = np.zeros([256, 256], dtype=np.uint8) con_img[0:128, 0:128] = re_img[0] con_img[128:256, 0:128] = re_img[1] con_img[0:128, 128:256] = re_img[2] con_img[128:256, 128:256] = re_img[3] cv2.imwrite(os.path.join(args.res_dir, item, type, 're_{}.png'.format(img_id)), con_img) else: cv2.imwrite(os.path.join(args.res_dir, item, type, 're_{}.png'.format(img_id)), re_img) cost_time += _time mean_time = np.array(_time).mean() print('Evaluate: Item:{}; Type:{}; Mean time:{:.1f}ms'.format(item, type, mean_time * 1000)) _t.clear() # calculate mean time cost_time =
np.array(cost_time)
numpy.array
import flask_sqlalchemy import numpy as np db = flask_sqlalchemy.SQLAlchemy() class PlayersTeams(db.Model): __tablename__ = "players_teams" player_id = db.Column(db.String(20), db.ForeignKey("player.id"), primary_key=True) team_id = db.Column(db.String(20), db.ForeignKey("team.id"), primary_key=True) season = db.Column(db.Integer, primary_key=True) @staticmethod def mapper(csv_data): return { "team_id": str(csv_data["TEAM_ID"]) if csv_data["TEAM_ID"] else None, "player_id": str(csv_data["PLAYER_ID"]) if csv_data["PLAYER_ID"] else None, "season": int(csv_data["SEASON"]) if not np.isnan(csv_data["SEASON"]) else None, } class League(db.Model): __tablename__ = "league" id = db.Column(db.String(20), primary_key=True) teams = db.relationship("Team") rankings = db.relationship("Ranking") def __repr__(self): return f"<League {self.id}>" def to_json(self, expand=False): return { "id": self.id, } @staticmethod def mapper(csv_data): return {"id": str(csv_data["LEAGUE_ID"])} class Team(db.Model): __tablename__ = "team" id = db.Column(db.String(20), primary_key=True) min_year = db.Column(db.Integer) max_year = db.Column(db.Integer) abbreviation = db.Column(db.String(10)) nickname = db.Column(db.String(100)) yearfounded = db.Column(db.Integer) city = db.Column(db.String(100)) arena = db.Column(db.String(100)) arenacapacity = db.Column(db.Integer) owner = db.Column(db.String(100)) generalmanager = db.Column(db.String(100)) headcoach = db.Column(db.String(100)) dleagueaffiliation = db.Column(db.String(100)) league_id = db.Column(db.String(20), db.ForeignKey("league.id"), default="0") players = db.relationship( "Player", secondary="players_teams", back_populates="teams" ) home_games = db.relationship( "Game", foreign_keys="Game.home_team_id", backref="home_team", lazy="dynamic" ) away_games = db.relationship( "Game", foreign_keys="Game.away_team_id", backref="away_team", lazy="dynamic" ) game_details = db.relationship("GameDetail", backref="team", lazy=True) def __repr__(self): return f"<Team {self.id}>" def to_json(self): return { "id": self.id, } @property def games(self): return self.home_games.union(self.away_games) @staticmethod def mapper(csv_data): return { "league_id": str(csv_data["LEAGUE_ID"]) if csv_data["LEAGUE_ID"] else None, "id": str(csv_data["TEAM_ID"]) if csv_data["TEAM_ID"] else None, "min_year": int(csv_data["MIN_YEAR"]) if not np.isnan(csv_data["MIN_YEAR"]) else None, "max_year": int(csv_data["MAX_YEAR"]) if not np.isnan(csv_data["MAX_YEAR"]) else None, "abbreviation": str(csv_data["ABBREVIATION"]) if csv_data["ABBREVIATION"] else None, "nickname": str(csv_data["NICKNAME"]) if csv_data["NICKNAME"] else None, "yearfounded": int(csv_data["YEARFOUNDED"]) if not np.isnan(csv_data["YEARFOUNDED"]) else None, "city": str(csv_data["CITY"]) if csv_data["CITY"] else None, "arena": str(csv_data["ARENA"]) if csv_data["ARENA"] else None, "arenacapacity": int(csv_data["ARENACAPACITY"]) if not np.isnan(csv_data["ARENACAPACITY"]) else None, "owner": str(csv_data["OWNER"]) if csv_data["OWNER"] else None, "generalmanager": str(csv_data["GENERALMANAGER"]) if csv_data["GENERALMANAGER"] else None, "headcoach": str(csv_data["HEADCOACH"]) if csv_data["HEADCOACH"] else None, "dleagueaffiliation": str(csv_data["DLEAGUEAFFILIATION"]) if csv_data["DLEAGUEAFFILIATION"] else None, } class Player(db.Model): __tablename__ = "player" id = db.Column(db.String(20), primary_key=True) player_name = db.Column(db.String(100)) game_details = db.relationship("GameDetail", backref="player", lazy=True) teams = db.relationship("Team", secondary="players_teams", back_populates="players") def __repr__(self): return f"<Player {self.id}>" def to_json(self): return {"id": self.id} @staticmethod def mapper(csv_data): return { "player_name": str(csv_data["PLAYER_NAME"]) if csv_data["PLAYER_NAME"] else None, "id": str(csv_data["PLAYER_ID"]) if csv_data["PLAYER_ID"] else None, } class Game(db.Model): __tablename__ = "game" id = db.Column(db.String(20), primary_key=True) game_date_est = db.Column(db.DateTime) game_status_text = db.Column(db.String(50)) season = db.Column(db.Integer) pts_home = db.Column(db.Integer) fg_pct_home = db.Column(db.Float) ft_pct_home = db.Column(db.Float) fg3_pct_home = db.Column(db.Float) ast_home = db.Column(db.Integer) reb_home = db.Column(db.Integer) pts_away = db.Column(db.Integer) fg_pct_away = db.Column(db.Float) ft_pct_away = db.Column(db.Float) fg3_pct_away = db.Column(db.Float) ast_away = db.Column(db.Integer) reb_away = db.Column(db.Integer) home_team_wins = db.Column(db.Integer) home_team_id = db.Column(db.String(20), db.ForeignKey("team.id")) away_team_id = db.Column(db.String(20), db.ForeignKey("team.id")) game_details = db.relationship("GameDetail", backref="game", lazy=True) def __repr__(self): return f"<Game {self.id}>" def to_json(self): return {"id": self.id} @staticmethod def mapper(csv_data): return { "game_date_est": csv_data["GAME_DATE_EST"] if csv_data["GAME_DATE_EST"] else None, "id": str(csv_data["GAME_ID"]) if csv_data["GAME_ID"] else None, "game_status_text": str(csv_data["GAME_STATUS_TEXT"]) if csv_data["GAME_STATUS_TEXT"] else None, "season": int(csv_data["SEASON"]) if not np.isnan(csv_data["SEASON"]) else None, "home_team_id": str(csv_data["TEAM_ID_home"]) if csv_data["TEAM_ID_home"] else None, "pts_home": int(csv_data["PTS_home"]) if not np.isnan(csv_data["PTS_home"]) else None, "fg_pct_home": float(csv_data["FG_PCT_home"]) if not
np.isnan(csv_data["FG_PCT_home"])
numpy.isnan
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2019 <NAME> (Nagoya University) # based on PyTorch implementation for WaveNet vocoder by <NAME> (Nagoya University) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) from __future__ import division import argparse from distutils.util import strtobool import logging import math import os import sys import numpy as np import torch import torch.multiprocessing as mp from utils import find_files, read_hdf5, read_txt, write_hdf5 from gru_vae import GRU_RNN, sampling_vae_batch from dtw_c import dtw_c as dtw np.set_printoptions(threshold=np.inf) def main(): parser = argparse.ArgumentParser() # decode setting parser.add_argument("--feats", required=True, type=str, help="list or directory of source eval feat files") parser.add_argument("--feats_trg", required=True, type=str, help="list or directory of source eval feat files") parser.add_argument("--stats_src", required=True, type=str, help="hdf5 file including source statistics") parser.add_argument("--stats_trg", required=True, type=str, help="hdf5 file including target statistics") parser.add_argument("--stats_jnt", type=str, help="hdf5 file including target statistics") parser.add_argument("--model", required=True, type=str, help="model file") parser.add_argument("--config", required=True, type=str, help="configure file") parser.add_argument("--n_gpus", default=1, type=int, help="number of gpus") parser.add_argument("--n_smpl_dec", default=300, type=int, help="number of gpus") parser.add_argument("--outdir", required=True, type=str, help="directory to save generated samples") parser.add_argument("--write_gv", default=False, type=strtobool, help="flag to write gv stats") # other setting parser.add_argument("--seed", default=1, type=int, help="seed number") parser.add_argument("--GPU_device", default=0, type=int, help="selection of GPU device") parser.add_argument("--verbose", default=1, type=int, help="log level") args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.GPU_device) # check directory existence if not os.path.exists(args.outdir): os.makedirs(args.outdir) # set log level if args.verbose > 0: logging.basicConfig(level=logging.INFO, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', filename=args.outdir + "/decode.log") logging.getLogger().addHandler(logging.StreamHandler()) elif args.verbose > 1: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', filename=args.outdir + "/decode.log") logging.getLogger().addHandler(logging.StreamHandler()) else: logging.basicConfig(level=logging.WARN, format='%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', filename=args.outdir + "/decode.log") logging.getLogger().addHandler(logging.StreamHandler()) logging.warn("logging is disabled.") # fix seed os.environ['PYTHONHASHSEED'] = str(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # load config config = torch.load(args.config) # get source feat list if os.path.isdir(args.feats): feat_list = sorted(find_files(args.feats, "*.h5")) elif os.path.isfile(args.feats): feat_list = read_txt(args.feats) else: logging.error("--feats should be directory or list.") sys.exit(1) # get target feat list if os.path.isdir(args.feats_trg): feat_trg_list = sorted(find_files(args.feats_trg, "*.h5")) elif os.path.isfile(args.feats_trg): feat_trg_list = read_txt(args.feats_trg) else: logging.error("--feats_trg should be directory or list.") sys.exit(1) # prepare the file list for parallel decoding feat_lists = np.array_split(feat_list, args.n_gpus) feat_lists = [f_list.tolist() for f_list in feat_lists] feat_trg_lists = np.array_split(feat_trg_list, args.n_gpus) feat_trg_lists = [f_list.tolist() for f_list in feat_trg_lists] spk_src = os.path.basename(os.path.dirname(feat_lists[0][0])) spk_trg = os.path.basename(os.path.dirname(feat_trg_lists[0][0])) gv_mean_src = read_hdf5(args.stats_src, "/gv_range_mean")[1:] gv_mean_trg = read_hdf5(args.stats_trg, "/gv_range_mean")[1:] # define gpu decode function def gpu_decode(feat_list, feat_trg_list, gpu, cvlist=None, mcdlist=None, mcdstdlist=None, mcdpowlist=None, mcdpowstdlist=None, cvlist_src=None, mcdlist_src=None, mcdstdlist_src=None, mcdpowlist_src=None, mcdpowstdlist_src=None, cvlist_trg=None, mcdlist_trg=None, mcdstdlist_trg=None, mcdpowlist_trg=None, mcdpowstdlist_trg=None, lat_dist_rmse_enc_list=None, lat_dist_cosim_enc_list=None, lat_dist_rmse_pri_list=None, lat_dist_cosim_pri_list=None): with torch.cuda.device(gpu): mean_jnt = torch.FloatTensor(read_hdf5(args.stats_jnt, "/mean_feat_org_lf0_jnt")[config.stdim:]).cuda() std_jnt = torch.FloatTensor(read_hdf5(args.stats_jnt, "/scale_feat_org_lf0_jnt")[config.stdim:]).cuda() # define model and load parameters logging.info("model") logging.info(config) with torch.no_grad(): model_encoder = GRU_RNN( in_dim=config.in_dim, out_dim=config.lat_dim*2, hidden_layers=config.hidden_layers, hidden_units=config.hidden_units, kernel_size=config.kernel_size, dilation_size=config.dilation_size, scale_out_flag=False) model_decoder = GRU_RNN( in_dim=config.lat_dim+2, out_dim=config.out_dim, hidden_layers=config.hidden_layers, hidden_units=config.hidden_units, kernel_size=config.kernel_size, dilation_size=config.dilation_size, scale_in_flag=False) model_encoder.load_state_dict(torch.load(args.model)["model_encoder"]) model_decoder.load_state_dict(torch.load(args.model)["model_decoder"]) model_encoder.cuda() model_decoder.cuda() model_encoder.eval() model_decoder.eval() for param in model_encoder.parameters(): param.requires_grad = False for param in model_decoder.parameters(): param.requires_grad = False logging.info(model_encoder) logging.info(model_decoder) init_pp = np.zeros((1,1,config.lat_dim*2)) y_in_pp = torch.FloatTensor(init_pp).cuda() y_in_src = y_in_trg = torch.unsqueeze(torch.unsqueeze((0-mean_jnt)/std_jnt,0),0) for feat_file, feat_trg_file in zip(feat_list, feat_trg_list): # convert mcep logging.info("cvmcep " + feat_file + " " + feat_trg_file) feat = read_hdf5(feat_file, "/feat_org_lf0") feat_trg = read_hdf5(feat_trg_file, "/feat_org_lf0") logging.info(feat.shape) logging.info(feat_trg.shape) with torch.no_grad(): lat_src, _, _ = model_encoder(torch.FloatTensor(feat).cuda(), y_in_pp, clamp_vae=True, lat_dim=config.lat_dim) lat_feat = sampling_vae_batch(lat_src.unsqueeze(0).repeat(args.n_smpl_dec,1,1), lat_dim=config.lat_dim) lat_feat = torch.mean(lat_feat, 0) lat_trg, _, _ = model_encoder(torch.FloatTensor(feat_trg).cuda(), y_in_pp, clamp_vae=True, lat_dim=config.lat_dim) lat_feat_trg = sampling_vae_batch(lat_trg.unsqueeze(0).repeat(args.n_smpl_dec,1,1), lat_dim=config.lat_dim) lat_feat_trg = torch.mean(lat_feat_trg, 0) src_code = np.zeros((lat_feat.shape[0],2)) trg_code = np.zeros((lat_feat.shape[0],2)) trg_trg_code = np.zeros((lat_feat_trg.shape[0],2)) src_code[:,0] = 1 trg_code[:,1] = 1 trg_trg_code[:,1] = 1 src_code = torch.FloatTensor(src_code).cuda() trg_code = torch.FloatTensor(trg_code).cuda() trg_trg_code = torch.FloatTensor(trg_trg_code).cuda() cvmcep, _, _ = model_decoder(torch.cat((trg_code, lat_feat),1), y_in_trg) cvmcep = np.array(cvmcep.cpu().data.numpy(), dtype=np.float64) cvmcep_src, _, _ = model_decoder(torch.cat((src_code, lat_feat),1), y_in_src) cvmcep_src = np.array(cvmcep_src.cpu().data.numpy(), dtype=np.float64) cvmcep_trg, _, _ = model_decoder(torch.cat((trg_trg_code, lat_feat_trg),1), y_in_trg) cvmcep_trg = np.array(cvmcep_trg.cpu().data.numpy(), dtype=np.float64) logging.info(cvmcep.shape) logging.info(cvmcep_trg.shape) cvlist.append(np.var(cvmcep[:,1:], axis=0)) cvlist_src.append(np.var(cvmcep_src[:,1:], axis=0)) cvlist_trg.append(np.var(cvmcep_trg[:,1:], axis=0)) logging.info(len(cvlist)) spcidx_src = read_hdf5(feat_file, "/spcidx_range")[0] mcep_trg = read_hdf5(feat_trg_file, "/mcepspc_range") _, _, _, mcdpow_arr = dtw.dtw_org_to_trg(np.array(cvmcep[np.array(spcidx_src),:], dtype=np.float64), np.array(mcep_trg[:,:], dtype=np.float64)) _, _, _, mcd_arr = dtw.dtw_org_to_trg(np.array(cvmcep[np.array(spcidx_src),1:], dtype=np.float64), np.array(mcep_trg[:,1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpowlist.append(mcdpow_mean) mcdpowstdlist.append(mcdpow_std) mcdlist.append(mcd_mean) mcdstdlist.append(mcd_std) mcep_src = read_hdf5(feat_file, "/mcepspc_range") _, mcdpow_arr = dtw.calc_mcd(np.array(mcep_src[:,:], dtype=np.float64), np.array(cvmcep_src[np.array(spcidx_src),:], dtype=np.float64)) _, mcd_arr = dtw.calc_mcd(np.array(mcep_src[:,1:], dtype=np.float64), np.array(cvmcep_src[np.array(spcidx_src),1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_src: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_src: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpowlist_src.append(mcdpow_mean) mcdpowstdlist_src.append(mcdpow_std) mcdlist_src.append(mcd_mean) mcdstdlist_src.append(mcd_std) spcidx_trg = read_hdf5(feat_trg_file, "/spcidx_range")[0] _, mcdpow_arr = dtw.calc_mcd(np.array(mcep_trg[:,:], dtype=np.float64), np.array(cvmcep_trg[np.array(spcidx_trg),:], dtype=np.float64)) _, mcd_arr = dtw.calc_mcd(np.array(mcep_trg[:,1:], dtype=np.float64), np.array(cvmcep_trg[np.array(spcidx_trg),1:], dtype=np.float64)) mcdpow_mean = np.mean(mcdpow_arr) mcdpow_std = np.std(mcdpow_arr) mcd_mean = np.mean(mcd_arr) mcd_std = np.std(mcd_arr) logging.info("mcdpow_trg: %.6f dB +- %.6f" % (mcdpow_mean, mcdpow_std)) logging.info("mcd_trg: %.6f dB +- %.6f" % (mcd_mean, mcd_std)) mcdpowlist_trg.append(mcdpow_mean) mcdpowstdlist_trg.append(mcdpow_std) mcdlist_trg.append(mcd_mean) mcdstdlist_trg.append(mcd_std) with torch.no_grad(): spcidx_src = torch.LongTensor(spcidx_src).cuda() spcidx_trg = torch.LongTensor(spcidx_trg).cuda() trj_lat_src = np.array(torch.index_select(lat_src,0,spcidx_src).cpu().data.numpy(), dtype=np.float64) trj_lat_trg = np.array(torch.index_select(lat_trg,0,spcidx_trg).cpu().data.numpy(), dtype=np.float64) aligned_lat_srctrg, _, _, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg) lat_dist_srctrg = np.mean(np.sqrt(np.mean((aligned_lat_srctrg-trj_lat_trg)**2, axis=0))) _, _, lat_cdist_srctrg, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src, mcd=0) aligned_lat_trgsrc, _, _, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src) lat_dist_trgsrc = np.mean(np.sqrt(np.mean((aligned_lat_trgsrc-trj_lat_src)**2, axis=0))) _, _, lat_cdist_trgsrc, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg, mcd=0) logging.info("%lf %lf %lf %lf" % (lat_dist_srctrg, lat_cdist_srctrg, lat_dist_trgsrc, lat_cdist_trgsrc)) lat_dist_rmse = (lat_dist_srctrg+lat_dist_trgsrc)/2 lat_dist_cosim = (lat_cdist_srctrg+lat_cdist_trgsrc)/2 lat_dist_rmse_enc_list.append(lat_dist_rmse) lat_dist_cosim_enc_list.append(lat_dist_cosim) logging.info("lat_dist_enc: %.6f %.6f" % (lat_dist_rmse, lat_dist_cosim)) trj_lat_src = np.array(torch.index_select(lat_feat,0,spcidx_src).cpu().data.numpy(), dtype=np.float64) trj_lat_trg = np.array(torch.index_select(lat_feat_trg,0,spcidx_trg).cpu().data.numpy(), dtype=np.float64) aligned_lat_srctrg, _, _, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg) lat_dist_srctrg = np.mean(np.sqrt(np.mean((aligned_lat_srctrg-trj_lat_trg)**2, axis=0))) _, _, lat_cdist_srctrg, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src, mcd=0) aligned_lat_trgsrc, _, _, _ = dtw.dtw_org_to_trg(trj_lat_trg, trj_lat_src) lat_dist_trgsrc = np.mean(np.sqrt(np.mean((aligned_lat_trgsrc-trj_lat_src)**2, axis=0))) _, _, lat_cdist_trgsrc, _ = dtw.dtw_org_to_trg(trj_lat_src, trj_lat_trg, mcd=0) logging.info("%lf %lf %lf %lf" % (lat_dist_srctrg, lat_cdist_srctrg, lat_dist_trgsrc, lat_cdist_trgsrc)) lat_dist_rmse = (lat_dist_srctrg+lat_dist_trgsrc)/2 lat_dist_cosim = (lat_cdist_srctrg+lat_cdist_trgsrc)/2 lat_dist_rmse_pri_list.append(lat_dist_rmse) lat_dist_cosim_pri_list.append(lat_dist_cosim) logging.info("lat_dist_pri: %.6f %.6f" % (lat_dist_rmse, lat_dist_cosim)) # parallel decode training with mp.Manager() as manager: gpu = 0 processes = [] cvlist = manager.list() mcdlist = manager.list() mcdstdlist = manager.list() mcdpowlist = manager.list() mcdpowstdlist = manager.list() cvlist_src = manager.list() mcdlist_src = manager.list() mcdstdlist_src = manager.list() mcdpowlist_src = manager.list() mcdpowstdlist_src = manager.list() cvlist_trg = manager.list() mcdlist_trg = manager.list() mcdstdlist_trg = manager.list() mcdpowlist_trg = manager.list() mcdpowstdlist_trg = manager.list() lat_dist_rmse_enc_list = manager.list() lat_dist_cosim_enc_list = manager.list() lat_dist_rmse_pri_list = manager.list() lat_dist_cosim_pri_list = manager.list() for i, (feat_list, feat_trg_list) in enumerate(zip(feat_lists, feat_trg_lists)): logging.info(i) p = mp.Process(target=gpu_decode, args=(feat_list, feat_trg_list, gpu, cvlist, mcdlist, mcdstdlist, mcdpowlist, mcdpowstdlist, cvlist_src, mcdlist_src, mcdstdlist_src, mcdpowlist_src, mcdpowstdlist_src, cvlist_trg, mcdlist_trg, mcdstdlist_trg, mcdpowlist_trg, mcdpowstdlist_trg, lat_dist_rmse_enc_list, lat_dist_cosim_enc_list, lat_dist_rmse_pri_list, lat_dist_cosim_pri_list,)) p.start() processes.append(p) gpu += 1 if (i + 1) % args.n_gpus == 0: gpu = 0 # wait for all process for p in processes: p.join() # calculate cv_gv statistics cvgv_mean = np.mean(np.array(cvlist), axis=0) cvgv_var = np.var(np.array(cvlist), axis=0) cvgvsrc_mean = np.mean(np.array(cvlist_src), axis=0) cvgvsrc_var = np.var(np.array(cvlist_src), axis=0) cvgvtrg_mean = np.mean(np.array(cvlist_trg), axis=0) cvgvtrg_var = np.var(np.array(cvlist_trg), axis=0) logging.info(args.stats_src) logging.info(args.stats_trg) #logging.info(gv_mean_trg) logging.info("mcdpow: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdpowlist)),np.std(np.array(mcdpowlist)),np.mean(np.array(mcdpowstdlist)),np.std(np.array(mcdpowstdlist)))) logging.info("mcd: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdlist)),np.std(np.array(mcdlist)),np.mean(np.array(mcdstdlist)),np.std(np.array(mcdstdlist)))) #logging.info(cvgv_mean) logging.info("%lf +- %lf" % (np.mean(np.sqrt(np.square(np.log(cvgv_mean)-np.log(gv_mean_trg)))), np.std(np.sqrt(np.square(np.log(cvgv_mean)-np.log(gv_mean_trg)))))) logging.info("mcdpow_src: %.6f dB (+- %.6f) +- %.6f (+- %.6f)" % (np.mean(np.array(mcdpowlist_src)),np.std(
np.array(mcdpowlist_src)
numpy.array
import numpy as np import math import random from batchgenerators.transforms import AbstractTransform import sys sys.path.append(".") from kits19cnn.io.custom_augmentations import foreground_crop, center_crop, \ random_resized_crop class RandomResizedCropTransform(AbstractTransform): """ Crop the given array to random size and aspect ratio. Doesn't resize across the depth dimenion (assumes it is dim=0) if the data is 3D. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Assumes the data and segmentation masks are the same size. """ def __init__(self, target_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), data_key="data", label_key="seg", p_per_sample=0.33, crop_kwargs={}, resize_kwargs={}): """ Attributes: pass """ if len(target_size) > 2: print("Currently only adjusts the aspect ratio for the 2D dims.") if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") self.target_size = target_size self.scale = scale self.ratio = ratio self.data_key = data_key self.label_key = label_key self.p_per_sample = p_per_sample self.crop_kwargs = crop_kwargs self.resize_kwargs = resize_kwargs def _get_image_size(self, data): """ Assumes data has shape (b, c, h, w (, d)). Fetches the h, w, and d. depth if applicable. """ return data.shape[2:] def get_crop_size(self, data, scale, ratio): """ Get parameters for ``crop`` for a random sized crop. """ shape_dims = self._get_image_size(data) area = np.prod(shape_dims) while True: target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if len(shape_dims) == 3: depth = shape_dims[0] crop_size =
np.array([depth, h, w])
numpy.array
import numpy as np import random import pyflex from softgym.envs.cloth_env import ClothEnv from copy import deepcopy from softgym.utils.misc import vectorized_range, vectorized_meshgrid from softgym.utils.pyflex_utils import center_object class ClothFlattenEnv(ClothEnv): def __init__(self, cached_states_path='cloth_flatten_init_states.pkl', **kwargs): """ :param cached_states_path: :param num_picker: Number of pickers if the aciton_mode is picker :param kwargs: """ super().__init__(**kwargs) self.get_cached_configs_and_states(cached_states_path, self.num_variations) self.prev_covered_area = None # Should not be used until initialized def generate_env_variation(self, num_variations=1, vary_cloth_size=True): """ Generate initial states. Note: This will also change the current states! """ max_wait_step = 300 # Maximum number of steps waiting for the cloth to stablize stable_vel_threshold = 0.01 # Cloth stable when all particles' vel are smaller than this generated_configs, generated_states = [], [] default_config = self.get_default_config() for i in range(num_variations): config = deepcopy(default_config) self.update_camera(config['camera_name'], config['camera_params'][config['camera_name']]) if vary_cloth_size: cloth_dimx, cloth_dimy = self._sample_cloth_size() config['ClothSize'] = [cloth_dimx, cloth_dimy] else: cloth_dimx, cloth_dimy = config['ClothSize'] self.set_scene(config) self.action_tool.reset([0., -1., 0.]) pos = pyflex.get_positions().reshape(-1, 4) pos[:, :3] -= np.mean(pos, axis=0)[:3] if self.action_mode in ['sawyer', 'franka']: # Take care of the table in robot case pos[:, 1] = 0.57 else: pos[:, 1] = 0.005 pos[:, 3] = 1 pyflex.set_positions(pos.flatten()) pyflex.set_velocities(np.zeros_like(pos)) pyflex.step() num_particle = cloth_dimx * cloth_dimy pickpoint = random.randint(0, num_particle - 1) curr_pos = pyflex.get_positions() original_inv_mass = curr_pos[pickpoint * 4 + 3] curr_pos[pickpoint * 4 + 3] = 0 # Set the mass of the pickup point to infinity so that it generates enough force to the rest of the cloth pickpoint_pos = curr_pos[pickpoint * 4: pickpoint * 4 + 3].copy() # Pos of the pickup point is fixed to this point pickpoint_pos[1] += np.random.random(1) * 0.5 + 0.5 pyflex.set_positions(curr_pos) # Pick up the cloth and wait to stablize for j in range(0, max_wait_step): curr_pos = pyflex.get_positions() curr_vel = pyflex.get_velocities() curr_pos[pickpoint * 4: pickpoint * 4 + 3] = pickpoint_pos curr_vel[pickpoint * 3: pickpoint * 3 + 3] = [0, 0, 0] pyflex.set_positions(curr_pos) pyflex.set_velocities(curr_vel) pyflex.step() if np.alltrue(np.abs(curr_vel) < stable_vel_threshold) and j > 5: break # Drop the cloth and wait to stablize curr_pos = pyflex.get_positions() curr_pos[pickpoint * 4 + 3] = original_inv_mass pyflex.set_positions(curr_pos) for _ in range(max_wait_step): pyflex.step() curr_vel = pyflex.get_velocities() if np.alltrue(curr_vel < stable_vel_threshold): break center_object() if self.action_mode == 'sphere' or self.action_mode.startswith('picker'): curr_pos = pyflex.get_positions() self.action_tool.reset(curr_pos[pickpoint * 4:pickpoint * 4 + 3] + [0., 0.2, 0.]) generated_configs.append(deepcopy(config)) generated_states.append(deepcopy(self.get_state())) self.current_config = config # Needed in _set_to_flatten function generated_configs[-1]['flatten_area'] = self._set_to_flatten() # Record the maximum flatten area print('config {}: camera params {}, flatten area: {}'.format(i, config['camera_params'], generated_configs[-1]['flatten_area'])) return generated_configs, generated_states def _set_to_flatten(self): # self._get_current_covered_area(pyflex.get_positions().reshape(-)) cloth_dimx, cloth_dimz = self.get_current_config()['ClothSize'] N = cloth_dimx * cloth_dimz px = np.linspace(0, cloth_dimx * self.cloth_particle_radius, cloth_dimx) py = np.linspace(0, cloth_dimz * self.cloth_particle_radius, cloth_dimz) xx, yy = np.meshgrid(px, py) new_pos = np.empty(shape=(N, 4), dtype=np.float) new_pos[:, 0] = xx.flatten() new_pos[:, 1] = self.cloth_particle_radius new_pos[:, 2] = yy.flatten() new_pos[:, 3] = 1. new_pos[:, :3] -= np.mean(new_pos[:, :3], axis=0) pyflex.set_positions(new_pos.flatten()) return self._get_current_covered_area(new_pos) def _reset(self): """ Right now only use one initial state""" self.prev_covered_area = self._get_current_covered_area(pyflex.get_positions()) if hasattr(self, 'action_tool'): curr_pos = pyflex.get_positions() cx, cy = self._get_center_point(curr_pos) self.action_tool.reset([cx, 0.2, cy]) pyflex.step() self.init_covered_area = None info = self._get_info() self.init_covered_area = info['performance'] return self._get_obs() def _step(self, action): self.action_tool.step(action) if self.action_mode in ['sawyer', 'franka']: pyflex.step(self.action_tool.next_action) else: pyflex.step() return def _get_current_covered_area(self, pos): """ Calculate the covered area by taking max x,y cood and min x,y coord, create a discritized grid between the points :param pos: Current positions of the particle states """ pos = np.reshape(pos, [-1, 4]) min_x =
np.min(pos[:, 0])
numpy.min
# -*- coding: utf-8 -*- import numpy as np def cos_sim(a, b): """Takes 2 vectors a, b and returns the cosine similarity according to the definition of the dot product """ dot_product = np.dot(a, b) norm_a = np.linalg.norm(a) norm_b = np.linalg.norm(b) return dot_product / (norm_a * norm_b) # the counts we computed above sentence_m =
np.array([1, 1, 1, 1, 0, 0, 0, 0, 0])
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu May 28 19:31:48 2020 @author: Rushad """ import warnings import numpy as np from scipy import signal, polyval import matplotlib.pyplot as plt warnings.filterwarnings("ignore") class TransferFunction(): ''' Define the Transfer Functions in standard form only. ''' def __init__(self, num_coef, den_coef): ''' Parameters ---------- num_coef : numpy array OR list DESCRIPTION. Coefficient of Transfer Function's Numerator den_coef : TYPE numpy array OR list DESCRIPTION. Coefficient of Transfer Function's Denominator Returns ------- None. ''' self.num_coef = np.array(num_coef) self.den_coef = np.array(den_coef) self.num_coef = self.num_coef.reshape([len(self.num_coef), 1]) self.den_coef = self.den_coef.reshape([len(self.den_coef), 1]) self.order = max(len(self.num_coef), len(self.den_coef)) - 1 def display(self): ''' Displays TF block ''' num_str = "" for n in range(len(self.num_coef)): if n < len(self.num_coef)-1: #if not last if n != len(self.num_coef)-2: #if not second last if self.num_coef[n] != 1 and self.num_coef[n] != 0: #if coef is not zero and one num_str = num_str + str(float(self.num_coef[n])) + "*S^" + str(abs(n-len(self.num_coef)+1)) + " + " elif self.num_coef[n] == 1: #if coef is one num_str = num_str + "S^" + str(abs(n-len(self.num_coef)+1)) + " + " elif self.num_coef[n] == 0: #if coef is zero pass else: #if second last if self.num_coef[n] != 1 and self.num_coef[n] != 0: #if coef is not zero and one num_str = num_str + str(float(self.num_coef[n])) + "*S" + " + " elif self.num_coef[n] == 1: #if coef is one num_str = num_str + "S" + " + " elif self.num_coef[n] == 0: #if coef is zero pass else: #if last if self.num_coef[n] != 0: #if coef is not zero num_str = num_str + str(float(self.num_coef[n])) elif self.num_coef[n] == 0: #if coef is zero num_str = num_str[:-3] den_str = "" for d in range(len(self.den_coef)): if d < len(self.den_coef)-1: #if not last if d != len(self.den_coef)-2: #if not second last if self.den_coef[d] != 1 and self.den_coef[d] != 0: #if coef not zero and one den_str = den_str + str(float(self.den_coef[d])) + "*S^" + str(abs(d-len(self.den_coef)+1)) + " + " elif self.den_coef[d] == 1: #if coef is one den_str = den_str + "S^" + str(abs(d-len(self.den_coef)+1)) + " + " elif self.den_coef[d] == 0: #if coef is zero pass else: #if second last if self.den_coef[d] != 1 and self.den_coef[d] != 0: #if coef is not zero and one den_str = den_str + str(float(self.den_coef[d])) + "*S" + " + " elif self.den_coef[d] == 1: #if coef is one den_str = den_str + "S" + " + " elif self.den_coef[d] == 0: #if coef is zero pass else: #if last if self.den_coef[d] != 0: #if coef is not zero den_str = den_str + str(float(self.den_coef[d])) elif self.den_coef[d] == 0: #if coef is zero den_str = den_str[:-3] div_line_len = max(len(num_str), len(den_str)) div_line = div_line_len*"-" tf_disp = str(num_str + " \n" + div_line + " \n" + den_str) print(tf_disp) def parameters(self, settling_time_tolerance=0.02): ''' Parameters ---------- settling_time_tolerance : float, optional DESCRIPTION. Tolerance limit for error in settling time. The default is 0.05 (5%) Returns ------- parameter : dictionary DESCRIPTION. Dictionary containing all the parameters/time domain specifications ''' self.order = max(len(self.num_coef), len(self.den_coef)) - 1 self.settling_time_tolerance = settling_time_tolerance if self.order == 1: self.gain = float(self.num_coef[0]) self.time_constant = float(self.den_coef[0]) parameter = {"Order":self.order, "Gain":self.gain, "Time Constant":self.time_constant} return parameter elif self.order == 2: self.gain = float(self.num_coef[0]/self.den_coef[2]) self.natural_frequency = float(np.sqrt(self.den_coef[2])) self.damping_ratio = float(self.den_coef[1]/(2*self.natural_frequency)) self.damped_freq = self.natural_frequency*np.sqrt(abs(1 - self.damping_ratio**2)) self.phase_angle = float(np.arctan(np.sqrt(np.abs(1 - self.damping_ratio**2))/self.damping_ratio)) self.rise_time = float((np.pi - self.phase_angle)/(self.natural_frequency*np.sqrt(abs(1 - self.damping_ratio**2)))) self.peak_time = float(np.pi/(self.natural_frequency*np.sqrt((abs(1 - self.damping_ratio**2))))) self.max_overshoot = float(np.exp((-self.damping_ratio*np.pi)/(np.sqrt(abs( 1 - self.damping_ratio**2)))*100)) self.settling_time = float(-np.log(self.settling_time_tolerance*np.sqrt(abs(1 - self.damping_ratio**2)))/(self.damping_ratio*self.natural_frequency)) parameter = {"Order":self.order, "Gain":self.gain,"Natural Frequency":self.natural_frequency, "Damping Frequency":self.damped_freq, "Damping Ratio":self.damping_ratio, "Phase Angle":self.phase_angle, "Rise Time":self.rise_time, "Peak Time":self.peak_time, "Max Overshoot":self.max_overshoot, "Settling Time":self.settling_time} return parameter elif self.order > 2: print("[WARNING] You have inputed a system of Order:" + str(max(len(self.num_coef), len(self.den_coef))-1) + ". Currently supports first and second order systems") def response(self, input_type, time_period=10, sample_time=0.05, ret=False, show=True): ''' Parameters ---------- input_type : string DESCRIPTION. input signal type: impulse, step or ramp time_period : integer, optional DESCRIPTION. The time duration the signal is processed for. The default is 10. sample_time : float, optional DESCRIPTION. Sample time of the signal. The default is 0.05. ret : bool, optional DESCRIPTION. Set to True if the systems response is to be returned. The default is False. show : bool, optional DESCRIPTION. Set to True if the systems response is to be displayed. The default is True. Returns ------- resp : numpy array DESCRIPTION. numpy array of response of the system. Is only returned if ret is set to True ''' controller_time = np.array([i for i in np.arange(0, time_period, sample_time)]) input_resp = {"impulse":"impulse(self)", "step":"step(self)", "ramp":"ramp(self)"} def impulse(self): sys = signal.lti(self.num_coef.reshape(len(self.num_coef)), self.den_coef.reshape(len(self.den_coef))) _,resp = signal.impulse(sys, T=controller_time) return resp def step(self): sys = signal.lti(self.num_coef.reshape(len(self.num_coef)), self.den_coef.reshape(len(self.den_coef))) _,resp = signal.step(sys, T=controller_time) return resp def ramp(self): def ramp_order1(self): resp = float(self.num_coef[0])*(float(-self.den_coef[0]) + controller_time + np.exp(-controller_time/float(self.den_coef[0]))) return resp def ramp_order2(self): natural_frequency = float(np.sqrt(self.den_coef[2])) damping_ratio = float(self.den_coef[1]/(2*natural_frequency)) if 0 <= float(damping_ratio) < 1: resp = (1/natural_frequency**2)*((controller_time + (np.exp(-damping_ratio*natural_frequency*controller_time)/natural_frequency)*((2*damping_ratio*np.cos(natural_frequency*np.sqrt(1 - damping_ratio**2)*controller_time)) + (((2*damping_ratio**2 -1)/np.sqrt(1 - damping_ratio**2))*np.sin(natural_frequency*np.sqrt(1 - damping_ratio**2)*controller_time))) - (2*damping_ratio/natural_frequency))) elif float(damping_ratio) == 1: resp = (1/natural_frequency**2)*(controller_time + ((2*np.exp(-natural_frequency*controller_time))/natural_frequency) + (controller_time*np.exp(-natural_frequency*controller_time)) - (2/natural_frequency)) elif float(damping_ratio) > 1: resp = (1/damping_ratio**2)*(controller_time + (natural_frequency/(2*np.sqrt(np.abs(1 - damping_ratio**2))))*((((1/((damping_ratio*natural_frequency) - np.sqrt(np.abs(1 - damping_ratio**2))*natural_frequency))**2)*np.exp(-controller_time/(1/((damping_ratio*natural_frequency) - np.sqrt(np.abs(1 - damping_ratio**2))*natural_frequency)))) - (((1/((damping_ratio*natural_frequency) + np.sqrt(np.abs(1 - damping_ratio**2))*natural_frequency))**2)*(np.exp(-controller_time/(1/((damping_ratio*natural_frequency) + np.sqrt(np.abs(1 - damping_ratio**2))*natural_frequency)))))) - (2*damping_ratio/natural_frequency)) return resp if self.order == 1: resp = ramp_order1(self) return resp elif self.order == 2: resp = float(self.num_coef[0]/self.den_coef[2])*ramp_order2(self) return resp elif self.order > 2: print("[WARNING] You have inputed a system of Order:" + str(max(len(self.num_coef), len(self.den_coef))-1) + ". Ramp response currently supports first and second order systems") resp = eval(input_resp[input_type]) if show == True: plt.plot(controller_time, resp) plt.show() if ret == True: return resp def pzplot(self, ret=True): ''' Plots Pole-Zero plot of the system ''' if len(self.num_coef) >= 1: self.zeros = np.roots(self.num_coef.reshape(len(self.num_coef))) plt.plot(self.zeros.real, self.zeros.imag, "o", label="Zeros") if len(self.den_coef) >= 1: self.poles = np.roots(self.den_coef.reshape(len(self.den_coef))) plt.plot(self.poles.real, self.poles.imag, "x", label="Poles") plt.xlabel('Re') plt.ylabel('Im') plt.grid(True, which="both") plt.legend() plt.show() if ret == True: return self.poles, self.zeros def stability(self): ''' Returns ------- state : String Prints stability of the system ''' if len(self.den_coef >= 1): poles = np.roots(self.den_coef.reshape(len(self.den_coef))) poles_round = np.array(poles.imag, dtype="int") if (poles.real < 0).all(): state = "System is Stable" elif np.count_nonzero(poles_round) != len(poles_round) and (poles.real <= 0).all(): if np.sum(poles) == np.sum(np.unique(poles)): state = "System is Marginally Stable" else: state = "System in Unstable" else: state = "System is Unstable" return state def convert2SS(self): ''' Returns ------- SpaceState object DESCRIPTION. Converts TransferFunction object to StateSpace object ''' A,B,C,D = signal.tf2ss(self.num_coef.reshape(-1), self.den_coef.reshape(-1)) self.state_space_rep = StateSpace(A,B,C,D) return self.state_space_rep class feedback(TransferFunction): ''' Add feedback TF to open loop TF. Define in standard form only. ''' def __init__(self, G, H=1.0, feedback_type="negative"): ''' Parameters ---------- G : TransferFunction object DESCRIPTION. TF the feedback is to be implemented on H : TransferFunction object / integer / float, optional DESCRIPTION. Feedback block. The default is 1 (unity feedback) feedback_type : Negative or Positive feedback, optional DESCRIPTION. The default is "negative". Returns ------- None. ''' if type(H) == TransferFunction: G_num = G.num_coef G_num = G.num_coef.reshape(len(G_num)) G_den = G.den_coef G_den = G.den_coef.reshape(len(G_den)) H_num = H.num_coef H_num = H.num_coef.reshape(len(H_num)) H_den = H.den_coef H_den = H.den_coef.reshape(len(H_den)) if feedback_type == "negative": feedback_num = np.polymul(G_num, H_den) feedback_den = np.polyadd(np.polymul(G_den, H_den), np.polymul(G_den, H_num)) elif feedback_type == "positive": feedback_num = np.polymul(G_num, H_den) feedback_den = np.polysub(np.polymul(G_den, H_den), np.polymul(G_den, H_num)) elif type(H) == float or type(H) == int: num = G.num_coef den = G.den_coef if feedback_type == "negative": feedback_den0 = float(den[0]) feedback_den1 = float(den[1]) feedback_den2 = float(den[2] + (num[-1]/H)) elif feedback_type == "positive": feedback_den0 = float(den[0]) feedback_den1 = float(den[1]) feedback_den2 = float(den[2] - (num[-1]/H)) feedback_num = num feedback_den = np.array([feedback_den0, feedback_den1, feedback_den2]) feedback_num = feedback_num.reshape([len(feedback_num), 1]) feedback_den = feedback_den.reshape([len(feedback_den), 1]) self.num_coef = feedback_num self.den_coef = feedback_den self.feedback_tf = TransferFunction(self.num_coef, self.den_coef) self.order = self.feedback_tf.order class PID(): ''' PID control on a TF ''' def __init__(self, K_p, K_i, K_d, tf): ''' Parameters ---------- K_p : float DESCRIPTION. Proportional Gain K_i : float DESCRIPTION. Integral Gain K_d : float DESCRIPTION. Derivative Gain tf : TranferFunction object DESCRIPTION. TF on which PID is to be implemeted Returns ------- None. ''' self.K_p = K_p self.K_i = K_i self.K_d = K_d self.tf = tf pid_num = [self.K_d, self.K_p, self.K_i] pid_den = [1, 0] num = tf.num_coef den = tf.den_coef tf_num = list(tf.num_coef.reshape(len(num),)) tf_den = list(tf.den_coef.reshape(len(den),)) num_diff = len(pid_num) - len(tf_num) den_diff = len(pid_den) - len(tf_den) try: if len(tf_num) < len(pid_num): temp_num = np.zeros(num_diff) tf_num = np.concatenate((temp_num, tf_num)) elif len(tf_num) > len(pid_num): temp_num = np.zeros(abs(num_diff)) pid_num = np.concatenate((temp_num, pid_num)) if len(tf_den) < len(pid_den): temp_den = np.zeros(den_diff) tf_den = np.concatenate((temp_den, tf_den)) elif len(tf_den) > len(pid_den): temp_den = np.zeros(abs(den_diff)) pid_den = np.concatenate((temp_den, pid_den)) except ValueError: pass reduced_tf_num = np.polymul(np.array(tf_num), np.array(pid_num)) reduced_tf_den = np.polymul(np.array(tf_den), np.array(pid_den)) self.reduced_tf = TransferFunction(reduced_tf_num, reduced_tf_den) def display(self): ''' Displays the PID TF block ''' num_str = str(self.K_d) + "*S^2 + " + str(self.K_p) + "*S + " + str(self.K_i) den_str = round(len(num_str)/2)*" " + "S" + " "*round(len(num_str)/2) div_line_len = max(len(num_str), len(den_str)) div_line = div_line_len*"-" pid_tf_disp = str(num_str + " \n" + div_line + " \n" + den_str) print(pid_tf_disp) def response(self, input_type, time_period=10, sample_time=0.05, ret=False, show=True): ''' Parameters ---------- input_type : string DESCRIPTION. input signal type: impulse, step or ramp time_period : integer, optional DESCRIPTION. The time duration the signal is processed for. The default is 10. sample_time : float, optional DESCRIPTION. Sample time of the signal. The default is 0.05. ret : bool, optional DESCRIPTION. Set to True if the systems response is to be returned. The default is False. show : bool, optional DESCRIPTION. Set to True if the systems response is to be displayed. The default is True. Returns ------- resp : numpy array DESCRIPTION. numpy array of response of the system. Is only returned if ret is set to True ''' try: resp = self.reduced_tf.response(input_type, time_period, sample_time, ret, show) if ret == True: return resp except ValueError: print("Improper transfer function. `num` is longer than `den`.") def tune(self, input_type="step", set_point=1, num_itr=70, rate=0.00000000001, lambd=0.7): ''' Parameters ---------- input_type : input signal type, optional DESCRIPTION. The default is "step" input. set_point : Optimal steady state value, optional DESCRIPTION. The default is 1. num_itr : number of iterations, optional DESCRIPTION. The default is 70. Might have to adjust this to prevent the cost from increasing after decreasing. rate : learning rate, optional DESCRIPTION. The default is 0.00000000001. lambd : regularization coefficient, optional DESCRIPTION. The default is 0.7 Returns ------- k : numpy array DESCRIPTION. numpy array of Kp, Ki, Kd values ''' np.random.seed(1) k = np.random.random(3).reshape(3,1) def red_tf(): pid_num = [k[2][0], k[0][0], k[1][0]] pid_den = [1, 0] num = self.tf.num_coef den = self.tf.den_coef tf_num = list(self.tf.num_coef.reshape(len(num),)) tf_den = list(self.tf.den_coef.reshape(len(den),)) num_diff = len(pid_num) - len(tf_num) den_diff = len(pid_den) - len(tf_den) try: if len(tf_num) < len(pid_num): temp_num = np.zeros(num_diff) tf_num = np.concatenate((temp_num, tf_num)) elif len(tf_num) > len(pid_num): temp_num = np.zeros(abs(num_diff)) pid_num = np.concatenate((temp_num, pid_num)) if len(tf_den) < len(pid_den): temp_den =
np.zeros(den_diff)
numpy.zeros