prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np def statistics(data_dict): stat_dict = {} for i in data_dict: data = data_dict[i] data = data[data != -1] if len(data)>0: mean_ = np.mean(data) median_ = np.median(data) min_ = np.amin(data) max_ =
np.amax(data)
numpy.amax
import numpy as np class LinearRegression: def fit(self, X, y): X = np.c_[np.ones((X.shape[0], 1)), X] self.beta =
np.linalg.inv(X.T @ X)
numpy.linalg.inv
import subprocess from inspect import getmembers, isclass import matplotlib import matplotlib.pyplot as plt import numpy as np from thequickmath.field import * def cell_heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels (copied from matplotlib web-site!). Parameters ---------- data A 2D numpy array of shape (N, M). row_labels A list or array of length N with the labels for the rows. col_labels A list or array of length M with the labels for the columns. ax A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If not provided, use current axes or create a new one. Optional. cbar_kw A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. cbarlabel The label for the colorbar. Optional. **kwargs All other arguments are forwarded to `imshow`. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) # ... and label them with the respective list entries. ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=False, bottom=True, labeltop=False, labelbottom=True) # Rotate the tick labels and set their alignment. # plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", # rotation_mode="anchor") # Turn spines off and create white grid. for edge, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def build_zooming_axes(fig, parent_ax, parent_point, child_box, connecting_vertices): po_ax = plt.axes(child_box) po_ax.get_xaxis().set_visible(False) po_ax.get_yaxis().set_visible(False) po_ax_bbox = po_ax.get_position() ax_bbox = parent_ax.get_position() combined_transform = fig.transFigure + parent_ax.transData.inverted() data_to_figure = combined_transform.inverted() parent_point_fig = data_to_figure.transform(parent_point) vertices_coords = ( (po_ax_bbox.x0, po_ax_bbox.y0), (po_ax_bbox.x0, po_ax_bbox.y1), (po_ax_bbox.x1, po_ax_bbox.y1), (po_ax_bbox.x1, po_ax_bbox.y0), ) parent_ax.plot([parent_point_fig[0], vertices_coords[connecting_vertices[0]][0]], [parent_point_fig[1], vertices_coords[connecting_vertices[0]][1]], 'k', alpha=0.5, transform=fig.transFigure) parent_ax.plot([parent_point_fig[0], vertices_coords[connecting_vertices[1]][0]], [parent_point_fig[1], vertices_coords[connecting_vertices[1]][1]], 'k', alpha=0.5, transform=fig.transFigure) return po_ax def build_zooming_axes_for_plotting(fig, parent_ax, parent_point, child_box, connecting_vertices): po_ax = plt.axes(child_box) po_ax_bbox = po_ax.get_position() ax_bbox = parent_ax.get_position() combined_transform = fig.transFigure + parent_ax.transData.inverted() data_to_figure = combined_transform.inverted() parent_point_fig = data_to_figure.transform(parent_point) vertices_coords = ( (po_ax_bbox.x0, po_ax_bbox.y0), (po_ax_bbox.x0, po_ax_bbox.y1), (po_ax_bbox.x1, po_ax_bbox.y1), (po_ax_bbox.x1, po_ax_bbox.y0), ) parent_ax.plot([parent_point_fig[0], vertices_coords[connecting_vertices[0]][0]], [parent_point_fig[1], vertices_coords[connecting_vertices[0]][1]], 'k', alpha=0.5, transform=fig.transFigure) parent_ax.plot([parent_point_fig[0], vertices_coords[connecting_vertices[1]][0]], [parent_point_fig[1], vertices_coords[connecting_vertices[1]][1]], 'k', alpha=0.5, transform=fig.transFigure) return po_ax def build_zooming_axes_for_plotting_with_box(fig, parent_ax, parent_box, child_box, parent_vertices, child_vertices, remove_axis=False): combined_transform = fig.transFigure + parent_ax.transData.inverted() data_to_figure = combined_transform.inverted() child_box_fig = ( data_to_figure.transform((child_box[0], child_box[1])), data_to_figure.transform((child_box[0], child_box[1] + child_box[3])), data_to_figure.transform((child_box[0] + child_box[2], child_box[1] + child_box[3])), data_to_figure.transform((child_box[0] + child_box[2], child_box[1])), ) po_ax = plt.axes((child_box_fig[0][0], child_box_fig[0][1], child_box_fig[3][0] - child_box_fig[0][0], child_box_fig[1][1] - child_box_fig[0][1])) if remove_axis: po_ax.get_xaxis().set_visible(False) po_ax.get_yaxis().set_visible(False) po_ax_bbox = po_ax.get_position() ax_bbox = parent_ax.get_position() #parent_point_fig = data_to_figure.transform(parent_point) parent_vertices_fig = ( data_to_figure.transform((parent_box[0], parent_box[1])), data_to_figure.transform((parent_box[0], parent_box[1] + parent_box[3])), data_to_figure.transform((parent_box[0] + parent_box[2], parent_box[1] + parent_box[3])), data_to_figure.transform((parent_box[0] + parent_box[2], parent_box[1])), ) child_vertices_fig = ( (po_ax_bbox.x0, po_ax_bbox.y0), (po_ax_bbox.x0, po_ax_bbox.y1), (po_ax_bbox.x1, po_ax_bbox.y1), (po_ax_bbox.x1, po_ax_bbox.y0), ) parent_ax.plot([parent_box[0], parent_box[0] + parent_box[2]], [parent_box[1], parent_box[1]], 'k', linewidth=1, alpha=0.5) parent_ax.plot([parent_box[0], parent_box[0] + parent_box[2]], [parent_box[1] + parent_box[3], parent_box[1] + parent_box[3]], 'k', linewidth=1, alpha=0.5) parent_ax.plot([parent_box[0], parent_box[0]], [parent_box[1], parent_box[1] + parent_box[3]], 'k', linewidth=1, alpha=0.5) parent_ax.plot([parent_box[0] + parent_box[2], parent_box[0] + parent_box[2]], [parent_box[1], parent_box[1] + parent_box[3]], 'k', linewidth=1, alpha=0.5) parent_ax.plot([parent_vertices_fig[parent_vertices[0]][0], child_vertices_fig[child_vertices[0]][0]], [parent_vertices_fig[parent_vertices[0]][1], child_vertices_fig[child_vertices[0]][1]], 'k', alpha=0.5, linewidth=1, transform=fig.transFigure) parent_ax.plot([parent_vertices_fig[parent_vertices[1]][0], child_vertices_fig[child_vertices[1]][0]], [parent_vertices_fig[parent_vertices[1]][1], child_vertices_fig[child_vertices[1]][1]], 'k', alpha=0.5, linewidth=1, transform=fig.transFigure) return po_ax def put_fields_on_axes(f, ax_zx=None, ax_zy=None, enable_quiver=True, vertical=False): def _prepare_zx(field_): #y_averaged_field = average(field_, ['u', 'v', 'w'], 'y') y_averaged_field = at(field_, 'y', 0.0) y_averaged_field.change_space_order(['z', 'x']) return y_averaged_field, filter(filter(filter(y_averaged_field, 'z', 0.5), 'z', 0.5), 'x', 0.5) def _prepare_zy(field_): x_averaged_field = average(field_, ['u', 'v', 'w'], 'x') x_averaged_field.change_space_order(['z', 'y']) return x_averaged_field, filter(filter(filter(filter(x_averaged_field, 'z', 0.5), 'z', 0.5), 'y', 0.5), 'y', 0.5) def _plot_contours_and_arrow(ax_, X_cont, Y_cont, cont_field_raw, X_quiv, Y_quiv, quiv_field_X, quiv_field_Y, arrow_scale, enable_quiver): cvals = 50 cont = ax_.contourf(X_cont, Y_cont, cont_field_raw, cvals, cmap=matplotlib.cm.jet)#, vmin=-0.6, vmax=0.6) if enable_quiver: ax_.quiver(X_quiv, Y_quiv, quiv_field_X, quiv_field_Y, # assign to var color='Teal', scale=arrow_scale, headlength=3) # linewidth=0.05) return cont zx_field, zx_field_quiv = _prepare_zx(f) zy_field, zy_field_quiv = _prepare_zy(f) # Generate data for plotting if vertical: X_zx, Y_zx = np.meshgrid(zx_field.space.elements[1], zx_field.space.elements[0], indexing='ij') X_zy, Y_zy = np.meshgrid(zy_field.space.elements[1], zy_field.space.elements[0], indexing='ij') else: X_zx, Y_zx = np.meshgrid(zx_field.space.elements[0], zx_field.space.elements[1], indexing='ij') X_zy, Y_zy = np.meshgrid(zy_field.space.elements[0], zy_field.space.elements[1], indexing='ij') X_zx_quiv, Y_zx_quiv = np.meshgrid(zx_field_quiv.space.elements[0], zx_field_quiv.space.elements[1], indexing='ij') X_zy_quiv, Y_zy_quiv =
np.meshgrid(zy_field_quiv.space.elements[0], zy_field_quiv.space.elements[1], indexing='ij')
numpy.meshgrid
import numpy as np from scipy import interpolate from Engine.detect_peaks import detect_peaks #import matplotlib.pyplot as plt def A0cont(a0wavecut,a0vcut,night,order,band): ''' Performs first-pass fit to blaze shape of telluric standard spectrum. Inputs: a0wavecut : Wavelength scale of telluric standard spectrum a0vcut : Corresponding flux of telluric standard spectrum night : Date of observation in YYYYMMDD order : Echelle order, as characterized by file index (as opposed to m number; for conversion between the two, see Stahl et al. 2021) band : H or K band Outputs: continuum : Best fit blaze model ''' # a0vcut is a0fluxlist x = np.arange(len(a0vcut)) # mpd: detect peaks that are at least separated by minimum peak distance peaks = detect_peaks(a0vcut, mpd=10) if band == 'H': xtimes = 1 else: xtimes = 3 for ii in range(xtimes): mask = np.ones(len(peaks), dtype=bool) f = np.polyfit(x[peaks],a0vcut[peaks],4) q = np.poly1d(f) residual = a0vcut[peaks]-q(x[peaks]) MAD = np.median(np.abs(residual-np.median(residual))) ''' plt.figure(figsize=(20,12)) plt.plot(x,a0vcut,color='black',alpha=.5) plt.scatter(x[peaks],a0vcut[peaks],s=25,color='blue') plt.plot(x[peaks],q(x[peaks]),color='red') plt.plot(x[peaks],q(x[peaks])+3*MAD,color='orange') plt.plot(x[peaks],q(x[peaks])-5*MAD,color='orange') plt.savefig(inparam.outpath+'/A0 Contfit_'+str(night)+'_'+str(order)+'_'+str(masterbeam)+'_0') plt.clf() plt.close() ''' mask[(a0vcut[peaks]/
np.nanmedian(a0vcut)
numpy.nanmedian
''' MergePlanner.py Contains methods necessary for advanced selection of which components to merge. ''' import numpy as np from collections import defaultdict from bnpy.util import isEvenlyDivisibleFloat import bnpy.mergemove.MergeLogger as MergeLogger # Constant defining how far calculated ELBO gap can be from zero # and still be considered accepted or favorable from bnpy.mergemove.MergeMove import ELBO_GAP_ACCEPT_TOL CountTracker = defaultdict(int) def preselectPairs(curModel, SS, lapFrac, mergePairSelection='wholeELBO', prevScoreMat=None, mergeScoreRefreshInterval=10, mergeMaxDegree=5, **kwargs): ''' Create list of candidate pairs for merge ''' needRefresh = isEvenlyDivisibleFloat(lapFrac, mergeScoreRefreshInterval) if prevScoreMat is None or needRefresh: ScoreMat = np.zeros((SS.K, SS.K)) doAllPairs = 1 else: assert prevScoreMat.shape[0] == SS.K ScoreMat = prevScoreMat doAllPairs = 0 ScoreMat = updateScoreMat_wholeELBO(ScoreMat, curModel, SS, doAllPairs) posMask = ScoreMat > - ELBO_GAP_ACCEPT_TOL Nvec = SS.getCountVec() tinyVec = Nvec < 25 tinyMask = np.add(tinyVec, tinyVec[:, np.newaxis]) posAndTiny = np.logical_and(posMask, tinyMask) posAndBothBig = np.logical_and(posMask, 1 - tinyMask) # Select list of pairs to track for merge # prioritizes merges that make big changes # avoids tracking too many pairs that involves same node pairsBig = selectPairsUsingAtMostNOfEachComp(posAndBothBig, N=mergeMaxDegree) scoresBig = np.asarray([ScoreMat[a, b] for (a, b) in pairsBig]) pairsBig = [pairsBig[x] for x in np.argsort(-1 * scoresBig)] pairsTiny = selectPairsUsingAtMostNOfEachComp(posAndTiny, pairsBig, N=mergeMaxDegree, Nextra=2) scoresTiny = np.asarray([ScoreMat[a, b] for (a, b) in pairsTiny]) pairsTiny = [pairsTiny[x] for x in np.argsort(-1 * scoresTiny)] return pairsBig + pairsTiny, ScoreMat def calcDegreeFromEdgeList(pairIDs, nNode): ''' Calculate degree of each node given edge list Returns ------- degree : 1D array, size nNode degree[k] counts number of edges that node k appears in ''' degree = np.zeros(nNode, dtype=np.int32) for n in range(nNode): degree[n] = np.sum([n in pair for pair in pairIDs]) return degree def selectPairsUsingAtMostNOfEachComp(AdjMat, extraFixedEdges=None, N=3, Nextra=0): ''' Args -------- AdjMat : 2D array, size K x K N : max degree of each node Returns -------- pairIDs : list of tuples, one entry per selected pair ''' if np.sum(AdjMat) == 0: return list() # AMat : # tracks all remaining CANDIDATE edges where both node under the degree # limit. AMat = AdjMat.copy() xdegree = np.zeros(AdjMat.shape[0], dtype=np.int32) if extraFixedEdges is not None: for kA, kB in extraFixedEdges: xdegree[kA] += 1 xdegree[kB] += 1 # degree : tracks CANDIDATE edges (including extra) that not excluded # newdegree : tracks edges we will KEEP newdegree = np.zeros_like(xdegree) newdegree += xdegree exhaustedMask = newdegree >= N AMat[exhaustedMask, :] = 0 AMat[:, exhaustedMask] = 0 degree = np.sum(AMat, axis=0) + np.sum(AMat, axis=1) + xdegree # Traverse comps from largest to smallest degree pairIDs = list() nodeOrder = np.argsort(-1 * degree) for nodeID in nodeOrder: # Get list of remaining possible partners for node partners = np.flatnonzero(AMat[nodeID, :] + AMat[:, nodeID]) # Sort node's partners from smallest to largest degree, # since we want to prioritize keeping small degree partners partners = partners[np.argsort([degree[p] for p in partners])] Ncur = N - newdegree[nodeID] keepPartners = partners[:Ncur] rejectPartners = partners[Ncur:] for p in keepPartners: kA = np.minimum(p, nodeID) kB = np.maximum(p, nodeID) pairIDs.append((kA, kB)) AMat[kA, kB] = 0 # make pair ineligible for future partnerships newdegree[p] += 1 newdegree[nodeID] += 1 for p in rejectPartners: kA = np.minimum(p, nodeID) kB = np.maximum(p, nodeID) AMat[kA, kB] = 0 # make pair ineligible for future partnerships degree[p] -= 1 degree[nodeID] -= 1 exhaustedMask = newdegree >= N AMat[exhaustedMask, :] = 0 AMat[:, exhaustedMask] = 0 degree = np.sum(AMat, axis=0) + np.sum(AMat, axis=1) + xdegree cond1 = np.allclose(degree, xdegree) cond2 = np.max(newdegree) <= N + Nextra if not cond1: print('WARNING: BAD DEGREE CALCULATION') if not cond2: print('WARNING: BAD NEWDEGREE CALCULATION') print('max(newdegree)=%d' % (np.max(newdegree))) print('N + Nextra: %d' % (N + Nextra)) return pairIDs def updateScoreMat_wholeELBO(ScoreMat, curModel, SS, doAllPairs=0): ''' Calculate upper-tri matrix of exact ELBO gap for each candidate pair Returns --------- Mraw : 2D array, size K x K. Uppert tri entries carry content. Mraw[j,k] gives the scalar ELBO gap for the potential merge of j,k ''' K = SS.K if doAllPairs: AGap = curModel.allocModel.calcHardMergeGap_AllPairs(SS) OGap = curModel.obsModel.calcHardMergeGap_AllPairs(SS) ScoreMat = AGap + OGap ScoreMat[np.tril_indices(SS.K)] = -np.inf for k, uID in enumerate(SS.uIDs): CountTracker[uID] = SS.getCountVec()[k] nUpdated = SS.K * (SS.K - 1) / 2 else: ScoreMat[np.tril_indices(SS.K)] = -np.inf # Rescore only specific pairs that are positive redoMask = ScoreMat > -1 * ELBO_GAP_ACCEPT_TOL for k, uID in enumerate(SS.uIDs): if CountTracker[uID] == 0: # Always precompute for brand-new comps redoMask[k, :] = 1 redoMask[:, k] = 1 else: absDiff = np.abs(SS.getCountVec()[k] - CountTracker[uID]) percDiff = absDiff / (CountTracker[uID] + 1e-10) if percDiff > 0.25: redoMask[k, :] = 1 redoMask[:, k] = 1 CountTracker[uID] = SS.getCountVec()[k] redoMask[np.tril_indices(SS.K)] = 0 aList, bList = np.unravel_index(
np.flatnonzero(redoMask)
numpy.flatnonzero
import numpy as np def orthogonal_procrustes_rotation(canonical_points, observed_points): ''' canonical_points: (N, 3) array observed_points: (N, 3) array ''' M_matrix = np.dot(observed_points.T, canonical_points) U, S, Vh = np.linalg.svd(M_matrix) R = np.dot(U, Vh) if np.linalg.det(R) < 0: S_mod = np.eye(3) S_mod[-1, -1] = -1 R = np.dot(np.dot(U, S_mod), Vh) return R def orthogonal_procrustes(canonical_points, observed_points): ''' canonical_points: (N, 3) array observed_points: (N, 3) array ''' canonical_points_mean = np.mean(canonical_points, axis=0) observed_points_mean = np.mean(observed_points, axis=0) observed_points_ = observed_points - observed_points_mean canonical_points_ = canonical_points - canonical_points_mean R = orthogonal_procrustes_rotation(canonical_points_, observed_points_) t = observed_points_mean - np.dot(R, canonical_points_mean.T) mean_error = np.mean(np.linalg.norm(observed_points - (np.dot(R, canonical_points.T).T + t), axis=-1)) return R, t, mean_error def batch_orthogonal_procrustes_rotation(canonical_points, observed_points, num_valid): ''' canonical_points: (B, N, 3) array observed_points: (B, N, 3) array num_valid: (B, ) array ''' M_matrix = np.matmul(np.transpose(observed_points, [0, 2, 1]), canonical_points) print(M_matrix) U, S, Vh =
np.linalg.svd(M_matrix)
numpy.linalg.svd
''' File contains functions used when training the NNs ''' import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout from tensorflow.keras.optimizers import Adam import os import pathlib class UniformScaler: ''' Class for a simple uniform scaler. Linearly transforms X such that all samples in X are in the range [0,1]. ''' min_val = 0 diff = 1 def fit(self, X): ''' Fit the parameters of the transformer based on the training data. Args: X (array) : The training data. Must have shape (nsamps, nfeatures). ''' # Check shape of X. if len(X.shape) != 2: raise ValueError("X does not have the correct shape. Must have shape (nsamps, nfeatures)") # Calculate min. value and largest diff. of all samples of X along the # 0th axis. Both min_val and diff can be vectors if required. self.min_val = np.min(X, axis=0) self.diff = np.max(X, axis=0) - np.min(X, axis=0) def transform(self, X): ''' Transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the transformed data. ''' x = np.subtract(X, self.min_val) return np.true_divide(x, self.diff) def inverse_transform(self, X): ''' Inverse transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the inverse transformed data. ''' x = np.multiply(X, self.diff) return np.add(x, self.min_val) class LogScaler: ''' Class for a log scaler. Linearly transforms logX such that all samples in logX are in the range [0,1]. ''' min_val = 0 diff = 1 def fit(self, X): ''' Fit the parameters of the transformer based on the training data. Args: X (array) : The training data. Must have shape (nsamps, nfeatures). ''' # Check shape of X. if len(X.shape) != 2: raise ValueError("X does not have the correct shape. Must have shape (nsamps, nfeatures)") # Make sure there are no negative values or zeros. if np.any(X<=0.): raise ValueError("X contains negative values or zeros.") X = np.log(X) # Calculate min. value and largest diff. of all samples of X along the # 0th axis. Both min_val and diff can be vectors if required. self.min_val = np.min(X, axis=0) self.diff = np.max(X, axis=0) - np.min(X, axis=0) def transform(self, X): ''' Transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the transformed data. ''' X = np.log(X) x = np.subtract(X, self.min_val) return np.true_divide(x, self.diff) def inverse_transform(self, X): ''' Inverse transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the inverse transformed data. ''' x = np.multiply(X, self.diff) return np.exp(np.add(x, self.min_val)) class StandardScaler: ''' Replacement for sklearn StandardScaler(). Rescales X such that it has zero mean and unit variance. ''' mean = 0 scale = 1 def fit(self, X): ''' Fit the parameters of the transformer based on the training data. Args: X (array) : The training data. Must have shape (nsamps, nfeatures). ''' # Check shape of X. if len(X.shape) != 2: raise ValueError("X does not have the correct shape. Must have shape (nsamps, nfeatures).") # Calculate the mean and strandard deviation of X along the 0th axis. # Can be vectors if needed. self.mean = np.mean(X, axis=0) self.scale = np.std(X, axis=0) def transform(self, X): ''' Transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the transformed data. ''' x = np.subtract(X, self.mean) return np.true_divide(x, self.scale) def inverse_transform(self, X): ''' Inverse transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the inverse transformed data. ''' x = np.multiply(X, self.scale) return np.add(x, self.mean) class Resampler: ''' Class for re-sampling the parameter space covered by a suite of simulations. The new samples can then be used to generate training data for the base model componenet emulators. .. note:: See the `Generating training samples for the base model componenets <../example_notebooks/resample_example.ipynb>`_ example. Args: simulation_samples (array) : The samples in the parameter space from the simulation suite. Default is None. parameter_ranges (array) : Ranges that define the extent of the parameter space. Should have shape (n, 2), where the first column is the minimum value for the n parameters, and the second column is the maximum. Default is None. use_latent_space (bool): If True the origonal simulation samples will be transfromed into an uncorrelated latent space for re-sampling. Default is False. ''' def __init__(self, simulation_samples=None, parameter_ranges=None, use_latent_space=False): # Make sure the user has passed either simulation_samples or parameter_ranges. if (simulation_samples is None) and (parameter_ranges is None): raise ValueError("Please provide either simulation samples or parameter ranges.") elif (parameter_ranges is None) and (use_latent_space is False): self.min =
np.min(simulation_samples, axis=0)
numpy.min
# -*- coding: UTF-8 -*- """ :Script: field_stats.py :Author: <EMAIL> :Modified: 2017-07-08 :Purpose: Descriptive statistics for tables using numpy. : :References: : https://github.com/numpy/numpy/blob/master/numpy/lib/nanfunctions.py : _replace_nan(a, val) - mask = np.isnan(a) - to get the mask : : a = [1, 2, np.nan, 3, np.nan, 4] : _, mask = _replace_nan(a, 0) # for mean : mask = array([False, False, True, False, True, False], dtype=bool) : : ---------------------------------------------------------------------: """ # ---- imports, formats, constants ---- import sys import numpy as np import arcpy ft = {'bool': lambda x: repr(x.astype('int32')), 'float': '{: 0.3f}'.format} np.set_printoptions(edgeitems=10, linewidth=80, precision=2, suppress=True, threshold=100, formatter=ft) np.ma.masked_print_option.set_display('-') # change to a single - script = sys.argv[0] # print this should you need to locate the script # ---- skewness and kurtosis section ----------------------------------------- def skew_kurt(a, avg, var_x, std_x, col=True, mom='both'): """Momental and unbiased skewness :Emulates the nan functions approach to calculating these parameters :when data contains nan values. :Requires: :--------- : a - an array of float/double values where there are at least 3 non-nan : numbers in each column. This is not checked since this situation : should never arise in real world data sets that have been checked. : moment - both, skew or kurt to return the moments :Notes: :------ : a= np.arange(16.).reshape(4,4) : mask = [0, 5, 10, 15] : masked_array = np.where(a == mask, np.nan, a) """ # a, mask = _replace_nan(a, 0.) # produce a masked of the nan values if len(a.shape) == 1: ax = 0 else: ax = [1, 0][col] # # ---- mean section ---- mask = np.isnan(a) cnt = np.sum(~mask, axis=ax, dtype=np.intp, keepdims=False) diff = a - avg sqrd = diff * diff cubed = sqrd * diff fourP = sqrd * sqrd x_3 = np.nansum(cubed, axis=ax) x_4 = np.nansum(fourP, axis=ax) skew_m = x_3 / (cnt * (std_x**3)) kurt_m = x_4 / (cnt * (var_x * var_x)) # skew_u = skew_m*((cnt**2)/((cnt-1)*(cnt-2))) # could add if needed if mom == 'skew': return skew_m elif mom == 'kurt': return kurt_m elif mom == 'both': return skew_m, kurt_m # ----------------------------------------------------------------------------- # functions def tweet(msg): """Produce a message (msg)for both arcpy and python """ m = "{}".format(msg) arcpy.AddMessage(m) print(m) print(arcpy.GetMessages()) def cal_stats(in_fc, col_names): """Calculate stats for an array of double types, with nodata (nan, None) : in the column. :Requires: :--------- : in_fc - input featureclass or table : col_names - the columns... numeric (floating point, double) : :Notes: :------ see the args tuple for examples of nan functions : np.nansum(b, axis=0) # by column : np.nansum(b, axis=1) # by row : c_nan = np.count_nonzero(~np.isnan(b), axis=0) count nan if needed """ a = arcpy.da.FeatureClassToNumPyArray(in_fc, col_names) # "*") b = a.view(np.float).reshape(len(a), -1) if len(a.shape) == 1: ax = 0 else: ax = [1, 0][True] # ax = [1, 0][colwise] colwise= True mask = np.isnan(b) cnt = np.sum(~mask, axis=ax, dtype=np.intp, keepdims=False) n_sum = np.nansum(b, axis=0) n_mean = np.nanmean(b, axis=0) n_var = np.nanvar(b, axis=0) n_std = np.nanstd(b, axis=0) sk, kurt = skew_kurt(b, avg=n_mean, var_x=n_var, std_x=n_std, col=True, mom='both') args = (col_names, n_sum, np.nanmin(b, axis=0), np.nanmax(b, axis=0),
np.nanmedian(b, axis=0)
numpy.nanmedian
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from PIL import Image import pickle # /////////////// Corruption Helpers /////////////// import skimage as sk from skimage.filters import gaussian from skimage import transform, feature from io import BytesIO from wand.image import Image as WandImage from wand.api import library as wandlibrary import wand.color as WandColor import ctypes from PIL import Image as PILImage from PIL import ImageDraw as draw import cv2 from scipy.ndimage import zoom as scizoom from scipy.ndimage.interpolation import map_coordinates import warnings import os from pkg_resources import resource_filename warnings.simplefilter("ignore", UserWarning) CORRUPTIONS = ['identity', 'shot_noise', 'impulse_noise', 'glass_blur', 'motion_blur', 'shear', 'scale', 'rotate', 'brightness', 'translate', 'stripe', 'fog', 'spatter', 'dotted_line', 'zigzag', 'canny_edges',] ALL_CORRUPTIONS = ['identity', 'gaussian_noise', 'shot_noise', 'impulse_noise', 'speckle_noise', 'pessimal_noise', 'gaussian_blur', 'glass_blur', 'defocus_blur', 'motion_blur', 'zoom_blur', 'fog', 'frost', 'snow', 'spatter', 'contrast', 'brightness', 'saturate', 'jpeg_compression', 'pixelate', 'elastic_transform', 'quantize', 'shear', 'rotate', 'scale', 'translate', 'line', 'dotted_line', 'zigzag', 'inverse', 'stripe', 'canny_edges',] with open("pessimal_noise_matrix", "rb") as f: pessimal_noise_matrix = pickle.load(f) def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method wandlibrary.MagickMotionBlurImage.argtypes = (ctypes.c_void_p, # wand ctypes.c_double, # radius ctypes.c_double, # sigma ctypes.c_double) # angle # Extend wand.image.Image class to include method signature class MotionImage(WandImage): def motion_blur(self, radius=0.0, sigma=0.0, angle=0.0): wandlibrary.MagickMotionBlurImage(self.wand, radius, sigma, angle) # modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py def plasma_fractal(mapsize=256, wibbledecay=3): """ Generate a heightmap using diamond-square algorithm. Return square 2d array, side length 'mapsize', of floats in range 0-255. 'mapsize' must be a power of two. """ assert (mapsize & (mapsize - 1) == 0) maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 def wibbledmean(array): return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square of points stepsize apart, calculate middle value as mean of points + wibble""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond of points stepsize apart, calculate middle value as mean of points + wibble""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max() def clipped_zoom(img, zoom_factor): h = img.shape[0] # ceil crop height(= crop width) ch = int(np.ceil(h / float(zoom_factor))) top = (h - ch) // 2 img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor), order=1) # trim off any extra pixels trim_top = (img.shape[0] - h) // 2 return img[trim_top:trim_top + h, trim_top:trim_top + h] def line_from_points(c0, r0, c1, r1): if c1 == c0: return np.zeros((28, 28)) # Decay function defined as log(1 - d/2) + 1 cc, rr = np.meshgrid(np.linspace(0, 27, 28), np.linspace(0, 27, 28), sparse=True) m = (r1 - r0) / (c1 - c0) f = lambda c: m * (c - c0) + r0 dist = np.clip(np.abs(rr - f(cc)), 0, 2.3 - 1e-10) corruption = np.log(1 - dist / 2.3) + 1 corruption = np.clip(corruption, 0, 1) l = np.int(np.floor(c0)) r = np.int(np.ceil(c1)) corruption[:,:l] = 0 corruption[:,r:] = 0 return np.clip(corruption, 0, 1) # /////////////// End Corruption Helpers /////////////// # /////////////// Corruptions /////////////// def identity(x): return np.array(x, dtype=np.float32) def gaussian_noise(x, severity=5): c = [.08, .12, 0.18, 0.26, 0.38][severity - 1] x = np.array(x) / 255. x = np.clip(x + np.random.normal(size=x.shape, scale=c), 0, 1) * 255 return x.astype(np.float32) def shot_noise(x, severity=5): c = [60, 25, 12, 5, 3][severity - 1] x = np.array(x) / 255. x = np.clip(np.random.poisson(x * c) / float(c), 0, 1) * 255 return x.astype(np.float32) def impulse_noise(x, severity=4): c = [.03, .06, .09, 0.17, 0.27][severity - 1] x = sk.util.random_noise(np.array(x) / 255., mode='s&p', amount=c) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def speckle_noise(x, severity=5): c = [.15, .2, 0.35, 0.45, 0.6][severity - 1] x = np.array(x) / 255. x = np.clip(x + x * np.random.normal(size=x.shape, scale=c), 0, 1) * 255 return x.astype(np.float32) def pessimal_noise(x, severity=1): c = 10.63 x = np.array(x) / 255. noise = np.random.normal(size=196) @ pessimal_noise_matrix scaled_noise = noise / np.linalg.norm(noise) * c / 4 tiled_noise = np.tile(scaled_noise.reshape(14, 14), (2, 2)) x = np.clip(x + tiled_noise, 0, 1) * 255 return x.astype(np.float32) def gaussian_blur(x, severity=2): c = [1, 2, 3, 4, 6][severity - 1] x = gaussian(np.array(x) / 255., sigma=c, multichannel=True) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def glass_blur(x, severity=1): # sigma, max_delta, iterations c = [(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2), (1.5, 4, 2)][severity - 1] x = np.uint8(gaussian(np.array(x) / 255., sigma=c[0], multichannel=True) * 255) # locally shuffle pixels for i in range(c[2]): for h in range(28 - c[1], c[1], -1): for w in range(28 - c[1], c[1], -1): if np.random.choice([True, False], 1)[0]: dx, dy = np.random.randint(-c[1], c[1], size=(2,)) h_prime, w_prime = h + dy, w + dx # swap x[h, w], x[h_prime, w_prime] = x[h_prime, w_prime], x[h, w] x = np.clip(gaussian(x / 255., sigma=c[0], multichannel=True), 0, 1) * 255 return x.astype(np.float32) def defocus_blur(x, severity=1): c = [(3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5)][severity - 1] x = np.array(x) / 255. kernel = disk(radius=c[0], alias_blur=c[1]) x = cv2.filter2D(x, -1, kernel) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def motion_blur(x, severity=1): c = [(10, 3), (15, 5), (15, 8), (15, 12), (20, 15)][severity - 1] output = BytesIO() x.save(output, format='PNG') x = MotionImage(blob=output.getvalue()) x.motion_blur(radius=c[0], sigma=c[1], angle=np.random.uniform(-45, 45)) x = cv2.imdecode(np.frombuffer(x.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) return np.clip(np.array(x), 0, 255).astype(np.float32) def zoom_blur(x, severity=5): c = [np.arange(1, 1.11, 0.01), np.arange(1, 1.16, 0.01), np.arange(1, 1.21, 0.02), np.arange(1, 1.26, 0.02), np.arange(1, 1.31, 0.03)][severity - 1] x = (np.array(x) / 255.).astype(np.float32) out = np.zeros_like(x) for zoom_factor in c: out += clipped_zoom(x, zoom_factor) x = (x + out) / (len(c) + 1) return np.clip(x, 0, 1) * 255 def fog(x, severity=5): c = [(1.5, 2), (2., 2), (2.5, 1.7), (2.5, 1.5), (3., 1.4)][severity - 1] x = np.array(x) / 255. max_val = x.max() x = x + c[0] * plasma_fractal(wibbledecay=c[1])[:28, :28] x = np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255 return x.astype(np.float32) def frost(x, severity=5): c = [(1, 0.4), (0.8, 0.6), (0.7, 0.7), (0.65, 0.7), (0.6, 0.75)][severity - 1] idx = np.random.randint(5) filename = [resource_filename(__name__, 'frost/frost1.png'), resource_filename(__name__, 'frost/frost2.png'), resource_filename(__name__, 'frost/frost3.png'), resource_filename(__name__, 'frost/frost4.jpg'), resource_filename(__name__, 'frost/frost5.jpg'), resource_filename(__name__, 'frost/frost6.jpg')][idx] frost = cv2.imread(filename, 0) # randomly crop and convert to rgb x_start, y_start = np.random.randint(0, frost.shape[0] - 28), np.random.randint(0, frost.shape[1] - 28) frost = frost[x_start:x_start + 28, y_start:y_start + 28] x = np.clip(c[0] * np.array(x) + c[1] * frost, 0, 255) return x.astype(np.float32) def snow(x, severity=5): c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3, 2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4, 0.9, 12, 8, 0.7), (0.55, 0.3, 4.5, 0.85, 12, 8, 0.65), (0.55, 0.3, 2.5, 0.85, 12, 12, 0.55)][severity - 1] x = np.array(x, dtype=np.float32) / 255. snow_layer = np.random.normal(size=x.shape, loc=c[0], scale=c[1]) # [:2] for monochrome snow_layer = clipped_zoom(snow_layer, c[2]) snow_layer[snow_layer < c[3]] = 0 snow_layer = PILImage.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L') output = BytesIO() snow_layer.save(output, format='PNG') snow_layer = MotionImage(blob=output.getvalue()) snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=np.random.uniform(-135, -45)) snow_layer = cv2.imdecode(np.frombuffer(snow_layer.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) / 255. x = c[6] * x + (1 - c[6]) * np.maximum(x, x * 1.5 + 0.5) x = np.clip(x + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255 return x.astype(np.float32) def spatter(x, severity=4): c = [(0.65, 0.3, 4, 0.69, 0.6, 0), (0.65, 0.3, 3, 0.68, 0.6, 0), (0.65, 0.3, 2, 0.68, 0.5, 0), (0.65, 0.3, 1, 0.65, 1.5, 1), (0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1] x = np.array(x, dtype=np.float32) / 255. liquid_layer = np.random.normal(size=x.shape, loc=c[0], scale=c[1]) liquid_layer = gaussian(liquid_layer, sigma=c[2]) liquid_layer[liquid_layer < c[3]] = 0 m = np.where(liquid_layer > c[3], 1, 0) m = gaussian(m.astype(np.float32), sigma=c[4]) m[m < 0.8] = 0 # mud spatter color = 63 / 255. * np.ones_like(x) * m x *= (1 - m) return np.clip(x + color, 0, 1) * 255 def contrast(x, severity=4): c = [0.4, .3, .2, .1, .05][severity - 1] x = np.array(x) / 255. means = np.mean(x, axis=(0, 1), keepdims=True) x = np.clip((x - means) * c + means, 0, 1) * 255 return x.astype(np.float32) def brightness(x, severity=5): c = [.1, .2, .3, .4, .5][severity - 1] x = np.array(x) / 255. x = sk.color.gray2rgb(x) x = sk.color.rgb2hsv(x) x[:, :, 2] = np.clip(x[:, :, 2] + c, 0, 1) x = sk.color.hsv2rgb(x) x = sk.color.rgb2gray(x) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def saturate(x, severity=5): c = [(0.3, 0), (0.1, 0), (2, 0), (5, 0.1), (20, 0.2)][severity - 1] x = np.array(x) / 255. x = sk.color.gray2rgb(x) x = sk.color.rgb2hsv(x) x = np.clip(x * c[0] + c[1], 0, 1) x = sk.color.hsv2rgb(x) x = sk.color.rgb2gray(x) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def jpeg_compression(x, severity=5): c = [25, 18, 15, 10, 7][severity - 1] output = BytesIO() x.save(output, 'JPEG', quality=c) x = PILImage.open(output) return np.array(x).astype(np.float32) def pixelate(x, severity=3): c = [0.6, 0.5, 0.4, 0.3, 0.25][severity - 1] x = x.resize((int(28 * c), int(28 * c)), PILImage.BOX) x = x.resize((28, 28), PILImage.BOX) return np.array(x).astype(np.float32) # mod of https://gist.github.com/erniejunior/601cdf56d2b424757de5 def elastic_transform(image, severity=1): c = [(28 * 2, 28 * 0.7, 28 * 0.1), (28 * 2, 28 * 0.08, 28 * 0.2), (28 * 0.05, 28 * 0.01, 28 * 0.02), (28 * 0.07, 28 * 0.01, 28 * 0.02), (28 * 0.12, 28 * 0.01, 28 * 0.02)][severity - 1] image = np.array(image, dtype=np.float32) / 255. shape = image.shape # random affine center_square = np.float32(shape) // 2 square_size = min(shape) // 3 pts1 = np.float32([center_square + square_size, [center_square[0] + square_size, center_square[1] - square_size], center_square - square_size]) pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32) M = cv2.getAffineTransform(pts1, pts2) image = cv2.warpAffine(image, M, shape, borderMode=cv2.BORDER_CONSTANT) dx = (gaussian(np.random.uniform(-1, 1, size=shape), c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32) dy = (gaussian(np.random.uniform(-1, 1, size=shape), c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32) x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0])) indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)) return np.clip(map_coordinates(image, indices, order=1, mode='constant').reshape(shape), 0, 1) * 255 def quantize(x, severity=5): bits = [5, 4, 3, 2, 1][severity-1] x = np.array(x).astype(np.float32) x *= (2 ** bits - 1) / 255. x = x.round() x *= 255. / (2 ** bits - 1) return x def shear(x, severity=2): c = [0.2, 0.4, 0.6, 0.8, 1.][severity-1] # Randomly switch directions bit = np.random.choice([-1, 1], 1)[0] c *= bit aff = transform.AffineTransform(shear=c) # Calculate translation in order to keep image center (13.5, 13.5) fixed a1, a2 = aff.params[0,:2] b1, b2 = aff.params[1,:2] a3 = 13.5 * (1 - a1 - a2) b3 = 13.5 * (1 - b1 - b2) aff = transform.AffineTransform(shear=c, translation=[a3, b3]) x = np.array(x) / 255. x = transform.warp(x, inverse_map=aff) x = np.clip(x, 0, 1) * 255. return x.astype(np.float32) def rotate(x, severity=2): c = [0.2, 0.4, 0.6, 0.8, 1.][severity-1] # Randomly switch directions bit = np.random.choice([-1, 1], 1)[0] c *= bit aff = transform.AffineTransform(rotation=c) a1, a2 = aff.params[0,:2] b1, b2 = aff.params[1,:2] a3 = 13.5 * (1 - a1 - a2) b3 = 13.5 * (1 - b1 - b2) aff = transform.AffineTransform(rotation=c, translation=[a3, b3]) x = np.array(x) / 255. x = transform.warp(x, inverse_map=aff) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def scale(x, severity=3): c = [(1/.9, 1/.9), (1/.8, 1/.8), (1/.7, 1/.7), (1/.6, 1/.6), (1/.5, 1/.5)][severity-1] aff = transform.AffineTransform(scale=c) a1, a2 = aff.params[0,:2] b1, b2 = aff.params[1,:2] a3 = 13.5 * (1 - a1 - a2) b3 = 13.5 * (1 - b1 - b2) aff = transform.AffineTransform(scale=c, translation=[a3, b3]) x = np.array(x) / 255. x = transform.warp(x, inverse_map=aff) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def translate(x, severity=3): c = [1, 2, 3, 4, 5][severity-1] bit = np.random.choice([-1, 1], 2) dx = c * bit[0] dy = c * bit[1] aff = transform.AffineTransform(translation=[dx, dy]) x = np.array(x) / 255. x = transform.warp(x, inverse_map=aff) x =
np.clip(x, 0, 1)
numpy.clip
import datajoint as dj import numpy as np from . import experiment, ephys, get_schema_name, foraging_analysis from .model.bandit_model_comparison import BanditModelComparison schema = dj.schema(get_schema_name('foraging_model')) @schema class ModelClass(dj.Lookup): definition = """ model_class: varchar(32) # e.g. LossCounting, RW1972, Hattori2019 --- desc='': varchar(100) """ contents = [ ['LossCounting', 'Count the number of losses and switch when the number exceeds a threshold'], ['RW1972', 'Rescorla–Wagner model (single learning rate)'], ['LNP', 'Linear-nonlinear-Poisson (exponential recency-weighted average)'], ['Bari2019', 'Bari et al 2019 (different learning rates for chosen/unchosen)'], ['Hattori2019', 'Hattori et al 2019 (different learning rates for rew/unrew/unchosen)'], ['CANN', "Abstracted from Ulises' continuous attractor neural network"], ['Synaptic', "Abstracted from Ulises' synaptic model"] ] @schema class ModelParam(dj.Lookup): definition = """ model_param: varchar(32) # e.g. learn_rate, epsilon, w_tau1 --- param_notation: varchar(32) # r'$\tau_1$' """ contents = [ ['loss_count_threshold_mean', r'$\mu_{LC}$'], ['loss_count_threshold_std', r'$\sigma_{LC}$'], ['tau1', r'$\tau_1$'], ['tau2', r'$\tau_2$'], ['w_tau1', r'$w_{\tau_1}$'], ['learn_rate', r'$\alpha$'], ['learn_rate_rew', r'$\alpha_{rew}$'], ['learn_rate_unrew', r'$\alpha_{unr}$'], ['forget_rate', r'$\delta$'], ['softmax_temperature', r'$\sigma$'], ['epsilon', r'$\epsilon$'], ['biasL', r'$b_L$'], ['biasR', r'$b_R$'], ['choice_step_size', r'$\alpha_c$'], ['choice_softmax_temperature', r'$\sigma_c$'], ['tau_cann', r'$\tau_{CANN}$'], ['I0', r'$I_0$'], ['rho', r'$\rho$'] ] @schema class Model(dj.Manual): definition = """ model_id: int --- -> ModelClass model_notation: varchar(500) n_params: int # Effective param count is_bias: bool is_epsilon_greedy: bool is_softmax: bool is_choice_kernel: bool desc='': varchar(500) # Long name fit_cmd: blob # Fitting command compatible with the Dynamic-Foraing repo """ class Param(dj.Part): definition = """ -> master -> ModelParam --- param_idx: int # To keep params the same order as the original definition in MODELS, hence `fit_result.x` param_lower_bound: float param_higher_bound: float """ @classmethod def load_models(cls): # Original definition from the Dynamic-Foraging repo, using the format: [forager, [para_names], [lower bounds], [higher bounds], desc(optional)] MODELS = [ # No bias ['LossCounting', ['loss_count_threshold_mean', 'loss_count_threshold_std'], [0, 0], [40, 10], 'LossCounting: mean, std, no bias'], ['RW1972_epsi', ['learn_rate', 'epsilon'], [0, 0], [1, 1], 'SuttonBarto: epsilon, no bias'], ['RW1972_softmax', ['learn_rate', 'softmax_temperature'], [0, 1e-2], [1, 15], 'SuttonBarto: softmax, no bias'], ['LNP_softmax', ['tau1', 'softmax_temperature'], [1e-3, 1e-2], [100, 15], 'Sugrue2004, Corrado2005: one tau, no bias'], ['LNP_softmax', ['tau1', 'tau2', 'w_tau1', 'softmax_temperature'], [1e-3, 1e-1, 0, 1e-2], [15, 40, 1, 15], 'Corrado2005, Iigaya2019: two taus, no bias'], ['Bari2019', ['learn_rate', 'forget_rate', 'softmax_temperature'], [0, 0, 1e-2], [1, 1, 15], 'RL: chosen, unchosen, softmax, no bias'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'softmax_temperature'], [0, 0, 1e-2], [1, 1, 15], 'RL: rew, unrew, softmax, no bias'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature'], [0, 0, 0, 1e-2], [1, 1, 1, 15], 'RL: rew, unrew, unchosen, softmax, no bias'], # With bias ['RW1972_epsi', ['learn_rate', 'epsilon', 'biasL'], [0, 0, -0.5], [1, 1, 0.5], 'SuttonBarto: epsilon'], ['RW1972_softmax', ['learn_rate', 'softmax_temperature', 'biasL'], [0, 1e-2, -5], [1, 15, 5], 'SuttonBarto: softmax'], ['LNP_softmax', ['tau1', 'softmax_temperature', 'biasL'], [1e-3, 1e-2, -5], [100, 15, 5], 'Sugrue2004, Corrado2005: one tau'], ['LNP_softmax', ['tau1', 'tau2', 'w_tau1', 'softmax_temperature', 'biasL'], [1e-3, 1e-1, 0, 1e-2, -5], [15, 40, 1, 15, 5], 'Corrado2005, Iigaya2019: two taus'], ['Bari2019', ['learn_rate', 'forget_rate', 'softmax_temperature', 'biasL'], [0, 0, 1e-2, -5], [1, 1, 15, 5], 'RL: chosen, unchosen, softmax'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'softmax_temperature', 'biasL'], [0, 0, 1e-2, -5], [1, 1, 15, 5], 'RL: rew, unrew, softmax'], ['Hattori2019', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature', 'biasL'], [0, 0, 0, 1e-2, -5], [1, 1, 1, 15, 5], '(full Hattori) RL: rew, unrew, unchosen, softmax'], # With bias and choice kernel ['RW1972_softmax_CK', ['learn_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 1e-2, -5, 0, 1e-2], [1, 15, 5, 1, 20], 'SuttonBarto: softmax, choice kernel'], ['LNP_softmax_CK', ['tau1', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [1e-3, 1e-2, -5, 0, 1e-2], [100, 15, 5, 1, 20], 'Sugrue2004, Corrado2005: one tau, choice kernel'], ['LNP_softmax_CK', ['tau1', 'tau2', 'w_tau1', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [1e-3, 1e-1, 0, 1e-2, -5, 0, 1e-2], [15, 40, 1, 15, 5, 1, 20], 'Corrado2005, Iigaya2019: two taus, choice kernel'], ['Bari2019_CK', ['learn_rate', 'forget_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 1e-2, -5, 0, 1e-2], [1, 1, 15, 5, 1, 20], 'RL: chosen, unchosen, softmax, choice kernel'], ['Hattori2019_CK', ['learn_rate_rew', 'learn_rate_unrew', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 1e-2, -5, 0, 1e-2], [1, 1, 15, 5, 1, 20], 'RL: rew, unrew, softmax, choice kernel'], ['Hattori2019_CK', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 0, 1e-2, -5, 0, 1e-2], [1, 1, 1, 15, 5, 1, 20], 'Hattori + choice kernel'], ['Hattori2019_CK', ['learn_rate_rew', 'learn_rate_unrew', 'forget_rate', 'softmax_temperature', 'biasL', 'choice_step_size', 'choice_softmax_temperature'], [0, 0, 0, 1e-2, -5, 1, 1e-2], [1, 1, 1, 15, 5, 1, 20], 'choice_step_size fixed at 1 --> Bari 2019: only the last choice matters'], ['CANN', ['learn_rate', 'tau_cann', 'softmax_temperature', 'biasL'], [0, 0, 1e-2, -5], [1, 1000, 15, 5], "Ulises' CANN model, ITI decay, with bias"], ['Synaptic', ['learn_rate', 'forget_rate', 'I0', 'rho', 'softmax_temperature', 'biasL'], [0, 0, 0, 0, 1e-2, -5], [1, 1, 10, 1, 15, 5], "Ulises' synaptic model"], ['Synaptic', ['learn_rate', 'forget_rate', 'I0', 'rho', 'softmax_temperature', 'biasL'], [0, 0, 0, -100, 1e-2, -5], [1, 1, 10, 100, 15, 5], "Ulises' synaptic model (unconstrained \\rho)"], ['Synaptic', ['learn_rate', 'forget_rate', 'I0', 'rho', 'softmax_temperature', 'biasL'], [0, 0, 0, -1e6, 1e-2, -5], [1, 1, 1e6, 1e6, 15, 5], "Ulises' synaptic model (really unconstrained I_0 and \\rho)"], # ['Synaptic_W>0', ['learn_rate', 'forget_rate', 'I0', 'rho', 'softmax_temperature', 'biasL'], # [0, 0, 0, -100, 1e-2, -5], [1, 1, 10, 100, 15, 5], "Ulises' synaptic model (W > 0, partially constrained I_0 and \\rho)"], # ['Synaptic_W>0', ['learn_rate', 'forget_rate', 'I0', 'rho', 'softmax_temperature', 'biasL'], # [0, 0, 0, -1e6, 1e-2, -5], [1, 1, 10, 1e6, 15, 5], "Ulises' synaptic model (W > 0, unconstrained I_0 and \\rho)"], ] # Parse and insert MODELS for model_id, model in enumerate(MODELS): # Insert Model model_class = [mc for mc in ModelClass.fetch("model_class") if mc in model[0]][0] is_bias = True if any(['bias' in param for param in model[1]]) else False is_epsilon_greedy = True if 'epsilon' in model[1] else False is_softmax = True if 'softmax_temperature' in model[1] else False is_choice_kernel = True if 'choice_step_size' in model[1] else False n_params = 0 param_notation = [] # Insert Model for param, lb, ub in zip(*model[1:4]): if lb < ub: n_params += 1 # Only count effective params param_notation.append((ModelParam & f'model_param="{param}"').fetch1("param_notation")) else: param_notation.append((ModelParam & f'model_param="{param}"').fetch1("param_notation") + f'= {lb}') param_notation = ', '.join(param_notation) model_notation = f'{model[0]} ({param_notation})' desc = model[4] if len(model) == 5 else '' # model[0] + ': ' + ', '.join(model[1]) # Use the user-defined string if exists Model.insert1(dict(model_id=model_id, model_class=model_class, model_notation=model_notation, n_params=n_params, is_bias=is_bias, is_epsilon_greedy=is_epsilon_greedy, is_softmax=is_softmax, is_choice_kernel=is_choice_kernel, desc=desc, fit_cmd=model[:4]), skip_duplicates=True) # Insert Model.Param for idx, (param, lb, ub) in enumerate(zip(*model[1:4])): # The result table should save both effective and fixed params Model.Param.insert1(dict(model_id=model_id, model_param=param, param_idx=idx, param_lower_bound=lb, param_higher_bound=ub), skip_duplicates=True) return @schema class ModelComparison(dj.Lookup): # Define model comparison groups definition = """ model_comparison_idx: smallint --- desc='': varchar(200) """ class Competitor(dj.Part): definition = """ -> master competitor_idx: int --- -> Model """ @classmethod def load(cls): model_comparisons = [ ['all_models', Model], ['models_with_bias', Model & 'is_bias = 1'], ['models_with_bias_and_choice_kernel', Model & 'is_bias = 1' & 'is_choice_kernel'] ] # Parse and insert ModelComparisonGroup for mc_idx, (desc, models) in enumerate(model_comparisons): cls.insert1(dict(model_comparison_idx=mc_idx, desc=desc), skip_duplicates=True) cls.Competitor.insert([ dict(model_comparison_idx=mc_idx, competitor_idx=idx, model_id=model_id) for idx, model_id in enumerate(models.fetch('model_id', order_by='model_id')) ], skip_duplicates=True) @schema class FittedSessionModel(dj.Computed): definition = """ -> experiment.Session -> Model --- n_trials: int n_params: int # Number of effective params (return from the fitting function; should be the same as Model.n_params) log_likelihood: float # raw log likelihood of the model aic: float # AIC bic: float # BIC lpt: float # Likelihood-Per-Trial raw lpt_aic: float # Likelihood-Per-Trial with AIC penalty lpt_bic: float # Likelihood-Per-Trial with AIC penalty prediction_accuracy: float # non-cross-validated prediction accuracy cross_valid_accuracy_fit: float # cross-validated accuracy (fitting set) cross_valid_accuracy_test: float # cross-validated accuracy (testing set) cross_valid_accuracy_test_bias_only = NULL: float # accuracy predicted only by bias (testing set) """ key_source = ((foraging_analysis.SessionTaskProtocol() & 'session_task_protocol = 100' & 'session_real_foraging' ) * Model()) # * experiment.Session() & 'session_date > "2021-01-01"' # & 'model_id > 21' # & 'subject_id = 482350' class Param(dj.Part): definition = """ -> master -> Model.Param --- fitted_value: float """ class TrialLatentVariable(dj.Part): """ To save all fitted latent variables that will be correlated to ephys Notes: 1. In the original definition (Sutton&Barto book), the updated value after choice of trial t is Q(t+1), not Q(t)! behavior & ephys: --> ITI(t-1) --> | --> choice (t), reward(t) --> ITI (t) --> | model: Q(t) --> choice prob(t) --> choice (t), reward(t) | --> Q(t+1) --> choice prob (t+1) Therefore: the ITI of trial t -> t+1 corresponds to Q(t+1) 2. To make it more intuitive, when they are inserted here, Q is offset by -1, such that ephys and model are aligned: behavior & ephys: --> ITI(t-1) --> | --> choice (t), reward(t) --> ITI (t) --> | model: Q(t-1) --> choice prob(t-1) | --> choice (t), reward(t) --> Q(t) --> choice prob (t) | This will eliminate the need of adding an offset=-1 whenever ephys and behavioral model are compared. 3. By doing this, I also save the update after the last trial (useless for fitting; useful for ephys) , whereas the first trial is discarded, which was randomly initialized anyway """ definition = """ -> master -> experiment.SessionTrial -> experiment.WaterPort --- action_value=null: float choice_prob=null: float choice_kernel=null: float """ def make(self, key): choice_history, reward_history, iti, p_reward, q_choice_outcome = get_session_history(key) model_str = (Model & key).fetch('fit_cmd') # --- Actual fitting --- if (Model & key).fetch1('model_class') in ['CANN']: # Only pass ITI if this is CANN model (to save some time?) model_comparison_this = BanditModelComparison(choice_history, reward_history, iti=iti, model=model_str) else: model_comparison_this = BanditModelComparison(choice_history, reward_history, iti=None, model=model_str) model_comparison_this.fit(pool='', plot_predictive=None, if_verbose=False) # Parallel on sessions, not on DE model_comparison_this.cross_validate(pool='', k_fold=2, if_verbose=False) # ------ Grab results ---- fit_result = model_comparison_this.results_raw[0] cross_valid_result = model_comparison_this.prediction_accuracy_CV.iloc[0] # Insert session fitted stats self.insert1(dict(**key, n_trials=fit_result.n_trials, n_params=fit_result.k_model, log_likelihood=fit_result.log_likelihood, aic=fit_result.AIC, bic=fit_result.BIC, lpt=fit_result.LPT, lpt_aic=fit_result.LPT_AIC, lpt_bic=fit_result.LPT_BIC, prediction_accuracy=fit_result.prediction_accuracy, cross_valid_accuracy_fit=np.mean(cross_valid_result.prediction_accuracy_fit), cross_valid_accuracy_test=np.mean(cross_valid_result.prediction_accuracy_test), cross_valid_accuracy_test_bias_only=np.mean(cross_valid_result.prediction_accuracy_test_bias_only), ) ) # Insert fitted params (`order_by` is critical!) self.Param.insert([dict(**key, model_param=param, fitted_value=x) for param, x in zip((Model.Param & key).fetch('model_param', order_by='param_idx'), fit_result.x)]) # Insert latent variables (trial number offset -1 here!!) choice_prob = fit_result.predictive_choice_prob[:, 1:] # Model must have this action_value = fit_result.action_value[:, 1:] if hasattr(fit_result, 'action_value') else np.full_like(choice_prob, np.nan) choice_kernel = fit_result.choice_kernel[:, 1:] if hasattr(fit_result, 'choice_kernel') else np.full_like(choice_prob, np.nan) for water_port_idx, water_port in enumerate(['left', 'right']): key['water_port'] = water_port self.TrialLatentVariable.insert( [{**key, 'trial': i, 'choice_prob': prob, 'action_value': value, 'choice_kernel': ck} for i, prob, value, ck in zip(q_choice_outcome.fetch('trial', order_by='trial'), choice_prob[water_port_idx, :], action_value[water_port_idx, :], choice_kernel[water_port_idx, :])] ) @schema class FittedSessionModelComparison(dj.Computed): definition = """ -> experiment.Session -> ModelComparison """ key_source = (experiment.Session & FittedSessionModel) * ModelComparison # Only include already-fitted sessions class RelativeStat(dj.Part): definition = """ -> master -> Model --- relative_likelihood_aic: float relative_likelihood_bic: float model_weight_aic: float model_weight_bic: float log10_bf_aic: float # log_10 (Bayes factor) log10_bf_bic: float # log_10 (Bayes factor) """ class BestModel(dj.Part): definition = """ -> master --- best_aic: int # model_id of the model with the smallest aic best_bic: int # model_id of the model with the smallest bic best_cross_validation_test: int # model_id of the model with the highest cross validation test accuracy """ def make(self, key): competing_models = ModelComparison.Competitor & key results = (FittedSessionModel & key & competing_models).fetch(format='frame').reset_index() if len(results) < len(competing_models): # not all fitting results of competing models are ready return delta_aic = results.aic - np.min(results.aic) delta_bic = results.bic - np.min(results.bic) # Relative likelihood = Bayes factor = p_model/p_best = exp( - delta_aic / 2) results['relative_likelihood_aic'] = np.exp(- delta_aic / 2) results['relative_likelihood_bic'] = np.exp(- delta_bic / 2) # Model weight = Relative likelihood / sum(Relative likelihood) results['model_weight_aic'] = results['relative_likelihood_aic'] / np.sum(results['relative_likelihood_aic']) results['model_weight_bic'] = results['relative_likelihood_bic'] / np.sum(results['relative_likelihood_bic']) # log_10 (Bayes factor) = log_10 (exp( - delta_aic / 2)) = (-delta_aic / 2) / log(10) results['log10_bf_aic'] = - delta_aic / 2 / np.log(10) # Calculate log10(Bayes factor) (relative likelihood) results['log10_bf_bic'] = - delta_bic / 2 / np.log(10) # Calculate log10(Bayes factor) (relative likelihood) best_aic = results.model_id[np.argmin(results.aic)] best_bic = results.model_id[np.argmin(results.bic)] best_cross_validation_test = results.model_id[np.argmax(results.cross_valid_accuracy_test)] results['model_comparison_idx'] = key['model_comparison_idx'] self.insert1(key) self.RelativeStat.insert(results, ignore_extra_fields=True, skip_duplicates=True) self.BestModel.insert1({**key, 'best_aic': best_aic, 'best_bic': best_bic, 'best_cross_validation_test': best_cross_validation_test}) # ============= Helpers ============= def get_session_history(session_key, remove_ignored=True): # Fetch data q_choice_outcome = (experiment.WaterPortChoice.proj(choice='water_port') * experiment.BehaviorTrial.proj('outcome', 'early_lick') * experiment.SessionBlock.BlockTrial) & session_key if remove_ignored: q_choice_outcome &= 'outcome != "ignore"' # TODO: session QC (warm-up and decreased motivation etc.) # -- Choice and reward -- # 0: left, 1: right, np.nan: ignored _choice = q_choice_outcome.fetch('choice', order_by='trial') _choice[_choice == 'left'] = 0 _choice[_choice == 'right'] = 1 _reward = q_choice_outcome.fetch('outcome', order_by='trial') == 'hit' reward_history = np.zeros([2, len(_reward)]) # .shape = (2, N trials) for c in (0, 1): reward_history[c, _choice == c] = (_reward[_choice == c] == True).astype(int) if remove_ignored: # For model fitting, turn to integer choice_history =
np.array([_choice])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 30 13:12:06 2020 @author: peter """ import numpy as np from pathlib import Path import shutil import json import tifffile import quantities as pq import scipy.interpolate as interp import scipy.ndimage as ndimage import scipy.signal as signal import pandas as pd import datetime import pdb import re import f.general_functions as gf import f.ephys_functions as ef def get_events_exclude_surround_events( tc, std, surround_tc, surround_std, z_score=3, surround_z=7, exclude_first=0, max_overlap=0.75, excluded_circle=None, excluded_dead=None, ): ev = detect_events(tc, std, z_score=z_score, exclude_first=exclude_first) surrounds_ev = detect_events( tc, std, z_score=surround_z, exclude_first=exclude_first ) excluded_dict = {} dict_drop = [] for key in ev.keys(): if type(key) == str: continue if key not in surrounds_ev.keys(): continue sur_e = surrounds_ev[key].T e = ev[key].T # if a detected surround event overlaps for more than max_overlap, then remove # detects any overlaps overlapping = np.logical_and( e[:, 0, None] < sur_e[None, :, 1], e[:, 1, None] >= sur_e[None, :, 0] ) if not np.any(overlapping): continue drop = [] wh = np.where(overlapping) # now detect size of overlap and delete if proportionally greater than max overlap for idx in range(len(wh[0])): overlap = min(e[wh[0][idx], 1], sur_e[wh[1][idx], 1]) - max( e[wh[0][idx], 0], sur_e[wh[1][idx], 0] ) if overlap > max_overlap * (e[wh[0][idx], 1] - e[wh[0][idx], 0]): drop.append(wh[0][idx]) # pdb.set_trace() exc_e = np.array([x for ii, x in enumerate(e) if ii in drop]) keep_e = np.array([x for ii, x in enumerate(e) if ii not in drop]) excluded_dict[key] = exc_e.T if len(keep_e) > 0: ev[key] = keep_e.T else: dict_drop.append(key) # delete empty fields for key in dict_drop: del ev[key] # exclude ROIs on edge of illumination if excluded_circle is not None: circle_dict = {} for idx in excluded_circle: if idx in ev.keys(): circle_dict[idx] = ev[idx] del ev[idx] ev["excluded_circle_events"] = circle_dict # exclude ROIs on edge of illumination if excluded_dead is not None: dead_dict = {} if len(excluded_dead) > 0: for idx in excluded_dead: if idx in ev.keys(): dead_dict[idx] = ev[idx] del ev[idx] else: pass ev["excluded_dead_events"] = dead_dict # include the surround data ev["surround_events"] = surrounds_ev ev["excluded_events"] = excluded_dict return ev def get_events_exclude_simultaneous_events( tc, std, z_score=3, exclude_first=0, max_events=5, overlap=0.75, excluded_circle=None, excluded_dead=None, ): ev, excluded_dict = detect_events_remove_simultaneous( tc, std, z_score=z_score, exclude_first=exclude_first, max_overlap=overlap, max_events=max_events, ) # exclude ROIs on edge of illumination if excluded_circle is not None: circle_dict = {} for idx in excluded_circle: if idx in ev.keys(): circle_dict[idx] = ev[idx] del ev[idx] ev["excluded_circle_events"] = circle_dict # exclude ROIs on edge of illumination if excluded_dead is not None: dead_dict = {} if len(excluded_dead) > 0: for idx in excluded_dead: if idx in ev.keys(): dead_dict[idx] = ev[idx] del ev[idx] else: pass ev["excluded_dead_events"] = dead_dict ev["excluded_events"] = excluded_dict ev["surround_events"] = excluded_dict print("Check this - surrounds and exclude the same") return ev def detect_events_remove_simultaneous( tc, std, z_score=3, exclude_first=0, max_events=5, max_overlap=0.5 ): tc_filt = ndimage.gaussian_filter(tc, (0, 3)) std_filt = ndimage.gaussian_filter(std, (0, 3)) tc_filt[:, :exclude_first] = 1 events = np.abs(tc_filt - 1) > z_score * std_filt # Use closing to join split events and remove small events struc = np.zeros((3, 5)) struc[1, :] = 1 events = ndimage.binary_opening(events, structure=struc, iterations=2) events = ndimage.binary_closing(events, structure=struc, iterations=2) # now count simultaneous events and remove those where they are num_events = np.sum(events, 0) excluded_events = num_events > max_events excluded_time = np.where(excluded_events)[0] wh = np.where(events) idxs, locs = np.unique(wh[0], return_index=True) locs = np.append(locs, len(wh[0])) excluded_result = {} result = {} for i, idx in enumerate(idxs): llocs = wh[1][locs[i] : locs[i + 1]] split_locs = np.array(recursive_split_locs(llocs)) # check if they have both positive and negative going - messes with integration later t = tc_filt[idx, :] corr_locs = correct_event_signs(t, split_locs) overlap = np.sum(np.isin(llocs, excluded_time).astype(int)) / len(llocs) if overlap > max_overlap: excluded_result[idx] = corr_locs.T else: result[idx] = corr_locs.T result["tc_filt"] = tc_filt result["tc"] = tc return result, excluded_result def get_surround_masks(masks, surround_rad=20, dilate=True): def get_bounding_circle_radius(masks): rows, cols = np.any(masks, axis=-1), np.any(masks, axis=-2) rs = np.apply_along_axis(first_last, -1, rows) cs = np.apply_along_axis(first_last, -1, cols) centers = np.array( [rs[:, 0] + (rs[:, 1] - rs[:, 0]) / 2, cs[:, 0] + (cs[:, 1] - cs[:, 0]) / 2] ).T # bounding radius is the hypotenuse /2 radii = np.sqrt((cs[:, 0] - cs[:, 0]) ** 2 + (rs[:, 1] - rs[:, 0]) ** 2) / 2 return radii, centers def first_last(arr_1d): return np.where(arr_1d)[0][[0, -1]] # avoid border effects/bleedthrough by dilating existing rois structure = np.ones((3, 3, 3)) structure[0::2, ...] = 0 dilated_masks = ndimage.binary_dilation(masks, structure=structure, iterations=4) roi_rads, centers = get_bounding_circle_radius(dilated_masks) x, y = np.indices(masks.shape[-2:]) rs = np.sqrt( (x[None, ...] - centers[:, 0, None, None]) ** 2 + (y[None, ...] - centers[:, 1, None, None]) ** 2 ) surround_roi = np.logical_xor( dilated_masks, rs < roi_rads[:, None, None] + surround_rad ) return surround_roi def get_surround_masks_cellfree(masks, surround_rad=50, dilate=True): all_masks = np.any(masks, axis=0) # avoid border effects/bleedthrough by dilating existing rois structure = np.ones((3, 3, 3)) structure[0::2, ...] = 0 dilated_masks = ndimage.binary_dilation(masks, structure=structure, iterations=4) centers = np.array([ndimage.center_of_mass(m) for m in dilated_masks]) x, y = np.indices(masks.shape[-2:]) rs = np.sqrt( (x[None, ...] - centers[:, 0, None, None]) ** 2 + (y[None, ...] - centers[:, 1, None, None]) ** 2 ) surround_roi = np.logical_and(~all_masks, rs < surround_rad) # see if the area is too small areas = np.sum(surround_roi, axis=(-2, -1)) # check nowhere too small small = areas < 2000 if np.any(small): for new_rs in range(surround_rad, 2 * surround_rad, 10): small = areas < 2000 surround_roi[small] = np.logical_and(~all_masks, rs[small, ...] < new_rs) if not np.any(small): break small = areas < 2000 # revert back to normal behaviour - just take an area around and dont care about cells if np.any(small): surround_roi[small] = np.logical_and(masks[small], rs[small, ...] < new_rs) return surround_roi def get_observation_length(event_dict): tc = event_dict["tc_filt"] exclude_dict = event_dict["surround_events"] length = tc.shape[1] lengths = [] # count as non-observed any time during a surround event for i in range(tc.shape[0]): if i in exclude_dict.keys(): lengths.append( length - np.sum(exclude_dict[i].T[:, 1] - exclude_dict[i].T[:, 0]) ) else: lengths.append(length) return np.array(lengths) def apply_exclusion(exclude_dict, tc): excluded_tc = np.copy(tc) for roi in exclude_dict.keys(): for i in range(exclude_dict[roi].shape[-1]): ids = exclude_dict[roi][:, i] excluded_tc[roi, ids[0] : ids[1]] = 1 return excluded_tc def soft_threshold(arr, thresh, to=1): # Thresholds towards to value res = np.copy(arr) wh = np.where(np.abs(arr - to) < thresh) n_wh = np.where(np.abs(arr - to) >= thresh) sgn = np.sign(arr - to) res[wh] = to res[n_wh] -= sgn[n_wh] * thresh return res def split_event(t, ids): # splits a zero-(actually 1) crossing event into multiple non-zero crossing events recursively # removes one point if not np.logical_and( np.any(t[ids[0] : ids[1]] - 1 > 0), np.any(t[ids[0] : ids[1]] - 1 < 0) ): return [tuple(ids)] else: zer_loc = np.argmin(np.abs(t[ids[0] : ids[1]] - 1)) + ids[0] return split_event(t, (ids[0], zer_loc)) + split_event(t, (zer_loc + 1, ids[1])) def correct_event_signs(t, llocs): corr_locs = [] for id_idx, ids in enumerate(llocs): if np.logical_and( np.any(t[ids[0] : ids[1]] - 1 > 0), np.any(t[ids[0] : ids[1]] - 1 < 0) ): split_ids = split_event(t, ids) corr_locs.extend(split_ids) else: corr_locs.append(ids) corr_locs = np.array(corr_locs) # if we have split into a zero size (due to boundary issue in split events), remove if np.any((corr_locs[:, 1] - corr_locs[:, 0]) < 1): corr_locs = corr_locs[(corr_locs[:, 1] - corr_locs[:, 0]) > 0] return corr_locs def recursive_split_locs(seq): # splits a sequence into n adjacent sequences diff = np.diff(seq) if not np.any(diff != 1): return [(seq[0], seq[-1])] else: wh = np.where(diff != 1)[0][0] + 1 return recursive_split_locs(seq[:wh]) + recursive_split_locs(seq[wh:]) def detect_events(tc, std, z_score=3, exclude_first=0): tc_filt = ndimage.gaussian_filter(tc, (0, 3)) std_filt = ndimage.gaussian_filter(std, (0, 3)) tc_filt[:, :exclude_first] = 1 events = np.abs(tc_filt - 1) > z_score * std_filt # Use closing to join split events and remove small events struc = np.zeros((3, 5)) struc[1, :] = 1 events = ndimage.binary_opening(events, structure=struc, iterations=2) events = ndimage.binary_closing(events, structure=struc, iterations=2) wh = np.where(events) idxs, locs = np.unique(wh[0], return_index=True) locs = np.append(locs, len(wh[0])) result = {} for i, idx in enumerate(idxs): llocs = wh[1][locs[i] : locs[i + 1]] split_locs = np.array(recursive_split_locs(llocs)) # check if they have both positive and negative going - messes with integration later t = tc_filt[idx, :] corr_locs = correct_event_signs(t, split_locs) result[idx] = corr_locs.T result["tc_filt"] = tc_filt result["tc"] = tc return result def get_event_properties(event_dict, use_filt=True): if use_filt: t = event_dict["tc"] else: t = event_dict["tc_filt"] result_dict = {} for idx in event_dict.keys(): if type(idx) == str: continue event_properties = [] for locs in event_dict[idx].T: if np.logical_and( np.any(t[idx, locs[0] : locs[1]] - 1 > 0), np.any(t[idx, locs[0] : locs[1]] - 1 < 0), ): print(idx, locs) raise ValueError("This shouldnt happen") event_length = locs[1] - locs[0] event_amplitude = ( t[idx, np.argmax(np.abs(t[idx, locs[0] : locs[1]] - 1)) + locs[0]] - 1 ) event_integrated = np.sum(t[idx, locs[0] : locs[1]] - 1) event_properties.append([event_length, event_amplitude, event_integrated]) if len(np.array(event_properties)) == 0: pdb.set_trace() result_dict[idx] = np.array(event_properties) event_dict["event_props"] = result_dict return event_dict def lab2masks(seg): masks = [] for i in range(1, seg.max() + 1): masks.append((seg == i).astype(int)) return np.array(masks) def t_course_from_roi(nd_stack, roi): if len(roi.shape) != 2: raise NotImplementedError("Only works for 2d ROIs") wh = np.where(roi) return np.mean(nd_stack[..., wh[0], wh[1]], -1) def median_t_course_from_roi(nd_stack, roi): if len(roi.shape) != 2: raise NotImplementedError("Only works for 2d ROIs") wh = np.where(roi) return np.median(nd_stack[..., wh[0], wh[1]], -1) def std_t_course_from_roi(nd_stack, roi, standard_err): """ Gets the standard deviation of the pixels in the roi at each time point Parameters ---------- nd_stack : TYPE DESCRIPTION. roi : TYPE DESCRIPTION. Raises ------ NotImplementedError DESCRIPTION. Returns ------- TYPE DESCRIPTION. """ if len(roi.shape) != 2: raise NotImplementedError("Only works for 2d ROIs") wh = np.where(roi) if standard_err: fac = 1 / np.sqrt(np.sum(roi)) else: fac = 1 return fac * np.std(nd_stack[..., wh[0], wh[1]], -1) def load_tif_metadata(fname): fname = Path(fname) metadata_file = Path(fname.parent, Path(fname.stem).stem + "_metadata.txt") if "rds" in str(Path.home()): to_file = metadata_file else: to_file = Path("/tmp/tmp_metadata.txt") shutil.copy( metadata_file, to_file ) # this is to deal with a wierd bug due to NTFS filesystem? with open(to_file, "r") as f: metadict = json.load(f) return metadict def parse_time(metadata_time): date = metadata_time.split(" ")[0].split("-") time = metadata_time.split(" ")[1].split(":") return int("".join(date)), time def lin_time(time): return float(time[0]) * 60**2 + float(time[1]) * 60 + float(time[2]) def get_stack_offset(fname, ephys_start): date, time = parse_time(load_tif_metadata(fname)["Summary"]["StartTime"]) if int(date) != int(ephys_start[0]): raise ValueError("Date mismatch!") ttime = [ str(ephys_start[1])[:2], str(ephys_start[1])[2:4], str(ephys_start[1])[4:6], ] offset = lin_time(time) - lin_time(ttime) if offset < 0: raise ValueError("Time mismatch!") return offset def slice_cam(cam_frames, n_frames, n_repeats, T): starts = np.where(np.concatenate(([1], np.diff(cam_frames) > 2 * T)))[0] # remove any consecutive and take last starts = starts[np.concatenate((~(np.diff(starts) == 1), [True]))] sliced_frames = np.zeros((n_repeats, n_frames)) for idx in range(n_repeats): st = starts[idx] sliced_frames[idx, ...] = cam_frames[st : st + n_frames] if np.any(np.diff(sliced_frames, axis=-1) > 2 * T): raise ValueError("Frames not sliced properly") return sliced_frames def slice_ephys(analog_signal, single_cam): idx0 = ef.time_to_idx(analog_signal, single_cam[0] * pq.s) idx1 = ef.time_to_idx(analog_signal, single_cam[-1] * pq.s) return analog_signal[idx0:idx1] def slice_all_ephys(analog_signal, sliced_cam): all_ephys = [] sh = len(analog_signal) for ca in sliced_cam: ep = slice_ephys(analog_signal, ca) if len(ep) < sh: sh = len(ep) all_ephys.append(ep) return np.array([np.squeeze(all_ephys[i][:sh]) for i in range(len(all_ephys))]) def get_steps_image_ephys(im_dir, ephys_fname): ephys_dict = ef.load_ephys_parse( ephys_fname, analog_names=["vcVm", "vcIm"], event_names=["CamDown"] ) files = [f for f in Path(im_dir).glob("./**/*.tif")] offsets = np.array([get_stack_offset(f, ephys_dict["ephys_start"]) for f in files]) offsets, files = gf.sort_zipped_lists([offsets, files]) for idx, f in enumerate(files): stack = tifffile.imread(f) if idx == 0: stacks = np.zeros(((len(files),) + stack.shape), dtype=np.uint16) stacks[idx, ...] = stack metadata = load_tif_metadata(files[0]) T = float(metadata["FrameKey-0-0-0"]["HamamatsuHam_DCAM-Exposure"]) * 10**-3 cam = ephys_dict["cam"] cam = cam[ np.logical_and( cam > offsets[0] - 10, cam < offsets[-1] + stacks.shape[1] * T + 10 ) ] sliced_cam = slice_cam(cam, stacks.shape[1], stacks.shape[0], T) ephys_dict["sliced_cam"] = sliced_cam ephys_dict["cam"] = cam if np.any(np.diff(sliced_cam[:, 0] - offsets) > stacks.shape[1] * T): raise ValueError("Problemo!") # now slice the ephys from the cam for key in ["vcVm", "ccVm", "ccIm", "vcIm"]: if key not in ephys_dict.keys(): continue ephys_dict[key + "_sliced"] = slice_all_ephys(ephys_dict[key], sliced_cam) idx0 = ef.time_to_idx(ephys_dict[key], offsets[0] - 10) idx1 = ef.time_to_idx(ephys_dict[key], offsets[-1] + 10) ephys_dict[key] = ephys_dict[key][idx0:idx1] return ephys_dict, stacks def process_ratio_stacks(stacks): """ assumes dims = (....,t,y,x) """ sh = stacks.shape stacks = stacks.reshape((-1,) + sh[-3:]) res = np.zeros((stacks.shape[0], 2) + sh[-3:]).astype(float) for idx, st in enumerate(stacks): res[idx, ...] = interpolate_stack(st) return res.reshape(sh[:-3] + (2,) + sh[-3:]) def interpolate_stack(ratio_stack, framelim=1000): nits = int(np.ceil(ratio_stack.shape[0] / framelim)) full_res = np.zeros((2,) + ratio_stack.shape) for it in range(nits): stack = ratio_stack[it * framelim : (it + 1) * framelim, ...] result = np.zeros((2,) + stack.shape) y, x = ( np.arange(stack.shape[1], dtype=int), np.arange(stack.shape[2], dtype=int), ) z = [ np.arange(0, stack.shape[0], 2, dtype=int), np.arange(1, stack.shape[0], 2, dtype=int), ] for i in range(2): j = np.mod(i + 1, 2) result[i, i::2, ...] = stack[i::2, ...] interped = interp.RegularGridInterpolator( (z[i], y, x), stack[i::2, ...], bounds_error=False, fill_value=None ) pts = np.indices(stack.shape, dtype=int)[:, j::2, ...].reshape((3, -1)) result[i, j::2, ...] = interped(pts.T).reshape(stack[1::2, ...].shape) full_res[:, it * framelim : it * framelim + result.shape[1], ...] = result return full_res def get_LED_powers(LED, cam, T_approx, cam_edge="falling"): # assumes LED and cam contain only sliced vals, cam is camDown if cam_edge != "falling": raise NotImplementedError("Only implemented for cam falling edge") # do a rough pass then a second to get LED real value ids = ef.time_to_idx( LED, [ cam[1] + T_approx, cam[1] + 3 * T_approx, cam[0] - T_approx, cam[0], cam[1] - T_approx, cam[1], ], ) zer = LED[ids[0] : ids[1]].magnitude.mean() l1 = LED[ids[2] : ids[3]].magnitude.mean() l2 = LED[ids[4] : ids[5]].magnitude.mean() thr = 0.5 * (zer + min(l1, l2)) + zer LED_thr = LED > thr ##get actual T T = (np.sum(LED_thr.astype(int)) / len(cam)) / LED.sampling_rate.magnitude if np.abs(T - T_approx) > T_approx / 2: print(T) print(T_approx) print("Problems?") # now get accurate values ids1 = np.array( [ ef.time_to_idx(LED, cam[::2] - 3 * T / 4), ef.time_to_idx(LED, cam[::2] - T / 4), ] ).T led1 = np.mean([LED[x[0] : x[1]].magnitude.mean() for x in ids1]) ids2 = np.array( [ ef.time_to_idx(LED, cam[1::2] - 3 * T / 4), ef.time_to_idx(LED, cam[1::2] - T / 4), ] ).T led2 = np.mean([LED[x[0] : x[1]].magnitude.mean() for x in ids2]) ids3 = np.array( [ef.time_to_idx(LED, cam[1:-1:2] + T), ef.time_to_idx(LED, cam[2::2] - 5 * T)] ).T zer = np.mean([LED[x[0] : x[1]].magnitude.mean() for x in ids3]) led1 -= zer led2 -= zer return led1, led2 def cam_check(cam, cam_id, times, e_start, fs): if cam_id + len(times) > len(cam): print("length issue") return False if len(times) % 2 == 1: times = times[:-1] cam_seg = cam[cam_id : cam_id + len(times)] IFI = np.array([np.diff(cam_seg[::2]), np.diff(cam_seg[1::2])]) # check frame rate consistent if np.any(np.abs(IFI - 1 / fs) > (1 / fs) / 100): print("IFI issue") return False # compare our segment with if we are off by one each direction - are we at a minimum? if cam_id + len(times) == len(cam): if cam_id == 0: # exactly 10000 frames return True v = [-1, 0] elif cam_id == 0: v = [0, 1] else: v = [-1, 0, 1] var = [ np.std(cam[cam_id + x : cam_id + x + len(times)] + e_start - times) for x in v ] if var[1] != min(var) and cam_id != 0: print("Bad times?") return False elif var[0] != min(var) and cam_id == 0: print("Bad times?") return False return True def save_result_hdf(hdf_file, result_dict, group=None): f = hd5py.File(hdf_file, "a") if group is not None: group = f'{group}/{to_trial_string(result_dict["tif_file"])}' else: group = f'{to_trial_string(result_dict["tif_file"])}' grp = f.create_group(group) for key in result_dict.keys(): t = type(result_dict[key]) if t == "neo.core.analogsignal.AnalogSignal": print(0) elif t == "numpy.ndarray": print(1) else: raise NotImplementedError("Implement this") def get_all_frame_times(metadict): frames = [] times = [] for k in metadict.keys(): if k == "Summary": continue frame = int(k.split("-")[1]) frames.append(frame) time = ( metadict[k]["UserData"]["TimeReceivedByCore"]["scalar"] .split(" ")[1] .split(":") ) time = float(time[0]) * 60**2 + float(time[1]) * 60 + float(time[2]) times.append(time) frames, times = gf.sort_zipped_lists([frames, times]) return np.array(frames), np.array(times) def load_and_slice_long_ratio( stack_fname, ephys_fname, T_approx=3 * 10**-3, fs=5, washin=False, nofilt=False ): stack = tifffile.imread(stack_fname) n_frames = len(stack) if Path(ephys_fname).is_file(): ephys_dict = ef.load_ephys_parse( ephys_fname, analog_names=["LED", "vcVm"], event_names=["CamDown"] ) e_start = [ float(str(ephys_dict["ephys_start"][1])[i * 2 : (i + 1) * 2]) for i in range(3) ] e_start[-1] += (float(ephys_dict["ephys_start"][2]) / 10) / 1000 e_start = lin_time(e_start) meta = load_tif_metadata(stack_fname) frames, times = get_all_frame_times(meta) cam = ephys_dict["CamDown_times"] cam_id = np.argmin(
np.abs(cam + e_start - times[0])
numpy.abs
import os import matplotlib.pyplot as plt import keras import numpy as np from keras.models import Sequential from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D from keras.utils import np_utils from keras import regularizers import cv2 import os from keras.layers import Input from keras import backend as K from keras.models import Model from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Dropout from keras.layers.core import Lambda from keras.layers.core import Dense from keras.layers import Flatten from keras.layers import Input import tensorflow as tf import tensorflow as tf from keras.optimizers import Adam import numpy as np from keras.models import Sequential from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D from keras.utils import np_utils from keras import regularizers import cv2 import os from sklearn.metrics import confusion_matrix import h5py from keras.callbacks import ModelCheckpoint from keras.losses import binary_crossentropy from keras.losses import categorical_crossentropy from sklearn.model_selection import train_test_split # fix random seed for reproducibility # we always initialize the random number generator to a constant seed #value for reproducibility of results. seed = 7 np.random.seed(seed) # load data from the path specified by the user def data_loader(path_train, path_test): train_list = os.listdir(path_train) ''' # Map class names to integer labels train_class_labels = { label: index for index, label in enumerate(class_names) } ''' # Number of classes in the dataset num_classes = len(train_list) # Empty lists for loading training and testing data images as well as corresponding labels x_train = [] y_train_1 = [] y_train_2 = [] y_train_3 = [] y_train_4 = [] x_test = [] y_test_1 = [] y_test_2 = [] y_test_3 = [] y_test_4 = [] # Loading training data for label, elem in enumerate(train_list): path1 = path_train + '/' + str(elem) images = os.listdir(path1) for elem2 in images: path2 = path1 + '/' + str(elem2) # Read the image form the directory img = cv2.imread(path2) # Append image to the train data list x_train.append(img) # Append class-label corresponding to the image path_1 = os.path.basename(path1) label = np.asarray(path_1.split('_')) y_train_1.append(str(label[0])) y_train_2.append(str(label[1])) y_train_3.append(str(label[2])) y_train_4.append(str(label[3])) # Loading testing data path1 = path_test + '/' + str(elem) images = os.listdir(path1) for elem2 in images: path2 = path1 + '/' + str(elem2) # Read the image form the directory img = cv2.imread(path2) # Append image to the test data list x_test.append(img) path_2 = os.path.basename(path2) label = np.asarray(path_2.split('_')) # Append class-label corresponding to the image y_test_1.append(str(label[0])) y_test_2.append(str(label[1])) y_test_3.append(str(label[2])) y_test_4.append(str(label[3])) # Convert lists into numpy arrays x_train = np.asarray(x_train) y_train_1 = np.asarray(y_train_1) y_train_2 = np.asarray(y_train_2) y_train_3 =
np.asarray(y_train_3)
numpy.asarray
# -*- coding: utf-8 -*- import sys sys.path.append('..') import numpy as np import vectorflow as vf male_heights = np.random.normal(171, 6, 500) female_heights = np.random.normal(158, 5, 500) male_weights = np.random.normal(70, 10, 500) female_weights = np.random.normal(57, 8, 500) male_bfrs = np.random.normal(16, 2, 500) female_bfrs = np.random.normal(22, 2, 500) male_labels = [1] * 500 female_labels = [-1] * 500 train_set = np.array([np.concatenate((male_heights, female_heights)), np.concatenate((male_weights, female_weights)), np.concatenate((male_bfrs, female_bfrs)), np.concatenate((male_labels, female_labels))]).T # 随机打乱样本顺序
np.random.shuffle(train_set)
numpy.random.shuffle
from typing import Optional, Tuple from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader, Dataset, random_split from torchvision.transforms import transforms from src.datamodules.datasets.brian_scans_t1w import BrianScansT1w from src.utils.utils import calculate_mean from sklearn.model_selection import train_test_split from src.utils import utils import numpy as np import torch log = utils.get_logger(__name__) class MRIDataModule(LightningDataModule): """ Example of LightningDataModule for MNIST dataset. A DataModule implements 5 key methods: - prepare_data (things to do on 1 GPU/TPU, not on every GPU/TPU in distributed mode) - setup (things to do on every accelerator in distributed mode) - train_dataloader (the training dataloader) - val_dataloader (the validation dataloader(s)) - test_dataloader (the test dataloader(s)) This allows you to share a full dataset without explaining how to download, split, transform and process the data Read the docs: https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html """ def __init__( self, dataset_dir, data_dir: str = "data/", train_val_test_split: Tuple[int, int, int] = (0.7, 0.15, 0.15), batch_size: int = 64, num_workers: int = 0, pin_memory: bool = False, **kwargs, ): super().__init__() self.dataset_dir = dataset_dir self.data_dir = data_dir self.train_val_test_split = train_val_test_split self.batch_size = batch_size self.num_workers = num_workers self.pin_memory = pin_memory self.labels_counter = None self.train_transforms = None self.test_transforms = None self.data_train: Optional[Dataset] = None self.data_val: Optional[Dataset] = None self.data_test: Optional[Dataset] = None @property def num_classes(self) -> int: return 4 def prepare_data(self): """Download data if needed. This method is called only from a single GPU. Do not use it to assign state (self.x = y).""" # BrianScansT1w(dataset_path=self.dataset_dir) pass def setup(self, stage: Optional[str] = None): """Load data. Set variables: self.data_train, self.data_val, self.data_test.""" dataset = BrianScansT1w(self.dataset_dir) log.info(f"Calculating mean and std of the dataset") # mean, std = calculate_mean(dataset, dataset.num_channels) self.setup_transforms() dataset = BrianScansT1w(self.dataset_dir, transform=self.test_transforms) self.labels_counter = dataset.labels_counter train_dataset_idx, val_dataset_idx = train_test_split( np.arange(len(dataset.labels)), train_size=0.6, shuffle=True, stratify=dataset.labels, random_state=1 ) val_dataset_idx, test_dataset_idx = train_test_split( val_dataset_idx, train_size=0.5, shuffle=True, stratify=
np.array(dataset.labels)
numpy.array
## Copyright (c) 2017 <NAME> GmbH ## All rights reserved. ## ## This source code is licensed under the MIT license found in the ## LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from torch import optim import numpy as np from torch.nn.utils import weight_norm import pickle import sys from termcolor import colored from modules.hierarchical_embedding import HierarchicalEmbedding from modules.embeddings import LearnableEmbedding, SineEmbedding def sqdist(A, B): return (A**2).sum(dim=2)[:,:,None] + (B**2).sum(dim=2)[:,None,:] - 2 * torch.bmm(A, B.transpose(1,2)) class ResidualBlock(nn.Module): def __init__(self, d_in, d_out, groups=1, dropout=0.0): super().__init__() assert d_in % groups == 0, "Input dimension must be a multiple of groups" assert d_out % groups == 0, "Output dimension must be a multiple of groups" self.d_in = d_in self.d_out = d_out self.proj = nn.Sequential(nn.Conv1d(d_in, d_out, kernel_size=1, groups=groups), nn.ReLU(inplace=True), nn.Dropout(dropout), nn.Conv1d(d_out, d_out, kernel_size=1, groups=groups), nn.Dropout(dropout)) if d_in != d_out: self.downsample = nn.Conv1d(d_in, d_out, kernel_size=1, groups=groups) def forward(self, x): assert x.size(1) == self.d_in, "x dimension does not agree with d_in" return x + self.proj(x) if self.d_in == self.d_out else self.downsample(x) + self.proj(x) class GraphLayer(nn.Module): def __init__(self, d_model, d_inner, n_head, d_head, dropout=0.0, attn_dropout=0.0, wnorm=False, use_quad=False, lev=0): super().__init__() self.d_model = d_model self.d_inner = d_inner self.n_head = n_head self.d_head = d_head self.dropout = nn.Dropout(dropout) self.attn_dropout = nn.Dropout(attn_dropout) self.lev = lev self.use_quad = use_quad # To produce the query-key-value for the self-attention computation self.qkv_net = nn.Linear(d_model, 3*d_model) self.o_net = nn.Linear(n_head*d_head, d_model, bias=False) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.proj1 = nn.Linear(d_model, d_inner) self.proj2 = nn.Linear(d_inner, d_model) self.gamma = nn.Parameter(torch.ones(4, 4)) # For different sub-matrices of D self.sqrtd =
np.sqrt(d_head)
numpy.sqrt
#!/usr/bin/python3 # number of output figures = 8 import numpy as np import matplotlib.patches import helper.basis from helper.figure import Figure import helper.grid import helper.misc import helper.plot def isEquivalent(l, lp, xl): d = xl.shape[0] T = [t for t in range(d) if l[t] == lp[t]] return all([min(l[t], lp[t]) >= xl[t] for t in range(d) if t not in T]) def plotSGScheme(basis, n, showDiagonal=True, highlightedSubspaces=None, highlightedPoints=None, whiteMode=False, withBoundary=True, isModified=False, combinationTechnique=False, singleGrid=False, equivalenceRelation=False): subspaceSize = 1 subspaceMargin = 0.2 basisSize = (0.3 if singleGrid else 0.6) basisMargin = (0.1 if singleGrid else 0.2) upperLevel = n if singleGrid: lowerLevel = n levelSumDiagonal = 2*n elif withBoundary: lowerLevel = 0 levelSumDiagonal = n else: lowerLevel = 1 levelSumDiagonal = n+1 numberOfSubspaces = upperLevel - lowerLevel + 1 schemeSize = numberOfSubspaces * (subspaceSize + subspaceMargin) - subspaceMargin xOffsetGlobal = basisSize + basisMargin yOffsetGlobal = schemeSize xSquare = np.array([0, 1, 1, 0, 0]) ySquare = np.array([0, 0, 1, 1, 0]) I = (helper.grid.getNodalIndices if combinationTechnique else helper.grid.getHierarchicalIndices) hellhellblau = helper.plot.mixColors("hellblau", 0.5) fig = Figure.create(figsize=(3, 3), scale=1, facecolor="none", preamble=r""" \definecolor{{hellhellblau}}{{rgb}}{{{},{},{}}} """.format(*hellhellblau)) ax = fig.gca() stairsCornersInner = [] stairsCornersOuter = [] for l0 in range(lowerLevel, upperLevel + 1): Il0 = I(l0) hl0Inv = 2**l0 hl0 = 1 / hl0Inv Xl0 = [i * hl0 for i in Il0] for l1 in range(lowerLevel, upperLevel + 1): Il1 = I(l1) hl1Inv = 2**l1 hl1 = 1 / hl1Inv Xl1 = [i * hl1 for i in Il1] xOffset = (xOffsetGlobal + (l0 - lowerLevel) * (subspaceSize + subspaceMargin)) yOffset = (yOffsetGlobal - (l1 - lowerLevel) * (subspaceSize + subspaceMargin) - subspaceSize) corner = (xOffset + subspaceSize + subspaceMargin / 2, yOffset - subspaceMargin / 2) if l0 + l1 == levelSumDiagonal - 1: stairsCornersInner.append(corner) elif l0 + l1 == levelSumDiagonal: stairsCornersOuter.append(corner) s = lambda x, y: (xOffset + subspaceSize * np.array(x), yOffset + subspaceSize * np.array(y)) if combinationTechnique: brightness = 0.4 if equivalenceRelation: if levelSumDiagonal - 1 <= l0 + l1 <= levelSumDiagonal: xl = np.array((2, 1)) xi = np.array((1, 1)) allL = ([(i, n-i) for i in range(n+1)] + [(i, n-i-1) for i in range(n)]) L = [l for l in allL if not ((l[0] >= xl[0]) and (l[1] >= xl[1]))] equivalenceClasses = helper.misc.getEquivalenceClasses( L, (lambda l, lp: isEquivalent(l, lp, xl))) J = [j for j, equivalenceClass in enumerate(equivalenceClasses) if (l0, l1) in equivalenceClass] if len(J) == 0: j = None contourColor = "anthrazit!20" faceColor = helper.plot.mixColors("anthrazit", 0.2) color = "k" else: j = J[0] colorIndices = [2, 5, 7] contourColor = "C{}".format(colorIndices[j]) faceColor = contourColor color = [brightness * x for x in matplotlib.colors.to_rgba(contourColor)[:3]] else: contourColor = "anthrazit!20" faceColor = helper.plot.mixColors("anthrazit", 0.2) color = 3*[0.6] else: if l0 + l1 == levelSumDiagonal: if singleGrid: contourColor = "hellhellblau" faceColor = hellhellblau color = "mittelblau" else: contourColor = "C4" faceColor = "C4" color = [brightness * x for x in matplotlib.colors.to_rgba(contourColor)[:3]] elif l0 + l1 == levelSumDiagonal - 1: contourColor = "C1" faceColor = "C1" color = [brightness * x for x in matplotlib.colors.to_rgba(contourColor)[:3]] else: contourColor = "anthrazit!20" faceColor = helper.plot.mixColors("anthrazit", 0.2) color = 3*[0.6] rect = matplotlib.patches.Rectangle( (xOffset, yOffset), subspaceSize, subspaceSize, edgecolor="none", facecolor=faceColor) ax.add_patch(rect) elif (((highlightedSubspaces is not None) and ((l0, l1) in highlightedSubspaces)) or ((highlightedSubspaces is None) and (highlightedPoints is None) and (l0 + l1 <= levelSumDiagonal))): contourColor = "hellhellblau" color = "mittelblau" rect = matplotlib.patches.Rectangle( (xOffset, yOffset), subspaceSize, subspaceSize, edgecolor="none", facecolor=hellhellblau) ax.add_patch(rect) else: contourColor = "white" color = "k" if highlightedPoints is not None: borderColor = "k" else: borderColor = color Xl = np.array([(x0, x1) for x0 in Xl0 for x1 in Xl1]) if highlightedPoints is None: K = np.zeros((Xl.shape[0],), dtype=bool) else: K = np.any(np.all(highlightedPoints == Xl[:,np.newaxis], axis=2), axis=1) for k in np.where(K)[0]: x = Xl[k,:] rect = matplotlib.patches.Rectangle( s(max(x[0]-hl0, 0), max(x[1]-hl1, 0)), min(2*hl0, 1), min(2*hl1, 1), edgecolor="none", facecolor=hellhellblau) ax.add_patch(rect) ax.plot(*s(xSquare, ySquare), "-", clip_on=False, color=borderColor) superscript = (r"\modified" if isModified else "") subspaceName = ("V" if combinationTechnique else "W") text = "${}_{{({},{})}}^{{{}}}$".format( subspaceName, l0, l1, superscript) y = 0.042 if not (equivalenceRelation and (l0 >= 2) and (l1 == 0)): text = "\\contour{{{}}}{{{}}}".format(contourColor, text) y = 0 ax.text(*s(0.5, y), text, color=color, ha="center", va="bottom") ax.plot(*s(Xl[K,0], Xl[K,1]), ".", clip_on=False, color="mittelblau") ax.plot(*s(Xl[np.invert(K),0], Xl[np.invert(K),1]), ".", clip_on=False, color=color) if not combinationTechnique: if l0 > 0: for x0 in np.linspace(0, 1, hl0Inv // 2 + 1): ax.plot(*s([x0, x0], [0, 1]), "-", clip_on=False, color=borderColor) if l1 > 0: for x1 in np.linspace(0, 1, hl1Inv // 2 + 1): ax.plot(*s([0, 1], [x1, x1]), "-", clip_on=False, color=borderColor) elif (equivalenceRelation and (levelSumDiagonal - 1 <= l0 + l1 <= levelSumDiagonal)): d = 2 x = helper.grid.getCoordinates(xl, xi) ax.plot(*s(x[0], x[1]), "x", clip_on=False, color=color, markeredgewidth=2) if j is not None: lAst = [l0, l1] for l2 in equivalenceClasses[j]: lAst = [(None if lAst[t] is None else (lAst[t] if l2[t] == lAst[t] else None)) for t in range(d)] T = [t for t in range(d) if lAst[t] is not None] if T[0] == 0: ax.plot(*s([0, 1], [x[1], x[1]]), "-", clip_on=False, color=color) else: ax.plot(*s([x[0], x[0]], [0, 1]), "-", clip_on=False, color=color) if not singleGrid: stairsCorners = [stairsCornersOuter[0]] for l in range(n - lowerLevel): stairsCorners.append(stairsCornersInner[l]) stairsCorners.append(stairsCornersOuter[l+1]) stairsCorners = np.array(stairsCorners) if showDiagonal: ax.plot(stairsCorners[:,0], stairsCorners[:,1], "k--", clip_on=False) maxY = {} modifiedScale = (0.56 if isModified else 1) for l in range(lowerLevel, upperLevel + 1): maxY[l] = 0 for i in I(l): lb, ub = basis.getSupport(l, i) xx = np.linspace(lb, ub, 33) yy = basis.evaluate(l, i, xx) if (i == 1) or (i == 2**l - 1): yy = [modifiedScale * y for y in yy] maxY[l] = max(max(yy), maxY[l]) for l0 in range(lowerLevel, upperLevel + 1): xOffset = xOffsetGlobal + (l0 - lowerLevel) * (subspaceSize + subspaceMargin) for i0 in I(l0): color = "C{}".format((i0 * 2**(n - l0)) % 9) yOffset = yOffsetGlobal + basisMargin s = lambda x, y: (xOffset + subspaceSize * np.array(x), yOffset + basisSize * np.array(y) / maxY[l0]) lb, ub = basis.getSupport(l0, i0) xx = np.linspace(lb, ub, 33) yy = basis.evaluate(l0, i0, xx) if (i0 == 1) or (i0 == 2**l0 - 1): yy = [modifiedScale * y for y in yy] ax.plot(*s(xx, yy), "-", clip_on=False, color=color) for l1 in range(lowerLevel, upperLevel + 1): yOffset = (yOffsetGlobal - (l1 - lowerLevel) * (subspaceSize + subspaceMargin) - subspaceSize) for i1 in I(l1): color = "C{}".format((i1 * 2**(n - l1)) % 9) xOffset = xOffsetGlobal - basisMargin s = lambda x, y: (xOffset - basisSize * np.array(y) / maxY[l1], yOffset + subspaceSize * np.array(x)) lb, ub = basis.getSupport(l1, i1) xx = np.linspace(lb, ub, 200) yy = basis.evaluate(l1, i1, xx) if (i1 == 1) or (i1 == 2**l1 - 1): yy = [modifiedScale * y for y in yy] ax.plot(*s(xx, yy), "-", clip_on=False, color=color) color = "k" ax.plot((xOffsetGlobal - basisMargin) * np.ones((2,)), [0, yOffsetGlobal + basisMargin + 0.2 * basisSize], "-", c=color, clip_on=False) ax.plot([xOffsetGlobal - basisMargin - 0.2 * basisSize, xOffsetGlobal + schemeSize], (yOffsetGlobal + basisMargin) * np.ones((2,)), "-", c=color, clip_on=False) ax.set_xlim([0, xOffsetGlobal + schemeSize]) ax.set_ylim([0, yOffsetGlobal + basisMargin + basisSize]) ax.set_xticks([]) ax.set_yticks([]) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) return fig, ax def plotGrid(sgType, n=None, includedSubspaces=[], includedPoints=None, withBoundary=True, distribution="uniform", scale=1.65): fig = Figure.create(figsize=(1, 1), scale=scale) ax = fig.gca() X = np.zeros((0, 2)) I = lambda l: ([0, 1] if l == 0 else list(range(1, 2**l, 2))) if (sgType == "full") or (sgType == "regular"): upperLevel = n if withBoundary: lowerLevel = 0 levelSumDiagonal = n else: lowerLevel = 1 levelSumDiagonal = n + 1 for l0 in range(lowerLevel, upperLevel + 1): Xl0 = helper.grid.getCoordinates(len(I(l0)) * [l0], I(l0), distribution=distribution) for l1 in range(lowerLevel, upperLevel + 1): Xl1 = helper.grid.getCoordinates(len(I(l1)) * [l1], I(l1), distribution=distribution) Xl = np.array([(x0, x1) for x0 in Xl0 for x1 in Xl1]) if (sgType == "full") or ((sgType == "regular") and (l0 + l1 <= levelSumDiagonal)): X =
np.vstack((X, Xl))
numpy.vstack
#!/usr/bin/env python # encoding: utf-8 """ @author: <NAME> 刘祥德 @license: (C) Copyright 2019-now, Node Supply Chain Manager Corporation Limited. @contact: <EMAIL> @software: @file: warp.py @time: 10/3/19 4:58 PM @version 1.0 @desc: """ import logging import os import random import cv2 import numpy as np import torch import torchvision from PIL import Image from skimage.transform import PiecewiseAffineTransform, warp from config.config import setup_logging, DEBUG from constant import * from utils.misc import label_list, AngleFactory, image2label from utils.transforms import ToUnNormalizedTensor logger_name = 'warp_logger' level = logging.INFO logger = setup_logging('.', logger_name, level) # CARI_IMG_PATH = '../datasets/Caricature-img' # FACE_IMG_PATH = '../datasets/CelebA-HQ-img' # CARI_DATASET_PATH = '../datasets/Caricature-mask' # FACE_DATASET_PATH = '../datasets/CelebAMaskHQ-mask' # CARI_DATASET_COLOR_PATH = '../datasets/Caricature-mask-color' # FACE_DATASET_COLOR_PATH = '../datasets/CelebAMaskHQ-mask-color' # FACE_WARPED = '../datasets/CelebA-HQ-img-Warped' face_img_name = '1.png' cari_img_name = '1' face_mask_path = os.path.join(FACE_MASK_PATH, face_img_name) face_path = os.path.join(FACE_IMG_PATH, '1.jpg') cari_mask_path = os.path.join(CARI_MASK_PATH, cari_img_name + '.png') cari_path = os.path.join(CARI_IMG_PATH, cari_img_name + '.jpg') face_mask = cv2.imread(face_mask_path, cv2.IMREAD_GRAYSCALE) cari_mask = cv2.imread(cari_mask_path, cv2.IMREAD_GRAYSCALE) # 'skin', 'nose', 'l_eye', 'r_eye', 'l_brow', 'r_brow', 'mouth', 'u_lip','l_lip' # sample_num_list = [50, 50, 50, 50, 50, 50, 50, 50, 50, 50] sample_num_list = [80, 50, 50, 25, 25, 25, 25, 30, 20, 20] # sample_num_list = [50, 50, 50, 25, 25, 25, 25, 30, 20, 20] # sample_num_list = [50, 50, 20, 20, 20, 20, 20, 20, 20, 20] face = cv2.imread(face_path) cari = cv2.imread(cari_path) transforms = [torchvision.transforms.Resize(512), ToUnNormalizedTensor()] transforms = torchvision.transforms.Compose(transforms) # face_torch = transforms(Image.open(face_path)) def warp_image(image, src_points=None, dst_points=None, transform=None): if transform is None: if src_points is not None and dst_points is not None: transform = get_transform(image, src_points, dst_points) else: raise Exception('Src points and dst points must not be None.') warped = warp(image, transform, output_shape=image.shape) return warped, transform def warp_nearest(image, src_points=None, dst_points=None, transform=None): if transform is None: if src_points is not None and dst_points is not None: transform = get_transform(image, src_points, dst_points) else: raise Exception('Src points and dst points must not be None.') warped = warp(image, transform, output_shape=image.shape, order=0) return warped, transform def get_transform(image, src_points, dst_points): src_points = np.array( [ [0, 0], [0, image.shape[0]], [image.shape[0], 0], list(image.shape[:2]) ] + src_points.tolist() ) dst_points = np.array( [ [0, 0], [0, image.shape[0]], [image.shape[0], 0], list(image.shape[:2]) ] + dst_points.tolist() ) tform3 = PiecewiseAffineTransform() tform3.estimate(dst_points, src_points) return tform3 def sample_arrange(src, num, label): """ Sample key points by equal spaing :param src: :param num: :return: """ arrange = len(src) # if num > len(src): # logger.info("Num out of length, return arrange: [{}]".format(src)) # return src # else: # output = np.array((1, 2), dtype=arrange.dtype) output = [] seg = arrange // num if seg == 0: msg = '[{}]: The number of sampling points exceeds the number of source points, and the original array is ' \ 'equidistantly filled.'.format(label) logger.info(msg) return insert_equal_space(src, arrange, num) seg = arrange / num for n in range(num): if int(seg * n) >= len(src): output.append((src[-1] + src[-2]) // 2) else: output.append(src[int(seg * n)]) return output def insert_equal_space(src, arrange, num): output = src.copy() need = num - arrange sample_space = need // arrange mod = need % arrange position = 1 for idx in range(arrange): # is_enough = False pre_el = src[idx] next_el = src[(idx + 1) % arrange] output = fill(pre_el, next_el, position, sample_space, output) position += (sample_space + 1) if len(output) == num: return output.reshape(-1, 2) else: for idx in range(mod): output = np.append(output, src[-1]) return output.reshape(-1, 2) def fill(pre_el, next_el, position, sample_space, output): for j in range(sample_space): sample = (pre_el + next_el) // (sample_space + 1) * (j + 1) output = np.insert(output, position + j, sample.reshape(2), axis=0) return output def is_filtered(points): return len(points) == 1 and (points ==
np.array([[-1, -1]])
numpy.array
# Class: XYZFile # used for getUncertaintyDEM # by <NAME>, Jul 28 2016 # # Class: AmpcoroffFile # manipulating the ampcor outpuf (and translating it into a geotiff) # by <NAME>, Jul 10 2018 import numpy as np from carst.libraster import SingleRaster from scipy.interpolate import griddata from scipy.stats import gaussian_kde import pickle import matplotlib.pyplot as plt class DuoZArray: def __init__(self, z1=None, z2=None, ini=None): self.z1 = z1 self.z2 = z2 self.ini = ini self.signal_idx = None def OutlierDetection2D(self, thres_sigma=3.0, plot=True): x = self.z1 y = self.z2 xy = np.vstack([x, y]) z = gaussian_kde(xy)(xy) thres_multiplier = np.e ** (thres_sigma ** 2 / 2) # normal dist., +- sigma number thres = max(z) / thres_multiplier idx = z >= thres self.signal_idx = idx if plot: pt_style = {'s': 5, 'edgecolor': None} ax_center = [x[idx].mean(), y[idx].mean()] ax_halfwidth = max([max(x) - x[idx].mean(), x[idx].mean() - min(x), max(y) - y[idx].mean(), y[idx].mean() - min(y)]) + 1 plt.subplot(121) plt.scatter(x, y, c=z, **pt_style) plt.scatter(x[~idx], y[~idx], c='xkcd:red', **pt_style) plt.axis('scaled') plt.xlim([ax_center[0] - ax_halfwidth, ax_center[0] + ax_halfwidth]) plt.ylim([ax_center[1] - ax_halfwidth, ax_center[1] + ax_halfwidth]) plt.ylabel('Offset-Y (pixels)') plt.xlabel('Offset-X (pixels)') plt.subplot(122) plt.scatter(x, y, c=z, **pt_style) plt.scatter(x[~idx], y[~idx], c='xkcd:red', **pt_style) plt.axis('scaled') plt.xlim([min(x[idx]) - 1, max(x[idx]) + 1]) plt.ylim([min(y[idx]) - 1, max(y[idx]) + 1]) plt.savefig(self.ini.velocorrection['label_bedrock_histogram'] + '_vx-vs-vy.png', format='png', dpi=200) plt.clf() def HistWithOutliers(self, which=None): if which == 'x': x = self.z1 pnglabel = '_vx.png' elif which == 'y': x = self.z2 pnglabel = '_vy.png' else: raise ValueError('Please indicate "x" or "y" for your histogram.') r_uniq, r_uniq_n = np.unique(x, return_counts=True) b_uniq, b_uniq_n = np.unique(x[self.signal_idx], return_counts=True) bar_w = min(np.diff(r_uniq)) lbound = min(x[self.signal_idx]) - np.std(x) rbound = max(x[self.signal_idx]) + np.std(x) N_outside_lbound_red = int(sum(x < lbound)) N_outside_rbound_red = int(sum(x > rbound)) plt.bar(r_uniq, r_uniq_n, width=bar_w, color='xkcd:red') plt.bar(b_uniq, b_uniq_n, width=bar_w, color='xkcd:blue') plt.xlim([lbound, rbound]) title_str = 'Red points outside (L|R): {}|{}'.format(N_outside_lbound_red, N_outside_rbound_red) plt.title(title_str) plt.ylabel('N') plt.xlabel('offset (pixels)') plt.savefig(self.ini.velocorrection['label_bedrock_histogram'] + pnglabel, format='png', dpi=200) plt.clf() def VeloCorrectionInfo(self): a = SingleRaster(self.ini.imagepair['image1'], date=self.ini.imagepair['image1_date']) b = SingleRaster(self.ini.imagepair['image2'], date=self.ini.imagepair['image2_date']) datedelta = b.date - a.date geot = a.GetGeoTransform() xres = geot[1] yres = geot[5] x_culled = self.z1[self.signal_idx] y_culled = self.z2[self.signal_idx] self.z1.MAD_median = np.median(x_culled) self.z1.MAD_std = np.std(x_culled, ddof=1) self.z1.MAD_mean = np.mean(x_culled) self.z2.MAD_median = np.median(y_culled) self.z2.MAD_std = np.std(y_culled, ddof=1) self.z2.MAD_mean = np.mean(y_culled) vx_zarray_velo = self.z1[:] * abs(xres) / datedelta.days vx_zarray_velo.MAD_median = self.z1.MAD_median * abs(xres) / datedelta.days vx_zarray_velo.MAD_std = self.z1.MAD_std * abs(xres) / datedelta.days vx_zarray_velo.MAD_mean = self.z1.MAD_mean * abs(xres) / datedelta.days vy_zarray_velo = self.z2[:] * abs(yres) / datedelta.days vy_zarray_velo.MAD_median = self.z2.MAD_median * abs(yres) / datedelta.days vy_zarray_velo.MAD_std = self.z2.MAD_std * abs(yres) / datedelta.days vy_zarray_velo.MAD_mean = self.z2.MAD_mean * abs(yres) / datedelta.days with open(self.ini.velocorrection['label_logfile'], 'w') as f: f.write( 'Total points over bedrock = {:6n}\n'.format(self.z1.size) ) f.write( '-------- Unit: Pixels --------\n') f.write( 'median_x_px = {:6.3f}\n'.format(float(self.z1.MAD_median)) ) f.write( 'median_y_px = {:6.3f}\n'.format(float(self.z2.MAD_median)) ) f.write( 'std_x_px = {:6.3f}\n'.format(float(self.z1.MAD_std)) ) f.write( 'std_y_px = {:6.3f}\n'.format(float(self.z2.MAD_std)) ) f.write( 'mean_x_px = {:6.3f}\n'.format(float(self.z1.MAD_mean)) ) f.write( 'mean_y_px = {:6.3f}\n'.format(float(self.z2.MAD_mean)) ) f.write( '-------- Unit: Velocity (L/T; most likely m/day) --------\n') f.write( 'median_x = {:6.3f}\n'.format(float(vx_zarray_velo.MAD_median)) ) f.write( 'median_y = {:6.3f}\n'.format(float(vy_zarray_velo.MAD_median)) ) f.write( 'std_x = {:6.3f}\n'.format(float(vx_zarray_velo.MAD_std)) ) f.write( 'std_y = {:6.3f}\n'.format(float(vy_zarray_velo.MAD_std)) ) f.write( 'mean_x = {:6.3f}\n'.format(float(vx_zarray_velo.MAD_mean)) ) f.write( 'mean_y = {:6.3f}\n'.format(float(vy_zarray_velo.MAD_mean)) ) return vx_zarray_velo, vy_zarray_velo class ZArray(np.ndarray): # A subclass from ndarray, with some new attributes and fancier methods for our purposes # please see # https://docs.scipy.org/doc/numpy-1.13.0/user/basics.subclassing.html # for more details. #WARNING: NO NANs SHOULD BE FOUND IN ZArray !!! IT CAN GIVE YOU A BAD RESULT !!! def __new__(cls, input_array): # For now input_array should be a 1-d array # Input array is an already formed ndarray instance # We need first to cast to be our class type obj = np.asarray(input_array).view(cls) obj.MAD_idx = None obj.MAD_mean = None obj.MAD_median = None obj.MAD_std = None # obj.signal_val = None # obj.signal_n = None obj.signal_array = None return obj def __array_finalize__(self, obj): if obj is None: return self.MAD_idx = getattr(obj, 'MAD_idx', None) self.MAD_mean = getattr(obj, 'MAD_mean', None) self.MAD_median = getattr(obj, 'MAD_median', None) self.MAD_std = getattr(obj, 'MAD_std', None) # self.signal_val = getattr(obj, 'signal_val', None) # self.signal_n = getattr(obj, 'signal_n', None) self.signal_array = getattr(obj, 'signal_array', None) # ============================================================================================= # ==== The following functions represent new functions developed from ========================= # ==== StatisticOutput and HistWithOutliers. ================================================== # ============================================================================================= def MADStats(self): mad = lambda x : 1.482 * np.median(abs(x - np.median(x))) if self.size <= 3: print('WARNING: there are too few Z records (<= 3). Aborting the calculation.') return [], np.nan, np.nan, np.nan else: val_median = np.median(self) val_mad = mad(self) lbound = val_median - 3. * val_mad ubound = val_median + 3. * val_mad idx = np.logical_and(self >= lbound, self <= ubound) self.MAD_idx = idx self.MAD_mean = np.mean(self[idx]) self.MAD_median = np.median(self[idx]) self.MAD_std = np.std(self[idx], ddof=1) def MADHist(self, pngname): nbins = len(self) // 4 + 1 nbins = 201 if nbins > 201 else nbins bins = np.linspace(min(self), max(self), nbins) plt.hist(self, bins=bins, color='xkcd:red') plt.hist(self[self.MAD_idx], bins=bins, color='xkcd:blue') plt.ylabel('N') plt.xlabel('Value (pixel value unit)') plt.savefig(pngname, format='png') plt.cla() # ============================================================================================= # ==== The functions above represent new functions developed from ============================= # ==== StatisticOutput and HistWithOutliers. ================================================== # ============================================================================================= # ============================================================================================= # ==== The following functions are designed firstly for the functions in the class XYZFile ==== # ==== and later is has modified to a QGIS processing scripts called MAD_outlier_filter.py ==== # ==== now we have copied them back. ========================================================== # ============================================================================================= # <NAME> on Oct 25, 2018, added the background correction # the default of mad_multiplier was 3.0 # background correction redesigned on Nov 9, 2018 using more information from the PX def StatisticOutput(self, plot=True, pngname=None, ini=None): mad = lambda x : 1.482 * np.median(abs(x - np.median(x))) if self.size == 0: print('WARNING: there is no Z records.') return [], np.nan, np.nan, np.nan else: # if ini is not None: # ref_raster = SingleRaster(ini.imagepair['image1']) # -> to be continued mad_multiplier = ini.noiseremoval['peak_detection'] uniq, uniq_n = np.unique(self, return_counts=True) uniq, uniq_n = fill_with_zero(uniq, uniq_n, ini.pxsettings['oversampling']) uniq_n_est, _, _ = backcor(uniq, uniq_n, order=ini.noiseremoval['backcor_order']) background_mad = mad(uniq_n - uniq_n_est) # this is actually the noise level if background_mad == 0: background_mad = np.median(abs(uniq_n - uniq_n_est)) print("Use the median of abs(uniq_n - uniq_n_est) as one SNR level since mad = 0") background_threshold = uniq_n_est + mad_multiplier * background_mad signal_idx = np.argwhere(uniq_n >= background_threshold) signal_idx = np.ndarray.flatten(signal_idx) signal_val = uniq[signal_idx] # self.signal_val = uniq[signal_idx] signal_n = uniq_n[signal_idx] # self.signal_n = uniq_n[signal_idx] self.signal_array = np.repeat(signal_val, signal_n.astype(int)) self.MAD_mean = self.signal_array.mean() self.MAD_median = np.median(self.signal_array) self.MAD_std = self.signal_array.std(ddof=1) # offset_median = np.median(self.signal_array) # offset_mad = mad(self.signal_array) # if offset_mad == 0: # # the case when over half of the numbers are at the median number, # # we use the Median absolute deviation around the mean instead of around the median. # offset_mad = 1.482 * np.median(abs(self.signal_array - np.mean(self.signal_array))) # lbound = offset_median - mad_multiplier * offset_mad # ubound = offset_median + mad_multiplier * offset_mad # self.MAD_idx = np.logical_and(self.signal_array > lbound, self.signal_array < ubound) # trimmed_numlist = self.signal_array[self.MAD_idx] # self.MAD_mean = trimmed_numlist.mean() # self.MAD_median = np.median(trimmed_numlist) # self.MAD_std = trimmed_numlist.std(ddof=1) if plot == True and pngname is not None: self.VerifyBackcor(pngname, uniq, uniq_n, uniq_n_est, background_threshold) self.HistWithOutliers(pngname) pickle.dump(self, open(pngname.replace('.png', '.p'), 'wb')) # return idx2, trimmed_numlist.mean(), np.median(trimmed_numlist), trimmed_numlist.std(ddof=1) def VerifyBackcor(self, pngname, uniq, uniq_n, uniq_n_est, background_threshold): import matplotlib.pyplot as plt pngname = pngname.replace('.png', '-backcor.png') plt.plot(uniq, uniq_n, label='Histogram', color='xkcd:plum') plt.plot(uniq, uniq_n_est, label='Background', color='xkcd:lightgreen') plt.plot(uniq, background_threshold, label='Detection Threshold', color='xkcd:coral') # plt.xlim([min(uniq), max(uniq)]) plt.ylabel('N') plt.xlabel('offset (pixels)') plt.legend(loc='best') plt.savefig(pngname, format='png', dpi=200) plt.cla() def HistWithOutliers(self, pngname, histogram_bound=10): import matplotlib.pyplot as plt nbins = len(self) // 4 + 1 nbins = 201 if nbins > 201 else nbins lbound = min(self) if (min(self) >= -histogram_bound) or (np.mean(self) < -histogram_bound) else -histogram_bound rbound = max(self) if (max(self) <= histogram_bound) or (np.mean(self) > histogram_bound) else histogram_bound if lbound >= rbound: lbound = min(self) rbound = max(self) bins = np.linspace(lbound, rbound, nbins) # trimmed_numlist = self.signal_array[self.MAD_idx] trimmed_numlist = self.signal_array N_outside_lbound_red = int(sum(self < lbound)) N_outside_rbound_red = int(sum(self > rbound)) N_outside_lbound_blue = int(sum(trimmed_numlist < lbound)) N_outside_rbound_blue = int(sum(trimmed_numlist > rbound)) title_str = '[Red|Blue] L outside: [{}|{}] R outside: [{}|{}]'.format(N_outside_lbound_red, N_outside_lbound_blue, N_outside_rbound_red, N_outside_rbound_blue) # plot histograms plt.hist(self, bins=bins, color=[0.95, 0.25, 0.1]) plt.hist(trimmed_numlist, bins=bins, color=[0.1, 0.25, 0.95]) plt.ylabel('N') plt.xlabel('offset (pixels)') plt.title(title_str) plt.savefig(pngname, format='png', dpi=200) plt.cla() # ============================================================================================= # ==== The functions above are designed firstly for the functions in the class XYZFile ======== # ==== and later is has modified to a QGIS processing scripts called MAD_outlier_filter.py ==== # ==== now we have copied them back. ========================================================== # ============================================================================================= class XYZFile: def __init__(self, fpath=None, refpts_path=None, dem_path=None): self.fpath = fpath self.refpts_path = refpts_path self.dem_path = dem_path self.data = None self.diffval = None self.diffval_trimmed = None def Read(self): """ self.data will be usually a 3- or 4-column np.array column 1: easting column 2: northing column 3: height of the 1st group (usually reference points) column 4: height of the 2nd group (usually DEM points made from grdtrack) """ self.data = np.loadtxt(self.fpath) def StatisticOutput(self, pngname): # for getUncertaintyDEM mad = lambda x : 1.482 * np.median(abs(x - np.median(x))) if self.data.size == 0: print('NOTE: ' + self.dem_path + ' does not cover any ref points.') return [self.dem_path, '', '', '', '', '', '', self.refpts_path] elif self.data.shape[1] == 4: idx = ~np.isnan(self.data[:, 3]) self.diffval = self.data[idx, 3] - self.data[idx, 2] offset_median = np.median(self.diffval) offset_mad = mad(self.diffval) lbound = offset_median - 3. * offset_mad ubound = offset_median + 3. * offset_mad idx2 = np.logical_and(self.diffval > lbound, self.diffval < ubound) self.diffval_trimmed = self.diffval[idx2] # The return value is ready for CsvTable.SaveData method. # ['filename', 'date', 'uncertainty', 'mean_offset_wrt_refpts', \ # 'trimmed_N', 'trimming_lb', 'trimming_up', 'refpts_file'] # 'date' is an empty string since we don't specify any date string in .xyz file. self.HistWithOutliers(pngname) return [self.dem_path, '', self.diffval_trimmed.std(ddof=1), self.diffval_trimmed.mean(), \ len(self.diffval_trimmed), lbound, ubound, self.refpts_path] elif self.data.shape[1] == 3: print("Not yet designed.") return [] else: print("This program currently doesn't support the xyz file whose column number is not 3 or 4.") return [] def HistWithOutliers(self, pngname): # for getUncertaintyDEM import matplotlib.pyplot as plt nbins = len(self.diffval) // 5 nbins = 200 if nbins > 200 else nbins bins = np.linspace(min(self.diffval), max(self.diffval), nbins) plt.hist(self.diffval, bins=bins, color=[0.95, 0.25, 0.1]) plt.hist(self.diffval_trimmed, bins=bins, color=[0.1, 0.25, 0.95]) plt.ylabel('N') plt.xlabel('offset (pixel value unit)') plt.savefig(pngname, format='png') plt.cla() class AmpcoroffFile: def __init__(self, fpath=None): self.fpath = fpath self.data = None self.velo_x = None self.velo_y = None self.snr = None self.err_x = None self.err_y = None self.ini = None self.xyv_velo_x = None self.xyv_velo_y = None self.xyv_mag = None self.xyv_snr = None self.xyv_err_x = None self.xyv_err_y = None def Load(self): """ self.data will be usually a 3- or 4-column np.array column 1: x cell # (from ul to the East) column 2: offset along across (x) direction, in pixels column 3: y cell # (from ul to the South) column 4: offset along down (y) direction, in pixels column 5: SNR ratio column 6: Conv 1 (x) column 7: Conv 2 (y) column 8: Conv 3 """ import pickle self.data = pickle.load(open(self.fpath, 'rb')) # self.data = np.loadtxt(self.fpath) self.CheckData() def CheckData(self): """ Check if there's any strange value in the ampoff. """ # 1000 is an arbitrary value idx = np.argwhere(abs(self.data[:, [1, 3]]) > 1000) idx = np.unique(idx[:, 0]) self.data = np.delete(self.data, idx, 0) def SetIni(self, ini): self.ini = ini def FillwithNAN(self): """ Fill hole with nan value. """ x_linenum = np.arange(min(self.data[:, 0]), max(self.data[:, 0]) + self.ini.pxsettings['skip_across'], self.ini.pxsettings['skip_across']) y_linenum = np.unique(self.data[:, 2]) xx_linenum, yy_linenum = np.meshgrid(x_linenum, y_linenum) complete_xymap = np.vstack((xx_linenum.flatten(), yy_linenum.flatten())).T raw_xymap = self.data[:, [0, 2]] # ---- collapse x & y linenumber to a 1-d array. #### NOTE THIS WILL GO WRONG IF YOU HAVE A SUPER HUGE ARRAY! cxy = complete_xymap[:, 0] * 1000000 + complete_xymap[:, 1] rxy = raw_xymap[:, 0] * 1000000 + raw_xymap[:, 1] # ---- idx = np.where(np.isin(cxy, rxy)) idx = idx[0] newdata = np.empty((complete_xymap.shape[0],8)) newdata[:] = np.nan newdata[:,[0,2]] = complete_xymap newdata[idx,1] = self.data[:, 1] newdata[idx,3] = self.data[:, 3] newdata[idx,4] = self.data[:, 4] newdata[idx,5] = self.data[:, 5] newdata[idx,6] = self.data[:, 6] newdata[idx,7] = self.data[:, 7] self.data = newdata def Ampcoroff2Velo(self, ref_raster=None, datedelta=None, velo_or_pixel='velo'): """ ref_raster: a SingleRaster object that is used for this pixel tracking datedelta: a timedelta object that is the time span between two input images these values will override the settings from self.ini, if self.ini also exists. the final output is 1. self.velo_x -> the x comp of velocity (m/days) at where Ampcor has processed 2. self.velo_y -> the y comp of velocity (m/days) ... 3. self.snr -> the Signal-to-Noise Ratio ... 4. self.err_x -> the x comp of the error of the velocity (m/days) .... 5. self.err_y -> the y comp of the error of the velocity (m/days) .... All of these are in N-by-3 array, and the columns are 1) projected x coor, 2) projected y coor, 3) the desired quantity, respectively. """ if ref_raster is None: ref_raster = SingleRaster(self.ini.imagepair['image1'], date=self.ini.imagepair['image1_date']) if datedelta is None: a = SingleRaster(self.ini.imagepair['image1'], date=self.ini.imagepair['image1_date']) b = SingleRaster(self.ini.imagepair['image2'], date=self.ini.imagepair['image2_date']) datedelta = b.date - a.date geot = ref_raster.GetGeoTransform() ulx = geot[0] uly = geot[3] xres = geot[1] yres = geot[5] if velo_or_pixel == 'velo': self.data[:, 0] = ulx + (self.data[:, 0] - 1) * xres self.data[:, 1] = self.data[:, 1] * abs(xres) / datedelta.days self.data[:, 2] = uly + (self.data[:, 2] - 1) * yres self.data[:, 3] = self.data[:, 3] * abs(yres) / datedelta.days self.data[:, 5] = np.sqrt(self.data[:, 5]) / datedelta.days self.data[:, 6] = np.sqrt(self.data[:, 6]) / datedelta.days self.velo_x = self.data[:,[0,2,1]] self.velo_y = self.data[:,[0,2,3]] self.velo_y[:, -1] = -self.velo_y[:, -1] # UL-LR system to Cartesian self.snr = self.data[:,[0,2,4]] self.err_x = self.data[:,[0,2,5]] self.err_y = self.data[:,[0,2,6]] elif velo_or_pixel == 'pixel': self.data[:, 0] = ulx + (self.data[:, 0] - 1) * xres self.data[:, 2] = uly + (self.data[:, 2] - 1) * yres self.velo_x = self.data[:,[0,2,1]] self.velo_y = self.data[:,[0,2,3]] self.velo_y[:, -1] = -self.velo_y[:, -1] # UL-LR system to Cartesian self.snr = self.data[:,[0,2,4]] self.err_x = self.data[:,[0,2,5]] self.err_y = self.data[:,[0,2,6]] def Velo2XYV(self, xyvfileprefix=None, spatialres=None, generate_xyztext=False): """ spatialres: the spatial resolution of the XYV file. xyvfileprefix: the prefix for output xyv file. the final output is self.xyv_... -> after griddata, the data have been warped into a grid with a fixed spatial resolution. """ if xyvfileprefix is None: xyvfileprefix = self.ini.rawoutput['label_geotiff'] if spatialres is None: y_list = np.unique(self.velo_x[:, 1]) spatialres = np.sqrt((self.velo_x[1, 0] - self.velo_x[0, 0]) * (y_list[-1] - y_list[-2])) x = np.arange(min(self.velo_x[:, 0]), max(self.velo_x[:, 0]), spatialres) y = np.arange(max(self.velo_x[:, 1]), min(self.velo_x[:, 1]), -spatialres) xx, yy = np.meshgrid(x, y) vx = griddata(self.velo_x[:, [0,1]], self.velo_x[:, 2], (xx, yy), method='linear') vy = griddata(self.velo_y[:, [0,1]], self.velo_y[:, 2], (xx, yy), method='linear') mag = np.sqrt(vx ** 2 + vy ** 2) snr = griddata(self.snr[:, [0,1]], self.snr[:, 2], (xx, yy), method='linear') errx = griddata(self.err_x[:, [0,1]], self.err_x[:, 2], (xx, yy), method='linear') erry = griddata(self.err_y[:, [0,1]], self.err_y[:, 2], (xx, yy), method='linear') self.xyv_velo_x = np.stack([xx.flatten(), yy.flatten(), vx.flatten()]).T self.xyv_velo_y = np.stack([xx.flatten(), yy.flatten(), vy.flatten()]).T self.xyv_mag = np.stack([xx.flatten(), yy.flatten(), mag.flatten()]).T self.xyv_snr = np.stack([xx.flatten(), yy.flatten(), snr.flatten()]).T self.xyv_err_x = np.stack([xx.flatten(), yy.flatten(), errx.flatten()]).T self.xyv_err_y = np.stack([xx.flatten(), yy.flatten(), erry.flatten()]).T if generate_xyztext: np.savetxt(xyvfileprefix + '_vx.xyz', self.xyv_velo_x, delimiter=" ", fmt='%10.2f %10.2f %10.6f') np.savetxt(xyvfileprefix + '_vy.xyz', self.xyv_velo_y, delimiter=" ", fmt='%10.2f %10.2f %10.6f') np.savetxt(xyvfileprefix + '_mag.xyz', self.xyv_mag, delimiter=" ", fmt='%10.2f %10.2f %10.6f') np.savetxt(xyvfileprefix + '_snr.xyz', self.xyv_snr, delimiter=" ", fmt='%10.2f %10.2f %10.6f') np.savetxt(xyvfileprefix + '_errx.xyz', self.xyv_err_x, delimiter=" ", fmt='%10.2f %10.2f %10.6f') np.savetxt(xyvfileprefix + '_erry.xyz', self.xyv_err_y, delimiter=" ", fmt='%10.2f %10.2f %10.6f') def XYV2Raster(self, xyvfileprefix=None, ref_raster=None): """ xyvfileprefix: the prefix for output xyv file. """ if xyvfileprefix is None: xyvfileprefix = self.ini.rawoutput['label_geotiff'] if ref_raster is None: ref_raster = SingleRaster(self.ini.imagepair['image1'], date=self.ini.imagepair['image1_date']) # vx_xyz = xyvfileprefix + '_vx.xyz' # vy_xyz = xyvfileprefix + '_vy.xyz' # mag_xyz = xyvfileprefix + '_mag.xyz' # vx_gtiff = vx_xyz.replace('xyz', 'tif') # vy_gtiff = vy_xyz.replace('xyz', 'tif') # mag_gtiff = mag_xyz.replace('xyz', 'tif') nodata_val = -9999.0 self.xyv_velo_x[np.isnan(self.xyv_velo_x)] = nodata_val self.xyv_velo_y[np.isnan(self.xyv_velo_y)] = nodata_val self.xyv_mag[np.isnan(self.xyv_mag)] = nodata_val self.xyv_snr[np.isnan(self.xyv_snr)] = nodata_val self.xyv_err_x[np.isnan(self.xyv_err_x)] = nodata_val self.xyv_err_y[np.isnan(self.xyv_err_y)] = nodata_val vx_gtiff = xyvfileprefix + '_vx.tif' vy_gtiff = xyvfileprefix + '_vy.tif' mag_gtiff = xyvfileprefix + '_mag.tif' snr_gtiff = xyvfileprefix + '_snr.tif' errx_gtiff = xyvfileprefix + '_errx.tif' erry_gtiff = xyvfileprefix + '_erry.tif' xraster = SingleRaster(vx_gtiff) yraster = SingleRaster(vy_gtiff) magraster = SingleRaster(mag_gtiff) snrraster = SingleRaster(snr_gtiff) errxraster = SingleRaster(errx_gtiff) erryraster = SingleRaster(erry_gtiff) proj = ref_raster.GetProjection() # print(self.xyv_velo_x) # print(proj) # xraster.XYZ2Raster(vx_xyz, projection=proj) # yraster.XYZ2Raster(vy_xyz, projection=proj) # magraster.XYZ2Raster(mag_xyz, projection=proj) xraster.XYZArray2Raster(self.xyv_velo_x, projection=proj) yraster.XYZArray2Raster(self.xyv_velo_y, projection=proj) magraster.XYZArray2Raster(self.xyv_mag, projection=proj) snrraster.XYZArray2Raster(self.xyv_snr, projection=proj) errxraster.XYZArray2Raster(self.xyv_err_x, projection=proj) erryraster.XYZArray2Raster(self.xyv_err_y, projection=proj) xraster.SetNoDataValue(nodata_val) yraster.SetNoDataValue(nodata_val) magraster.SetNoDataValue(nodata_val) snrraster.SetNoDataValue(nodata_val) errxraster.SetNoDataValue(nodata_val) errxraster.SetNoDataValue(nodata_val) def points_in_polygon(points_geometry, shp_filename): # points_geometry: N-by-2 np array defining the geometry of points # shp_filename: shapefile name # Both datasets should have the SAME CRS! # return: np mask array showing where the targeted points are. import logging logging.basicConfig(level=logging.WARNING) import geopandas as gpd from shapely.geometry import Point # from shapely.geometry import mapping shapefile = gpd.read_file(shp_filename) poly_geometries = [shapefile.loc[i]['geometry'] for i in range(len(shapefile))] pt_geometries = [Point(xy) for xy in zip(points_geometry[:, 0], points_geometry[:, 1])] pt_gs = gpd.GeoSeries(pt_geometries) idx = None for single_poly in poly_geometries: if idx is None: idx = pt_gs.within(single_poly) else: tmp = pt_gs.within(single_poly) idx = np.logical_or(idx, tmp) return idx def fill_with_zero(uniq, uniq_n, ini_oversampling): """ Fill the gaps between min and max with zero (counts) for the uniq and uniq_n. """ # ---- Verification of the sub-pixel sampling rate def_sampling_rate = ini_oversampling * 2 # sampling rate defined in the ini file real_sampling_rate = 1 / min(np.diff(uniq)) if int(def_sampling_rate) != int(real_sampling_rate): raise ValueError('Over-sampling rate of the data mismatches the one defined in the ini file!') # ---- complete_uniq = np.arange(min(uniq), max(uniq) + min(
np.diff(uniq)
numpy.diff
from __future__ import print_function """ Using OpenDNS domain query activity, we retrieve 5 days of queries/hour to a domain for 240+ domains (stored in dns.json). We predict the number of queries in the next hour using a LSTM recurrent neural network. An ad hoc anomaly detection is outlined in the final for loop. Refer to: http://stackoverflow.com/questions/25967922/pybrain-time-series-prediction-using-lstm-recurrent-nets https://github.com/pybrain/pybrain/blob/master/examples/supervised/neuralnets%2Bsvm/example_rnn.py """ from pybrain.supervised import RPropMinusTrainer from pybrain.tools.shortcuts import buildNetwork from pybrain.structure.modules import LSTMLayer from pybrain.datasets import SequentialDataSet from pybrain.tools.xml import NetworkWriter from sys import stdout import numpy as np import random import json # Get queries/hr data with open('dns.json', 'r') as f: samples = map(lambda x: x['ts'][:-2], json.load(f)) # Shuffle to partition test/train random.shuffle(samples) # Set train & test data train_data, test_data = samples[:50], samples[200:] # Initialize ds for rnn for 1 obsv and 1 next ds = SequentialDataSet(1, 1) # Add each timeseries (ts) for ts in train_data: ds.newSequence() # Add obsv and next for t_1, t_2 in zip(ts, ts[1:]): ds.addSample(t_1, t_2) # RNN with 1-5-1 architecture: 1 input, 5 hidden, 1 output layer rnn = buildNetwork(1, 5, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=True) # Initialize trainer trainer = RPropMinusTrainer(rnn, dataset=ds) # Predefine iterations: epochs & cycles EPOCHS_PER_CYCLE = 5 CYCLES = 100 EPOCHS = EPOCHS_PER_CYCLE * CYCLES # Training loop for i in xrange(CYCLES): trainer.trainEpochs(EPOCHS_PER_CYCLE) error = trainer.testOnData() epoch = (i + 1) * EPOCHS_PER_CYCLE print("\r Epoch: {}/{} Error: {}".format(epoch, EPOCHS, error), end="") stdout.flush() # Save model NetworkWriter.writeToFile(rnn, 'rnn3.xml') # Ad hoc test for test in test_data: for i in xrange(0, len(test) - 6, 5): # Get 5 obs, 6th we wish to predict obs, nxt = test[i:i + 5], test[i + 6] # Predict all prds = map(rnn.activate, obs) # Get 6th prediction prd = prds.pop()[0] # Test if prd is anomalous anm = prd > (1 +
np.mean(obs)
numpy.mean
""" Lean rigid transformation class Author: Jeff """ import logging import os import numpy as np import scipy.linalg from . import utils from . import transformations from .points import BagOfPoints, BagOfVectors, Point, PointCloud, Direction, NormalCloud from .dual_quaternion import DualQuaternion try: from geometry_msgs import msg except: logging.warning('Failed to import geometry msgs in rigid_transformations.py.') try: import rospy import rosservice except ImportError: logging.warning("Failed to import ros dependencies in rigid_transforms.py") try: from autolab_core.srv import * except ImportError: logging.warning("autolab_core not installed as catkin package, RigidTransform ros methods will be unavailable") import subprocess TF_EXTENSION = '.tf' STF_EXTENSION = '.stf' class RigidTransform(object): """A Rigid Transformation from one frame to another. """ def __init__(self, rotation=np.eye(3), translation=np.zeros(3), from_frame='unassigned', to_frame='world'): """Initialize a RigidTransform. Parameters ---------- rotation : :obj:`numpy.ndarray` of float A 3x3 rotation matrix (should be unitary). translation : :obj:`numpy.ndarray` of float A 3-entry translation vector. from_frame : :obj:`str` A name for the frame of reference on which this transform operates. This and to_frame are used for checking compositions of RigidTransforms, which is useful for debugging and catching errors. to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. Raises ------ ValueError If any of the arguments are invalid. The frames must be strings or unicode, the translations and rotations must be ndarrays, have the correct shape, and the determinant of the rotation matrix should be 1.0. """ if not isinstance(from_frame, str) and not isinstance(from_frame, unicode): raise ValueError('Must provide string name of input frame of data') if not isinstance(to_frame, str) and not isinstance(to_frame, unicode): raise ValueError('Must provide string name of output frame of data') self.rotation = rotation self.translation = translation self._from_frame = str(from_frame) self._to_frame = str(to_frame) def copy(self): """Returns a copy of the RigidTransform. Returns ------- :obj:`RigidTransform` A deep copy of the RigidTransform. """ return RigidTransform(np.copy(self.rotation), np.copy(self.translation), self.from_frame, self.to_frame) def _check_valid_rotation(self, rotation): """Checks that the given rotation matrix is valid. """ if not isinstance(rotation, np.ndarray) or not np.issubdtype(rotation.dtype, np.number): raise ValueError('Rotation must be specified as numeric numpy array') if len(rotation.shape) != 2 or rotation.shape[0] != 3 or rotation.shape[1] != 3: raise ValueError('Rotation must be specified as a 3x3 ndarray') if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3: raise ValueError('Illegal rotation. Must have determinant == 1.0') def _check_valid_translation(self, translation): """Checks that the translation vector is valid. """ if not isinstance(translation, np.ndarray) or not np.issubdtype(translation.dtype, np.number): raise ValueError('Translation must be specified as numeric numpy array') t = translation.squeeze() if len(t.shape) != 1 or t.shape[0] != 3: raise ValueError('Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray') @property def rotation(self): """:obj:`numpy.ndarray` of float: A 3x3 rotation matrix. """ return self._rotation @rotation.setter def rotation(self, rotation): # Convert quaternions if len(rotation) == 4: q = np.array([q for q in rotation]) if np.abs(np.linalg.norm(q) - 1.0) > 1e-3: raise ValueError('Invalid quaternion. Must be norm 1.0') rotation = RigidTransform.rotation_from_quaternion(q) # Convert lists and tuples if type(rotation) in (list, tuple): rotation = np.array(rotation).astype(np.float32) self._check_valid_rotation(rotation) self._rotation = rotation * 1. @property def translation(self): """:obj:`numpy.ndarray` of float: A 3-ndarray that represents the transform's translation vector. """ return self._translation @translation.setter def translation(self, translation): # Convert lists to translation arrays if type(translation) in (list, tuple) and len(translation) == 3: translation = np.array([t for t in translation]).astype(np.float32) self._check_valid_translation(translation) self._translation = translation.squeeze() * 1. @property def position(self): """:obj:`numpy.ndarray` of float: A 3-ndarray that represents the transform's translation vector (same as translation). """ return self._translation @position.setter def position(self, position): self.translation = position @property def adjoint_tf(self): A = np.zeros([6,6]) A[:3,:3] = self.rotation A[3:,:3] = utils.skew(self.translation).dot(self.rotation) A[3:,3:] = self.rotation return A @property def from_frame(self): """:obj:`str`: The identifier for the 'from' frame of reference. """ return self._from_frame @from_frame.setter def from_frame(self, from_frame): self._from_frame = str(from_frame) @property def to_frame(self): """:obj:`str`: The identifier for the 'to' frame of reference. """ return self._to_frame @to_frame.setter def to_frame(self, to_frame): self._to_frame = str(to_frame) @property def euler_angles(self): """:obj:`tuple` of float: The three euler angles for the rotation. """ q_wxyz = self.quaternion q_xyzw = np.roll(q_wxyz, -1) return transformations.euler_from_quaternion(q_xyzw) @property def quaternion(self): """:obj:`numpy.ndarray` of float: A quaternion vector in wxyz layout. """ q_xyzw = transformations.quaternion_from_matrix(self.matrix) q_wxyz = np.roll(q_xyzw, 1) return q_wxyz @property def dual_quaternion(self): """:obj:`DualQuaternion`: The DualQuaternion corresponding to this transform. """ qr = self.quaternion qd = np.append([0], self.translation / 2.) return DualQuaternion(qr, qd) @property def axis_angle(self): """:obj:`numpy.ndarray` of float: The axis-angle representation for the rotation. """ qw, qx, qy, qz = self.quaternion theta = 2 * np.arccos(qw) omega = np.array([1,0,0]) if theta > 0: rx = qx / np.sqrt(1.0 - qw**2) ry = qy /
np.sqrt(1.0 - qw**2)
numpy.sqrt
import numpy as np from mayavi import mlab from BDQuaternions import Conventions from BDSpace.Coordinates import Cartesian import BDSpaceVis as Visual # Create cartesian coordinate system CS = Cartesian() convention = Conventions().get_convention('Bunge') CS.euler_angles_convention = convention # to visualise the coordinate system basis the module Visual is used fig = mlab.figure('CS demo', bgcolor=(0.5, 0.5, 00.5)) # Create the mayavi figure #Visual.draw_coordinate_system_axes(fig, CS) cube_surface, arrows, labels = Visual.draw_coordinate_system_box(fig, CS, scale=1) CS.rotate_euler_angles(
np.array([np.pi, 0, 0])
numpy.array
# <NAME> # Sarupria Research Group # Clemson University # 2019 Jun 11 import sys import os import math import numpy as np import argparse import MDAnalysis as mda # For Cython nlist # PROVIDE AN ABSOLUTE PATH TO MAKE THIS IMPORT WORK # FROM WHEREVER YOU ARE EXECUTING THIS CODE sys.path.append('/home/rdefeve/repos/stride-upload/mda_custom') import nsgrid.nsgrid_rsd as nsgrid def main(): # Argument parsing args = get_args() # List of all classes classes = ['liq','fcc','hcp','bcc'] nclass = len(classes) # Get list of all subdirectories dirs = [d for d in os.listdir(args.path) if os.path.isdir("%s/%s" % (args.path, d))] # Narrow directory list to specified classes # Assumes (T,P) conditions in directories named 'phase_pPPPtTTT' dirs = [d for d in dirs if d.split("_")[0] in classes] # Get all files files_gro = ["%s/prod.gro" % d for d in dirs] files_xtc = ["%s/prod.xtc" % d for d in dirs] assert len(files_gro) == len(files_xtc), \ "Error, unequal number of .gro and .xtc files found" # Initialize lists for samples and labels samples = [] labels = [] # Initialize values for mean/stdev of nneigh count = 0 mean = 0 m2 = 0 # Read in data for each file for fcount in range(len(files_gro)): # Progress print("Reading file: %s" % files_gro[fcount]) # Extract classid and create label classid = files_gro[fcount].split("_")[0] ndx = classes.index(classid) label = np.zeros(len(classes)) label[ndx] = 1 # Import topology u = mda.Universe(files_gro[fcount], files_xtc[fcount]) # Loop over trajectory for ts in u.trajectory: # Select atoms at random for samples sel = np.random.choice(u.atoms.n_atoms,size=args.n_select,replace=False) #sel = [13518] #print(sel) # Create neighbor list for atoms nlist = nsgrid.FastNS(args.cutoff*10.0,u.atoms.positions,ts.dimensions).search(u.atoms[sel].positions) ndxs = nlist.get_indices() dxs = nlist.get_dx() dists = nlist.get_distances() for i in range(len(sel)): np_dxs =
np.asarray(dxs[i])
numpy.asarray
import matplotlib.pyplot as plt import numpy as np from brancher.variables import RootVariable, RandomVariable, ProbabilisticModel from brancher.standard_variables import NormalVariable, LogNormalVariable, BetaVariable, MultivariateNormalVariable from brancher import inference import brancher.functions as BF # Probabilistic model # T = 50 driving_noise = 1. measure_noise = 0.3 x0 = NormalVariable(0., driving_noise, 'x0') y0 = NormalVariable(x0, measure_noise, 'y0') b = BetaVariable(5., 5., 'b') x = [x0] y = [y0] x_names = ["x0"] y_names = ["y0"] y_range = range(T) for t in range(1, T): x_names.append("x{}".format(t)) x.append(NormalVariable(b * x[t - 1], driving_noise, x_names[t])) if t in y_range: y_name = "y{}".format(t) y_names.append(y_name) y.append(NormalVariable(x[t], measure_noise, y_name)) AR_model = ProbabilisticModel(x + y) # Generate data # data = AR_model._get_sample(number_samples=1) time_series = [float(data[yt].data) for yt in y] ground_truth = [float(data[xt].data) for xt in x] true_b = data[b].data print("The true coefficient is: {}".format(float(true_b))) # Observe data # [yt.observe(data[yt][:, 0, :]) for yt in y] # Structured variational distribution # Qb = BetaVariable(5., 5., "b", learnable=True) Qx = [NormalVariable(0., 1., 'x0', learnable=True)] Qx_mean = [RootVariable(0., 'x0_mean', learnable=True)] Qlambda = [RootVariable(0., 'x0_lambda', learnable=True)] for t in range(1, T): Qx_mean.append(RootVariable(0., x_names[t] + "_mean", learnable=True)) Qlambda.append(RootVariable(0., x_names[t] + "_lambda", learnable=True)) Qx.append(NormalVariable(BF.sigmoid(Qlambda[t])*Qb*Qx[t - 1] + (1 - BF.sigmoid(Qlambda[t]))*Qx_mean[t], 1., x_names[t], learnable=True)) variational_posterior = ProbabilisticModel([Qb] + Qx) AR_model.set_posterior_model(variational_posterior) # Inference # N_iter = 400 n_samples = 10 optimizer = "Adam" lr = 0.01 inference.perform_inference(AR_model, number_iterations=N_iter, number_samples=n_samples, optimizer=optimizer, lr=lr) loss_list = AR_model.diagnostics["loss curve"] # ELBO ELBO = AR_model.estimate_log_model_evidence(15000) print("The ELBO is {}".format(ELBO)) # Statistics posterior_samples = AR_model._get_posterior_sample(2000) b_posterior_samples = posterior_samples[b].detach().numpy().flatten() b_mean = np.mean(b_posterior_samples) b_sd = np.sqrt(np.var(b_posterior_samples)) x_mean = [] lower_bound = [] upper_bound = [] for xt in x: x_posterior_samples = posterior_samples[xt].detach().numpy().flatten() mean = np.mean(x_posterior_samples) sd = np.sqrt(np.var(x_posterior_samples)) x_mean.append(mean) lower_bound.append(mean - sd) upper_bound.append(mean + sd) print("The estimated coefficient is: {} +- {}".format(b_mean, b_sd)) # Two subplots, unpack the axes array immediately f, (ax1, ax2, ax3) = plt.subplots(1, 3) ax1.scatter(y_range, time_series, c="k") ax1.plot(range(T), x_mean) ax1.plot(range(T), ground_truth, c="k", ls ="--", lw=1.5) ax1.fill_between(range(T), lower_bound, upper_bound, alpha=0.5) ax1.set_title("Time series") ax2.plot(np.array(loss_list)) ax2.set_title("Convergence") ax2.set_xlabel("Iteration") ax3.hist(b_posterior_samples, 25) ax3.axvline(x=true_b, lw=2, c="r") ax3.set_title("Posterior samples (b)") ax3.set_xlim(0, 1) plt.show() # Mean-field variational distribution # Qb = BetaVariable(5., 5., "b", learnable=True) Qx = [NormalVariable(0., 1., 'x0', learnable=True)] for t in range(1, T): Qx.append(NormalVariable(0, 1., x_names[t], learnable=True)) variational_posterior = ProbabilisticModel([Qb] + Qx) AR_model.set_posterior_model(variational_posterior) # Inference # inference.perform_inference(AR_model, number_iterations=N_iter, number_samples=n_samples, optimizer=optimizer, lr=lr) loss_list = AR_model.diagnostics["loss curve"] # ELBO ELBO = AR_model.estimate_log_model_evidence(15000) print("The ELBO is {}".format(ELBO)) # Statistics posterior_samples = AR_model._get_posterior_sample(2000) b_posterior_samples = posterior_samples[b].detach().numpy().flatten() b_mean =
np.mean(b_posterior_samples)
numpy.mean
import argparse import sys from io import BytesIO import cv2 # from lightning_logs.basic_model import ImageCompression import numpy from model import ImageCompression import numpy as np import torch from PIL import Image from torch.utils.data import DataLoader, random_split from torchvision import datasets from torchvision.transforms import transforms from dataset import Celeb from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM import pickle import imgaug.augmenters as iaa parser = argparse.ArgumentParser() parser.add_argument('-p', '--path') args = parser.parse_args() # image = cv2.imread(args.path, cv2.IMREAD_GRAYSCALE) # model = ImageCompression() # model.load_state_dict(torch.load('modelLast.pth')) # model.eval() # loss = torch.nn.MSELoss() # transform = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()]) # pil = transforms.ToPILImage() model = ImageCompression.load_from_checkpoint( 'lightning_logs/version_0/epoch=32-step=58937.ckpt') model.eval() loss = torch.nn.MSELoss() pil = transforms.ToPILImage() totensor = transforms.ToTensor() def save(img, path): f = open(path, "wb") pickle.dump(img, f) f.close() if args.path == None: # import ipdb;ipdb.set_trace() train_data = Celeb(train=True) test_data = Celeb(train=False) train_dataLoader = DataLoader(train_data, batch_size=1, shuffle=True) test_dataLoader = DataLoader(test_data, batch_size=1, shuffle=True) for x in test_dataLoader: images = x x0 = model(images) out = (x0+1)/2 output = pil(out.squeeze(0)) print("max :", out.max().item(), "min :", out.min().item()) print('loss :', loss(x0, images)) print('ssim :', ssim(x0, images, data_range=1, size_average=True)) print("________________________\n") orig = pil((x.squeeze(0)+1)/2) show = np.hstack((np.array(orig),
np.array(output)
numpy.array
import numpy as np import cv2 from scipy.interpolate import interpn from scipy.ndimage import zoom import matplotlib as mpl mpl.use("Agg") from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas def plot_heatmap_img(batch_segments, batch_vis_views, batch_scales, batch_conv_vis, batch_descriptor, sess, cnn_descriptor, cnn_input, cnn_input_vis, cnn_scales ): # MulRan intensity = batch_vis_views[:, :, :, 0] * 173.09 + 209.30 # KITTI # intensity = (batch_vis_views[:, :, :, 0] * 8297.86 + 19020.73) * 1500.0 / 65535.0 mask = batch_vis_views[:, :, :, 1] * 255.0 weights = np.zeros((batch_conv_vis.shape[0], batch_conv_vis.shape[3]), dtype=np.float) for layer in range(batch_conv_vis.shape[3]): l_heatmap = batch_conv_vis[:, :, :, layer] cur_batch_vis_views = np.zeros(batch_vis_views.shape, dtype=batch_vis_views.dtype) for b in range(l_heatmap.shape[0]): cur_heatmap = cv2.resize(l_heatmap[b], (intensity.shape[2], intensity.shape[1])) cur_heatmap = np.maximum(cur_heatmap, 0.0) minh = np.min(cur_heatmap) maxh = np.max(cur_heatmap) cur_heatmap = (cur_heatmap - minh) / max(maxh - minh, 1e-4) cur_batch_vis_views[b, :, :, :] = batch_vis_views[b, :, :, :] * np.expand_dims(cur_heatmap, axis=-1) [cur_batch_descriptor] = sess.run( [cnn_descriptor], feed_dict={ cnn_input: batch_segments, cnn_input_vis: cur_batch_vis_views, cnn_scales: batch_scales, }, ) weights[:, layer] = np.linalg.norm(batch_descriptor - cur_batch_descriptor, axis=-1) weights = 1.0 / np.maximum(weights, 1e-4) scores = np.mean(weights, axis=-1) weights = weights / np.sum(weights, axis=-1, keepdims=True) heatmap = batch_conv_vis * weights[:, np.newaxis, np.newaxis, :] heatmap = np.sum(heatmap, axis=-1) img_heatmap_np = np.zeros(intensity.shape + (3,), dtype=np.uint8) val_heatmap_np = np.zeros(intensity.shape, dtype=np.float) for b in range(heatmap.shape[0]): cur_heatmap = cv2.resize(heatmap[b], (intensity.shape[2], intensity.shape[1])) cur_heatmap = np.maximum(cur_heatmap, 0.0) cur_heatmap = cur_heatmap / np.max(cur_heatmap) cur_heatmap_color = cv2.applyColorMap(np.uint8(255 * cur_heatmap), cv2.COLORMAP_JET) cur_heatmap_color = cv2.cvtColor(cur_heatmap_color, cv2.COLOR_BGR2RGB) cur_img_heatmap = 0.25 * cur_heatmap_color + \ 0.75 * np.tile(np.expand_dims(np.minimum(intensity[b] * 255.0 / 1500.0, 255.0), axis=-1), [1, 1, 3]) # cur_img_heatmap[mask[b] > 128.0, :] = np.array([255, 0, 0], dtype=np.uint8) img_heatmap_np[b] = cur_img_heatmap val_heatmap_np[b] = cur_heatmap return img_heatmap_np, val_heatmap_np, scores def resize_voxels(voxels, size): # x = np.linspace(0, voxels.shape[0] - 1, num=voxels.shape[0]) # y = np.linspace(0, voxels.shape[1] - 1, num=voxels.shape[1]) # z = np.linspace(0, voxels.shape[2] - 1, num=voxels.shape[2]) voxels_resized = zoom(voxels, (size[0] / voxels.shape[0], size[1] / voxels.shape[1], size[2] / voxels.shape[2])) return voxels_resized def plot_heatmap_vox(batch_segments, batch_vis_views, batch_classes, batch_scales, batch_conv, batch_descriptor, sess, cnn_descriptor, cnn_input, cnn_input_vis, cnn_y_true, cnn_scales, height, width ): weights = np.zeros((batch_conv.shape[0], batch_conv.shape[-1]), dtype=np.float) for layer in range(batch_conv.shape[-1]): l_heatmap = batch_conv[:, :, :, :, layer] cur_batch_segments = np.zeros(batch_segments.shape, dtype=batch_segments.dtype) for b in range(l_heatmap.shape[0]): cur_heatmap = resize_voxels(l_heatmap[b], (batch_segments.shape[1:-1])) cur_heatmap = np.maximum(cur_heatmap, 0.0) minh = np.min(cur_heatmap) maxh =
np.max(cur_heatmap)
numpy.max
import numpy as np; from collections import Counter crab_dist = Counter(np.fromfile("day7.txt", dtype=int, sep=",")) upper = max(crab_dist.keys()) cost =
np.zeros((upper,), dtype=int)
numpy.zeros
#!/usr/bin/env python3 # # (C) 2018-2020 <NAME> import sys, argparse import numpy as np sys.path.append('../') import PetscBinaryIO # may need link def readcoordinates(io,vech): objecttype = io.readObjectType(vech) if objecttype == 'Vec': xy = io.readVec(vech) N = len(xy) if N % 2 != 0: print('ERROR: nodes in .vec file not of even length ... stopping') sys.exit() N = int(N/2) xy =
np.reshape(xy,(N,2))
numpy.reshape
import qt import numpy as np import os import shutil import sys import progressbar from constants import * def copy_script(once): if once: shutil.copy2('%s'%sys.argv[0],'%s/%s'%(data.get_filepath()[:-(len(data.get_filename())+1)],os.path.basename(sys.argv[0]))) fsv = qt.instruments.create('FSV', 'RhodeSchwartz_FSV', address = FSV_ADDRESS) znb = qt.instruments.create('ZNB20', 'RhodeSchwartz_ZNB20', address=ZNB20_ADDRESS, reset= True) smf = qt.instruments.create('SMF100', 'RhodeSchwartz_SMF100', address = SMF100_ADDRESS) target_value = -79.1-1 # How many traces no_of_traces = 200 ## FSV parameters center_frequency = 6025.*MHz span = 200*Hz RBW = 1*Hz numpoints = 501 ref_level = -70 #dBm #### SMF parameters smf_freq = 6025*MHz - 6.583815*MHz smf_power = -0.5 # VNA probe_center = center_frequency probe_span = 80*MHz probe_numpoints = 201 if_bw_0 = 100*Hz probe_power = 0 # two_probe_span = 2*Hz two_probe_numpoints = 1 two_if_bw_1 = 2*Hz two_probe_power = 0 # Prepare FSV fsv.set_centerfrequency(center_frequency) fsv.set_span(span) fsv.set_bandwidth(RBW) fsv.set_sweep_points(numpoints) fsv.set_referencelevel(ref_level) # Prepare SMF smf.set_frequency(smf_freq) smf.set_source_power(smf_power) smf.rf_on() # Setup VNA znb.add_trace('S21') znb.set_external_reference(True) znb.set_source_power(probe_power) znb.rf_on() znb.set_sweep_mode('single') def check_cavity(): znb.set_source_power(probe_power) znb.set_center_frequency(probe_center) znb.set_numpoints(probe_numpoints) znb.set_span(probe_span) znb.set_if_bandwidth(if_bw_0) znb.send_trigger(wait=True) znb.autoscale() def cw_setup(): znb.rf_on() znb.set_source_power(two_probe_power) znb.set_numpoints(two_probe_numpoints) znb.set_center_frequency(probe_center) # znb.set_span(two_probe_span) znb.set_if_bandwidth(two_if_bw_1) znb.send_trigger(wait=True) znb.autoscale() dummy = znb.get_data('S21') return 20*np.log10(np.abs(dummy[0])) def thermal(): znb.set_source_power(-60) znb.rf_off() ### SETTING UP DATA FILE data_file_name = raw_input('Enter name of data file: ') data=qt.Data(name=data_file_name) data.add_coordinate('counter', units='nothing') data.add_coordinate('Frequency', units='Hz') data.add_value('PSD', units = 'dBm') data.add_value('MP', units = 'dBm') incr = np.arange(no_of_traces) in_meta = [center_frequency - span/2, center_frequency + span/2, numpoints, 'Frequency (Hz)'] out_meta = [no_of_traces, 1.0, no_of_traces,'Counter'] once = True value = 0 check_cavity() while 1<2: print(value) value_array = np.linspace(value, value, numpoints) thermal() fsv.run_single() trace= fsv.get_data() measure_peak = cw_setup() print(measure_peak) if measure_peak > target_value: mp =
np.linspace(measure_peak, measure_peak, numpoints)
numpy.linspace
# -*- coding: utf-8 -*- """ Xarray Stacked Images Writer. Create 3D datasets, allows setting spatial and temporal subset (images and time series) """ #TODO. File locking as option for multiple processes? # todo: Add Point data results manager (for ismn based results) import xarray as xr import numpy as np import pandas as pd from datetime import datetime import warnings import matplotlib.pyplot as plt import os from io_utils.utils import safe_arange from pygeogrids.grids import BasicGrid, CellGrid, lonlat2cell import copy from io_utils.write.utils import minmax def to_reg_cell_grid(grid, cellsize=5.): """ Create RegularCellGrid from BasicGrid or CellGrid Parameters ---------- grid : CellGrid or BasicGrid Input grid to convert cellsize : float, optional (default: 5.) Cell size of the CellGrid to create. Returns ------- grid : RegularCellGrid A regularly gridded CellGrid """ if isinstance(grid, RegularCellGrid) and (grid.cellsize == cellsize): return grid return RegularCellGrid(grid.arrlon, grid.arrlat, cellsize, gpis=grid.gpis, subset=grid.subset, shape=grid.shape) class Point(object): """ Helper class to combine lon and lat in one Point """ def __init__(self, lon, lat): if lat > 90. or lat <-90: raise IOError('{} is out of valid bounds (+-90) for Latitude'.format(lat)) if lon > 180. or lon <-180: raise IOError('{} is out of valid bounds (+-180) for Longitude'.format(lon)) self.__lon, self.__lat = lon, lat self.__loc = (lon, lat) def __str__(self): return 'Lon: {}, Lat: {}'.format(self.lon, self.lat) @property def lon(self): return self.__lon @property def lat(self): return self.__lat @property def loc(self): return (self.lon, self.lat) class RegularCellGrid(CellGrid): # Special for of a Cell Grid that has equal spacing between grid points def __init__(self, lon, lat, cellsize=5., gpis=None, geodatum='WGS84', subset=None, setup_kdTree=False, **kwargs): self.cellsize = cellsize cells = lonlat2cell(lon, lat, cellsize=cellsize) super(RegularCellGrid, self).__init__(lon, lat, cells, gpis, geodatum, subset=subset, setup_kdTree=setup_kdTree, **kwargs) self.dx, self.dy = self._grid_space() def _grid_space(self): # find the resolution of the grid and check if it is regular along x and y lons, lats = self.get_grid_points()[1], self.get_grid_points()[2] diff_x = np.around(np.diff(sorted(np.unique(lons))), 10) diff_y = np.around(np.diff(sorted(np.unique(lats))), 10) dx = np.max(diff_x) assert np.min(diff_x) == dx dy = np.max(diff_y) assert np.min(diff_y) == dy assert np.all(diff_x == dx) assert np.all(diff_y == dy) return dx, dy class RegularArea(object): """ Helper class to combine lons and lats that span an Area """ def __init__(self, llc, urc, grid): """ Create an regularly gridded 2d Area. Parameters ---------- llc : Point Lower left corner point of the Area urc : Point Upper right corner point of the Area grid : BasicGrid or CellGrid An independent grid that the area is a subset of. """ self.grid = to_reg_cell_grid(grid) self.llc = llc self.urc = urc self.subset = self._subset_from_corners() def _subset(self, llc, urc): ind = np.where((self.grid.activearrlon >= llc.lon) & (self.grid.activearrlon <= urc.lon) & (self.grid.activearrlat >= llc.lat) & (self.grid.activearrlat <= urc.lat)) gpis = self.grid.activegpis[ind] lons = self.grid.activearrlon[ind] lats = self.grid.activearrlat[ind] return gpis, lons, lats def _subset_from_corners(self): self._assert_corners() gpis, lons, lats = self._subset(self.llc, self.urc) subset = self.grid.subgrid_from_gpis(gpis) subset.shape = (np.unique(lats).size, np.unique(lons).size) return subset def _assert_corners(self): # check if the corner points are also in the grid assert self.llc.lon in self.grid.get_grid_points()[1] assert self.llc.lat in self.grid.get_grid_points()[2] def as_slice(self, d=False): """ Create a lon and lat slice of the Area. Parameters --------- d : bool, optional (default: False) Include step size in slice Returns ------- lon_slice : slice Slice across the area lat_slice : slice Slice across the area """ return slice(self.llc.lon, self.urc.lon, self.grid.dx if d else None), \ slice(self.llc.lat, self.urc.lat, self.grid.dy if d else None) class NcRegGridStack(object): """ Store netcdf cubes with xarray and dask """ def __init__(self, dx=0.25, dy=0.25, z=None, z_name='z', llc=Point(-179.875, -89.875), urc=Point(179.875, 89.875), indexed=True, zlib=True, fill_value=9999.): """ Parameters ---------- dx : float, optional (default: 0.25) Regular spacing in x/lon direction dy : float, optional (default: 0.25) Regular spacing in y/lat direction z : np.array Z Values, e.g. Timestamps (z dimension of cube) z_name : str, optional (default: time) Name of the z dimension (e.g. time or depth) llc : Point, optional (default: Point(-179.875, -89.875)) Lower left corner point of the dataset area. urc : Point, optional (default: Point(179.875, 89.875)) Upper right corner point of the dataset area. indexed : bool, optional (default: True) Add a 2d variable of unique index to each point of the dataset. zlib : bool, optional (default: True) Compress data when writing to netcdf fill_value : float, optional (default: 9999.) Fill value nans are replaced with """ if z is None: z = [None] self.zlib = zlib self.z_name = z_name self.fill_value = fill_value self.llc, self.urc = llc, urc lons, lats = self._coords(dx, dy) self.shape = (z.size, lats.size, lons.size) gpis = self._gpis('ll') # origin is in the lower left self.ds = xr.Dataset( data_vars={'gpi': (['lat', 'lon'], gpis)} if indexed else None, coords={'lon': lons, 'lat': lats, self.z_name: z}) self.grid = to_reg_cell_grid(self._grid(gpis), 5.) @property def subset(self): return (self.llc, self.urc) def _grid(self, gpis): # create a pygeogrids object lons, lats = np.meshgrid(self.ds.lon.values, np.flipud(self.ds.lat.values)) lons, lats = lons.flatten(), lats.flatten() grid = BasicGrid(lons, lats, gpis=gpis.flatten()).to_cell_grid(5.) return grid def _gpis(self, origin='ll'): """ Parameters --------- origin : str, optional (Default: 'll') String indication where gpi=0 is. ll = lower left, ur=upper right, lr = lower right, ul = upper left Returns --------- gpis : np.ndarray Array of GPIs """ origins = ['ll', 'lr', 'ul', 'ur'] if origin not in origins: raise NotImplementedError( "Origin {} not implemented. Choose one of: {}" .format(origin, ','.join(origins))) n = self.shape[1] * self.shape[2] gpis = np.arange(n).reshape(self.shape[1], self.shape[2]) if origin[0] == 'l': gpis = np.flipud(gpis) if origin[1] == 'r': gpis = np.fliplr(gpis) return gpis def _coords(self, dx, dy): """ Build coord range with chosen resolution over dataset area """ lons = safe_arange(self.llc.lon, self.urc.lon+dx, dx) lats = safe_arange(self.llc.lat, self.urc.lat+dy, dy) self.dx, self.dy = dx, dy return lons, lats def _add_empty_3d(self, name): # add a empty variable with z dimension of the passed name #print('Add empty 3D variable {}'.format(name)) self.ds[name] = \ xr.DataArray(np.full(self.shape, self.fill_value), dims=[self.z_name, 'lat', 'lon'], coords=[self.ds[self.z_name], self.ds.lat, self.ds.lon]) def _write_img(self, data, **kwargs): """ Write area to dataset. Parameters ---------- data : xr.Dataset, 2d arrays to write, keys are variable names """ for var in list(data.data_vars.keys()): if var not in self.ds.variables: self._add_empty_3d(var) self.ds[var].loc[dict(**kwargs)] = data[var] def _write_ser(self, data, **kwargs): """ Write (time) series of multiple variables in data frame """ for var in data.keys(): if var not in self.ds.variables: self._add_empty_3d(var) assert data[var].size == self.ds[self.z_name].size dat = data[var] dat[np.isnan(dat)] = self.fill_value self.ds[var].loc[dict(**kwargs)] = dat def _write_pt(self, data, **kwargs): # takes arrays of lon, lat, z and data dict of arrays for var in data.keys(): if var not in self.ds.variables: self._add_empty_3d(var) dat = data[var] dat[np.isnan(dat)] = self.fill_value self.ds[var].loc[dict(**kwargs)] = dat def store_stack(self, filename=None, global_attrs=None, dtypes=np.float32): """ Write down xarray cute to netcdf file Parameters ---------- filename : str Path to the stack file to write global_attrs : dict, optional (default: None) Global attributes dtypes : np.float32 Data types of results, affects compression. """ if global_attrs is None: global_attrs = {} self.ds = self.ds.assign_attrs(global_attrs) try: if self.zlib: encoding = {} for var in self.ds.variables: if var not in ['lat', 'lon', self.z_name]: encoding[var] = {'complevel': 9, 'zlib': True, 'dtype': dtypes, '_FillValue': self.fill_value} else: encoding = None self.ds.to_netcdf(filename, engine='netcdf4', encoding=encoding) except: # todo: specifiy exception warnings.warn('Compression failed, store uncompressed results.') self.ds.to_netcdf(filename, engine='netcdf4') self.ds.close() def store_files(self, path, filename_templ='file_{}.nc', dtypes=np.float32): """ filename_templ : {} is replaced by the z indicator (strftime(z) if z is a date time). """ # todo: add option to append to existing file (memory dump) # todo: integrate with the other function if self.zlib: encoding = {} for var in self.ds.variables: if var not in ['lat', 'lon', self.z_name]: encoding[var] = {'complevel': 9, 'zlib': True, 'dtype': dtypes, '_FillValue': self.fill_value} else: encoding = None datetime_obs = [np.datetime64, datetime] for z in self.ds[self.z_name]: if any([isinstance(z.values, dt) for dt in datetime_obs]): pydatetime=pd.to_datetime(z.values).to_pydatetime() datestr = datetime.strftime(pydatetime, '%Y%m%d') filename = filename_templ.format(datestr) else: filename = filename_templ.format(str(z.values)) try: self.ds.loc[{self.z_name: z}].to_netcdf(os.path.join(path, filename), engine='netcdf4', encoding=encoding) except: # todo: specifiy exception warnings.warn('Compression failed, store uncompressed results.') self.ds.loc[{self.z_name: z}].to_netcdf(os.path.join(path, filename), engine='netcdf4') self.ds.close() def _subset_area(self, llc, urc): """ Read subset of current dataset: Parameters ---------- llc : Point Lower left corner point of area to read urc : Point Upper right corner point of area to read Returns --------- subset : xr.Dataset Spatial subset of the current Dataset. """ lon_slice, lat_slice = RegularArea(llc, urc, self.grid).as_slice(True) subset = self.ds.loc[dict(lon=lon_slice, lat=lat_slice)] return subset def _df2arr(self, df, llc:Point, urc:Point, lon_name:str, lat_name:str): # get the lon and lat extent from df and create a 2d array# local_df = df.copy(True) area = RegularArea(llc, urc, self.grid) local_df = local_df.set_index([lat_name, lon_name]).sort_index() _, subset_lons, subset_lats, _ = area.subset.get_grid_points() full_df = pd.DataFrame(data={'lon': subset_lons, 'lat': subset_lats}) full_df = full_df.set_index([lat_name, lon_name]).sort_index() for k in local_df.columns: full_df[k] = self.fill_value full_df.loc[local_df.index] = local_df arr = full_df.to_xarray() slice_lon, slice_lat = area.as_slice(False) return arr, slice_lon, slice_lat def spatial_subset(self, llc, urc, in_place=False): """ Cut the current data set to a new subset """ if in_place: self.ds = self._subset_area(llc, urc) return self.ds else: return self._subset_area(llc, urc) def write_image(self, df, z=None, lat_name='lat', lon_name='lon'): """ Add data for multiple locations at a specific point in z (e.g. time stamp) Parameters ---------- z : int or float or str Index in z-dimension (e.g. time stamp) df : pd.DataFrame DataFrame that contains image points. lat_name : str, optional (default: 'lat') Name of the latitude variable in the data frame. lon_name : str, optional (default: 'lon') Name of the longitude variable in the data frame. """ if z not in self.ds[self.z_name].values: raise ValueError('{} was not found in the {} dimension.' .format(z, self.z_name)) min_lon, max_lon = minmax(df[lon_name].values) min_lat, max_lat = minmax(df[lat_name].values) llc = Point(min_lon, min_lat) urc = Point(max_lon, max_lat) data, slice_lon, slice_lat = self._df2arr(df, llc, urc, lon_name, lat_name) kwargs = {'lon' : slice_lon, 'lat' : slice_lat, self.z_name : z} self._write_img(data, **kwargs) def write_series(self, lon, lat, df): """ Add data for multiple z values, for a single location. Series is in z-dimension. Parameters ---------- lon : float Longitude of point to write data for lat : float Latitude of point to write data for df : pd.DataFrame DataFrame with variables in columns and z-dimension values as index. """ index = df.index.to_numpy() data = {k : df[k].values for k in df.columns} if not np.all(np.equal(index, self.ds[self.z_name].values)): raise IndexError('Index in the passed data' ' frame do not correspond with z values of dataset') self._write_ser(data, lon=lon, lat=lat) def write_point(self, lon, lat, z, data): """ Add data for a single point and a single z value. Parameters --------- lon : np.array or list (1d) Longitude of the point to write, same size as lat and z lat : np.array or list (1d) Latitude of the point to write, same size as lon and z z : np.array or list (1d) 3rd dimension value of the point to write, same size as lon and lat data : dict Dictionary of variables and values to write. Values must have same size as lon, lat and z. """ data = copy.deepcopy(data) if not isinstance(lon, (np.ndarray, list)): lon = np.array([lon]) if not isinstance(lat, (np.ndarray, list)): lat = np.array([lat]) if not isinstance(z, (np.ndarray, list)): z =
np.array([z])
numpy.array
#!/usr/bin/env python # coding: utf-8 # Solve differential flatness and check feasibility of control command # Use NED coordinate import os, sys, time, copy, yaml import numpy as np from .utils import * # import cupy as cp class QuadModel: def __init__(self, cfg_path=None, drone_model=None): if cfg_path == None: curr_path = os.path.dirname(os.path.abspath(__file__)) cfg_path = curr_path+"/../config/multicopter_model.yaml" if drone_model == None: drone_model="default" with open(cfg_path, 'r') as stream: try: cfg = yaml.safe_load(stream) self.thrustCoef = np.double(cfg['motor_model']['thrust_coefficient']) self.torqueCoef = np.double(cfg['motor_model']['torque_coefficient']) self.armLength = np.double(cfg['motor_model']['moment_arm']) self.mass = np.double(cfg['uav_model'][drone_model]['vehicle_mass']) self.Ixx = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_xx']) self.Iyy = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_yy']) self.Izz = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_zz']) self.w_max = np.double(cfg['motor_model']['max_prop_speed']) self.w_min = np.double(cfg['motor_model']['min_prop_speed']) self.gravity = np.double(cfg['simulation']['gravity']) self.w_sta = np.sqrt(self.mass*self.gravity/self.thrustCoef/4.0) except yaml.YAMLError as exc: print(exc) lt = self.armLength*self.thrustCoef k0 = self.torqueCoef k1 = self.thrustCoef self.G1 = np.array([[lt,-lt,-lt,lt],\ [lt,lt,-lt,-lt],\ [-k0,k0,-k0,k0],\ [-k1,-k1,-k1,-k1]]) self.J = np.diag(np.array([self.Ixx,self.Iyy,self.Izz])) return def getWs(self, status): pos = np.array(status[0:3]) vel = np.array(status[3:6]) acc = np.array(status[6:9]) jer = np.array(status[9:12]) sna = np.array(status[12:15]) yaw = status[15] dyaw = status[16] ddyaw = status[17] # Total thrust tau_v = acc - np.array([0,0,self.gravity]) tau = -np.linalg.norm(tau_v) bz = tau_v/tau Thrust = self.mass*tau # roll & pitch roll = np.arcsin(np.dot(bz,[np.sin(yaw),-np.cos(yaw),0])) pitch = np.arctan(np.dot(bz,[np.cos(yaw),np.sin(yaw),0])/bz[2]) bx = np.array([np.cos(yaw)*np.cos(pitch),np.sin(yaw)*np.cos(pitch),-np.sin(pitch)]) by = np.array([-np.sin(yaw)*np.cos(roll)+np.cos(yaw)*np.sin(pitch)*np.sin(roll),\ np.cos(yaw)*np.cos(roll)+np.sin(yaw)*np.sin(pitch)*np.sin(roll),\ np.cos(pitch)*np.sin(roll)]) # dzhi & Omega dzhi = np.dot(np.array([-1*by,bx/np.cos(roll),np.zeros(3)]),jer)/tau \ +np.array([np.sin(pitch),-np.cos(pitch)*np.tan(roll),1])*dyaw S_inv = np.array([[1,0,-np.sin(pitch)],\ [0,np.cos(roll),np.cos(pitch)*np.sin(roll)],\ [0,-np.sin(roll),np.cos(pitch)*np.cos(roll)]]) Omega = np.dot(S_inv,dzhi) C_inv = np.array([-1*by/tau,bx/np.cos(roll)/tau,bz]) d = np.array([np.cos(yaw)*np.sin(roll)-np.cos(roll)*np.sin(yaw)*np.sin(pitch),\ np.sin(yaw)*np.sin(roll)+np.cos(roll)*np.cos(yaw)*np.sin(pitch),0])*tau dtau = np.dot(bz,jer-dyaw*d) # ddzhi & dOmega dS = np.array([[0,np.cos(roll)*np.tan(pitch),-np.sin(roll)*np.tan(pitch)],\ [0,-np.sin(roll),-np.cos(roll)],\ [0,np.cos(roll)/np.cos(pitch),-np.sin(roll)/np.cos(pitch)]])*dzhi[0]\ +np.array([[0,np.sin(roll)/np.cos(pitch)/np.cos(pitch),np.cos(roll)/np.cos(pitch)/np.cos(pitch)],\ [0,0,0],\ [0,np.sin(roll)*np.tan(pitch)/np.cos(pitch),np.cos(roll)*np.tan(pitch)/np.cos(pitch)]])*dzhi[1] e = 2*dtau*np.dot(np.array([-1*by,bx,0]).T,Omega)\ +tau*np.dot(np.array([bx,by,bz]).T,np.array([Omega[0]*Omega[2],Omega[1]*Omega[2],-Omega[0]*Omega[0]-Omega[1]*Omega[1]]))\ -tau*np.dot(np.array([-1*by,bx,0]).T,np.dot(S_inv,np.dot(dS,Omega))) ddzhi = np.dot(C_inv,sna-ddyaw*d-e) ddzhi[2] = ddyaw dOmega = -np.dot(S_inv,np.dot(dS,Omega))+np.dot(S_inv,ddzhi) Mu = np.dot(self.J,dOmega) + np.cross(Omega,np.dot(self.J,Omega)) MT = np.zeros(4) MT[:3] = Mu MT[3] = Thrust G1_inv = np.linalg.inv(self.G1) Ws2 = np.dot(G1_inv,MT) # Ws2 = np.clip(Ws2, np.power(self.w_min,2), np.power(self.w_max,2)) # Ws = np.sqrt(Ws2) Ws = np.copysign(np.sqrt(np.abs(Ws2)),Ws2) rpy = np.array([roll, pitch, yaw]) rpy_q = Euler2quat(np.array([roll, pitch, yaw])) state = { 'roll':roll, 'pitch':pitch, 'rpy':rpy, 'rpy_q':rpy_q, 'dzhi':dzhi, 'ddzhi':ddzhi, 'ut':MT } return Ws, state def getWs_vector(self, status): pos = np.array(status[:,0:3]) vel = np.array(status[:,3:6]) acc = np.array(status[:,6:9]) jer = np.array(status[:,9:12]) sna = np.array(status[:,12:15]) yaw = np.array(status[:,15:16]) dyaw = np.array(status[:,16:17]) ddyaw = np.array(status[:,17:18]) # Total thrust tau_v = acc - np.array([0,0,self.gravity]) tau = -np.linalg.norm(tau_v,axis=1)[:,np.newaxis] bz = tau_v/tau Thrust = self.mass*tau # roll & pitch roll = np.arcsin(np.einsum('ij,ij->i', bz, np.concatenate(( np.sin(yaw), -np.cos(yaw), np.zeros_like(yaw)),axis=1)))[:,np.newaxis] pitch = np.arctan(np.einsum('ij,ij->i', bz, np.concatenate(( np.cos(yaw)/bz[:,2:3], np.sin(yaw)/bz[:,2:3], np.zeros_like(yaw)),axis=1)))[:,np.newaxis] bx = np.concatenate(( np.cos(yaw)*np.cos(pitch), np.sin(yaw)*np.cos(pitch), -np.sin(pitch)),axis=1) by = np.concatenate(( -np.sin(yaw)*np.cos(roll)+np.cos(yaw)*np.sin(pitch)*np.sin(roll), np.cos(yaw)*np.cos(roll)+np.sin(yaw)*np.sin(pitch)*np.sin(roll), np.cos(pitch)*np.sin(roll)),axis=1) # dzhi & Omega dzhi = np.einsum('ijk,ij->ik', np.concatenate(( -by[:,:,np.newaxis], (bx/np.cos(roll))[:,:,np.newaxis], np.zeros_like(by[:,:,np.newaxis])),axis=2),jer)/tau \ +np.concatenate((np.sin(pitch),-np.cos(pitch)*np.tan(roll),np.ones_like(pitch)),axis=1)*dyaw S_inv = np.swapaxes(np.concatenate(( np.concatenate((np.ones_like(pitch),np.zeros_like(pitch),-np.sin(pitch)),axis=1)[:,:,np.newaxis], np.concatenate((np.zeros_like(roll),np.cos(roll),np.cos(pitch)*np.sin(roll)),axis=1)[:,:,np.newaxis], np.concatenate((np.zeros_like(roll),-np.sin(roll),np.cos(pitch)*np.cos(roll)),axis=1)[:,:,np.newaxis]),axis=2),1,2) Omega = np.einsum('ijk,ik->ij',S_inv,dzhi) C_inv = np.swapaxes(np.concatenate(( (-1*by/tau)[:,:,np.newaxis], (bx/np.cos(roll)/tau)[:,:,np.newaxis], bz[:,:,np.newaxis]),axis=2),1,2) d = np.concatenate(( np.cos(yaw)*np.sin(roll)-np.cos(roll)*np.sin(yaw)*np.sin(pitch), np.sin(yaw)*np.sin(roll)+np.cos(roll)*np.cos(yaw)*np.sin(pitch), np.zeros_like(yaw)),axis=1)*tau dtau = np.einsum('ij,ij->i',bz,jer-d*dyaw)[:,np.newaxis] # ddzhi & dOmega dS = np.swapaxes(np.concatenate(( np.concatenate((np.zeros_like(roll),np.cos(roll)*np.tan(pitch),-np.sin(roll)*np.tan(pitch)),axis=1)[:,:,np.newaxis], np.concatenate((np.zeros_like(roll),-np.sin(roll),-np.cos(roll)),axis=1)[:,:,np.newaxis], np.concatenate((np.zeros_like(roll),np.cos(roll)/np.cos(pitch),-np.sin(roll)/np.cos(pitch)),axis=1)[:,:,np.newaxis] ),axis=2),1,2)*(dzhi[:,0])[:,np.newaxis,np.newaxis] \ +np.swapaxes(np.concatenate(( np.concatenate(( np.zeros_like(roll), np.sin(roll)/np.cos(pitch)/np.cos(pitch), np.cos(roll)/np.cos(pitch)/np.cos(pitch)),axis=1)[:,:,np.newaxis], np.concatenate((np.zeros_like(roll),np.zeros_like(roll),np.zeros_like(roll)),axis=1)[:,:,np.newaxis], np.concatenate(( np.zeros_like(roll), np.sin(roll)*np.tan(pitch)/np.cos(pitch), np.cos(roll)*np.tan(pitch)/np.cos(pitch)),axis=1)[:,:,np.newaxis] ),axis=2),1,2)*(dzhi[:,1])[:,np.newaxis,np.newaxis] e = 2*dtau*np.einsum('ijk,ik->ij', np.concatenate((-by[:,:,np.newaxis],bx[:,:,np.newaxis],np.zeros_like(by[:,:,np.newaxis])),axis=2),Omega) \ +tau*np.einsum('ijk,ik->ij', np.concatenate((bx[:,:,np.newaxis],by[:,:,np.newaxis],bz[:,:,np.newaxis]),axis=2), np.concatenate(((Omega[:,0]*Omega[:,2])[:,np.newaxis], (Omega[:,1]*Omega[:,2])[:,np.newaxis], (-Omega[:,0]*Omega[:,0]-Omega[:,1]*Omega[:,1])[:,np.newaxis]),axis=1)) \ -tau*np.einsum('ijk,ik->ij', np.concatenate((-by[:,:,np.newaxis],bx[:,:,np.newaxis],np.zeros_like(by[:,:,np.newaxis])),axis=2), np.einsum('ijk,ik->ij',S_inv,np.einsum('ijk,ik->ij',dS,Omega))) ddzhi = np.einsum('ijk,ik->ij',C_inv,sna-ddyaw*d-e) ddzhi[:,2:] = ddyaw dOmega = -np.einsum('ijk,ik->ij',S_inv,np.einsum('ijk,ik->ij',dS,Omega)) \ +np.einsum('ijk,ik->ij',S_inv,ddzhi) I = np.einsum('ijk,ik->ij',np.repeat(self.J[np.newaxis,:,:],Omega.shape[0],0),Omega) Mu = np.einsum('ijk,ik->ij',np.repeat(self.J[np.newaxis,:,:],dOmega.shape[0],0),dOmega) \ +np.concatenate(( (Omega[:,1]*I[:,2]-Omega[:,2]*I[:,1])[:,np.newaxis], (Omega[:,2]*I[:,0]-Omega[:,0]*I[:,2])[:,np.newaxis], (Omega[:,0]*I[:,1]-Omega[:,1]*I[:,0])[:,np.newaxis]),axis=1) MT = np.zeros((Omega.shape[0],4)) MT[:,:3] = Mu MT[:,3:] = Thrust G1_inv = np.linalg.inv(self.G1) Ws2 = np.einsum('ijk,ik->ij',np.repeat(G1_inv[np.newaxis,:,:],MT.shape[0],0),MT) Ws = np.copysign(np.sqrt(
np.abs(Ws2)
numpy.abs
import os from datetime import datetime import cv2 import numpy as np import undistort from undistort import FisheyeUndistorter, PerspectiveUndistorter from perftimer import PerfTimer from clize import run class VisionProcessor(object): # input image must already have all distortions applied def __init__(self, img, edge_mask = None): # image expected to be a cv2 BRG image self.img = img.copy() self.original_img = img.copy() self.height, self.width, self.channels = img.shape self.colorspace = "bgr" self.failed = False self.masked_img = None self.contours = [] self.sorted_contours = None self.farthest_cy = self.height self.farthest_ly = self.height self.edge_mask = edge_mask def convertToHsv(self): if self.colorspace == "bgr": self.hsv_image = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV) elif self.colorspace == "sat": self.restoreOrigImage() self.img = self.hsv_image.copy() self.colorspace = "hsv" def saturateHsv2Rgb(self): if self.colorspace == "bgr": self.convertToHsv() self.hsv_image[:,:,1] = np.full((self.height, self.width), 255, dtype=np.uint8) self.img = cv2.cvtColor(self.hsv_image.copy(), cv2.COLOR_HSV2BGR) self.colorspace = "sat" def restoreOrigImage(self): self.img = self.original_img.copy() self.colorspace = "bgr" def crushChannel(self, chan, val = 0): self.img[:,:,chan] = np.full((self.height, self.width), int(round(val)), dtype=np.uint8) # try to create a mask around colourful objects, assuming the background is dark grey # can work with all colours, but the hue range should be narrowed down if the colour is known # this function can be called repeatedly and the masks will be OR'ed (stacked) def maskRange(self, color_h_center = 30.0 / 2.0, color_h_range = 40.0, s_range = (0, 255), v_range = (64, 255)): if self.colorspace == "edges" or self.colorspace == "sat": self.restoreOrigImage() if self.colorspace == "bgr": self.convertToHsv() if color_h_range > 90: # limit the range color_h_range = 90 self.color_hue = color_h_center h_max = int(round(color_h_center + color_h_range)) h_min = int(round(color_h_center - color_h_range)) s_rng = (int(round(s_range[0])), int(round(s_range[1]))) v_rng = (int(round(v_range[0])), int(round(v_range[1]))) hsv_min2 = None hsv_max2 = None if color_h_range >= 90: # detect any colourful object hsv_min1 = np.array([0, s_rng[0], v_rng[0]]) hsv_max1 = np.array([180, s_rng[1], v_rng[1]]) elif h_max <= 180 and h_min >= 0: # normal case hsv_min1 = np.array([h_min, s_rng[0], v_rng[0]]) hsv_max1 = np.array([h_max, s_rng[1], v_rng[1]]) elif h_max > 180: # center value just under 180, but coverage is above 180 hsv_min1 = np.array([h_min, s_rng[0], v_rng[0]]) hsv_max1 = np.array([180, s_rng[1], v_rng[1]]) hsv_max2 = np.array([h_max - 180, s_rng[1], v_rng[1]]) elif h_min < 0: # center value just above 0, but coverage is under 0 hsv_min1 = np.array([0, s_rng[0], v_rng[0]]) hsv_min2 = np.array([180 + h_min, s_rng[0], v_rng[0]]) hsv_max1 = np.array([h_max, s_rng[1], v_rng[1]]) masked_img1 = cv2.inRange(self.hsv_image, hsv_min1, hsv_max1) masked_img2 = None if hsv_min2 is not None: masked_img2 = cv2.inRange(self.hsv_image, hsv_min2, hsv_max1) if hsv_max2 is not None: masked_img2 = cv2.inRange(self.hsv_image, hsv_min2, hsv_max1) if self.masked_img is None: self.masked_img = masked_img1 cv2.bitwise_or(self.masked_img, masked_img1, self.masked_img) if masked_img2 is not None: cv2.bitwise_or(self.masked_img, masked_img2, self.masked_img) self.img = self.masked_img.copy() # image is now a mask, a single channel, 0 for false, 255 for true self.colorspace = "mask" def cannyEdgeDetect(self, center_val = 127, val_spread = 110, morph_kernel_size = 10, blur = True, blur_kernel_size = 5): if self.colorspace == "hsv": self.img = cv2.cvtColor(self.img, cv2.COLOR_HSV2BGR) if blur: kernel = np.ones((blur_kernel_size, blur_kernel_size), np.float32) / (blur_kernel_size ** 2) src_img = cv2.filter2D(self.img, -1, kernel) else: src_img = self.img self.masked_img = cv2.Canny(src_img, center_val - val_spread, center_val + val_spread) if self.edge_mask is not None: self.masked_img = np.bitwise_and(self.masked_img, self.edge_mask) kernel = np.ones((morph_kernel_size, morph_kernel_size), np.uint8) self.masked_img = cv2.morphologyEx(self.masked_img, cv2.MORPH_CLOSE, kernel) self.img = self.masked_img.copy() self.colorspace = "edges" def findContours(self, limit = 3): contours, hierarchy = cv2.findContours(self.img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # finds all contours # remove impossibly big and incredibly small contours i = 0 while i < len(contours): c = TapeContour(self, contours[i]) to_add = True # large contour removal taken care of by the bitwise_and with edge_mask # calculate the size of a speckle, remove it if it's too small ratio = float(c.area) / float(self.width * self.height) limit_ratio = (20.0 * 20.0) / (1333.0 * 720.0) if ratio < limit_ratio: to_add = False if c.is_too_big: to_add = False if to_add: self.contours.append(c) i += 1 #print("found %u contours" % len(self.contours)) # remove overlaps keep_removing = True while keep_removing: keep_removing = False i = 0 while i < len(self.contours) - 1 and keep_removing == False: j = i + 1 while j < len(self.contours) and keep_removing == False: ci = self.contours[i] cj = self.contours[j] xsect, region = cv2.rotatedRectangleIntersection(ci.min_rect, cj.min_rect) if cv2.INTERSECT_NONE != xsect: if ci.area >= cj.area: del self.contours[j] else: del self.contours[i] keep_removing = True break j += 1 i += 1 self.sorted_contours = sorted(self.contours, key=self.calcRankedContourArea, reverse=True) # sort to find largest if len(self.sorted_contours) > 0: self.largest_contour = self.sorted_contours[0] # remove contours until we are under the limit set if limit > 0: while len(self.sorted_contours) > limit: del self.sorted_contours[-1] self.contours = self.sorted_contours def calcMeanAngle(self): cnt = 0 area = 0.0 sum = 0.0 for c in self.contours: if c.is_narrow: ang = c.line_angle area += c.area sum += ang * c.area cnt += 1 if cnt <= 0: return 0.0, cnt return (sum / float(area)), cnt def calcBestFit(self, add_mid = False): if self.contours is None or len(self.contours) <= 0: self.failed = True return if len(self.contours) == 1: add_mid = True pass # TODO mean_angle, mean_angle_cnt = self.calcMeanAngle() mid_base = (float(self.width) / 2.0, float(self.height)) points_x = [] points_y = [] if add_mid: points_x.append(mid_base[0]) points_y.append(mid_base[1]) for c in self.contours: points_x.append(c.cx) points_y.append(c.cy) cyf = float(c.cy) / float(self.height) if cyf < self.farthest_cy: self.farthest_cy = cyf points_x = np.array(points_x) points_y = np.array(points_y) self.poly, resi, rank, _, _ = np.polyfit(points_x, points_y, 1, full=True) self.poly2, resi2, rank2, _, _ = np.polyfit(points_y, points_x, 1, full=True) # do it again with x and y swapped, just in case the ordinary way has bad rank (or is vertical) if rank > rank2 and rank != 1: x0 = 0 y0 = self.poly[1] vx = 1.0 vy = self.poly[0] self.line_vx = vx self.line_vy = vy self.line_x0 = x0 self.line_y0 = y0 angle = np.arctan2(vx, -vy) # calc angle relative to vertical, positive is clockwise angle = int(round(np.rad2deg(angle))) fit_angle = get_forward_angle(angle) else: x02 = 0 y02 = self.poly2[1] vx2 = 1.0 vy2 = self.poly2[0] # flip x and y vx = vy2 vy = vx2 x0 = y02 y0 = x02 self.line_vx = vx self.line_vy = vy self.line_x0 = x0 self.line_y0 = y0 angle = np.arctan2(vx2, vy2) angle = int(round(np.rad2deg(angle))) - 90 fit_angle = get_forward_angle(angle) if fit_angle < 2 and fit_angle > -2: # vertical-ish line vx = 0 self.line_vx = 0 #print("fit_angle %.1f [%u] mean_angle %.1f [%u] p(%.2f , %.2f)" % (fit_angle, len(points_x), mean_angle, mean_angle_cnt, vx, vy)) # check if the poly fit did a good job good_fit = True if len(self.contours) >= 3: if vx != 0: # check each point against distance to the line m, b = self.get_line_equation() i = 0 while i < len(self.contours) and good_fit: ci = self.contours[i] err = abs(b + (m * ci.cx) - ci.cy) / np.sqrt(1 + (m * m)) if err > self.height: good_fit = False break i += 1 else: # vx is 0 so vertical line i = 0 while i < len(self.contours) and good_fit: ci = self.contours[i] err = abs(ci.cx - x0) if err > self.height: good_fit = False break i += 1 # check distance between points i = 0 while i < len(points_x) - 1 and good_fit: j = i + 1 while j < len(points_x) and good_fit: dx = abs(points_x[i] - points_x[j]) dy = abs(points_y[i] - points_y[j]) dist = np.sqrt((dx * dx) + (dy * dy)) if dist > self.height: good_fit = False break j += 1 i += 1 use_fit_angle = False if mean_angle_cnt <= 0: use_fit_angle = True elif mean_angle_cnt <= 1 and good_fit == True and len(self.contours) >= 3: use_fit_angle = True elif mean_angle_cnt >= 2 and add_mid == False and len(self.contours) <= 2: use_fit_angle = False else: if abs(mean_angle - fit_angle) < 45 or good_fit == True: use_fit_angle = True if add_mid and len(points_x) == 2 and self.sorted_contours[0].is_narrow: self.line_angle = (fit_angle + mean_angle) / 2.0 x0 = float(self.width) / 2.0 self.line_x0 = x0 y0 = self.height self.line_y0 = y0 vx = np.sin(np.deg2rad(self.line_angle)) vy = -np.cos(np.deg2rad(self.line_angle)) elif use_fit_angle: self.line_angle = fit_angle else: self.line_angle = mean_angle i = 0 while i < len(self.sorted_contours): c = self.sorted_contours[i] if c.is_narrow: x0 = c.cx y0 = c.cy vx = np.sin(np.deg2rad(mean_angle)) vy = -np.cos(np.deg2rad(mean_angle)) j = i + 1 while j < len(self.sorted_contours): c = self.sorted_contours[j] if c.is_narrow: x02 = c.cx y02 = c.cy x0 = (x0 + x02) / 2 y0 = (y0 + y02) / 2 break j += 1 if vx == 0: self.line_vx = 0 self.line_x0 = x0 break i += 1 if vx > 0 or vx < 0: self.line_lefty = int(round(((-x0) * vy / vx) + y0)) self.line_righty = int(round(((self.width - x0) * vy / vx) + y0)) min_ly = min(self.line_lefty, self.line_righty) self.farthest_ly = float(abs(self.height - min_ly)) / float(self.height) else: self.line_lefty = 0 self.line_righty = 0 if self.line_vx != 0: m, b = self.get_line_equation() x_bottom = get_line_x_for_y(self.height, m, b) else: x_bottom = self.line_x0 mid = float(self.width) / 2.0 dx = x_bottom - mid px = dx / mid self.x_bottom = px def visualize(self, line_thickness = 5, hue = 0): hsv_img = self.hsv_image.copy() if hue < 0: hue = int(self.color_hue + 90 + 180) % 180 # we only care about the hue, get its opposite hue = int(round(hue)) if self.contours is None or len(self.contours) <= 0: return cv2.cvtColor(hsv_img.copy(), cv2.COLOR_HSV2BGR) for c in self.contours: c.visualize(hsv_img, (hue, 255, 255), line_thickness) try: if self.line_vx > 0 or self.line_vx < 0: cv2.line(hsv_img, (self.width - 1, self.line_righty), (0, self.line_lefty), (hue, 255, 255), line_thickness) else: cv2.line(hsv_img, (int(round(self.line_x0)), 0), (int(round(self.line_x0)), self.height - 1), (hue, 255, 255), line_thickness) except: pass return cv2.cvtColor(hsv_img.copy(), cv2.COLOR_HSV2BGR) def get_angle(self): if self.failed: return 0 return self.line_angle def get_line_equation(self): if self.failed: return 0, 0 if self.line_vx == 0: return float("inf"), float("inf") m = float(self.line_vy) / float(self.line_vx) b = float(self.line_y0) - (m * float(self.line_x0)) return m, b # this is used for sorting purposes, the contour closer to the robot is ranked as larger def calcRankedContourArea(self, contour): return contour.get_rankedArea() class TapeContour(object): def __init__(self, parent, contour): self.parent = parent self.original_contour = contour self.min_rect = cv2.minAreaRect(contour) self.box_points = cv2.boxPoints(self.min_rect) (x, y), (width, height), rect_angle = self.min_rect self.cx = x self.cy = y self.width = width self.height = height self.area = width * height max_dim = max(width, height) min_dim = min(width, height) #diff_dim = max_dim - min_dim if min_dim * 1.5 < max_dim: self.is_narrow = True else: self.is_narrow = False if float(min_dim) / parent.width >= (150.0 / 1333.0): self.is_too_big = True else: self.is_too_big = False if width > height: line_angle = rect_angle + 90 else: line_angle = rect_angle self.line_angle = get_forward_angle(line_angle) def get_rankedArea(self): factor = 0.5 scale = (1.0 - factor) + (factor * (self.cy / float(self.parent.height))) return float(self.area) * scale def visualize(self, img, colour=(255, 0, 0), thickness = 5): box = np.int0(self.box_points) cv2.drawContours(img, [box], 0, colour, thickness) class VisionPilot(object): def __init__(self, edge_mask = None, ang_steer_coeff = 2.2, offset_steer_coeff = 64, dist_throttle_coeff = 0.5, steer_max = 128, throttle_max = 128, savedir=""): self.perftimer = PerfTimer() self.edge_mask = edge_mask self.ang_steer_coeff = float(ang_steer_coeff) self.offset_steer_coeff = float(offset_steer_coeff) self.dist_throttle_coeff = float(dist_throttle_coeff) self.steer_max = float(steer_max) self.throttle_max = float(throttle_max) self.last_steering = 0 self.save_dir = savedir self.save_cnt = 0 if self.save_dir is not None: if len(self.save_dir) > 0: try: os.makedirs(self.save_dir) except FileExistsError: pass # returns values good for driving directly def process(self, img_arr, fname=None): self.proc = VisionProcessor(img_arr, edge_mask = self.edge_mask) self.proc.convertToHsv() self.proc.saturateHsv2Rgb() self.proc.crushChannel(0) # removes all blue, for Circuit Launch's carpet self.proc.cannyEdgeDetect() self.proc.maskRange() # finds normal self.proc.findContours() if len(self.proc.contours) <= 0: self.proc.maskRange(color_h_range = 90, s_range = (0.0, 255.0 * 0.2), v_range = (255.0 * 0.90, 255.0)) # find white self.proc.findContours() self.proc.calcBestFit() if self.proc.failed: if self.last_steering >= 0: return 64, 127 else: return -64, 127 angle = self.proc.get_angle() throttle = float(self.throttle_max) * (self.proc.farthest_ly / self.dist_throttle_coeff) if throttle > self.throttle_max: throttle = self.throttle_max ang_component = angle * self.ang_steer_coeff offset_component = self.proc.x_bottom * self.offset_steer_coeff steering = ang_component + offset_component #print("angle %f , ang_co %f , offset_co %f" % (angle, ang_component, offset_component)) if steering > self.steer_max: steering = self.steer_max elif steering < -self.steer_max: steering = -self.steer_max self.steering = steering self.throttle = throttle self.last_steering = steering self.save_training(img_arr, fname = fname) return float(steering), float(throttle) # returns values good for neural networks def run(self, img_arr): steering, throttle = self.process(img_arr) steering /= 127.0 throttle /= 127.0 self.perftimer.tick() return np.clip(steering, -1.0, 1.0),
np.clip(throttle, -1.0, 1.0)
numpy.clip
from sklearn.neighbors import KernelDensity from scipy.signal import argrelextrema import numpy as np import math from itertools import compress def sort_noise(timecourses=None, lag1=None, return_logpdf=False, method='KDE', verbose=False): ''' Sorts timecourses into two clusters (signal and noise) based on lag-1 autocorrelation. Timecourses should be a np array of shape (n, t). Returns noise_components, a np array with 1 value for all noise timecourses detected, as well as the cutoff value detected ''' if method == 'KDE': # calculate lag autocorrelations if lag1 is None: assert timecourses is not None, 'sortNoise requires either timecourses or lag1' lag1 = lag_n_autocorr(timecourses, 1) # calculate minimum between min and max peaks kde_skl = KernelDensity(kernel='gaussian', bandwidth=0.05).fit(lag1[:, np.newaxis]) x_grid = np.linspace(-0.2, 1.2, 1200) log_pdf = kde_skl.score_samples(x_grid[:, np.newaxis]) maxima = argrelextrema(
np.exp(log_pdf)
numpy.exp
""" oracle.py Variable Markov Oracle in python @copyright: Copyright (C) 9.2014 <NAME> This file is part of vmo. @license: vmo is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. vmo is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with vmo. If not, see <http://www.gnu.org/licenses/>. @author: <NAME> @contact: <EMAIL>, <EMAIL> """ import numpy as np import scipy.spatial.distance as dist import vmo.VMO.utility.misc as utl class data(object): """A helper class to encapsulate objects for symbolic comparison By default, the first entry of the list or tuple is used as the feature to test for equality between different data object. Attributes: content: a list or tuple idx: the index of the list or tuple to be tested for equality """ def __init__(self, data_item, index=0): self.content = data_item self.idx = index def __repr__(self): return str(self.content) def __eq__(self, other): if type(other) == data: if self.content[self.idx] == other.content[self.idx]: return True else: return False else: return False def __ne__(self, other): return not (self == other) class FactorOracle(object): """ The base class for the FO(factor oracle) and MO(variable markov oracle) Attributes: sfx: a list containing the suffix link of each state. trn: a list containing the forward links of each state as a list. rsfx: a list containing the reverse suffix links of each state as a list. lrs: the value of longest repeated suffix of each state. data: the symobols associated with the direct link connected to each state. compror: a list of tuples (i, i-j), i is the current coded position, i-j is the length of the corresponding coded words. code: a list of tuples (len, pos), len is the length of the corresponding coded words, pos is the position where the coded words starts. seg: same as code but non-overlapping. f_array: (For kind 'a' and 'v'): a list containing the feature array latent: (For kind 'a' and 'v'): a list of lists with each sub-list containing the indexes for each symbol. kind: 'a': Variable Markov oracle 'f': repeat oracle 'v': Centroid-based oracle (under test) n_states: number of total states, also is length of the input sequence plus 1. max_lrs: the longest lrs so far. avg_lrs: the average lrs so far. name: the name of the oracle. params: a python dictionary for different feature and distance settings. keys: 'thresholds': the minimum value for separating two values as different symbols. 'weights': a dictionary containing different weights for features used. 'dfunc': the distance function. """ def __init__(self, **kwargs): # Basic attributes self.sfx = [] self.trn = [] self.rsfx = [] self.lrs = [] self.data = [] # Compression attributes self.compror = [] self.code = [] self.seg = [] # Object attributes self.kind = 'f' self.name = '' # Oracle statistics self.n_states = 1 self.max_lrs = [] self.max_lrs.append(0) self.avg_lrs = [] self.avg_lrs.append(0.0) # Oracle parameters self.params = { 'threshold': 0, 'dfunc': 'cosine', 'dfunc_handle': None, 'dim': 1 } self.update_params(**kwargs) # Adding zero state self.sfx.append(None) self.rsfx.append([]) self.trn.append([]) self.lrs.append(0) self.data.append(0) def reset(self, **kwargs): self.update_params(**kwargs) # Basic attributes self.sfx = [] self.trn = [] self.rsfx = [] self.lrs = [] self.data = [] # Compression attributes self.compror = [] self.code = [] self.seg = [] # Object attributes self.kind = 'f' self.name = '' # Oracle statistics self.n_states = 1 self.max_lrs = [] self.max_lrs.append(0) self.avg_lrs = [] self.avg_lrs.append(0.0) # Adding zero state self.sfx.append(None) self.rsfx.append([]) self.trn.append([]) self.lrs.append(0) self.data.append(0) def update_params(self, **kwargs): """Subclass this""" self.params.update(kwargs) def add_state(self, new_data): """Subclass this""" pass def _encode(self): _code = [] _compror = [] if not self.compror: j = 0 else: j = self.compror[-1][0] i = j while j < self.n_states - 1: while i < self.n_states - 1 and self.lrs[i + 1] >= i - j + 1: i += 1 if i == j: i += 1 _code.append([0, i]) _compror.append([i, 0]) else: _code.append([i - j, self.sfx[i] - i + j + 1]) _compror.append([i, i - j]) j = i return _code, _compror def encode(self): _c, _cmpr = self._encode() self.code.extend(_c) self.compror.extend(_cmpr) return self.code, self.compror def segment(self): """An non-overlap version Compror""" if not self.seg: j = 0 else: j = self.seg[-1][1] last_len = self.seg[-1][0] if last_len + j > self.n_states: return i = j while j < self.n_states - 1: while not (not (i < self.n_states - 1) or not (self.lrs[i + 1] >= i - j + 1)): i += 1 if i == j: i += 1 self.seg.append((0, i)) else: if (self.sfx[i] + self.lrs[i]) <= i: self.seg.append((i - j, self.sfx[i] - i + j + 1)) else: _i = j + i - self.sfx[i] self.seg.append((_i - j, self.sfx[i] - i + j + 1)) _j = _i while not (not (_i < i) or not (self.lrs[_i + 1] - self.lrs[_j] >= _i - _j + 1)): _i += 1 if _i == _j: _i += 1 self.seg.append((0, _i)) else: self.seg.append((_i - _j, self.sfx[_i] - _i + _j + 1)) j = i return self.seg def _ir(self, alpha=1.0): code, _ = self.encode() cw = np.zeros(len(code)) # Number of code words for i, c in enumerate(code): cw[i] = c[0] + 1 c0 = [1 if x[0] == 0 else 0 for x in self.code] h0 = np.log2(np.cumsum(c0)) h1 = np.zeros(len(cw)) for i in range(1, len(cw)): h1[i] = utl.entropy(cw[0:i + 1]) ir = alpha * h0 - h1 return ir, h0, h1 def _ir_fixed(self, alpha=1.0): code, _ = self.encode() h0 = np.log2(self.num_clusters()) if self.max_lrs[-1] == 0: h1 = np.log2(self.n_states - 1) else: h1 = np.log2(self.n_states - 1) + np.log2(self.max_lrs[-1]) BL = np.zeros(self.n_states - 1) j = 0 for i in range(len(code)): if self.code[i][0] == 0: BL[j] = 1 j += 1 else: L = code[i][0] BL[j:j + L] = L # range(1,L+1) j = j + L ir = alpha * h0 - h1 / BL ir[ir < 0] = 0 return ir, h0, h1 def _ir_cum(self, alpha=1.0): code, _ = self.encode() N = self.n_states cw0 = np.zeros(N - 1) # cw0 counts the appearance of new states only cw1 = np.zeros(N - 1) # cw1 counts the appearance of all compror states BL = np.zeros(N - 1) # BL is the block length of compror codewords j = 0 for i in range(len(code)): if self.code[i][0] == 0: cw0[j] = 1 cw1[j] = 1 BL[j] = 1 j += 1 else: L = code[i][0] cw1[j] = 1 BL[j:j + L] = L # range(1,L+1) j = j + L h0 = np.log2(np.cumsum(cw0)) h1 = np.log2(np.cumsum(cw1)) h1 = h1 / BL ir = alpha * h0 - h1 ir[ir < 0] = 0 return ir, h0, h1 def _ir_cum2(self, alpha=1.0): code, _ = self.encode() N = self.n_states BL = np.zeros(N - 1) # BL is the block length of compror codewords h0 = np.log2(np.cumsum( [1.0 if sfx == 0 else 0.0 for sfx in self.sfx[1:]]) ) """ h1 = np.array([h if m == 0 else h+np.log2(m) for h,m in zip(h0,self.lrs[1:])]) h1 = np.array([h if m == 0 else h+np.log2(m) for h,m in zip(h0,self.max_lrs[1:])]) h1 = np.array([h if m == 0 else h+np.log2(m) for h,m in zip(h0,self.avg_lrs[1:])]) """ h1 = np.array([np.log2(i + 1) if m == 0 else np.log2(i + 1) + np.log2(m) for i, m in enumerate(self.max_lrs[1:])]) j = 0 for i in range(len(code)): if self.code[i][0] == 0: BL[j] = 1 j += 1 else: L = code[i][0] BL[j:j + L] = L # range(1,L+1) j = j + L h1 = h1 / BL ir = alpha * h0 - h1 ir[ir < 0] = 0 # Really a HACK here!!!!! return ir, h0, h1 def _ir_cum3(self, alpha=1.0): h0 = np.log2(np.cumsum( [1.0 if sfx == 0 else 0.0 for sfx in self.sfx[1:]]) ) h1 = np.array([h if m == 0 else (h + np.log2(m)) / m for h, m in zip(h0, self.lrs[1:])]) ir = alpha * h0 - h1 ir[ir < 0] = 0 # Really a HACK here!!!!! return ir, h0, h1 def IR(self, alpha=1.0, ir_type='cum'): if ir_type == 'cum': return self._ir_cum(alpha) elif ir_type == 'all': return self._ir(alpha) elif ir_type == 'fixed': return self._ir_fixed(alpha) elif ir_type == 'cum2': return self._ir_cum2(alpha) elif ir_type == 'cum3': return self._ir_cum3(alpha) def num_clusters(self): return len(self.rsfx[0]) def threshold(self): if self.params.get('threshold'): return int(self.params.get('threshold')) else: raise ValueError("Threshold is not set!") def dfunc(self): if self.params.get('dfunc'): return self.params.get('dfunc') else: raise ValueError("dfunc is not set!") def dfunc_handle(self, a, b_vec): fun = self.params['dfunc_handle'] return fun(a, b_vec) def _len_common_suffix(self, p1, p2): if p2 == self.sfx[p1]: return self.lrs[p1] else: while self.sfx[p2] != self.sfx[p1] and p2 != 0: p2 = self.sfx[p2] return min(self.lrs[p1], self.lrs[p2]) def _find_better(self, i, symbol): self.rsfx[self.sfx[i]].sort() for j in self.rsfx[self.sfx[i]]: if (self.lrs[j] == self.lrs[i] and self.data[j - self.lrs[i]] == symbol): return j return None class FO(FactorOracle): """ An implementation of the factor oracle """ def __init__(self, **kwargs): super(FO, self).__init__(**kwargs) self.kind = 'r' def add_state(self, new_symbol): """ :type self: oracle """ self.sfx.append(0) self.rsfx.append([]) self.trn.append([]) self.lrs.append(0) self.data.append(new_symbol) self.n_states += 1 i = self.n_states - 1 self.trn[i - 1].append(i) k = self.sfx[i - 1] pi_1 = i - 1 # Adding forward links while k is not None: _symbols = [self.data[state] for state in self.trn[k]] if self.data[i] not in _symbols: self.trn[k].append(i) pi_1 = k k = self.sfx[k] else: break if k is None: self.sfx[i] = 0 self.lrs[i] = 0 else: _query = [[self.data[state], state] for state in self.trn[k] if self.data[state] == self.data[i]] _query = sorted(_query, key=lambda _query: _query[1]) _state = _query[0][1] self.sfx[i] = _state self.lrs[i] = self._len_common_suffix(pi_1, self.sfx[i] - 1) + 1 k = self._find_better(i, self.data[i - self.lrs[i]]) if k is not None: self.lrs[i] += 1 self.sfx[i] = k self.rsfx[self.sfx[i]].append(i) if self.lrs[i] > self.max_lrs[i - 1]: self.max_lrs.append(self.lrs[i]) else: self.max_lrs.append(self.max_lrs[i - 1]) self.avg_lrs.append(self.avg_lrs[i - 1] * ((i - 1.0) / (self.n_states - 1.0)) + self.lrs[i] * (1.0 / (self.n_states - 1.0))) def accept(self, context): """ Check if the context could be accepted by the oracle Args: context: s sequence same type as the oracle data Returns: bAccepted: whether the sequence is accepted or not _next: the state where the sequence is accepted """ _next = 0 for _s in context: _data = [self.data[j] for j in self.trn[_next]] if _s in _data: _next = self.trn[_next][_data.index(_s)] else: return 0, _next return 1, _next def get_alphabet(self): alphabet = [self.data[i] for i in self.trn[0]] dictionary = dict(zip(alphabet, range(len(alphabet)))) return dictionary @property def latent(self): latent = [] for s in self.trn[0]: indices = set([s]) indices = utl.get_rsfx(self, indices, s) latent.append(list(indices)) return latent class MO(FactorOracle): def __init__(self, **kwargs): super(MO, self).__init__(**kwargs) self.kind = 'a' self.f_array = feature_array(self.params['dim']) self.f_array.add(np.zeros(self.params['dim'], )) self.data[0] = None self.latent = [] def reset(self, **kwargs): super(MO, self).reset(**kwargs) self.kind = 'a' # self.f_array = [0] self.f_array = feature_array(self.params['dim']) self.f_array.add(np.zeros(self.params['dim'], )) self.data[0] = None self.latent = [] def add_state(self, new_data, method='inc'): """Create new state and update related links and compressed state""" self.sfx.append(0) self.rsfx.append([]) self.trn.append([]) self.lrs.append(0) # Experiment with pointer-based self.f_array.add(new_data) self.n_states += 1 i = self.n_states - 1 # assign new transition from state i-1 to i self.trn[i - 1].append(i) k = self.sfx[i - 1] pi_1 = i - 1 # iteratively backtrack suffixes from state i-1 if method == 'inc': suffix_candidate = 0 elif method == 'complete': suffix_candidate = [] else: suffix_candidate = 0 while k is not None: if self.params['dfunc'] == 'other': # dvec = self.dfunc_handle([new_data], # self.f_array[self.trn[k]])[0] dvec = dist.cdist([new_data], self.f_array[self.trn[k]], metric=self.params['dfunc_handle'])[0] else: dvec = dist.cdist([new_data], self.f_array[self.trn[k]], metric=self.params['dfunc'])[0] I = np.where(dvec < self.params['threshold'])[0] if len(I) == 0: # if no transition from suffix self.trn[k].append(i) # Add new forward link to unvisited state pi_1 = k if method != 'complete': k = self.sfx[k] else: if method == 'inc': if I.shape[0] == 1: suffix_candidate = self.trn[k][I[0]] else: suffix_candidate = self.trn[k][I[np.argmin(dvec[I])]] break elif method == 'complete': suffix_candidate.append((self.trn[k][I[np.argmin(dvec[I])]], np.min(dvec))) else: suffix_candidate = self.trn[k][I[np.argmin(dvec[I])]] break if method == 'complete': k = self.sfx[k] if method == 'complete': if not suffix_candidate: self.sfx[i] = 0 self.lrs[i] = 0 self.latent.append([i]) self.data.append(len(self.latent) - 1) else: sorted_suffix_candidates = sorted(suffix_candidate, key=lambda suffix: suffix[1]) self.sfx[i] = sorted_suffix_candidates[0][0] self.lrs[i] = self._len_common_suffix(pi_1, self.sfx[i] - 1) + 1 self.latent[self.data[self.sfx[i]]].append(i) self.data.append(self.data[self.sfx[i]]) else: if k is None: self.sfx[i] = 0 self.lrs[i] = 0 self.latent.append([i]) self.data.append(len(self.latent) - 1) else: self.sfx[i] = suffix_candidate self.lrs[i] = self._len_common_suffix(pi_1, self.sfx[i] - 1) + 1 self.latent[self.data[self.sfx[i]]].append(i) self.data.append(self.data[self.sfx[i]]) # Temporary adjustment k = self._find_better(i, self.data[i - self.lrs[i]]) if k is not None: self.lrs[i] += 1 self.sfx[i] = k self.rsfx[self.sfx[i]].append(i) if self.lrs[i] > self.max_lrs[i - 1]: self.max_lrs.append(self.lrs[i]) else: self.max_lrs.append(self.max_lrs[i - 1]) self.avg_lrs.append(self.avg_lrs[i - 1] * ((i - 1.0) / (self.n_states - 1.0)) + self.lrs[i] * (1.0 / (self.n_states - 1.0))) class feature_array: def __init__(self, dim): self.data =
np.zeros((100, dim))
numpy.zeros
### Non dimensional parameters vs. metrics from math import * import matplotlib.pyplot as plt import matplotlib.colors as mcolors from netCDF4 import Dataset import numpy as np import os import pandas as pd import pylab as pl import scipy.io import scipy as spy import seaborn as sns import sys #lib_path = os.path.abspath('../../Building_canyon/BuildCanyon/PythonModulesMITgcm') # Add absolute path to my python scripts lib_path = os.path.abspath('../BuildCanyon/PythonModulesMITgcm') # Add absolute path to my python scripts sys.path.append(lib_path) import ReadOutTools_MITgcm as rout import MetricsPythonTools as mpt #----------------------------------------------------------------------------------------------------------------------------------------------------------------- def get_metrics(exp, run, TrNum, key): '''Get column from a tracer metrics pandas dataframe using the key name, run (01, 02, etc) and experiment abreviated name (BAR, CNTDIFF, 3DDIFF, NOGMREDI). All input variables are strings. Returns the desired column from the dataframe''' df = pd.read_csv(('results/metricsDataFrames/%srun%sTr%s.csv' %(exp,run,TrNum))) col = df[key] return col def get_water(exp, run, key): '''Get column from a tracer metrics pandas dataframe using the key name, run (01, 02, etc) and experiment abreviated name (BAR, CNTDIFF, 3DDIFF, NOGMREDI). All input variables are strings. Returns the desired column from the dataframe''' df = pd.read_csv(('results/metricsDataFrames/%srun%s.csv' %(exp,run))) col = df[key] return col def get_areas(file, key): '''Get column from a tracer metrics pandas dataframe using the key name, run (01, 02, etc) and experiment abreviated name (BAR, CNTDIFF, 3DDIFF, NOGMREDI). All input variables are strings. Returns the desired column from the dataframe''' df = pd.read_csv(file) col = df[key] return col #----------------------------------------------------------------------------------------------------------------------------------------------------------------- sns.set() sns.set_style('darkgrid') sns.set_context('poster') #Exp CGrid = '/Users/Karina/Research/PhD/Tracers/TemporaryData/BARKLEY/run01/gridGlob.nc' # Smallest volume grid, closed bdy, no canyon. #CGrid = '/ocean/kramosmu/MITgcm/TracerExperiments/CNTDIFF/run03/gridGlob.nc' # Smallest volume grid, closed bdy, no canyon. CGridOut = Dataset(CGrid) # General input nx = 360 ny = 360 nz = 90 nt = 19 # t dimension size numTr = 24 # number of tracers in total (CNT =20, 3D = 4) rc = CGridOut.variables['RC'] xc = rout.getField(CGrid, 'XC') # x coords tracer cells yc = rout.getField(CGrid, 'YC') # y coords tracer cells drF = CGridOut.variables['drF'] # vertical distance between faces drC = CGridOut.variables['drC'] # vertical distance between centers labels = ['$K_v=10^{-7}$(out), $10^{-3}$(in), $K_i=1 m^2s^{-1}$','Kv=1E-7(out), 1E-4(in), Ki=1','Kv=1E-5(out), 1E-3(in), Ki=1', 'Kv=1E-5(out), 1E-4(in), Ki=1','Kv=1E-5, Ki=1','Kv=1E-4, Ki=1','Kv=1E-3, Ki=1','Kv=3.8E-5, Ki=10', 'Kv=2.8E-5, Ki=10','Kv=1.3E-5, Ki=10','Kv_noc=1E-5, Ki=1','Kv_noc=1E-4, Ki=1','Kv_noc=1E-3, Ki=1', 'Kv=1E-5, Ki=10','Kv=1E-4, Ki=10','Kv=1E-3, Ki=10','Kv=1E-5, Ki=0.1','Kv=1E-4, Ki=0.1', 'Kv=1E-3, Ki=0.1','Kv=3.8E-5, Ki=1','Kv=2.8E-5, Ki=1','Kv=1.3E-5, Ki=1','Kv=1E-4, Ki=1, Kt=Ks','Kv=1E-3, Ki=1,Kt=Ks'] wlabels = ['run04 - 3D','run05 - 3D','run06 - 3D','run07 - 3D','run02 - CNT','run03 - CNT','run04 - CNT', 'run07 - CNT','run09 - CNT','run10 - CNT','run11 - CNT','run12 - CNT'] times = np.arange(0,nt,1) # LOAD AREAS CS1A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'CS1area' ) CS2A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'CS2area' ) CS3A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'CS3area' ) CS3sbA = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'CS3sbarea' ) CS4A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'CS4area' ) CS5A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'CS5area' ) AS1A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'AS1area' ) AS2A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'AS2area' ) LID1A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'LID1area' ) LID2A = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'LID2area' ) VolHole = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'VolHole' ) VoleShwoHole = get_areas('results/metricsDataFrames/Canyon_AreasVolumes.csv', 'VolShNoHole' ) tracers_3D = ['04','05','06','07'] #run number because there's only 1 tr per run tracers_CNT03 = ['1','2','3'] # tracer number , constant runs tracers_CNT09 = ['1','2','3'] # tracer number , average diffusivity runs tracers_CNT07 = ['1','2','3'] # tracer number , no canyon case tracers_CNT02 = ['1','2','3'] # tracer number , Kiso=0.1 tracers_CNT04 = ['1','2','3'] # tracer number , Kiso=10 tracers_CNT10 = ['1','2','3'] # tracer number , Kiso=1 tracers_CNT11 = ['2'] # tracer number , Kiso=1, Ks=Kt=10^4 tracers_CNT12 = ['3'] # tracer number , Kiso=1, Ks=Kt=10^3 # LOAD TRACER ON SHELF DATA TrOnSh = np.zeros((nt,numTr)) HWC = np.zeros((nt,numTr)) kk = 0 fields = ['TronShelfwHole', 'HCWonShelfwHole','TronHole','HCWonHole'] for ii in tracers_3D: TrOnShwHole = get_metrics('3DDIFF_hole_', ii, '1', fields[0] ) TrOnHole = get_metrics('3DDIFF_hole_', ii, '1', fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('3DDIFF_hole_', ii, '1', fields[1] ) HWChole = get_metrics('3DDIFF_hole_', ii, '1', fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT03: TrOnShwHole = get_metrics('CNTDIFF_hole_', '03',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_', '03', ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '03', ii,fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '03',ii, fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT09: TrOnShwHole = get_metrics('CNTDIFF_hole_', '09',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_','09',ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '09',ii, fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '09',ii, fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT07: TrSh = get_metrics('CNTDIFF_hole_', '07', ii, fields[0] ) TrHole= get_metrics('CNTDIFF_hole_', '07', ii, fields[2] ) HWCSh = get_metrics('CNTDIFF_hole_', '07', ii, fields[1] ) HWCHole = get_metrics('CNTDIFF_hole_', '07', ii, fields[3] ) TrOnSh[:,kk] = TrHole HWC[:,kk] = HWCHole kk=kk+1 for ii in tracers_CNT02: TrOnShwHole = get_metrics('CNTDIFF_hole_', '02',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_', '02',ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '02',ii, fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '02', ii,fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT04: TrOnShwHole = get_metrics('CNTDIFF_hole_', '04',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_', '04',ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '04',ii, fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '04',ii, fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT10: TrOnShwHole = get_metrics('CNTDIFF_hole_', '10',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_', '10',ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '10',ii, fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '10',ii, fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT11: TrOnShwHole = get_metrics('CNTDIFF_hole_', '11',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_', '11',ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '11',ii, fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '11',ii, fields[3] ) HWC[:,kk] = HWChole kk=kk+1 for ii in tracers_CNT12: TrOnShwHole = get_metrics('CNTDIFF_hole_', '12',ii, fields[0] ) TrOnHole = get_metrics('CNTDIFF_hole_', '12',ii, fields[2] ) TrOnSh[:,kk] = TrOnHole HWCsh = get_metrics('CNTDIFF_hole_', '12',ii, fields[1] ) HWChole = get_metrics('CNTDIFF_hole_', '12',ii, fields[3] ) HWC[:,kk] = HWChole kk=kk+1 # LOAD TRANSPORTS CS1 = np.zeros((nt-1,numTr)) CS2 = np.zeros((nt-1,numTr)) CS3 = np.zeros((nt-1,numTr)) CS4 = np.zeros((nt-1,numTr)) CS5 = np.zeros((nt-1,numTr)) CS3sb = np.zeros((nt-1,numTr)) AS1 = np.zeros((nt-1,numTr)) AS2 = np.zeros((nt-1,numTr)) LID1 = np.zeros((nt-1,numTr)) LID2 = np.zeros((nt-1,numTr)) CS1a = np.zeros((nt-1,numTr)) CS2a = np.zeros((nt-1,numTr)) CS3a = np.zeros((nt-1,numTr)) CS4a = np.zeros((nt-1,numTr)) CS5a = np.zeros((nt-1,numTr)) CS3sba = np.zeros((nt-1,numTr)) AS1a = np.zeros((nt-1,numTr)) AS2a = np.zeros((nt-1,numTr)) LID1a = np.zeros((nt-1,numTr)) LID2a = np.zeros((nt-1,numTr)) CS1d = np.zeros((nt-1,numTr)) CS2d = np.zeros((nt-1,numTr)) CS3d = np.zeros((nt-1,numTr)) CS4d = np.zeros((nt-1,numTr)) CS5d = np.zeros((nt-1,numTr)) CS3sbd = np.zeros((nt-1,numTr)) AS1d =
np.zeros((nt-1,numTr))
numpy.zeros
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([1,0,0,0,-1,0,0,0,1])
numpy.array
import numpy as np import pandas as pd import xarray as xr from scipy.integrate import quad import scipy.interpolate as spi import pf_static_sph from scipy import interpolate from timeit import default_timer as timer import mpmath as mpm # ---- HELPER FUNCTIONS ---- def kcos_func(kgrid): # names = list(kgrid.arrays.keys()) functions_kcos = [lambda k: k, np.cos] return kgrid.function_prod(names, functions_kcos) def kpow2_func(kgrid): # names = list(kgrid.arrays.keys()) functions_kpow2 = [lambda k: k**2, lambda th: 0 * th + 1] return kgrid.function_prod(names, functions_kpow2) # ---- BASIC FUNCTIONS ---- def ur(mI, mB): return (mB * mI) / (mB + mI) def nu(mB, n0, gBB): return np.sqrt(n0 * gBB / mB) def epsilon(k, mB): return k**2 / (2 * mB) def omegak(k, mB, n0, gBB): ep = epsilon(k, mB) return np.sqrt(ep * (ep + 2 * gBB * n0)) def omegak_grid(kgrid, mB, n0, gBB): names = list(kgrid.arrays.keys()) functions_Wk = [lambda k: omegak(k, mB, n0, gBB), lambda th: 0 * th + 1] return kgrid.function_prod(names, functions_Wk) def Omega(kgrid, DP, mI, mB, n0, gBB): names = list(kgrid.arrays.keys()) # ***need to have arrays added as k, th when kgrid is created if names[0] != 'k': print('CREATED kgrid IN WRONG ORDER') functions_omega0 = [lambda k: omegak(k, mB, n0, gBB) + (k**2 / (2 * mI)), lambda th: 0 * th + 1] omega0 = kgrid.function_prod(names, functions_omega0) return omega0 - kcos_func(kgrid) * DP / mI def Wk(kgrid, mB, n0, gBB): names = list(kgrid.arrays.keys()) functions_Wk = [lambda k: np.sqrt(epsilon(k, mB) / omegak(k, mB, n0, gBB)), lambda th: 0 * th + 1] return kgrid.function_prod(names, functions_Wk) def g(kgrid, aIBi, mI, mB, n0, gBB): # gives bare interaction strength constant k_max = kgrid.getArray('k')[-1] mR = ur(mI, mB) return 1 / ((mR / (2 * np.pi)) * aIBi - (mR / np.pi**2) * k_max) # ---- SPECTRUM RELATED FUNCTIONS ---- # def PCrit_inf(kcutoff, aIBi, mI, mB, n0, gBB): # # # DP = mI * nu(mB, n0, gBB) # condition for critical momentum is P-PB = mI*nu where nu is the speed of sound # # non-grid helper function # def Wk(k, gBB, mB, n0): # return np.sqrt(eB(k, mB) / w(k, gBB, mB, n0)) # # calculate aSi # def integrand(k): return (4 * ur(mI, mB) / (k**2) - ((Wk(k, gBB, mB, n0)**2) / (DP * k / mI)) * np.log((w(k, gBB, mB, n0) + (k**2) / (2 * mI) + (DP * k / mI)) / (w(k, gBB, mB, n0) + (k**2) / (2 * mI) - (DP * k / mI)))) * (k**2) # val, abserr = quad(integrand, 0, kcutoff, epsabs=0, epsrel=1.49e-12) # aSi = (1 / (2 * np.pi * ur(mI, mB))) * val # # calculate PB (phonon momentum) # def integrand(k): return ((2 * (w(k, gBB, mB, n0) + (k**2) / (2 * mI)) * (DP * k / mI) + (w(k, gBB, mB, n0) + (k**2) / (2 * mI) - (DP * k / mI)) * (w(k, gBB, mB, n0) + (k**2) / (2 * mI) + (DP * k / mI)) * np.log((w(k, gBB, mB, n0) + (k**2) / (2 * mI) - (DP * k / mI)) / (w(k, gBB, mB, n0) + (k**2) / (2 * mI) + (DP * k / mI)))) / ((w(k, gBB, mB, n0) + (k**2) / (2 * mI) - (DP * k / mI)) * (w(k, gBB, mB, n0) + (k**2) / (2 * mI) + (DP * k / mI)) * (DP * k / mI)**2)) * (Wk(k, gBB, mB, n0)**2) * (k**3) # val, abserr = quad(integrand, 0, kcutoff, epsabs=0, epsrel=1.49e-12) # PB = n0 / (ur(mI, mB)**2 * (aIBi - aSi)**2) * val # return DP + PB def dirRF(dataset, kgrid, cParams, sParams): CSAmp = dataset['Real_CSAmp'] + 1j * dataset['Imag_CSAmp'] Phase = dataset['Phase'] dVk = kgrid.dV() tgrid = CSAmp.coords['t'].values CSA0 = CSAmp.isel(t=0).values; CSA0 = CSA0.reshape(CSA0.size) Phase0 = Phase.isel(t=0).values DynOv_Vec = np.zeros(tgrid.size, dtype=complex) for tind, t in enumerate(tgrid): CSAt = CSAmp.sel(t=t).values; CSAt = CSAt.reshape(CSAt.size) Phaset = Phase.sel(t=t).values exparg = np.dot(np.abs(CSAt)**2 + np.abs(CSA0)**2 - 2 * CSA0.conjugate() * CSAt, dVk) DynOv_Vec[tind] = np.exp(-1j * (Phaset - Phase0)) * np.exp((-1 / 2) * exparg) # calculate polaron energy (energy of initial state CSA0) [P, aIBi] = cParams [mI, mB, n0, gBB] = sParams dVk = kgrid.dV() kzg_flat = kcos_func(kgrid) gIB = g(kgrid, aIBi, mI, mB, n0, gBB) PB0 = np.dot(kzg_flat * np.abs(CSA0)**2, dVk).real.astype(float) DP0 = P - PB0 Energy0 = (P**2 - PB0**2) / (2 * mI) + np.dot(Omega(kgrid, DP0, mI, mB, n0, gBB) * np.abs(CSA0)**2, dVk) + gIB * (np.dot(Wk(kgrid, mB, n0, gBB) * CSA0, dVk) + np.sqrt(n0))**2 # calculate full dynamical overlap DynOv_Vec = np.exp(1j * Energy0) * DynOv_Vec ReDynOv_da = xr.DataArray(np.real(DynOv_Vec), coords=[tgrid], dims=['t']) ImDynOv_da = xr.DataArray(np.imag(DynOv_Vec), coords=[tgrid], dims=['t']) # DynOv_ds = xr.Dataset({'Real_DynOv': ReDynOv_da, 'Imag_DynOv': ImDynOv_da}, coords={'t': tgrid}, attrs=dataset.attrs) DynOv_ds = dataset[['Real_CSAmp', 'Imag_CSAmp', 'Phase']]; DynOv_ds['Real_DynOv'] = ReDynOv_da; DynOv_ds['Imag_DynOv'] = ImDynOv_da; DynOv_ds.attrs = dataset.attrs return DynOv_ds # def spectFunc(t_Vec, S_Vec, tdecay): # # spectral function (Fourier Transform of dynamical overlap) using convention A(omega) = 2*Re[\int {S(t)*e^(-i*omega*t)}] # dt = t_Vec[1] - t_Vec[0] # Nt = t_Vec.size # decayFactor = np.exp(-1 * t_Vec / tdecay) # Sarg = S_Vec * decayFactor # sf_preshift = 2 * np.real(dt * np.fft.fft(Sarg)) # sf = np.fft.fftshift(sf_preshift) # omega = np.fft.fftshift((2 * np.pi / dt) * np.fft.fftfreq(Nt)) # return omega, sf def spectFunc(t_Vec, S_Vec, tdecay): # spectral function (Fourier Transform of dynamical overlap) using convention A(omega) = 2*Re[\int {S(t)*e^(i*omega*t)}] dt = t_Vec[1] - t_Vec[0] Nt = t_Vec.size domega = 2 * np.pi / (Nt * dt) decayFactor = np.exp(-1 * t_Vec / tdecay) Sarg = S_Vec * decayFactor sf_preshift = np.real((2 * np.pi / domega) * np.fft.ifft(Sarg)) # sf_preshift = 2 * np.real((2 * np.pi / domega) * np.fft.ifft(Sarg)) sf = np.fft.fftshift(sf_preshift) omega = np.fft.fftshift((2 * np.pi / dt) * np.fft.fftfreq(Nt)) return omega, sf def Energy(CSAmp, kgrid, P, aIBi, mI, mB, n0, gBB): dVk = kgrid.dV() kzg_flat = kcos_func(kgrid) Wk_grid = Wk(kgrid, mB, n0, gBB) Wki_grid = 1 / Wk_grid amplitude = CSAmp.reshape(CSAmp.size) PB = np.dot(kzg_flat * np.abs(amplitude)**2, dVk).real.astype(float) DP = P - PB Omega_grid = Omega(kgrid, DP, mI, mB, n0, gBB) gnum = g(kgrid, aIBi, mI, mB, n0, gBB) xp = 0.5 * np.dot(Wk_grid, amplitude * dVk) xm = 0.5 * np.dot(Wki_grid, amplitude * dVk) En = ((P**2 - PB**2) / (2 * mI) + np.dot(dVk * Omega_grid, np.abs(amplitude)**2) + gnum * (2 * np.real(xp) +
np.sqrt(n0)
numpy.sqrt
""" """ import gzip import pickle import astropy.units as u import numpy as np from template_builder.utilities import * from template_builder.extend_templates import * from ctapipe.coordinates import CameraFrame, NominalFrame, GroundFrame, \ TiltedGroundFrame from astropy.coordinates import SkyCoord, AltAz from astropy.time import Time from ctapipe.io import EventSource from ctapipe.reco import ImPACTReconstructor from tqdm import tqdm from ctapipe.image import tailcuts_clean, dilate from ctapipe.calib import CameraCalibrator from ctapipe.image.extractor import FullWaveformSum, FixedWindowSum from ctapipe.calib.camera.gainselection import ThresholdGainSelector class TemplateFitter: def __init__(self, eff_fl=1, bounds=((-5, 1), (-1.5, 1.5)), bins=(601, 301), min_fit_pixels=3000, xmax_bins=np.linspace(-150, 200, 15), offset_bins=np.array([0.0])*u.deg, verbose=False, rotation_angle=0 * u.deg, tailcuts=(7, 14), min_amp=30, local_distance_cut=2.*u.deg, gain_threshold=30000): """[summary] Args: eff_fl (int, optional): [description]. Defaults to 1. bounds (tuple, optional): [description]. Defaults to ((-5, 1), (-1.5, 1.5)). bins (tuple, optional): [description]. Defaults to (601, 301). min_fit_pixels (int, optional): [description]. Defaults to 3000. xmax_bins ([type], optional): [description]. Defaults to np.linspace(-150, 200, 15). maximum_offset ([type], optional): [description]. Defaults to 10*u.deg. verbose (bool, optional): [description]. Defaults to False. rotation_angle ([type], optional): [description]. Defaults to 0*u.deg. tailcuts (tuple, optional): [description]. Defaults to (7, 14). min_amp (int, optional): [description]. Defaults to 30. local_distance_cut ([type], optional): [description]. Defaults to 2.*u.deg. gain_threshold (int, optional): [description]. Defaults to 30000. """ self.verbose = verbose self.xmax_bins = xmax_bins self.eff_fl = eff_fl self.bounds = bounds self.bins = bins self.min_fit_pixels = min_fit_pixels self.rotation_angle = rotation_angle self.offset_bins = np.sort(offset_bins) self.tailcuts = tailcuts self.min_amp = min_amp self.local_distance_cut = local_distance_cut self.templates = dict() # Pixel amplitude self.template_fit = dict() # Pixel amplitude self.template_fit_kde = dict() # Pixel amplitude self.templates_xb = dict() # Rotated X position self.templates_yb = dict() # Rotated Y positions self.correction = dict() self.count = dict() # Count of events in a given template self.count_total = 0 # Total number of events self.gain_threshold = gain_threshold def read_templates(self, filename, max_events=1000000): """ This is a pretty standard ctapipe event loop that calibrates events, rotates them into a common frame and then stores the pixel values in a list :param filename: str Location of input :param max_events: int Maximum number of events to include in the loop :param fill_correction: bool Fill correction factor table :return: tuple Return 3 lists of amplitude and rotated x,y positions of all pixels in all events """ # Create dictionaries to contain our output if max_events > 0: print("Warning if limiting event numbers the zero fraction may no longer be correct") else: max_events = 1e10 # Create a dummy time for our AltAz objects dummy_time = Time('2010-01-01T00:00:00', format='isot', scale='utc') if self.verbose: print("Reading", filename.strip()) source = EventSource(filename, max_events=max_events, gain_selector_type='ThresholdGainSelector') source.gain_selector.threshold = self.gain_threshold # Set our threshodl for gain selection # This value is currently set for HESS, need to make this more flexible in future calib = CameraCalibrator(subarray=source.subarray, image_extractor=FixedWindowSum(source.subarray, window_width=16, window_shift=3, peak_index=3, apply_integration_correction=False)) self.count_total += source.simulation_config.num_showers grd_tel = None num = 0 # Event counter scaling_filled = False for event in source: calib(event) alt = event.pointing.array_altitude if alt > 90 * u.deg: alt = 90*u.deg point = SkyCoord(alt=alt, az=event.pointing.array_azimuth, frame=AltAz(obstime=dummy_time)) if not scaling_filled: xmax_scale = create_xmax_scaling(self.xmax_bins, self.offset_bins, point, filename) scaling_filled = True # Create coordinate objects for source position src = SkyCoord(alt=event.simulation.shower.alt.value * u.rad, az=event.simulation.shower.az.value * u.rad, frame=AltAz(obstime=dummy_time)) alt_evt = event.simulation.shower.alt if alt_evt > 90 * u.deg: alt_evt = 90*u.deg #print("here1", point.separation(src), self.maximum_offset) #if point.separation(src) > self.maximum_offset: # continue offset_bin = find_nearest_bin(self.offset_bins, point.separation(src)).value zen = 90 - event.simulation.shower.alt.to(u.deg).value # Store simulated Xmax mc_xmax = event.simulation.shower.x_max.value / np.cos(np.deg2rad(zen)) # And transform into nominal system (where we store our templates) source_direction = src.transform_to(NominalFrame(origin=point)) # Store simulated event energy energy = event.simulation.shower.energy # Store ground position of all telescopes # We only want to do this once, but has to be done in event loop if grd_tel is None: grd_tel = source.subarray.tel_coords # Convert to tilted system tilt_tel = grd_tel.transform_to( TiltedGroundFrame(pointing_direction=point)) # Calculate core position in tilted system grd_core_true = SkyCoord(x=np.asarray(event.simulation.shower.core_x) * u.m, y=np.asarray(event.simulation.shower.core_y) * u.m, z=np.asarray(0) * u.m, frame=GroundFrame()) tilt_core_true = grd_core_true.transform_to(TiltedGroundFrame( pointing_direction=point)) # Loop over triggered telescopes for tel_id, dl1 in event.dl1.tel.items(): # Get pixel signal pmt_signal = dl1.image # Get pixel coordinates and convert to the nominal system geom = source.subarray.tel[tel_id].camera.geometry fl = source.subarray.tel[tel_id].optics.equivalent_focal_length * \ self.eff_fl camera_coord = SkyCoord(x=geom.pix_x, y=geom.pix_y, frame=CameraFrame(focal_length=fl, telescope_pointing=point)) nom_coord = camera_coord.transform_to( NominalFrame(origin=point)) x = nom_coord.fov_lon.to(u.deg) y = nom_coord.fov_lat.to(u.deg) # Calculate expected rotation angle of the image phi = np.arctan2((tilt_tel.y[tel_id - 1] - tilt_core_true.y), (tilt_tel.x[tel_id - 1] - tilt_core_true.x)) + \ 90 * u.deg phi += self.rotation_angle # And the impact distance of the shower impact = np.sqrt(np.power(tilt_tel.x[tel_id - 1] - tilt_core_true.x, 2) + np.power(tilt_tel.y[tel_id - 1] - tilt_core_true.y, 2)). \ to(u.m).value # now rotate and translate our images such that they lie on top of one # another x, y = \ ImPACTReconstructor.rotate_translate(x, y, source_direction.fov_lon, source_direction.fov_lat, phi) x *= -1 # We only want to keep pixels that fall within the bounds of our # final template mask = np.logical_and(x > self.bounds[0][0] * u.deg, x < self.bounds[0][1] * u.deg) mask = np.logical_and(mask, y < self.bounds[1][1] * u.deg) mask = np.logical_and(mask, y > self.bounds[1][0] * u.deg) mask510 = tailcuts_clean(geom, pmt_signal, picture_thresh=self.tailcuts[0], boundary_thresh=self.tailcuts[1], min_number_picture_neighbors=1) amp_sum = np.sum(pmt_signal[mask510]) x_cent = np.sum(pmt_signal[mask510] * x[mask510]) / amp_sum y_cent = np.sum(pmt_signal[mask510] * y[mask510]) / amp_sum mask = mask510 for i in range(4): mask = dilate(geom, mask) # Make our preselection cuts if amp_sum < self.min_amp and np.sqrt(x_cent**2 + y_cent**2) < self.local_distance_cut: continue # Make sure everything is 32 bit x = x[mask].astype(np.float32) y = y[mask].astype(np.float32) image = pmt_signal[mask].astype(np.float32) zen = 90 - alt_evt.to(u.deg).value # Store simulated Xmax mc_xmax = event.simulation.shower.x_max.value / np.cos(np.deg2rad(zen)) # Calc difference from expected Xmax (for gammas) exp_xmax =xmax_expectation(energy.value) x_diff = mc_xmax - exp_xmax x_diff_bin = find_nearest_bin(self.xmax_bins, x_diff) az = point.az.to(u.deg).value zen = 90. - point.alt.to(u.deg).value # Now fill up our output with the X, Y and amplitude of our pixels key = zen, az, energy.value, int(impact), x_diff_bin, offset_bin if (key) in self.templates.keys(): # Extend the list if an entry already exists self.templates[key].extend(image) self.templates_xb[key].extend(x.to(u.deg).value) self.templates_yb[key].extend(y.to(u.deg).value) self.count[key] = self.count[key] + (1 * xmax_scale[(x_diff_bin, offset_bin)]) else: self.templates[key] = image.tolist() self.templates_xb[key] = x.value.tolist() self.templates_yb[key] = y.value.tolist() self.count[key] = 1 * xmax_scale[(x_diff_bin, offset_bin)] if num > max_events: return self.templates, self.templates_xb, self.templates_yb num += 1 return self.templates, self.templates_xb, self.templates_yb def fit_templates(self, amplitude, x_pos, y_pos, make_variance_template, max_fitpoints): """ Perform MLP fit over a dictionary of pixel lists :param amplitude: dict Dictionary of pixel amplitudes for each template :param x_pos: dict Dictionary of x position for each template :param y_pos: dict Dictionary of y position for each template :param make_variance_template: bool Should we also make a template of variance :param max_fitpoints: int Maximum number of points to include in MLP fit :return: dict Dictionary of image templates """ if self.verbose: print("Fitting Templates") # Create output dictionary templates_out = dict() variance_templates_out = dict() # Create grid over which to evaluate our fit x =
np.linspace(self.bounds[0][0], self.bounds[0][1], self.bins[0])
numpy.linspace
#!/usr/bin/python import itertools import numpy as np import pytest from scipy import stats from sklearn.model_selection import GridSearchCV, KFold from sklearn.svm import SVC GAMMA = 1. COEF0 = 1. def main(): # polynomial() cross_validation() # rbf() def read_dataset(dataset_type): dataset = np.loadtxt('features.' + dataset_type) return dataset[:, 1:], dataset[:, 0] # X, y def polynomial(): clf = SVC(C=.01, kernel='poly', degree=2, gamma=GAMMA, coef0=COEF0) for offset in [0, 1]: num_supports, E_ins = [], [] digits = np.array([0, 2, 4, 6, 8], dtype=float) + offset for digit in digits: X_training, y_training = read_dataset('train') y_training[~np.isclose(y_training, digit)] = -1. clf.fit(X_training, y_training) E_ins.append(1 - clf.score(X_training, y_training)) num_supports.append(clf.n_support_.sum()) chosen_idx = np.argmax(E_ins) if offset == 0 else np.argmin(E_ins) print('digit={}: E_in={}, num_supports={}'.format(digits[chosen_idx], E_ins[chosen_idx], num_supports[chosen_idx])) print('\n--------------------\n') X_training, y_training = read_dataset('train') one_or_five = np.isclose(y_training, 1.) |
np.isclose(y_training, 5.)
numpy.isclose
''' Author: Dr. <NAME> <<EMAIL>> This package is distributed under New BSD license. ''' from __future__ import division import numpy as np import scipy.sparse from six.moves import range from numbers import Integral from smt.utils.linear_solvers import get_solver, LinearSolver, VALID_SOLVERS from smt.utils.line_search import get_line_search_class, LineSearch, VALID_LINE_SEARCHES from smt.utils.caching import cached_operation from smt.surrogate_models.surrogate_model import SurrogateModel class RMTS(SurrogateModel): """ Regularized Minimal-energy Tensor-product Spline interpolant base class for RMTC and RMTB. """ def _initialize(self): super(RMTS, self)._initialize() declare = self.options.declare supports = self.supports declare('xlimits', types=np.ndarray, desc='Lower/upper bounds in each dimension - ndarray [nx, 2]') declare('smoothness', 1.0, types=(Integral, float, tuple, list, np.ndarray), desc='Smoothness parameter in each dimension - length nx. None implies uniform') declare('regularization_weight', 1e-14, types=(Integral, float), desc='Weight of the term penalizing the norm of the spline coefficients.' + ' This is useful as an alternative to energy minimization ' + ' when energy minimization makes the training time too long.') declare('energy_weight', 1e-4, types=(Integral, float), desc='The weight of the energy minimization terms') declare('extrapolate', False, types=bool, desc='Whether to perform linear extrapolation for external evaluation points') declare('min_energy', True, types=bool, desc='Whether to perform energy minimization') declare('approx_order', 4, types=Integral, desc='Exponent in the approximation term') declare('solver', 'krylov', values=VALID_SOLVERS, types=LinearSolver, desc='Linear solver') declare('derivative_solver', 'krylov', values=VALID_SOLVERS, types=LinearSolver, desc='Linear solver used for computing output derivatives (dy_dyt)') declare('grad_weight', 0.5, types=(Integral, float), desc='Weight on gradient training data') declare('solver_tolerance', 1e-12, types=(Integral, float), desc='Convergence tolerance for the nonlinear solver') declare('nonlinear_maxiter', 10, types=Integral, desc='Maximum number of nonlinear solver iterations') declare('line_search', 'backtracking', values=VALID_LINE_SEARCHES, types=LineSearch, desc='Line search algorithm') declare('save_energy_terms', False, types=bool, desc='Whether to cache energy terms in the data_dir directory') declare('data_dir', None, values=(None,), types=str, desc='Directory for loading / saving cached data; None means do not save or load') declare('max_print_depth', 5, types=Integral, desc='Maximum depth (level of nesting) to print operation descriptions and times') supports['training_derivatives'] = True supports['derivatives'] = True supports['output_derivatives'] = True def _setup_hessian(self): diag = np.ones(self.num['dof']) arange = np.arange(self.num['dof']) full_hess = scipy.sparse.csc_matrix((diag, (arange, arange))) return full_hess def _compute_jac(self, ix1, ix2, x): data, rows, cols = self._compute_jac_raw(ix1, ix2, x) n = x.shape[0] full_jac = scipy.sparse.csc_matrix((data, (rows, cols)), shape=(n, self.num['coeff'])) if self.full_dof2coeff is not None: full_jac = full_jac * self.full_dof2coeff return full_jac def _compute_approx_terms(self): # This computes the approximation terms for the training points. # We loop over kx: 0 is for values and kx>0 represents. # the 1-based index of the derivative given by the training point data. num = self.num xlimits = self.options['xlimits'] full_jac_dict = {} for kx in self.training_points[None]: xt, yt = self.training_points[None][kx] xmin = np.min(xt, axis=0) xmax = np.max(xt, axis=0) assert np.all(xlimits[:, 0] <= xmin), 'Training points below min for %s' % kx assert np.all(xlimits[:, 1] >= xmax), 'Training points above max for %s' % kx if kx == 0: c = 1.0 else: self.options['grad_weight'] / xlimits.shape[0] full_jac = self._compute_jac(kx, 0, xt) full_jac_dict[kx] = (full_jac, full_jac.T.tocsc(), c) return full_jac_dict def _compute_energy_terms(self): # This computes the energy terms that are to be minimized. # The quadrature points are the centroids of the multi-dimensional elements. num = self.num xlimits = self.options['xlimits'] inputs = {} inputs['nx'] = xlimits.shape[0] inputs['elem_list'] = num['elem_list'] if self.__class__.__name__ == 'RMTB': inputs['num_ctrl_list'] = num['ctrl_list'] inputs['order_list'] = num['order_list'] if self.options['save_energy_terms']: cache_dir = self.options['data_dir'] else: cache_dir = None with cached_operation(inputs, cache_dir) as outputs: if outputs: sq_mtx = outputs['sq_mtx'] else: n = np.prod(2 * num['elem_list']) x = np.empty(n * num['x']) self.rmtsc.compute_quadrature_points( n, np.array(2 * num['elem_list'], dtype=np.int32), x) x = x.reshape((n, num['x'])) sq_mtx = [None] * num['x'] for kx in range(num['x']): mtx = self._compute_jac(kx+1, kx+1, x) sq_mtx[kx] = mtx.T.tocsc() * mtx * (xlimits[kx, 1] - xlimits[kx, 0]) ** 4 outputs['sq_mtx'] = sq_mtx elem_vol =
np.prod((xlimits[:, 1] - xlimits[:, 0]) / (2 * num['elem_list']))
numpy.prod
import numpy as np import enum from scipy.spatial.transform import Rotation from scipy.spatial.distance import pdist, squareform from casadi import * from scipy.optimize import nnls from rrc_iprl_package.control.contact_point import ContactPoint from trifinger_simulation.tasks import move_cube from rrc_iprl_package.traj_opt.fixed_contact_point_opt import FixedContactPointOpt from rrc_iprl_package.traj_opt.fixed_contact_point_system import FixedContactPointSystem from rrc_iprl_package.traj_opt.static_object_opt import StaticObjectOpt class PolicyMode(enum.Enum): RESET = enum.auto() TRAJ_OPT = enum.auto() IMPEDANCE = enum.auto() RL_PUSH = enum.auto() RESIDUAL = enum.auto() # Object properties OBJ_MASS = 0.016 # 16 grams OBJ_SIZE = move_cube._CUBOID_SIZE OBJ_SIZE_OFFSET = 0.012 OBJ_MU = 1 # Here, hard code the base position of the fingers (as angle on the arena) r = 0.15 theta_0 = 80 theta_1 = 310 theta_2 = 200 FINGER_BASE_POSITIONS = [ np.array([[np.cos(theta_0*(np.pi/180))*r, np.sin(theta_0*(np.pi/180))*r, 0]]), np.array([[np.cos(theta_1*(np.pi/180))*r, np.sin(theta_1*(np.pi/180))*r, 0]]), np.array([[np.cos(theta_2*(np.pi/180))*r, np.sin(theta_2*(np.pi/180))*r, 0]]), ] BASE_ANGLE_DEGREES = [0, -120, -240] # Information about object faces given face_id OBJ_FACES_INFO = { 1: {"center_param": np.array([0.,-1.,0.]), "face_down_default_quat": np.array([0.707,0,0,0.707]), "adjacent_faces": [6,4,3,5], "opposite_face": 2, "up_axis": np.array([0.,1.,0.]), # UP axis when this face is ground face }, 2: {"center_param": np.array([0.,1.,0.]), "face_down_default_quat": np.array([-0.707,0,0,0.707]), "adjacent_faces": [6,4,3,5], "opposite_face": 1, "up_axis": np.array([0.,-1.,0.]), }, 3: {"center_param": np.array([1.,0.,0.]), "face_down_default_quat": np.array([0,0.707,0,0.707]), "adjacent_faces": [1,2,4,6], "opposite_face": 5, "up_axis": np.array([-1.,0.,0.]), }, 4: {"center_param": np.array([0.,0.,1.]), "face_down_default_quat": np.array([0,1,0,0]), "adjacent_faces": [1,2,3,5], "opposite_face": 6, "up_axis": np.array([0.,0.,-1.]), }, 5: {"center_param": np.array([-1.,0.,0.]), "face_down_default_quat": np.array([0,-0.707,0,0.707]), "adjacent_faces": [1,2,4,6], "opposite_face": 3, "up_axis": np.array([1.,0.,0.]), }, 6: {"center_param": np.array([0.,0.,-1.]), "face_down_default_quat": np.array([0,0,0,1]), "adjacent_faces": [1,2,3,5], "opposite_face": 4, "up_axis": np.array([0.,0.,1.]), }, } CUBOID_SHORT_FACES = [1,2] CUBOID_LONG_FACES = [3,4,5,6] """ Compute wrench that needs to be applied to object to maintain it on desired trajectory """ def track_obj_traj_controller(x_des, dx_des, x_cur, dx_cur, Kp, Kv): #print(x_des) #print(x_cur.position, x_cur.orientation) #print(dx_des) #print(dx_cur) g = np.array([0, 0, -9.81, 0, 0, 0]) # Gravity vector # Force (compute position error) p_delta = (x_des[0:3] - x_cur.position) dp_delta = (dx_des[0:3] - dx_cur[0:3]) # Moment (compute orientation error) # Compute difference between desired and current quaternion R_des = Rotation.from_quat(x_des[3:]) R_cur = Rotation.from_quat(x_cur.orientation) o_delta = np.zeros(3) for i in range(3): o_delta += -0.5 * np.cross(R_cur.as_matrix()[:,i], R_des.as_matrix()[:,i]) do_delta = (dx_des[3:] - dx_cur[3:]) # is this the angular velocity? #print("p_delta: {}".format(p_delta)) #print("dp_delta: {}".format(dp_delta)) #print("o_delta: {}".format(o_delta)) #print("do_delta: {}".format(do_delta)) # Compute wrench W (6x1) with PD feedback law x_delta = np.concatenate((p_delta, -1*o_delta)) dx_delta = np.concatenate((dp_delta, do_delta)) W = Kp @ x_delta + Kv @ dx_delta - OBJ_MASS * g print("x_delta: {}".format(x_delta)) print("dx_delta: {}".format(dx_delta)) #print(W) return W """ Compute fingertip forces necessary to keep object on desired trajectory """ def get_ft_forces(x_des, dx_des, x_cur, dx_cur, Kp, Kv, cp_params): # Get desired wrench for object COM to track obj traj W = track_obj_traj_controller(x_des, dx_des, x_cur, dx_cur, Kp, Kv) # Get list of contact point positions and orientations in object frame # By converting cp_params to contactPoints cp_list = [] for cp_param in cp_params: if cp_param is not None: cp = get_cp_of_from_cp_param(cp_param) cp_list.append(cp) fnum = len(cp_list) # To compute grasp matrix G = __get_grasp_matrix(
np.concatenate((x_cur.position, x_cur.orientation))
numpy.concatenate
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157':
np.array([0.08302493125394889, 0.6186280682763334])
numpy.array
import os, sys import pickle import numpy as np import skimage.io as io import matplotlib.pyplot as plt import scipy.spatial.distance as dist def estimate_top_view_sigmas(pkl_file): ''' call this on 'AMT_data/top/AMT15_csv.pkl' we estimate keypoint accuracy in terms of the Object Keypoint Similarity (OKS) after Ronchi and Perona 2017. The OKS between a detection theta-hat(p) and the annotation theta(p) of a person p is the average over the labeled parts in the ground-truth (v_i) of the Keypoint Similarity between corresponding keypoint pairs. From equation 1 in that paper, the Keypoint Similarity (ks) is defined as: ks(theta-hat(p), theta(p)) = exp( - ||theta-hat_(p) - theta(p)||^2_2 / (2*s^2*k^2) Where s is the area of the instance, measured in pixels, and k is a keypoint-specific standard deviation that estimates the degree of between-annotator variability in labeling that point. In the CoCo evaluation API, the value of k for annotations of human poses ranges from 0.025 to 0.107, with more reliably placed body parts (such as the eyes) having the lowest values of k. should return: array([0.03889304, 0.04519708, 0.04505679, 0.04170943, 0.06655941, 0.0666152 , 0.04375891, 0.06663153, 0.08359647]) ''' with open(pkl_file,'rb') as fp: D = pickle.load(fp) area_vec = [] X = [] Y= [] for j in range(9): x = [] y = [] for i in range(len(D)): x.append((D[i]['ann_B']['X'][:,j]*1024).tolist()) # scale by top-view camera dimensions x.append((D[i]['ann_W']['X'][:,j]*1024).tolist()) y.append((D[i]['ann_B']['Y'][:,j]*570).tolist()) y.append((D[i]['ann_W']['Y'][:,j]*570).tolist()) X.append(x) Y.append(y) for i in range(len(D)): area_vec.append(D[i]['ann_B']['area']) area_vec.append(D[i]['ann_W']['area']) X = np.asarray(X) Y = np.asarray(Y) area_vec = np.asarray(area_vec) D = np.zeros((len(X),len(X[0]))) sigma = np.zeros(len(X)) for j in range(len(X)): for i in range(len(X[0])): xy = np.asarray([X[j][i], Y[j][i]]).reshape((2,len(X[j][i]))).T gt = np.median(xy,0) D[j][i] = np.mean(np.std(xy,0)) D[j][i] /= np.sqrt(area_vec[i])*np.sqrt(2) # normalization to match CoCo definition of sigma sigma[j] =
np.mean(D[j])
numpy.mean
"""Utility functions for two- and three-dimensional vectors.""" __all__ = [ "quaternion_mult", "quaternion_from_angle_axis", "angle_axis_from_quaternion", "quaternion_conjugate", "rotate_vector", "thick_diagonal", "rotation_matrix", "rotation_about_z", "z_to_vector", "angle_of_vector", "angle_between_vectors", "project_along_vector", "normalize", "get_unit_normal", "compass_directions", "regular_vertices", "complex_to_R3", "R3_to_complex", "complex_func_to_R3_func", "center_of_mass", "midpoint", "find_intersection", "line_intersection", "get_winding_number", "cross2d", "earclip_triangulation", "perpendicular_bisector", ] import itertools as it import math from functools import reduce from typing import List, Optional, Sequence, Tuple, Union import numpy as np from mapbox_earcut import triangulate_float32 as earcut from .. import config from ..constants import DOWN, OUT, PI, RIGHT, TAU from ..utils.iterables import adjacent_pairs def norm_squared(v: float) -> float: return np.dot(v, v) # Quaternions # TODO, implement quaternion type def quaternion_mult( *quats: Sequence[float], ) -> Union[np.ndarray, List[Union[float, np.ndarray]]]: """Gets the Hamilton product of the quaternions provided. For more information, check `this Wikipedia page <https://en.wikipedia.org/wiki/Quaternion>`_. Returns ------- Union[np.ndarray, List[Union[float, np.ndarray]]] Returns a list of product of two quaternions. """ if config.renderer == "opengl": if len(quats) == 0: return [1, 0, 0, 0] result = quats[0] for next_quat in quats[1:]: w1, x1, y1, z1 = result w2, x2, y2, z2 = next_quat result = [ w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2, w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2, w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2, w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2, ] return result else: q1 = quats[0] q2 = quats[1] w1, x1, y1, z1 = q1 w2, x2, y2, z2 = q2 return np.array( [ w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2, w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2, w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2, w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2, ] ) def quaternion_from_angle_axis( angle: float, axis: np.ndarray, axis_normalized: bool = False ) -> List[float]: """Gets a quaternion from an angle and an axis. For more information, check `this Wikipedia page <https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles>`_. Parameters ---------- angle The angle for the quaternion. axis The axis for the quaternion axis_normalized : bool, optional Checks whether the axis is normalized, by default False Returns ------- List[float] Gives back a quaternion from the angle and axis """ if config.renderer == "opengl": if not axis_normalized: axis = normalize(axis) return [math.cos(angle / 2), *(math.sin(angle / 2) * axis)] else: return np.append(np.cos(angle / 2), np.sin(angle / 2) * normalize(axis)) def angle_axis_from_quaternion(quaternion: Sequence[float]) -> Sequence[float]: """Gets angle and axis from a quaternion. Parameters ---------- quaternion The quaternion from which we get the angle and axis. Returns ------- Sequence[float] Gives the angle and axis """ axis = normalize(quaternion[1:], fall_back=np.array([1, 0, 0])) angle = 2 * np.arccos(quaternion[0]) if angle > TAU / 2: angle = TAU - angle return angle, axis def quaternion_conjugate(quaternion: Sequence[float]) -> np.ndarray: """Used for finding the conjugate of the quaternion Parameters ---------- quaternion The quaternion for which you want to find the conjugate for. Returns ------- np.ndarray The conjugate of the quaternion. """ result = np.array(quaternion) result[1:] *= -1 return result def rotate_vector(vector: np.ndarray, angle: int, axis: np.ndarray = OUT) -> np.ndarray: """Function for rotating a vector. Parameters ---------- vector The vector to be rotated. angle The angle to be rotated by. axis The axis to be rotated, by default OUT Returns ------- np.ndarray The rotated vector with provided angle and axis. Raises ------ ValueError If vector is not of dimension 2 or 3. """ if len(vector) == 2: # Use complex numbers...because why not z = complex(*vector) * np.exp(complex(0, angle)) return np.array([z.real, z.imag]) elif len(vector) == 3: # Use quaternions...because why not quat = quaternion_from_angle_axis(angle, axis) quat_inv = quaternion_conjugate(quat) product = reduce(quaternion_mult, [quat, np.append(0, vector), quat_inv]) return product[1:] else: raise ValueError("vector must be of dimension 2 or 3") def thick_diagonal(dim: int, thickness=2) -> np.ndarray: row_indices = np.arange(dim).repeat(dim).reshape((dim, dim)) col_indices = np.transpose(row_indices) return (np.abs(row_indices - col_indices) < thickness).astype("uint8") def rotation_matrix_transpose_from_quaternion(quat: np.ndarray) -> List[np.ndarray]: """Converts the quaternion, quat, to an equivalent rotation matrix representation. For more information, check `this page <https://in.mathworks.com/help/driving/ref/quaternion.rotmat.html>`_. Parameters ---------- quat The quaternion which is to be converted. Returns ------- List[np.ndarray] Gives back the Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array. """ quat_inv = quaternion_conjugate(quat) return [ quaternion_mult(quat, [0, *basis], quat_inv)[1:] for basis in [ [1, 0, 0], [0, 1, 0], [0, 0, 1], ] ] def rotation_matrix_from_quaternion(quat: np.ndarray) -> np.ndarray: return np.transpose(rotation_matrix_transpose_from_quaternion(quat)) def rotation_matrix_transpose(angle: float, axis: np.ndarray) -> np.ndarray: if axis[0] == 0 and axis[1] == 0: # axis = [0, 0, z] case is common enough it's worth # having a shortcut sgn = 1 if axis[2] > 0 else -1 cos_a = math.cos(angle) sin_a = math.sin(angle) * sgn return [ [cos_a, sin_a, 0], [-sin_a, cos_a, 0], [0, 0, 1], ] quat = quaternion_from_angle_axis(angle, axis) return rotation_matrix_transpose_from_quaternion(quat) def rotation_matrix( angle: float, axis: np.ndarray, homogeneous: bool = False ) -> np.ndarray: """ Rotation in R^3 about a specified axis of rotation. """ about_z = rotation_about_z(angle) z_to_axis = z_to_vector(axis) axis_to_z = np.linalg.inv(z_to_axis) inhomogeneous_rotation_matrix = reduce(np.dot, [z_to_axis, about_z, axis_to_z]) if not homogeneous: return inhomogeneous_rotation_matrix else: rotation_matrix = np.eye(4) rotation_matrix[:3, :3] = inhomogeneous_rotation_matrix return rotation_matrix def rotation_about_z(angle: float) -> List[List[float]]: """Returns a rotation matrix for a given angle. Parameters ---------- angle : float Angle for the rotation matrix. Returns ------- List[float] Gives back the rotated matrix. """ return [ [np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1], ] def z_to_vector(vector: np.ndarray) -> np.ndarray: """ Returns some matrix in SO(3) which takes the z-axis to the (normalized) vector provided as an argument """ norm = np.linalg.norm(vector) if norm == 0: return np.identity(3) v = np.array(vector) / norm phi = np.arccos(v[2]) if any(v[:2]): # projection of vector to unit circle axis_proj = v[:2] / np.linalg.norm(v[:2]) theta = np.arccos(axis_proj[0]) if axis_proj[1] < 0: theta = -theta else: theta = 0 phi_down = np.array( [[np.cos(phi), 0, np.sin(phi)], [0, 1, 0], [-np.sin(phi), 0, np.cos(phi)]] ) return np.dot(rotation_about_z(theta), phi_down) def angle_of_vector(vector: Sequence[float]) -> float: """Returns polar coordinate theta when vector is projected on xy plane. Parameters ---------- vector The vector to find the angle for. Returns ------- float The angle of the vector projected. """ if config.renderer == "opengl": return np.angle(complex(*vector[:2])) else: z = complex(*vector[:2]) if z == 0: return 0 return np.angle(complex(*vector[:2])) def angle_between_vectors(v1: np.ndarray, v2: np.ndarray) -> np.ndarray: """Returns the angle between two vectors. This angle will always be between 0 and pi Parameters ---------- v1 The first vector. v2 The second vector. Returns ------- np.ndarray The angle between the vectors. """ return 2 * np.arctan2( np.linalg.norm(normalize(v1) - normalize(v2)), np.linalg.norm(normalize(v1) + normalize(v2)), ) def project_along_vector(point: float, vector: np.ndarray) -> np.ndarray: """Projects a vector along a point. Parameters ---------- point The point to be project from. vector The vector which has to projected. Returns ------- np.ndarray A dot product of the point and vector. """ matrix = np.identity(3) - np.outer(vector, vector) return np.dot(point, matrix.T) def normalize(vect: Union[np.ndarray, Tuple[float]], fall_back=None) -> np.ndarray: norm = np.linalg.norm(vect) if norm > 0: return np.array(vect) / norm else: if fall_back is not None: return fall_back else: return np.zeros(len(vect)) def normalize_along_axis(array: np.ndarray, axis: np.ndarray) -> np.ndarray: """Normalizes an array with the provided axis. Parameters ---------- array The array which has to be normalized. axis The axis to be normalized to. Returns ------- np.ndarray Array which has been normalized according to the axis. """ norms = np.sqrt((array * array).sum(axis)) norms[norms == 0] = 1 buffed_norms = np.repeat(norms, array.shape[axis]).reshape(array.shape) array /= buffed_norms return array def get_unit_normal(v1: np.ndarray, v2: np.ndarray, tol: float = 1e-6) -> np.ndarray: """Gets the unit normal of the vectors. Parameters ---------- v1 The first vector. v2 The second vector tol [description], by default 1e-6 Returns ------- np.ndarray The normal of the two vectors. """ if config.renderer == "opengl": v1 = normalize(v1) v2 = normalize(v2) cp = np.cross(v1, v2) cp_norm = np.linalg.norm(cp) if cp_norm < tol: # Vectors align, so find a normal to them in the plane shared with the z-axis new_cp = np.cross(np.cross(v1, OUT), v1) new_cp_norm = np.linalg.norm(new_cp) if new_cp_norm < tol: return DOWN return new_cp / new_cp_norm return cp / cp_norm else: return normalize(np.cross(v1, v2)) ### def compass_directions(n: int = 4, start_vect: np.ndarray = RIGHT) -> np.ndarray: """Finds the cardinal directions using tau. Parameters ---------- n The amount to be rotated, by default 4 start_vect The direction for the angle to start with, by default RIGHT Returns ------- np.ndarray The angle which has been rotated. """ angle = TAU / n return np.array([rotate_vector(start_vect, k * angle) for k in range(n)]) def regular_vertices( n: int, *, radius: float = 1, start_angle: Optional[float] = None ) -> Tuple[np.ndarray, float]: """Generates regularly spaced vertices around a circle centered at the origin. Parameters ---------- n The number of vertices radius The radius of the circle that the vertices are placed on. start_angle The angle the vertices start at. If unspecified, for even ``n`` values, ``0`` will be used. For odd ``n`` values, 90 degrees is used. Returns ------- vertices : :class:`numpy.ndarray` The regularly spaced vertices. start_angle : :class:`float` The angle the vertices start at. """ if start_angle is None: if n % 2 == 0: start_angle = 0 else: start_angle = TAU / 4 start_vector = rotate_vector(RIGHT * radius, start_angle) vertices = compass_directions(n, start_vector) return vertices, start_angle def complex_to_R3(complex_num: complex) -> np.ndarray: return np.array((complex_num.real, complex_num.imag, 0)) def R3_to_complex(point: Sequence[float]) -> np.ndarray: return complex(*point[:2]) def complex_func_to_R3_func(complex_func): return lambda p: complex_to_R3(complex_func(R3_to_complex(p))) def center_of_mass(points: Sequence[float]) -> np.ndarray: """Gets the center of mass of the points in space. Parameters ---------- points The points to find the center of mass from. Returns ------- np.ndarray The center of mass of the points. """ points = [np.array(point).astype("float") for point in points] return sum(points) / len(points) def midpoint( point1: Sequence[float], point2: Sequence[float] ) -> Union[float, np.ndarray]: """Gets the midpoint of two points. Parameters ---------- point1 The first point. point2 The second point. Returns ------- Union[float, np.ndarray] The midpoint of the points """ return center_of_mass([point1, point2]) def line_intersection(line1: Sequence[float], line2: Sequence[float]) -> np.ndarray: """Returns intersection point of two lines, each defined with a pair of vectors determining the end points. Parameters ---------- line1 The first line. line2 The second line. Returns ------- np.ndarray The intersection points of the two lines which are intersecting. Raises ------ ValueError Error is produced if the two lines don't intersect with each other """ x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0]) y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1]) def det(a, b): return a[0] * b[1] - a[1] * b[0] div = det(x_diff, y_diff) if div == 0: raise ValueError("Lines do not intersect") d = (det(*line1), det(*line2)) x = det(d, x_diff) / div y = det(d, y_diff) / div return np.array([x, y, 0]) def find_intersection(p0, v0, p1, v1, threshold=1e-5) -> np.ndarray: """ Return the intersection of a line passing through p0 in direction v0 with one passing through p1 in direction v1. (Or array of intersections from arrays of such points/directions). For 3d values, it returns the point on the ray p0 + v0 * t closest to the ray p1 + v1 * t """ p0 = np.array(p0, ndmin=2) v0 = np.array(v0, ndmin=2) p1 = np.array(p1, ndmin=2) v1 = np.array(v1, ndmin=2) m, n = np.shape(p0) assert n in [2, 3] numerator = np.cross(v1, p1 - p0) denominator = np.cross(v1, v0) if n == 3: d = len(np.shape(numerator)) new_numerator = np.multiply(numerator, numerator).sum(d - 1) new_denominator = np.multiply(denominator, numerator).sum(d - 1) numerator, denominator = new_numerator, new_denominator denominator[abs(denominator) < threshold] = np.inf # So that ratio goes to 0 there ratio = numerator / denominator ratio =
np.repeat(ratio, n)
numpy.repeat
from pydpm._sampler import Basic_Sampler import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats from collections import Counter def debug_sampler_and_plot(): sampler = Basic_Sampler('gpu') # gamma output = sampler.gamma(np.ones(1000)*4.5, 5) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 100, 100), stats.gamma.pdf(np.linspace(0, 100, 100), 4.5, scale=5)) plt.title('gamma(4.5, 5)') plt.show() # standard_gamma output = sampler.standard_gamma(np.ones(1000)*4.5) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 20, 100), stats.gamma.pdf(np.linspace(0, 20, 100), 4.5)) plt.title('standard_gamma(4.5)') plt.show() # dirichlet output = sampler.dirichlet(np.ones(1000)*4.5) plt.figure() plt.hist(output, bins=20, density=True) # x = np.linspace(np.min(output), np.max(output), 100) # plt.plot(x, stats.dirichlet.pdf(x, alpha=np.ones(100)*4.5)) plt.title('dirichlet(4.5)') plt.show() # beta output = sampler.beta(np.ones(1000)*0.5, 0.5) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 1, 100), stats.beta.pdf(np.linspace(0, 1, 100), 0.5, 0.5)) plt.title('beta(0.5, 0.5)') plt.show() # beta(2, 5) output = sampler.beta(np.ones(1000)*2, 5) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 1, 100), stats.beta.pdf(np.linspace(0, 1, 100), 2, 5)) plt.title('beta(2, 5)') plt.show() # normal output = sampler.normal(np.ones(1000)*5, np.ones(1000)*2) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(-2, 13, 100), stats.norm.pdf(np.linspace(-2, 13, 100), 5, scale=2)) plt.title('normal(5, 2)') plt.show() # standard_normal output = sampler.standard_normal(1000) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(-3, 3, 100), stats.norm.pdf(np.linspace(-3, 3, 100))) plt.title('standard_normal()') plt.show() # uniform output = sampler.uniform(np.ones(1000)*(-2), np.ones(1000)*5) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(-3, 6, 100), stats.uniform.pdf(np.linspace(-3, 6, 100), -2, 7)) plt.title('uniform(-2, 5)') plt.show() # standard_uniform output = sampler.standard_uniform(1000) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(-0.3, 1.3, 100), stats.uniform.pdf(np.linspace(-0.3, 1.3, 100))) plt.title('standard_uniform()') plt.show() # binomial output = sampler.binomial(np.ones(1000)*10, np.ones(1000)*0.5) plt.figure() plt.hist(output, bins=np.max(output)-np.min(output), density=True, range=(np.min(output)-0.5, np.max(output)-0.5)) # plt.scatter(np.arange(10), stats.binom._pmf(np.arange(10), 10, 0.5), c='orange', zorder=10) plt.title('binomial(10, 0.5)') plt.show() # negative_binomial output = sampler.negative_binomial(np.ones(1000)*10, 0.5) plt.figure() plt.hist(output, bins=np.max(output)-np.min(output), density=True, range=(np.min(output)-0.5, np.max(output)-0.5)) plt.scatter(np.arange(30), stats.nbinom._pmf(np.arange(30), 10, 0.5), c='orange', zorder=10) plt.title('negative_binomial(10, 0.5)') plt.show() # multinomial output = sampler.multinomial(5, [0.8, 0.2], 1000) # output = sampler.multinomial([10]*4, [[0.8, 0.2]]*4, 3) plt.figure() plt.hist(output[0], bins=10, density=True) plt.title('multinomial(5, [0.8, 0.2])') plt.show() a = np.array([np.array([[i] * 6 for i in range(6)]).reshape(-1), np.array(list(range(6)) * 6)]).T output = stats.multinomial(n=5, p=[0.8, 0.2]).pmf(a) sns.heatmap(output.reshape(6, 6), annot=True) plt.ylabel('number of the 1 kind(p=0.8)') plt.xlabel('number of the 2 kind(p=0.2)') plt.title('stats.multinomial(n=5, p=[0.8, 0.2])') plt.show() # poisson output = sampler.poisson(np.ones(1000)*10) plt.figure() plt.hist(output, bins=22, density=True, range=(-0.5, 21.5)) plt.scatter(np.arange(20), stats.poisson.pmf(np.arange(20), 10), c='orange', zorder=10) plt.title('poisson(10)') plt.show() # cauchy output = sampler.cauchy(np.ones(1000)*1, 0.5) plt.figure() plt.hist(output, bins=20, density=True, range=(-5, 7)) plt.plot(np.linspace(-5, 7, 100), stats.cauchy.pdf(np.linspace(-5, 7, 100), 1, 0.5)) plt.title('cauchy(1, 0.5)') plt.show() # standard_cauchy output = sampler.standard_cauchy(1000) plt.figure() plt.hist(output, bins=20, density=True, range=(-7, 7)) plt.plot(np.linspace(-7, 7, 100), stats.cauchy.pdf(np.linspace(-7, 7, 100))) plt.title('standard_cauchy()') plt.show() # chisquare output = sampler.chisquare(np.ones(1000)*10) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 30, 100), stats.chi2.pdf(np.linspace(0, 30, 100), 10)) plt.title('chisquare(10)') plt.show() # noncentral_chisquare output = sampler.noncentral_chisquare(np.ones(1000)*10, 5) plt.figure() plt.hist(output, bins=20, density=True) # nocentral_chi2 = scale^2 * (chi2 + 2*loc*chi + df*loc^2) # E(Z) = nonc + df # Var(Z) = 2(df+2nonc) plt.title('noncentral_chisquare(df=10, nonc=5)') plt.show() # exponential lam = 0.5 output = sampler.exponential(np.ones(1000)*lam) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0.01, 4, 100), stats.expon.pdf(np.linspace(0.01, 4, 100), scale=0.5)) plt.title('exponential(0.5)') plt.show() # standard_exponential output = sampler.standard_exponential(1000) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0.01, 8, 100), stats.expon.pdf(np.linspace(0.01, 8, 100))) plt.title('standard_exponential()') plt.show() # f output = sampler.f(np.ones(1000)*10, 10) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 8, 100), stats.f.pdf(np.linspace(0, 8, 100), 10, 10)) plt.title('f(10, 10)') plt.show() # noncentral_f output = sampler.noncentral_f(np.ones(1000)*10, 10, 5) plt.figure() plt.hist(output, bins=20, density=True) # E(F) = (m+nonc)*n / (m*(n-2)), n>2. # Var(F) = 2*(n/m)**2 * ((m+nonc)**2 + (m+2*nonc)*(n-2)) / ((n-2)**2 * (n-4)) plt.title('noncentral_f(dfnum=10, dfden=10, nonc=5)') plt.show() # geometric output = sampler.geometric(np.ones(1000)*0.1) plt.figure() plt.hist(output, bins=20, density=True) plt.scatter(np.arange(50), stats.geom.pmf(np.arange(50), p=0.1), c='orange', zorder=10) plt.title('geometric(0.1)') plt.show() # gumbel output = sampler.gumbel(np.ones(1000)*5, np.ones(1000)*2) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(0, 20, 100), stats.gumbel_r.pdf(np.linspace(0, 20, 100)+0.01, 5, scale=2)) plt.title('gumbel(5, 2)') plt.show() np.random.gumbel() # hypergeometric output = sampler.hypergeometric(np.ones(1000)*5, 10, 10) plt.figure() plt.hist(output, bins=np.max(output)-np.min(output), density=True, range=(np.min(output)+0.5, np.max(output)+0.5)) plt.scatter(np.arange(10), stats.hypergeom(15, 5, 10).pmf(np.arange(10)), c='orange', zorder=10) # hypergeom(M, n, N), total, I, tiems plt.title('hypergeometric(5, 10, 10)') plt.show() # laplace output = sampler.laplace(np.ones(1000)*5, np.ones(1000)*2) plt.figure() plt.hist(output, bins=20, density=True) plt.plot(np.linspace(-10, 20, 100), stats.laplace.pdf(np.linspace(-10, 20, 100), 5, scale=2)) plt.title('laplace(5, 2)') plt.show() # logistic output = sampler.logistic(
np.ones(1000)
numpy.ones
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. import os import git import sys repo = git.Repo(".", search_parent_directories=True) # print(repo.working_tree_dir) if f"{repo.working_tree_dir}" not in sys.path: sys.path.append(f"{repo.working_tree_dir}") print("add") # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, List from collections import defaultdict, namedtuple import logging import time from datetime import datetime import pickle import os import librosa import scipy from scipy.io import wavfile from scipy.signal import fftconvolve import numpy as np import networkx as nx import habitat_sim from habitat_sim.utils.common import quat_from_angle_axis, quat_from_coeffs, quat_to_angle_axis from habitat.sims.habitat_simulator.habitat_simulator import HabitatSim from habitat.sims.habitat_simulator.actions import HabitatSimActions from habitat.core.simulator import Config, AgentState, ShortestPathPoint from soundspaces.utils import load_metadata, _to_tensor #from habitat.core.registry import registry # from ss_baselines.common.registry import registry from contextlib import redirect_stdout class DummySimulator: """ Dummy simulator for avoiding loading the scene meshes when using cached observations. """ def __init__(self): self.position = None self.rotation = None self._sim_obs = None def seed(self, seed): pass def set_agent_state(self, position, rotation): self.position = np.array(position, dtype=np.float32) self.rotation = rotation def get_agent_state(self): class State: def __init__(self, position, rotation): self.position = position self.rotation = rotation return State(self.position, self.rotation) def set_sensor_observations(self, sim_obs): self._sim_obs = sim_obs def get_sensor_observations(self): return self._sim_obs def close(self): pass from habitat.core.registry import registry @registry.register_simulator(name='SoundSpaces') class SoundSpaces(HabitatSim): r"""Changes made to simulator wrapper over habitat-sim This simulator first loads the graph of current environment and moves the agent among nodes. Any sounds can be specified in the episode and loaded in this simulator. Args: config: configuration for initializing the simulator. """ def action_space_shortest_path(self, source: AgentState, targets: List[AgentState], agent_id: int = 0) -> List[ ShortestPathPoint]: pass def __init__(self, config: Config) -> None: print("2:sim enter--->SoundSpaces") super().__init__(config) self._source_position_index = None self._receiver_position_index = None self._rotation_angle = None self._current_sound = None self._source_sound_dict = dict() self._sampling_rate = None self._node2index = None self._frame_cache = dict() self._audiogoal_cache = dict() self._spectrogram_cache = dict() self._scene_observations = None self._episode_step_count = None self._is_episode_active = None self._position_to_index_mapping = dict() self._previous_step_collided = False self.points, self.graph = load_metadata(self.metadata_dir) for node in self.graph.nodes(): self._position_to_index_mapping[self.position_encoding(self.graph.nodes()[node]['point'])] = node self._load_sound_sources() logging.info('Current scene: {} and sound: {}'.format(self.current_scene_name, self._current_sound)) if self.config.USE_RENDERED_OBSERVATIONS: self._sim.close() del self._sim self._sim = DummySimulator() with open(self.current_scene_observation_file, 'rb') as fo: self._frame_cache = pickle.load(fo) self._cnt = 0 def get_agent_state(self, agent_id: int = 0) -> habitat_sim.AgentState: if not self.config.USE_RENDERED_OBSERVATIONS: agent_state = super().get_agent_state(agent_id) else: agent_state = self._sim.get_agent_state() return agent_state def set_agent_state( self, position: List[float], rotation: List[float], agent_id: int = 0, reset_sensors: bool = True, ) -> bool: if not self.config.USE_RENDERED_OBSERVATIONS: super().set_agent_state(position, rotation, agent_id=agent_id, reset_sensors=reset_sensors) else: pass @property def binaural_rir_dir(self): return os.path.join(self.config.AUDIO.BINAURAL_RIR_DIR, self.config.SCENE_DATASET, self.current_scene_name) @property def source_sound_dir(self): return self.config.AUDIO.SOURCE_SOUND_DIR @property def metadata_dir(self): return os.path.join(self.config.AUDIO.METADATA_DIR, self.config.SCENE_DATASET, self.current_scene_name) @property def current_scene_name(self): # config.SCENE (_current_scene) looks like 'data/scene_datasets/replica/office_1/habitat/mesh_semantic.ply' return self._current_scene.split('/')[3] @property def current_scene_observation_file(self): return os.path.join(self.config.SCENE_OBSERVATION_DIR, self.config.SCENE_DATASET, self.current_scene_name + '.pkl') @property def current_source_sound(self): return self._source_sound_dict[self._current_sound] def reconfigure(self, config: Config):#-> None: # # now = datetime.now() # now_str = now.strftime('%Y-%m-%d-%H-%M-%S') # self._agent_file_name = f"data/models/replica/av_nav/e0010-av_nav-ds/audiogoal_depth/{now_str}.txt" # self.config = config is_same_sound = config.AGENT_0.SOUND == self._current_sound if not is_same_sound: self._current_sound = self.config.AGENT_0.SOUND is_same_scene = config.SCENE == self._current_scene if not is_same_scene: self._current_scene = config.SCENE logging.debug('Current scene: {} and sound: {}'.format(self.current_scene_name, self._current_sound)) if not self.config.USE_RENDERED_OBSERVATIONS: self._sim.close() del self._sim self.sim_config = self.create_sim_config(self._sensor_suite) self._sim = habitat_sim.Simulator(self.sim_config) self._update_agents_state() self._frame_cache = dict() else: with open(self.current_scene_observation_file, 'rb') as fo: self._frame_cache = pickle.load(fo) logging.debug('Loaded scene {}'.format(self.current_scene_name)) self.points, self.graph = load_metadata(self.metadata_dir) for node in self.graph.nodes(): self._position_to_index_mapping[self.position_encoding(self.graph.nodes()[node]['point'])] = node if not is_same_scene or not is_same_sound: self._audiogoal_cache = dict() self._spectrogram_cache = dict() self._episode_step_count = 0 # set agent positions self._receiver_position_index = self._position_to_index(self.config.AGENT_0.START_POSITION) self._source_position_index = self._position_to_index(self.config.AGENT_0.GOAL_POSITION) # the agent rotates about +Y starting from -Z counterclockwise, # so rotation angle 90 means the agent rotate about +Y 90 degrees self._rotation_angle = int(np.around(np.rad2deg(quat_to_angle_axis(quat_from_coeffs( self.config.AGENT_0.START_ROTATION))[0]))) % 360 if not self.config.USE_RENDERED_OBSERVATIONS: self.set_agent_state(list(self.graph.nodes[self._receiver_position_index]['point']), self.config.AGENT_0.START_ROTATION) else: self._sim.set_agent_state(list(self.graph.nodes[self._receiver_position_index]['point']), quat_from_coeffs(self.config.AGENT_0.START_ROTATION)) logging.debug("Initial source, agent at: {}, {}, orientation: {}". format(self._source_position_index, self._receiver_position_index, self.get_orientation())) #add # self._cnt = 0 # with open(self._agent_file_name,'w') as f: # f.write(f'goal :{self._source_position_index}\n') # f.write(f'start:{self._receiver_position_index}\n') # f.write('#STOP: 0, FORWARD: 1, LEFT: 2, RIGHT: 3\n') # f.close() @staticmethod def position_encoding(position): # print(position) if isinstance(position,list): if isinstance(position[0],list):#[[-1.109645, -1.5434817, 0.683166]] position = tuple(position[0]) else: #[0.3903549909591675, -1.543481707572937, 2.183166027069092] position = tuple(position) # print(position) return '{:.2f}_{:.2f}_{:.2f}'.format(*position) def _position_to_index(self, position): if self.position_encoding(position) in self._position_to_index_mapping: return self._position_to_index_mapping[self.position_encoding(position)] else: raise ValueError("Position misalignment.") def _get_sim_observation(self): joint_index = (self._receiver_position_index, self._rotation_angle) if joint_index in self._frame_cache: return self._frame_cache[joint_index] else: assert not self.config.USE_RENDERED_OBSERVATIONS sim_obs = self._sim.get_sensor_observations() for sensor in sim_obs: sim_obs[sensor] = sim_obs[sensor] self._frame_cache[joint_index] = sim_obs return sim_obs def reset(self): logging.debug('Reset simulation') if not self.config.USE_RENDERED_OBSERVATIONS: sim_obs = self._sim.reset() if self._update_agents_state(): sim_obs = self._get_sim_observation() else: sim_obs = self._get_sim_observation() self._sim.set_sensor_observations(sim_obs) self._is_episode_active = True self._prev_sim_obs = sim_obs self._previous_step_collided = False # Encapsule data under Observations class observations = self._sensor_suite.get_observations(sim_obs) return observations def step(self, action, only_allowed=True): """ All angle calculations in this function is w.r.t habitat coordinate frame, on X-Z plane where +Y is upward, -Z is forward and +X is rightward. Angle 0 corresponds to +X, angle 90 corresponds to +y and 290 corresponds to 270. :param action: action to be taken :param only_allowed: if true, then can't step anywhere except allowed locations :return: Dict of observations """ # with open(self._agent_file_name,'a') as f: # f.write(f'action:{action}------->_is_episode_active:{self._is_episode_active}----{self._cnt}\n') # f.close() # assert self._is_episode_active, ( "episode is not active, environment not RESET or " "STOP action called previously" ) self._previous_step_collided = False # STOP: 0, FORWARD: 1, LEFT: 2, RIGHT: 2 if action == HabitatSimActions.STOP: self._is_episode_active = False else: prev_position_index = self._receiver_position_index prev_rotation_angle = self._rotation_angle if action == HabitatSimActions.MOVE_FORWARD: # the agent initially faces -Z by default self._previous_step_collided = True for neighbor in self.graph[self._receiver_position_index]: p1 = self.graph.nodes[self._receiver_position_index]['point'] p2 = self.graph.nodes[neighbor]['point'] direction = int(np.around(np.rad2deg(np.arctan2(p2[2] - p1[2], p2[0] - p1[0])))) % 360 if direction == self.get_orientation(): self._receiver_position_index = neighbor self._previous_step_collided = False break elif action == HabitatSimActions.TURN_LEFT: # agent rotates counterclockwise, so turning left means increasing rotation angle by 90 self._rotation_angle = (self._rotation_angle + 90) % 360 elif action == HabitatSimActions.TURN_RIGHT: self._rotation_angle = (self._rotation_angle - 90) % 360 if self.config.CONTINUOUS_VIEW_CHANGE: intermediate_observations = list() fps = self.config.VIEW_CHANGE_FPS if action == HabitatSimActions.MOVE_FORWARD: prev_position = np.array(self.graph.nodes[prev_position_index]['point']) current_position = np.array(self.graph.nodes[self._receiver_position_index]['point']) for i in range(1, fps): intermediate_position = prev_position + i / fps * (current_position - prev_position) self.set_agent_state(intermediate_position.tolist(), quat_from_angle_axis(np.deg2rad( self._rotation_angle), np.array([0, 1, 0]))) sim_obs = self._sim.get_sensor_observations() observations = self._sensor_suite.get_observations(sim_obs) intermediate_observations.append(observations) else: for i in range(1, fps): if action == HabitatSimActions.TURN_LEFT: intermediate_rotation = prev_rotation_angle + i / fps * 90 elif action == HabitatSimActions.TURN_RIGHT: intermediate_rotation = prev_rotation_angle - i / fps * 90 self.set_agent_state(list(self.graph.nodes[self._receiver_position_index]['point']), quat_from_angle_axis(np.deg2rad(intermediate_rotation), np.array([0, 1, 0]))) sim_obs = self._sim.get_sensor_observations() observations = self._sensor_suite.get_observations(sim_obs) intermediate_observations.append(observations) if not self.config.USE_RENDERED_OBSERVATIONS: self.set_agent_state(list(self.graph.nodes[self._receiver_position_index]['point']), quat_from_angle_axis(np.deg2rad(self._rotation_angle), np.array([0, 1, 0]))) else: self._sim.set_agent_state(list(self.graph.nodes[self._receiver_position_index]['point']), quat_from_angle_axis(np.deg2rad(self._rotation_angle), np.array([0, 1, 0]))) self._episode_step_count += 1 # log debugging info logging.debug('After taking action {}, s,r: {}, {}, orientation: {}, location: {}'.format( action, self._source_position_index, self._receiver_position_index, self.get_orientation(), self.graph.nodes[self._receiver_position_index]['point'])) sim_obs = self._get_sim_observation() if self.config.USE_RENDERED_OBSERVATIONS: self._sim.set_sensor_observations(sim_obs) self._prev_sim_obs = sim_obs observations = self._sensor_suite.get_observations(sim_obs) if self.config.CONTINUOUS_VIEW_CHANGE: observations['intermediate'] = intermediate_observations #__add__ # with open(self._agent_file_name,'a') as f: # f.write(f'{action}------->{self._receiver_position_index}----{self._cnt}\n') # f.close() # self._cnt += 1 # return observations def get_orientation(self): _base_orientation = 270 return (_base_orientation - self._rotation_angle) % 360 @property def azimuth_angle(self): # this is the angle used to index the binaural audio files # in mesh coordinate systems, +Y forward, +X rightward, +Z upward # azimuth is calculated clockwise so +Y is 0 and +X is 90 return -(self._rotation_angle + 0) % 360 @property def reaching_goal(self): return self._source_position_index == self._receiver_position_index def _update_observations_with_audio(self, observations): audio = self.get_current_audio_observation() observations.update({"audio": audio}) def _load_sound_sources(self): # load all mono files at once sound_files = os.listdir(self.source_sound_dir) for sound_file in sound_files: sound = sound_file.split('.')[0] sr, audio_data = wavfile.read(os.path.join(self.source_sound_dir, sound_file)) assert sr == 44100 if sr != self.config.AUDIO.RIR_SAMPLING_RATE: audio_data = scipy.signal.resample(audio_data, self.config.AUDIO.RIR_SAMPLING_RATE) self._source_sound_dict[sound] = audio_data def _compute_euclidean_distance_between_sr_locations(self): p1 = self.graph.nodes[self._receiver_position_index]['point'] p2 = self.graph.nodes[self._source_position_index]['point'] d = np.sqrt((p1[0] - p2[0])**2 + (p1[2] - p2[2])**2) return d def _compute_audiogoal(self): binaural_rir_file = os.path.join(self.binaural_rir_dir, str(self.azimuth_angle), '{}_{}.wav'.format( self._receiver_position_index, self._source_position_index)) try: sampling_freq, binaural_rir = wavfile.read(binaural_rir_file) # float32 # # pad RIR with zeros to take initial delays into account # num_delay_sample = int(self._compute_euclidean_distance_between_sr_locations() / 343.0 * sampling_freq) # binaural_rir = np.pad(binaural_rir, ((num_delay_sample, 0), (0, 0))) except ValueError: logging.warning("{} file is not readable".format(binaural_rir_file)) binaural_rir = np.zeros((self.config.AUDIO.RIR_SAMPLING_RATE, 2)).astype(np.float32) if len(binaural_rir) == 0: logging.debug("Empty RIR file at {}".format(binaural_rir_file)) binaural_rir = np.zeros((self.config.AUDIO.RIR_SAMPLING_RATE, 2)).astype(np.float32) # by default, convolve in full mode, which preserves the direct sound binaural_convolved = [fftconvolve(self.current_source_sound, binaural_rir[:, channel] ) for channel in range(binaural_rir.shape[-1])] audiogoal =
np.array(binaural_convolved)
numpy.array
############################################################################## #Copyright 2019 Google LLC # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. ################################################################################# #### C O D E C A N B E RE-U S E D W I T H C I T A T I O N B E L O W #### ################################################################################# ############### F E A T U R E W I Z ############### ################ featurewiz library developed by <NAME> ################# #### THIS METHOD IS KNOWN AS SULOV METHOD in HONOR OF my mom, SULOCHANA ######### ##### SULOV means Searching for Uncorrelated List Of Variables ########### ############### v 0.0.1 ################ ############### A L L R I G H T S R E S E R V E D ################ ################################################################################# ##### This project is not an official Google project. It is not supported by #### ##### Google and Google specifically disclaims all warranties as to its quality,# ##### merchantability, or fitness for a particular purpose. #################### ################################################################################# import pandas as pd import numpy as np from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV from sklearn.multioutput import MultiOutputClassifier, MultiOutputRegressor from sklearn.multiclass import OneVsRestClassifier import xgboost as xgb from xgboost.sklearn import XGBClassifier from xgboost.sklearn import XGBRegressor from sklearn.model_selection import train_test_split ################################################################################ #### The warnings from Sklearn are so annoying that I have to shut it off ####### import warnings warnings.filterwarnings("ignore") from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) def warn(*args, **kwargs): pass warnings.warn = warn #################################################################################### import re import pdb import pprint from itertools import cycle, combinations from collections import defaultdict, OrderedDict import copy import time import sys import random import xlrd import statsmodels from io import BytesIO import base64 from functools import reduce import copy ####################################################################################################### def classify_features(dfte, depVar, verbose=0): dfte = copy.deepcopy(dfte) if isinstance(depVar, list): orig_preds = [x for x in list(dfte) if x not in depVar] else: orig_preds = [x for x in list(dfte) if x not in [depVar]] ################# CLASSIFY COLUMNS HERE ###################### var_df = classify_columns(dfte[orig_preds], verbose) ##### Classify Columns ################ IDcols = var_df['id_vars'] discrete_string_vars = var_df['nlp_vars']+var_df['discrete_string_vars'] cols_delete = var_df['cols_delete'] bool_vars = var_df['string_bool_vars'] + var_df['num_bool_vars'] int_vars = var_df['int_vars'] categorical_vars = var_df['cat_vars'] + var_df['factor_vars'] + int_vars + bool_vars date_vars = var_df['date_vars'] if len(var_df['continuous_vars'])==0 and len(int_vars)>0: continuous_vars = var_df['int_vars'] categorical_vars = left_subtract(categorical_vars, int_vars) int_vars = [] else: continuous_vars = var_df['continuous_vars'] preds = [x for x in orig_preds if x not in IDcols+cols_delete+discrete_string_vars] if len(IDcols+cols_delete+discrete_string_vars) == 0: print(' No variables removed since no ID or low-information variables found in data set') else: print(' %d variables removed since they were ID or low-information variables' %len(IDcols+cols_delete+discrete_string_vars)) if verbose >= 1: print(' List of variables removed: %s' %(IDcols+cols_delete+discrete_string_vars)) ############# Check if there are too many columns to visualize ################ ppt = pprint.PrettyPrinter(indent=4) if verbose==1 and len(cols_list) <= max_cols_analyzed: marthas_columns(dft,verbose) print(" Columns to delete:") ppt.pprint(' %s' % cols_delete) print(" Boolean variables %s ") ppt.pprint(' %s' % bool_vars) print(" Categorical variables %s ") ppt.pprint(' %s' % categorical_vars) print(" Continuous variables %s " ) ppt.pprint(' %s' % continuous_vars) print(" Discrete string variables %s " ) ppt.pprint(' %s' % discrete_string_vars) print(" Date and time variables %s " ) ppt.pprint(' %s' % date_vars) print(" ID variables %s ") ppt.pprint(' %s' % IDcols) print(" Target variable %s ") ppt.pprint(' %s' % depVar) elif verbose==1 and len(cols_list) > max_cols_analyzed: print(' Total columns > %d, too numerous to list.' %max_cols_analyzed) features_dict = dict([('IDcols',IDcols),('cols_delete',cols_delete),('bool_vars',bool_vars),('categorical_vars',categorical_vars), ('continuous_vars',continuous_vars),('discrete_string_vars',discrete_string_vars), ('date_vars',date_vars)]) return features_dict ####################################################################################################### def marthas_columns(data,verbose=0): """ This program is named in honor of my one of students who came up with the idea for it. It's a neat way of printing data types and information compared to the boring describe() function in Pandas. """ data = data[:] print('Data Set Shape: %d rows, %d cols' % data.shape) if data.shape[1] > 30: print('Too many columns to print') else: if verbose==1: print('Data Set columns info:') for col in data.columns: print('* %s: %d nulls, %d unique vals, most common: %s' % ( col, data[col].isnull().sum(), data[col].nunique(), data[col].value_counts().head(2).to_dict() )) print('--------------------------------------------------------------------') ################################################################################ ######### NEW And FAST WAY to CLASSIFY COLUMNS IN A DATA SET ####### ################################################################################ def classify_columns(df_preds, verbose=0): """ Takes a dataframe containing only predictors to be classified into various types. DO NOT SEND IN A TARGET COLUMN since it will try to include that into various columns. Returns a data frame containing columns and the class it belongs to such as numeric, categorical, date or id column, boolean, nlp, discrete_string and cols to delete... ####### Returns a dictionary with 10 kinds of vars like the following: # continuous_vars,int_vars # cat_vars,factor_vars, bool_vars,discrete_string_vars,nlp_vars,date_vars,id_vars,cols_delete """ train = copy.deepcopy(df_preds) #### If there are 30 chars are more in a discrete_string_var, it is then considered an NLP variable max_nlp_char_size = 30 max_cols_to_print = 30 print('############## C L A S S I F Y I N G V A R I A B L E S ####################') print('Classifying variables in data set...') #### Cat_Limit defines the max number of categories a column can have to be called a categorical colum cat_limit = 35 float_limit = 15 #### Make this limit low so that float variables below this limit become cat vars ### def add(a,b): return a+b sum_all_cols = dict() orig_cols_total = train.shape[1] #Types of columns cols_delete = [col for col in list(train) if (len(train[col].value_counts()) == 1 ) | (train[col].isnull().sum()/len(train) >= 0.90)] train = train[left_subtract(list(train),cols_delete)] var_df = pd.Series(dict(train.dtypes)).reset_index(drop=False).rename( columns={0:'type_of_column'}) sum_all_cols['cols_delete'] = cols_delete var_df['bool'] = var_df.apply(lambda x: 1 if x['type_of_column'] in ['bool','object'] and len(train[x['index']].value_counts()) == 2 else 0, axis=1) string_bool_vars = list(var_df[(var_df['bool'] ==1)]['index']) sum_all_cols['string_bool_vars'] = string_bool_vars var_df['num_bool'] = var_df.apply(lambda x: 1 if x['type_of_column'] in [np.uint8, np.uint16, np.uint32, np.uint64, 'int8','int16','int32','int64', 'float16','float32','float64'] and len( train[x['index']].value_counts()) == 2 else 0, axis=1) num_bool_vars = list(var_df[(var_df['num_bool'] ==1)]['index']) sum_all_cols['num_bool_vars'] = num_bool_vars ###### This is where we take all Object vars and split them into diff kinds ### discrete_or_nlp = var_df.apply(lambda x: 1 if x['type_of_column'] in ['object'] and x[ 'index'] not in string_bool_vars+cols_delete else 0,axis=1) ######### This is where we figure out whether a string var is nlp or discrete_string var ### var_df['nlp_strings'] = 0 var_df['discrete_strings'] = 0 var_df['cat'] = 0 var_df['id_col'] = 0 discrete_or_nlp_vars = var_df.loc[discrete_or_nlp==1]['index'].values.tolist() if len(var_df.loc[discrete_or_nlp==1]) != 0: for col in discrete_or_nlp_vars: #### first fill empty or missing vals since it will blowup ### train[col] = train[col].fillna(' ') if train[col].map(lambda x: len(x) if type(x)==str else 0).mean( ) >= max_nlp_char_size and len(train[col].value_counts() ) <= int(0.9*len(train)) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'nlp_strings'] = 1 elif len(train[col].value_counts()) > cat_limit and len(train[col].value_counts() ) <= int(0.9*len(train)) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'discrete_strings'] = 1 elif len(train[col].value_counts()) > cat_limit and len(train[col].value_counts() ) == len(train) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'id_col'] = 1 else: var_df.loc[var_df['index']==col,'cat'] = 1 nlp_vars = list(var_df[(var_df['nlp_strings'] ==1)]['index']) sum_all_cols['nlp_vars'] = nlp_vars discrete_string_vars = list(var_df[(var_df['discrete_strings'] ==1) ]['index']) sum_all_cols['discrete_string_vars'] = discrete_string_vars ###### This happens only if a string column happens to be an ID column ####### #### DO NOT Add this to ID_VARS yet. It will be done later.. Dont change it easily... #### Category DTYPE vars are very special = they can be left as is and not disturbed in Python. ### var_df['dcat'] = var_df.apply(lambda x: 1 if str(x['type_of_column'])=='category' else 0, axis=1) factor_vars = list(var_df[(var_df['dcat'] ==1)]['index']) sum_all_cols['factor_vars'] = factor_vars ######################################################################## date_or_id = var_df.apply(lambda x: 1 if x['type_of_column'] in [np.uint8, np.uint16, np.uint32, np.uint64, 'int8','int16', 'int32','int64'] and x[ 'index'] not in string_bool_vars+num_bool_vars+discrete_string_vars+nlp_vars else 0, axis=1) ######### This is where we figure out whether a numeric col is date or id variable ### var_df['int'] = 0 var_df['date_time'] = 0 ### if a particular column is date-time type, now set it as a date time variable ## var_df['date_time'] = var_df.apply(lambda x: 1 if x['type_of_column'] in ['<M8[ns]','datetime64[ns]'] and x[ 'index'] not in string_bool_vars+num_bool_vars+discrete_string_vars+nlp_vars else 0, axis=1) ### this is where we save them as date time variables ### if len(var_df.loc[date_or_id==1]) != 0: for col in var_df.loc[date_or_id==1]['index'].values.tolist(): if len(train[col].value_counts()) == len(train): if train[col].min() < 1900 or train[col].max() > 2050: var_df.loc[var_df['index']==col,'id_col'] = 1 else: try: pd.to_datetime(train[col],infer_datetime_format=True) var_df.loc[var_df['index']==col,'date_time'] = 1 except: var_df.loc[var_df['index']==col,'id_col'] = 1 else: if train[col].min() < 1900 or train[col].max() > 2050: if col not in num_bool_vars: var_df.loc[var_df['index']==col,'int'] = 1 else: try: pd.to_datetime(train[col],infer_datetime_format=True) var_df.loc[var_df['index']==col,'date_time'] = 1 except: if col not in num_bool_vars: var_df.loc[var_df['index']==col,'int'] = 1 else: pass int_vars = list(var_df[(var_df['int'] ==1)]['index']) date_vars = list(var_df[(var_df['date_time'] == 1)]['index']) id_vars = list(var_df[(var_df['id_col'] == 1)]['index']) sum_all_cols['int_vars'] = int_vars copy_date_vars = copy.deepcopy(date_vars) for date_var in copy_date_vars: #### This test is to make sure sure date vars are actually date vars try: pd.to_datetime(train[date_var],infer_datetime_format=True) except: ##### if not a date var, then just add it to delete it from processing cols_delete.append(date_var) date_vars.remove(date_var) sum_all_cols['date_vars'] = date_vars sum_all_cols['id_vars'] = id_vars sum_all_cols['cols_delete'] = cols_delete ## This is an EXTREMELY complicated logic for cat vars. Don't change it unless you test it many times! var_df['numeric'] = 0 float_or_cat = var_df.apply(lambda x: 1 if x['type_of_column'] in ['float16', 'float32','float64'] else 0, axis=1) if len(var_df.loc[float_or_cat == 1]) > 0: for col in var_df.loc[float_or_cat == 1]['index'].values.tolist(): if len(train[col].value_counts()) > 2 and len(train[col].value_counts() ) <= float_limit and len(train[col].value_counts()) <= len(train): var_df.loc[var_df['index']==col,'cat'] = 1 else: if col not in num_bool_vars: var_df.loc[var_df['index']==col,'numeric'] = 1 cat_vars = list(var_df[(var_df['cat'] ==1)]['index']) continuous_vars = list(var_df[(var_df['numeric'] ==1)]['index']) ######## V E R Y I M P O R T A N T ################################################### ##### There are a couple of extra tests you need to do to remove abberations in cat_vars ### cat_vars_copy = copy.deepcopy(cat_vars) for cat in cat_vars_copy: if df_preds[cat].dtype==float: continuous_vars.append(cat) cat_vars.remove(cat) var_df.loc[var_df['index']==cat,'cat'] = 0 var_df.loc[var_df['index']==cat,'numeric'] = 1 elif len(df_preds[cat].value_counts()) == df_preds.shape[0]: id_vars.append(cat) cat_vars.remove(cat) var_df.loc[var_df['index']==cat,'cat'] = 0 var_df.loc[var_df['index']==cat,'id_col'] = 1 sum_all_cols['cat_vars'] = cat_vars sum_all_cols['continuous_vars'] = continuous_vars sum_all_cols['id_vars'] = id_vars ###### This is where you consoldate the numbers ########### var_dict_sum = dict(zip(var_df.values[:,0], var_df.values[:,2:].sum(1))) for col, sumval in var_dict_sum.items(): if sumval == 0: print('%s of type=%s is not classified' %(col,train[col].dtype)) elif sumval > 1: print('%s of type=%s is classified into more then one type' %(col,train[col].dtype)) else: pass ############### This is where you print all the types of variables ############## ####### Returns 8 vars in the following order: continuous_vars,int_vars,cat_vars, ### string_bool_vars,discrete_string_vars,nlp_vars,date_or_id_vars,cols_delete if verbose == 1: print(" Number of Numeric Columns = ", len(continuous_vars)) print(" Number of Integer-Categorical Columns = ", len(int_vars)) print(" Number of String-Categorical Columns = ", len(cat_vars)) print(" Number of Factor-Categorical Columns = ", len(factor_vars)) print(" Number of String-Boolean Columns = ", len(string_bool_vars)) print(" Number of Numeric-Boolean Columns = ", len(num_bool_vars)) print(" Number of Discrete String Columns = ", len(discrete_string_vars)) print(" Number of NLP String Columns = ", len(nlp_vars)) print(" Number of Date Time Columns = ", len(date_vars)) print(" Number of ID Columns = ", len(id_vars)) print(" Number of Columns to Delete = ", len(cols_delete)) if verbose == 2: marthas_columns(df_preds,verbose=1) print(" Numeric Columns: %s" %continuous_vars[:max_cols_to_print]) print(" Integer-Categorical Columns: %s" %int_vars[:max_cols_to_print]) print(" String-Categorical Columns: %s" %cat_vars[:max_cols_to_print]) print(" Factor-Categorical Columns: %s" %factor_vars[:max_cols_to_print]) print(" String-Boolean Columns: %s" %string_bool_vars[:max_cols_to_print]) print(" Numeric-Boolean Columns: %s" %num_bool_vars[:max_cols_to_print]) print(" Discrete String Columns: %s" %discrete_string_vars[:max_cols_to_print]) print(" NLP text Columns: %s" %nlp_vars[:max_cols_to_print]) print(" Date Time Columns: %s" %date_vars[:max_cols_to_print]) print(" ID Columns: %s" %id_vars[:max_cols_to_print]) print(" Columns that will not be considered in modeling: %s" %cols_delete[:max_cols_to_print]) ##### now collect all the column types and column names into a single dictionary to return! len_sum_all_cols = reduce(add,[len(v) for v in sum_all_cols.values()]) if len_sum_all_cols == orig_cols_total: print(' %d Predictors classified...' %orig_cols_total) print(' This does not include the Target column(s)') else: print('No of columns classified %d does not match %d total cols. Continuing...' %( len_sum_all_cols, orig_cols_total)) ls = sum_all_cols.values() flat_list = [item for sublist in ls for item in sublist] if len(left_subtract(list(train),flat_list)) == 0: print(' Missing columns = None') else: print(' Missing columns = %s' %left_subtract(list(train),flat_list)) return sum_all_cols ################################################################################# from collections import Counter import time from sklearn.feature_selection import chi2, mutual_info_regression, mutual_info_classif from sklearn.feature_selection import SelectKBest ################################################################################## def load_file_dataframe(dataname, sep=",", header=0, verbose=0): start_time = time.time() ########################### This is where we load file or data frame ############### if isinstance(dataname,str): #### this means they have given file name as a string to load the file ##### if dataname != '' and dataname.endswith(('csv')): codex = ['utf-8', 'iso-8859-1', 'cp1252', 'latin1'] for code in codex: try: dfte = pd.read_csv(dataname,sep=sep,index_col=None,encoding=code) print('Encoder %s chosen to read CSV file' %code) print('Shape of your Data Set loaded: %s' %(dfte.shape,)) return dfte except: print('Encoding codex %s does not work for this file' %code) continue elif dataname.endswith(('xlsx','xls','txt')): #### It's very important to get header rows in Excel since people put headers anywhere in Excel# dfte = pd.read_excel(dataname,header=header) print('Shape of your Data Set loaded: %s' %(dfte.shape,)) return dfte else: print('File not able to be loaded') return if isinstance(dataname,pd.DataFrame): #### this means they have given a dataframe name to use directly in processing ##### dfte = copy.deepcopy(dataname) return dfte else: print('Dataname input must be a filename with path to that file or a Dataframe') return ################################################################################## # Removes duplicates from a list to return unique values - USED ONLYONCE def find_remove_duplicates(values): output = [] seen = set() for value in values: if value not in seen: output.append(value) seen.add(value) return output ################################################################################# #### Regression or Classification type problem def analyze_problem_type(train, target, verbose=0) : target = copy.deepcopy(target) cat_limit = 30 ### this determines the number of categories to name integers as classification ## float_limit = 15 ### this limits the number of float variable categories for it to become cat var if isinstance(target, str): target = [target] if len(target) == 1: targ = target[0] model_label = 'Single_Label' else: targ = target[0] model_label = 'Multi_Label' #### This is where you detect what kind of problem it is ################# if train[targ].dtype in ['int64', 'int32','int16']: if len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 2 and len(train[targ].unique()) <= cat_limit: model_class = 'Multi_Classification' else: model_class = 'Regression' elif train[targ].dtype in ['float']: if len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 2 and len(train[targ].unique()) <= float_limit: model_class = 'Multi_Classification' else: model_class = 'Regression' else: if len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' else: model_class = 'Multi_Classification' ########### print this for the start of next step ########### if verbose <= 1: print('''################ %s %s Feature Selection Started #####################''' %( model_label,model_class)) return model_class ##################################################################################### from collections import defaultdict from collections import OrderedDict import time def return_dictionary_list(lst_of_tuples): """ Returns a dictionary of lists if you send in a list of Tuples""" orDict = defaultdict(list) # iterating over list of tuples for key, val in lst_of_tuples: orDict[key].append(val) return orDict ################################################################################## def remove_variables_using_fast_correlation(df, numvars, modeltype, target, corr_limit = 0.70,verbose=0): """ #### THIS METHOD IS KNOWN AS SULOV METHOD in HONOR OF my mother SULOCHANA SESHADRI ####### ##### SULOV stands for Searching Uncorrelated List Of Variables ############ This highly efficient method removes variables that are highly correlated using a series of pair-wise correlation knockout rounds. It is extremely fast and hence can work on thousands of variables in less than a minute, even on a laptop. You need to send in a list of numeric variables and that's all! The method defines high Correlation as anything over 0.70 (absolute) but this can be changed. If two variables have absolute correlation higher than this, they will be marked, and using a process of elimination, one of them will get knocked out: To decide order of variables to keep, we use mutuail information score to select. MIS returns a ranked list of these correlated variables: when we select one, we knock out others that it is correlated to. Then we select next var. This way we knock out correlated variables. Finally we are left with uncorrelated variables that are also highly important in mutual score. ############## YOU MUST INCLUDE THE ABOVE MESSAGE IF YOU COPY THIS CODE IN YOUR LIBRARY ##### """ import copy target = copy.deepcopy(target) print('Searching for highly correlated variables from %d variables using SULOV method' %len(numvars)) print('##### SULOV : Searching for Uncorrelated List Of Variables (takes time...) ############') correlation_dataframe = df[numvars].corr().abs().astype(np.float16) ######### This is how you create a dictionary of which var is highly correlated to a list of vars #### corr_values = correlation_dataframe.values col_index = correlation_dataframe.columns.tolist() index_triupper = list(zip(np.triu_indices_from(corr_values,k=1)[0],np.triu_indices_from( corr_values,k=1)[1])) high_corr_index_list = [x for x in np.argwhere(abs(corr_values[np.triu_indices(len(corr_values), k = 1)])>=corr_limit)] low_corr_index_list = [x for x in np.argwhere(abs(corr_values[np.triu_indices(len(corr_values), k = 1)])<corr_limit)] tuple_list = [y for y in [index_triupper[x[0]] for x in high_corr_index_list]] correlated_pair = [(col_index[tuple[0]],col_index[tuple[1]]) for tuple in tuple_list] corr_pair_dict = dict(return_dictionary_list(correlated_pair)) keys_in_dict = list(corr_pair_dict.keys()) reverse_correlated_pair = [(y,x) for (x,y) in correlated_pair] reverse_corr_pair_dict = dict(return_dictionary_list(reverse_correlated_pair)) for key, val in reverse_corr_pair_dict.items(): if key in keys_in_dict: if len(key) > 1: corr_pair_dict[key] += val else: corr_pair_dict[key] = val #### corr_pair_dict is used later to make the network diagram to see which vars are correlated to which # Selecting upper triangle of correlation matrix ## this is a fast way to find highly correlated vars upper_tri = correlation_dataframe.where(np.triu(np.ones(correlation_dataframe.shape), k=1).astype(np.bool)) empty_df = upper_tri[abs(upper_tri)>corr_limit] ### if none of the variables are highly correlated, you can skip this whole drawing if empty_df.isnull().all().all(): print(' No highly correlated variables in data set to remove. All selected...') return numvars #### It's important to find the highly correlated features first ############# lower_tri = correlation_dataframe.where(np.tril(np.ones(correlation_dataframe.shape), k=-1).astype(np.bool)) lower_df = lower_tri[abs(lower_tri)>corr_limit] corr_list = empty_df.columns[[not(empty_df[x].isnull().all()) for x in list(empty_df)]].tolist( )+lower_df.columns[[not(lower_df[x].isnull().all()) for x in list(lower_df)]].tolist() corr_list = find_remove_duplicates(corr_list) ###### This is for ordering the variables in the highest to lowest importance to target ### if len(corr_list) == 0: final_list = list(correlation_dataframe) print('Selecting all (%d) variables since none of them are highly correlated...' %len(numvars)) return numvars else: if isinstance(target, list): target = target[0] max_feats = len(corr_list) if modeltype == 'Regression': sel_function = mutual_info_regression fs = SelectKBest(score_func=sel_function, k=max_feats) else: sel_function = mutual_info_classif fs = SelectKBest(score_func=sel_function, k=max_feats) try: fs.fit(df[corr_list].astype(np.float16), df[target]) mutual_info = dict(zip(corr_list,fs.scores_)) #### The first variable in list has the highest correlation to the target variable ### sorted_by_mutual_info =[key for (key,val) in sorted(mutual_info.items(), key=lambda kv: kv[1],reverse=True)] ##### Now we select the final list of correlated variables ########### selected_corr_list = [] #### You have to make multiple copies of this sorted list since it is iterated many times #### orig_sorted = copy.deepcopy(sorted_by_mutual_info) copy_sorted = copy.deepcopy(sorted_by_mutual_info) copy_pair = copy.deepcopy(corr_pair_dict) #### select each variable by the highest mutual info and see what vars are correlated to it for each_corr_name in copy_sorted: ### add the selected var to the selected_corr_list selected_corr_list.append(each_corr_name) for each_remove in copy_pair[each_corr_name]: #### Now remove each variable that is highly correlated to the selected variable if each_remove in copy_sorted: copy_sorted.remove(each_remove) ##### Now we combine the uncorrelated list to the selected correlated list above rem_col_list = left_subtract(list(correlation_dataframe),corr_list) final_list = rem_col_list + selected_corr_list removed_cols = left_subtract(numvars, final_list) except: print(' SULOV Method crashing due to memory error, trying alternative simpler method...') #### Dropping highly correlated Features fast using simple linear correlation ### removed_cols = remove_highly_correlated_vars_fast(train[numvars],corr_limit) final_list = left_subtract(numvars, removed_cols) if len(removed_cols) > 0: print(' Removing (%d) highly correlated variables:' %(len(removed_cols))) if len(removed_cols) <= 30: print(' %s' %removed_cols) if len(final_list) <= 30: print(' Following (%d) vars selected: %s' %(len(final_list),final_list)) ############## D R A W C O R R E L A T I O N N E T W O R K ################## selected = copy.deepcopy(final_list) try: import networkx as nx except: print(' Python networkx library not installed. Install it for feature selection visualization.') return #### Now start building the graph ################### gf = nx.Graph() ### the mutual info score gives the size of the bubble ### multiplier = 2100 for each in orig_sorted: gf.add_node(each, size=int(max(1,mutual_info[each]*multiplier))) ######### This is where you calculate the size of each node to draw sizes = [mutual_info[x]*multiplier for x in list(gf.nodes())] #### The sizes of the bubbles for each node is determined by its mutual information score value corr = df[corr_list].corr() high_corr = corr[abs(corr)>corr_limit] ## high_corr is the dataframe of a few variables that are highly correlated to each other combos = combinations(corr_list,2) ### this gives the strength of correlation between 2 nodes ## multiplier = 20 for (var1, var2) in combos: if
np.isnan(high_corr.loc[var1,var2])
numpy.isnan
import math from mpl_toolkits.mplot3d import Axes3D, axes3d import warnings import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np import itertools from src import constants from src.my_utils.constant_class import * from src.my_utils.my_math.line import distance_btw_two_point class PotentialType: Repulsive_potential = "Repulsive_potential" Attractive_potential = "Attractive_potential" Camera_potential_steps = "camera_potential_steps" Camera_potential_quadratic = "camera_potential_quadratic" class PotentialShape: Circular = "circular" Angle = "angle" Linear_X_direction = "Linear X unbound" Linear_X_direction_bound = "Linear X bound" Linear_Y_direction = "Linear Y unbound" Linear_Y_direction_bound = "Linear Y bound" class HeatMaps: """ Maps are composed of multiple points [(x,y,data_saved-controller-xi,rho_0,PotentialType),...] x and y are the coordinate of the point where we set the potential function data_saved-controller-xi is a factor between 0 and 1, to give more or less importance to the point rho_0 is the radius in which the potential is determined PotentialType is the function we want to use If the potential are set correctly and are not to close from each other than the map gives always a value between 0 and 1. """ """All cam field""" def HEAT_MAP_INSIDE_OF_FIELD(): return [(0,0,0,1,1,1,1000,PotentialType.Camera_potential_steps)] """For one target""" def HEAT_MAP_ONE_TARGET_CENTER(field_depth): return [(constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth,0, 0,1,1,1,1,PotentialType.Camera_potential_quadratic)] """For two targets""" def HEAT_MAP_TWO_TARGET_CENTER(field_depth,beta): x = constants.DISTANCE_TO_KEEP_FROM_TARGET*field_depth * math.cos(beta / 4) y = 1.5*constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.sin(beta / 4) return [(x, y,0,1,2,1,2,PotentialType.Camera_potential_quadratic), (x,-y,0,1,2,1,2,PotentialType.Camera_potential_quadratic)] def HEAT_MAP_TWO_TARGET_FAR(field_depth,beta,side=1): return [(0.8*field_depth*math.cos(beta/ 4),side*0.3*field_depth * math.sin(beta / 4), side*0, 2, 1, 1, 1.5,PotentialType.Camera_potential_quadratic), (0.3*field_depth*math.cos(beta/ 4),side*-0.1*field_depth * math.sin(beta/ 4),side*55, 1, 15, 1, 0.75,PotentialType.Camera_potential_quadratic)] """For three targets""" def HEAT_MAP_THREE_TARGET(field_depth,beta): x = constants.DISTANCE_TO_KEEP_FROM_TARGET*field_depth * math.cos(beta / 4) y = 1.5*constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.sin(beta / 4) return [(x, y,0,1,1,1,0.5,PotentialType.Camera_potential_steps), (x,-y,0,1,1,1,0.5,PotentialType.Camera_potential_steps), (x+2, 0, 0, 1, 1, 1, 0.5, PotentialType.Camera_potential_steps)] def HEAT_MAP_TWO_TARGET_OVERLAP(field_depth, beta): x = constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.cos(beta / 4) y = 1.5 * constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.sin(beta / 4) return [(x, y, 0, 1, 2, 1, 2.5, PotentialType.Camera_potential_quadratic), (x, -y, 0, 1, 2, 1, 2.5, PotentialType.Camera_potential_quadratic)] def rotate_vector_field_angle(angle, X, Y): norm = np.float_power(np.square(X) + np.square(Y), 0.5) old_angle = np.arctan2(Y, X) X = norm * np.cos(angle + old_angle) Y = norm * np.sin(angle + old_angle) return X, Y def rotate_map_from_angle_alpha(angle, x, y, x_mean, y_mean): x_offset = x - x_mean y_offset = y - y_mean x_rotate = math.cos(angle) * x_offset + math.sin(angle) * y_offset y_rotate = -math.sin(angle) * x_offset + math.cos(angle) * y_offset return x_rotate, y_rotate def unrotate_map_from_angle_alpha(angle, x, y, x_mean, y_mean): x_rotate = math.cos(angle) * x + math.sin(angle) * y y_rotate = -math.sin(angle) * x + math.cos(angle) * y x = x_rotate + x_mean y = y_rotate + y_mean return x, y def define_potential_shape(shape, X=None, mean_x=None, var_x=None, Y=None, mean_y=None, var_y=None, X_min=None, X_max=None, Y_min=None, Y_max=None, angle_min=None, angle_max=None): if shape == PotentialShape.Circular and X is not None and Y is not None: distances = np.power(np.square(X - mean_x) / var_x + np.square(Y - mean_y) / var_y, 0.5) angle = np.arctan2(Y - mean_y, X - mean_x) elif shape == PotentialShape.Angle and X is not None and Y is not None and angle_min is not None and angle_max is not None: distances = np.power(np.square(X - mean_x) / var_x + np.square(Y - mean_y) / var_y, 0.5) angle = np.arctan2(Y - mean_y, X - mean_x) distances = np.where(angle < angle_max, distances, -1) distances = np.where(angle > angle_min, distances, -1) elif shape == PotentialShape.Linear_X_direction and Y is not None: distances = np.square((Y - mean_y) / var_y) angle = np.arctan2(Y - mean_y, 0) elif shape == PotentialShape.Linear_Y_direction and X is not None: distances = np.square((X - mean_x) / var_x) angle = np.arctan2(0, X - mean_x) else: print("define_potential_shape : choice not found or values not set correctly") if not X is None: distances = np.zeros(np.shape(X)) angle = distances elif not Y is None: distances = np.zeros(np.shape(Y)) angle = distances else: distances = 0 angle = distances return distances, angle def define_potential_type(field_type, distances, xi=None, eta=None, rho_0=None): if field_type == PotentialType.Repulsive_potential and eta is not None and rho_0 is not None: distances = np.where(distances > 0.001 * rho_0, distances, rho_0) distances = np.where(distances <= rho_0, distances, rho_0) return 0.5 * eta * np.square(1 / distances - 1 / rho_0) elif field_type == PotentialType.Attractive_potential and xi is not None: distances = np.where(distances > -1, distances, 0) return 0.5 * xi * np.square(distances) elif field_type == PotentialType.Camera_potential_steps and xi is not None: function = np.zeros(np.shape(distances)) function = np.where(distances > rho_0, function, xi) return function elif field_type == PotentialType.Camera_potential_quadratic and xi is not None: function = np.zeros(np.shape(distances)) function = np.where(distances > rho_0,function,(xi*(np.square(rho_0)-np.square(distances))/np.square(rho_0))) return function else: print("error potential type note found") def define_grad_potential_type(choix, distances, xi=None, eta=None, rho_0=None): try: if choix == PotentialType.Repulsive_potential: distances = np.where(distances > 0.001 * rho_0, distances, rho_0) distances = np.where(distances <= rho_0, distances, rho_0) return 0.5 * eta * (1 / distances - 1 / rho_0) * np.square(1 / rho_0) elif choix == PotentialType.Attractive_potential: return -xi * distances else: print("error potential type not found") except ZeroDivisionError: warnings.warn("divition by rho_0=0 but don't care for now") return 0 def compute_part_of_potential_field(field_type, shape, X=None, Y=None, mean_x=None, mean_y=None, var_x=None, var_y=None, X_min=None, X_max=None, Y_min=None, Y_max=None, angle_min=None, angle_max=None, xi=None, eta=None, rho_0=None): distances, angle = define_potential_shape(shape=shape, X=X, Y=Y, mean_x=mean_x, mean_y=mean_y, var_x=var_x, var_y=var_y, X_min=X_min, X_max=X_max, Y_min=Y_min, Y_max=Y_max, angle_min=angle_min, angle_max=angle_max) potential = define_potential_type(field_type, distances, xi=xi, eta=eta, rho_0=rho_0) return potential def compute_part_of_grad_potential_field(field_type, shape, X=None, Y=None, mean_x=None, mean_y=None, var_x=None, var_y=None,X_min=None, X_max=None, Y_min=None, Y_max=None, angle_min=None, angle_max=None, xi=None, eta=None, rho_0=None): distances, angle = define_potential_shape(shape=shape, X=X, Y=Y, mean_x=mean_x, mean_y=mean_y, var_x=var_x, var_y=var_y, X_min=X_min, X_max=X_max, Y_min=Y_min, Y_max=Y_max, angle_min=angle_min, angle_max=angle_max) grad_x = define_grad_potential_type(field_type, distances, xi=xi, eta=eta, rho_0=rho_0) * np.cos(angle) grad_y = define_grad_potential_type(field_type, distances, xi=xi, eta=eta, rho_0=rho_0) * np.sin(angle) return grad_x, grad_y def compute_grad_potential_for_a_given_list(target_list, X, Y, field_type, barrier_type, xi=None, eta=None, rho_0=None): force_x = np.zeros(np.shape(X)) force_y = np.zeros(np.shape(X)) rho_0_None = False if rho_0 is None: rho_0_None = True if target_list == []: return force_x, force_y elif len(target_list) == 1: x, y, radius = target_list[0] if rho_0_None: rho_0 = radius delta_force_x, delta_force_y = compute_part_of_grad_potential_field( field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=x, var_x=1, Y=Y, mean_y=y, var_y=1, xi=xi, eta=eta, rho_0=rho_0) force_x += delta_force_x force_y += delta_force_y return force_x, force_y else: for target in target_list: x, y, radius = target if rho_0_None: rho_0 = radius delta_force_x, delta_force_y = compute_part_of_grad_potential_field( field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=x, var_x=1, Y=Y, mean_y=y, var_y=1, xi=xi, eta=eta, rho_0=rho_0) force_x += delta_force_x force_y += delta_force_y for targets in itertools.combinations(target_list, 2): target1, target2 = targets x1, y1, radius1 = target1 x2, y2, radius2 = target2 if rho_0_None: rho_0 = max(radius1, radius2) """First rotation to place x-axis between the to targets""" x_mean = (x1 + x2) / 2 y_mean = (y1 + y2) / 2 delta_x = x1 - x2 delta_y = y1 - y2 distance = distance_btw_two_point(x1, y1, x2, y2) angle = math.atan2(delta_y, delta_x) X, Y = rotate_map_from_angle_alpha(angle, X, Y, x_mean, y_mean) """Computation from the vectors""" delta_force_x, delta_force_y = np.zeros(np.shape(force_x)), np.zeros(np.shape(force_y)) if barrier_type == PotentialBarrier.Hard: delta_force_x, delta_force_y = compute_part_of_grad_potential_field(field_type=field_type, shape=PotentialShape.Linear_X_direction, Y=Y, mean_y=0, var_y=1, xi=xi, eta=eta, rho_0=rho_0) elif barrier_type == PotentialBarrier.Smooth: delta_force_x, delta_force_y = compute_part_of_grad_potential_field( field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=1 + constants.COEFF_VAR_X * distance,Y=Y, mean_y=0, var_y=1 + constants.COEFF_VAR_Y * distance, xi=xi, eta=eta, rho_0=rho_0) elif barrier_type == PotentialBarrier.Combine_repulse: delta_force_x_hard, delta_force_y_hard = compute_part_of_grad_potential_field(field_type=field_type, shape=PotentialShape.Linear_X_direction, Y=Y, mean_y=0, var_y=1, xi=xi, eta=eta, rho_0=rho_0) delta_force_x_smooth, delta_force_y_smooth = compute_part_of_grad_potential_field( field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=1 + constants.COEFF_VAR_X * distance, Y=Y, mean_y=0, var_y=1 + constants.COEFF_VAR_Y * distance, xi=xi, eta=eta, rho_0=rho_0) delta_force_x, delta_force_y = delta_force_x_hard * ( 1 - constants.COMBINE_MODE_PROP) + delta_force_x_smooth * constants.COMBINE_MODE_PROP, delta_force_y_hard * ( 1 - constants.COMBINE_MODE_PROP) + delta_force_y_smooth * constants.COMBINE_MODE_PROP elif barrier_type == PotentialBarrier.Combine_attract: delta_force_x_hard, delta_force_y_hard = compute_part_of_grad_potential_field(field_type=field_type, shape=PotentialShape.Linear_X_direction, Y=Y, mean_y=0, var_y=1, xi=xi, eta=eta, rho_0=rho_0) delta_force_x_smooth, delta_force_y_smooth = compute_part_of_grad_potential_field( field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=1 + constants.COEFF_VAR_X * distance, Y=Y, mean_y=0, var_y=1 + constants.COEFF_VAR_Y * distance, xi=xi, eta=eta, rho_0=rho_0) delta_force_x_smooth = -delta_force_x_smooth delta_force_y_smooth = -delta_force_y_smooth delta_force_x, delta_force_y = delta_force_x_hard * ( 1 - constants.COMBINE_MODE_PROP) + delta_force_x_smooth * constants.COMBINE_MODE_PROP, delta_force_y_hard * ( 1 - constants.COMBINE_MODE_PROP) + delta_force_y_smooth * constants.COMBINE_MODE_PROP elif barrier_type == PotentialBarrier.Not_use: pass delta_force_x_rotate, delta_force_y_rotate = rotate_vector_field_angle(angle, delta_force_x, delta_force_y) force_x += delta_force_x_rotate force_y += delta_force_y_rotate "Back to orignal ref" X, Y = unrotate_map_from_angle_alpha(-angle, X, Y, x_mean, y_mean) return force_x, force_y def compute_potential_for_a_given_list(target_list, X, Y, field_type, barrier_type, xi=None, eta=None, rho_0=None): potential_field = np.zeros(np.shape(X)) rho_0_None = False if rho_0 is None: rho_0_None = True if target_list == []: return potential_field elif len(target_list) == 1: x, y, radius = target_list[0] if rho_0_None: rho_0 = radius potential_field += compute_part_of_potential_field(field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=x, var_x=1, Y=Y, mean_y=y, var_y=1, xi=xi, eta=eta, rho_0=rho_0) return potential_field else: for target in target_list: x, y, radius = target if rho_0_None: rho_0 = radius potential_field += compute_part_of_potential_field(field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=x, var_x=1, Y=Y, mean_y=y, var_y=1, xi=xi, eta=eta, rho_0=rho_0) for targets in itertools.combinations(target_list, 2): target1, target2 = targets x1, y1, radius1 = target1 x2, y2, radius2 = target2 if rho_0_None: rho_0 = max(radius1, radius2) """First rotation to place x-axis between the to targets""" x_mean = (x1 + x2) / 2 y_mean = (y1 + y2) / 2 delta_x = x1 - x2 delta_y = y1 - y2 distance = distance_btw_two_point(x1, y1, x2, y2) angle = math.atan2(delta_y, delta_x) X, Y = rotate_map_from_angle_alpha(angle, X, Y, x_mean, y_mean) """Computation from the field""" if barrier_type == PotentialBarrier.Hard: potential_field += compute_part_of_potential_field(field_type=field_type, shape=PotentialShape.Linear_X_direction, Y=Y, mean_y=0, var_y=1, xi=xi, eta=eta, rho_0=rho_0) elif barrier_type == PotentialBarrier.Smooth: potential_field += compute_part_of_potential_field(field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=1 + constants.COEFF_VAR_X * distance, Y=Y, mean_y=0, var_y=1 + constants.COEFF_VAR_Y * distance, xi=xi, eta=eta, rho_0=rho_0) elif barrier_type == PotentialBarrier.Combine_repulse: potential_field += (1 - constants.COMBINE_MODE_PROP) * compute_part_of_potential_field( field_type=field_type, shape=PotentialShape.Linear_X_direction, Y=Y, mean_y=0, var_y=1, xi=xi, eta=eta, rho_0=rho_0) potential_field += constants.COMBINE_MODE_PROP * compute_part_of_potential_field(field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=1 + constants.COEFF_VAR_X * distance, Y=Y, mean_y=0, var_y=1 + constants.COEFF_VAR_Y * distance, xi=xi, eta=eta, rho_0=rho_0) elif barrier_type == PotentialBarrier.Combine_attract: potential_field += (1 - constants.COMBINE_MODE_PROP) * compute_part_of_potential_field( field_type=field_type, shape=PotentialShape.Linear_X_direction, Y=Y, mean_y=0, var_y=1, xi=xi, eta=eta, rho_0=rho_0) potential_field -= constants.COMBINE_MODE_PROP * compute_part_of_potential_field(field_type=field_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=1 + constants.COEFF_VAR_X * distance, Y=Y, mean_y=0, var_y=1 + constants.COEFF_VAR_Y * distance, xi=xi, eta=eta, rho_0=rho_0) elif barrier_type == PotentialBarrier.Not_use: pass "Back to orignal ref" X, Y = unrotate_map_from_angle_alpha(-angle, X, Y, x_mean, y_mean) return potential_field def compute_potential_gradient(X, Y, target_list, obstacle_list): attractive_force_x, attractive_force_y = compute_grad_potential_for_a_given_list(target_list, X, Y, PotentialType.Attractive_potential, constants.BARRIER_TYPE, xi=constants.XI, eta=constants.ETA, rho_0=-1) repulsive_force_x, repulsive_force_y = compute_grad_potential_for_a_given_list(obstacle_list, X, Y, PotentialType.Repulsive_potential, constants.BARRIER_TYPE, xi=constants.XI, eta=constants.ETA, rho_0=None) force_x = attractive_force_x + repulsive_force_x force_y = attractive_force_y + repulsive_force_y return force_x, force_y def compute_potential(X, Y, target_list, obstacle_list): attractive_potential_field = compute_potential_for_a_given_list(target_list, X, Y, PotentialType.Attractive_potential, constants.BARRIER_TYPE, xi=constants.XI, eta=constants.ETA, rho_0=-1) repulsive_potential_field = compute_potential_for_a_given_list(obstacle_list, X, Y, PotentialType.Repulsive_potential, constants.BARRIER_TYPE, xi=constants.XI, eta=constants.ETA, rho_0=None) return attractive_potential_field + repulsive_potential_field def compute_potential_and_potential_gradient(X_potential_field, Y_potential_field, X_vector_field, Y_vector_field, target_list, obstacle_list): potential_field = compute_potential(X_potential_field, Y_potential_field, target_list, obstacle_list) force_x, force_y = compute_potential_gradient(X_vector_field, Y_vector_field, target_list, obstacle_list) return potential_field, force_x, force_y def compute_potential_field_cam(X, Y, n_target, beta, field_depth): '''potential_field = compute_part_of_potential_field(PotentialType.Attractive_potential,PotentialShape.Angle, X=X_potential, mean_x=0, var_x=1, Y=Y_potential, mean_y=0, var_y=1, angle_min=-math.radians(30), angle_max=math.radians(30),data_saved-controller-xi = 10) ''' X_potential_field, Y_potential_field = np.meshgrid(X, Y) potential_field = np.zeros(np.shape(X_potential_field)) camera_shape, angle = define_potential_shape(PotentialShape.Angle, X=X_potential_field, mean_x=0, var_x=1, Y=Y_potential_field, mean_y=0, var_y=1, angle_min=-beta / 2, angle_max=beta / 2) heat_map = [] if n_target == 1: heat_map = HeatMaps.HEAT_MAP_ONE_TARGET_CENTER(field_depth) heat_map = HeatMaps.HEAT_MAP_INSIDE_OF_FIELD() elif n_target >= 2: heat_map = HeatMaps.HEAT_MAP_TWO_TARGET_CENTER(field_depth,beta) heat_map = HeatMaps.HEAT_MAP_TWO_TARGET_FAR(field_depth,beta,-1) heat_map = HeatMaps.HEAT_MAP_ONE_TARGET_CENTER(field_depth) + HeatMaps.HEAT_MAP_TWO_TARGET_FAR(field_depth,beta,-1) #heat_map = HeatMaps.HEAT_MAP_THREE_TARGET(field_depth,beta) for heat_point in heat_map: x, y,angle,var_x,var_y, xi,rho,potential_type = heat_point X, Y = rotate_map_from_angle_alpha(math.radians(angle), X_potential_field, Y_potential_field, x, y) potential_basis = compute_part_of_potential_field(field_type=potential_type, shape=PotentialShape.Circular, X=X, mean_x=0, var_x=var_x, Y=Y, mean_y=0, var_y=var_y, xi=xi, rho_0=rho) #potential_field += potential_basis potential_field = np.maximum(potential_field,potential_basis) potential_field = np.where(camera_shape > 0, potential_field, 0) potential_field = np.where(camera_shape < field_depth, potential_field, 0) return X_potential_field, Y_potential_field, np.minimum(potential_field,1.2)/n_target def convert_target_list_to_potential_field_input(target_list): input_list = [] for target in target_list: input_list.append((target.xc, target.yc, constants.COEFF_RADIUS * target.radius)) return input_list def plot_potential_field_dynamic(Xp, Yp, potential_field): import src.plot as plot if plot.PLOT_VARIATION_ON_REGION: surf = plot.ax1.plot_surface(Xp, Yp, potential_field, cmap="hot", linewidth=1, antialiased=True) plt.draw() plt.pause(1e-17) plt.cla() def plot_xi_rho(): x = np.linspace(0,2.5,100) y_all = [] rho_all = [0.5,1.0,1.5,2] colors = ["g","r","c","b"] for rho in rho_all: y_all.append(define_potential_type(PotentialType.Camera_potential_quadratic, x, xi=1, eta=None, rho_0=rho)) fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_subplot(1, 1, 1) ax1.xaxis.set_tick_params(labelsize=20) ax1.yaxis.set_tick_params(labelsize=20) ax1.set_title("Basis functions profil in terms of rho", fontsize=25, fontweight='bold') for color,y in zip(colors,y_all): ax1.plot(x,y,c=color) y_all = [] for rho in rho_all: y_all.append(define_potential_type(PotentialType.Camera_potential_steps, x, xi=1, eta=None, rho_0=rho)) for color, y in zip(colors, y_all): ax1.plot(x, y, '--',c=color ,linewidth = 2) ax1.legend(["rho = 0.5[m]","rho = 1.0[m]","rho = 1.5[m]","rho = 2.0[m]"],loc=1, fontsize=25) plt.show() def plot_potential_field(Xp, Yp, potential_field): # Plot the surface. fig = plt.figure(figsize=(24, 16)) ax1 = fig.add_subplot(1, 1, 1, projection='3d') ax1.xaxis.set_tick_params(labelsize=20) ax1.yaxis.set_tick_params(labelsize=20) ax1.zaxis.set_tick_params(labelsize=20) ''' ax1.plot_wireframe(Xp, Yp, potential_field, rstride=1 ,cstride=1) X = np.ravel(Xp) Y = np.ravel(Yp) Z = np.ravel(potential_field) sc1 = ax1.plot_trisurf(X, Y, Z, linewidth=0.5, antialiased=True) cb = fig.colorbar(sc1, ax=ax1) cb.ax.yaxis.set_tick_params(labelsize=20) ''' #for angle in range(0, 360): ax1.view_init(60,- 45) n = 2 lev = np.array([0,0.2,0.4,0.6,0.8,1])/n ax1.plot_surface(Xp, Yp, potential_field, rstride=1, cstride=1, alpha=0.8,cmap="hot") cset = ax1.contour(Xp, Yp, potential_field,levels=lev, zdir='z', offset=1/n+0.05, cmap="hot") #cset = ax1.contour(Xp, Yp,potential_field,levels= [3,4,5], zdir='x', offset= 0,colors=["red","black","red"]) #cset = ax1.contour(Xp, Yp, potential_field,levels=[-2,0,2], zdir='y', offset=5,colors=["red","black","red"]) plt.show() def plot_potential_field_and_grad(Xp, Yp, Xf, Yf, potential_field, force_x, force_y,objectives_list,obstacle_list): # Plot the surface. fig = plt.figure(figsize=(16, 8)) #ax0 = fig.add_subplot(0, 0, 1) ax1 = fig.add_subplot(1,2,1, projection='3d') ax2 = fig.add_subplot(1,2,2) M =
np.arctan2(force_x, force_y)
numpy.arctan2
# This file is the same as ICP07 with the exception that it doesn't interpolate the # first array. import numpy as np from convertScanToXY import convertScanToXY from scipy.spatial.distance import pdist,cdist import operator import pdb import math import time # def distance(x1,y1,x2,y2): # dist=math.sqrt(((float(x1)-float(x2))*(float(x1)-float(x2)))+((float(y1)-float(y2))*(float(y1)-float(y2)))) # return dist def closestPoints(old,new): distances = cdist(old,new,'euclidean') # distances is a matrix where rows correspond to points in the 'old' matrix and # cols correspond to points in the 'new' matrix. indices = np.argmin(distances, axis = 0) closest = old[indices] return closest def doOneIteration(XY1,XY2): # Find the closest point in XY2 for each point in XY1 closestPts=closestPoints(XY1,XY2) #pdb.set_trace() # Find the covariance between the 2 matrices cov=np.matmul((np.transpose(XY2)),closestPts) # Use that to find the rotation U, s, V = np.linalg.svd(cov, full_matrices=True) rotationMatrix = np.matmul(V,U.T) # Find the optimal translation XY2 = np.matmul(XY2, rotationMatrix.T) # Find their average translation from their corresponding closest points diffs=XY2-closestPts offset=np.mean(diffs,axis=0) translation=-offset # Calculate the error in alignment as the sum of squared distances between point matches err=math.sqrt((offset[0])*(offset[0])+(offset[1])*(offset[1])) return rotationMatrix, translation, err def ICP08(XY1, XY2, transformationSeed): maxDist = 50 # #start_time = time.time() # ######################################### # # Interpolate the first scan as necessary # ######################################### # # This is approximating point to plane ICP but instead of projecting onto the # # normal, I am just creating more points in areas where things are sparse. # numberOfPoints = XY1.shape[0] # C = np.zeros([2,2]) # this is necessary in Python to use pdist # for I in range(numberOfPoints - 1): # A = XY1[I,:] # B = XY1[I+1,:] # C[0,:] = A # and is used to find the distance betwen them # C[1,:] = B # distance = pdist(C) # #print 'distance: ', distance # if distance > maxDist: # XY1 = interpolatePoints(A,B, distance, maxDist, XY1) # # Check the first and last points as a special case # A = XY1[numberOfPoints-1,:] # B = XY1[0,:] # C[0,:] = A # C[1,:] = B # distance = pdist(C) # if distance > maxDist: # XY1 = interpolatePoints(A,B, distance, maxDist, XY1) # #elapsed_time = time.time() - start_time # print 'Stop point just before ICP' # pdb.set_trace() # ############### # Do the ICP part # ############### translation, rotationMatrix = actualICP(XY1, XY2, transformationSeed) # rotate and translate the XY2 points XY2temp =
np.matmul(XY2,rotationMatrix.T)
numpy.matmul
''' Group enabled ANPNetwork class and supporting classes. ''' from pyanp.pairwise import Pairwise from pyanp.prioritizer import Prioritizer, PriorityType from pyanp.general import islist, unwrap_list, get_matrix, matrix_as_df from typing import Union import pandas as pd from copy import deepcopy from pyanp.limitmatrix import normalize, calculus, priority_from_limit import numpy as np import re from pyanp.rating import Rating class ANPNode: ''' A node inside a cluster, inside a netowrk. The basic building block of an ANP netowrk. :param network: An ANPNetwork object that this node lives inside. :param cluster: An ANPCluster object that this node lives inside. :param name: The name of this node. ''' def __init__(self, network, cluster, name:str): self.name = name self.cluster = cluster self.network = network self.node_prioritizers = {} self.subnetwork = None self.invert = False def is_node_cluster_connection(self, dest_cluster:str)->bool: ''' Is this node connected to a cluster. :param dest_cluster: The name of the cluster :return: True/False ''' if dest_cluster in self.node_prioritizers: return True else: return False def node_connect(self, dest_node)->None: '''' Make a node connection from this node to dest_node :param dest_node: The destination node as a str, int, or ANPNode. It can be a list of nodes, and then we will coonect each node from this node. The dest_node should be in any format accepted by ANPNetwork._get_node() ''' if islist(dest_node): for dn in dest_node: self.node_connect(dn) else: prioritizer = self.get_node_prioritizer(dest_node, create=True) prioritizer.add_alt(dest_node, ignore_existing=True) #Make sure parent clusters are connected src_cluster = self.cluster dest_cluster = self.network._get_node_cluster(dest_node) src_cluster.cluster_connect(dest_cluster) def get_node_prioritizer(self, dest_node, create=False, create_class=Pairwise, dest_is_cluster=False)->Prioritizer: ''' Gets the node prioritizer for the other_node :param dest_node: The node as a int, str, or ANPNode object. :return: The prioritizer if it exists, or None ''' if dest_is_cluster: dest_cluster = self.network.cluster_obj(dest_node) dest_name = dest_cluster.name else: dest_cluster = self.network._get_node_cluster(dest_node) dest_name = dest_cluster.name if dest_name not in self.node_prioritizers: if create: prioritizer = create_class() self.node_prioritizers[dest_name] = prioritizer return prioritizer else: return None else: return self.node_prioritizers[dest_name] def is_node_node_connection(self, dest_node)->bool: ''' Checks if there is a node connection from this node to dest_node :param dest_node: The node as a int, str, or ANPNode object. :return: ''' pri = self.get_node_prioritizer(dest_node) if pri is None: return False elif not pri.is_alt(dest_node): return False else: return True def get_unscaled_column(self, username=None)->pd.Series: ''' Returns the column in the unscaled supermatrix for this node. :param username: The user/users to do this for. Typical Prioritizer calculation usage, i.e. None means do for all group average. :return: A pandas series indexed by the node names. ''' nnodes = self.network.nnodes() rval = pd.Series(data=[0.0]*nnodes, index=self.network.node_names()) prioritizer:Prioritizer for prioritizer in self.node_prioritizers.values(): vals = prioritizer.priority(username, PriorityType.NORMALIZE) for alt, val in vals.iteritems(): rval[alt] = val return rval def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] pri:Prioritizer for pri in self.node_prioritizers.values(): pri.data_names(append_to, post_pend="wrt "+self.name) return append_to def set_node_prioritizer_type(self, destNode, prioritizer_class): ''' Sets the node prioritizer type :param destNode: An ANPNode object, string, or integer location :param prioritizer_class: The new type :return: None ''' pri = self.get_node_prioritizer(destNode, create_class=prioritizer_class) if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) dest_cluster = self.network._get_node_cluster(destNode) dest_name = dest_cluster.name self.node_prioritizers[dest_name] = rval else: pass class ANPCluster: ''' A cluster in an ANP object :param network: The ANPNetowrk object this cluster is in. :param name: The name of the cluster to create. ''' def __init__(self, network, name:str): self.prioritizer = Pairwise() self.name = name self.network = network # The list of ANP nodes in this cluster self.nodes = {} def add_node(self, *nodes)->None: """ Adds one or more nodes :param nodes: A vararg list of node names to add to this cluster. The names should all be strings. :return: Nonthing """ nodes = unwrap_list(nodes) if islist(nodes): for node in nodes: if isinstance(node, str): self.add_node(node) else: self.nodes[nodes] = ANPNode(self.network, self, nodes) def nnodes(self)->int: """ :return: The number of nodes in this cluster. """ return len(self.nodes) def is_node(self, node_name:str)->bool: ''' Does a node by that name exist in this cluster :param node_name: The name of the node to look for :return: True/False ''' return node_name in self.nodes def node_obj(self, node_name): """ Get a node in this cluster. :param node_name: The node as either a string name, integer position, or simply the ANPObject, in which case there is nothing to do except return it. :return: ANPNode object. If it wasn't found, None is returned. """ if isinstance(node_name, ANPNode): return node_name else: return get_item(self.nodes, node_name) def node_names(self)->list: ''' :return: List of the string names of the nodes in this cluster ''' return list(self.nodes.keys()) def node_objs(self)->list: ''' :return: List of the ANPNode objects in this cluster. ''' return self.nodes.values() def cluster_connect(self, dest_cluster)->None: """ Make a cluster->cluster connection from this node to the destination. :param dest_cluster: Either the ANPCluster object to connect to, or the name of the destination cluster. :return: """ if isinstance(dest_cluster, ANPCluster): dest_cluster_name = dest_cluster.name else: dest_cluster_name = dest_cluster self.prioritizer.add_alt(dest_cluster_name, ignore_existing=True) def set_prioritizer_type(self, prioritizer_class)->None: ''' Sets the cluster prioritizer type :param prioritizer_class: The new type :return: None ''' pri = self.prioritizer if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) self.prioritizer = rval else: pass def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] if self.prioritizer is not None: self.prioritizer.data_names(append_to, post_pend="wrt "+self.name) return append_to def get_item(tbl:dict, key): """ Looks up an item in a dictionary by key first, assuming the key is in the dictionary. Otherwise, it checks if the key is an integer, and returns the item in that position. :param tbl: The dictionary to look in :param key: The key, or integer position to get the item of :return: The item, or it not found, None """ if key in tbl: return tbl[key] elif not isinstance(key, int): return None # We have an integer key by this point if key < 0: return None elif key >= len(tbl): return None else: count = 0 for rval in tbl.values(): if count == key: return rval count+=1 #Should never make it here raise ValueError("Shouldn't happen in anp.get_item") __CLEAN_SPACES_RE = re.compile('\\s+') def clean_name(name:str)->str: """ Cleans up a string for usage by: 1. stripping off begging and ending spaces 2. All spaces convert to one space 3. \t and \n are treated like a space :param name: The string name to be cleaned :return: The cleaned name. """ rval = name.strip() return __CLEAN_SPACES_RE.sub(string=rval, repl=' ') def sum_subnetwork_formula(priorities:pd.Series, dict_of_series:dict): """ A function that takes the weighted sum of values. Used for synthesis. :param priorities: Series whose index are the nodes with subnetworks and values are their weights. :param dict_of_series: A dictionary whose keys are the same as the keys of priorities, i.e. the nodes with subnetworks. The values are Series whose keys are alternative names and values are the synthesized alternative scores under that subnetwork. :return: """ subpriorities = priorities[dict_of_series.keys()] if sum(subpriorities) != 0: subpriorities /= sum(subpriorities) rval = pd.Series() counts = pd.Series(dtype=int) for subnet_name, vals in dict_of_series.items(): priority = subpriorities[subnet_name] for alt_name, val in vals.iteritems(): if alt_name in rval: rval[alt_name] += val * priority counts[alt_name] += priority else: rval[alt_name] = val counts[alt_name] = priority # Now let's calculate the averages for alt_name, val in rval.iteritems(): if counts[alt_name] > 0: rval[alt_name] /= counts[alt_name] return rval class ANPNetwork(Prioritizer): ''' Represents an ANP prioritizer. Has clusters/nodes, comparisons, etc. :param create_alts_cluster: If True (which is the default) we start with a cluster that is the alternatives cluster. Otherwise the model starts empty. ''' def __init__(self, create_alts_cluster=True): self.clusters = {} if create_alts_cluster: cl = self.add_cluster("Alternatives") self.alts_cluster = cl self.users=[] self.limitcalc = calculus self.subnet_formula = sum_subnetwork_formula self.default_priority_type = None def add_cluster(self, *args)->ANPCluster: ''' Adds one or more clusters to a network :param args: Can be either a single string, or a list of strings :return: ANPCluster object or list of ANPCluster objects ''' clusters = unwrap_list(args) if islist(clusters): rval = [] for cl in clusters: rval.append(self.add_cluster(cl)) return rval else: #Adding a single cluster cl = ANPCluster(self, clusters) self.clusters[clusters] = cl return cl def cluster_names(self)->list: ''' :return: List of string names of the clusters ''' return list(self.clusters.keys()) def nclusters(self)->int: ''' :return: The number of clusters in the network. ''' return len(self.clusters) def cluster_obj(self, cluster_info:Union[ANPCluster, str])->ANPCluster: ''' Returns the cluster with given information :param cluster_info: Either the name of the cluster object to get or the cluster object, or its int position :return: The ANPCluster object ''' if isinstance(cluster_info, ANPCluster): return cluster_info else: return get_item(self.clusters, cluster_info) def add_node(self, cl, *nodes): ''' Adds nodes to a cluster :param cl: The cluster name or object :param nodes: The name or names of the nodes :return: Nothing ''' cluster = self.cluster_obj(cl) cluster.add_node(nodes) def nnodes(self, cluster=None)->int: """ Returns the number of nodes in the network, or a cluster. :param cluster: If None, we return the number of nodes in the network. Otherwise this is the integer position, string name, or ANPCluster object of the cluster to get the node count within. :return: The count. """ if cluster is None: rval = pd.Series() for cname, cluster in self.clusters.items(): rval[cname] = cluster.nnodes() return sum(rval) else: clobj = self.cluster_obj(cluster) return clobj.nnodes() def add_alt(self, alt_name:str): """ Adds an alternative to the model: 1. Adds the altenrative to alts_cluster if not None 2. For each node with a subnetwork, we add the alternative to that subnetwork. :param alt_name: The name of the alternative to add :return: Nothing """ if self.alts_cluster is not None: self.add_node(self.alts_cluster, alt_name) # We should add this alternative to each subnetwork for node in self.node_objs_with_subnet(): node.subnetwork.add_alt(alt_name) def is_user(self, uname)->bool: ''' Checks if a user exists :param uname: The name of the user to check for :return: bool ''' return uname in self.users def is_alt(self, altname)->bool: ''' Checks if an alternative exists :param altname: The alterantive name to look for :return: bool ''' return self.alts_cluster.is_node(altname) def add_user(self, uname, ignore_dupe=False): ''' Adds a user to the system :param uname: The name of the new user :return: Nothing :raise ValueError If the user already existed ''' if islist(uname): for un in uname: self.add_user(un, ignore_dupe=ignore_dupe) return if self.is_user(uname): if not ignore_dupe: raise ValueError("User by the name "+uname+" already existed") else: return self.users.append(uname) def nusers(self)->int: ''' :return: The number of users ''' return len(self.users) def user_names(self)->list: ''' :return: List of names of the users ''' return deepcopy(self.users) def node_obj(self, node_name)->ANPNode: ''' Gets the ANPNode object of the node with the given name :param node_name: The name of the node to get, or it's overall integer position, or the ANPNode object itself :return: The ANPNode if it exists, or None ''' if isinstance(node_name, ANPNode): return node_name elif isinstance(node_name, int): #Reference by integer node_pos = node_name node_count = 0 for cluster in self.clusters.values(): rel_pos = node_pos - node_count if rel_pos < cluster.nnodes(): return cluster.node_obj(rel_pos) #If we make it here, we were out of bounds return None #Okay handle string node name cluster: ANPCluster for cname, cluster in self.clusters.items(): rval = cluster.node_obj(node_name) if rval is not None: return rval #Made it here, the node didn't exist return None def _get_node_cluster(self, node)->ANPCluster: ''' Gets the ANPCluster object a node lives in :param node: The name/integer positions, or ANPNode object itself. See node_obj() method for more details. :return: The ANPCluster object this node lives in, or None if it doesn't exist. ''' n = self.node_obj(node) if n is None: # Could not find the node return None return n.cluster def node_connect(self, src_node, dest_node): ''' connects 2 nodes :param src_node: Source node as prescribed by node_object() function :param dest_node: Destination node as prescribed by node_object() function :return: Nothing ''' src = self.node_obj(src_node) src.node_connect(dest_node) def node_names(self, cluster=None)->list: ''' Returns a list of nodes in this network, organized by cluster :param cluster: If None, we get all nodes in network, else we get nodes in that cluster, otherwise format as specified by cluster_obj() function. :return: List of strs of node names ''' if cluster is not None: cl = self.cluster_obj(cluster) return cl.node_names() rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_names() for name in cnodes: rval.append(name) return rval def node_objs(self)->list: ''' Returns a list of ANPNodes in this network, organized by cluster :return: List of strs of node names ''' rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_objs() for name in cnodes: rval.append(name) return rval def cluster_objs(self)->list: """ :return: List of ANPCluster objects in the network """ return list(self.clusters.values()) def node_connections(self)->np.ndarray: """ Returns the node conneciton matrix for this network. :return: A numpy array of shape [nnode, nnodes] where item [row, col] 1 means there is a node connection from col -> row, and 0 means no connection. """ nnodes = self.nnodes() nnames = self.node_names() rval =
np.zeros([nnodes, nnodes])
numpy.zeros
#!/usr/bin/env python3 from shared_setting import * import sys import csv import numpy threshold=5.0 def sigmoid(x): return 1.0/(1.0+numpy.exp(-(x-threshold))) #parameters save_pitch=10.0 #ms save_pitch_weight=60.0*1000.0 #ms etaEsom=1.0 etaEdnd=1.0 #etaIdnd=1.0e-2*Ndndinh #thetainh=0.5 #alpha=0.9 #beta_som=2.5 #beta_dnd=2.5 #gamma=1.0 phi=100.0/1000.0 #kHz tauL=10.0 #ms taudeltaW=1.0*1000.0 #ms tauM=60.0*1000.0 #ms Wmin=0.0 r0=0.05 c0=70.0 eta_Wdecay=1e-7 tauSTD=500.0 #ms tauSTF=200.0 #ms USTF=[0.5, 0.03] #[no Ach, Ach] #connections WEEsom=numpy.loadtxt("WEEsom_init.csv", delimiter=",") deltaWEEsom=numpy.zeros_like(WEEsom) WEEdnd=numpy.loadtxt("WEEdnd_init.csv", delimiter=",") deltaWEEdnd=numpy.zeros_like(WEEdnd) WEIsom=numpy.loadtxt("WEIsom_init.csv", delimiter=",") WEIdnd=numpy.loadtxt("WEIdnd_init.csv", delimiter=",") #deltaWEIdnd=numpy.zeros_like(WEIdnd) WIEsom=numpy.loadtxt("WIEsom_init.csv", delimiter=",") WIEdnd=numpy.loadtxt("WIEdnd_init.csv", delimiter=",") #variables x=numpy.zeros(NE) y=numpy.zeros(NE) Ex=r0*numpy.ones(NE) Ey=r0*numpy.ones(NE) STDrecur=numpy.ones(NE) STFrecur=USTF[0]*numpy.ones(NE) PSCrecur=numpy.zeros(NE) Iext_som=numpy.zeros(NE) Iext_dnd=numpy.zeros(NE) Isominh=numpy.zeros(Nsominh) #Idndinh=numpy.zeros(Ndndinh) Iinput=numpy.zeros(Ninput) STDinput=numpy.ones(Ninput) STFinput=USTF[0]*numpy.ones(Ninput) PSCinput=
numpy.zeros(Ninput)
numpy.zeros
""" Discrete Lehman Representation (DLR) implementation using Numpy and Scipy.""" """ Copyright 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" import numpy as np import numpy.polynomial.legendre as leg from scipy.linalg import eigh as scipy_eigh from scipy.linalg import lu_solve, lu_factor from .kernel import kernel, KernelInterpolativeDecoposition class dlr(object): """ Discrete Lehmann Representation (DLR) class. Provides the DRL basis, transforms, and algorithms. Parameters ---------- lamb : float DLR scale parameter :math:`\\Lambda`. eps : float Set accuracy of the DLR representation. xi : sign, optional, Statistical sign :math:`\\xi = \\pm 1` for bosons and fermions respectively. max_rank : int, optional Maximum rank of the DLR kernel decomposition. Default 500. nmax : int, optional Maxumum index of the Matsubara frequency grid. Default int(lamb). verbose : bool, optional Default `False`. python_impl : bool, optional Switch between the python and fortran library driver. Default `True`. """ def __init__(self, lamb, eps=1e-15, xi=-1, max_rank=500, nmax=None, verbose=False, python_impl=True): self.xi = xi self.lamb = lamb self.eps = eps if not python_impl: from .kernel_fortran import KernelInterpolativeDecopositionFortran KID = KernelInterpolativeDecopositionFortran else: KID = KernelInterpolativeDecoposition kid = KID(lamb, eps=eps, xi=xi, max_rank=max_rank, nmax=nmax, verbose=verbose) members = [ 'rank', 'dlrit', 'dlrrf', 'dlrmf', 'dlrit2cf', 'it2cfpiv', 'dlrmf2cf', 'mf2cfpiv', 'T_lx', 'T_qx', ] for member in members: setattr(self, member, getattr(kid, member)) del kid # -- Split real-frequency nodes (assuming sorted) self.pm_idx = np.argwhere(self.dlrrf > 0)[0,0] self.dlrrf_p = self.dlrrf[self.pm_idx:] self.dlrrf_m = self.dlrrf[:self.pm_idx] self.kernel_nominator_p = 1 / (1 + np.exp(-self.dlrrf_p)) self.kernel_nominator_m = 1 / (1 + np.exp(+self.dlrrf_m)) # -- Auxilliary variables tau_l = self.get_tau(1.) w_x = self.dlrrf I = np.eye(len(w_x)) self.W_xx = 1. / (I + w_x[:, None] - w_x[None, :]) - I self.k1_x = -np.squeeze(kernel(np.ones(1), w_x)) self.TtT_xx = self.dlr_from_tau(tau_l[:, None] * self.T_lx) self.__bosonic_corr_freq = lambda omega: np.tanh(0.5 * omega) self.bosonic_corr_x = self.__bosonic_corr_freq(self.dlrrf) self.W_bc_xx = self.W_xx * self.bosonic_corr_x[:, None] self.TtT_bc_xx = self.TtT_xx * self.bosonic_corr_x[None, :] def __len__(self): """The length of the DLR expansion Returns ------- rank : int Number of DLR expansion coefficients. """ return self.rank def __xi_arg(self, xi): """Internal helper function to filter xi arguments.""" if xi is None: xi = self.xi assert( np.abs(xi) == 1 and type(xi) == int ) return xi def get_dlr_frequencies(self): """Get real frequency DLR grid :math:`\\omega_x \\in [-\\Lambda, \\Lambda]` Returns ------- w_x : (n), ndarray Scaled real frequency points :math:`\\omega_x` for the DLR representation. """ return self.dlrrf # -- Imaginary time def get_tau_over_beta(self): """Get grid in scaled imaginary time :math:`\\tau/\\beta \\in [0, 1]` Returns ------- ttau_l : (n), ndarray Scaled imaginary time points :math:`\\tilde{\\tau}_l = \\tau_l / \\beta` for the DLR representation, :math:`\\tilde{\\tau}_l \\in [0, 1]`. """ ttau_l = self.dlrit return ttau_l def get_tau(self, beta): """Get :math:`\\tau`-grid in imaginary time :math:`\\tau \\in [0, \\beta]`. Parameters ---------- beta : float Inverse temperature :math:`\\beta` Returns ------- tau_l : (n), ndarray Imaginary time points :math:`\\tau_l` for the DLR representation, :math:`\\tau_l \\in [0, \\beta]`. """ tau_l = self.get_tau_over_beta() * beta return tau_l def dlr_from_tau(self, G_laa): """Transform the rank-3 array_like Green's function `G_laa` from imaginary time to DLR space. Parameters ---------- G_laa : (n,m,m), array_like Green's function in imaginary time with :math:`m \\times m` orbital indices. Returns ------- G_xaa : (n,m,m), ndarray Green's function i DLR coefficient space with :math:`m \\times m` orbital indices. """ G_xaa = lu_solve((self.dlrit2cf, self.it2cfpiv), G_laa) return G_xaa def tau_from_dlr(self, G_xaa): """Transform the rank-3 array_like Green's function `G_xaa` from DLR space to imaginary time. Parameters ---------- G_xaa : (n,m,m), array_like Green's function in DLR coefficient space with :math:`m \\times m` orbital indices. Returns ------- G_laa : (n,m,m), ndarray Green's function in imaginary time with :math:`m \\times m` orbital indices. """ G_laa = np.tensordot(self.T_lx, G_xaa, axes=(1, 0)) return G_laa def tau_from_legendre(self, G_naa): """Transform the rank-3 array_like Green's function `G_naa` from Legendre coefficient space to imaginary time. Parameters ---------- G_naa : (n,m,m), array_like Green's function in Legendre coefficient space with :math:`m \\times m` orbital indices. Returns ------- G_laa : (n,m,m), ndarray Green's function in imaginary time with :math:`m \\times m` orbital indices. """ x = 2 * self.get_tau_over_beta() - 1 G_laa = np.rollaxis(leg.legval(x, G_naa), -1) return G_laa def eval_dlr_tau(self, G_xaa, tau_k, beta): """Evaluate the DLR coefficient Green's function `G_xaa` at arbibrary points in imaginary time. Parameters ---------- G_xaa : (n,m,m), array_like Green's function in DLR coefficient space with :math:`m \\times m` orbital indices. tau_k : (k), array_like Imaginary time points :math:`\\tau_k` where to evaluate the Green's function. beta : float Inverse temperature :math:`\\beta` Returns ------- G_kaa : (k,m,m), ndarray Green's function at the imaginary time points :math:`\\tau_k` with :math:`m \\times m` orbital indices. """ tau_k = tau_k[:, None] / beta w_p = self.dlrrf_p[None, :] K_kp = np.exp(-tau_k*w_p) * self.kernel_nominator_p[None, :] G_kaa = np.einsum('kp,p...->k...', K_kp, G_xaa[self.pm_idx:]) w_m = self.dlrrf_m[None, :] K_km = np.exp((1 - tau_k)*w_m) * self.kernel_nominator_m[None, :] G_kaa += np.einsum('km,m...->k...', K_km, G_xaa[:self.pm_idx]) return G_kaa def lstsq_dlr_from_tau(self, tau_i, G_iaa, beta): """Return DLR coefficients by least squares fit to values on arbitrary imaginary time grid. Parameters ---------- tau_i : (i), array_like Imaginary time points :math:`\\tau_i` where the Green's function is sampled. G_iaa : (i,m,m), array_like Green's function in imaginary time space :math:`G(\\tau_i)` with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` Returns ------- G_xaa : (k,m,m), ndarray Green's function in DLR coefficient space with :math:`m \\times m` orbital indices. """ shape_iaa = G_iaa.shape assert(len(shape_iaa) == 3) shape_iA = (shape_iaa[0], shape_iaa[1]*shape_iaa[2]) shape_xaa = (len(self), shape_iaa[1], shape_iaa[2]) K_ix = kernel(tau_i/beta, self.dlrrf) G_xaa = np.linalg.lstsq( K_ix, G_iaa.reshape(shape_iA), rcond=None)[0].reshape(shape_xaa) return G_xaa # -- Matsubara Frequency def get_matsubara_frequencies(self, beta): """Get Matsubara frequency grid. Parameters ---------- beta : float Inverse temperature :math:`\\beta` Returns ------- w_q : (n), ndarray Matsubara frequency points :math:`i\\omega_q` for the DLR representation. """ zeta = (1 - self.xi)/2 w_q = 1.j * np.pi/beta * (2*self.dlrmf + zeta) return w_q def dlr_from_matsubara(self, G_qaa, beta, xi=None): """Transform the rank-3 array_like Green's function `G_qaa` from Matsbuara frequency to DLR space. Parameters ---------- G_qaa : (n,m,m), array_like Green's function in Matsubara frequency with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- G_xaa : (n,m,m), ndarray Green's function i DLR coefficient space with :math:`m \\times m` orbital indices. """ xi = self.__xi_arg(xi) G_xaa = lu_solve((self.dlrmf2cf, self.mf2cfpiv), G_qaa.conj() / beta) if xi == 1: G_xaa /= self.bosonic_corr_x[:, None, None] return G_xaa def matsubara_from_dlr(self, G_xaa, beta, xi=None): """Transform the rank-3 array_like Green's function `G_xaa` from DLR space to Matsbuara frequency. Parameters ---------- G_xaa : (n,m,m), array_like Green's function i DLR coefficient space with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- G_qaa : (n,m,m), ndarray Green's function in Matsubara frequency with :math:`m \\times m` orbital indices. """ xi = self.__xi_arg(xi) if xi == 1: G_qaa = beta * np.tensordot( self.T_qx * self.bosonic_corr_x[None, :], G_xaa, axes=(1, 0)) else: G_qaa = beta * np.tensordot(self.T_qx, G_xaa, axes=(1, 0)) if len(G_qaa.shape) == 3: G_qaa = np.transpose(G_qaa, axes=(0, 2, 1)) G_qaa = G_qaa.conj() return G_qaa def eval_dlr_freq(self, G_xaa, z, beta, xi=None): """Evaluate the DLR coefficient Green's function `G_xaa` at arbibrary points `z` in frequency space. Parameters ---------- G_xaa : (n,m,m), array_like Green's function in DLR coefficient space with :math:`m \\times m` orbital indices. z : (k), array_like Frequency points :math:`z_k` where to evaluate the Green's function. beta : float Inverse temperature :math:`\\beta` xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- G_zaa : (k,m,m), ndarray Green's function at the frequency points :math:`z_k` with :math:`m \\times m` orbital indices. """ xi = self.__xi_arg(xi) w_x = self.dlrrf / beta kernel_zx = 1./(z[:, None] + w_x[None, :]) if xi == 1: kernel_zx *= self.bosonic_corr_x[None, :] G_zaa = np.einsum('x...,zx->z...', G_xaa, kernel_zx) if len(G_zaa.shape) == 3: G_zaa = np.transpose(G_zaa, axes=(0, 2, 1)) G_zaa = G_zaa.conj() return G_zaa def lstsq_dlr_from_matsubara(self, w_q, G_qaa, beta): """Return DLR coefficients by least squares fit to values on arbitrary Matsubara frequency grid. Parameters ---------- w_q : (q), array_like Imaginary frequency points :math:`i\\omega_q` where the Green's function is sampled. G_qaa : (q,m,m), array_like Green's function in imaginary frequency space :math:`G(i\\omega_q)` with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` Returns ------- G_xaa : (k,m,m), ndarray Green's function in DLR coefficient space with :math:`m \\times m` orbital indices. """ shape_qaa = G_qaa.shape assert(len(shape_qaa) == 3) shape_qA = (shape_qaa[0], shape_qaa[1]*shape_qaa[2]) shape_xaa = (len(self), shape_qaa[1], shape_qaa[2]) K_qx = -1./(w_q[:, None] - self.dlrrf[None, :]/beta) G_xaa = np.linalg.lstsq( K_qx, G_qaa.reshape(shape_qA), rcond=None)[0].reshape(shape_xaa) return G_xaa # -- Mathematical operations def quadratic_hamiltonian(self, G_xaa, beta, xi=None): """ Get quadratic Hamiltonian contribution of physical Green's function. Parameters ---------- G_xaa : (k,m,m), ndarray Green's function in DLR coefficient space with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` Returns ------- H_aa : (m,m), ndarray Quadratic Hamiltonian contribution to the Green's function. """ xi = self.__xi_arg(xi) w_x = self.dlrrf K0_x = kernel(np.array([0.]), w_x) K1_x = kernel(np.array([1.]), w_x) D_x = (-K0_x + xi * K1_x) * w_x / beta H_aa = np.tensordot(D_x, G_xaa, axes=([-1, 0]))[0] return H_aa def convolution(self, A_xaa, B_xaa, beta, xi=None): """ DLR convolution with :math:`\mathcal{O}(N^2)` scaling. Author: <NAME> (2021) Imaginary time convolution .. math:: C = A \\ast B reformulated in DLR coefficient space. The notation :math:`C = A \\ast B` is short hand for: .. math:: C_{ij}(\\tau) = \\sum_k \\int_{0}^\\beta d\\bar{\\tau} A_{ik}(\\tau - \\bar{\\tau}) B_{kj}(\\bar{\\tau}) Parameters ---------- A_xaa : (n,m,m) Green's function :math:`A` in DLR coefficient space with :math:`m \\times m` orbital indices. B_xaa : (n,m,m) Green's function :math:`B` in DLR coefficient space with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- C_xaa : (n,m,m), ndarray Green's function :math:`C` in DLR coefficient space with :math:`m \\times m` orbital indices, given by the convolution :math:`C = A \\ast B`. """ xi = self.__xi_arg(xi) W_xx = self.W_xx if xi == -1 else self.W_bc_xx TtT_xx = self.TtT_xx if xi == -1 else self.TtT_bc_xx n, na, _ = A_xaa.shape WA_xaa = np.matmul(W_xx.T, A_xaa.reshape((n, na*na))).reshape((n, na, na)) C_xaa = np.matmul(WA_xaa, B_xaa) del WA_xaa WB_xaa = np.matmul(W_xx.T, B_xaa.reshape((n, na*na))).reshape((n, na, na)) C_xaa += np.matmul(A_xaa, WB_xaa) del WB_xaa AB_xaa = np.matmul(A_xaa, B_xaa) C_xaa += -xi * self.k1_x[:, None, None] * AB_xaa C_xaa += np.matmul(TtT_xx, AB_xaa.reshape((n, na*na))).reshape((n, na, na)) del AB_xaa C_xaa *= beta return C_xaa def convolution_matrix(self, A_xaa, beta, xi=None): """ DLR convolution matrix with :math:`\mathcal{O}(N^2)` scaling. Author: <NAME> (2021) The imaginary time convolution matrix :math:`M` is given by .. math:: M = [A \\ast] i.e. the combination of the Green's function :math:`A` and the convolution operator :math:`\\ast`. Author: <NAME> (2021) Parameters ---------- A_xaa : (n,m,m) Green's function :math:`A` in DLR coefficient space with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- M_xaxa : (n,m,n,m), ndarray Convolution matrix :math:`[A \\ast]` as a rank-4 tensor in DLR and orbital space. """ xi = self.__xi_arg(xi) W_xx = self.W_xx if xi == -1 else self.W_bc_xx TtT_xx = self.TtT_xx if xi == -1 else self.TtT_bc_xx n, na, _ = A_xaa.shape Q_xaa = np.einsum('yx,yab->xab', W_xx, A_xaa) Q_xaa += -xi * self.k1_x[:,None,None] * A_xaa M_xxaa = np.einsum( 'xy,yab->yxab', W_xx, A_xaa) M_xxaa += np.einsum('xy,yab->xyab', TtT_xx, A_xaa) M_xxaa += np.einsum('xy,yab->xyab', np.eye(n), Q_xaa) M_xxaa *= beta M_xaxa = np.moveaxis(M_xxaa, 2, 1) return M_xaxa # -- Free Green's function solvers def free_greens_function_dlr(self, H_aa, beta, S_aa=None, xi=None): """ Return the free Green's function in DLR coefficent space. The free Green's function is the solution to the Dyson differential equation .. math:: (-\\partial_\\tau - H_{ij}) G_{jk}(\\tau) = \\delta(\\tau) Parameters ---------- H_aa : (m,m), array_like Single-particle Hamiltonian matrix in :math:`m \\times m` orbital space. beta : float Inverse temperature :math:`\\beta` S_aa : (m,m), array_like, optional Overlap matrix for the generalized case of non-orthogonal basis functions, where the Dyson equation takes the form :math:`(-S_{ij} \\partial_\\tau - H_{ij}) G_{jk}(\\tau) = \\delta(\\tau)`. Default is `S_aa = None`. xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- G_xaa : (n,m,m), ndarray Free Green's function :math:`G` in DLR coefficient space with :math:`m \\times m` orbital indices. Notes ----- The fastest algorithm for calculation of free Green's functions is the `free_greens_function_tau` method. """ xi = self.__xi_arg(xi) na = H_aa.shape[0] I_aa = np.eye(na) if S_aa is None: S_aa = I_aa w_x = self.dlrrf n = len(w_x) D_lx = self.T_lx * w_x[None, :] / beta D_AA = np.kron(D_lx, S_aa) - np.kron(self.T_lx, H_aa) bc_x = kernel(np.array([0.]), w_x) - xi * kernel(np.array([1.]), w_x) D_AA[(n-1)*na:, :] = np.kron(bc_x, S_aa) b_Aa = np.zeros((n*na, na)) b_Aa[(n-1)*na:, :] = -I_aa g_xaa = np.linalg.solve(D_AA, b_Aa).reshape((n, na, na)) return g_xaa def free_greens_function_tau(self, H_aa, beta, S_aa=None, xi=None): """ Return the free Green's function in imaginary time. The free Green's function is the solution to the Dyson differential equation .. math:: (-\\partial_\\tau - H_{ij}) G_{jk}(\\tau) = \\delta(\\tau) Parameters ---------- H_aa : (m,m), array_like Single-particle Hamiltonian matrix in :math:`m \\times m` orbital space. beta : float Inverse temperature :math:`\\beta` S_aa : (m,m), array_like, optional Overlap matrix for the generalized case of non-orthogonal basis functions, where the Dyson equation takes the form :math:`(-S_{ij} \\partial_\\tau - H_{ij}) G_{jk}(\\tau) = \\delta(\\tau)`. Default is `S_aa = None`. xi : int, optional Statistics sign, :math:`\\xi = +1` for bosons and :math:`\\xi = -1` for fermions. Returns ------- G_laa : (n,m,m), ndarray Free Green's function :math:`G` in imaginary time with :math:`m \\times m` orbital indices. """ xi = self.__xi_arg(xi) w_x = self.dlrrf if S_aa is None: E, U = np.linalg.eigh(H_aa) else: E, U = scipy_eigh(H_aa, S_aa) tau_l = self.get_tau(1.) g_lE = -kernel(tau_l, E*beta) if xi == 1: g_lE /= self.__bosonic_corr_freq(E*beta)[None, :] g_laa = np.einsum('lE,aE,Eb->lab', g_lE, U, U.T.conj()) return g_laa def free_greens_function_matsubara(self, H_aa, beta, S_aa=None): """ Return the free Green's function in Matsubara frequency. The free Green's function is the solution to the Dyson equation .. math:: G_{ij}(i \\omega_n ) = \\left[ i\\omega_n - H_{ij} \\right]^{-1} Parameters ---------- H_aa : (m,m), array_like Single-particle Hamiltonian matrix in :math:`m \\times m` orbital space. beta : float Inverse temperature :math:`\\beta` S_aa : (m,m), array_like, optional Overlap matrix for the generalized case of non-orthogonal basis functions, where the Dyson equation takes the form :math:`= G_{jk}(i\\omega_n) = (-S_{ij} i\\omega_n - H_{ij})^{-1}`. Default is `S_aa = None`. Returns ------- G_qaa : (n,m,m), ndarray Free Green's function :math:`G` in Matsubara frequency with :math:`m \\times m` orbital indices. Notes ----- The fastest algorithm for calculation of free Green's functions is the `free_greens_function_tau` method. """ if S_aa is None: S_aa = np.eye(H_aa.shape[0]) w_q = self.get_matsubara_frequencies(beta) g_qaa = np.linalg.inv(w_q[:, None, None] * S_aa[None, ...] - H_aa[None, ...]) return g_qaa # -- Dyson equation solvers def dyson_matsubara(self, H_aa, Sigma_qaa, beta, S_aa=None): """ Solve the Dyson equation in Matsubara frequency. The Dyson equation gives the Green's function as .. math:: G_{ij}(i \\omega_n ) = \\left[ i\\omega_n - H_{ij} - \\Sigma(i\\omega_n) \\right]^{-1} Parameters ---------- H_aa : (m,m), array_like Single-particle Hamiltonian matrix in :math:`m \\times m` orbital space. Sigma_qaa : (n,m,m), ndarray Self-energy :math:`\\Sigma` in Matsubara frequency with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` S_aa : (m,m), array_like, optional Overlap matrix for the generalized case of non-orthogonal basis functions. Default is `S_aa = None`. Returns ------- G_qaa : (n,m,m), ndarray Green's function :math:`G` in Matsubara frequency with :math:`m \\times m` orbital indices. Notes ----- The Matsubara frequency Dyson solver is the fastest Dyson solver, albeit not as accurate as the DLR solver `dyson_dlr`. """ if S_aa is None: S_aa = np.eye(H_aa.shape[0]) w_q = self.get_matsubara_frequencies(beta) G_qaa = np.linalg.inv(w_q[:, None, None] * S_aa[None, ...] - H_aa[None, ...] - Sigma_qaa) return G_qaa def dyson_dlr(self, H_aa, Sigma_xaa, beta, S_aa=None, iterative=False, lomem=False, verbose=False, tol=1e-12): """ Solve the Dyson equation in DLR coefficient space. The Dyson equation gives the imaginary time Green's function :math:`G_{ij}(\\tau)` as .. math:: (-\\partial_\\tau - H_{ij} - \\Sigma_{ij} \\ast \\, ) G_{jk}(\\tau) = \\delta(\\tau) Using the free Green's function :math:`g` this can be rewritten as the integral equation .. math:: (1 - g \\ast \\Sigma \\ast \\, ) G = g which here is solved directly in DLR coefficient space. Parameters ---------- H_aa : (m,m), array_like Single-particle Hamiltonian matrix in :math:`m \\times m` orbital space. Sigma_xaa : (n,m,m), ndarray Self-energy :math:`\\Sigma` in DLR coefficient space with :math:`m \\times m` orbital indices. beta : float Inverse temperature :math:`\\beta` S_aa : (m,m), array_like, optional Overlap matrix for the generalized case of non-orthogonal basis functions. Default is `S_aa = None`. iterative : bool, optional Default `False` lomem : bool, optional Default `False` tol : float, optional Tolerance for iterative GMRES solver. Returns ------- G_xaa : (n,m,m), ndarray Green's function :math:`G` in DLR coefficient space with :math:`m \\times m` orbital indices. Notes ----- This DLR space Dyson solver is the most accurate algorithm for solving the Dyson equation. By default it uses Lapack's direct solver on matrix problem in combined DLR and orbital space. This is fast and accurate for small problems. For larger problems the :math:`\\mathcal{O}(N^2M^2)` memory foot-print limits the performance. Hence, for large problems the solver should be run with `iterative=True` and `lomem=True` and will then use GMRES to solve the linear system using an implicit matrix formulation. This formulation gives a memory foot print that is of the same order as storing a single Green's function. However, the requested GMRES tolerance `tol` has to be carefully tuned. """ na = H_aa.shape[0] n = Sigma_xaa.shape[0] I_aa =
np.eye(na)
numpy.eye
#!/usr/bin/env python3 # Using am_sensors/simulatedSensors # [TODO] # - Differentiate between std in static or moving behaviour import math from math import sin, cos, pi import rospy import tf from std_msgs.msg import Header from geometry_msgs.msg import Point, Pose, Quaternion, Twist, Vector3, PoseWithCovariance, PoseWithCovarianceStamped, TwistWithCovariance from sensor_msgs.msg import NavSatFix, Imu from am_driver.msg import WheelEncoder from am_driver.msg import SensorStatus, CurrentStatus from nav_msgs.msg import Odometry import math import threading import matplotlib.pyplot as plt from matplotlib import colors import matplotlib as mpl import seaborn as sns from scipy.spatial.transform import Rotation as Rot import numpy as np import pymap3d as pm # import the random module import random class AEKF_Sim(): def __init__(self): # Define name of the Node rospy.init_node("AEKF5_Sim", anonymous=True) # Define the run type of the Filter self.test = True self.print = False self.ros = True # Define the self.lock to allow multi-threading self.lock = threading.Lock() # Check if the filter is ready to start self.filter = False # Get the current time now = rospy.get_time() # Kalman states self.x_t = 0.0 self.y_t = 0.0 self.yaw_t = 0.0 self.x_dot_t = 0.0 self.yaw_dot_t = 0.0 # Frequency of the Kalman filter self.rate = 250 # Steps to slowly account the control input self.steps = 250 # State-Vector self.X_t = np.array([self.x_t, self.y_t, self.yaw_t, self.x_dot_t, self.yaw_dot_t]) self.X_Pred = self.X_t self.X_control = np.array([self.x_t, self.y_t, self.yaw_t, self.x_dot_t, self.yaw_dot_t]) self.X_wheel_odom = np.array([self.x_t, self.y_t, self.yaw_t, self.x_dot_t, self.yaw_dot_t]) self.X_visual_odom = np.array([self.x_t, self.y_t, self.yaw_t, self.x_dot_t, self.yaw_dot_t]) # Filter Covariance Matrix self.P_t = np.eye(5)*1e-5 self.P_Pred = self.P_t # Filter Innovation Matrix self.K = np.diag(np.zeros(5)) # Initialise Measurements Vector self.Z = np.array([]) # Initialise Measurements Covariance Matrix self.R = np.array([]) # Initialise Measurements Matrix self.H = np.zeros((5,0)) # Initialise Measurements Jacobian Matrix self.J_H = np.zeros((5,0)) print("Initialised AEKF_Sim") # Define set of topics to subscribe to rospy.Subscriber('Odom_Ground', Odometry, self.GroundTruth) self.ground_state = np.array([0.0, 0.0, 0.0, 0.0, 0.0]) rospy.Subscriber('cmd_vel', Twist, self.Control) self.control_fusion = True self.control_measure = False self.control_t = -1 self.control_state = np.array([0.0, 0.0]) rospy.Subscriber('current_status', CurrentStatus, self.CurrentStatus) self.current_status = 1 rospy.Subscriber('/wheel_odometry/odom', Vector3, self.WheelOdometer) self.wheel_fusion = True self.wheel_odometer_measure = False self.wheel_odometer_state = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.wheel_odometer_bias = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.wheel_odometer_var = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) rospy.Subscriber('/visual_odometry/odom', Vector3, self.VisualOdometer) self.visual_fusion = True self.visual_odometer_measure = False self.visual_odometer_state = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.visual_odometer_bias = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.visual_odometer_var = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.gps_th = 0 rospy.Subscriber('automower_gps/GPSfix', Vector3, self.GPS) self.gps_fusion = True self.gps_measure = False self.gps_state = np.array([0.0, 0.0, 0.0]) self.gps_bias = np.array([0.0, 0.0, 0.0]) self.gps_var =
np.array([0.0, 0.0, 0.0])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """hydrological methods powered by pyFlwDir""" import warnings import logging import numpy as np import xarray as xr import geopandas as gpd import pyflwdir from typing import Tuple, Union, Optional from . import gis_utils logger = logging.getLogger(__name__) __all__ = [ "flwdir_from_da", "d8_from_dem", "reproject_hydrography_like", "stream_map", "basin_map", "outlet_map", "clip_basins", "upscale_flwdir", "dem_adjust", ] ### FLWDIR METHODS ### def flwdir_from_da( da: xr.DataArray, ftype: str = "infer", check_ftype: bool = True, mask: Union[xr.DataArray, bool, None] = None, logger=logger, ): """Parse dataarray to flow direction raster object. If a mask coordinate is present this will be passed on the the pyflwdir.from_array method. Parameters ---------- da : xarray.DataArray DataArray containing flow direction raster ftype : {'d8', 'ldd', 'nextxy', 'nextidx', 'infer'}, optional name of flow direction type, infer from data if 'infer', by default is 'infer' check_ftype : bool, optional check if valid flow direction raster if ftype is not 'infer', by default True mask : xr.DataArray, bool, optional Mask for gridded flow direction data, by default None. If True, use the mask coordinate of `da`. Returns ------- flwdir : pyflwdir.FlwdirRaster Flow direction raster object """ if not isinstance(da, xr.DataArray): raise TypeError("da should be an instance of xarray.DataArray") crs = da.raster.crs if crs is None: raise ValueError("da is missing CRS property, set using `da.raster.set_crs`") latlon = crs.is_geographic _crs = "geographic" if latlon else "projected" _unit = "degree" if latlon else "meter" logger.debug(f"Initializing flwdir with {_crs} CRS with unit {_unit}.") if isinstance(mask, xr.DataArray): mask = mask.values elif isinstance(mask, bool) and mask and "mask" in da.coords: # backwards compatibility for mask = True mask = da["mask"].values elif not isinstance(mask, np.ndarray): mask = None flwdir = pyflwdir.from_array( data=da.squeeze().values, ftype=ftype, check_ftype=check_ftype, mask=mask, transform=da.raster.transform, latlon=latlon, ) return flwdir def d8_from_dem( da_elv: xr.DataArray, gdf_stream: Optional[gpd.GeoDataFrame] = None, max_depth: float = -1.0, outlets: str = "edge", idxs_pit: Optional[np.ndarray] = None, ) -> xr.DataArray: """Derive D8 flow directions grid from an elevation grid. Outlets occur at the edge of valid data or at user defined cells (if `idxs_pit` is provided). A local depressions is filled based on its lowest pour point level if the pour point depth is smaller than the maximum pour point depth `max_depth`, otherwise the lowest elevation in the depression becomes a pit. Parameters ---------- da_elv: 2D xarray.DataArray elevation raster gdf_stream: geopandas.GeoDataArray, optional stream vector layer with 'uparea' [km2] column which is used to burn the river in the elevation data. max_depth: float, optional Maximum pour point depth. Depressions with a larger pour point depth are set as pit. A negative value (default) equals an infinitely large pour point depth causing all depressions to be filled. outlets: {'edge', 'min'} Position for basin outlet(s) at the all valid elevation edge cell ('edge') or only the minimum elevation edge cell ('min') idxs_pit: 1D array of int Linear indices of outlet cells. Returns ------- da_flw: xarray.DataArray D8 flow direction grid See Also -------- pyflwdir.dem.fill_depressions """ nodata = da_elv.raster.nodata crs = da_elv.raster.crs assert da_elv.raster.res[1] < 0 assert nodata is not None and ~np.isnan(nodata) # burn in river if if gdf_stream is not None and "uparea" in gdf_stream.columns: gdf_stream = gdf_stream.sort_values(by="uparea") dst_rivupa = da_elv.raster.rasterize(gdf_stream, col_name="uparea", nodata=0) # make sure the rivers have a slope and are below all other elevation cells. # river elevation = min(elv) - log10(uparea[m2]) from rasterized river uparea. elvmin = da_elv.where(da_elv != nodata).min() elvriv = elvmin - np.log10(np.maximum(1.0, dst_rivupa * 1e3)) # synthetic elevation with river burned in da_elv = elvriv.where(np.logical_and(da_elv != nodata, dst_rivupa > 0), da_elv) da_elv.raster.set_nodata(nodata) da_elv.raster.set_crs(crs) # derive new flow directions from (synthetic) elevation d8 = pyflwdir.dem.fill_depressions( da_elv.values.astype(np.float32), max_depth=max_depth, nodata=da_elv.raster.nodata, outlets=outlets, idxs_pit=idxs_pit, )[1] # return xarray data array da_flw = xr.DataArray( dims=da_elv.raster.dims, coords=da_elv.raster.coords, data=d8, name="flwdir", ) da_flw.raster.set_nodata(247) da_flw.raster.set_crs(crs) return da_flw def upscale_flwdir( ds: xr.Dataset, flwdir: pyflwdir.FlwdirRaster, scale_ratio: int, method: str = "com2", uparea_name: Optional[str] = None, flwdir_name: str = "flwdir", logger=logger, **kwargs, ) -> Tuple[xr.DataArray, pyflwdir.FlwdirRaster]: """Upscale flow direction network to lower resolution. Parameters ---------- ds : xarray.Dataset Dataset flow direction. flwdir : pyflwdir.FlwdirRaster Flow direction raster object. scale_ratio: int Size of upscaled (coarse) grid cells. uparea_name : str, optional Name of upstream area DataArray, by default None and derived on the fly. flwdir_name : str, optional Name of upscaled flow direction raster DataArray, by default "flwdir" method : {'com2', 'com', 'eam', 'dmm'} Upscaling method for flow direction data, by default 'com2'. Returns ------- da_flwdir = xarray.DataArray Upscaled D8 flow direction grid. flwdir_out : pyflwdir.FlwdirRaster Upscaled pyflwdir flow direction raster object. See Also -------- pyflwdir.FlwdirRaster.upscale """ if not np.all(flwdir.shape == ds.raster.shape): raise ValueError("Flwdir and ds dimensions do not match.") uparea = None if uparea_name is not None: if uparea_name in ds.data_vars: uparea = ds[uparea_name].values else: logger.warning(f'Upstream area map "{uparea_name}" not in dataset.') flwdir_out, idxs_out = flwdir.upscale( scale_ratio, method=method, uparea=uparea, **kwargs ) # setup output DataArray ftype = flwdir.ftype dims = ds.raster.dims xs, ys = gis_utils.affine_to_coords(flwdir_out.transform, flwdir_out.shape) coords = {ds.raster.y_dim: ys, ds.raster.x_dim: xs} da_flwdir = xr.DataArray( name=flwdir_name, data=flwdir_out.to_array(ftype), coords=coords, dims=dims, attrs=dict(long_name=f"{ftype} flow direction", _FillValue=flwdir._core._mv), ) # translate outlet indices to global x,y coordinates x_out, y_out = ds.raster.idx_to_xy(idxs_out, mask=idxs_out != flwdir._mv) da_flwdir.coords["x_out"] = xr.Variable( dims=dims, data=x_out, attrs=dict(long_name="subgrid outlet x coordinate", _FillValue=np.nan), ) da_flwdir.coords["y_out"] = xr.Variable( dims=dims, data=y_out, attrs=dict(long_name="subgrid outlet y coordinate", _FillValue=np.nan), ) # outlet indices da_flwdir.coords["idx_out"] = xr.DataArray( data=idxs_out, dims=dims, attrs=dict(long_name="subgrid outlet index", _FillValue=flwdir._mv), ) return da_flwdir, flwdir_out def reproject_hydrography_like( ds_hydro: xr.Dataset, da_elv: xr.DataArray, river_upa: float = 5.0, river_len: float = 1e3, uparea_name: str = "uparea", flwdir_name: str = "flwdir", logger=logger, **kwargs, ) -> xr.Dataset: """Reproject flow direction and upstream area data to the `da_elv` crs and grid. Flow directions are derived from a reprojected grid of synthetic elevation, based on the log10 upstream area [m2]. For regions without upstream area, the original elevation is used assuming these elevation values are <= 0 (i.e. offshore bathymetry). The upstream area on the reprojected grid is based on the new flow directions and rivers entering the domain, defined by the minimum upstream area `river_upa` [km2] and a distance from river outlets `river_len` [m]. The latter is to avoid setting boundary conditions at the downstream end / outflow of a river. NOTE: the resolution of `ds_hydro` should be similar or smaller than the resolution of `da_elv` for good results. NOTE: this method is still experimental and might change in the future! Parameters ---------- ds_hydro: xarray.Dataset Dataset with gridded flow directions named `flwdir_name` and upstream area named `uparea_name` [km2]. da_elv: xarray.DataArray DataArray with elevation on destination grid. river_upa: float, optional Minimum upstream area threshold [km2] for inflowing rivers, by default 5 km2 river_len: float, optional Mimimum distance from river outlet for inflowing river location, by default 1000 m. uparea_name, flwdir_name : str, optional Name of upstream area (default "uparea") and flow direction ("flwdir") variables in `ds_hydro`. kwargs: key-word arguments key-word arguments are passed to `d8_from_dem` Returns ------- xarray.Dataset Reprojected gridded dataset with flow direction and upstream area variables. See Also -------- d8_from_dem """ # check N->S orientation assert da_elv.raster.res[1] < 0 assert ds_hydro.raster.res[1] < 0 for name in [uparea_name, flwdir_name]: if name not in ds_hydro: raise ValueError(f"{name} variable not found in ds_hydro") crs = da_elv.raster.crs da_upa = ds_hydro[uparea_name] nodata = da_upa.raster.nodata upa_mask = da_upa != nodata rivmask = da_upa > river_upa # synthetic elevation -> max(log10(uparea[m2])) - log10(uparea[m2]) elvsyn = np.log10(np.maximum(1.0, da_upa * 1e3)) elvsyn = da_upa.where(~upa_mask, elvsyn.max() - elvsyn) # take minimum with rank to ensure pits of main rivers have zero syn. elevation if
np.any(rivmask)
numpy.any
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes from ..utils import cat from .utils import permute_and_flatten import scipy.ndimage import numpy as np def extract_bboxes(mask): """Compute bounding boxes from masks. mask: [height, width, num_instances]. Mask pixels are either 1 or 0. Returns: bbox array [num_instances, (y1, x1, y2, x2)]. """ if len(mask.shape) == 2: mask = mask[:, :, np.newaxis] boxes = np.zeros([mask.shape[-1], 4], dtype=np.float32) for i in range(mask.shape[-1]): m = mask[:, :, i] # Bounding box. horizontal_indicies = np.where(np.any(m, axis=0))[0] vertical_indicies = np.where(np.any(m, axis=1))[0] if horizontal_indicies.shape[0]: x1, x2 = horizontal_indicies[[0, -1]] y1, y2 = vertical_indicies[[0, -1]] # x2 and y2 should not be part of the box. Increment by 1. x2 += 1 y2 += 1 w = x2 - x1 h = y2 - y1 ctr_x = (x1 + 0.5 * w) * 4.0 ctr_y = (y1 + 0.5 * h) * 4.0 w = w * 4.0 / 0.3 h = h * 4.0 / 0.3 x1 = ctr_x - w * 0.5 y1 = ctr_y - h * 0.5 x2 = ctr_x + w * 0.5 y2 = ctr_y + h * 0.5 else: assert False, (horizontal_indicies, vertical_indicies) # No mask for this instance. Might happen due to # resizing or cropping. Set bbox to zeros x1, x2, y1, y2 = 0, 0, 0, 0 boxes[i] = np.array([x1, y1, x2, y2]) return boxes.astype(np.float32) class RPNPostProcessor(torch.nn.Module): """ Performs post-processing on the outputs of the RPN boxes, before feeding the proposals to the heads """ def __init__( self, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, box_coder=None, fpn_post_nms_top_n=None, fpn_post_nms_per_batch=True, pred_targets=False, pred_targets_as_true=False, ): """ Arguments: pre_nms_top_n (int) post_nms_top_n (int) nms_thresh (float) min_size (int) box_coder (BoxCoder) fpn_post_nms_top_n (int) """ super(RPNPostProcessor, self).__init__() self.pre_nms_top_n = pre_nms_top_n self.post_nms_top_n = post_nms_top_n self.nms_thresh = nms_thresh self.min_size = min_size if box_coder is None: box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) self.box_coder = box_coder if fpn_post_nms_top_n is None: fpn_post_nms_top_n = post_nms_top_n self.fpn_post_nms_top_n = fpn_post_nms_top_n self.fpn_post_nms_per_batch = fpn_post_nms_per_batch self.pred_targets = pred_targets self.pred_targets_as_true = pred_targets_as_true def add_gt_proposals(self, proposals, targets): """ Arguments: proposals: list[BoxList] targets: list[BoxList] """ # Get the device we're operating on device = proposals[0].bbox.device gt_boxes = [target.copy_with_fields([]) for target in targets] # later cat of bbox requires all fields to be present for all bbox # so we need to add a dummy for objectness that's missing for gt_box in gt_boxes: gt_box.add_field("objectness", torch.ones(len(gt_box), device=device)) proposals = [ cat_boxlist((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes) ] return proposals def add_pred_proposals(self, proposals, pred_targets): """ Arguments: proposals: list[BoxList] targets: list[BoxList] """ # Get the device we're operating on device = proposals[0].bbox.device for idx, proposal in enumerate(proposals): if pred_targets and pred_targets[idx]: gt_box = pred_targets[idx].copy_with_fields([]) gt_box.add_field("objectness", torch.ones(len(gt_box), device=device) * 2) proposals[idx] = cat_boxlist([proposal, gt_box]) return proposals def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) batch_idx = torch.arange(N, device=device)[:, None] box_regression = box_regression[batch_idx, topk_idx] image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] proposals = self.box_coder.decode( box_regression.view(-1, 4), concat_anchors.view(-1, 4) ) proposals = proposals.view(N, -1, 4) result = [] for proposal, score, im_shape in zip(proposals, objectness, image_shapes): boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result def forward(self, anchors, objectness, box_regression, targets=None, centerness=None, rpn_center_box_regression=None, centerness_pack=None): """ Arguments: anchors: list[list[BoxList]] objectness: list[tensor] box_regression: list[tensor] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] num_levels = len(objectness) anchors = list(zip(*anchors)) for a, o, b in zip(anchors, objectness, box_regression): sampled_boxes.append(self.forward_for_single_feature_map(a, o, b)) boxlists = list(zip(*sampled_boxes)) boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] if num_levels > 1: boxlists = self.select_over_all_levels(boxlists) # append ground-truth bboxes to proposals if self.training and targets is not None: boxlists = self.add_gt_proposals(boxlists, targets) if self.pred_targets: pred_targets = [] if True: for img_centerness, center_box_reg in zip(centerness, rpn_center_box_regression): # gt_centerness, gt_bbox, anchor_bbox = center_target # print(rpn_center_box_regression, anchor_bbox) # gt_mask = gt_centerness.detach().cpu().numpy() > 0.0 img_centerness = img_centerness[0, :, :] center_box_reg = center_box_reg[:, :, :].permute(1, 2, 0) anchor_bbox = np.zeros(shape=(center_box_reg.shape[0], center_box_reg.shape[1], 4)) for xx in range(anchor_bbox.shape[1]): for yy in range(anchor_bbox.shape[0]): anchor_bbox[yy, xx, :] = [max(0.0, xx * 4 - 16), max(0.0, yy * 4 - 16), min(xx * 4 + 16, boxlists[0].size[0]), min(yy * 4 + 16, boxlists[0].size[1])] anchor_bbox = torch.as_tensor(anchor_bbox, device=center_box_reg.device) # print(center_box_reg.shape, anchor_bbox.shape) boxes = self.box_coder.decode(center_box_reg.reshape(-1, 4), anchor_bbox.view(-1, 4)) pred_target = None pred_score = torch.sigmoid(img_centerness.detach()).cpu().numpy() pred_mask = pred_score > 0.95 # print(gt_mask.shape, pred_mask.shape) imllabel, numlabel = scipy.ndimage.label(pred_mask) if numlabel > 0: valid = np.zeros(shape=(numlabel,), dtype=np.bool) box_inds = [] for ano in range(1, numlabel + 1): mask = imllabel == ano valid[ano - 1] = True # gt_mask[mask].sum() == 0 box_inds.append(np.argmax(pred_score * mask)) if
np.any(valid)
numpy.any
import sys import operator import pytest import ctypes import gc import warnings import numpy as np from numpy.core._rational_tests import rational from numpy.core._multiarray_tests import create_custom_field_dtype from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT) from numpy.compat import pickle from itertools import permutations def assert_dtype_equal(a, b): assert_equal(a, b) assert_equal(hash(a), hash(b), "two equivalent types do not hash to the same value !") def assert_dtype_not_equal(a, b): assert_(a != b) assert_(hash(a) != hash(b), "two different types hash to the same value !") class TestBuiltin: @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object, np.compat.unicode]) def test_run(self, t): """Only test hash runs at all.""" dt = np.dtype(t) hash(dt) @pytest.mark.parametrize('t', [int, float]) def test_dtype(self, t): # Make sure equivalent byte order char hash the same (e.g. < and = on # little endian) dt = np.dtype(t) dt2 = dt.newbyteorder("<") dt3 = dt.newbyteorder(">") if dt == dt2: assert_(dt.byteorder != dt2.byteorder, "bogus test") assert_dtype_equal(dt, dt2) else: assert_(dt.byteorder != dt3.byteorder, "bogus test") assert_dtype_equal(dt, dt3) def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right)) def test_invalid_types(self): # Make sure invalid type strings raise an error assert_raises(TypeError, np.dtype, 'O3') assert_raises(TypeError, np.dtype, 'O5') assert_raises(TypeError, np.dtype, 'O7') assert_raises(TypeError, np.dtype, 'b3') assert_raises(TypeError, np.dtype, 'h4') assert_raises(TypeError, np.dtype, 'I5') assert_raises(TypeError, np.dtype, 'e3') assert_raises(TypeError, np.dtype, 'f5') if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16: assert_raises(TypeError, np.dtype, 'g12') elif np.dtype('g').itemsize == 12: assert_raises(TypeError, np.dtype, 'g16') if np.dtype('l').itemsize == 8: assert_raises(TypeError, np.dtype, 'l4') assert_raises(TypeError, np.dtype, 'L4') else: assert_raises(TypeError, np.dtype, 'l8') assert_raises(TypeError, np.dtype, 'L8') if np.dtype('q').itemsize == 8: assert_raises(TypeError, np.dtype, 'q4') assert_raises(TypeError, np.dtype, 'Q4') else: assert_raises(TypeError, np.dtype, 'q8') assert_raises(TypeError, np.dtype, 'Q8') @pytest.mark.parametrize("dtype", ['Bool', 'Complex32', 'Complex64', 'Float16', 'Float32', 'Float64', 'Int8', 'Int16', 'Int32', 'Int64', 'Object0', 'Timedelta64', 'UInt8', 'UInt16', 'UInt32', 'UInt64', 'Void0', "Float128", "Complex128"]) def test_numeric_style_types_are_invalid(self, dtype): with assert_raises(TypeError): np.dtype(dtype) @pytest.mark.parametrize( 'value', ['m8', 'M8', 'datetime64', 'timedelta64', 'i4, (2,3)f8, f4', 'a3, 3u8, (3,4)a10', '>f', '<f', '=f', '|f', ]) def test_dtype_bytes_str_equivalence(self, value): bytes_value = value.encode('ascii') from_bytes = np.dtype(bytes_value) from_str = np.dtype(value) assert_dtype_equal(from_bytes, from_str) def test_dtype_from_bytes(self): # Empty bytes object assert_raises(TypeError, np.dtype, b'') # Byte order indicator, but no type assert_raises(TypeError, np.dtype, b'|') # Single character with ordinal < NPY_NTYPES returns # type by index into _builtin_descrs assert_dtype_equal(np.dtype(bytes([0])), np.dtype('bool')) assert_dtype_equal(np.dtype(bytes([17])), np.dtype(object)) # Single character where value is a valid type code assert_dtype_equal(np.dtype(b'f'), np.dtype('float32')) # Bytes with non-ascii values raise errors assert_raises(TypeError, np.dtype, b'\xff') assert_raises(TypeError, np.dtype, b's\xff') def test_bad_param(self): # Can't give a size that's too small assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'i1'], 'offsets':[0, 4], 'itemsize':4}) # If alignment is enabled, the alignment (4) must divide the itemsize assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'i1'], 'offsets':[0, 4], 'itemsize':9}, align=True) # If alignment is enabled, the individual fields must be aligned assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i1', 'f4'], 'offsets':[0, 2]}, align=True) def test_field_order_equality(self): x = np.dtype({'names': ['A', 'B'], 'formats': ['i4', 'f4'], 'offsets': [0, 4]}) y = np.dtype({'names': ['B', 'A'], 'formats': ['f4', 'i4'], 'offsets': [4, 0]}) assert_equal(x == y, False) # But it is currently an equivalent cast: assert np.can_cast(x, y, casting="equiv") class TestRecord: def test_equivalent_record(self): """Test whether equivalent record dtypes hash the same.""" a = np.dtype([('yo', int)]) b = np.dtype([('yo', int)]) assert_dtype_equal(a, b) def test_different_names(self): # In theory, they may hash the same (collision) ? a = np.dtype([('yo', int)]) b = np.dtype([('ye', int)]) assert_dtype_not_equal(a, b) def test_different_titles(self): # In theory, they may hash the same (collision) ? a = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['Red pixel', 'Blue pixel']}) b = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['RRed pixel', 'Blue pixel']}) assert_dtype_not_equal(a, b) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_refcount_dictionary_setting(self): names = ["name1"] formats = ["f8"] titles = ["t1"] offsets = [0] d = dict(names=names, formats=formats, titles=titles, offsets=offsets) refcounts = {k: sys.getrefcount(i) for k, i in d.items()} np.dtype(d) refcounts_new = {k: sys.getrefcount(i) for k, i in d.items()} assert refcounts == refcounts_new def test_mutate(self): # Mutating a dtype should reset the cached hash value a = np.dtype([('yo', int)]) b = np.dtype([('yo', int)]) c = np.dtype([('ye', int)]) assert_dtype_equal(a, b) assert_dtype_not_equal(a, c) a.names = ['ye'] assert_dtype_equal(a, c) assert_dtype_not_equal(a, b) state = b.__reduce__()[2] a.__setstate__(state) assert_dtype_equal(a, b) assert_dtype_not_equal(a, c) def test_not_lists(self): """Test if an appropriate exception is raised when passing bad values to the dtype constructor. """ assert_raises(TypeError, np.dtype, dict(names={'A', 'B'}, formats=['f8', 'i4'])) assert_raises(TypeError, np.dtype, dict(names=['A', 'B'], formats={'f8', 'i4'})) def test_aligned_size(self): # Check that structured dtypes get padded to an aligned size dt = np.dtype('i4, i1', align=True) assert_equal(dt.itemsize, 8) dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True) assert_equal(dt.itemsize, 8) dt = np.dtype({'names':['f0', 'f1'], 'formats':['i4', 'u1'], 'offsets':[0, 4]}, align=True) assert_equal(dt.itemsize, 8) dt = np.dtype({'f0': ('i4', 0), 'f1':('u1', 4)}, align=True) assert_equal(dt.itemsize, 8) # Nesting should preserve that alignment dt1 = np.dtype([('f0', 'i4'), ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]), ('f2', 'i1')], align=True) assert_equal(dt1.itemsize, 20) dt2 = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['i4', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 'i1'], 'offsets':[0, 4, 16]}, align=True) assert_equal(dt2.itemsize, 20) dt3 = np.dtype({'f0': ('i4', 0), 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4), 'f2': ('i1', 16)}, align=True) assert_equal(dt3.itemsize, 20) assert_equal(dt1, dt2) assert_equal(dt2, dt3) # Nesting should preserve packing dt1 = np.dtype([('f0', 'i4'), ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]), ('f2', 'i1')], align=False) assert_equal(dt1.itemsize, 11) dt2 = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['i4', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 'i1'], 'offsets':[0, 4, 10]}, align=False) assert_equal(dt2.itemsize, 11) dt3 = np.dtype({'f0': ('i4', 0), 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4), 'f2': ('i1', 10)}, align=False) assert_equal(dt3.itemsize, 11) assert_equal(dt1, dt2) assert_equal(dt2, dt3) # Array of subtype should preserve alignment dt1 = np.dtype([('a', '|i1'), ('b', [('f0', '<i2'), ('f1', '<f4')], 2)], align=True) assert_equal(dt1.descr, [('a', '|i1'), ('', '|V3'), ('b', [('f0', '<i2'), ('', '|V2'), ('f1', '<f4')], (2,))]) def test_union_struct(self): # Should be able to create union dtypes dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[0, 0, 2]}, align=True) assert_equal(dt.itemsize, 4) a = np.array([3], dtype='<u4').view(dt) a['f1'] = 10 a['f2'] = 36 assert_equal(a['f0'], 10 + 36*256*256) # Should be able to specify fields out of order dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[4, 0, 2]}, align=True) assert_equal(dt.itemsize, 8) # field name should not matter: assignment is by position dt2 = np.dtype({'names':['f2', 'f0', 'f1'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[4, 0, 2]}, align=True) vals = [(0, 1, 2), (3, -1, 4)] vals2 = [(0, 1, 2), (3, -1, 4)] a = np.array(vals, dt) b = np.array(vals2, dt2) assert_equal(a.astype(dt2), b) assert_equal(b.astype(dt), a) assert_equal(a.view(dt2), b) assert_equal(b.view(dt), a) # Should not be able to overlap objects with other types assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['O', 'i1'], 'offsets':[0, 2]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'O'], 'offsets':[0, 3]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':[[('a', 'O')], 'i1'], 'offsets':[0, 2]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', [('a', 'O')]], 'offsets':[0, 3]}) # Out of order should still be ok, however dt = np.dtype({'names':['f0', 'f1'], 'formats':['i1', 'O'], 'offsets':[np.dtype('intp').itemsize, 0]}) @pytest.mark.parametrize(["obj", "dtype", "expected"], [([], ("(2)f4,"), np.empty((0, 2), dtype="f4")), (3, "(3)f4,", [3, 3, 3]), (np.float64(2), "(2)f4,", [2, 2]), ([((0, 1), (1, 2)), ((2,),)], '(2,2)f4', None), (["1", "2"], "(2)i,", None)]) def test_subarray_list(self, obj, dtype, expected): dtype = np.dtype(dtype) res = np.array(obj, dtype=dtype) if expected is None: # iterate the 1-d list to fill the array expected = np.empty(len(obj), dtype=dtype) for i in range(len(expected)): expected[i] = obj[i] assert_array_equal(res, expected) def test_comma_datetime(self): dt = np.dtype('M8[D],datetime64[Y],i8') assert_equal(dt, np.dtype([('f0', 'M8[D]'), ('f1', 'datetime64[Y]'), ('f2', 'i8')])) def test_from_dictproxy(self): # Tests for PR #5920 dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']}) assert_dtype_equal(dt, np.dtype(dt.fields)) dt2 = np.dtype((np.void, dt.fields)) assert_equal(dt2.fields, dt.fields) def test_from_dict_with_zero_width_field(self): # Regression test for #6430 / #2196 dt = np.dtype([('val1', np.float32, (0,)), ('val2', int)]) dt2 = np.dtype({'names': ['val1', 'val2'], 'formats': [(np.float32, (0,)), int]}) assert_dtype_equal(dt, dt2) assert_equal(dt.fields['val1'][0].itemsize, 0) assert_equal(dt.itemsize, dt.fields['val2'][0].itemsize) def test_bool_commastring(self): d = np.dtype('?,?,?') # raises? assert_equal(len(d.names), 3) for n in d.names: assert_equal(d.fields[n][0], np.dtype('?')) def test_nonint_offsets(self): # gh-8059 def make_dtype(off): return np.dtype({'names': ['A'], 'formats': ['i4'], 'offsets': [off]}) assert_raises(TypeError, make_dtype, 'ASD') assert_raises(OverflowError, make_dtype, 2**70) assert_raises(TypeError, make_dtype, 2.3) assert_raises(ValueError, make_dtype, -10) # no errors here: dt = make_dtype(np.uint32(0)) np.zeros(1, dtype=dt)[0].item() def test_fields_by_index(self): dt = np.dtype([('a', np.int8), ('b', np.float32, 3)]) assert_dtype_equal(dt[0], np.dtype(np.int8)) assert_dtype_equal(dt[1], np.dtype((np.float32, 3))) assert_dtype_equal(dt[-1], dt[1]) assert_dtype_equal(dt[-2], dt[0]) assert_raises(IndexError, lambda: dt[-3]) assert_raises(TypeError, operator.getitem, dt, 3.0) assert_equal(dt[1], dt[np.int8(1)]) @pytest.mark.parametrize('align_flag',[False, True]) def test_multifield_index(self, align_flag): # indexing with a list produces subfields # the align flag should be preserved dt = np.dtype([ (('title', 'col1'), '<U20'), ('A', '<f8'), ('B', '<f8') ], align=align_flag) dt_sub = dt[['B', 'col1']] assert_equal( dt_sub, np.dtype({ 'names': ['B', 'col1'], 'formats': ['<f8', '<U20'], 'offsets': [88, 0], 'titles': [None, 'title'], 'itemsize': 96 }) ) assert_equal(dt_sub.isalignedstruct, align_flag) dt_sub = dt[['B']] assert_equal( dt_sub, np.dtype({ 'names': ['B'], 'formats': ['<f8'], 'offsets': [88], 'itemsize': 96 }) ) assert_equal(dt_sub.isalignedstruct, align_flag) dt_sub = dt[[]] assert_equal( dt_sub, np.dtype({ 'names': [], 'formats': [], 'offsets': [], 'itemsize': 96 }) ) assert_equal(dt_sub.isalignedstruct, align_flag) assert_raises(TypeError, operator.getitem, dt, ()) assert_raises(TypeError, operator.getitem, dt, [1, 2, 3]) assert_raises(TypeError, operator.getitem, dt, ['col1', 2]) assert_raises(KeyError, operator.getitem, dt, ['fake']) assert_raises(KeyError, operator.getitem, dt, ['title']) assert_raises(ValueError, operator.getitem, dt, ['col1', 'col1']) def test_partial_dict(self): # 'names' is missing assert_raises(ValueError, np.dtype, {'formats': ['i4', 'i4'], 'f0': ('i4', 0), 'f1':('i4', 4)}) def test_fieldless_views(self): a = np.zeros(2, dtype={'names':[], 'formats':[], 'offsets':[], 'itemsize':8}) assert_raises(ValueError, a.view, np.dtype([])) d = np.dtype((np.dtype([]), 10)) assert_equal(d.shape, (10,)) assert_equal(d.itemsize, 0) assert_equal(d.base, np.dtype([])) arr = np.fromiter((() for i in range(10)), []) assert_equal(arr.dtype, np.dtype([])) assert_raises(ValueError, np.frombuffer, b'', dtype=[]) assert_equal(np.frombuffer(b'', dtype=[], count=2), np.empty(2, dtype=[])) assert_raises(ValueError, np.dtype, ([], 'f8')) assert_raises(ValueError, np.zeros(1, dtype='i4').view, []) assert_equal(np.zeros(2, dtype=[]) == np.zeros(2, dtype=[]), np.ones(2, dtype=bool)) assert_equal(np.zeros((1, 2), dtype=[]) == a, np.ones((1, 2), dtype=bool)) class TestSubarray: def test_single_subarray(self): a = np.dtype((int, (2))) b = np.dtype((int, (2,))) assert_dtype_equal(a, b) assert_equal(type(a.subdtype[1]), tuple) assert_equal(type(b.subdtype[1]), tuple) def test_equivalent_record(self): """Test whether equivalent subarray dtypes hash the same.""" a = np.dtype((int, (2, 3))) b = np.dtype((int, (2, 3))) assert_dtype_equal(a, b) def test_nonequivalent_record(self): """Test whether different subarray dtypes hash differently.""" a = np.dtype((int, (2, 3))) b = np.dtype((int, (3, 2))) assert_dtype_not_equal(a, b) a = np.dtype((int, (2, 3))) b = np.dtype((int, (2, 2))) assert_dtype_not_equal(a, b) a = np.dtype((int, (1, 2, 3))) b = np.dtype((int, (1, 2))) assert_dtype_not_equal(a, b) def test_shape_equal(self): """Test some data types that are equal""" assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', tuple()))) # FutureWarning during deprecation period; after it is passed this # should instead check that "(1)f8" == "1f8" == ("f8", 1). with pytest.warns(FutureWarning): assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', 1))) assert_dtype_equal(np.dtype((int, 2)), np.dtype((int, (2,)))) assert_dtype_equal(np.dtype(('<f4', (3, 2))), np.dtype(('<f4', (3, 2)))) d = ([('a', 'f4', (1, 2)), ('b', 'f8', (3, 1))], (3, 2)) assert_dtype_equal(np.dtype(d), np.dtype(d)) def test_shape_simple(self): """Test some simple cases that shouldn't be equal""" assert_dtype_not_equal(np.dtype('f8'), np.dtype(('f8', (1,)))) assert_dtype_not_equal(np.dtype(('f8', (1,))), np.dtype(('f8', (1, 1)))) assert_dtype_not_equal(np.dtype(('f4', (3, 2))), np.dtype(('f4', (2, 3)))) def test_shape_monster(self): """Test some more complicated cases that shouldn't be equal""" assert_dtype_not_equal( np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))), np.dtype(([('a', 'f4', (1, 2)), ('b', 'f8', (1, 3))], (2, 2)))) assert_dtype_not_equal( np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))), np.dtype(([('a', 'f4', (2, 1)), ('b', 'i8', (1, 3))], (2, 2)))) assert_dtype_not_equal( np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))), np.dtype(([('e', 'f8', (1, 3)), ('d', 'f4', (2, 1))], (2, 2)))) assert_dtype_not_equal( np.dtype(([('a', [('a', 'i4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))), np.dtype(([('a', [('a', 'u4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2)))) def test_shape_sequence(self): # Any sequence of integers should work as shape, but the result # should be a tuple (immutable) of base type integers. a = np.array([1, 2, 3], dtype=np.int16) l = [1, 2, 3] # Array gets converted dt = np.dtype([('a', 'f4', a)]) assert_(isinstance(dt['a'].shape, tuple)) assert_(isinstance(dt['a'].shape[0], int)) # List gets converted dt = np.dtype([('a', 'f4', l)]) assert_(isinstance(dt['a'].shape, tuple)) # class IntLike: def __index__(self): return 3 def __int__(self): # (a PyNumber_Check fails without __int__) return 3 dt = np.dtype([('a', 'f4', IntLike())]) assert_(isinstance(dt['a'].shape, tuple)) assert_(isinstance(dt['a'].shape[0], int)) dt = np.dtype([('a', 'f4', (IntLike(),))]) assert_(isinstance(dt['a'].shape, tuple)) assert_(isinstance(dt['a'].shape[0], int)) def test_shape_matches_ndim(self): dt = np.dtype([('a', 'f4', ())]) assert_equal(dt['a'].shape, ()) assert_equal(dt['a'].ndim, 0) dt = np.dtype([('a', 'f4')]) assert_equal(dt['a'].shape, ()) assert_equal(dt['a'].ndim, 0) dt = np.dtype([('a', 'f4', 4)]) assert_equal(dt['a'].shape, (4,)) assert_equal(dt['a'].ndim, 1) dt = np.dtype([('a', 'f4', (1, 2, 3))]) assert_equal(dt['a'].shape, (1, 2, 3)) assert_equal(dt['a'].ndim, 3) def test_shape_invalid(self): # Check that the shape is valid. max_int = np.iinfo(np.intc).max max_intp = np.iinfo(np.intp).max # Too large values (the datatype is part of this) assert_raises(ValueError, np.dtype, [('a', 'f4', max_int // 4 + 1)]) assert_raises(ValueError, np.dtype, [('a', 'f4', max_int + 1)]) assert_raises(ValueError, np.dtype, [('a', 'f4', (max_int, 2))]) # Takes a different code path (fails earlier: assert_raises(ValueError, np.dtype, [('a', 'f4', max_intp + 1)]) # Negative values assert_raises(ValueError, np.dtype, [('a', 'f4', -1)]) assert_raises(ValueError, np.dtype, [('a', 'f4', (-1, -1))]) def test_alignment(self): #Check that subarrays are aligned t1 = np.dtype('(1,)i4', align=True) t2 = np.dtype('2i4', align=True) assert_equal(t1.alignment, t2.alignment) def iter_struct_object_dtypes(): """ Iterates over a few complex dtypes and object pattern which fill the array with a given object (defaults to a singleton). Yields ------ dtype : dtype pattern : tuple Structured tuple for use with `np.array`. count : int Number of objects stored in the dtype. singleton : object A singleton object. The returned pattern is constructed so that all objects inside the datatype are set to the singleton. """ obj = object() dt = np.dtype([('b', 'O', (2, 3))]) p = ([[obj] * 3] * 2,) yield pytest.param(dt, p, 6, obj, id="<subarray>") dt = np.dtype([('a', 'i4'), ('b', 'O', (2, 3))]) p = (0, [[obj] * 3] * 2) yield pytest.param(dt, p, 6, obj, id="<subarray in field>") dt = np.dtype([('a', 'i4'), ('b', [('ba', 'O'), ('bb', 'i1')], (2, 3))]) p = (0, [[(obj, 0)] * 3] * 2) yield pytest.param(dt, p, 6, obj, id="<structured subarray 1>") dt = np.dtype([('a', 'i4'), ('b', [('ba', 'O'), ('bb', 'O')], (2, 3))]) p = (0, [[(obj, obj)] * 3] * 2) yield pytest.param(dt, p, 12, obj, id="<structured subarray 2>") @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") class TestStructuredObjectRefcounting: """These tests cover various uses of complicated structured types which include objects and thus require reference counting. """ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], iter_struct_object_dtypes()) @pytest.mark.parametrize(["creation_func", "creation_obj"], [ pytest.param(np.empty, None, # None is probably used for too many things marks=pytest.mark.skip("unreliable due to python's behaviour")), (np.ones, 1), (np.zeros, 0)]) def test_structured_object_create_delete(self, dt, pat, count, singleton, creation_func, creation_obj): """Structured object reference counting in creation and deletion""" # The test assumes that 0, 1, and None are singletons. gc.collect() before = sys.getrefcount(creation_obj) arr = creation_func(3, dt) now = sys.getrefcount(creation_obj) assert now - before == count * 3 del arr now = sys.getrefcount(creation_obj) assert now == before @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], iter_struct_object_dtypes()) def test_structured_object_item_setting(self, dt, pat, count, singleton): """Structured object reference counting for simple item setting""" one = 1 gc.collect() before = sys.getrefcount(singleton) arr = np.array([pat] * 3, dt) assert sys.getrefcount(singleton) - before == count * 3 # Fill with `1` and check that it was replaced correctly: before2 = sys.getrefcount(one) arr[...] = one after2 = sys.getrefcount(one) assert after2 - before2 == count * 3 del arr gc.collect() assert sys.getrefcount(one) == before2 assert sys.getrefcount(singleton) == before @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], iter_struct_object_dtypes()) @pytest.mark.parametrize( ['shape', 'index', 'items_changed'], [((3,), ([0, 2],), 2), ((3, 2), ([0, 2], slice(None)), 4), ((3, 2), ([0, 2], [1]), 2), ((3,), ([True, False, True]), 2)]) def test_structured_object_indexing(self, shape, index, items_changed, dt, pat, count, singleton): """Structured object reference counting for advanced indexing.""" zero = 0 one = 1 arr = np.zeros(shape, dt) gc.collect() before_zero = sys.getrefcount(zero) before_one = sys.getrefcount(one) # Test item getting: part = arr[index] after_zero = sys.getrefcount(zero) assert after_zero - before_zero == count * items_changed del part # Test item setting: arr[index] = one gc.collect() after_zero = sys.getrefcount(zero) after_one = sys.getrefcount(one) assert before_zero - after_zero == count * items_changed assert after_one - before_one == count * items_changed @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], iter_struct_object_dtypes()) def test_structured_object_take_and_repeat(self, dt, pat, count, singleton): """Structured object reference counting for specialized functions. The older functions such as take and repeat use different code paths then item setting (when writing this). """ indices = [0, 1] arr = np.array([pat] * 3, dt) gc.collect() before = sys.getrefcount(singleton) res = arr.take(indices) after = sys.getrefcount(singleton) assert after - before == count * 2 new = res.repeat(10) gc.collect() after_repeat = sys.getrefcount(singleton) assert after_repeat - after == count * 2 * 10 class TestStructuredDtypeSparseFields: """Tests subarray fields which contain sparse dtypes so that not all memory is used by the dtype work. Such dtype's should leave the underlying memory unchanged. """ dtype = np.dtype([('a', {'names':['aa', 'ab'], 'formats':['f', 'f'], 'offsets':[0, 4]}, (2, 3))]) sparse_dtype = np.dtype([('a', {'names':['ab'], 'formats':['f'], 'offsets':[4]}, (2, 3))]) def test_sparse_field_assignment(self): arr = np.zeros(3, self.dtype) sparse_arr = arr.view(self.sparse_dtype) sparse_arr[...] = np.finfo(np.float32).max # dtype is reduced when accessing the field, so shape is (3, 2, 3): assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3))) def test_sparse_field_assignment_fancy(self): # Fancy assignment goes to the copyswap function for complex types: arr = np.zeros(3, self.dtype) sparse_arr = arr.view(self.sparse_dtype) sparse_arr[[0, 1, 2]] = np.finfo(np.float32).max # dtype is reduced when accessing the field, so shape is (3, 2, 3): assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3))) class TestMonsterType: """Test deeply nested subtypes.""" def test1(self): simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['Red pixel', 'Blue pixel']}) a = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((int, (3, 2))))]) b = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((int, (3, 2))))]) assert_dtype_equal(a, b) c = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((a, (3, 2))))]) d = np.dtype([('yo', int), ('ye', simple1), ('yi', np.dtype((a, (3, 2))))]) assert_dtype_equal(c, d) def test_list_recursion(self): l = list() l.append(('f', l)) with pytest.raises(RecursionError): np.dtype(l) def test_tuple_recursion(self): d = np.int32 for i in range(100000): d = (d, (1,)) with pytest.raises(RecursionError): np.dtype(d) def test_dict_recursion(self): d = dict(names=['self'], formats=[None], offsets=[0]) d['formats'][0] = d with pytest.raises(RecursionError): np.dtype(d) class TestMetadata: def test_no_metadata(self): d = np.dtype(int) assert_(d.metadata is None) def test_metadata_takes_dict(self): d = np.dtype(int, metadata={'datum': 1}) assert_(d.metadata == {'datum': 1}) def test_metadata_rejects_nondict(self): assert_raises(TypeError, np.dtype, int, metadata='datum') assert_raises(TypeError, np.dtype, int, metadata=1) assert_raises(TypeError, np.dtype, int, metadata=None) def test_nested_metadata(self): d = np.dtype([('a', np.dtype(int, metadata={'datum': 1}))]) assert_(d['a'].metadata == {'datum': 1}) def test_base_metadata_copied(self): d = np.dtype((np.void, np.dtype('i4,i4', metadata={'datum': 1}))) assert_(d.metadata == {'datum': 1}) class TestString: def test_complex_dtype_str(self): dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), ('rtile', '>f4', (64, 36))], (3,)), ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), ('bright', '>f4', (8, 36))])]) assert_equal(str(dt), "[('top', [('tiles', ('>f4', (64, 64)), (1,)), " "('rtile', '>f4', (64, 36))], (3,)), " "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), " "('bright', '>f4', (8, 36))])]") # If the sticky aligned flag is set to True, it makes the # str() function use a dict representation with an 'aligned' flag dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), ('rtile', '>f4', (64, 36))], (3,)), ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), ('bright', '>f4', (8, 36))])], align=True) assert_equal(str(dt), "{'names':['top','bottom'], " "'formats':[([('tiles', ('>f4', (64, 64)), (1,)), " "('rtile', '>f4', (64, 36))], (3,))," "[('bleft', ('>f4', (8, 64)), (1,)), " "('bright', '>f4', (8, 36))]], " "'offsets':[0,76800], " "'itemsize':80000, " "'aligned':True}") assert_equal(np.dtype(eval(str(dt))), dt) dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'], 'offsets': [0, 1, 2], 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']}) assert_equal(str(dt), "[(('Red pixel', 'r'), 'u1'), " "(('Green pixel', 'g'), 'u1'), " "(('Blue pixel', 'b'), 'u1')]") dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'], 'formats': ['<u4', 'u1', 'u1', 'u1'], 'offsets': [0, 0, 1, 2], 'titles': ['Color', 'Red pixel', 'Green pixel', 'Blue pixel']}) assert_equal(str(dt), "{'names':['rgba','r','g','b']," " 'formats':['<u4','u1','u1','u1']," " 'offsets':[0,0,1,2]," " 'titles':['Color','Red pixel'," "'Green pixel','Blue pixel']," " 'itemsize':4}") dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2], 'titles': ['Red pixel', 'Blue pixel']}) assert_equal(str(dt), "{'names':['r','b']," " 'formats':['u1','u1']," " 'offsets':[0,2]," " 'titles':['Red pixel','Blue pixel']," " 'itemsize':3}") dt = np.dtype([('a', '<m8[D]'), ('b', '<M8[us]')]) assert_equal(str(dt), "[('a', '<m8[D]'), ('b', '<M8[us]')]") def test_repr_structured(self): dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), ('rtile', '>f4', (64, 36))], (3,)), ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), ('bright', '>f4', (8, 36))])]) assert_equal(repr(dt), "dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), " "('rtile', '>f4', (64, 36))], (3,)), " "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), " "('bright', '>f4', (8, 36))])])") dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'], 'offsets': [0, 1, 2], 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']}, align=True) assert_equal(repr(dt), "dtype([(('Red pixel', 'r'), 'u1'), " "(('Green pixel', 'g'), 'u1'), " "(('Blue pixel', 'b'), 'u1')], align=True)") def test_repr_structured_not_packed(self): dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'], 'formats': ['<u4', 'u1', 'u1', 'u1'], 'offsets': [0, 0, 1, 2], 'titles': ['Color', 'Red pixel', 'Green pixel', 'Blue pixel']}, align=True) assert_equal(repr(dt), "dtype({'names':['rgba','r','g','b']," " 'formats':['<u4','u1','u1','u1']," " 'offsets':[0,0,1,2]," " 'titles':['Color','Red pixel'," "'Green pixel','Blue pixel']," " 'itemsize':4}, align=True)") dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2], 'titles': ['Red pixel', 'Blue pixel'], 'itemsize': 4}) assert_equal(repr(dt), "dtype({'names':['r','b'], " "'formats':['u1','u1'], " "'offsets':[0,2], " "'titles':['Red pixel','Blue pixel'], " "'itemsize':4})") def test_repr_structured_datetime(self): dt = np.dtype([('a', '<M8[D]'), ('b', '<m8[us]')]) assert_equal(repr(dt), "dtype([('a', '<M8[D]'), ('b', '<m8[us]')])") def test_repr_str_subarray(self): dt = np.dtype(('<i2', (1,))) assert_equal(repr(dt), "dtype(('<i2', (1,)))") assert_equal(str(dt), "('<i2', (1,))") def test_base_dtype_with_object_type(self): # Issue gh-2798, should not error. np.array(['a'], dtype="O").astype(("O", [("name", "O")])) def test_empty_string_to_object(self): # Pull request #4722 np.array(["", ""]).astype(object) def test_void_subclass_unsized(self): dt = np.dtype(np.record) assert_equal(repr(dt), "dtype('V')") assert_equal(str(dt), '|V0') assert_equal(dt.name, 'record') def test_void_subclass_sized(self): dt = np.dtype((np.record, 2)) assert_equal(repr(dt), "dtype('V2')") assert_equal(str(dt), '|V2') assert_equal(dt.name, 'record16') def test_void_subclass_fields(self): dt = np.dtype((np.record, [('a', '<u2')])) assert_equal(repr(dt), "dtype((numpy.record, [('a', '<u2')]))") assert_equal(str(dt), "(numpy.record, [('a', '<u2')])") assert_equal(dt.name, 'record16') class TestDtypeAttributeDeletion: def test_dtype_non_writable_attributes_deletion(self): dt = np.dtype(np.double) attr = ["subdtype", "descr", "str", "name", "base", "shape", "isbuiltin", "isnative", "isalignedstruct", "fields", "metadata", "hasobject"] for s in attr: assert_raises(AttributeError, delattr, dt, s) def test_dtype_writable_attributes_deletion(self): dt = np.dtype(np.double) attr = ["names"] for s in attr: assert_raises(AttributeError, delattr, dt, s) class TestDtypeAttributes: def test_descr_has_trailing_void(self): # see gh-6359 dtype = np.dtype({ 'names': ['A', 'B'], 'formats': ['f4', 'f4'], 'offsets': [0, 8], 'itemsize': 16}) new_dtype = np.dtype(dtype.descr) assert_equal(new_dtype.itemsize, 16) def test_name_dtype_subclass(self): # Ticket #4357 class user_def_subcls(np.void): pass assert_equal(np.dtype(user_def_subcls).name, 'user_def_subcls') class TestPickling: def check_pickling(self, dtype): for proto in range(pickle.HIGHEST_PROTOCOL + 1): buf = pickle.dumps(dtype, proto) # The dtype pickling itself pickles `np.dtype` if it is pickled # as a singleton `dtype` should be stored in the buffer: assert b"_DType_reconstruct" not in buf assert b"dtype" in buf pickled = pickle.loads(buf) assert_equal(pickled, dtype) assert_equal(pickled.descr, dtype.descr) if dtype.metadata is not None: assert_equal(pickled.metadata, dtype.metadata) # Check the reconstructed dtype is functional x =
np.zeros(3, dtype=dtype)
numpy.zeros
""" Utility used by the Network class to actually train. Based on: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py """ import logging from compile_keras import * import keras.utils as kutils import numpy as np import pandas as pd from sklearn.metrics import mean_absolute_error, accuracy_score from sklearn.model_selection import KFold from sklearn.preprocessing import MinMaxScaler import os def mae_mape(actual_y, prediction_y): mape = safe_mape(actual_y, prediction_y) mae = mean_absolute_error(actual_y, prediction_y) return mape * mae def safe_log(input_array): return_vals = input_array.copy() neg_mask = return_vals < 0 return_vals = np.log(np.absolute(return_vals) + 1) return_vals[neg_mask] *= -1. return return_vals def safe_exp(input_array): return_vals = input_array.copy() neg_mask = return_vals < 0 return_vals = np.exp(np.clip(np.absolute(return_vals), -7, 7)) - 1 return_vals[neg_mask] *= -1. return return_vals def safe_mape(actual_y, prediction_y): """ Calculate mean absolute percentage error Args: actual_y - numpy array containing targets with shape (n_samples, n_targets) prediction_y - numpy array containing predictions with shape (n_samples, n_targets) """ # Ensure data shape is correct actual_y = actual_y.reshape(actual_y.shape[0], ) prediction_y = prediction_y.reshape(prediction_y.shape[0], ) # Calculate MAPE diff = np.absolute((actual_y - prediction_y) / np.clip(np.absolute(actual_y), 1., None)) return 100. * np.mean(diff) def train_and_score(network): """Train the model, return test loss. Args: network (dict): the parameters of the network """ df_all_train_x = pd.read_pickle('data/df_all_train_x.pkl.gz', compression='gzip') df_all_train_y = pd.read_pickle('data/df_all_train_y.pkl.gz', compression='gzip') df_all_train_actuals = pd.read_pickle('data/df_all_train_actuals.pkl.gz', compression='gzip') df_all_test_x = pd.read_pickle('data/df_all_test_x.pkl.gz', compression='gzip') df_all_test_y = pd.read_pickle('data/df_all_test_y.pkl.gz', compression='gzip') df_all_test_actuals = pd.read_pickle('data/df_all_test_actuals.pkl.gz', compression='gzip') train_y = df_all_train_y[0].values train_actuals = df_all_train_actuals[0].values train_x = df_all_train_x.values test_actuals = df_all_test_actuals.values test_y = df_all_test_y[0].values test_x = df_all_test_x.values print('\rNetwork') for property in network: print(property, ':', network[property]) logging.info('%s: %s' % (property, network[property])) if 'result' in network: result = network['result'] else: result = 'mae' # Set use of log of y or y if network['log_y']: train_eval_y = train_y else: train_eval_y = train_actuals if 'epochs' in network: epochs = network['epochs'] else: epochs = 500 # network['int_layer'] = True results = { 'mae': [], 'mape': [], 'maeape': [], 'epochs': [], } for i in range(1): # Clear all values s = None x_cv_train = None y_cv_train = None model = None history = None hist_epochs = None # Delete weights file, if exists try: os.remove('weights.hdf5') except: pass # Reorder array - get array index s = np.arange(train_x.shape[0]) # Reshuffle index np.random.shuffle(s) # Create array using new index x_cv_train = train_x[s] y_cv_train = train_eval_y[s] reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, verbose=1, patience=3) early_stopping = EarlyStopping(monitor='val_loss', patience=10) csv_logger = CSVLogger('./logs/training.log') checkpointer = ModelCheckpoint(filepath='weights.hdf5', verbose=0, save_best_only=True) dimensions = train_x.shape[1] model = compile_keras_model(network, dimensions) history = model.fit(x_cv_train, y_cv_train, batch_size=network['batch_size'], epochs=epochs, # using early stopping, so no real limit verbose=0, validation_split=0.2, callbacks=[early_stopping, reduce_lr, csv_logger, checkpointer]) model.load_weights('weights.hdf5') predictions = model.predict(test_x) mae = mean_absolute_error(test_actuals, predictions) mape = safe_mape(test_actuals, predictions) maeape = mae_mape(test_actuals, predictions) hist_epochs = len(history.history['val_loss']) results['mae'].append(mae) results['mape'].append(mape) results['maeape'].append(maeape) results['epochs'].append(hist_epochs) print('\rFold results') print('epochs:', hist_epochs) print('mae_mape:', maeape) print('mape:', mape) print('mae:', mae) print('-' * 20) overall_scores = { 'mae': np.mean(results['mae']), 'mape': np.mean(results['mape']), 'maeape': np.mean(results['maeape']), 'epochs': np.mean(results['epochs']), } print('\rResults') print('epochs:', overall_scores['epochs']) print('mae_mape:', overall_scores['maeape']) print('mape:', overall_scores['mape']) print('mae:', overall_scores['mae']) print('-' * 20) print('result:', overall_scores[result]) print('-' * 20) logging.info('epochs: %.1f' % overall_scores['epochs']) logging.info('mae_mape: %.4f' % overall_scores['maeape']) logging.info('mape: %.4f' % overall_scores['mape']) logging.info('mae: %.4f' % overall_scores['mae']) logging.info('-' * 20) logging.info('result: %.4f' % overall_scores[result]) logging.info('-' * 20) return overall_scores[result] def train_and_score_bagging(network): """Train the model, return test loss. Args: network (dict): the parameters of the network """ train_predictions = pd.read_pickle('data/train_predictions.pkl.gz', compression='gzip') test_predictions = pd.read_pickle('data/test_predictions.pkl.gz', compression='gzip') train_actuals = pd.read_pickle('data/train_actuals.pkl.gz', compression='gzip') test_actuals = pd.read_pickle('data/test_actuals.pkl.gz', compression='gzip') train_x = train_predictions.values train_y = train_actuals[0].values train_log_y = safe_log(train_y) test_x = test_predictions.values test_y = test_actuals[0].values test_log_y = safe_log(test_y) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, verbose=1, patience=3) early_stopping = EarlyStopping(monitor='val_loss', patience=15) csv_logger = CSVLogger('./logs/training.log') checkpointer = ModelCheckpoint(filepath='weights.hdf5', verbose=0, save_best_only=True) dimensions = train_x.shape[1] model = compile_keras_model(network, dimensions) print('\rNetwork') for property in network: print(property, ':', network[property]) logging.info('%s: %s' % (property, network[property])) # history = model.fit(train_x, train_y, history = model.fit(train_x, train_log_y, batch_size=network['batch_size'], epochs=10000, # using early stopping, so no real limit verbose=0, validation_split=0.2, callbacks=[early_stopping, csv_logger, reduce_lr, checkpointer]) print('\rResults') hist_epochs = len(history.history['val_loss']) # score = history.history['val_loss'][hist_epochs - 1] model.load_weights('weights.hdf5') predictions = model.predict(test_x) prediction_results = predictions.reshape(predictions.shape[0],) prediction_results = safe_exp(prediction_results) score = safe_mape(test_y, prediction_results) if np.isnan(score): score = 9999 print('epochs:', hist_epochs) print('loss:', score) print('-' * 20) logging.info('epochs: %d' % hist_epochs) logging.info('loss: %.4f' % score) logging.info('-' * 20) return score def train_and_score_shallow_bagging(network): """Train the model, return test loss. Args: network (dict): the parameters of the network """ train_predictions = pd.read_pickle('data/train_predictions.pkl.gz', compression='gzip') test_predictions = pd.read_pickle('data/test_predictions.pkl.gz', compression='gzip') train_actuals = pd.read_pickle('data/train_actuals.pkl.gz', compression='gzip') test_actuals = pd.read_pickle('data/test_actuals.pkl.gz', compression='gzip') target_columns = ['xgboost_keras_log', 'xgboost_keras_log_log', 'xgboost_log', 'keras_mape'] cols_to_drop = [] for col in train_predictions.columns: if col not in target_columns: cols_to_drop.append(col) print('Dropping columns:', list(cols_to_drop)) train_predictions.drop(cols_to_drop, axis=1, inplace=True) cols_to_drop = [] for col in test_predictions.columns: if col not in target_columns: cols_to_drop.append(col) print('Dropping columns:', list(cols_to_drop)) test_predictions.drop(cols_to_drop, axis=1, inplace=True) train_x = train_predictions.values train_y = train_actuals[0].values train_log_y = safe_log(train_y) test_x = test_predictions.values test_y = test_actuals[0].values test_log_y = safe_log(test_y) # Set use of log of y or y if network['log_y']: train_eval_y = train_log_y test_eval_y = test_log_y else: train_eval_y = train_y test_eval_y = test_y if 'epochs' in network: epochs = network['epochs'] else: epochs = 5000 # Apply value scaling scaler = MinMaxScaler(feature_range=(0,1)) train_x_scaled = scaler.fit_transform(train_x) test_x_scaled = scaler.transform(test_x) results = { 'mae': [], 'mape': [], 'maeape': [], 'epochs': [], } print('\rNetwork') for property in network: print(property, ':', network[property]) logging.info('%s: %s' % (property, network[property])) num_folds = 1 for _ in range(num_folds): # Clear all values s = None x_cv_train = None y_cv_train = None model = None history = None hist_epochs = None # Delete weights file, if exists try: os.remove('weights.hdf5') except: pass # Reorder array - get array index s = np.arange(train_x_scaled.shape[0]) # Reshuffle index np.random.shuffle(s) # Create array using new index x_cv_train = train_x_scaled[s] y_cv_train = train_eval_y[s] reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, verbose=1, patience=2) early_stopping = EarlyStopping(monitor='val_loss', patience=7) csv_logger = CSVLogger('./logs/training.log') checkpointer = ModelCheckpoint(filepath='weights.hdf5', verbose=0, save_best_only=True) input_shape = train_x_scaled.shape[1] model = compile_keras_model(network, input_shape) # history = model.fit(train_x, train_y, history = model.fit(x_cv_train, y_cv_train, batch_size=network['batch_size'], epochs=epochs, verbose=0, validation_split=0.2, callbacks=[early_stopping, csv_logger, reduce_lr, checkpointer]) model.load_weights('weights.hdf5') predictions = model.predict(test_x_scaled) prediction_results = predictions.reshape(predictions.shape[0],) # If using log of y, get exponent if network['log_y']: prediction_results = safe_exp(prediction_results) mae = mean_absolute_error(test_y, prediction_results) mape = safe_mape(test_y, prediction_results) maeape = mae_mape(test_y, prediction_results) hist_epochs = len(history.history['val_loss']) results['mae'].append(mae) results['mape'].append(mape) results['maeape'].append(maeape) results['epochs'].append(hist_epochs) print('\rFold results') print('epochs:', hist_epochs) print('mae_mape:', maeape) print('mape:', mape) print('mae:', mae) print('-' * 20) overall_scores = { 'mae': np.mean(results['mae']), 'mape': np.mean(results['mape']), 'maeape':
np.mean(results['maeape'])
numpy.mean
import os import torch import torch.nn as nn import random import numpy as np from sklearn.metrics import f1_score def set_random_state(seed_value): random.seed(seed_value) torch.manual_seed(seed_value) torch.cuda.manual_seed(seed_value) torch.cuda.manual_seed_all(seed_value) os.environ['PYTHONHASHSEED'] = str(seed_value) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
np.random.seed(seed_value)
numpy.random.seed
import numpy as np import tqdm from scipy import stats from hmmpy.base import BaseHiddenMarkov class SampleHMM(BaseHiddenMarkov): """ Class to handle sampling from HMM hidden_markov with user parameters. Parameters ---------- n_states : int, default=2 Number of hidden states hmm_params: dict, default=None hmm model parameters to sample from. To set params, create a dict with 'mu', 'std' and 'tpm' as keys and their values in lists or numpy arrays. random_state : int, default = 42 Parameter set to recreate output Attributes ---------- mu : ndarray of shape (n_states,) means to sample from std : ndarray of shape (n_states,) STDs to sample from tpm : ndarray of shape (n_states, n_states) Transition probability matrix between states """ def __init__(self, n_states=2, frequency='daily', hmm_params=None, random_state=42): if hmm_params == None or (hmm_params == None and frequency == "daily"): # hmm params following Hardy (2001) # Convert from monthly time scale t=20 to daily t=1 hmm_params = {'mu': np.array([0.0123, -0.0157]) / 20, 'std': np.array([0.0347, 0.0778]) /np.sqrt(20), 'tpm': np.array([[1-0.0021, 0.0021], # TODO figure out powers of vectors in python [0.0120, 1-0.0120]]) } elif hmm_params == None and frequency == "monthly": hmm_params = {'mu': np.array([0.0123, -0.0157]), 'std': np.array([0.0347, 0.0778]), 'tpm': np.array([[0.9629, 0.0371], [0.2101, 0.7899]]) } self.type = 'sampler' self.is_fitted = True self.n_states = n_states self.mu = np.array(hmm_params['mu']) self.std = np.array(hmm_params['std']) self.tpm = np.array(hmm_params['tpm']) self.stationary_dist = super()._get_stationary_dist(self.tpm) self.start_proba = self.stationary_dist self.random_state = random_state np.random.seed(self.random_state) def sample(self, n_samples, n_sequences=1): ''' Sample states from a fitted Hidden Markov Model. Parameters ---------- n_samples : int Amount of samples to generate n_sequences : int, default=1 Number of independent sequences to sample from, e.g. if n_samples=100 and n_sequences=3 then 3 different sequences of length 100 are sampled Returns ------- samples : ndarray of shape (n_samples, n_sequences) Outputs the generated samples of size n_samples sample_states : ndarray of shape (n_samples, n_sequences) Outputs sampled states ''' mu = self.mu std = self.std tpm = self.tpm stationary_dist = self.stationary_dist state_index = np.arange(start=0, stop=self.n_states, step=1, dtype=np.int32) # Array of possible states sample_states = np.zeros(shape=(n_samples, n_sequences), dtype=np.int32) # Init sample vector samples = np.zeros(shape=(n_samples, n_sequences)) # Init sample vector print(f'Simulating {n_sequences} of lengths {n_samples}') for seq in tqdm.tqdm(range(n_sequences)): sample_states[0, seq] = np.random.choice(a=state_index, size=1, p=stationary_dist) for t in range(1, n_samples): # Each new state is chosen using the transition probs corresponding to the previous state sojourn. sample_states[t, seq] = np.random.choice(a=state_index, size=1, p=tpm[sample_states[t - 1, seq], :]) samples[:, seq] = stats.norm.rvs(loc=mu[sample_states[:, seq]], scale=std[sample_states[:, seq]], size=n_samples) if n_sequences == 1: sample_states = sample_states[:, 0] samples = samples[:, 0] return samples, sample_states def sample_t(self, n_samples, n_sequences=1, dof=5): ''' Sample states from a fitted Hidden Markov Model. Parameters ---------- n_samples : int Amount of samples to generate n_sequences : int, default=1 Number of independent sequences to sample from, e.g. if n_samples=100 and n_sequences=3 then 3 different sequences of length 100 are sampled dof : int, default=5 degrees of freedom in the conditional t-distributions. Returns ------- samples : ndarray of shape (n_samples, n_sequences) Outputs the generated samples of size n_samples sample_states : ndarray of shape (n_samples, n_sequences) Outputs sampled states ''' mu = self.mu std = self.std tpm = self.tpm stationary_dist = self.stationary_dist state_index =
np.arange(start=0, stop=self.n_states, step=1, dtype=np.int32)
numpy.arange
import site # so that ai4water directory is in path import unittest import os import sys ai4_dir = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0]))) site.addsitedir(ai4_dir) import numpy as np import pandas as pd from ai4water.preprocessing.transformations import Transformation from ai4water.tf_attributes import tf from ai4water.datasets import busan_beach if 230 <= int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 250: from ai4water.functional import Model print(f"Switching to functional API due to tensorflow version {tf.__version__}") else: from ai4water import Model df = pd.DataFrame(np.concatenate([np.arange(1, 10).reshape(-1, 1), np.arange(1001, 1010).reshape(-1, 1)], axis=1), columns=['data1', 'data2']) def build_and_run(x_transformation, y_transformation, data, inputs, outputs): model = Model(model="RandomForestRegressor", input_features=inputs, output_features=outputs, x_transformation=x_transformation, y_transformation=y_transformation, verbosity=0) model.fit(data=data) x, y = model.training_data(key='junk') #pred, pred = model.inverse_transform(y, y, key='junk') pred, index = model.dh_.deindexify(y, key='junk') pred = pd.DataFrame(pred.reshape(len(pred), model.num_outs), columns=outputs, index=index).sort_index() return pred def run_method1(method, cols=None, data=None, **kwargs): normalized_df1, scaler = Transformation(method=method, features=cols, **kwargs)(data, 'fit_transform', return_key=True) denormalized_df1 = Transformation(features=cols, )(normalized_df1, 'inverse', scaler=scaler['scaler']) return normalized_df1, denormalized_df1 def run_method2(method, data=None, index=None, **kwargs): if index: data.index = pd.date_range("20110101", periods=len(data), freq="D") scaler = Transformation(method=method, **kwargs) normalized_df, scaler_dict = scaler.fit_transform(data, return_key=True) denormalized_df = scaler.inverse_transform(data=normalized_df, key=scaler_dict['key']) return data, normalized_df, denormalized_df def run_method3(method, data=None, index=None, **kwargs): if index: data.index = pd.date_range("20110101", periods=len(data), freq="D") scaler = Transformation(method=method, **kwargs) normalized_df3, scaler_dict = scaler(data, return_key=True) denormalized_df3 = scaler(what='inverse', data=normalized_df3, key=scaler_dict['key']) return data, normalized_df3, denormalized_df3 def run_method4(method,data=None, **kwargs): scaler = Transformation(**kwargs) normalized_df4, scaler_dict = getattr(scaler, "fit_transform_with_" + method)( data=data, return_key=True) denormalized_df4 = getattr(scaler, "inverse_transform_with_" + method)(data=normalized_df4, key=scaler_dict['key']) return normalized_df4, denormalized_df4 def run_log_methods(method="log", index=None, insert_nans=True, insert_zeros=False, assert_equality=True, insert_ones=False): a = np.random.random((10, 4)) a[0, 0] = np.nan a[0, 1] = 1. if insert_nans or insert_zeros: a[2:4, 1] = np.nan a[3:5, 2:3] = np.nan if insert_zeros: a[5:8, 3] = 0.0 if insert_ones: a[6, 1] = 1.0 a[9, 2:3] = 1.0 cols = ['data1', 'data2', 'data3', 'data4'] if index is not None: index = pd.date_range("20110101", periods=len(a), freq="D") df3 = pd.DataFrame(a, columns=cols, index=index) _, _ = run_method1(method=method, data=df3.copy()) _, _, dfo2 = run_method2(method=method, data=df3.copy()) _, _, dfo3 = run_method3(method=method, data=df3.copy()) _, dfo4 = run_method4(method=method, data=df3.copy()) if assert_equality: #assert np.allclose(df3, dfo1, equal_nan=True) assert
np.allclose(df3, dfo2, equal_nan=True)
numpy.allclose
# coding: utf-8 # In[94]: import numpy as np def randPair(s,e): return np.random.randint(s,e), np.random.randint(s,e) #finds an array in the "depth" dimension of the grid def findLoc(state, obj): for i in range(0,4): for j in range(0,4): if (state[i,j] == obj).all(): return i,j #Initialize stationary grid, all items are placed deterministically def initGrid(): state = np.zeros((4,4,5)) #place player 1 state[0,1] = np.array([0,0,0,1,0]) #place wall state[2,2] = np.array([0,0,1,0,0]) #place pit state[1,1] = np.array([0,1,0,0,0]) #place goal state[3,3] = np.array([1,0,0,0,0]) #place player 2 state[randPair(0,4)] = np.array([0,0,0,0,1]) a1 = findLoc(state, np.array([0,0,0,1,0])) #find grid position of player1 (agent) a2 = findLoc(state, np.array([0,0,0,0,1])) #find grid position of player2 w = findLoc(state, np.array([0,0,1,0,0])) #find wall g = findLoc(state, np.array([1,0,0,0,0])) #find goal p = findLoc(state, np.array([0,1,0,0,0])) #find pit if (not a1 or not a2 or not w or not g or not p): #print('Invalid grid. Rebuilding..') return initGrid() return state # In[95]: def makeMove(state, action,player2_terminated): #need to locate player in grid #need to determine what object (if any) is in the new grid spot the player is moving to player1_loc = getLoc(state, 3) if not player2_terminated: player2_loc = getLoc(state, 4) wall = findLoc(state, np.array([0,0,1,0,0])) goal = findLoc(state, np.array([1,0,0,0,0])) pit = findLoc(state, np.array([0,1,0,0,0])) state = np.zeros((4,4,5)) #print player1_loc #print player2_loc #up (row - 1) if action==0: new_loc = (player1_loc[0] - 1, player1_loc[1]) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): state[new_loc][3] = 1 #down (row + 1) elif action==1: new_loc = (player1_loc[0] + 1, player1_loc[1]) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): state[new_loc][3] = 1 #left (column - 1) elif action==2: new_loc = (player1_loc[0], player1_loc[1] - 1) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): state[new_loc][3] = 1 #right (column + 1) elif action==3: new_loc = (player1_loc[0], player1_loc[1] + 1) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): state[new_loc][3] = 1 new_player1_loc = getLoc(state, 3) #print new_player1_loc if (not new_player1_loc): state[player1_loc] = np.array([0,0,0,1,0]) #re-place pit state[pit][1] = 1 #re-place wall state[wall][2] = 1 #re-place goal state[goal][0] = 1 if not player2_terminated: #re-place player 2 state[player2_loc][4] = 1 return state # In[96]: def makeMovePlayer2(state, player2_terminated, testing_mode, input_action = 0): #need to locate player in grid #need to determine what object (if any) is in the new grid spot the player is moving to player1_loc = getLoc(state, 3) player2_loc = getLoc(state, 4) wall = findLoc(state, np.array([0,0,1,0,0])) goal = findLoc(state, np.array([1,0,0,0,0])) pit = findLoc(state, np.array([0,1,0,0,0])) state = np.zeros((4,4,5)) if testing_mode: #print player2_loc action = raw_input("Enter 0 for up, 1 for down, 2 for left, 3 for right ") elif not testing_mode: action = str(input_action) #up (row - 1) if action==str(0): new_loc = (player2_loc[0] - 1, player2_loc[1]) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): if new_loc != goal and new_loc != pit: state[new_loc][4] = 1 elif new_loc == goal: state[new_loc] = np.array([1,0,0,0,1]) elif new_loc == pit: state[new_loc] = np.array([0,1,0,0,1]) #down (row + 1) elif action==str(1): new_loc = (player2_loc[0] + 1, player2_loc[1]) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): if new_loc != goal and new_loc != pit: state[new_loc][4] = 1 elif new_loc == goal: state[new_loc] = np.array([1,0,0,0,1]) elif new_loc == pit: state[new_loc] = np.array([0,1,0,0,1]) #left (column - 1) elif action==str(2): new_loc = (player2_loc[0], player2_loc[1] - 1) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): if new_loc != goal and new_loc != pit: state[new_loc][4] = 1 elif new_loc == goal: state[new_loc] = np.array([1,0,0,0,1]) elif new_loc == pit: state[new_loc] = np.array([0,1,0,0,1]) #right (column + 1) elif action==str(3): new_loc = (player2_loc[0], player2_loc[1] + 1) if (new_loc != wall): if ((np.array(new_loc) <= (3,3)).all() and (np.array(new_loc) >= (0,0)).all()): if new_loc != goal and new_loc != pit: state[new_loc][4] = 1 elif new_loc == goal: state[new_loc] = np.array([1,0,0,0,1]) elif new_loc == pit: state[new_loc] = np.array([0,1,0,0,1]) new_player2_loc = getLoc(state, 4) if (not new_player2_loc): state[player2_loc] = np.array([0,0,0,0,1]) #re-place pit state[pit][1] = 1 #re-place wall state[wall][2] = 1 #re-place goal state[goal][0] = 1 #re-place player 1 state[player1_loc][3] = 1 return state # In[97]: def getLoc(state, level): for i in range(0,4): for j in range(0,4): if (state[i,j][level] == 1): return i,j def getReward(state): player_loc = getLoc(state, 3) pit = getLoc(state, 1) goal = getLoc(state, 0) if (player_loc == pit): return -10 elif (player_loc == goal): return 10 else: return -1 def getRewardPlayer2(state): player2_loc = getLoc(state, 4) pit = getLoc(state, 1) goal = getLoc(state, 0) if (player2_loc == pit): return -10 elif (player2_loc == goal): return 10 else: return -1 def dispGrid(state,player2_terminated): grid = np.zeros((4,4), dtype='<U2') player1_loc = getLoc(state, 3) player2_loc = getLoc(state, 4) wall = findLoc(state, np.array([0,0,1,0,0])) goal = findLoc(state, np.array([1,0,0,0,0])) pit = findLoc(state, np.array([0,1,0,0,0])) for i in range(0,4): for j in range(0,4): grid[i,j] = ' ' if player1_loc: grid[player1_loc] = 'P1' #player1 if player2_loc: if not player2_terminated: grid[player2_loc] = 'P2' #player2 if player1_loc == player2_loc and not player2_terminated: grid[player1_loc] = 'PB' #player1 and player2 if wall: grid[wall] = 'W' #wall if goal: grid[goal] = '+' #goal if pit: grid[pit] = '-' #pit return grid # In[98]: state = initGrid() dispGrid(state, True) # In[99]: state = makeMove(state, 0,True) print('Reward: %s' % (getReward(state),)) dispGrid(state,True) # In[100]: from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import RMSprop from keras.models import model_from_json import os # In[101]: model = Sequential() model.add(Dense(164, init='lecun_uniform', input_shape=(80,))) model.add(Activation('relu')) #model.add(Dropout(0.2)) I'm not using dropout, but maybe you wanna give it a try? model.add(Dense(150, init='lecun_uniform')) model.add(Activation('relu')) #model.add(Dropout(0.2)) model.add(Dense(4, init='lecun_uniform')) model.add(Activation('linear')) #linear output so we can have range of real-valued outputs rms = RMSprop() model.compile(loss='mse', optimizer=rms) # In[102]: model.predict(state.reshape(1,80), batch_size=1) #just to show an example output; read outputs left to right: up/down/left/right # In[103]: from IPython.display import clear_output import random player2_terminated = False epochs = 1000 gamma = 0.9 #since it may take several moves to goal, making gamma high epsilon = 1 for i in range(epochs): state = initGrid() status = 1 player2_terminated = False #while game still in progress while(status == 1): #We are in state S #Let's run our Q function on S to get Q values for all possible actions qval = model.predict(state.reshape(1,80), batch_size=1) if (random.random() < epsilon): #choose random action action =
np.random.randint(0,4)
numpy.random.randint
# -*- coding: utf-8 -*- """ Created on Sat Feb 8 17:15:16 2020 @author: Pavan """ import numpy as np def get_valid_index(strategy_weights,delay=1): valid_index = ~np.isnan(strategy_weights).all(axis=1) valid_index[-1*delay]=False return valid_index def bets_to_pnl(starting_value,strategy_weights,clean_values,base_data,long_lev, short_lev, ADV_threshold_percentage,costs_threshold_bps,commissions_bps): cleaned_weights = strategy_weights[clean_values] O = (base_data[0])[clean_values] C = (base_data[3])[clean_values] Liq = (base_data[5])[clean_values] H = (base_data[1])[clean_values] L = (base_data[2])[clean_values] dollars_at_open = np.empty(cleaned_weights.shape) dollars_at_open_calc =
np.empty(cleaned_weights.shape)
numpy.empty
""" Module containing classes for ray tracing through the ice. Ray tracer classes correspond to ray trace path classes, where the ray tracer is responsible for calculating the existence and launch angle of paths between points, and the ray tracer path objects are responsible for returning information about propagation along their respective path. """ import logging import numpy as np import scipy.constants import scipy.fft import scipy.optimize from pyrex.internal_functions import normalize, LazyMutableClass, lazy_property from pyrex.ice_model import AntarcticIce, UniformIce, ice logger = logging.getLogger(__name__) class BasicRayTracePath(LazyMutableClass): """ Class for representing a single ray-trace solution between points. Stores parameters of the ray path with calculations performed by integrating z-steps of size ``dz``. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- parent_tracer : BasicRayTracer Ray tracer for which this path is a solution. launch_angle : float Launch angle (radians) of the ray path. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. theta0 : float The launch angle of the ray path at `from_point`. ice The ice model used for the ray tracer. dz : float The z-step (m) to be used for integration of the ray path attributes. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. emitted_direction received_direction path_length tof coordinates See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. BasicRayTracer : Class for calculating the ray-trace solutions between points. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. """ def __init__(self, parent_tracer, launch_angle, direct): self.from_point = parent_tracer.from_point self.to_point = parent_tracer.to_point self.theta0 = launch_angle self.ice = parent_tracer.ice self.dz = parent_tracer.dz self.direct = direct super().__init__() @property def _metadata(self): """Metadata dictionary for writing `BasicRayTracePath` information.""" return { "n0": self.n0, "dz": self.dz, "emitted_x": self.emitted_direction[0], "emitted_y": self.emitted_direction[1], "emitted_z": self.emitted_direction[2], "received_x": self.received_direction[0], "received_y": self.received_direction[1], "received_z": self.received_direction[2], "launch_angle": np.arccos(self.emitted_direction[2]), "receiving_angle": np.pi-np.arccos(self.received_direction[2]), "path_length": self.path_length, "tof": self.tof } @property def z_turn_proximity(self): """ Parameter for how closely path approaches z_turn. Necessary to avoid diverging integrals which occur at z_turn. """ # Best value of dz/10 determined empirically by checking errors return self.dz/10 @property def z0(self): """Depth (m) of the launching point.""" return self.from_point[2] @property def z1(self): """Depth (m) of the receiving point.""" return self.to_point[2] @lazy_property def n0(self): """Index of refraction of the ice at the launching point.""" return self.ice.index(self.z0) @lazy_property def rho(self): """Radial distance (m) between the endpoints.""" u = self.to_point - self.from_point return np.sqrt(u[0]**2 + u[1]**2) @lazy_property def phi(self): """Azimuthal angle (radians) between the endpoints.""" u = self.to_point - self.from_point return np.arctan2(u[1], u[0]) @lazy_property def beta(self): """Launching beta parameter (n(z0) * sin(theta0)).""" return self.n0 * np.sin(self.theta0) @lazy_property def z_turn(self): """Turning depth (m) of the path.""" return self.ice.depth_with_index(self.beta) # @property # def exists(self): # """Boolean of whether the path between the points with the # given launch angle exists.""" # return True @lazy_property def emitted_direction(self): """Direction in which ray is emitted.""" return np.array([np.sin(self.theta0) * np.cos(self.phi), np.sin(self.theta0) * np.sin(self.phi), np.cos(self.theta0)]) @lazy_property def received_direction(self): """Direction ray is travelling when it is received.""" if self.direct: sign = np.sign(np.cos(self.theta0)) return np.array([np.sin(self.theta(self.z1)) * np.cos(self.phi), np.sin(self.theta(self.z1)) * np.sin(self.phi), sign*np.cos(self.theta(self.z1))]) else: return np.array([np.sin(self.theta(self.z1)) * np.cos(self.phi), np.sin(self.theta(self.z1)) * np.sin(self.phi), -np.cos(self.theta(self.z1))]) def theta(self, z): """ Polar angle of the ray at the given depths. Calculates the polar angle of the ray's direction at the given depth in the ice. Note that the ray could be travelling upward or downward at this polar angle. Parameters ---------- z : array_like (Negative-valued) depths (m) in the ice. Returns ------- array_like Polar angle at the given values of `z`. """ return np.arcsin(np.sin(self.theta0) * self.n0/self.ice.index(z)) # Log-scaled zs (commented out below and in z_integral method) seemed # like a good idea for reducing dimensionality, but didn't work out. # Kept here in case it works out better in the future # @lazy_property # def dn(self): # return np.abs(self.ice.gradient(-10)[2])*self.dz # def _log_scale_zs(self, z0, z1): # # Base dn on dz at 10 meter depth # n0 = self.ice.index(z0) # n1 = self.ice.index(z1) # n_steps = int(np.abs(n1-n0)/self.dn) # ns = np.linspace(n0, n1, n_steps+2) # return self.ice.depth_with_index(ns) def z_integral(self, integrand): """ Calculate the numerical integral of the given integrand. For the integrand as a function of z, the numerical integral is calculated along the ray path. Parameters ---------- integrand : function Function returning the values of the integrand at a given array of values for the depth z. Returns ------- float The value of the numerical integral along the ray path. """ if self.direct: n_zs = int(np.abs(self.z1-self.z0)/self.dz) zs, dz = np.linspace(self.z0, self.z1, n_zs+1, retstep=True) return np.trapz(integrand(zs), dx=np.abs(dz), axis=0) # zs = self._log_scale_zs(self.z0, self.z1) # return np.trapz(integrand(zs), x=zs, axis=0) else: n_zs_1 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z0)/self.dz) zs_1, dz_1 = np.linspace(self.z0, self.z_turn-self.z_turn_proximity, n_zs_1+1, retstep=True) n_zs_2 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z1)/self.dz) zs_2, dz_2 = np.linspace(self.z_turn-self.z_turn_proximity, self.z1, n_zs_2+1, retstep=True) return (np.trapz(integrand(zs_1), dx=np.abs(dz_1), axis=0) + np.trapz(integrand(zs_2), dx=np.abs(dz_2), axis=0)) # zs_1 = self._log_scale_zs(self.z0, self.z_turn-self.z_turn_proximity) # zs_2 = self._log_scale_zs(self.z1, self.z_turn-self.z_turn_proximity) # return (np.trapz(integrand(zs_1), x=zs_1, axis=0) + # np.trapz(integrand(zs_2), x=zs_2, axis=0)) @lazy_property def path_length(self): """Length (m) of the ray path.""" return self.z_integral(lambda z: 1/np.cos(self.theta(z))) @lazy_property def tof(self): """Time of flight (s) along the ray path.""" return self.z_integral(lambda z: self.ice.index(z) / scipy.constants.c / np.cos(self.theta(z))) @lazy_property def fresnel(self): """ Fresnel factors for reflection off the ice surface. The fresnel reflectance calculated is the square root (ratio of amplitudes, not powers) for reflection off ice surface (1 if doesn't reach surface). Stores the s and p polarized reflectances, respectively. """ if self.direct or self.z_turn<self.ice.valid_range[1]: return 1, 1 else: n_1 = self.ice.index(self.ice.valid_range[1]) n_2 = self.ice.index_above theta_1 = self.theta(self.ice.valid_range[1]) cos_1 = np.cos(theta_1) sin_2 = n_1/n_2*np.sin(theta_1) if sin_2<=1: # Plain reflection with real coefficients cos_2 = np.sqrt(1 - (sin_2)**2) else: # Total internal reflection off the surface, results in complex # fresnel factors encoding the phase data cos_2 = np.sqrt((sin_2)**2 - 1)*1j # TODO: Confirm sign convention here r_s = (n_1*cos_1 - n_2*cos_2) / (n_1*cos_1 + n_2*cos_2) r_p = (n_2*cos_1 - n_1*cos_2) / (n_2*cos_1 + n_1*cos_2) return r_s, r_p def attenuation(self, f): """ Calculate the attenuation factor for signal frequencies. Calculates the attenuation factor to be multiplied by the signal amplitude at the given frequencies. Parameters ---------- f : array_like Frequencies (Hz) at which to calculate signal attenuation. Returns ------- array_like Attenuation factors for the signal at the frequencies `f`. """ fa = np.abs(f) def integrand(z): partial_integrand = 1 / np.cos(self.theta(z)) alen = self.ice.attenuation_length(z, fa) return (partial_integrand / alen.T).T return np.exp(-np.abs(self.z_integral(integrand))) def propagate(self, signal=None, polarization=None, attenuation_interpolation=None): """ Propagate the signal with optional polarization along the ray path. Applies the frequency-dependent signal attenuation along the ray path and shifts the times according to the ray time of flight. Additionally provides the s and p polarization directions. Parameters ---------- signal : Signal, optional ``Signal`` object to propagate. polarization : array_like, optional Vector representing the linear polarization of the `signal`. attenuation_interpolation: float, optional Logarithmic (base 10) interpolation step to be used for interpolating attenuation along the ray path. If `None`, no interpolation is applied and the attenuation is pre-calculated at the expected signal frequencies. Returns ------- tuple of Signal Tuple of ``Signal`` objects representing the s and p polarizations of the original `signal` attenuated along the ray path. Only returned if `signal` was not ``None``. tuple of ndarray Tuple of polarization vectors representing the s and p polarization directions of the `signal` at the end of the ray path. Only returned if `polarization` was not ``None``. See Also -------- pyrex.Signal : Base class for time-domain signals. """ if polarization is None: if signal is None: return else: new_signal = signal.copy() new_signal.shift(self.tof) # Pre-calculate attenuation at the designated frequencies to # save on heavy computation time of the attenuation method freqs = scipy.fft.fftfreq(2*len(signal.times), d=signal.dt) if attenuation_interpolation is None: freqs.sort() else: logf_min = np.log10(np.min(freqs[freqs>0])) logf_max = np.log10(np.max(freqs)) n_steps = int((logf_max - logf_min) / attenuation_interpolation) if (logf_max-logf_min)%attenuation_interpolation: n_steps += 1 logf = np.logspace(logf_min, logf_max, n_steps+1) freqs = np.concatenate((-np.flipud(logf), [0], logf)) atten_vals = self.attenuation(freqs) attenuation = lambda f: np.interp(f, freqs, atten_vals) new_signal.filter_frequencies(attenuation) return new_signal else: # Unit vectors perpendicular and parallel to plane of incidence # at the launching point u_s0 = normalize(np.cross(self.emitted_direction, [0, 0, 1])) u_p0 = normalize(np.cross(u_s0, self.emitted_direction)) # Unit vector parallel to plane of incidence at the receiving point # (perpendicular vector stays the same) u_p1 = normalize(np.cross(u_s0, self.received_direction)) if signal is None: return (u_s0, u_p1) else: # Amplitudes of s and p components pol_s = np.dot(polarization, u_s0) pol_p = np.dot(polarization, u_p0) # Fresnel reflectances of s and p components r_s, r_p = self.fresnel # Pre-calculate attenuation at the designated frequencies to # save on heavy computation time of the attenuation method freqs = scipy.fft.fftfreq(2*len(signal.times), d=signal.dt) if attenuation_interpolation is None: freqs.sort() else: logf_min = np.log10(np.min(freqs[freqs>0])) logf_max = np.log10(np.max(freqs)) n_steps = int((logf_max - logf_min) / attenuation_interpolation) if (logf_max-logf_min)%attenuation_interpolation: n_steps += 1 logf = np.logspace(logf_min, logf_max, n_steps+1) freqs = np.concatenate((-np.flipud(logf), [0], logf)) atten_vals = self.attenuation(freqs) # Apply fresnel s and p coefficients in addition to attenuation attenuation_s = lambda f: np.interp(f, freqs, atten_vals) * r_s attenuation_p = lambda f: np.interp(f, freqs, atten_vals) * r_p signal_s = signal * pol_s signal_p = signal * pol_p signal_s.shift(self.tof) signal_p.shift(self.tof) signal_s.filter_frequencies(attenuation_s, force_real=True) signal_p.filter_frequencies(attenuation_p, force_real=True) return (signal_s, signal_p), (u_s0, u_p1) @lazy_property def coordinates(self): """ x, y, and z-coordinates along the path (using dz step). Coordinates are provided for plotting purposes only, and are not vetted for use in calculations. """ if self.direct: n_zs = int(np.abs(self.z1-self.z0)/self.dz) zs, dz = np.linspace(self.z0, self.z1, n_zs+1, retstep=True) integrand = np.tan(self.theta(zs)) rs = np.zeros(len(integrand)) trap_areas = (integrand[:-1] + np.diff(integrand)/2) * dz rs[1:] += np.abs(np.cumsum(trap_areas)) else: n_zs_1 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z0) / self.dz) zs_1, dz_1 = np.linspace(self.z0, self.z_turn-self.z_turn_proximity, n_zs_1+1, retstep=True) integrand_1 = np.tan(self.theta(zs_1)) n_zs_2 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z1) / self.dz) zs_2, dz_2 = np.linspace(self.z_turn-self.z_turn_proximity, self.z1, n_zs_2+1, retstep=True) integrand_2 = np.tan(self.theta(zs_2)) rs_1 = np.zeros(len(integrand_1)) trap_areas = ((integrand_1[:-1] + np.diff(integrand_1)/2) * np.abs(dz_1)) rs_1[1:] += np.cumsum(trap_areas) rs_2 = np.zeros(len(integrand_2)) + rs_1[-1] trap_areas = ((integrand_2[:-1] + np.diff(integrand_2)/2) * np.abs(dz_2)) rs_2[1:] += np.cumsum(trap_areas) rs = np.concatenate((rs_1, rs_2[1:])) zs = np.concatenate((zs_1, zs_2[1:])) xs = self.from_point[0] + rs*np.cos(self.phi) ys = self.from_point[1] + rs*np.sin(self.phi) return xs, ys, zs class SpecializedRayTracePath(BasicRayTracePath): """ Class for representing a single ray-trace solution between points. Stores parameters of the ray path with calculations performed analytically (with the exception of attenuation). These calculations require the index of refraction of the ice to be of the form n(z)=n0-k*exp(a*z). However this restriction allows for most of the integrations to be performed analytically. The attenuation is the only attribute which is still calculated by numerical integration with z-steps of size ``dz``. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- parent_tracer : SpecializedRayTracer Ray tracer for which this path is a solution. launch_angle : float Launch angle (radians) of the ray path. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. theta0 : float The launch angle of the ray path at `from_point`. ice The ice model used for the ray tracer. dz : float The z-step (m) to be used for integration of the ray path attributes. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. uniformity_factor : float Factor (<1) of the base index of refraction (n0 in the ice model) beyond which calculations start to break down numerically. beta_tolerance : float ``beta`` value (near 0) below which calculations start to break down numerically. emitted_direction received_direction path_length tof coordinates See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. SpecializedRayTracer : Class for calculating the ray-trace solutions between points. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. The requirement that the ice model go as n(z)=n0-k*exp(a*z) is implemented by requiring the ice model to inherit from `AntarcticIce`. Obviously this is not fool-proof, but likely the ray tracing will obviously fail if the index follows a very different functional form. """ # Factor of index of refraction at which calculations may break down uniformity_factor = 0.99999 # Beta value below which calculations may break down beta_tolerance = 0.005 @lazy_property def valid_ice_model(self): """Whether the ice model being used supports this specialization.""" return ((isinstance(self.ice, type) and issubclass(self.ice, AntarcticIce)) or isinstance(self.ice, AntarcticIce)) @lazy_property def z_uniform(self): """ Depth (m) beyond which the ice should be treated as uniform. Calculated based on the ``uniformity_factor``. Necessary due to numerical rounding issues at indices close to the index limit. """ return self.ice.depth_with_index(self.ice.n0 * self.uniformity_factor) @staticmethod def _z_int_uniform_correction(z0, z1, z_uniform, beta, ice, integrand, integrand_kwargs={}, numerical=False, dz=None, derivative_special_case=False): """ Function to perform a z-integration with a uniform ice correction. Can be an analytic or numerical integration. Takes into account the effect of treating the ice as uniform beyond some depth. Parameters ---------- z0 : float (Negative-valued) depth (m) of the left limit of the integral. z1 : float (Negative-valued) depth (m) of the right limit of the integral. z_uniform : float (Negative-valued) depth (m) below which the ice is assumed to have a uniform index. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. integrand : function Function returning the values of the integrand at a given array of values for the depth z. integrand_kwargs : dict, optional A dictionary of keyword arguments to be passed into the `integrand` function. numerical : boolean, optional Whether to use the numerical integral instead of an analytic one. If ``False`` the analytic integral is calculated. If ``True`` the numerical integral is calculated. dz : float, optional The z-step to use for numerical integration. Only needed when `numerical` is ``True``. derivative_special_case : boolean, optional Boolean controlling whether the special case of doing the distance integral beta derivative should be used. Returns ------- Integral of the given `integrand` along the path from `z0` to `z1`. """ # Suppress numpy RuntimeWarnings with np.errstate(divide='ignore', invalid='ignore'): if numerical: if dz is None: raise ValueError("Argument dz must be specified for "+ "numerical integrals") if (z0<z_uniform)==(z1<z_uniform): # z0 and z1 on same side of z_uniform n_zs = int(np.abs(z1-z0)/dz) if n_zs<10: n_zs = 10 zs = np.linspace(z0, z1, n_zs+1) return integrand(zs, beta=beta, ice=ice, deep=z0<z_uniform, **integrand_kwargs) else: n_zs_1 = int(np.abs(z_uniform-z0)/dz) if n_zs_1<10: n_zs_1 = 10 zs_1 = np.linspace(z0, z_uniform, n_zs_1+1) n_zs_2 = int(np.abs(z1-z_uniform)/dz) if n_zs_2<10: n_zs_2 = 10 zs_2 = np.linspace(z_uniform, z1, n_zs_2+1) return (integrand(zs_1, beta=beta, ice=ice, deep=z0<z_uniform, **integrand_kwargs) + integrand(zs_2, beta=beta, ice=ice, deep=z1<z_uniform, **integrand_kwargs)) # Analytic integrals int_z0 = integrand(z0, beta, ice, deep=z0<z_uniform, **integrand_kwargs) int_z1 = integrand(z1, beta, ice, deep=z1<z_uniform, **integrand_kwargs) if not derivative_special_case: if (z0<z_uniform)==(z1<z_uniform): # z0 and z1 on same side of z_uniform return int_z1 - int_z0 else: int_diff = ( integrand(z_uniform, beta, ice, deep=True, **integrand_kwargs) - integrand(z_uniform, beta, ice, deep=False, **integrand_kwargs) ) if z0<z1: # z0 below z_uniform, z1 above z_uniform return int_z1 - int_z0 + int_diff else: # z0 above z_uniform, z1 below z_uniform return int_z1 - int_z0 - int_diff else: # Deal with special case of doing distance integral beta derivative # which includes two bounds instead of just giving indef. integral # FIXME: Somewhat inaccurate, should probably be done differently z_turn = np.log((ice.n0-beta)/ice.k)/ice.a if (z0<z_uniform)==(z1<z_uniform)==(z_turn<z_uniform): # All on same side of z_uniform return int_z0 + int_z1 else: int_diff = ( integrand(z_uniform, beta, ice, deep=True, **integrand_kwargs) - integrand(z_uniform, beta, ice, deep=False, **integrand_kwargs) ) if (z0<z_uniform)==(z1<z_uniform): # z0 and z1 below z_uniform, but z_turn above return int_z0 + int_z1 - 2*int_diff else: # z0 or z1 below z_uniform, others above return int_z0 + int_z1 - int_diff def z_integral(self, integrand, integrand_kwargs={}, numerical=False): """ Calculate the integral of the given integrand. For the integrand as a function of z, the analytic or numerical integral is calculated along the ray path. Parameters ---------- integrand : function Function returning the values of the integrand at a given array of values for the depth z. integrand_kwargs : dict, optional A dictionary of keyword arguments to be passed into the `integrand` function. numerical : boolean, optional Whether to use the numerical integral instead of an analytic one. If ``False`` the analytic integral is calculated. If ``True`` the numerical integral is calculated. Returns ------- float The value of the integral along the ray path. Raises ------ TypeError If the ice model is not valid for the specialized analytic integrations. """ if not self.valid_ice_model: raise TypeError("Ice model must inherit methods from "+ "pyrex.AntarcticIce") if self.direct: return self._z_int_uniform_correction(self.z0, self.z1, self.z_uniform, self.beta, self.ice, integrand, integrand_kwargs, numerical, self.dz) else: int_1 = self._z_int_uniform_correction(self.z0, self.z_turn, self.z_uniform, self.beta, self.ice, integrand, integrand_kwargs, numerical, self.dz) int_2 = self._z_int_uniform_correction(self.z1, self.z_turn, self.z_uniform, self.beta, self.ice, integrand, integrand_kwargs, numerical, self.dz) return int_1 + int_2 @staticmethod def _int_terms(z, beta, ice): """ Useful pre-calculated substitutions for integrations. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. Returns ------- alpha : float ``n0``^2 - `beta`^2 n_z : float Index at depth `z`. gamma : float `n_z`^2 - `beta`^2 log_term_1 : float ``n0``*`n_z` - `beta`^2 - sqrt(`alpha`*`gamma`) log_term_2 : float `n_z` + sqrt(`gamma`) """ alpha = ice.n0**2 - beta**2 n_z = ice.n0 - ice.k*np.exp(ice.a*z) gamma = n_z**2 - beta**2 # Prevent errors when gamma is a very small negative number due to # numerical rounding errors. This could cause other problems for cases # where a not-tiny negative gamma would have meant nans but now leads to # non-nan values. It appears this only occurs when the launch angle # is greater than the maximum value allowed in the ray tracer however, # so it's likely alright. If problems arise, replace with gamma<0 and # np.isclose(gamma, 0) or similar gamma = np.where(gamma<0, 0, gamma) log_term_1 = ice.n0*n_z - beta**2 - np.sqrt(alpha*gamma) log_term_2 = -n_z - np.sqrt(gamma) return alpha, n_z, gamma, log_term_1, -log_term_2 @classmethod def _distance_integral(cls, z, beta, ice, deep=False): """ Indefinite z-integral for calculating radial distance. Calculates the indefinite z-integral of tan(arcsin(beta/n(z))), which between two z values gives the radial distance of the direct path between the z values. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the indefinite integral at `z`. """ alpha, n_z, gamma, log_1, log_2 = cls._int_terms(z, beta, ice) if deep: return beta * z / np.sqrt(alpha) else: return np.where(np.isclose(beta, 0, atol=cls.beta_tolerance), 0, beta / np.sqrt(alpha) * (-z + np.log(log_1)/ice.a)) @classmethod def _distance_integral_derivative(cls, z, beta, ice, deep=False): """ Beta derivative of indefinite z-integral for radial distance. Calculates the beta derivative of the indefinite z-integral of tan(arcsin(beta/n(z))), which is used for finding the maximum distance integral value as a function of launch angle. This function actually gives the integral from z to the turning point ``z_turn``, since that is what's needed for finding the peak angle. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the indefinite integral derivative at `z`. """ alpha, n_z, gamma, log_1, log_2 = cls._int_terms(z, beta, ice) z_turn = np.log((ice.n0-beta)/ice.k)/ice.a if deep: if z_turn<ice.valid_range[1]: return ((np.log((ice.n0-beta)/ice.k)/ice.a - z - beta/(ice.a*(ice.n0-beta))) / np.sqrt(alpha)) else: return -z / np.sqrt(alpha) else: if z_turn<ice.valid_range[1]: term_1 = ((1+beta**2/alpha)/np.sqrt(alpha) * (z + np.log(beta*ice.k/log_1) / ice.a)) term_2 = -(beta**2+ice.n0*n_z) / (ice.a*alpha*np.sqrt(gamma)) else: term_1 = -(1+beta**2/alpha)/np.sqrt(alpha)*(-z + np.log(log_1) / ice.a) term_2 = -((beta*(np.sqrt(alpha)-np.sqrt(gamma)))**2 / (ice.a*alpha*np.sqrt(gamma)*log_1)) alpha, n_z, gamma, log_1, log_2 = cls._int_terms(ice.valid_range[1], beta, ice) term_1 += (1+beta**2/alpha)/np.sqrt(alpha)*(np.log(log_1) / ice.a) term_2 += ((beta*(np.sqrt(alpha)-np.sqrt(gamma)))**2 / (ice.a*alpha*np.sqrt(gamma)*log_1)) return np.where(np.isclose(beta, 0, atol=cls.beta_tolerance), np.inf, term_1+term_2) # If the value of the integral just at z is needed (e.g. you want the # correct values when reflecting off the surface of the ice), # then use the terms below instead # Be warned, however, that this gives the wrong value when turning over # below the surface of the ice. The values get closer if only term_1 # is returned in cases where gamma==0 (turning over in ice), # though the values are still slightly off # if deep: # return z / np.sqrt(alpha) # term_1 = (1+beta**2/alpha)/np.sqrt(alpha)*(-z + np.log(log_1) / ice.a) # term_2 = ((beta*(np.sqrt(alpha)-np.sqrt(gamma)))**2 / # (ice.a*alpha*np.sqrt(gamma)*log_1)) # return np.where(gamma==0, term_1, term_1+term_2) @classmethod def _pathlen_integral(cls, z, beta, ice, deep=False): """ Indefinite z-integral for calculating path length. Calculates the indefinite z-integral of sec(arcsin(beta/n(z))), which between two z values gives the path length of the direct path between the z values. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the indefinite integral at `z`. """ alpha, n_z, gamma, log_1, log_2 = cls._int_terms(z, beta, ice) if deep: return ice.n0 * z / np.sqrt(alpha) else: return np.where(np.isclose(beta, 0, atol=cls.beta_tolerance), z, (ice.n0/np.sqrt(alpha) * (-z + np.log(log_1)/ice.a) + np.log(log_2) / ice.a)) @classmethod def _tof_integral(cls, z, beta, ice, deep=False): """ Indefinite z-integral for calculating time of flight. Calculates the indefinite z-integral of n(z)/c*sec(arcsin(beta/n(z))), which between two z values gives the time of flight of the direct path between the z values. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the indefinite integral at `z`. """ alpha, n_z, gamma, log_1, log_2 = cls._int_terms(z, beta, ice) if deep: return (ice.n0*(n_z+ice.n0*(ice.a*z-1)) / (ice.a*np.sqrt(alpha)*scipy.constants.c)) else: return np.where(np.isclose(beta, 0, atol=cls.beta_tolerance), ((n_z-ice.n0)/ice.a + ice.n0*z) / scipy.constants.c, (((np.sqrt(gamma) + ice.n0*np.log(log_2) + ice.n0**2*np.log(log_1)/np.sqrt(alpha))/ice.a) - z*ice.n0**2/np.sqrt(alpha)) / scipy.constants.c) @classmethod def _attenuation_integral_def(cls, zs, f, beta, ice, deep=False): """ Definite z-integral for calculating attenuation. Calculates the definite z-integral of sec(arcsin(beta/n(z)))/A(z,f), which between two z values gives the path length over attenuation length of the direct path between the z values. Parameters ---------- zs : array_like (Negative-valued) depths (m) in the ice. f : array_like Frequencies (Hz) at which to calculate signal attenuation. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the definite integral along `zs`. """ fa = np.abs(f) if deep or np.isclose(beta, 0, atol=cls.beta_tolerance): int_var = zs partial_integrand = 1 / np.cos(np.arcsin(beta/ice.index(zs))) else: # When approaching z_turn, the usual integrand approaches infinity. # In that case make the change of variables below to fix it. # The assumption now is that z_turn is always above z_uniform, # which is valid for most realistic detector configurations. int_var = np.sqrt(1 - (beta/ice.index(zs))**2) partial_integrand = (ice.index(zs)**3 / beta**2 / (-ice.k*ice.a*np.exp(ice.a*zs))) alen = ice.attenuation_length(zs, fa) integrand = (partial_integrand / alen.T).T return np.trapz(integrand, x=int_var, axis=0) @lazy_property def path_length(self): """Length (m) of the ray path.""" return np.abs(self.z_integral(self._pathlen_integral)) @lazy_property def tof(self): """Time of flight (s) along the ray path.""" return np.abs(self.z_integral(self._tof_integral)) def attenuation(self, f): """ Calculate the attenuation factor for signal frequencies. Calculates the attenuation factor to be multiplied by the signal amplitude at the given frequencies. Uses numerical integration since frequency dependence causes there to be no analytic form. Parameters ---------- f : array_like Frequencies (Hz) at which to calculate signal attenuation. Returns ------- array_like Attenuation factors for the signal at the frequencies `f`. """ return np.exp(-np.abs(self.z_integral( self._attenuation_integral_def, integrand_kwargs={'f': f}, numerical=True ))) @lazy_property def coordinates(self): """ x, y, and z-coordinates along the path (using dz step). Coordinates are provided for plotting purposes only, and are not vetted for use in calculations. """ def r_int(z0, z1s): return np.array([self._z_int_uniform_correction( z0, z, self.z_uniform, self.beta, self.ice, self._distance_integral ) for z in z1s]) if self.direct: n_zs = int(np.abs(self.z1-self.z0)/self.dz) zs = np.linspace(self.z0, self.z1, n_zs+1) rs = r_int(self.z0, zs) rs *= np.sign(np.cos(self.theta0)) else: n_zs_1 = int(np.abs(self.z_turn-self.z0)/self.dz) zs_1 = np.linspace(self.z0, self.z_turn, n_zs_1, endpoint=False) rs_1 = r_int(self.z0, zs_1) r_turn = r_int(self.z0, np.array([self.z_turn]))[0] n_zs_2 = int(np.abs(self.z_turn-self.z1)/self.dz) zs_2 = np.linspace(self.z_turn, self.z1, n_zs_2+1) rs_2 = r_turn - r_int(self.z_turn, zs_2) rs = np.concatenate((rs_1, rs_2)) zs = np.concatenate((zs_1, zs_2)) xs = self.from_point[0] + rs*np.cos(self.phi) ys = self.from_point[1] + rs*np.sin(self.phi) return xs, ys, zs class BasicRayTracer(LazyMutableClass): """ Class for calculating the ray-trace solutions between points. Calculations performed by integrating z-steps of size ``dz``. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- from_point : array_like Vector starting point of the ray path. to_point : array_like Vector ending point of the ray path. ice_model : optional The ice model used for the ray tracer. dz : float, optional The z-step (m) to be used for integration of the ray path attributes. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. ice The ice model used for the ray tracer. dz : float The z-step (m) to be used for integration of the ray path attributes. solution_class Class to be used for each ray-trace solution path. exists expected_solutions solutions See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. BasicRayTracePath : Class for representing a single ray-trace solution between points. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. """ solution_class = BasicRayTracePath def __init__(self, from_point, to_point, ice_model=ice, dz=1): self.from_point = np.array(from_point) self.to_point = np.array(to_point) self.ice = ice_model self.dz = dz super().__init__() @property def z_turn_proximity(self): """ Parameter for how closely path approaches z_turn. Necessary to avoid diverging integrals which occur at z_turn. """ # Best value of dz/10 determined empirically by checking errors return self.dz/10 # Calculations performed as if launching from low to high @property def z0(self): """ Depth (m) of the lower endpoint. Ray tracing performed as if launching from lower point to higher point, since the only difference in the paths produced is a time reversal. This is the depth of the assumed launching point. """ return min([self.from_point[2], self.to_point[2]]) @property def z1(self): """ Depth (m) of the higher endpoint. Ray tracing performed as if launching from lower point to higher point, since the only difference in the paths produced is a time reversal. This is the depth of the assumed receiving point. """ return max([self.from_point[2], self.to_point[2]]) @lazy_property def n0(self): """Index of refraction of the ice at the lower endpoint.""" return self.ice.index(self.z0) @lazy_property def rho(self): """Radial distance between the endpoints.""" u = self.to_point - self.from_point return np.sqrt(u[0]**2 + u[1]**2) @lazy_property def max_angle(self): """Maximum possible launch angle that could connect the endpoints.""" return np.arcsin(self.ice.index(self.z1)/self.n0) @lazy_property def peak_angle(self): """ Angle at which the indirect solutions curve (in r vs angle) peaks. This angle separates the angle intervals to be used for indirect solution root-finding. """ for tolerance in np.logspace(-12, -4, num=3): for angle_step in np.logspace(-3, 0, num=4): r_func = (lambda angle, brent_arg: self._indirect_r_prime(angle, brent_arg, d_angle=angle_step)) try: peak_angle = self.angle_search(0, r_func, angle_step, self.max_angle, tolerance=tolerance) except (RuntimeError, ValueError): # Failed to converge continue else: if peak_angle>np.pi/2: peak_angle = np.pi - peak_angle return peak_angle # If all else fails, just use the max_angle return self.max_angle @lazy_property def direct_r_max(self): """Maximum r value of direct ray solutions.""" z_turn = self.ice.depth_with_index(self.n0 * np.sin(self.max_angle)) return self._direct_r(self.max_angle, force_z1=z_turn-self.z_turn_proximity) @lazy_property def indirect_r_max(self): """Maximum r value of indirect ray solutions.""" return self._indirect_r(self.peak_angle) @lazy_property def exists(self): """Boolean of whether any paths exist between the endpoints.""" return True in self.expected_solutions @lazy_property def expected_solutions(self): """ List of which types of solutions are expected to exist. The first element of the list represents the direct path, the second element represents the indirect path with a launch angle greater than the peak angle, and the third element represents the indirect path with a launch angle less than the peak angle. """ if not(self.ice.contains(self.from_point) and self.ice.contains(self.to_point)): return [False, False, False] if self.rho<self.direct_r_max: return [True, False, True] elif self.rho<self.indirect_r_max: return [False, True, True] else: return [False, False, False] @lazy_property def solutions(self): """ List of existing rays between the two points. This list should have zero elements if there are no possible paths between the endpoints or two elements otherwise, representing the more direct and the less direct paths, respectively. """ angles = [ self.direct_angle, self.indirect_angle_1, self.indirect_angle_2 ] return [self.solution_class(self, angle, direct=(i==0)) for i, angle, exists in zip(range(3), angles, self.expected_solutions) if exists and angle is not None] def _direct_r(self, angle, brent_arg=0, force_z1=None): """ Calculate the r distance of the direct ray for a given launch angle. Parameters ---------- angle : float Launch angle (radians) of a direct ray. brent_arg : float, optional Argument to subtract from the return value. Used for the brentq root finder to find a value other than zero. force_z1 : float or None, optional Value to use for the ``z1`` receiving depth. If ``None``, the ``z1`` property of the class will be used. Useful for changing the integration limits to integrate to the turning point instead. Returns ------- float Value of the radial distance integral minus the `brent_arg`. """ if force_z1 is not None: z1 = force_z1 else: z1 = self.z1 n_zs = int(np.abs((z1-self.z0)/self.dz)) zs, dz = np.linspace(self.z0, z1, n_zs+1, retstep=True) integrand = np.tan(np.arcsin(np.sin(angle) * self.n0/self.ice.index(zs))) return np.trapz(integrand, dx=dz) - brent_arg def _indirect_r(self, angle, brent_arg=0): """ Calculate the r distance of the indirect ray for a given launch angle. Parameters ---------- angle : float Launch angle (radians) of an indirect ray. brent_arg : float, optional Argument to subtract from the return value. Used for the brentq root finder to find a value other than zero. Returns ------- float Value of the radial distance integral minus the `brent_arg`. """ z_turn = self.ice.depth_with_index(self.n0 * np.sin(angle)) n_zs_1 = int(np.abs((z_turn-self.z_turn_proximity-self.z0)/self.dz)) zs_1, dz_1 = np.linspace(self.z0, z_turn-self.z_turn_proximity, n_zs_1+1, retstep=True) integrand_1 = np.tan(np.arcsin(np.sin(angle) * self.n0/self.ice.index(zs_1))) n_zs_2 = int(np.abs((z_turn-self.z_turn_proximity-self.z1)/self.dz)) zs_2, dz_2 = np.linspace(z_turn-self.z_turn_proximity, self.z1, n_zs_2+1, retstep=True) integrand_2 = np.tan(np.arcsin(np.sin(angle) * self.n0/self.ice.index(zs_2))) return (np.trapz(integrand_1, dx=dz_1) + np.trapz(integrand_2, dx=-dz_2)) - brent_arg def _indirect_r_prime(self, angle, brent_arg=0, d_angle=0.001): """ Calculate the r distance derivative of the indirect ray. Parameters ---------- angle : float Launch angle (radians) of an indirect ray. brent_arg : float, optional Argument to subtract from the return value. Used for the brentq root finder to find a value other than zero. d_angle : float, optional Difference in angle to use for calculation of the derivative. Returns ------- float Value of the numerical derivative of the radial distance integral, minus the `brent_arg`. """ return ((self._indirect_r(angle) - self._indirect_r(angle-d_angle)) / d_angle) - brent_arg def _get_launch_angle(self, r_function, min_angle=0, max_angle=np.pi/2): """ Calculates the launch angle for a ray with the given r_function. Finds the root of the given r function as a function of angle to determine the corresponding launch angle. Parameters ---------- r_function : function Function to calculate the radial distance for a given launch angle. min_angle : float, optional Minimum allowed angle for the `r_function`'s root. max_angle : float, optional Maximum allowed angle for the `r_function`'s root. Returns ------- float or None True launch angle (radians) of the path corresponding to the `r_function`. True launch angle means launches from ``from_point`` rather than from ``z0``. Value is ``None`` if the root finder was unable to converge. """ try: launch_angle = self.angle_search(self.rho, r_function, min_angle, max_angle) except RuntimeError: # Failed to converge launch_angle = None except ValueError: logger.error("Error calculating launch angle between %s and %s", self.from_point, self.to_point) raise # Convert to true launch angle from self.from_point # rather than from lower point (self.z0) return np.arcsin(np.sin(launch_angle) * self.n0 / self.ice.index(self.from_point[2])) @lazy_property def direct_angle(self): """Launch angle (radians) of the direct ray.""" if self.expected_solutions[0]: launch_angle = self._get_launch_angle(self._direct_r, max_angle=self.max_angle) if self.from_point[2] > self.to_point[2]: launch_angle = np.pi - launch_angle return launch_angle else: return None @lazy_property def indirect_angle_1(self): """ Launch angle (radians) of the first indirect ray. The first indirect ray is the indirect ray where the launch angle is greater than the peak angle. """ if self.expected_solutions[1]: return self._get_launch_angle(self._indirect_r, min_angle=self.peak_angle, max_angle=self.max_angle) else: return None @lazy_property def indirect_angle_2(self): """ Launch angle (radians) of the second indirect ray. The second indirect ray is the indirect ray where the launch angle is less than the peak angle. """ if self.expected_solutions[2]: if self.expected_solutions[1]: max_angle = self.peak_angle else: max_angle = self.max_angle return self._get_launch_angle(self._indirect_r, max_angle=max_angle) else: return None @staticmethod def angle_search(true_r, r_function, min_angle, max_angle, tolerance=1e-12, max_iterations=100): """ Calculates the angle where `r_function` (angle) == `true_r`. Runs the brentq root-finding algorithm on `r_function` with an offset of `true_r` to find the angle at which they are equal. Parameters ---------- true_r : float Desired value for the radial distance. r_function : function Function to calculate the radial distance for a given launch angle. min_angle : float Minimum allowed angle for the `r_function`. max_angle : float Maximum allowed angle for the `r_function`. tolerance : float, optional Tolerance in the root value for convergence. max_iterations : int, optional Maximum number of iterations the root finder will attempt. Returns ------- float The launch angle which will satisfy the condition `r_function` (angle) == `true_r`. Raises ------ RuntimeError If the root finder doesn't converge. """ return scipy.optimize.brentq(r_function, min_angle, max_angle, args=(true_r), xtol=tolerance, maxiter=max_iterations) class SpecializedRayTracer(BasicRayTracer): """ Class for calculating the ray-trace solutions between points. Calculations in this class require the index of refraction of the ice to be of the form n(z)=n0-k*exp(a*z). However this restriction allows for most of the integrations to be performed analytically. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- from_point : array_like Vector starting point of the ray path. to_point : array_like Vector ending point of the ray path. ice_model : optional The ice model used for the ray tracer. dz : float, optional The z-step (m) to be used for integration of the ray path attributes. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. ice The ice model used for the ray tracer. dz : float The z-step (m) to be used for integration of the ray path attributes. solution_class Class to be used for each ray-trace solution path. exists expected_solutions solutions See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. SpecializedRayTracePath : Class for representing a single ray-trace solution between points. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. The requirement that the ice model go as n(z)=n0-k*exp(a*z) is implemented by requiring the ice model to inherit from `AntarcticIce`. Obviously this is not fool-proof, but likely the ray tracing will obviously fail if the index follows a very different functional form. """ solution_class = SpecializedRayTracePath @lazy_property def valid_ice_model(self): """Whether the ice model being used supports this specialization.""" return ((isinstance(self.ice, type) and issubclass(self.ice, AntarcticIce)) or isinstance(self.ice, AntarcticIce)) @lazy_property def z_uniform(self): """ Depth (m) beyond which the ice should be treated as uniform. Calculated based on the ``uniformity_factor`` of the ``solution_class``. Necessary due to numerical rounding issues at indices close to the index limit. """ return self.ice.depth_with_index(self.ice.n0 * self.solution_class.uniformity_factor) @lazy_property def direct_r_max(self): """Maximum r value of direct ray solutions.""" return self._direct_r(self.max_angle) def _r_distance(self, theta, z0, z1): """ Calculate the r distance between depths for a given launch angle. Parameters ---------- theta : float Launch angle (radians) of a ray path. z0 : float (Negative-valued) first depth (m) in the ice. z1 : float (Negative-valued) second depth (m) in the ice. Returns ------- float Value of the radial distance integral between `z0` and `z1`. """ if not self.valid_ice_model: raise TypeError("Ice model must inherit methods from "+ "pyrex.AntarcticIce") beta = np.sin(theta) * self.n0 return self.solution_class._z_int_uniform_correction( z0, z1, self.z_uniform, beta, self.ice, self.solution_class._distance_integral ) def _r_distance_derivative(self, theta, z0, z1): """ Calculate the derivative of the r distance between depths for an angle. Parameters ---------- theta : float Launch angle (radians) of a ray path. z0 : float (Negative-valued) first depth (m) in the ice. z1 : float (Negative-valued) second depth (m) in the ice. Returns ------- float Value of the derivative of the radial distance integral between `z0` and `z1`. """ if not self.valid_ice_model: raise TypeError("Ice model must inherit methods from "+ "pyrex.AntarcticIce") beta = np.sin(theta) * self.n0 beta_prime = np.cos(theta) * self.n0 return beta_prime * self.solution_class._z_int_uniform_correction( z0, z1, self.z_uniform, beta, self.ice, self.solution_class._distance_integral_derivative, derivative_special_case=True ) def _direct_r(self, angle, brent_arg=0, force_z1=None): """ Calculate the r distance of the direct ray for a given launch angle. Parameters ---------- angle : float Launch angle (radians) of a direct ray. brent_arg : float, optional Argument to subtract from the return value. Used for the brentq root finder to find a value other than zero. force_z1 : float or None, optional Value to use for the ``z1`` receiving depth. If ``None``, the ``z1`` property of the class will be used. Useful for changing the integration limits to integrate to the turning point instead. Returns ------- float Value of the radial distance integral minus the `brent_arg`. """ if force_z1 is not None: z1 = force_z1 else: z1 = self.z1 return self._r_distance(angle, self.z0, z1) - brent_arg def _indirect_r(self, angle, brent_arg=0, link_range=1e-6): """ Calculate the r distance of the indirect ray for a given launch angle. Parameters ---------- angle : float Launch angle (radians) of an indirect ray. brent_arg : float, optional Argument to subtract from the return value. Used for the brentq root finder to find a value other than zero. link_range : float, optional Angular range from `max_angle` over which the indirect ray distance is adjusted so that it linearly approaches the maximum direct ray distance at `max_angle`. Returns ------- float Value of the radial distance integral minus the `brent_arg`. """ z_turn = self.ice.depth_with_index(self.n0 * np.sin(angle)) link_angle = self.max_angle - link_range if angle>link_angle: link_dist = (self._r_distance(link_angle, self.z0, z_turn) + self._r_distance(link_angle, self.z1, z_turn)) slope = (link_dist - self.direct_r_max) / link_range dist = self.direct_r_max + slope * (self.max_angle - angle) return dist - brent_arg else: dist = (self._r_distance(angle, self.z0, z_turn) + self._r_distance(angle, self.z1, z_turn)) return dist - brent_arg def _indirect_r_prime(self, angle, brent_arg=0): """ Calculate the r distance derivative of the indirect ray. Parameters ---------- angle : float Launch angle (radians) of an indirect ray. brent_arg : float, optional Argument to subtract from the return value. Used for the brentq root finder to find a value other than zero. Returns ------- float Value of the derivative of the radial distance integral minus the `brent_arg`. """ return self._r_distance_derivative(angle, self.z0, self.z1) - brent_arg @lazy_property def peak_angle(self): """ Angle at which the indirect solutions curve (in r vs angle) peaks. This angle separates the angle intervals to be used for indirect solution root-finding. """ try: peak_angle = self.angle_search(0, self._indirect_r_prime, 0, self.max_angle) except ValueError: # _indirect_r_prime(0) and _indirect_r_prime(max_angle) have the # same sign -> no true peak angle return self.max_angle except RuntimeError: # Failed to converge return None else: if peak_angle>np.pi/2: peak_angle = np.pi - peak_angle return peak_angle class UniformRayTracePath(LazyMutableClass): """ Class for representing a single ray solution in uniform ice. Stores parameters of the ray path through uniform ice. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- parent_tracer : UniformRayTracer Ray tracer for which this path is a solution. launch_angle : float Launch angle (radians) of the ray path. reflections : int Number of reflections made by the ray path at boundaries of the ice. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. theta0 : float The launch angle of the ray path at `from_point`. ice The ice model used for the ray tracer. direct : boolean Whether the ray path is direct (does not reflect). emitted_direction received_direction path_length tof coordinates See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. UniformRayTracer : Class for calculating ray solutions in uniform ice. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. """ def __init__(self, parent_tracer, launch_angle, reflections): self.from_point = parent_tracer.from_point self.to_point = parent_tracer.to_point self.theta0 = launch_angle self.ice = parent_tracer.ice self.direct = reflections==0 self._reflections = reflections super().__init__() @lazy_property def _points(self): """Relevant points along the path.""" if self.direct: return np.asarray([self.from_point, self.to_point]) else: points = np.zeros((self._reflections+2, 3)) points[0] = self.from_point dzs = [] if self.theta0>0: initial_direction = 1 elif self.theta0<0: initial_direction = -1 else: raise ValueError("Invalid initial direction") if initial_direction==1: dzs.append(self.ice.valid_range[1]-self.z0) else: dzs.append(self.z0-self.ice.valid_range[0]) size = self.ice.valid_range[1] - self.ice.valid_range[0] dzs.extend([size]*(self._reflections-1)) final_direction = initial_direction * (-1)**self._reflections if final_direction==1: dzs.append(self.z1-self.ice.valid_range[0]) else: dzs.append(self.ice.valid_range[1]-self.z1) drs = self.rho * np.asarray(dzs)/np.sum(dzs) rs = np.cumsum(drs) points[1:, 0] = rs * np.cos(self.phi) points[1:, 1] = rs * np.sin(self.phi) for i in range(self._reflections): dirn = ((initial_direction * (-1)**i)+1)//2 points[i+1, 2] = self.ice.valid_range[dirn] points[-1] = self.to_point return points @property def valid_ice_model(self): """Whether the ice model being used is supported.""" return isinstance(self.ice, UniformIce) @property def z0(self): """Depth (m) of the launching point.""" return self.from_point[2] @property def z1(self): """Depth (m) of the receiving point.""" return self.to_point[2] @lazy_property def n0(self): """Index of refraction of the ice at the launching point.""" return self.ice.index(self.z0) @lazy_property def rho(self): """Radial distance (m) between the endpoints.""" u = self.to_point - self.from_point return np.sqrt(u[0]**2 + u[1]**2) @lazy_property def phi(self): """Azimuthal angle (radians) between the endpoints.""" u = self.to_point - self.from_point return np.arctan2(u[1], u[0]) @lazy_property def emitted_direction(self): """Direction in which ray is emitted.""" if self.direct and np.array_equal(self.from_point, self.to_point): return np.array([0, 0, 1]) return normalize(self._points[1] - self._points[0]) @lazy_property def received_direction(self): """Direction ray is travelling when it is received.""" if self.direct and np.array_equal(self.from_point, self.to_point): return np.array([0, 0, 1]) return normalize(self._points[-1] - self._points[-2]) @lazy_property def path_length(self): """Length (m) of the ray path.""" if not self.valid_ice_model: raise TypeError("Ice model must be uniform ice") return np.sum([np.sqrt(np.sum((p2-p1)**2)) for p1, p2 in zip(self._points[:-1], self._points[1:])]) @lazy_property def tof(self): """Time of flight (s) along the ray path.""" return self.n0 * self.path_length / scipy.constants.c @lazy_property def fresnel(self): """ Fresnel factors for reflections off the ice boundaries. The fresnel reflectances are calculated as the square root (ratio of amplitudes, not powers). Stores the s and p polarized factors, respectively. """ if not self.valid_ice_model: raise TypeError("Ice model must be uniform ice") r_s = 1 r_p = 1 n_1 = self.n0 if len(self._points)<3: return r_s, r_p for p1, p2 in zip(self._points[:-2], self._points[1:-1]): if p2[2]==self.ice.valid_range[0]: n_2 = self.ice.index_below elif p2[2]==self.ice.valid_range[1]: n_2 = self.ice.index_above else: raise ValueError("Intermediate points don't reflect off the "+ "ice boundaries") dr = np.sqrt(np.sum((p2[:2]-p1[:2])**2)) dz = np.abs(p2[2]-p1[2]) theta_1 = np.arctan(dr/dz) cos_1 = np.cos(theta_1) sin_2 = n_1/n_2*np.sin(theta_1) if sin_2<=1: cos_2 = np.sqrt(1 - (sin_2)**2) else: cos_2 = np.sqrt((sin_2)**2 - 1)*1j # TODO: Confirm sign convention here r_s *= (n_1*cos_1 - n_2*cos_2) / (n_1*cos_1 + n_2*cos_2) r_p *= (n_2*cos_1 - n_1*cos_2) / (n_2*cos_1 + n_1*cos_2) return r_s, r_p def attenuation(self, f, dz=1): """ Calculate the attenuation factor for signal frequencies. Calculates the attenuation factor to be multiplied by the signal amplitude at the given frequencies. Parameters ---------- f : array_like Frequencies (Hz) at which to calculate signal attenuation. dz : float, optional Step size in z to divide the ice. Actual step size will not be exactly this value, but is guaranteed to be less than the given value. Returns ------- array_like Attenuation factors for the signal at the frequencies `f`. """ if not self.valid_ice_model: raise TypeError("Ice model must be uniform ice") fa = np.abs(f) attens = np.ones(fa.shape) for p1, p2 in zip(self._points[:-1], self._points[1:]): if p1[2]==p2[2]: dp = np.sqrt(np.sum((p2-p1)**2)) zs = np.array([p1[2]]) else: dpdz = (p2-p1)/(p2[2]-p1[2]) n_steps = int(np.abs(p2[2]-p1[2]) / dz) + 2 zs, dz_true = np.linspace(p1[2], p2[2], n_steps, endpoint=False, retstep=True) dp = np.sqrt(np.sum((dpdz*dz_true)**2)) alens = self.ice.attenuation_length(zs, fa) attens *= np.prod(np.exp(-dp/alens), axis=0) return attens def propagate(self, signal=None, polarization=None): """ Propagate the signal with optional polarization along the ray path. Applies the frequency-dependent signal attenuation along the ray path and shifts the times according to the ray time of flight. Additionally provides the s and p polarization directions. Parameters ---------- signal : Signal, optional ``Signal`` object to propagate. polarization : array_like, optional Vector representing the linear polarization of the `signal`. Returns ------- tuple of Signal Tuple of ``Signal`` objects representing the s and p polarizations of the original `signal` attenuated along the ray path. Only returned if `signal` was not ``None``. tuple of ndarray Tuple of polarization vectors representing the s and p polarization directions of the `signal` at the end of the ray path. Only returned if `polarization` was not ``None``. See Also -------- pyrex.Signal : Base class for time-domain signals. """ if polarization is None: if signal is None: return else: new_signal = signal.copy() new_signal.shift(self.tof) new_signal.filter_frequencies(self.attenuation) return new_signal else: # Unit vectors perpendicular and parallel to plane of incidence # at the launching point u_s0 = normalize(np.cross(self.emitted_direction, [0, 0, 1])) u_p0 = normalize(np.cross(u_s0, self.emitted_direction)) # Unit vector parallel to plane of incidence at the receiving point # (perpendicular vector stays the same) u_p1 = normalize(np.cross(u_s0, self.received_direction)) if signal is None: return (u_s0, u_p1) else: # Amplitudes of s and p components pol_s = np.dot(polarization, u_s0) pol_p = np.dot(polarization, u_p0) # Fresnel reflectances of s and p components r_s, r_p = self.fresnel # Apply fresnel s and p coefficients in addition to attenuation attenuation_s = lambda freqs: self.attenuation(freqs) * r_s attenuation_p = lambda freqs: self.attenuation(freqs) * r_p signal_s = signal * pol_s signal_p = signal * pol_p signal_s.shift(self.tof) signal_p.shift(self.tof) signal_s.filter_frequencies(attenuation_s, force_real=True) signal_p.filter_frequencies(attenuation_p, force_real=True) return (signal_s, signal_p), (u_s0, u_p1) @lazy_property def coordinates(self): """ x, y, and z-coordinates along the path. Coordinates are only calculated at ice layer boundaries, as the path is assumed to be straight within an ice layer. """ if not self.valid_ice_model: raise TypeError("Ice model must be uniform ice") xs = np.array([p[0] for p in self._points]) ys = np.array([p[1] for p in self._points]) zs = np.array([p[2] for p in self._points]) return xs, ys, zs class UniformRayTracer(LazyMutableClass): """ Class for calculating ray solutions in uniform ice. Calculations performed using straight-line paths. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- from_point : array_like Vector starting point of the ray path. to_point : array_like Vector ending point of the ray path. ice_model The ice model used for the ray tracer. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. ice The ice model used for the ray tracer. solution_class Class to be used for each ray-trace solution path. exists expected_solutions solutions See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. UniformRayTracePath : Class for representing a single ray solution in uniform ice. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. """ solution_class = UniformRayTracePath max_reflections = 0 def __init__(self, from_point, to_point, ice_model): self.from_point = np.array(from_point) self.to_point = np.array(to_point) self.ice = ice_model super().__init__() @property def valid_ice_model(self): """Whether the ice model being used is supported.""" return isinstance(self.ice, UniformIce) @property def z0(self): """Depth (m) of the launching point.""" return self.from_point[2] @property def z1(self): """Depth (m) of the receiving point.""" return self.to_point[2] @lazy_property def n0(self): """Index of refraction of the ice at the starting endpoint.""" return self.ice.index(self.z0) @lazy_property def rho(self): """Radial distance (m) between the endpoints.""" u = self.to_point - self.from_point return np.sqrt(u[0]**2 + u[1]**2) @lazy_property def phi(self): """Azimuthal angle (radians) between the endpoints.""" u = self.to_point - self.from_point return np.arctan2(u[1], u[0]) @lazy_property def exists(self): """ Boolean of whether any paths exist between the endpoints. Paths are deemed invalid if at least one of the endpoints is outside of the allowed ice range. """ if not self.valid_ice_model: raise TypeError("Ice model must be uniform ice") return (self.ice.valid_range[0]<=self.z0<=self.ice.valid_range[1] and self.ice.valid_range[0]<=self.z1<=self.ice.valid_range[1]) def _reflected_path(self, reflections, initial_direction): """ Generate reflected path for given parameters. Path will have the given number of reflections and the given initial direction (+1 for upward, -1 for downward). """ if not self.valid_ice_model: raise TypeError("Ice model must be uniform ice") if reflections<1: raise ValueError("Number of reflections must be one or larger") if (self.ice._index_above is None and (reflections>1 or initial_direction==1)): raise TypeError("Reflections not allowed off the upper surface") if (self.ice._index_below is None and (reflections>1 or initial_direction==-1)): raise TypeError("Reflections not allowed off the lower surface") points =
np.zeros((reflections+2, 3))
numpy.zeros
"""Contains most of the methods that compose the ORIGIN software.""" import itertools import logging import warnings from datetime import datetime from functools import wraps from time import time import warnings warnings.filterwarnings("ignore", category=RuntimeWarning) import matplotlib.pyplot as plt import numpy as np from astropy.modeling.fitting import LevMarLSQFitter from astropy.modeling.models import Gaussian1D from astropy.nddata import overlap_slices from astropy.stats import ( gaussian_fwhm_to_sigma, gaussian_sigma_to_fwhm, sigma_clipped_stats, ) from astropy.table import Column, Table, join from astropy.stats import sigma_clip from astropy.utils.exceptions import AstropyUserWarning from joblib import Parallel, delayed from mpdaf.obj import Image from mpdaf.tools import progressbar from numpy import fft from numpy.linalg import multi_dot from scipy import fftpack, stats from scipy.interpolate import interp1d from scipy.ndimage import binary_dilation, binary_erosion from scipy.ndimage import label as ndi_label from scipy.ndimage import maximum_filter from scipy.signal import fftconvolve from scipy.sparse.linalg import svds from scipy.spatial import ConvexHull, cKDTree from .source_masks import gen_source_mask __all__ = ( 'add_tglr_stat', 'compute_deblended_segmap', 'Compute_GreedyPCA', 'compute_local_max', 'compute_segmap_gauss', 'compute_thresh_gaussfit', 'Compute_threshold_purity', 'compute_true_purity', 'Correlation_GLR_test', 'create_masks', 'estimation_line', 'merge_similar_lines', 'purity_estimation', 'spatial_segmentation', 'spatiospectral_merging', 'unique_sources', ) def timeit(f): """Decorator which prints the execution time of a function.""" @wraps(f) def timed(*args, **kw): logger = logging.getLogger(__name__) t0 = time() result = f(*args, **kw) logger.debug('%s executed in %0.1fs', f.__name__, time() - t0) return result return timed def orthogonal_projection(a, b): """Compute the orthogonal projection: a.(a^T.a)-1.a^T.b NOTE: does not include the (a^T.a)-1 term as it is often not needed (when a is already normalized). """ # Using multi_dot which is faster than np.dot(np.dot(a, a.T), b) # Another option would be to use einsum, less readable but also very # fast with Numpy 1.14+ and optimize=True. This seems to be as fast as # multi_dot. # return np.einsum('i,j,jk->ik', a, a, b, optimize=True) if a.ndim == 1: a = a[:, None] return multi_dot([a, a.T, b]) @timeit def spatial_segmentation(Nx, Ny, NbSubcube, start=None): """Compute indices to split spatially in NbSubcube x NbSubcube regions. Each zone is computed from the left to the right and the top to the bottom First pixel of the first zone has coordinates : (row,col) = (Nx,1). Parameters ---------- Nx : int Number of columns Ny : int Number of rows NbSubcube : int Number of subcubes for the spatial segmentation start : tuple if not None, the tupe is the (y,x) starting point Returns ------- intx, inty : int, int limits in pixels of the columns/rows for each zone """ # Segmentation of the rows vector in Nbsubcube parts from right to left inty = np.linspace(Ny, 0, NbSubcube + 1, dtype=np.int) # Segmentation of the columns vector in Nbsubcube parts from left to right intx = np.linspace(0, Nx, NbSubcube + 1, dtype=np.int) if start is not None: inty += start[0] intx += start[1] return inty, intx def DCTMAT(nl, order): """Return the DCT transformation matrix of size nl-by-(order+1). Equivalent function to Matlab/Octave's dtcmtx. https://octave.sourceforge.io/signal/function/dctmtx.html Parameters ---------- order : int Order of the DCT (spectral length). Returns ------- array: DCT Matrix """ yy, xx = np.mgrid[:nl, : order + 1] D0 = np.sqrt(2 / nl) * np.cos((yy + 0.5) * (np.pi / nl) * xx) D0[:, 0] *= 1 / np.sqrt(2) return D0 @timeit def dct_residual(w_raw, order, var, approx, mask): """Function to compute the residual of the DCT on raw data. Parameters ---------- w_raw : array Data array. order : int The number of atom to keep for the DCT decomposition. var : array Variance array. approx : bool If True, an approximate computation is used, not taking the variance into account. Returns ------- Faint, cont : array Residual and continuum estimated from the DCT decomposition. """ nl = w_raw.shape[0] D0 = DCTMAT(nl, order) shape = w_raw.shape[1:] nspec = np.prod(shape) if approx: # Compute the DCT transformation, without using the variance. # # Given the transformation matrix D0, we compute for each spectrum S: # # C = D0.D0^t.S # # Old version using tensordot: # A = np.dot(D0, D0.T) # cont = np.tensordot(A, w_raw, axes=(0, 0)) # Looping on spectra and using multidot is ~6x faster: # D0 is typically 3681x11 elements, so it is much more efficient # to compute D0^t.S first (note the array is reshaped below) cont = [ multi_dot([D0, D0.T, w_raw[:, y, x]]) for y, x in progressbar(np.ndindex(shape), total=nspec) ] # For reference, this is identical to the following scipy version, # though scipy is 2x slower than tensordot (probably because it # computes all the coefficients) # from scipy.fftpack import dct # w = (np.arange(nl) < (order + 1)).astype(int) # cont = dct(dct(w_raw, type=2, norm='ortho', axis=0) * w[:,None,None], # type=3, norm='ortho', axis=0, overwrite_x=False) else: # Compute the DCT transformation, using the variance. # # As the noise differs on each spectral component, we need to take into # account the (diagonal) covariance matrix Σ for each spectrum S: # # C = D0.(D^t.Σ^-1.D)^-1.D0^t.Σ^-1.S # w_raw_var = w_raw / var D0T = D0.T # Old version (slow): # def continuum(D0, D0T, var, w_raw_var): # A = np.linalg.inv(np.dot(D0T / var, D0)) # return np.dot(np.dot(np.dot(D0, A), D0T), w_raw_var) # # cont = Parallel()( # delayed(continuum)(D0, D0T, var[:, i, j], w_raw_var[:, i, j]) # for i in range(w_raw.shape[1]) for j in range(w_raw.shape[2])) # cont = np.asarray(cont).T.reshape(w_raw.shape) # map of valid spaxels, i.e. spaxels with at least one valid value valid = ~np.any(mask, axis=0) from numpy.linalg import inv cont = [] for y, x in progressbar(np.ndindex(shape), total=nspec): if valid[y, x]: res = multi_dot( [D0, inv(np.dot(D0T / var[:, y, x], D0)), D0T, w_raw_var[:, y, x]] ) else: res = multi_dot([D0, D0.T, w_raw[:, y, x]]) cont.append(res) return np.stack(cont).T.reshape(w_raw.shape) def compute_segmap_gauss(data, pfa, fwhm_fsf=0, bins='fd'): """Compute segmentation map from an image, using gaussian statistics. Parameters ---------- data : array Input values, typically from a O2 test. pfa : float Desired false alarm. fwhm : int Width (in integer pixels) of the filter, to convolve with a PSF disc. bins : str Method for computings bins (see numpy.histogram_bin_edges). Returns ------- float, array threshold, and labeled image. """ # test threshold : uses a Gaussian approximation of the test statistic # under H0 histO2, frecO2, gamma, mea, std = compute_thresh_gaussfit(data, pfa, bins=bins) # threshold - erosion and dilation to clean ponctual "source" mask = data > gamma mask = binary_erosion(mask, border_value=1, iterations=1) mask = binary_dilation(mask, iterations=1) # convolve with PSF if fwhm_fsf > 0: fwhm_pix = int(fwhm_fsf) // 2 size = fwhm_pix * 2 + 1 disc = np.hypot(*list(np.mgrid[:size, :size] - fwhm_pix)) < fwhm_pix mask = fftconvolve(mask, disc, mode='same') mask = mask > 1e-9 return gamma, ndi_label(mask)[0] def compute_deblended_segmap( image, npixels=5, snr=3, dilate_size=11, maxiters=5, sigma=3, fwhm=3.0, kernelsize=5 ): """Compute segmentation map using photutils. The segmentation map is computed with the following steps: - Creation of a mask of sources with the ``snr`` threshold, using `photutils.make_source_mask`. - Estimation of the background statistics with this mask (`astropy.stats.sigma_clipped_stats`), to estimate a refined threshold with ``median + sigma * rms``. - Convolution with a Gaussian kernel. - Creation of the segmentation image, using `photutils.detect_sources`. - Deblending of the segmentation image, using `photutils.deblend_sources`. Parameters ---------- image : mpdaf.obj.Image The input image. npixels : int The number of connected pixels that an object must have to be detected. snr, dilate_size : See `photutils.make_source_mask`. maxiters, sigma : See `astropy.stats.sigma_clipped_stats`. fwhm : float Kernel size (pixels) for the PSF convolution. kernelsize : int Size of the convolution kernel. Returns ------- `~mpdaf.obj.Image` The deblended segmentation map. """ from astropy.convolution import Gaussian2DKernel from photutils import make_source_mask, detect_sources data = image.data mask = make_source_mask(data, snr=snr, npixels=npixels, dilate_size=dilate_size) bkg_mean, bkg_median, bkg_rms = sigma_clipped_stats( data, sigma=sigma, mask=mask, maxiters=maxiters ) threshold = bkg_median + sigma * bkg_rms logger = logging.getLogger(__name__) logger.info( 'Background Median %.2f RMS %.2f Threshold %.2f', bkg_median, bkg_rms, threshold ) sig = fwhm * gaussian_fwhm_to_sigma kernel = Gaussian2DKernel(sig, x_size=kernelsize, y_size=kernelsize) kernel.normalize() segm = detect_sources(data, threshold, npixels=npixels, filter_kernel=kernel) segm_deblend = phot_deblend_sources( image, segm, npixels=npixels, filter_kernel=kernel, mode='linear' ) return segm_deblend def phot_deblend_sources(img, segmap, **kwargs): """Wrapper to catch warnings from deblend_sources.""" from photutils import deblend_sources with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', category=AstropyUserWarning, message='.*contains negative values.*', ) deblend = deblend_sources(img.data, segmap, **kwargs) return Image(data=deblend.data, wcs=img.wcs, mask=img.mask, copy=False) def createradvar(cu, ot): """Compute the compactness of areas using variance of position. The variance is computed on the position given by adding one of the 'ot' to 'cu'. Parameters ---------- cu : 2D array The current array ot : 3D array The other array Returns ------- var : array The radial variances """ N = ot.shape[0] out = np.zeros(N) for n in range(N): tmp = cu + ot[n, :, :] y, x = np.where(tmp > 0) r = np.sqrt((y - y.mean()) ** 2 + (x - x.mean()) ** 2) out[n] = np.var(r) return out def fusion_areas(label, MinSize, MaxSize, option=None): """Function which merge areas which have a surface less than MinSize if the size after merging is less than MaxSize. The criteria of neighbor can be related to the minimum surface or to the compactness of the output area Parameters ---------- label : area The labels of areas MinSize : int The size of areas under which they need to merge MaxSize : int The size of areas above which they cant merge option : string if 'var' the compactness criteria is used if None the minimum surface criteria is used Returns ------- label : array The labels of merged areas """ while True: indlabl = np.argsort(np.sum(label, axis=(1, 2))) tampon = label.copy() for n in indlabl: # if the label is not empty cu = label[n, :, :] cu_size = np.sum(cu) if cu_size > 0 and cu_size < MinSize: # search for neighbors labdil = label[n, :, :].copy() labdil = binary_dilation(labdil, iterations=1) # only neighbors test = np.sum(label * labdil[np.newaxis, :, :], axis=(1, 2)) > 0 indice = np.where(test == 1)[0] ind = np.where(indice != n)[0] indice = indice[ind] # BOUCLER SUR LES CANDIDATS ot = label[indice, :, :] # test size of current with neighbor if option is None: test = np.sum(ot, axis=(1, 2)) elif option == 'var': test = createradvar(cu, ot) else: raise ValueError('bad option') if len(test) > 0: # keep the min-size ind = np.argmin(test) cand = indice[ind] if (np.sum(label[n, :, :]) + test[ind]) < MaxSize: label[n, :, :] += label[cand, :, :] label[cand, :, :] = 0 # clean empty area ind = np.sum(label, axis=(1, 2)) > 0 label = label[ind, :, :] tampon = tampon[ind, :, :] if np.sum(tampon - label) == 0: break return label @timeit def area_segmentation_square_fusion(nexpmap, MinS, MaxS, NbSubcube, Ny, Nx): """Create non square area based on continuum test. The full 2D image is first segmented in subcube. The area are fused in case they are too small. Thanks to the continuum test, detected sources are fused with associated area. The convex enveloppe of the sources inside each area is then done. Finally all the convex enveloppe growth until using all the pixels Parameters ---------- nexpmap : 2D array the active pixel of the image MinS : int The size of areas under which they need to merge MaxS : int The size of areas above which they cant merge NbSubcube : int Number of subcubes for the spatial segmentation Nx : int Number of columns Ny : int Number of rows Returns ------- label : array label of the fused square """ # square area index with borders Vert = np.sum(nexpmap, axis=1) Hori = np.sum(nexpmap, axis=0) y1 = np.where(Vert > 0)[0][0] x1 = np.where(Hori > 0)[0][0] y2 = Ny - np.where(Vert[::-1] > 0)[0][0] x2 = Nx - np.where(Hori[::-1] > 0)[0][0] start = (y1, x1) inty, intx = spatial_segmentation(Nx, Ny, NbSubcube, start=start) # % FUSION square AREA label = [] for numy in range(NbSubcube): for numx in range(NbSubcube): y1, y2, x1, x2 = inty[numy + 1], inty[numy], intx[numx], intx[numx + 1] tmp = nexpmap[y1:y2, x1:x2] if np.mean(tmp) != 0: labtest = ndi_label(tmp)[0] labtmax = labtest.max() for n in range(labtmax): label_tmp = np.zeros((Ny, Nx)) label_tmp[y1:y2, x1:x2] = labtest == (n + 1) label.append(label_tmp) label = np.array(label) return fusion_areas(label, MinS, MaxS) @timeit def area_segmentation_sources_fusion(labsrc, label, pfa, Ny, Nx): """Function to create non square area based on continuum test. Thanks to the continuum test, detected sources are fused with associated area. The convex enveloppe of the sources inside each area is then done. Finally all the convex enveloppe growth until using all the pixels Parameters ---------- labsrc : array segmentation map label : array label of fused square generated in area_segmentation_square_fusion pfa : float Pvalue for the test which performs segmentation NbSubcube : int Number of subcubes for the spatial segmentation Nx : int Number of columns Ny : int Number of rows Returns ------- label_out : array label of the fused square and sources """ # compute the sources label nlab = labsrc.max() sources = np.zeros((nlab, Ny, Nx)) for n in range(1, nlab + 1): sources[n - 1, :, :] = (labsrc == n) > 0 sources_save = sources.copy() nlabel = label.shape[0] nsrc = sources.shape[0] for n in range(nsrc): cu_src = sources[n, :, :] # find the area in which the current source # has bigger probability to be test = np.sum(cu_src[np.newaxis, :, :] * label, axis=(1, 2)) if len(test) > 0: ind = np.argmax(test) # associate the source to the label label[ind, :, :] = (label[ind, :, :] + cu_src) > 0 # mask other labels from this sources mask = (1 - label[ind, :, :])[np.newaxis, :, :] ot_lab = np.delete(np.arange(nlabel), ind) label[ot_lab, :, :] *= mask # delete the source sources[n, :, :] = 0 return label, np.sum(sources_save, axis=0) @timeit def area_segmentation_convex_fusion(label, src): """Function to compute the convex enveloppe of the sources inside each area is then done. Finally all the convex enveloppe growth until using all the pixels Parameters ---------- label : array label containing the fusion of fused squares and sources generated in area_segmentation_sources_fusion src : array label of estimated sources from segmentation map Returns ------- label_out : array label of the convex """ label_fin = [] # for each label for lab_n in range(label.shape[0]): # keep only the sources inside the label lab = label[lab_n, :, :] data = src * lab if np.sum(data > 0): points = np.array(np.where(data > 0)).T y_0 = points[:, 0].min() x_0 = points[:, 1].min() points[:, 0] -= y_0 points[:, 1] -= x_0 sny, snx = points[:, 0].max() + 1, points[:, 1].max() + 1 # compute the convex enveloppe of a sub part of the label lab_temp = Convexline(points, snx, sny) # in full size label_out = np.zeros((label.shape[1], label.shape[2])) label_out[y_0 : y_0 + sny, x_0 : x_0 + snx] = lab_temp label_out *= lab label_fin.append(label_out) return np.array(label_fin) def Convexline(points, snx, sny): """Function to compute the convex enveloppe of the sources inside each area is then done and full the polygone Parameters ---------- data : array contain the position of source for one of the label snx,sny: int,int the effective size of area in the label Returns ------- lab_out : array The filled convex enveloppe corresponding the sub label """ # convex enveloppe vertices hull = ConvexHull(points) xs = hull.points[hull.simplices[:, 1]] xt = hull.points[hull.simplices[:, 0]] sny, snx = points[:, 0].max() + 1, points[:, 1].max() + 1 tmp = np.zeros((sny, snx)) # create le line between vertices for n in range(hull.simplices.shape[0]): x0, x1, y0, y1 = xs[n, 1], xt[n, 1], xs[n, 0], xt[n, 0] nx = np.abs(x1 - x0) ny = np.abs(y1 - y0) if ny > nx: xa, xb, ya, yb = y0, y1, x0, x1 else: xa, xb, ya, yb = x0, x1, y0, y1 if xa > xb: xb, xa, yb, ya = xa, xb, ya, yb indx = np.arange(xa, xb, dtype=int) N = len(indx) indy = np.array(ya + (indx - xa) * (yb - ya) / N, dtype=int) if ny > nx: tmpx, tmpy = indx, indy indy, indx = tmpx, tmpy tmp[indy, indx] = 1 radius = 1 dxy = 2 * radius x = np.linspace(-dxy, dxy, 1 + (dxy) * 2) y = np.linspace(-dxy, dxy, 1 + (dxy) * 2) xv, yv = np.meshgrid(x, y) r = np.sqrt(xv ** 2 + yv ** 2) mask = np.abs(r) <= radius # to close the lines conv_lab = fftconvolve(tmp, mask, mode='same') > 1e-9 lab_out = conv_lab.copy() for n in range(conv_lab.shape[0]): ind = np.where(conv_lab[n, :] == 1)[0] lab_out[n, ind[0] : ind[-1]] = 1 return lab_out @timeit def area_growing(label, mask): """Growing and merging of all areas Parameters ---------- label : array label containing convex enveloppe of each area mask : array mask of positive pixels Returns ------- label_out : array label of the convex envelop grown to the max number of pixels """ # start by smaller set_ind = np.argsort(np.sum(label, axis=(1, 2))) # closure horizon niter = 20 label_out = label.copy() nlab = label_out.shape[0] while True: s = np.sum(label_out) for n in set_ind: cu_lab = label_out[n, :, :] ind = np.delete(np.arange(nlab), n) ot_lab = label_out[ind, :, :] border = (1 - (np.sum(ot_lab, axis=0) > 0)) * mask # closure in all case + 1 dilation cu_lab = binary_dilation(cu_lab, iterations=niter + 1) cu_lab = binary_erosion(cu_lab, border_value=1, iterations=niter) label_out[n, :, :] = cu_lab * border if np.sum(label_out) == np.sum(mask) or np.sum(label_out) == s: break return label_out @timeit def area_segmentation_final(label, MinS, MaxS): """Merging of small areas and give index Parameters ---------- label : array Label containing convex enveloppe of each area MinS : number The size of areas under which they need to merge MaxS : number The size of areas above which they cant merge Returns ------- sety,setx : array List of index of each label """ # if an area is too small label = fusion_areas(label, MinS, MaxS, option='var') # create label map areamap = np.zeros(label.shape[1:]) for i in range(label.shape[0]): areamap[label[i, :, :] > 0] = i + 1 return areamap @timeit def Compute_GreedyPCA_area( NbArea, cube_std, areamap, Noise_population, threshold_test, itermax, testO2 ): """Function to compute the PCA on each zone of a data cube. Parameters ---------- NbArea : int Number of area cube_std : array Cube data weighted by the standard deviation areamap : array Map of areas Noise_population : float Proportion of estimated noise part used to define the background spectra threshold_test : list User given list of threshold (not pfa) to apply on each area, the list is of length NbAreas or of length 1. itermax : int Maximum number of iterations testO2 : list of arrays Result of the O2 test Returns ------- cube_faint : array Faint greedy decomposition od STD Cube """ cube_faint = cube_std.copy() mapO2 = np.zeros(cube_std.shape[1:]) nstop = 0 area_iter = range(1, NbArea + 1) if NbArea > 1: area_iter = progressbar(area_iter) for area_ind in area_iter: # limits of each spatial zone ksel = areamap == area_ind # Data in this spatio-spectral zone cube_temp = cube_std[:, ksel] thr = threshold_test[area_ind - 1] test = testO2[area_ind - 1] cube_faint[:, ksel], mO2, kstop = Compute_GreedyPCA( cube_temp, test, thr, Noise_population, itermax ) mapO2[ksel] = mO2 nstop += kstop return cube_faint, mapO2, nstop def Compute_PCA_threshold(faint, pfa): """Compute threshold for the PCA. Parameters ---------- faint : array Standardized data. pfa : float PFA of the test. Returns ------- test, histO2, frecO2, thresO2, mea, std Threshold for the O2 test """ test = O2test(faint) # automatic threshold computation histO2, frecO2, thresO2, mea, std = compute_thresh_gaussfit(test, pfa) return test, histO2, frecO2, thresO2, mea, std def Compute_GreedyPCA(cube_in, test, thresO2, Noise_population, itermax): """Function to compute greedy svd. thanks to the test (test_fun) and according to a defined threshold (threshold_test) the cube is segmented in nuisance and background part. A part of the background part (1/Noise_population %) is used to compute a mean background, a signature. The Nuisance part is orthogonalized to this signature in order to not loose this part during the greedy process. SVD is performed on nuisance in order to modelized the nuisance part and the principal eigen vector, only one, is used to perform the projection of the whole set of data: Nuisance and background. The Nuisance spectra which satisfied the test are updated in the background computation and the background is so cleaned from sources signature. The iteration stop when all the spectra satisfy the criteria Parameters ---------- Cube_in : array The 3D cube data clean test_fun: function the test to be performed on data Noise_population : float Fraction of spectra estimated as background itermax : int Maximum number of iterations Returns ------- faint : array cleaned cube mapO2 : array 2D MAP filled with the number of iteration per spectra thresO2 : float Threshold for the O2 test nstop : int Nb of times the iterations have been stopped when > itermax """ logger = logging.getLogger(__name__) # nuisance part pypx = np.where(test > thresO2)[0] npix = len(pypx) faint = cube_in.copy() mapO2 = np.zeros(faint.shape[1]) nstop = 0 with progressbar(total=npix, miniters=0, leave=False) as bar: # greedy loop based on test nbiter = 0 while len(pypx) > 0: nbiter += 1 mapO2[pypx] += 1 if nbiter > itermax: nstop += 1 logger.warning('Warning iterations stopped at %d', nbiter) break # vector data test_v = np.ravel(test) test_v = test_v[test_v > 0] nind = np.where(test_v <= thresO2)[0] sortind = np.argsort(test_v[nind]) # at least one spectra is used to perform the test nb = 1 + int(len(nind) / Noise_population) # background estimation b = np.mean(faint[:, nind[sortind[:nb]]], axis=1) # cube segmentation x_red = faint[:, pypx] # orthogonal projection with background. x_red -= orthogonal_projection(b, x_red) x_red /= np.nansum(b ** 2) # sparse svd if nb spectrum > 1 else normal svd if x_red.shape[1] == 1: break # if PCA will not converge or if giant pint source will exists # in faint PCA the reason will be here, in later case # add condition while calculating the "mean_in_pca" # deactivate the substraction of the mean. # This will make the vector whish is above threshold # equal to the background. For now we prefer to keep it, to # stop iteration earlier in order to keep residual sources # with the hypothesis that this spectrum is slightly above # the threshold (what we observe in data) U, s, V = np.linalg.svd(x_red, full_matrices=False) else: U, s, V = svds(x_red, k=1) # orthogonal projection faint -= orthogonal_projection(U[:, 0], faint) # test test = O2test(faint) # nuisance part pypx = np.where(test > thresO2)[0] bar.update(npix - len(pypx) - bar.n) bar.update(npix - len(pypx) - bar.n) return faint, mapO2, nstop def O2test(arr): """Compute the second order test on spaxels. The test estimate the background part and nuisance part of the data by mean of second order test: Testing mean and variance at same time of spectra. Parameters ---------- arr : array-like The 3D cube data to test. Returns ------- ndarray result of the test. """ # np.einsum('ij,ij->j', arr, arr) / arr.shape[0] return np.mean(arr ** 2, axis=0) def compute_thresh_gaussfit(data, pfa, bins='fd', sigclip=10): """Compute a threshold with a gaussian fit of a distribution. Parameters ---------- data : array 2D data from the O2 test. pfa : float Desired false alarm. bins : str Method for computings bins (see numpy.histogram_bin_edges). Returns ------- histO2 : histogram value of the test frecO2 : frequencies of the histogram thresO2 : automatic threshold for the O2 test mea : mean value of the fit std : sigma value of the fit """ logger = logging.getLogger(__name__) data = data[data > 0] data = sigma_clip(data, sigclip) data = data.compressed() histO2, frecO2 = np.histogram(data, bins=bins, density=True) ind = np.argmax(histO2) mod = frecO2[ind] ind2 = np.argmin((histO2[ind] / 2 - histO2[:ind]) ** 2) fwhm = mod - frecO2[ind2] sigma = fwhm / np.sqrt(2 * np.log(2)) coef = stats.norm.ppf(pfa) thresO2 = mod - sigma * coef logger.debug('1st estimation mean/std/threshold: %f/%f/%f', mod, sigma, thresO2) x = (frecO2[1:] + frecO2[:-1]) / 2 g1 = Gaussian1D(amplitude=histO2.max(), mean=mod, stddev=sigma) fit_g = LevMarLSQFitter() xcut = g1.mean + gaussian_sigma_to_fwhm * g1.stddev / 2 ksel = x < xcut g2 = fit_g(g1, x[ksel], histO2[ksel]) mea, std = (g2.mean.value, g2.stddev.value) # make sure to return float, not np.float64 thresO2 = float(mea - std * coef) return histO2, frecO2, thresO2, mea, std def _convolve_fsf(psf, cube, weights=None): ones = np.ones_like(cube) if weights is not None: cube = cube * weights ones *= weights psf = np.ascontiguousarray(psf[::-1, ::-1]) psf -= psf.mean() # build a weighting map per PSF and convolve cube_fsf = fftconvolve(cube, psf, mode='same') # Spatial part of the norm of the 3D atom psf **= 2 norm_fsf = fftconvolve(ones, psf, mode='same') return cube_fsf, norm_fsf def _convolve_profile(Dico, cube_fft, norm_fft, fshape, n_jobs, parallel): # Second cube of correlation values dico_fft = fft.rfftn(Dico, fshape)[:, None] * cube_fft cube_profile = _convolve_spectral( parallel, n_jobs, dico_fft, fshape, func=fft.irfftn ) dico_fft = fft.rfftn(Dico ** 2, fshape)[:, None] * norm_fft norm_profile = _convolve_spectral( parallel, n_jobs, dico_fft, fshape, func=fft.irfftn ) norm_profile[norm_profile <= 0] = np.inf np.sqrt(norm_profile, out=norm_profile) cube_profile /= norm_profile return cube_profile def _convolve_spectral(parallel, nslices, arr, shape, func=fft.rfftn): arr = np.array_split(arr, nslices, axis=-1) out = parallel(delayed(func)(chunk, shape, axes=(0,)) for chunk in arr) return np.concatenate(out, axis=-1) @timeit def Correlation_GLR_test( cube, fsf, weights, profiles, nthreads=1, pcut=None, pmeansub=True ): """Compute the cube of GLR test values with the given PSF and dictionary of spectral profiles. Parameters ---------- cube : array data cube fsf : list of arrays FSF for each field of this data cube weights : list of array Weight maps of each field profiles : list of ndarray Dictionary of spectral profiles to test nthreads : int number of threads pcut : float Cut applied to the profiles to limit their width pmeansub : bool Subtract the mean of the profiles Returns ------- correl : array cube of T_GLR values of maximum correlation profile : array Number of the profile associated to the T_GLR correl_min : array cube of T_GLR values of minimum correlation """ logger = logging.getLogger(__name__) Nz, Ny, Nx = cube.shape # Spatial convolution of the weighted data with the zero-mean FSF logger.info( 'Step 1/3 and 2/3: ' 'Spatial convolution of weighted data with the zero-mean FSF, ' 'Computing Spatial part of the norm of the 3D atoms' ) if weights is None: # one FSF fsf = [fsf] weights = [None] nfields = len(fsf) fields = range(nfields) if nfields > 1: fields = progressbar(fields) if nthreads != 1: # copy the arrays because otherwise joblib's memmap handling fails # (maybe because of astropy.io.fits doing weird things with the memap?) cube = np.array(cube) # Make sure that we have a float array in C-order because scipy.fft # (new in v1.4) fails with Fortran ordered arrays. cube = cube.astype(float) with Parallel(n_jobs=nthreads) as parallel: for nf in fields: # convolve spatially each spectral channel by the FSF, and do the # same for the norm (inverse variance) res = parallel( progressbar( [ delayed(_convolve_fsf)(fsf[nf][i], cube[i], weights=weights[nf]) for i in range(Nz) ] ) ) res = [np.stack(arr) for arr in zip(*res)] if nf == 0: cube_fsf, norm_fsf = res else: cube_fsf += res[0] norm_fsf += res[1] # First cube of correlation values # initialization with the first profile logger.info('Step 3/3 Computing second cube of correlation values') # Prepare profiles: # Cut the profiles and subtract the mean, if asked to do so prof_cut = [] for prof in profiles: prof = prof.copy() if pcut is not None: lpeak = prof.argmax() lw = np.max(np.abs(np.where(prof >= pcut)[0][[0, -1]] - lpeak)) prof = prof[lpeak - lw : lpeak + lw + 1] prof /= np.linalg.norm(prof) if pmeansub: prof -= prof.mean() prof_cut.append(prof) # compute the optimal shape for FFTs (on the wavelength axis). # For profiles with different shapes, we need to know the indices to # extract the signal from the inverse fft. s1 = np.array(cube_fsf.shape) # cube shape s2 = np.array([(d.shape[0], 1, 1) for d in prof_cut]) # profiles shape fftshape = s1 + s2 - 1 # fft shape fshape = [ fftpack.helper.next_fast_len(int(d)) # optimal fft shape for d in fftshape.max(axis=0)[:1] ] # and now computes the indices to extract the cube from the inverse fft. startind = (fftshape - s1) // 2 endind = startind + s1 cslice = [slice(startind[k, 0], endind[k, 0]) for k in range(len(endind))] # Compute the FFTs of the cube and norm cube, splitting them on multiple # threads if needed with Parallel(n_jobs=nthreads, backend='threading') as parallel: cube_fft = _convolve_spectral( parallel, nthreads, cube_fsf, fshape, func=fft.rfftn ) norm_fft = _convolve_spectral( parallel, nthreads, norm_fsf, fshape, func=fft.rfftn ) cube_fsf = norm_fsf = res = None cube_fft = cube_fft.reshape(cube_fft.shape[0], -1) norm_fft = norm_fft.reshape(norm_fft.shape[0], -1) profile = np.empty((Nz, Ny * Nx), dtype=np.uint8) correl = np.full((Nz, Ny * Nx), -np.inf) correl_min = np.full((Nz, Ny * Nx), np.inf) # for each profile, compute convolve the convolved cube and norm cube. # Then for each pixel we keep the maximum correlation (and min correlation) # and the profile number with the max correl. with Parallel(n_jobs=nthreads, backend='threading') as parallel: for k in progressbar(range(len(prof_cut))): cube_profile = _convolve_profile( prof_cut[k], cube_fft, norm_fft, fshape, nthreads, parallel ) cube_profile = cube_profile[cslice[k]] profile[cube_profile > correl] = k np.maximum(correl, cube_profile, out=correl) np.minimum(correl_min, cube_profile, out=correl_min) profile = profile.reshape(Nz, Ny, Nx) correl = correl.reshape(Nz, Ny, Nx) correl_min = correl_min.reshape(Nz, Ny, Nx) return correl, profile, correl_min def compute_local_max(correl, correl_min, mask, size=3): """Compute the local maxima of the maximum correlation and local maxima of minus the minimum correlation distribution. Parameters ---------- correl : array T_GLR values with edges excluded (from max correlation) correl_min : array T_GLR values with edges excluded (from min correlation) mask : array mask array (true if pixel is masked) size : int Number of connected components Returns ------- array, array local maxima of correlations and local maxima of -correlations """ # local maxima of maximum correlation if np.isscalar(size): size = (size, size, size) local_max = maximum_filter(correl, size=size) local_mask = correl == local_max local_mask[mask] = False local_max *= local_mask # local maxima of minus minimum correlation minus_correl_min = -correl_min local_min = maximum_filter(minus_correl_min, size=size) local_mask = minus_correl_min == local_min local_mask[mask] = False local_min *= local_mask return local_max, local_min def itersrc(cat, tol_spat, tol_spec, n, id_cu): """Recursive function to perform the spatial merging. If neighborhood are close spatially to a lines: they are merged, then the neighbor of the seed is analysed if they are enough close to the current line (a neighbor of the original seed) they are merged only if the frequency is enough close (surrogate) if the frequency is different it is rejected. If two line (or a group of lines and a new line) are: Enough close without a big spectral gap not in the same label (a group in background close to one source inside a source label) the resulting ID is the ID of the source label and not the background Parameters ---------- cat : kinda of catalog of the previously merged lines xout,yout,zout,aout,iout: the 3D position, area label and ID for all analysed lines tol_spat : int spatial tolerance for the spatial merging tol_spec : int spectral tolerance for the spectral merging n : int index of the original seed id_cu : ID of the original seed """ # compute spatial distance to other points. # - id_cu is the detection processed at the start (from # spatiospectral_merging), while n is the detection currently processed # in the recursive call matched = cat['matched'] spatdist = np.hypot(cat['x0'][n] - cat['x0'], cat['y0'][n] - cat['y0']) spatdist[matched] = np.inf cu_spat = np.hypot(cat['x0'][id_cu] - cat['x0'], cat['y0'][id_cu] - cat['y0']) cu_spat[matched] = np.inf ind = np.where(spatdist < tol_spat)[0] if len(ind) == 0: return for indn in ind: if not matched[indn]: if cu_spat[indn] > tol_spat * np.sqrt(2): # check spectral content dz = np.sqrt((cat['z0'][indn] - cat['z0'][id_cu]) ** 2) if dz < tol_spec: cat[indn]['matched'] = True cat[indn]['imatch'] = id_cu itersrc(cat, tol_spat, tol_spec, indn, id_cu) else: cat[indn]['matched'] = True cat[indn]['imatch'] = id_cu itersrc(cat, tol_spat, tol_spec, indn, id_cu) def spatiospectral_merging(tbl, tol_spat, tol_spec): """Perform the spatial and spatio spectral merging. The spectral merging give the same ID if several group of lines (from spatial merging) if they share at least one line frequency Parameters ---------- tbl : `astropy.table.Table` ID,x,y,z,... tol_spat : int spatial tolerance for the spatial merging tol_spec : int spectral tolerance for the spectral merging Returns ------- `astropy.table.Table` Table: id, x, y, z, area, imatch, imatch2 imatch is the ID after spatial and spatio spectral merging. imatch2 is the ID after spatial merging only. """ Nz = len(tbl) tbl['_id'] = np.arange(Nz) # id of the detection tbl['matched'] = np.zeros(Nz, dtype=bool) # is the detection matched ? tbl['imatch'] = np.arange(Nz) # id of the matched detection for row in tbl: if not row['matched']: row['matched'] = True itersrc(tbl, tol_spat, tol_spec, row['_id'], row['_id']) # renumber output IDs for n, imatch in enumerate(np.unique(tbl['imatch'])): # for detections in multiple segmap regions, set the max region # number... this is needed to select all detections in the loop below ind = tbl['imatch'] == imatch tbl['area'][ind] = tbl['area'][ind].max() tbl['imatch'][ind] = n tbl.sort('imatch') # Special treatment for segmap regions, merge sources with close # spectral lines tbl['imatch2'] = tbl['imatch'] # store result before spectral merging iout = tbl['imatch'] zout = tbl['z0'] for n, area_cu in enumerate(np.unique(tbl['area'])): if area_cu > 0: # take all detections inside a segmap region ind = np.where(tbl['area'] == area_cu)[0] group_dep = np.unique(iout[ind]) for cu in group_dep: group = np.unique(iout[ind]) if len(group) == 1: # if there is only one group remaining break if cu in group: for otg in group: if otg != cu: zin = zout[iout == cu] zot = zout[iout == otg] difz = zin[np.newaxis, :].T - zot[np.newaxis, :] if np.sqrt(difz ** 2).min() < tol_spec: # if the minimum z distance is less than # tol_spec, then merge the sources iout[iout == otg] = cu tbl.remove_columns(('_id', 'matched')) return tbl @timeit def Compute_threshold_purity( purity, cube_local_max, cube_local_min, segmap=None, threshlist=None ): """Compute threshold values corresponding to a given purity. Parameters ---------- purity : float The target purity between 0 and 1. cube_local_max : array Cube of local maxima from maximum correlation. cube_local_min : array Cube of local maxima from minus minimum correlation. segmap : array Segmentation map to get the background regions. threshlist : list List of thresholds to compute the purity (default None). Returns ------- threshold : float The estimated threshold associated to the purity. res : astropy.table.Table Table with the purity results for each threshold: - PVal_r : The purity function - index_pval : index value to plot - Det_m : Number of detections (-DATA) - Det_M : Number of detections (+DATA) """ logger = logging.getLogger(__name__) # total number of spaxels L1 = np.prod(cube_local_min.shape[1:]) # background only if segmap is not None: segmask = segmap == 0 cube_local_min = cube_local_min * segmask # number of spaxels considered for calibration L0 = np.count_nonzero(segmask) logger.info('using only background pixels (%.1f%%)', L0 / L1 * 100) else: L0 = L1 if threshlist is None: threshmax = min(cube_local_min.max(), cube_local_max.max()) threshmin = np.median(np.amax(cube_local_max, axis=0)) * 1.1 threshlist =
np.linspace(threshmin, threshmax, 50)
numpy.linspace
"""Generic feature utils for various purposes. There are a few main things in this module: - `read_and_join_features()`: a function to read various feature files and concatenate them - `FastClassifier`: a class to do fast interactive classification of items based on exemplar SVMs - If you run this module, it starts a server that provides a simple API to do fast interactive classification. You should run it in a directory which has a `static` subdirectory, containing css and js files with certain names (see command line args for more). The API has the following endpoints: - / : Loads a simple blank html page with a div with id "main", react, and given css and js files - /classify : You can GET this with args 'pos' and 'neg', which should be comma-separated keys of the items to use for training the classifier (negatives are optional). It returns a JSON object with 'status' (either 'ok' or 'error', and if ok, then 'cls' which contains pairs of (key, score) of matching items. Nothing is filtered out in the matches (e.g. the positives used to train it, so you have to do that yourself). - /static : A simple static file handler for everything in the "static" directory """ import json import logging import multiprocessing as mp import os import re import time from argparse import ArgumentParser from collections import Counter, defaultdict from os.path import exists from random import sample from typing import Any, Dict, Generator, List, Optional, Sequence, Tuple import numpy as np # type: ignore import tornado.ioloop import tornado.web from tqdm import tqdm # type: ignore from gensim.models import KeyedVectors # type: ignore from numpy.random import default_rng from scipy.spatial.distance import cdist, euclidean # from sklearn.utils.testing import ignore_warnings from PIL import Image # type: ignore from sklearn.exceptions import ConvergenceWarning # type: ignore from sklearn.linear_model import SGDClassifier # type: ignore from sklearn.preprocessing import normalize # type: ignore from tornado.web import HTTPError, RequestHandler, StaticFileHandler def show_times(times: List[float]) -> None: """Shows times in a pretty-printed way""" logging.info( "times: %s = %0.3fs", "+".join("%0.2fs" % (t1 - t0) for t0, t1 in zip(times, times[1:])), times[-1] - times[0], ) def read_and_join_features( feature_paths: Sequence[str], key_func=lambda s: s.strip().replace("\\n", ""), max_features=-1, ) -> Tuple[List[str], np.ndarray, Dict[str, List[str]]]: """Reads multiple `feature_paths` and joins them together. Returns `(keys, features, key_to_item)`, where: - `keys` is a list of keys - `features` is a 2-d numpy array, where each row corresponds to a `key` - `key_to_item` is a dict from key to an item dict. This dict contains: - `paths`: the extracted original path for each key, for each feature path - any other attributes in the input data files: - for gensim inputs, we use the `get_vecattr()` interface to get attributes - for npz files, we look for any other arrays of the same length as `features` in the input, and use those The extension is used to determine what format to read: `.wv` or `.kv`: Assumed to be in gensim's KeyedVector format `.npz`: Assumed to be an npz file, with 'paths' and 'features' fields. All features are concatenated together, and only those keys where all inputs gave a vector are used. The paths (i.e., keys in .wv files, or the 'path' fields in .npz files) are converted to keys using the given `key_func`. These should be unique per path! If max_features > 0, then we limit to that many features """ key_to_row = defaultdict(list) key_to_item = defaultdict(dict) for n, feature_path in enumerate(feature_paths): logging.info( "Reading features from file %d/%d: %s", n + 1, len(feature_paths), feature_path ) def add_row(path, row, attrs): """Adds the given feature `row` for `path`, with optional `attrs`""" key = key_func(path) # if we already have one set of features, then this key must already be in there if n > 0 and key not in key_to_row: return key_to_row[key].append(row) item = key_to_item[key] if "paths" not in item: item["paths"] = [] item["paths"].append(path) for attr, value in attrs.items(): if attr == "id": attr = "_id" item[attr] = value if feature_path.endswith(".wv") or feature_path.endswith(".kv"): wv = KeyedVectors.load(feature_path, mmap="r") attr_fields = sorted(wv.expandos) logging.info( " Read %d wv, attrs: %s, %s", len(wv), sorted(wv.expandos), wv.index_to_key[:10] ) for path in wv.index_to_key: attrs = {field: wv.get_vecattr(path, field) for field in attr_fields} add_row(path, wv[path], attrs) if max_features > 0 and len(key_to_row) >= max_features: break elif feature_path.endswith(".npz"): data = np.load(feature_path) paths = [str(path) for path in data["paths"]] features = data["features"] attrs_by_field = {} for field in data: if field in ("paths", "features"): continue try: if len(data[field]) == len(features): attrs_by_field[field] = data[field] except Exception: # field that doesn't have len() pass for idx, (path, row) in enumerate(zip(paths, features)): attrs = {field: attrs_by_field[field][idx] for field in attrs_by_field} add_row(path, row, attrs) if max_features > 0 and len(key_to_row) >= max_features: break else: raise NotImplementedError( "Do not know how to deal with this filetype: %s" % (feature_path) ) # merge all features together features = [] for key, lst in key_to_row.items(): if len(lst) == len(feature_paths): features.append((key, np.hstack(lst))) if not features: logging.warning("No valid features found!") return None keys, features = zip(*features) features = np.vstack(features) logging.info("Got %d keys and features of shape %s", len(keys), features.shape) key_to_item = dict(key_to_item) for key, item in key_to_item.items(): key_to_item[key] = dict(item) return keys, features, key_to_item class FastClassifier: """Wrapper class for a fast classifier that uses pre-computed features""" def __init__( self, feature_paths: List[str], sqrt_normalize=False, l2_normalize=False, n_models=4, n_top=500, n_negatives=50, key_func_str=None, max_features=-1, filter_regexps=None, ): """Loads the data and preprocesses it. Reads all `feature_paths` and concatenates features from each. The features are then optionally run through `sqrt_normalize` and/or `l2_normalize` if requested. The workings of the classifier are based on the following parameters: - n_models: The number of individual models to train - n_top: The number of top results from each individual classifier to use - n_negatives: The number of random negatives to use for each classifier You can optionally pass in a 'key_func_str', which is eval'ed to get the key func """ t0 = time.time() if not key_func_str: key_func_str = "path" def key_func(path): return eval(key_func_str) keys, features, key_to_item = read_and_join_features( feature_paths, key_func=key_func, max_features=max_features, ) # apply filter regexps if filter_regexps: logging.info( "Initially had %d keys, %s features, %d items", len(keys), features.shape, len(key_to_item), ) to_keep = set() # check each item key and each item's values for each filter regexp for key, item in key_to_item.items(): for regexp in filter_regexps: regexp = re.compile(regexp) if regexp.search(key): break matched_field = False for field, value in item.items(): if regexp.search(str(value)): logging.debug(f"matched {key} {regexp} {field}={value}") matched_field = True break if matched_field: break else: # none of the regexps matched, so keep it to_keep.add(key) # now do the filtering key_to_item = {key: item for key, item in key_to_item.items() if key in to_keep} keys, features = zip( *[(key, vec) for key, vec in zip(keys, features) if key in to_keep] ) features = np.array(features) logging.info( "Left with %d keys, %s features, %d items", len(keys), features.shape, len(key_to_item), ) self.paths = [key_to_item[key]["paths"][0] for key in keys] if sqrt_normalize: logging.info("Applying SQRT norm") features = np.sqrt(features) if l2_normalize: logging.info("Applying L2 normalization") features = normalize(features, norm="l2", axis=1) self.features_by_key = {key: feature for key, feature in zip(keys, features)} # in our full list of features, we add padding dimension for fast dot products self.features = np.hstack([features, np.ones((len(keys), 1))]) logging.debug( "Pre: %s, post: %s, %s, %s", features.shape, self.features.shape, features, self.features, ) logging.info( "Loaded fast classifier from %d feature paths with %d keys in %0.2fs", len(feature_paths), len(keys), time.time() - t0, ) # now save other key variables self.keys, self.key_to_item = keys, key_to_item self.n_models = n_models self.n_top = n_top self.n_negatives = n_negatives self.rng =
default_rng(0)
numpy.random.default_rng
# -*- coding: utf-8 -*- """ Compute kcore and avg cascade length Extract the train set for INFECTOR """ import igraph as ig import time import pandas as pd import json import numpy as np from datetime import datetime def sort_papers(papers): """ # Sort MAG diffusion cascade, which is a list of papers and their authors, in the order the paper'sdate """ x =list(map(int,list(map(lambda x:x.split()[-1],papers)))) return [papers[i].strip() for i in np.argsort(x)] def remove_duplicates(cascade_nodes,cascade_times): """ # Some tweets have more then one retweets from the same person # Keep only the first retweet of that person """ duplicates = set([x for x in cascade_nodes if cascade_nodes.count(x)>1]) for d in duplicates: to_remove = [v for v,b in enumerate(cascade_nodes) if b==d][1:] cascade_nodes= [b for v,b in enumerate(cascade_nodes) if v not in to_remove] cascade_times= [b for v,b in enumerate(cascade_times) if v not in to_remove] return cascade_nodes, cascade_times def store_samples(fn,cascade_nodes,cascade_times,initiators,train_set,op_time,sampling_perc=120): """ # Store the samples for the train set as described in the node-context pair creation process for INFECTOR """ #---- Inverse sampling based on copying time #op_id = cascade_nodes[0] no_samples = round(len(cascade_nodes)*sampling_perc/100) casc_len = len(cascade_nodes) #times = [op_time/(abs((cascade_times[i]-op_time))+1) for i in range(0,len(cascade_nodes))] times = [1.0/(abs((cascade_times[i]-op_time))+1) for i in range(0,casc_len)] s_times = sum(times) if s_times==0: samples = [] else: print("Saved in train_set") probs = [float(i)/s_times for i in times] samples = np.random.choice(a=cascade_nodes, size=int(no_samples), p=probs) #----- Store train set if(fn=="mag"): for op_id in initiators: for i in samples: #---- Write inital node, copying node,length of cascade train_set.write(str(op_id)+","+i+","+str(casc_len)+"\n") else: op_id = initiators[0] for i in samples: #if(op_id!=i): #---- Write initial node, copying node, copying time, length of cascade train_set.write(str(op_id)+","+i+","+str(casc_len)+"\n") def run(fn,sampling_perc,log): print("Reading the network") g = ig.Graph.Read_Ncol(fn+"/"+fn+"_network.txt") vs = ig.VertexSeq(g) # in mag it is undirected if fn =="mag": g.to_undirected() f = open(fn+"/Init_Data/train_cascades.txt","r") train_set = open(fn+"/train_set.txt","w") #----- Initialize features idx = 0 deleted_nodes = [] g.vs["Cascades_started"] = 0 g.vs["Cumsize_cascades_started"] = 0 g.vs["Cascades_participated"] = 0 log.write(" net:"+fn+"\n") start_t = 0 #int(next(f)) idx=0 if(fn=="mag"): start_t = int(next(f)) start = time.time() #---------------------- Iterate through cascades to create the train set for line in f: if(fn=="mag"): parts = line.split(";") initiators = parts[0].replace(",","").split(" ") op_time = int(initiators[-1])+start_t initiators = initiators[:-1] papers = parts[1].replace("\n","").split(":") papers = sort_papers(papers) papers = [list(map(lambda x: x.replace(",",""),i)) for i in list(map(lambda x:x.split(" "),papers))] #---- Extract the authors from the paper list flatten = [] for i in papers: flatten = flatten+i[:-1] u,i = np.unique(flatten,return_index=True) cascade_nodes = list(u[
np.argsort(i)
numpy.argsort
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 8 14:55:00 2020 @author: rdamseh """ import numpy as np from tqdm import tqdm class CreateCylinderMappings: ''' This class create 3D maps based on oriented cylinders built at each graph edge ''' def __init__(self, g, to_return=['binary', 'velocity', 'so2', 'hct', 'gradient', 'propagation']): self.g=g self.GetImSize() # set the needed outputs self.tags={'binary':1, 'velocity':0, 'so2':0, 'hct':0, 'gradient':0, 'propagation':0} for i in to_return: self.tags[i]=1 def GetImSize(self): # shift graph geometry to start from zero coordinates # and # set min radius to 2.0 min_rad=2.0 pos=np.array(self.g.GetNodesPos()) pos=pos-np.min(pos, axis=0)[None, :] rad=np.array(self.g.GetRadii()) rad[rad<min_rad]=min_rad maxr=np.max(rad) for i, p, r in zip(self.g.GetNodes(), pos, rad): self.g.node[i]['pos']=p+maxr self.g.node[i]['r']=r # get image size to be constructed real_s = np.max(pos, axis=0) # real image size new_s=real_s new_s=tuple((np.ceil(new_s+(2*maxr))).astype(int)) # image size after padding print('Image size: '+str(new_s)) self.real_s = real_s self.new_s = new_s self.niter = self.g.number_of_edges() def cylinder(self, direction, radius, length): ''' Create a image cylinder ''' r=length+2*radius r=int(r) #print('r value', r) xrange, yrange, zrange = np.meshgrid(np.arange(-r, r+1), np.arange(-r, r+1), np.arange(-r, r+1), indexing='ij') size=np.shape(xrange) direction=direction.astype(float) va=np.sqrt((direction**2).sum()) vnorm=direction/va p=np.array([xrange.ravel(), yrange.ravel(), zrange.ravel()]).T p=p.astype(float) amp=np.sqrt(np.sum(p**2, axis=1)) amp[amp<1]=1 cos=np.abs(np.sum(p*vnorm, axis=1)/amp) cos[cos>1]=1 sin=np.sqrt(1-cos**2) shape0=(amp*sin)<radius # radius constrain shape1=(amp*cos<length) # length constrain a1=amp*cos-length a2=amp*sin shape2=(((a1**2+a2**2)**0.5)<(radius)) # rounded end constrain shape=shape0*(shape2+shape1) shape=np.reshape(shape, xrange.shape) c0 = np.where(shape) dot=np.sum(p*vnorm, axis=1) dot=((dot-dot.min())/(dot.max()-dot.min())) shape=shape*dot.reshape(shape.shape) return c0, size def get_cylinder_infos(self, g, radius_scaling=None): info=dict() if self.tags['binary']: e=g.GetEdges() pos1=np.array([g.node[i[0]]['pos'] for i in e]) pos2=np.array([g.node[i[1]]['pos'] for i in e]) radius1=np.array([g.node[i[0]]['r'] for i in e]) radius2=np.array([g.node[i[1]]['r'] for i in e]) radius=(radius1+radius2)/2.0# radius if radius_scaling is not None: radius*=radius_scaling info['pos1']=pos1 info['pos2']=pos2 info['radius']=radius vec=pos2-pos1 vec_amp=np.sqrt(np.sum(vec**2, axis=1))# norm vec_amp[vec_amp==0]=1.0 # avoid divide by zero vec_norm=vec/vec_amp[:, None] # for edges of length < 2 set to length to 3 to avoid diconnedted maps vec_amp[vec_amp<2.0]=2.0 info['vec_amp']=vec_amp info['vec_norm']=vec_norm if self.tags['so2']: so21=np.array([g.node[i[0]]['so2'] for i in e]) so22=np.array([g.node[i[1]]['so2'] for i in e]) info['so21']=so21 info['so22']=so22 if self.tags['hct']: types=np.array([g.node[i[0]]['type'] for i in e]) if types.max()==3: types-=1 # types should be 0-->Art., 1-->Vein, 2-->Capp info['types']=types if self.tags['velocity']: velocity=np.array([g.node[i[0]]['velocity'] for i in e]) dx=np.array([g.node[i[0]]['dx'] for i in e]) dy=np.array([g.node[i[0]]['dy'] for i in e]) dz=np.array([g.node[i[0]]['dz'] for i in e]) info['velocity']=velocity info['dx']=dx info['dy']=dy info['dz']=dz if self.tags['propagation']: try: label1=np.array([g.node[i[0]]['label'] for i in e]) label2=np.array([g.node[i[1]]['label'] for i in e]) info['label1']=label1 info['label2']=label2 except: print('--Cannot return \'propagation\'; no labels on input graph!') self.tags['propagation']=False return info def GetOutput(self, radius_scaling=None, hct_values=[0.33, 0.44, 0.44]): ''' Input: resolution: This in the number of points interplated at each graph edge radius_scaling: This factor used to increase/decrease the overll radius size hct_values: A list in the format [hct_in_arteriols, hct_in_venules, hct_in_cappilaries] ''' info = self.get_cylinder_infos(self.g, radius_scaling=radius_scaling) real_s, new_s, niter = self.real_s, self.new_s, self.niter if self.tags['binary']: binary_image=
np.zeros(new_s)
numpy.zeros
import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 from moviepy.editor import VideoFileClip import glob # Define a class to receive the characteristics of each line detection class Line(): def __init__(self): # was the line detected in the last iteration? self.detected = False # x values of the last n fits of the line self.recent_xfitted = [] # average x values of the fitted line over the last n iterations self.bestx = None # polynomial coefficients averaged over the last n iterations self.best_fit = None # polynomial coefficients for the most recent fit self.current_fit = [np.array([False])] # radius of curvature of the line in some units self.radius_of_curvature = None # distance in meters of vehicle center from the line self.line_base_pos = None # difference in fit coefficients between last and new fits self.diffs = np.array([0, 0, 0], dtype='float') # x values for detected line pixels self.allx = None # y values for detected line pixels self.ally = None def fit_poly(img_shape, leftx, lefty, rightx, righty): ### TO-DO: Fit a second order polynomial to each with np.polyfit() ### left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) ### TO-DO: Calc both polynomials using ploty, left_fit and right_fit ### left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] return left_fit, right_fit, left_fitx, right_fitx, ploty def search_around_poly(binary_warped, left_fit, right_fit): # HYPERPARAMETER # Choose the width of the margin around the previous polynomial to search # The quiz grader expects 100 here, but feel free to tune on your own! margin = 100 # Define conversions in x and y from pixels space to meters ym_per_pix = 30/720 # meters per pixel in y dimension xm_per_pix = 3.7/700 # meters per pixel in x dimension # Grab activated pixels nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) ### TO-DO: Set the area of search based on activated x-values ### ### within the +/- margin of our polynomial function ### ### Hint: consider the window areas for the similarly named variables ### ### in the previous quiz, but change the windows to our new search area ### left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) # Again, extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit new polynomials left_fit, right_fit, left_fitx, right_fitx, ploty = fit_poly( binary_warped.shape, leftx, lefty, rightx, righty) # Fit new polynomials (in the real world) left_fit_cr, right_fit_cr, left_fitx_cr, right_fitx_cr, ploty_cr = fit_poly( binary_warped.shape, leftx * xm_per_pix, lefty * ym_per_pix, rightx * xm_per_pix, righty * ym_per_pix) # Define y-value where we want radius of curvature # We'll choose the maximum y-value, corresponding to the bottom of the image y_eval = np.max(ploty) # Calculation of R_curve (radius of curvature) left_curverad = ( (1 + (2*left_fit[0]*y_eval + left_fit[1])**2)**1.5) / np.absolute(2*left_fit[0]) right_curverad = ( (1 + (2*right_fit[0]*y_eval + right_fit[1])**2)**1.5) /
np.absolute(2*right_fit[0])
numpy.absolute
import json import os import os.path import cv2 import numpy as np import torch import torch.utils.data as data_utl from tqdm import tqdm from dataset.vidor import VidOR from frames import extract_all_frames def video_to_tensor(pic): """Convert a ``numpy.ndarray`` to tensor. Converts a numpy.ndarray (T x H x W x C) to a torch.FloatTensor of shape (C x T x H x W) Args: pic (numpy.ndarray): Video to be converted to tensor. Returns: Tensor: Converted video. """ return torch.from_numpy(pic.transpose([3, 0, 1, 2])) def load_rgb_frames(video_path, image_dir, begin, end, extract_frames=False): """ :param video_path: if u need 2 extract frames, but b careful, this setting needs a long time! :param image_dir: This is image dir, but not same with extract frames func :param begin: :param end: :param extract_frames: :return: """ frames = [] video_path_splits = video_path.split('/') image_dir_path = os.path.join(image_dir, video_path_splits[-2], video_path_splits[-1][:-4]) if extract_frames: # Be careful! This step will take a long time! extract_all_frames(video_path, image_dir_path) for i in range(begin, end): img_path = os.path.join(image_dir_path, str(i).zfill(6) + '.jpg') if os.path.exists(img_path): img = cv2.imread(img_path)[:, :, [2, 1, 0]] w, h, c = img.shape if w < 226 or h < 226: d = 226. - min(w, h) sc = 1 + d / min(w, h) img = cv2.resize(img, dsize=(0, 0), fx=sc, fy=sc) img = (img / 255.) * 2 - 1 frames.append(img) else: if len(frames) >= 1: frames.append(frames[-1]) # final relength the frames list for miss_frame in range(end - begin - len(frames)): frames.insert(0, frames[0]) return
np.asarray(frames, dtype=np.float32)
numpy.asarray
import numpy as np import pandas import pytest import torch from common import assert_close from millipede import NormalLikelihoodSampler, NormalLikelihoodVariableSelector from millipede.util import namespace_to_numpy, stack_namespaces @pytest.mark.parametrize("precompute_XX", [False, True]) @pytest.mark.parametrize("prior", ["gprior", "isotropic"]) @pytest.mark.parametrize("include_intercept", [True, False]) @pytest.mark.parametrize("variable_S_X_assumed", [(False, False), (True, True)]) @pytest.mark.parametrize("device", ["gpu", "cpu"]) def test_linear_correlated(device, prior, precompute_XX, include_intercept, variable_S_X_assumed, N=128, P=16, intercept=2.34, T=4000, T_burnin=200, report_frequency=1100, seed=1): if device == "gpu" and not torch.cuda.is_available(): return variable_S, X_assumed = variable_S_X_assumed torch.manual_seed(seed) X = torch.randn(N, P).double() Z = torch.randn(N).double() X[:, 0:2] = Z.unsqueeze(-1) + 0.001 * torch.randn(N, 2).double() Y = Z + 0.05 * torch.randn(N).double() if include_intercept: Y += intercept X_assumed = torch.randn(N, 2).double() if X_assumed else None if X_assumed is not None: Y += 0.5 * X_assumed[:, -1] S = 1.0 if not variable_S else (0.25, 0.25 * P - 0.25) samples = [] if device == "cpu": sampler = NormalLikelihoodSampler(X, Y, X_assumed=X_assumed, precompute_XX=precompute_XX, prior=prior, compute_betas=True, S=S, nu0=0.0, lambda0=0.0, tau=0.01, c=100.0, include_intercept=include_intercept, tau_intercept=1.0e-4) elif device == "gpu": sampler = NormalLikelihoodSampler(X.cuda(), Y.cuda(), X_assumed=X_assumed.cuda() if X_assumed is not None else None, precompute_XX=precompute_XX, prior=prior, compute_betas=True, S=S, nu0=0.0, lambda0=0.0, tau=0.01, c=100.0, include_intercept=include_intercept, tau_intercept=1.0e-4) for t, (burned, s) in enumerate(sampler.mcmc_chain(T=T, T_burnin=T_burnin, seed=seed)): if burned: samples.append(namespace_to_numpy(s)) samples = stack_namespaces(samples) weights = samples.weight / samples.weight.sum() pip =
np.dot(samples.add_prob.T, weights)
numpy.dot
import os import numpy as np from subprocess import Popen, PIPE from scipy.interpolate import griddata import _pickle as cPickle from sklearn.neighbors import KDTree from Bio.PDB import * from Bio.SeqUtils import seq1, seq3 from Bio.Seq import Seq from Bio import SeqIO from default_config.bin_path import bin_path from default_config.dir_options import dir_opts from compute_surface.protonate import protonate from compute_surface.extractPDB import extractPDB from compute_surface.extract_xyzrn import extract_xyzrn from compute_surface.apply_msms import computeMSMS from features.Hydrophobicity import kd_scale from features.pKa import pKa_scale from features.macc import macc from features.Physicochemical import li_scale class RBP(): def __init__(self, protein_name): self.pdb_id, self.chain = protein_name.split('_') #complex, protein, rna #download pdb, call Reduce and MSMS self._download_pdb() self.model = self._load_pdb() self.RNA_space, self.RNA_chain = self._get_RNA_space() self.vertices, self.vert_info = self._get_surface() #ndarray (n*3), list(n) A_19_x_VAL_HG11 #Extract the sequence of protien self.seq, self.index2resid, self.resid2Residue = self._get_pdb_seq(self.chain, kd_scale) #Get the coordinates of atom of all RNAs in complex self.geometric_center = self._get_geometric_center() #Get res_id on the surface self.surface_res = self._get_surface_res() #Get surface center of each residue to calculate the sampling density on the surface. self.res_to_vertice = self._get_res_to_vertice() #Calculate the label of each surface_res self.label, self.all_label = self._get_label() def _download_pdb(self): if not os.path.exists(dir_opts['raw_pdb_dir']): os.makedirs(dir_opts['raw_pdb_dir']) pdbl = PDBList() pdbl.retrieve_pdb_file(self.pdb_id, pdir=dir_opts['raw_pdb_dir'], file_format='mmCif') def _get_surface(self): extractPDB(self.pdb_id + '_' + self.chain) protonate(self.pdb_id+'_'+self.chain) extract_xyzrn(self.pdb_id, self.chain) vertices, faces1, normalv1, vert_info = computeMSMS(self.pdb_id, self.chain) return vertices, vert_info def _load_pdb(self): pdb_file = os.path.join(dir_opts['raw_pdb_dir'], self.pdb_id+'.cif') parser = MMCIFParser(QUIET=True) struct = parser.get_structure(self.pdb_id, pdb_file) model = Selection.unfold_entities(struct, "M")[0] return model def _get_pdb_seq(self, chain, scale): chain = self.model.child_dict[chain] res_seq = '' index2resid = {} resid2structure = {} index = 0 for Residue in chain.child_list: if Residue.get_resname() in scale.keys(): res_seq += (seq1(Residue.get_resname())) index2resid[index] = Residue.get_id()[1] resid2structure[Residue.get_id()[1]] = Residue index += 1 return res_seq, index2resid, resid2structure def _get_RNA_space(self): RNA_list = ["A", "C", "G", "U"] RNA_chain = set() atom_list = [] for chain in self.model.child_list: if chain.id == self.chain: continue for res in chain.child_list: atom_type = res.resname.strip() if atom_type in RNA_list: for atom in res: atom_list.append(atom.coord) RNA_chain.add(chain.id) chain = '_'.join(RNA_chain) return atom_list, chain def _get_label(self): rna_tree = KDTree(self.RNA_space) label_dict = {} for res_id in self.surface_res: res = self.resid2Residue[res_id] res_coord = [] for atom in res.child_list: res_coord.append(atom.coord) d, t = rna_tree.query(res_coord) if np.min(d) < 5.0: label_dict[res_id] = 1 else: label_dict[res_id] = 0 label_all = [] for index in range(len(self.seq)): if self.index2resid[index] in self.surface_res: label_all.append(label_dict[self.index2resid[index]]) else: label_all.append(0) return label_dict,
np.array(label_all)
numpy.array
""" ============================================================= Angle-based Joint and Individual Variation Explained (AJIVE) ============================================================= Adopted from the code at https://github.com/idc9/py_jive and tutorial written by: Author: <NAME> License: MIT License <blockquote> [1] Lock, <NAME>., et al. “Joint and Individual Variation Explained (JIVE) for Integrated Analysis of Multiple Data Types.” The Annals of Applied Statistics, vol. 7, no. 1, 2013, pp. 523–542., doi:10.1214/12-aoas597. </blockquote> AJIVE is a useful algorithm that decomposes multiple views of data into two main pieces - Joint Variation - Individual Variation whose sum is the original data minus noise. This notebook will demonstrate the functionality of AJIVE and show some examples of the algorithm's usefulness. """ import numpy as np from mvlearn.decomposition import AJIVE import seaborn as sns import matplotlib.pyplot as plt ############################################################################## # ## Data Creation # # Here we create data in the same way detailed in the initial JIVE paper: # # The two views are created with shared joint variation, unique individual # variation, and independent noise. # np.random.seed(12) # First View X1_joint = np.vstack([-1 * np.ones((10, 20)), np.ones((10, 20))]) X1_joint = np.hstack([np.zeros((20, 80)), X1_joint]) X1_indiv_t = np.vstack([ np.ones((4, 50)), -1 * np.ones((4, 50)), np.zeros((4, 50)), np.ones((4, 50)), -1 * np.ones((4, 50)), ]) X1_indiv_b = np.vstack( [np.ones((5, 50)), -1 * np.ones((10, 50)), np.ones((5, 50))] ) X1_indiv_tot = np.hstack([X1_indiv_t, X1_indiv_b]) X1_noise = np.random.normal(loc=0, scale=1, size=(20, 100)) # Second View X2_joint = np.vstack([np.ones((10, 10)), -1 *
np.ones((10, 10))
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ histogra_warping @author: vik748 """ import numpy as np import sys, os import scipy.stats as st from scipy.signal import argrelmin, argrelmax from scipy import interpolate as interp from scipy import integrate try: import cv2 opencv_available = True except ModuleNotFoundError as e: print("Opencv Not avialable using 0 order hold for resizing: {}".format(e)) opencv_available = False try: from matplotlib import pyplot as plt matplotlib_available = True except ImportError as e: matplotlib_available = False class HistogramWarpingACE: def __init__(self, no_bits=8, tau=0.01, lam=5, adjustment_factor=1.0, stretch_factor=1.0, min_stretch_bits=4, downsample_for_kde=True,debug=False, plot_histograms=False): self.no_bits = no_bits self.no_gray_levels = 2 ** self.no_bits self.x = np.linspace(0,1, self.no_gray_levels) self.tau = tau self.lam = lam self.adjustment_factor = adjustment_factor self.stretch_factor = stretch_factor self.min_stretch_bits = min_stretch_bits self.downsample_for_kde = downsample_for_kde self.debug = debug self.plot_histograms = plot_histograms if self.plot_histograms and not matplotlib_available: print("matplotlib not available turning off histograms") self.plot_histograms = False @staticmethod def calc_scale_factor(orig_size): ''' Given a tuple of image size, returns the integer scale factor that brings the tuple below 1000 pixels Parameters ---------- orig_size : tuple of ints Returns ------- int ''' orig_size_arr = np.array(orig_size) scale_found = False scale_factor = 0 while not scale_found: scale_factor += 1 new_size = orig_size_arr / scale_factor if np.max(new_size) < 1000: remainders = new_size % scale_factor scale_found = remainders[0] == 0 and remainders[1] == 0 return int(scale_factor) @staticmethod def downsample_image(gr, debug=False, max_pixels=1000): if np.max(gr.shape) > max_pixels: sc_fac = calc_scale_factor(gr.shape) if debug: print("Scale factor = ", sc_fac) if opencv_available: gr_sc = cv2.resize(gr, (0,0), fx=1/sc_fac, fy=1/sc_fac, interpolation=cv2.INTER_AREA) else: gr_sc = gr[::sc_fac,::sc_fac] else: gr_sc = gr return gr_sc @staticmethod def gen_F_inverse(F,x_d, delta = 1e-4): ''' Given a cumulative F and gray values x_d ''' zero_indices = np.where(F<delta)[0] last_zero = zero_indices[-1] if len(zero_indices)>0 else 0 one_indices = np.where(F>(1-delta))[0] first_one = one_indices[0] if len(one_indices)>0 else len(F) F_trunc = np.copy(F[last_zero : first_one]) F_trunc[0] = 0 F_trunc[-1] = 1 x_d_trunc = np.copy(x_d[last_zero : first_one]) #for f,x in zip(F_trunc, x_d_trunc): # print(x,f) F_interp = interp.interp1d(F_trunc, x_d_trunc) return F_interp @staticmethod def make_increasing(arr): indx, =
np.where(arr[:-1] > arr[1:])
numpy.where
#! /usr/bin/env python """ Bit error rate tester (BERT) simulator, written in Python. Original Author: <NAME> <<EMAIL>> Original Date: 17 June 2014 Testing by: <NAME> <<EMAIL>> This Python script provides a GUI interface to a BERT simulator, which can be used to explore the concepts of serial communication link design. Copyright (c) 2014 by <NAME>; All rights reserved World wide. """ from traits.etsconfig.api import ETSConfig # ETSConfig.toolkit = 'qt.celiagg' # Yields unacceptably small font sizes in plot axis labels. ETSConfig.toolkit = 'qt.qpainter' # Was causing crash on Mac. from datetime import datetime import platform from threading import Event, Thread from time import sleep from math import isnan from cmath import rect, phase from chaco.api import ArrayPlotData, GridPlotContainer import numpy as np from numpy import array, convolve, cos, diff, exp, ones, pad, pi, real, resize, sinc, where, zeros from numpy.fft import fft, irfft from numpy.random import randint from os.path import dirname, join from scipy.optimize import minimize, minimize_scalar from traits.api import ( HTML, Array, Bool, Button, Enum, File, Float, HasTraits, Instance, Int, List, Property, Range, String, cached_property, Trait, ) from traitsui.message import message import skrf as rf from pyibisami import __version__ as PyAMI_VERSION from pyibisami.ami_parse import AMIParamConfigurator from pyibisami.ami_model import AMIModel from pyibisami.ibis_file import IBISModel from pybert import __version__ as VERSION from pybert import __date__ as DATE from pybert import __authors__ as AUTHORS from pybert import __copy__ as COPY from pybert.pybert_cntrl import my_run_simulation from pybert.pybert_help import help_str from pybert.pybert_plot import make_plots from pybert.pybert_util import ( calc_G, calc_gamma, import_channel, lfsr_bits, make_ctle, pulse_center, safe_log10, trim_impulse, submodules, sdd_21, H_2_s2p, interp_time, cap_mag, interp_s2p, renorm_s2p, ) from pybert.pybert_view import traits_view gDebugStatus = False gDebugOptimize = False gMaxCTLEPeak = 20.0 # max. allowed CTLE peaking (dB) (when optimizing, only) gMaxCTLEFreq = 20.0 # max. allowed CTLE peak frequency (GHz) (when optimizing, only) # Default model parameters - Modify these to customize the default simulation. # - Simulation Control gBitRate = 10 # (Gbps) gNbits = 8000 # number of bits to run gPatLen = 127 # repeating bit pattern length gNspb = 32 # samples per bit gNumAve = 1 # Number of bit error samples to average, when sweeping. # - Channel Control # - parameters for Howard Johnson's "Metallic Transmission Model" # - (See "High Speed Signal Propagation", Sec. 3.1.) # - ToDo: These are the values for 24 guage twisted copper pair; need to add other options. gRdc = 0.1876 # Ohms/m gw0 = 10.0e6 # 10 MHz is recommended in Ch. 8 of his second book, in which UTP is described in detail. gR0 = 1.452 # skin-effect resistance (Ohms/m)log gTheta0 = 0.02 # loss tangent gZ0 = 100.0 # characteristic impedance in LC region (Ohms) gv0 = 0.67 # relative propagation velocity (c) gl_ch = 1.0 # cable length (m) gRn = ( 0.001 ) # standard deviation of Gaussian random noise (V) (Applied at end of channel, so as to appear white to Rx.) # - Tx gVod = 1.0 # output drive strength (Vp) gRs = 100 # differential source impedance (Ohms) gCout = 0.50 # parasitic output capacitance (pF) (Assumed to exist at both 'P' and 'N' nodes.) gPnMag = 0.001 # magnitude of periodic noise (V) gPnFreq = 0.437 # frequency of periodic noise (MHz) # - Rx gRin = 100 # differential input resistance gCin = 0.50 # parasitic input capacitance (pF) (Assumed to exist at both 'P' and 'N' nodes.) gCac = 1.0 # a.c. coupling capacitance (uF) (Assumed to exist at both 'P' and 'N' nodes.) gBW = 12.0 # Rx signal path bandwidth, assuming no CTLE action. (GHz) gUseDfe = False # Include DFE when running simulation. gDfeIdeal = True # DFE ideal summing node selector gPeakFreq = 5.0 # CTLE peaking frequency (GHz) gPeakMag = 10.0 # CTLE peaking magnitude (dB) gCTLEOffset = 0.0 # CTLE d.c. offset (dB) # - DFE gDecisionScaler = 0.5 gNtaps = 5 gGain = 0.5 gNave = 100 gDfeBW = 12.0 # DFE summing node bandwidth (GHz) # - CDR gDeltaT = 0.1 # (ps) gAlpha = 0.01 gNLockAve = 500 # number of UI used to average CDR locked status. gRelLockTol = 0.1 # relative lock tolerance of CDR. gLockSustain = 500 # - Analysis gThresh = 6 # threshold for identifying periodic jitter spectral elements (sigma) class StoppableThread(Thread): """ Thread class with a stop() method. The thread itself has to check regularly for the stopped() condition. All PyBERT thread classes are subclasses of this class. """ def __init__(self): super(StoppableThread, self).__init__() self._stop_event = Event() def stop(self): """Called by thread invoker, when thread should be stopped prematurely.""" self._stop_event.set() def stopped(self): """Should be called by thread (i.e. - subclass) periodically and, if this function returns True, thread should clean itself up and quit ASAP. """ return self._stop_event.is_set() class TxOptThread(StoppableThread): """Used to run Tx tap weight optimization in its own thread, in order to preserve GUI responsiveness. """ def run(self): """Run the Tx equalization optimization thread.""" pybert = self.pybert if self.update_status: pybert.status = "Optimizing Tx..." max_iter = pybert.max_iter old_taps = [] min_vals = [] max_vals = [] for tuner in pybert.tx_tap_tuners: if tuner.enabled: old_taps.append(tuner.value) min_vals.append(tuner.min_val) max_vals.append(tuner.max_val) cons = {"type": "ineq", "fun": lambda x: 0.7 - sum(abs(x))} bounds = list(zip(min_vals, max_vals)) try: if gDebugOptimize: res = minimize( self.do_opt_tx, old_taps, bounds=bounds, constraints=cons, options={"disp": True, "maxiter": max_iter}, ) else: res = minimize( self.do_opt_tx, old_taps, bounds=bounds, constraints=cons, options={"disp": False, "maxiter": max_iter}, ) if self.update_status: if res["success"]: pybert.status = "Optimization succeeded." else: pybert.status = "Optimization failed: {}".format(res["message"]) except Exception as err: pybert.status = err def do_opt_tx(self, taps): """Run the Tx Optimization.""" sleep(0.001) # Give the GUI a chance to acknowledge user clicking the Abort button. if self.stopped(): raise RuntimeError("Optimization aborted.") pybert = self.pybert tuners = pybert.tx_tap_tuners taps = list(taps) for tuner in tuners: if tuner.enabled: tuner.value = taps.pop(0) return pybert.cost class RxOptThread(StoppableThread): """Used to run Rx tap weight optimization in its own thread, in order to preserve GUI responsiveness. """ def run(self): """Run the Rx equalization optimization thread.""" pybert = self.pybert pybert.status = "Optimizing Rx..." max_iter = pybert.max_iter try: if gDebugOptimize: res = minimize_scalar( self.do_opt_rx, bounds=(0, gMaxCTLEPeak), method="Bounded", options={"disp": True, "maxiter": max_iter}, ) else: res = minimize_scalar( self.do_opt_rx, bounds=(0, gMaxCTLEPeak), method="Bounded", options={"disp": False, "maxiter": max_iter}, ) if res["success"]: pybert.status = "Optimization succeeded." else: pybert.status = "Optimization failed: {}".format(res["message"]) except Exception as err: pybert.status = err def do_opt_rx(self, peak_mag): """Run the Rx Optimization.""" sleep(0.001) # Give the GUI a chance to acknowledge user clicking the Abort button. if self.stopped(): raise RuntimeError("Optimization aborted.") pybert = self.pybert pybert.peak_mag_tune = peak_mag return pybert.cost class CoOptThread(StoppableThread): """Used to run co-optimization in its own thread, in order to preserve GUI responsiveness.""" def run(self): """Run the Tx/Rx equalization co-optimization thread.""" pybert = self.pybert pybert.status = "Co-optimizing..." max_iter = pybert.max_iter try: if gDebugOptimize: res = minimize_scalar( self.do_coopt, bounds=(0, gMaxCTLEPeak), method="Bounded", options={"disp": True, "maxiter": max_iter}, ) else: res = minimize_scalar( self.do_coopt, bounds=(0, gMaxCTLEPeak), method="Bounded", options={"disp": False, "maxiter": max_iter}, ) if res["success"]: pybert.status = "Optimization succeeded." else: pybert.status = "Optimization failed: {}".format(res["message"]) except Exception as err: pybert.status = err def do_coopt(self, peak_mag): """Run the Tx and Rx Co-Optimization.""" sleep(0.001) # Give the GUI a chance to acknowledge user clicking the Abort button. if self.stopped(): raise RuntimeError("Optimization aborted.") pybert = self.pybert pybert.peak_mag_tune = peak_mag if any([pybert.tx_tap_tuners[i].enabled for i in range(len(pybert.tx_tap_tuners))]): while pybert.tx_opt_thread and pybert.tx_opt_thread.isAlive(): sleep(0.001) pybert._do_opt_tx(update_status=False) while pybert.tx_opt_thread and pybert.tx_opt_thread.isAlive(): sleep(0.001) return pybert.cost class TxTapTuner(HasTraits): """Object used to populate the rows of the Tx FFE tap tuning table.""" name = String("(noname)") enabled = Bool(False) min_val = Float(0.0) max_val = Float(0.0) value = Float(0.0) steps = Int(0) # Non-zero means we want to sweep it. def __init__(self, name="(noname)", enabled=False, min_val=0.0, max_val=0.0, value=0.0, steps=0): """Allows user to define properties, at instantiation.""" # Super-class initialization is ABSOLUTELY NECESSARY, in order # to get all the Traits/UI machinery setup correctly. super(TxTapTuner, self).__init__() self.name = name self.enabled = enabled self.min_val = min_val self.max_val = max_val self.value = value self.steps = steps class PyBERT(HasTraits): """ A serial communication link bit error rate tester (BERT) simulator with a GUI interface. Useful for exploring the concepts of serial communication link design. """ # Independent variables # - Simulation Control bit_rate = Range(low=0.1, high=120.0, value=gBitRate) #: (Gbps) nbits = Range(low=1000, high=10000000, value=gNbits) #: Number of bits to simulate. pattern_len = Range(low=7, high=10000000, value=gPatLen) #: PRBS pattern length. nspb = Range(low=2, high=256, value=gNspb) #: Signal vector samples per bit. eye_bits = Int(gNbits // 5) #: # of bits used to form eye. (Default = last 20%) mod_type = List([0]) #: 0 = NRZ; 1 = Duo-binary; 2 = PAM-4 num_sweeps = Int(1) #: Number of sweeps to run. sweep_num = Int(1) sweep_aves = Int(gNumAve) do_sweep = Bool(False) #: Run sweeps? (Default = False) debug = Bool(False) #: Send log messages to terminal, as well as console, when True. (Default = False) # - Channel Control ch_file = File( "", entries=5, filter=["*.s4p", "*.S4P", "*.csv", "*.CSV", "*.txt", "*.TXT", "*.*"] ) #: Channel file name. use_ch_file = Bool(False) #: Import channel description from file? (Default = False) # padded = Bool(False) #: Zero pad imported Touchstone data? (Default = False) # windowed = Bool(False) #: Apply windowing to the Touchstone data? (Default = False) f_step = Float(10) #: Frequency step to use when constructing H(f). (Default = 10 MHz) impulse_length = Float(0.0) #: Impulse response length. (Determined automatically, when 0.) Rdc = Float(gRdc) #: Channel d.c. resistance (Ohms/m). w0 = Float(gw0) #: Channel transition frequency (rads./s). R0 = Float(gR0) #: Channel skin effect resistance (Ohms/m). Theta0 = Float(gTheta0) #: Channel loss tangent (unitless). Z0 = Float(gZ0) #: Channel characteristic impedance, in LC region (Ohms). v0 = Float(gv0) #: Channel relative propagation velocity (c). l_ch = Float(gl_ch) #: Channel length (m). # - EQ Tune tx_tap_tuners = List( [ TxTapTuner(name="Pre-tap", enabled=True, min_val=-0.2, max_val=0.2, value=0.0), TxTapTuner(name="Post-tap1", enabled=False, min_val=-0.4, max_val=0.4, value=0.0), TxTapTuner(name="Post-tap2", enabled=False, min_val=-0.3, max_val=0.3, value=0.0), TxTapTuner(name="Post-tap3", enabled=False, min_val=-0.2, max_val=0.2, value=0.0), ] ) #: EQ optimizer list of TxTapTuner objects. rx_bw_tune = Float(gBW) #: EQ optimizer CTLE bandwidth (GHz). peak_freq_tune = Float(gPeakFreq) #: EQ optimizer CTLE peaking freq. (GHz). peak_mag_tune = Float(gPeakMag) #: EQ optimizer CTLE peaking mag. (dB). ctle_offset_tune = Float(gCTLEOffset) #: EQ optimizer CTLE d.c. offset (dB). ctle_mode_tune = Enum( "Off", "Passive", "AGC", "Manual" ) #: EQ optimizer CTLE mode ('Off', 'Passive', 'AGC', 'Manual'). use_dfe_tune = Bool(gUseDfe) #: EQ optimizer DFE select (Bool). n_taps_tune = Int(gNtaps) #: EQ optimizer # DFE taps. max_iter = Int(50) #: EQ optimizer max. # of optimization iterations. tx_opt_thread = Instance(TxOptThread) #: Tx EQ optimization thread. rx_opt_thread = Instance(RxOptThread) #: Rx EQ optimization thread. coopt_thread = Instance(CoOptThread) #: EQ co-optimization thread. # - Tx vod = Float(gVod) #: Tx differential output voltage (V) rs = Float(gRs) #: Tx source impedance (Ohms) cout = Range(low=0.001, high=1000, value=gCout) #: Tx parasitic output capacitance (pF) pn_mag = Float(gPnMag) #: Periodic noise magnitude (V). pn_freq = Float(gPnFreq) #: Periodic noise frequency (MHz). rn = Float(gRn) #: Standard deviation of Gaussian random noise (V). tx_taps = List( [ TxTapTuner(name="Pre-tap", enabled=True, min_val=-0.2, max_val=0.2, value=0.0), TxTapTuner(name="Post-tap1", enabled=False, min_val=-0.4, max_val=0.4, value=0.0), TxTapTuner(name="Post-tap2", enabled=False, min_val=-0.3, max_val=0.3, value=0.0), TxTapTuner(name="Post-tap3", enabled=False, min_val=-0.2, max_val=0.2, value=0.0), ] ) #: List of TxTapTuner objects. rel_power = Float(1.0) #: Tx power dissipation (W). tx_use_ami = Bool(False) #: (Bool) tx_has_ts4 = Bool(False) #: (Bool) tx_use_ts4 = Bool(False) #: (Bool) tx_use_getwave = Bool(False) #: (Bool) tx_has_getwave = Bool(False) #: (Bool) tx_ami_file = File("", entries=5, filter=["*.ami"]) #: (File) tx_ami_valid = Bool(False) #: (Bool) tx_dll_file = File("", entries=5, filter=["*.dll", "*.so"]) #: (File) tx_dll_valid = Bool(False) #: (Bool) tx_ibis_file = File("", entries=5, filter=["IBIS Models (*.ibs)|*.ibs",]) #: (File) tx_ibis_valid = Bool(False) #: (Bool) tx_use_ibis = Bool(False) #: (Bool) # - Rx rin = Float(gRin) #: Rx input impedance (Ohm) cin = Range(low=0, high=1000, value=gCin) #: Rx parasitic input capacitance (pF) cac = Float(gCac) #: Rx a.c. coupling capacitance (uF) use_ctle_file = Bool(False) #: For importing CTLE impulse/step response directly. ctle_file = File("", entries=5, filter=["*.csv"]) #: CTLE response file (when use_ctle_file = True). rx_bw = Float(gBW) #: CTLE bandwidth (GHz). peak_freq = Float(gPeakFreq) #: CTLE peaking frequency (GHz) peak_mag = Float(gPeakMag) #: CTLE peaking magnitude (dB) ctle_offset = Float(gCTLEOffset) #: CTLE d.c. offset (dB) ctle_mode = Enum("Off", "Passive", "AGC", "Manual") #: CTLE mode ('Off', 'Passive', 'AGC', 'Manual'). rx_use_ami = Bool(False) #: (Bool) rx_has_ts4 = Bool(False) #: (Bool) rx_use_ts4 = Bool(False) #: (Bool) rx_use_getwave = Bool(False) #: (Bool) rx_has_getwave = Bool(False) #: (Bool) rx_ami_file = File("", entries=5, filter=["*.ami"]) #: (File) rx_ami_valid = Bool(False) #: (Bool) rx_dll_file = File("", entries=5, filter=["*.dll", "*.so"]) #: (File) rx_dll_valid = Bool(False) #: (Bool) rx_ibis_file = File("", entries=5, filter=["*.ibs"]) #: (File) rx_ibis_valid = Bool(False) #: (Bool) rx_use_ibis = Bool(False) #: (Bool) # - DFE use_dfe = Bool(gUseDfe) #: True = use a DFE (Bool). sum_ideal = Bool(gDfeIdeal) #: True = use an ideal (i.e. - infinite bandwidth) summing node (Bool). decision_scaler = Float(gDecisionScaler) #: DFE slicer output voltage (V). gain = Float(gGain) #: DFE error gain (unitless). n_ave = Float(gNave) #: DFE # of averages to take, before making tap corrections. n_taps = Int(gNtaps) #: DFE # of taps. _old_n_taps = n_taps sum_bw = Float(gDfeBW) #: DFE summing node bandwidth (Used when sum_ideal=False.) (GHz). # - CDR delta_t = Float(gDeltaT) #: CDR proportional branch magnitude (ps). alpha = Float(gAlpha) #: CDR integral branch magnitude (unitless). n_lock_ave = Int(gNLockAve) #: CDR # of averages to take in determining lock. rel_lock_tol = Float(gRelLockTol) #: CDR relative tolerance to use in determining lock. lock_sustain = Int(gLockSustain) #: CDR hysteresis to use in determining lock. # - Analysis thresh = Int(gThresh) #: Threshold for identifying periodic jitter components (sigma). # Misc. cfg_file = File("", entries=5, filter=["*.pybert_cfg"]) #: PyBERT configuration data storage file (File). data_file = File("", entries=5, filter=["*.pybert_data"]) #: PyBERT results data storage file (File). # Plots (plot containers, actually) plotdata = ArrayPlotData() plots_h = Instance(GridPlotContainer) plots_s = Instance(GridPlotContainer) plots_p = Instance(GridPlotContainer) plots_H = Instance(GridPlotContainer) plots_dfe = Instance(GridPlotContainer) plots_eye = Instance(GridPlotContainer) plots_jitter_dist = Instance(GridPlotContainer) plots_jitter_spec = Instance(GridPlotContainer) plots_bathtub = Instance(GridPlotContainer) # Status status = String("Ready.") #: PyBERT status (String). jitter_perf = Float(0.0) total_perf = Float(0.0) sweep_results = List([]) len_h = Int(0) chnl_dly = Float(0.0) #: Estimated channel delay (s). bit_errs = Int(0) #: # of bit errors observed in last run. run_count = Int(0) # Used as a mechanism to force bit stream regeneration. # About perf_info = Property(String, depends_on=["total_perf"]) ident = String( '<H1>PyBERT v{} - a serial communication link design tool, written in Python.</H1>\n\n \ {}<BR>\n \ {}<BR><BR>\n\n \ {};<BR>\n \ All rights reserved World wide.'.format( VERSION, AUTHORS, DATE, COPY ) ) # Help instructions = help_str # Console console_log = String("PyBERT Console Log\n\n") # Dependent variables # - Handled by the Traits/UI machinery. (Should only contain "low overhead" variables, which don't freeze the GUI noticeably.) # # - Note: Don't make properties, which have a high calculation overhead, dependencies of other properties! # This will slow the GUI down noticeably. jitter_info = Property(String, depends_on=["jitter_perf"]) status_str = Property(String, depends_on=["status"]) sweep_info = Property(String, depends_on=["sweep_results"]) tx_h_tune = Property(Array, depends_on=["tx_tap_tuners.value", "nspui"]) ctle_h_tune = Property( Array, depends_on=[ "peak_freq_tune", "peak_mag_tune", "rx_bw_tune", "w", "len_h", "ctle_mode_tune", "ctle_offset_tune", "use_dfe_tune", "n_taps_tune", ], ) ctle_out_h_tune = Property(Array, depends_on=["tx_h_tune", "ctle_h_tune", "chnl_h"]) cost = Property(Float, depends_on=["ctle_out_h_tune", "nspui"]) rel_opt = Property(Float, depends_on=["cost"]) t = Property(Array, depends_on=["ui", "nspb", "nbits"]) t_ns = Property(Array, depends_on=["t"]) f = Property(Array, depends_on=["t"]) w = Property(Array, depends_on=["f"]) bits = Property(Array, depends_on=["pattern_len", "nbits", "run_count"]) symbols = Property(Array, depends_on=["bits", "mod_type", "vod"]) ffe = Property(Array, depends_on=["tx_taps.value", "tx_taps.enabled"]) ui = Property(Float, depends_on=["bit_rate", "mod_type"]) nui = Property(Int, depends_on=["nbits", "mod_type"]) nspui = Property(Int, depends_on=["nspb", "mod_type"]) eye_uis = Property(Int, depends_on=["eye_bits", "mod_type"]) dfe_out_p = Array() przf_err = Property(Float, depends_on=["dfe_out_p"]) # Custom buttons, which we'll use in particular tabs. # (Globally applicable buttons, such as "Run" and "Ok", are handled more simply, in the View.) btn_rst_eq = Button(label="ResetEq") btn_save_eq = Button(label="SaveEq") btn_opt_tx = Button(label="OptTx") btn_opt_rx = Button(label="OptRx") btn_coopt = Button(label="CoOpt") btn_abort = Button(label="Abort") btn_cfg_tx = Button(label="Configure") # Configure AMI parameters. btn_cfg_rx = Button(label="Configure") btn_sel_tx = Button(label="Select") # Select IBIS model. btn_sel_rx = Button(label="Select") btn_view_tx = Button(label="View") # View IBIS model. btn_view_rx = Button(label="View") # Logger & Pop-up def log(self, msg, alert=False, exception=None): """Log a message to the console and, optionally, to terminal and/or pop-up dialog.""" _msg = msg.strip() txt = "\n[{}]: PyBERT: {}\n".format(datetime.now(), _msg) if self.debug: ## In case PyBERT crashes, before we can read this in its `Console` tab: print(txt) self.console_log += txt if exception: raise exception if alert and self.GUI: message(_msg, "PyBERT Alert") # Default initialization def __init__(self, run_simulation=True, gui=True): """ Initial plot setup occurs here. In order to populate the data structure we need to construct the plots, we must run the simulation. Args: run_simulation(Bool): If true, run the simulation, as part of class initialization. This is provided as an argument for the sake of larger applications, which may be importing PyBERT for its attributes and methods, and may not want to run the full simulation. (Optional; default = True) gui(Bool): Set to `False` for script based usage. """ # Super-class initialization is ABSOLUTELY NECESSARY, in order # to get all the Traits/UI machinery setup correctly. super(PyBERT, self).__init__() self.GUI = gui self.log("Started.") self.log_information() if self.debug: self.log("Debug Mode Enabled.") if run_simulation: # Running the simulation will fill in the required data structure. my_run_simulation(self, initial_run=True) # Once the required data structure is filled in, we can create the plots. make_plots(self, n_dfe_taps=gNtaps) else: self.calc_chnl_h() # Prevents missing attribute error in _get_ctle_out_h_tune(). # Custom button handlers def _btn_rst_eq_fired(self): """Reset the equalization.""" for i in range(4): self.tx_tap_tuners[i].value = self.tx_taps[i].value self.tx_tap_tuners[i].enabled = self.tx_taps[i].enabled self.peak_freq_tune = self.peak_freq self.peak_mag_tune = self.peak_mag self.rx_bw_tune = self.rx_bw self.ctle_mode_tune = self.ctle_mode self.ctle_offset_tune = self.ctle_offset self.use_dfe_tune = self.use_dfe self.n_taps_tune = self.n_taps def _btn_save_eq_fired(self): """Save the equalization.""" for i in range(4): self.tx_taps[i].value = self.tx_tap_tuners[i].value self.tx_taps[i].enabled = self.tx_tap_tuners[i].enabled self.peak_freq = self.peak_freq_tune self.peak_mag = self.peak_mag_tune self.rx_bw = self.rx_bw_tune self.ctle_mode = self.ctle_mode_tune self.ctle_offset = self.ctle_offset_tune self.use_dfe = self.use_dfe_tune self.n_taps = self.n_taps_tune def _btn_opt_tx_fired(self): if ( self.tx_opt_thread and self.tx_opt_thread.isAlive() or not any([self.tx_tap_tuners[i].enabled for i in range(len(self.tx_tap_tuners))]) ): pass else: self._do_opt_tx() def _do_opt_tx(self, update_status=True): self.tx_opt_thread = TxOptThread() self.tx_opt_thread.pybert = self self.tx_opt_thread.update_status = update_status self.tx_opt_thread.start() def _btn_opt_rx_fired(self): if self.rx_opt_thread and self.rx_opt_thread.isAlive() or self.ctle_mode_tune == "Off": pass else: self.rx_opt_thread = RxOptThread() self.rx_opt_thread.pybert = self self.rx_opt_thread.start() def _btn_coopt_fired(self): if self.coopt_thread and self.coopt_thread.isAlive(): pass else: self.coopt_thread = CoOptThread() self.coopt_thread.pybert = self self.coopt_thread.start() def _btn_abort_fired(self): if self.coopt_thread and self.coopt_thread.isAlive(): self.coopt_thread.stop() self.coopt_thread.join(10) if self.tx_opt_thread and self.tx_opt_thread.isAlive(): self.tx_opt_thread.stop() self.tx_opt_thread.join(10) if self.rx_opt_thread and self.rx_opt_thread.isAlive(): self.rx_opt_thread.stop() self.rx_opt_thread.join(10) def _btn_cfg_tx_fired(self): self._tx_cfg() def _btn_cfg_rx_fired(self): self._rx_cfg() def _btn_sel_tx_fired(self): self._tx_ibis() if self._tx_ibis.dll_file and self._tx_ibis.ami_file: self.tx_dll_file = join(self._tx_ibis_dir, self._tx_ibis.dll_file) self.tx_ami_file = join(self._tx_ibis_dir, self._tx_ibis.ami_file) else: self.tx_dll_file = "" self.tx_ami_file = "" def _btn_sel_rx_fired(self): self._rx_ibis() if self._rx_ibis.dll_file and self._rx_ibis.ami_file: self.rx_dll_file = join(self._rx_ibis_dir, self._rx_ibis.dll_file) self.rx_ami_file = join(self._rx_ibis_dir, self._rx_ibis.ami_file) else: self.rx_dll_file = "" self.rx_ami_file = "" def _btn_view_tx_fired(self): self._tx_ibis.model() def _btn_view_rx_fired(self): self._rx_ibis.model() # Independent variable setting intercepts # (Primarily, for debugging.) def _set_ctle_peak_mag_tune(self, val): if val > gMaxCTLEPeak or val < 0.0: raise RuntimeError("CTLE peak magnitude out of range!") self.peak_mag_tune = val # Dependent variable definitions @cached_property def _get_t(self): """ Calculate the system time vector, in seconds. """ ui = self.ui nspui = self.nspui nui = self.nui t0 = ui / nspui npts = nui * nspui return array([i * t0 for i in range(npts)]) @cached_property def _get_t_ns(self): """ Calculate the system time vector, in ns. """ return self.t * 1.0e9 @cached_property def _get_f(self): """ Calculate the frequency vector appropriate for indexing non-shifted FFT output, in Hz. # (i.e. - [0, f0, 2 * f0, ... , fN] + [-(fN - f0), -(fN - 2 * f0), ... , -f0] Note: Changed to positive freqs. only, in conjunction w/ irfft() usage. """ t = self.t npts = len(t) f0 = 1.0 / (t[1] * npts) half_npts = npts // 2 return array([i * f0 for i in range(half_npts)]) @cached_property def _get_w(self): """ System frequency vector, in rads./sec. """ return 2 * pi * self.f @cached_property def _get_bits(self): """ Generate the bit stream. """ pattern_len = self.pattern_len nbits = self.nbits mod_type = self.mod_type[0] bits = [] seed =
randint(128)
numpy.random.randint
import numpy as np import pytest from numpy.testing import assert_array_equal, assert_allclose from app.math_functions import ( build_translation_matrix, build_scaling_matrix, build_rotation_matrix, build_reflection_matrix, normalize_point, bezier_blending_functions, calculate_bezier_points, calculate_bspline_parameters, ) from app.config import ( X_MAX_TRANSLATED, X_MIN_TRANSLATED, Y_MAX_TRANSLATED, Y_MIN_TRANSLATED, MAX_NORMALIZED_VALUE, MIN_NORMALIZED_VALUE, ) def test_translation_matrix(): matrix = build_translation_matrix(30, 30, 0) expected_matrix = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [30, 30, 0, 1]] ) assert_array_equal(matrix, expected_matrix) def test_scaling_matrix(): matrix = build_scaling_matrix(30, 30, 0) expected_matrix = np.array( [[30, 0, 0, 0], [0, 30, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]] ) assert_array_equal(matrix, expected_matrix) def test_rotation_matrix(): matrix = build_rotation_matrix(30) expected_matrix = np.array( [[0.86602529158, -0.5, 0], [0.5, 0.86602529158, 0], [0, 0, 1]] ) assert_allclose(matrix, expected_matrix, rtol=1e-5, atol=0) def test_reflection_matrix_over_x(): matrix = build_reflection_matrix("x") expected_matrix = np.array([[1, 0, 0], [0, -1, 0], [0, 0, 1]]) assert_array_equal(matrix, expected_matrix) def test_reflection_matrix_over_y(): matrix = build_reflection_matrix("y") expected_matrix = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert_array_equal(matrix, expected_matrix) def test_reflection_matrix_over_origin(): matrix = build_reflection_matrix("origin") expected_matrix = np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]]) assert_array_equal(matrix, expected_matrix) @pytest.mark.skip(reason="no way of currently testing this") def test_point_normalization_zeros(): point = (0, 0) expected_result = (0, 0) normalized = normalize_point(point) assert normalized == expected_result @pytest.mark.skip(reason="no way of currently testing this") def test_point_normalization_max(): point = (X_MAX_TRANSLATED, Y_MAX_TRANSLATED) expected_result = (1, 1) normalized = normalize_point(point) assert normalized == expected_result @pytest.mark.skip(reason="no way of currently testing this") def test_point_normalization_min(): point = (X_MIN_TRANSLATED, Y_MIN_TRANSLATED) expected_result = (-1, -1) normalized = normalize_point(point) assert normalized == expected_result @pytest.mark.skip(reason="no way of currently testing this") def test_point_normalization_over_boundaries(): point = (X_MAX_TRANSLATED * 1000, Y_MAX_TRANSLATED * -1000) expected_result = (1, -1) normalized = normalize_point(point) assert normalized == expected_result def test_calculate_bspline_parameters(): control_points = [(1, 1), (2, 2), (3, 2), (4, 1)] delta = 0.1 x, y = calculate_bspline_parameters(control_points, delta) expected_x = [2, 0.1, 0, 0] expected_y = [1.833, 0.045, -0.01, 0]
assert_allclose(x, expected_x, rtol=1e-3, atol=1e-3)
numpy.testing.assert_allclose
# ----------------------------------------------------------------------------------------------------- # CONDOR # Simulator for diffractive single-particle imaging experiments with X-ray lasers # http://xfel.icm.uu.se/condor/ # ----------------------------------------------------------------------------------------------------- # Copyright 2016 <NAME>, <NAME>, <NAME> # Condor is distributed under the terms of the BSD 2-Clause License # ----------------------------------------------------------------------------------------------------- # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------------------------------- # General note: # All variables are in SI units by default. Exceptions explicit by variable name. # ----------------------------------------------------------------------------------------------------- from __future__ import print_function, absolute_import # Compatibility with python 2 and 3 import sys,os try: from collections.abc import Iterable ## Python >= 3.3 except ImportError: from collections import Iterable ## Python < 3.3 sys.path.append("utils") import numpy import logging logger = logging.getLogger(__name__) import condor.utils.log from condor.utils.log import log_and_raise_error,log_warning,log_info,log_debug import condor.utils.resample from condor.utils.variation import Variation from condor.utils.pixelmask import PixelMask from condor.utils.linalg import length import condor.utils.testing import condor.utils.scattering_vector class Detector: """ Class for a photon area-detector .. image:: images/detector_schematic.jpg **Arguments:** :distance (float): Distance from interaction point to detector plane :pixel_size (float): Edge length of detector pixel (square shape) **Keyword arguments:** :cx (float): Horizontal beam position in unit pixel. If ``cx=None`` beam will be positioned in the center (default ``None``) :cy (float): Vertical beam position in unit pixel If ``cy=None`` beam will be positioned in the center (default ``None``) :center_variation (str): See :meth:`condor.detector.Detector.set_center_variation` (default ``None``) :center_spread_x (float): See :meth:`condor.detector.Detector.set_center_variation` (default ``None``) :center_spread_y (float): See :meth:`condor.detector.Detector.set_center_variation` (default ``None``) :center_variation_n (int): See :meth:`condor.detector.Detector.set_center_variation` (default ``None``) :noise (str): See :meth:`condor.detector.Detector.set_noise` (default ``None``) :noise_spread (float): See :meth:`condor.detector.Detector.set_noise` (default ``None``) :noise_filename (str): See :meth:`condor.detector.Detector.set_noise` (default ``None``) :noise_dataset (str): See :meth:`condor.detector.Detector.set_noise` (default ``None``) :saturation_level (float): Value at which detector pixels satutrate (default ``None``) :binning (int): Pixel binning factor, intensies are integrated over square patches that have an area of ``binning`` x ``binning`` pixels (default ``None``) :mask_CXI_bitmask (bool): If ``True`` the provided mask (``mask_dataset`` or ``mask``) is a CXI bitmask. For documentation on the implementation of CXI bitmasks see :class:`condor.utils.pixelmask.PixelMask` (default ``False``) :solid_angle_correction (bool): Whether or not solid angle correction shall be applied (default ``True``) *Choose one of the following options:* ==================== ============================================================================= ``mask_CXI_bitmask`` valid pixels ==================== ============================================================================= ``False`` ``1`` ``True`` ``(pixels & condor.utils.pixelmask.PixelMask.PIXEL_IS_IN_MASK_DEFAULT) == 0`` ==================== ============================================================================= **There are 3 alternative options to specify shape and mask of the detector** *A) Parameters* :nx (int): Number of pixels in *x* direction (not including a potential gap or hole) (default ``None``) :ny (int): Number of pixels in *y* direction (not including a potential gap or hole) (default ``None``) :x_gap_size_in_pixel (int): Size of central gap along *x* in unit pixel (default ``None``) :y_gap_size_in_pixel (int): Size of central gap along *y* in unit pixel (default ``None``) :hole_diameter_in_pixel (int): Diameter of central hole in unit pixel (default ``None``) *B) HDF5 dataset for mask* :mask_filename (str): Location of HDF5 file that contains dataset for mask (default ``None``) :mask_dataset (str): HDF5 dataset (in the file specified by the argument ``mask_filename``) that contains the mask data. Toggle the option ``mask_CXI_bitmask`` for decoding options (default ``None``) *C) Numpy array for mask* :mask (array): 2D numpy integer array that defines the mask. Toggle ``mask_CXI_bitmask`` for decoding options (default ``None``) """ def __init__(self, distance, pixel_size, x_gap_size_in_pixel=0, y_gap_size_in_pixel=0, hole_diameter_in_pixel=0, cx_hole=None, cy_hole=None, noise=None, noise_spread=None, noise_variation_n=None, noise_filename=None, noise_dataset=None, cx=None, cy=None, center_variation=None, center_spread_x=None, center_spread_y=None, center_variation_n=None, saturation_level=None, mask=None, mask_filename=None, mask_dataset=None, mask_is_cxi_bitmask=False, solid_angle_correction=True, nx=None, ny=None, binning=None): self.distance = distance self.pixel_size = float(pixel_size) self._init_mask(mask=mask, mask_is_cxi_bitmask=mask_is_cxi_bitmask, mask_filename=mask_filename, mask_dataset=mask_dataset, nx=nx, ny=ny, x_gap_size_in_pixel=x_gap_size_in_pixel, y_gap_size_in_pixel=y_gap_size_in_pixel, cx_hole=cx_hole, cy_hole=cy_hole, hole_diameter_in_pixel=hole_diameter_in_pixel) self.cx_mean = cx if cx != 'middle' else None self.cy_mean = cy if cy != 'middle' else None self.set_center_variation(center_variation=center_variation, center_spread_x=center_spread_x, center_spread_y=center_spread_y, center_variation_n=center_variation_n) self.set_noise(noise=noise, noise_spread=noise_spread, noise_variation_n=noise_variation_n, noise_filename=noise_filename, noise_dataset=noise_dataset) self.saturation_level = saturation_level self.binning = binning self.solid_angle_correction = solid_angle_correction def get_conf(self): """ Get configuration in form of a dictionary. Another identically configured Detector instance can be initialised by: .. code-block:: python conf = D0.get_conf() # D0: already existing Detector instance D1 = condor.Detector(**conf) # D1: new Detector instance with the same configuration as D0 """ conf = {} conf["detector"] = {} conf["detector"]["distance"] = self.distance conf["detector"]["pixel_size"] = self.pixel_size conf["detector"]["cx"] = self.cx_mean conf["detector"]["cy"] = self.cy_mean cvar = self._center_variation.get_conf() conf["detector"]["center_variation"] = cvar["mode"] conf["detector"]["center_spread_x"] = cvar["spread"][0] conf["detector"]["center_spread_y"] = cvar["spread"][1] conf["detector"]["center_variation_n"] = cvar["n"] noise = self._noise.get_conf() conf["detector"]["noise"] = noise["mode"] conf["detector"]["noise_spread"] = noise["spread"] conf["detector"]["noise_filename"] = self._noise_filename conf["detector"]["noise_dataset"] = self._noise_dataset conf["detector"]["saturation_level"] = self.saturation_level conf["detector"]["mask"] = self._mask.copy() conf["detector"]["mask_CXI_bitmask"] = True conf["detector"]["solid_angle_correction"] = self.solid_angle_correction return conf def set_noise(self, noise=None, noise_spread=None, noise_variation_n=None, noise_filename=None, noise_dataset=None): r""" Set detector noise type and parameters (this method is called during initialisation) Kwargs: :noise (str): Noise added to the predicted intensities (default ``None``) *Choose one of the following options:* ======================= ================================================================== ``noise`` Noise model ======================= ================================================================== ``None`` No noise ``'poisson'`` Poisson noise (*shot noise*) ``'normal'`` Normal (*Gaussian*) noise ``'uniform'`` Uniformly distributed values within spread limits ``'normal_poisson'`` Normal (*Gaussian*) noise on top of Poisson noise (*shot noise*) ``'file'`` Noise data from file ``'file_poisson'`` Noise data from file on top of Poisson noise (*shot noise*) ======================= ================================================================== :noise_spread (float): Width (full width at half maximum) of the Gaussian or uniform noise distribution (default ``None``) .. note:: The argument ``noise_spread`` takes only effect in combination with ``noise='normal'``, ``'uniform'`` or ``'normal_poisson'`` :noise_filename (str): Location of the HDF5 file that contains the noise data (default ``None``) :noise_dataset (str): HDF5 dataset (in the file specified by the argument ``noise_filename``) that contains the noise data (default ``None``) .. note:: The arguments ``noise_filename`` and ``noise_dataset`` takes effect only in combination with ``noise='file'`` or ``'file_poisson'`` """ if noise in ["file","file_poisson"]: self._noise_filename = noise_filename self._noise_dataset = noise_dataset self._noise = Variation("poisson" if noise == "file_poisson" else None, noise_spread, noise_variation_n, number_of_dimensions=1) else: self._noise_filename = None self._noise_dataset = None self._noise = Variation(noise, noise_spread, noise_variation_n, number_of_dimensions=1) def set_center_variation(self, center_variation=None, center_spread_x=None, center_spread_y=None, center_variation_n=None): """ Set the variation of the beam center position (this method is called during initialisation) Kwargs: :center_variation(str): Variation of the beam center position (default ``None``) *Choose one of the following options:* ===================== ============================================== ``center_variation`` Variation model ===================== ============================================== ``None`` No variation ``'normal'`` Normal (*Gaussian*) random distribution ``'uniform'`` Uniform random distribution ``'range'`` Equispaced grid around mean center position ===================== ============================================== :center_spread_x (float): Width of the distribution of center position in *x* [pixel] (default ``None``) :center_spread_y (float): Width of the distribution of center position in *y* [pixel] (default ``None``) .. note:: The arguments ``center_spread_y`` and ``center_spread_x`` take effect only in combination with ``center_variation='normal'``, ``'uniform'`` or ``'range'`` :center_variation_n (int): Number of samples within the specified range (default ``None``) .. note:: The argument ``center_variation_n`` takes effect only in combination with ``center_variation='range'`` """ self._center_variation = Variation(center_variation, [center_spread_x,center_spread_y], center_variation_n, number_of_dimensions=2) def _init_mask(self, mask, mask_is_cxi_bitmask, mask_filename, mask_dataset, nx, ny, x_gap_size_in_pixel, y_gap_size_in_pixel, cx_hole, cy_hole, hole_diameter_in_pixel): if mask is not None or (mask_filename is not None and mask_dataset is not None): if mask is not None: # Copy mask from array self._mask = numpy.array(mask, dtype=numpy.uint16) else: # Read mask from file import h5py with h5py.File(mask_filename,"r") as f: self._mask = numpy.array(f[mask_dataset][:,:], dtype=numpy.uint16) if not mask_is_cxi_bitmask: # Convert maskt to CXI bit format self._mask = (self._mask == 0) * PixelMask.PIXEL_IS_MISSING elif nx is not None and ny is not None: # Initialise empty mask self._mask = numpy.zeros(shape=(int(ny+y_gap_size_in_pixel), int(nx+x_gap_size_in_pixel)),dtype=numpy.uint16) else: log_and_raise_error(logger, r"Either 'mask' or 'nx' and 'ny' have to be specified.") sys.exit(1) self._nx = self._mask.shape[1] self._ny = self._mask.shape[0] # Mask out pixels in gaps if y_gap_size_in_pixel > 0: cy = int(numpy.ceil((self._ny-1)/2.)) gy = int(numpy.round(y_gap_size_in_pixel)) self._mask[cy-gy//2:cy-gy//2+gy,:] |= PixelMask.PIXEL_IS_MISSING if x_gap_size_in_pixel > 0: cx = int(numpy.ceil((self._nx-1)/2.)) gx = int(numpy.round(x_gap_size_in_pixel)) self._mask[:,cx-gx//2:cx-gx//2+gx] |= PixelMask.PIXEL_IS_MISSING # Mask out pixels in hole if hole_diameter_in_pixel > 0: if cx_hole is None: cx_hole = (self._nx-1)/2. if cy_hole is None: cy_hole = (self._ny-1)/2. Y,X = numpy.indices((self._ny,self._nx), dtype=numpy.float64) X = X-cx_hole Y = Y-cy_hole R = numpy.sqrt(X**2 + Y**2) tmp = R<=hole_diameter_in_pixel/2.0 if tmp.sum() > 0: self._mask[tmp] |= PixelMask.PIXEL_IS_MISSING def get_mask(self,intensities=None, boolmask=False): """ Return mask. The mask has information about the status of each individual detector pixel. The output can be either a CXI bitmask (default) or a boolean mask For further information and the full bitcode go to :class:`condor.utils.pixelmask.PixelMask` Kwargs: :intensities: Numpy array of photon intensities for masking saturated pixels (default ``None``) :boolmask (bool): If ``True`` the output will be a boolean array. Mask values are converted to ``True`` if no bit is set and to ``False`` otherwise """ if intensities is not None: if not condor.utils.testing.same_shape(intensities, self._mask): log_and_raise_error(logger, "Intensities and mask do not have the same shape") M = self._mask.copy() if self.saturation_level is not None and intensities is not None: M[intensities >= self.saturation_level] |= PixelMask.PIXEL_IS_SATURATED if boolmask: return
numpy.array(M == 0,dtype="bool")
numpy.array
""" Created on Thu Oct. 10 2019 Recent changes for the version 0.1.1: 1) Insead of giving the input optical penetration depth only give the input of the complex refractive index "n". This is a material parameter, so the input is given in the simulation --> add_layer(.) command. Now "LB" and "TMM" source are initialized almost in the same way 2) One of the Outputs of sim.run() is T. But now we change it to be a 3 dimensional array, with dim0 = time; dim1 = space; dim2 = subsystem 3) The input for the visual class in the v.contour() function should not be a string but just numbers corresponding to different systems. @author: <NAME> <EMAIL> """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from bspline import Bspline from bspline.splinelab import aptknt import time from matplotlib.animation import FuncAnimation as movie from tqdm import tqdm #Progressbar #============================================================================== class temperature(object): def __init__(self): self.plt_points = 30 #number of points in x grid self.length = np.array([0,0]) #length of x space,starting from 0 self.Left_BC_Type = 1 #Boundary conditions Default is Neumann self.Right_BC_Type = 1 #1=> Neumann; 0=> Dirichlet self.init = lambda x: 300+0*x # initial temperature of probe self.n = np.array([1,1],dtype=complex) # Initial refractive index air|...|air self.conductivity = [1] #This gets deleted after initialisation self.heatCapacity = [1] #those values are just here to make space self.rho = [1] #Actual values are given, when 'addLayer(length, conductivity,heatCapacity,rho)' is executed self.collocpts = 12 self.setup = False #first time setup to not double calculated def getProperties(self): #to depict the properties of the object for i in (self.__dict__): name = str(i) value = str(self.__dict__[i]) print('{:<20}{:>10}'.format( name,value )) def __repr__(self): return('Temperature') #for every layer, a function to calculate the derivative of k(T) def diff_conductivity(self,phi,num_of_material): eps =1e-9 dc = (self.conductivity[num_of_material](phi+eps)-self.conductivity[num_of_material](phi))/eps return(dc) #Creating the key matrices for B-splines. Those are A0,A1,A2 #A0 => Zero derivative; A1 => 1st order derivative.... #We create the matices for every layer, with respective length ect #then we put them together to Abig => Boundary and interface conditions are applied here. def Msetup(self): #Deleting the ifrst element of the default initialization #After creating the element with 'addLayer' we dont need them! if not self.setup: self.length = self.length[1:] self.conductivity = self.conductivity[1:] self.heatCapacity = self.heatCapacity[1:] self.rho = self.rho[1:] self.setup = True #Length and numper of grid points for each respective layer length = self.length plt_points = self.plt_points num_of_points = self.collocpts #Number of points per layer used in the spline for collocation order = 5 #order of the spline x = np.array(np.zeros([np.size(length)-1,num_of_points])) x_plt = np.array(np.zeros([np.size(length)-1,plt_points])) knot_vector = np.array(np.zeros([np.size(length)-1,num_of_points+order+1])) basis = np.array(np.zeros(np.size(length)-1)) A0h = []; A1h = []; A2h = []; Ch = []; LayerMat = np.array([np.zeros((num_of_points,num_of_points))]) #Create all the big matices A0,A1,A2 & C. C is used to map on a fine mesh in x- space. #For every layer we set up splines between the boundaries for i in range(0,np.size(length)-1): x[i,:] = np.linspace(length[i], length[i+1] , num_of_points) x_plt[i,:] = np.linspace(length[i], length[i+1] , plt_points) knot_vector[i,:] = aptknt(x[i,:], order) #prepare for Spline matrix basis = Bspline(knot_vector[i,:],order) A0hinter = basis.collmat(x[i,:], deriv_order = 0); A0hinter[-1,-1] = 1 A1hinter = basis.collmat(x[i,:], deriv_order = 1); A1hinter[-1] = -np.flip(A1hinter[0],0) A2hinter = basis.collmat(x[i,:], deriv_order = 2); A2hinter[-1,-1] = 1 Chinter = basis.collmat(x_plt[i,:], deriv_order = 0); Chinter[-1,-1] = 1 LayerMat = np.append(LayerMat,np.array([np.dot(A2hinter,np.linalg.inv(A0hinter))]),axis = 0) A0h = np.append(A0h,A0hinter) A1h = np.append(A1h,A1hinter) A2h = np.append(A2h,A2hinter) Ch = np.append(Ch,Chinter) #Reshape the long string of appended Matrix, such that #rows: x-points; colums: i´th basis spline LayerMat = LayerMat[1:,:,:] A0h = np.reshape(A0h, (-1,num_of_points)) A1h = np.reshape(A1h, (-1,num_of_points)) A2h = np.reshape(A2h, (-1,num_of_points)) Ch = np.reshape(Ch,(-1,num_of_points)) #Ch => More points in x, but same number of basis splines #Clearing the interface points, to not double count N = num_of_points plp = plt_points interfaces = np.shape(x)[0]-1 sizeA = np.shape(x)[0]*N-interfaces sizeCb = np.shape(x)[0]*plp-interfaces Abig = np.zeros([sizeA,sizeA]) A1b = np.zeros([sizeA,sizeA]) A2b = np.zeros([sizeA,sizeA]) Cb = np.zeros([sizeCb,sizeA]) #Clearing the double counts from the space grid xflat = x.flatten() x_plt_flat = x_plt.flatten() #index of double counts doublec = np.array([np.arange(1,len(length)-1)])*N doublec_plt = np.array([np.arange(1,len(length)-1)])*plp xflat = np.delete(xflat,doublec) x_plt_flat = np.delete(x_plt_flat,doublec_plt) #Filling the big matrices. startA = 0; endA = N-1 startC = 0; endC = plp-1 for i in range(0,interfaces+1): Abig[startA:endA,startA:endA+1] = A0h[startA+i:endA+i,:] A1b[startA:endA+1,startA:endA+1] = A1h[startA+i:endA+i+1,:] A2b[startA:endA+1,startA:endA+1] = A2h[startA+i:endA+i+1,:] Cb[startC:endC+1,startA:endA+1] = Ch[startC+i:endC+i+1,:] startA += N-1; endA += N-1 startC += plp-1; endC += plp-1 #Create A00 with no interface condition to correctly compute phi in loop #The copy needs to be done befor interface conditions are applied in Abig A00 = Abig.copy() A00[-1,-1] = 1; #Here we make init, conductivity & capacity all functions, in case they are # given as integeres or floats. Also thorw warinings if not every layer has a # conducitvity or capacity ============================================ #Making init a function, in case it is given as a scalar if np.size(self.init) == 1 and isinstance(self.init,(int,float)): dummy = self.init self.init = lambda x: dummy + 0*x if len(length) > 2: #multilayer case if len(length)-1 !=( len(self.heatCapacity) & len(self.conductivity) ): print('--------------------------------------------------------') print('The number of different layers must match the number of number of' \ 'inputs for Conductivity, heatCapacity, rho.') print('--------------------------------------------------------') if np.size(self.conductivity) is not interfaces+1: print('--------------------------------------------------------') print('Not every Layer has been given a conductivity function' \ 'Adjust your input of the conductivity functions with respect to the layers.') print('--------------------------------------------------------') if np.size(self.heatCapacity) is not interfaces+1: print('--------------------------------------------------------') print('Not every Layer has been given a heatCapacity function value.'\ 'Adjust your input of the heatCapacity functions with respect to the layers.') print('--------------------------------------------------------') #Make Functions in case heat capacity/conductivity are given as variables if (all(self.conductivity) or all(self.heatCapacity) or all(self.init)) == False: print('No heatCapacity, conductivity or initial function given.') print('--------------------------------------------------------') #make the conductivity always a function if len(length) >2 or np.size(self.conductivity)>=2: for j in list(range (0,np.size(self.conductivity))): if isinstance(self.conductivity[j],(int,float,list)) : dummy3 = self.conductivity[j] self.conductivity[j] = (lambda b: lambda a: b+0*a)(dummy3) #make the conductivity always a function for j in list(range (0,np.size(self.heatCapacity))): if isinstance(self.heatCapacity[j],(int, float,list)) : dummy4 = self.heatCapacity[j] self.heatCapacity[j] = (lambda b: lambda a: b+0*a)(dummy4) else : if isinstance(self.conductivity[0],(int,float)): dummy1 = self.conductivity self.conductivity = [lambda phi: dummy1 + 0*phi] if isinstance(self.heatCapacity[0],(int,float)): dummy2 = self.heatCapacity self.heatCapacity = lambda phi: dummy2 + 0*phi self.heatCapacity = [self.heatCapacity] #End of function creation for init(x), conductivity[l](phi), heatCapacity[l](phi) # with respect to every layer 'l' ===================================== def interconditions(phi,interfaces): N = num_of_points end_i = N-1 intercondiL = np.zeros((interfaces,N)) intercondiR = np.zeros((interfaces,N)) for i in range(interfaces): intercondiL[i] = self.conductivity[i](phi[end_i])*A1h[end_i+i] intercondiR[i] = self.conductivity[i+1](phi[end_i])*A1h[end_i+i+1] end_i += N-1 return(intercondiL,intercondiR) #Initial Electron temperature initphi = self.init(xflat) initphi_large = self.init(x_plt_flat) intercon = interconditions(initphi,interfaces) #filling up Abig wiht the interface condition in the middle of the grid start_i = 0; end_i = N-1 for i in range(0,interfaces): Abig[end_i,start_i:end_i] = intercon[0][i][:-1]#Lhs interface flow Abig[end_i,end_i+1:end_i+N] = -intercon[1][i][1:]#Rhs interface flow Abig[end_i,end_i] = intercon[0][i][-1] -intercon[1][i][0] start_i += N-1; end_i += N-1 Abig[-1,-1] = 1 #to correct Cox algorithm #Now Matrix Abig is completed and interface condition is applied. #Treating 2 types of boundary conditions: 0=> Dirichlet; 1=> Neumann, # where 0´th and -1´th row need to be first order derivatives for flux. neumannBL = A1b[0].copy(); neumannBR = A1b[-1].copy(); if self.Left_BC_Type == 1: Abig[0] = -neumannBL if self.Right_BC_Type == 1: Abig[-1] = neumannBR #Clear for BC! (first and last row need to be cleared to correctly apply BC) A1b[0] = 0; A2b[0] = 0; A1b[-1] = 0; A2b[-1] = 0; #Get inital c coefficients for splines using init (=phi_init) c = np.dot(np.linalg.inv(A00),self.init(xflat)) #Passed on properties to the simulation class return(c,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h) def addLayer(self,L,refind,conductivity,heatCapacity,rho): """ Add parameters of every layer: (length,conductivity[electron,lattice,spin],heatCapacity[electron, lattice, spin],density, coupling[E-L,L-S,S-E]) The units in SI are: [length] = m [n] = complex refractive index [conductivity] = W/(mK) [heatCapacity] = J/(m^3K^2) [density] = kg/m^3 [Coupling] = W/(m^3K) """ self.length = np.append(self.length,self.length[-1]+L) #Squeez in the refracitve index between two layers of air: air|...|...|air self.n = np.concatenate((self.n[:-1],[refind],[self.n[-1]])) self.conductivity.append(conductivity) self.heatCapacity.append(heatCapacity) self.rho = np.append(self.rho,rho) #============================================================================== class simulation(object): def __init__(self,num_of_temp,source): self.temp_data = temperature() #import the temperatuer object self.num_of_temp = num_of_temp #1 if only electron temp. 2 if electron and lattice temp. self.start_time = 0 #starting time (can be negative) self.final_time = 10 #time when simulation stops self.time_step = [] #can either be given or is automatically calculated in stability self.left_BC = 0 #function or constant what the boundary condition self.right_BC = 0 #on the left or right side of the problem is. self.stability_lim = [270,3000] self.temp_data_Lat = [] #Default case is without lattice temperature self.temp_data_Spin = [] if num_of_temp >= 2: #if Lattice temp is considered self.temp_data_Lat = temperature() #in case also a lattice module is given self.coupling = [] #Coupling between Electron and Lattice system self.left_BC_L = 0 #Setting the default to zero flux self.right_BC_L = 0 #The BC type is indicated in the temperature class if num_of_temp == 3: #In case spin coupling is also considered self.temp_data_Spin = temperature() self.coupling_LS = [] #Coupling between Lattice and Spin system self.coupling_SE = [] #Coupling between Electron and Spin system self.left_BC_S = 0 #Default zero flux Neumann boundary conditions self.right_BC_S = 0 #On both sides self.source = source #object source can be passed on #to depict the properties of the object def getProperties(self): for i in (self.__dict__): name = str(i) value = str(self.__dict__[i]) print('{:<20}{:>10}'.format( name,value )) def __repr__(self): return('Simulation') def changeInit(self,system,function): """ Change the initial condition of every system. .changeInit(system,function) has 2 input arguments system --> string "electron" or "lattice" or "spin" function --> a function handle or a number defining the value of the system at t=0 over the entire domain x. """ if (system == "electron") or (system == "Electron") or (system == 1): self.temp_data.init = function if (system == "lattice") or (system == "Lattice") or (system == 2): self.temp_data_Lat.init = function if (system == "spin") or (system == "Spin") or (system == 3): self.temp_data_Spin = function def changeBC_Type(self,system,side,BCType): """ Function to change the type of the boundary condition on the left and right side of the material, for every system, "electron", "lattice", "spin" respectively. .changeBC_Type(system,side,BCType) has 3 inputs, all of them are strings. system --> "electron" or "lattice" or "spin". Altenatively: "1", "2", "3" side --> "left" or "right" BCType --> "dirichlet" fixing the value/ "neumann" fixing the flux. """ if (system == "electron") or (system == "Electron") or (system == 1): if side == "left": if (BCType == "dirichlet") or (BCType == 0): self.temp_data.Left_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data.Left_BC_Type = 1 if side == "right": if (BCType == "dirichlet") or (BCType == 0): self.temp_data.Right_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data.Right_BC_Type = 1 if (system == "lattice") or (system == "Lattice") or (system == 2): if side == "left": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Lat.Left_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Lat.Left_BC_Type = 1 if side == "right": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Lat.Right_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Lat.Right_BC_Type = 1 if (system == "spin") or (system == "Spin") or (system == 3): print("Line 326 Spinsystem") if side == "left": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Spin.Left_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Spin.Left_BC_Type = 1 if side == "right": if (BCType == "dirichlet") or (BCType == 0): self.temp_data_Spin.Right_BC_Type = 0 if (BCType == "neumann") or (BCType == 1): self.temp_data_Spin.Right_BC_Type = 1 def changeBC_Value(self,system,side,function): """ Function to change the value of the boundary condition on the left and right side of the material, for every system, "electron", "lattice", "spin" respectively. .changeBC_Value(system,side,function) the first two are strings, the last one is a function handle or a number. system --> "electron" or "lattice" or "spin"| Altenatively: "1", "2", "3" side --> "left" or "right" function--> function or number fixing the value on the boundaries for all times. """ if (system == "electron") or (system == "Electron") or (system == 1): if side == "left": self.left_BC = function if side == "right": self.right_BC = function if (system == "lattice") or (system == "Lattice") or (system == 2): if side == "left": self.left_BC_L = function if side == "right": self.right_BC_L = function if (system == "spin") or (system == "Spin") or (system == 3): if side == "left": self.left_BC_S = function if side == "right": self.right_BC_S = function def addSubstrate(self,name = "silicon"): """ Automatically create in the silicon substrate using input parameters, mostly taken from: Contribution of the electron-phonon interaction to Lindhard energy partition at low energy in Ge and Si detectors for astroparticle physics applications, by <NAME> and <NAME> Note: Refractive index for 400 nm light! """ if (name == "Silicon") or (name =="silicon") or (name =="Si"): k_el_Si = 130#W/(m*K); k_lat_Si = lambda T: np.piecewise(T,[T<=120.7,T>120.7],\ [lambda T: 100*(0.09*T**3*(0.016*np.exp(-0.05*T)+np.exp(-0.14*T))), lambda T: 100*(13*1e3*T**(-1.6))]) rho_Si = 2.32e3#kg/(m**3) C_el_Si = lambda Te: 150/rho_Si *Te C_lat_Si = 1.6e6/rho_Si G_Si = 1e17*18#W/(m**3*K) #Set three layers of Silicon after each other. #The space resolution on the Film|Substrate edge is high #and decreases as one moves in bulk direction if self.num_of_temp == 2:#Lattice only in the 2T self.temp_data_Lat.addLayer(20e-9,5.5674+0.38612j,k_lat_Si,C_lat_Si,rho_Si) self.coupling = np.append(self.coupling,G_Si) self.temp_data_Lat.addLayer(100e-9,5.5674+0.38612j,k_lat_Si,C_lat_Si,rho_Si) self.coupling = np.append(self.coupling,G_Si) self.temp_data_Lat.addLayer(100000e-9,5.5674+0.38612j,k_lat_Si,C_lat_Si,rho_Si) self.coupling = np.append(self.coupling,G_Si) #In the 1 and 2 temperature case electron always gets appended self.temp_data.addLayer(20e-9,5.5674+0.38612j,k_el_Si,C_el_Si,rho_Si) self.temp_data.addLayer(100e-9,5.5674+0.38612j,k_el_Si,C_el_Si,rho_Si) self.temp_data.addLayer(100000e-9,5.5674+0.38612j,k_el_Si,C_el_Si,rho_Si) def addLayer(self,L,n,conductivity,heatCapacity,rho,coupling=0,*args): """ Add parameters of every layer: (length,conductivity[electron,lattice,spin],heatCapacity[electron, lattice, spin],density, coupling[E-L,L-S,S-E]) The units in SI are: [length] = m [n] = complex refractive index [conductivity] = W/(mK) [heatCapacity] = J/(m^3K^2) [density] = kg/m^3 [Coupling] = W/(m^3K) """ #check all input arguments and make them to lists, for the multi layer case #make list when given as int or float typecheck = np.array([]) if type(conductivity) is not (list or type(typecheck)): conductivity = [conductivity] if type(heatCapacity) is not (list or type(typecheck)): heatCapacity = [heatCapacity] #do typecheck only for the lattice system in the 2TM-case if self.num_of_temp == 2: if (np.size(conductivity) or np.size(heatCapacity))<2: print('Lattice parameters are missing.\n Add parameters for Lattice system.') return(128) self.temp_data_Lat.addLayer(L,n,conductivity[1],heatCapacity[1],rho) #Only electron spin coupling is under consideration self.coupling = np.append(self.coupling,coupling) #do typecheck for the Lattice and the Spin system if self.num_of_temp == 3: if (np.size(conductivity) or np.size(heatCapacity) or np.size(coupling))<3: print('Input parameters are missing.\n Add parameters for '\ 'conductivity/heatCapacity or coupling for Lattice/Spin system.') return(128) self.temp_data_Lat.addLayer(L,n,conductivity[1],heatCapacity[1],rho) self.temp_data_Spin.addLayer(L,n,conductivity[2],heatCapacity[2],rho) #In the 3Tm case the coupling input arg is a vector of len 3. Unwrap them: self.coupling = np.append(self.coupling,coupling[0]) self.coupling_LS = np.append(self.coupling_LS,coupling[1]) self.coupling_SE = np.append(self.coupling_SE,coupling[2]) #For the electronic system always add the parameters! self.temp_data.addLayer(L,n,conductivity[0],heatCapacity[0],rho) def interconditions(self,phi,interfaces,conductivity,N,A1h): """ A function which gives back an array where the intereface condition is returned for the left and right side of the interface. Gets called in the E.E.-loop. """ end_i = N-1 intercondiL = np.zeros((interfaces,N)) intercondiR = np.zeros((interfaces,N)) for i in range(interfaces): intercondiL[i] = conductivity[i](phi[end_i])*A1h[end_i+i] intercondiR[i] = conductivity[i+1](phi[end_i])*A1h[end_i+i+1] end_i += N-1 return(intercondiL,intercondiR) def sourceprofile(self,absorptionprofile,timeprofile,xflat,x0,t,N): #Consider Lambert Beers law in space and different types in time if (absorptionprofile == "LB") and (self.source.fluence is not 0): optical_penetration_depth = self.source.ref2delta(self.temp_data.n,self.source.lambda_vac) if (timeprofile == "Gaussian"): print('-----------------------------------------------------------') print('Lambert Beer´s absorption law and a Gaussian time profile is applied as source.') print('-----------------------------------------------------------') sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian) if (timeprofile == "repGaussian") or (timeprofile == "RepGaussian"): print('-----------------------------------------------------------') print('Lambert Beer absorption profile and a repeated Gaussian time profile is taken into account for the source.'\ 'The frequency of the pulse repetition has to be indicated via s.frequency = number (in 1/seconds).') print('-----------------------------------------------------------') self.source.multipulse = True xmg, tmg = np.meshgrid(xflat,t) if (self.source.frequency is not False): time_range = tmg[-1,-1]-self.source.t0 pulses = int(round(time_range * self.source.frequency)) #Add up Gaussian pulses with different t0, according to the frequency given #from t0 onwards, until the end of the time grid customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 + i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian,customtime) if(self.source.frequency is not False) and (self.source.num_of_pulses is not False): #Creating a certain number of pulses according to self.num_of_pulses time_range = tmg[-1,-1]-self.source.t0 pulses = self.source.num_of_pulses #If num_of_pulses is bigger too big to fit in the timerange [t0,t_end] throw warning if (pulses > int(round(time_range * self.source.frequency))): pulses = int(round(time_range * self.source.frequency)) print('Number of pulses is too big to fit in the timerange under consideration. \n'\ 'Adjust t_end or consider a smaller number of pulses.') customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 +i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian,customtime) if(self.source.frequency is False) and (self.source.num_of_pulses is False): print('-----------------------------------------------------------') print('Assign the propertiy s.frequncy, to consider a certain pulse frequency.\n'\ 'If only a certain number of pulses should be considered, assign the value s.num_of_pulses = integer.') print('-----------------------------------------------------------') if (timeprofile == "custom") or (timeprofile == "Custom"): [ttime,amplitude] = self.source.loadData #To extract the custom time profile and the scaling factor [sourcemat,customtime,scaling] = self.source.custom(t,xflat,ttime,amplitude,optical_penetration_depth[0]) #To get the space profile: Source with different optical penetration depth defined on the xflat gird sourceM = self.source.init_G_source(xflat,x0,t,optical_penetration_depth,N,self.source.Gaussian,customtime,scaling) #Consider Transfer Matrix in space and different types in time if (absorptionprofile == "TMM") and (self.source.fluence is not 0): """ This will implement a transfer matrix approach to local absorption instead as using the Lambert Beer´s law considered in the Gaussian source type. """ #Multiplying with 1e9, since the absorption()-function. In the source module only works if length is in units of nm! x0m = x0*1e9#converte the lentgh into nm if len(x0) is not (len(self.temp_data.n)-1): print('-----------------------------------------------------------') print('Number of considered layers does not match with given refractive indices.\n'\ 'in ´temperature.n(Air|Film layer1|Film layer2|...|Air)´ anly consider the film layers. \n'\ 'The refractive index of the substrate gets added automatically later when \n'\ '`simulation.addSubstrate(\'name\')` gets called.') print('-----------------------------------------------------------') if (timeprofile == "Gaussian"): sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m) print('-----------------------------------------------------------') print('Transfer matrix absorption profile and a Gaussian time profile is taken into account for the source.\n'\ 'Length of every layer has to be given in units of meter.') print('-----------------------------------------------------------') if (timeprofile == "custom") or (timeprofile == "Custom"): print('-----------------------------------------------------------') print('Transfer matrix absorption profile of and a custom time profile is taken into account for the source.\n'\ 'Length of every layer has to be given in units of meter.') print('-----------------------------------------------------------') if self.source.loadData is False: print('-----------------------------------------------------------') print('Import an array, containing the data of the custom pulse.'\ 'arr[0,:] = time; arr[1,:] = amplitude') print('-----------------------------------------------------------') [ttime,amplitude] = self.source.loadData lam = 1#Lamda does not matter here since the spacial absorption is calculated via TMM [sourceM,customtime,scaling] = self.source.custom(t,xflat,ttime,amplitude,lam) #The cfeateTMM(xgrid,timegrid,length,*args) has customtime as an optional argument sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m,customtime,scaling) if (timeprofile == "RepGaussian") or (timeprofile== "repGaussian"): print('-----------------------------------------------------------') print('Transfer matrix absorption profile and a repeated Gaussian time profile is taken into account for the source.'\ 'Length of every layer has to be given in units of meter.') print('-----------------------------------------------------------') self.source.multipulse = True xmg, tmg = np.meshgrid(xflat,t) if (self.source.frequency is not False): time_range = tmg[-1,-1]-self.source.t0 pulses = int(round(time_range * self.source.frequency)) #Add up Gaussian pulses with different t0, according to the frequency given #from t0 onwards, until the end of the time grid customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 + i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m,customtime) if(self.source.frequency is not False) and (self.source.num_of_pulses is not False): #Creating a certain number of pulses according to self.num_of_pulses time_range = tmg[-1,-1]-self.source.t0 pulses = self.source.num_of_pulses #If num_of_pulses is bigger too big to fit in the timerange [t0,t_end] throw warning if (pulses > int(round(time_range * self.source.frequency))): pulses = int(round(time_range * self.source.frequency)) print('Number of pulses is too big to fit in the timerange under consideration. \n'\ 'Adjust t_end or consider a smaller number of pulses.') customtime = np.zeros(np.shape(tmg)) for i in range(0,pulses): t00 = self.source.t0 +i/self.source.frequency customtime +=np.exp(-(tmg-t00)**2*np.log(2)/(self.source.FWHM**2)) sourceM = self.source.createTMM(self.temp_data.n,xflat,t,x0m,customtime) if(self.source.frequency is False) and (self.source.num_of_pulses is False): print('-----------------------------------------------------------') print('Assign the propertiy s.frequncy, to consider a certain pulse frequency.\n'\ 'If only a certain number of pulses should be considered, assign the value s.num_of_pulses = integer.') print('-----------------------------------------------------------') return(sourceM) # This is the main Explicit Euler loop where the solution to T(x,t) is calculated. def run(self): idealtimestep = self.stability() if not self.time_step: self.time_step = idealtimestep print('-----------------------------------------------------------') print(' No specific time constant has been indicated. \n '\ 'The stability region has been calculated and an appropriate timestep has been chosen.\n '\ 'Timestep = {idealtimestep:.2e} s'.format(idealtimestep=idealtimestep)) print('-----------------------------------------------------------') if (self.time_step-idealtimestep)/idealtimestep > 0.1: print('-----------------------------------------------------------') print('The manually chosen time step of {time_step:.2e} is eventually too big and could cause instabilities in the simulation.\n '\ 'We suggest a timestep of {idealtimestep:.2e} s'.format(time_step=self.time_step,idealtimestep=idealtimestep)) print('-----------------------------------------------------------') if(self.time_step-idealtimestep)/idealtimestep < -0.2: print('-----------------------------------------------------------') print('The maunually chosen time step of {time_step:.2e} is very small and will eventually cause a long simulation time.\n'\ 'We suggest a timestep of {idealtimestep:.2e} s'.format(time_step=self.time_step,idealtimestep=idealtimestep)) print('-----------------------------------------------------------') #loading simulation relevant properties from the structural tmeperature object [c_E,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large,interfaces,LayerMat,A1h] = self.temp_data.Msetup() t = np.arange(self.start_time,self.final_time,self.time_step) #only if the injection would make the time grid smaller, to not move into instable regime if self.source.FWHM: if (6*self.source.FWHM/200 < idealtimestep): #inject 200 extra points around pulse to fully capture the shape of the pulse tinj = np.linspace(self.source.t0 - 3*self.source.FWHM,self.source.t0 + 3*self.source.FWHM,200) smaller = np.where(t<self.source.t0 - 3*self.source.FWHM)[0] bigger = np.where(t>self.source.t0 + 3*self.source.FWHM)[0] #new time grid with higher resolution t = np.concatenate((t[smaller],tinj,t[bigger]),axis=0) tstep = np.ones(len(t)) tstep[:-1] = np.diff(t); tstep[-1] = np.diff(t)[-1] #If a more refined grid is choosen around t0. We inject a fine time grid around t0, to correctly capture the pulse shape if self.source.adjusted_grid is not False: if self.source.dt0 == False: print('-----------------------------------------------------------') print('The option for an adjusted grid is True, but no interval for a more refined grid has been given.'/ 'Indicate dt0 (around which values the time grid should have higher resolution) in the source object') print('-----------------------------------------------------------') if 2*self.source.dt0/self.source.extra_points < idealtimestep: print('-----------------------------------------------------------') print('A refined Grid around t0 has been applied') print('-----------------------------------------------------------') tinj = np.linspace(self.source.t0-self.source.dt0,self.source.t0+self.source.dt0,self.source.extra_points) smaller = np.where(t<self.source.t0 - self.source.dt0)[0] bigger = np.where(t>self.source.t0 + self.source.dt0)[0] #new time grid with higher resolution t = np.concatenate((t[smaller],tinj,t[bigger]),axis=0) tstep = np.ones(len(t)) tstep[:-1] = np.diff(t); tstep[-1] = np.diff(t)[-1] else: print('-----------------------------------------------------------') print('No refined time grid is applied. The timestep is alerady very small.' \ 'You can use the simulation class with the property self.time_step and '\ 'assign it to a smaller value as the current time step.') print('-----------------------------------------------------------') #Initialize the systems and load the matrices if self.temp_data_Lat: if self.temp_data.plt_points is not self.temp_data_Lat.plt_points: self.temp_data_Lat.plt_points = self.temp_data.plt_points print('-----------------------------------------------------------') print('The number of plotting points in the electron system \n'\ 'is not the same as in the lattice system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') if self.temp_data.collocpts is not self.temp_data_Lat.collocpts: self.temp_data_Lat.collocpts = self.temp_data.collocpts print(self.temp_data_Lat.collocpts) print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the lattice system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') [c_L,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large_L,interfaces,LayerMat,A1h] = self.temp_data_Lat.Msetup() if self.temp_data_Spin: print("Line 728 Spinsystem") if self.temp_data.plt_points is not self.temp_data_Spin.plt_points: self.temp_data_Spin.plt_points = self.temp_data.plt_points print('-----------------------------------------------------------') print('The number of plotting points in the electron system \n'\ 'is not the same as in the spin system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') if self.temp_data.collocpts is not self.temp_data_Spin.collocpts: self.temp_data_Spin.collocpts = self.temp_data.collocpts print('-----------------------------------------------------------') print('The number of collocation points in the electron system \n'\ 'is not the same as in the spin system.\n'\ 'They are set equal to avoid matrix dimension missmatch.') print('-----------------------------------------------------------') [c_S,A00,Abig,A1b,A2b,Cb,length,N,plp,xflat,x_plt_flat,initphi_large_S,interfaces,LayerMat,A1h] = self.temp_data_Spin.Msetup() if (self.source.fluence == 0): print('-----------------------------------------------------------') print('No source is applied.\n'\ 'source.fluence = 0') print('-----------------------------------------------------------') xmg, tmg = np.meshgrid(xflat,t) sourceM = np.zeros_like(xmg) else: sourceM = self.sourceprofile(self.source.spaceprofile,self.source.timeprofile,xflat,self.temp_data.length,t,N) #Making the boundary conditions a function of t, in case they are given as scalars if isinstance(self.left_BC,(int,float)): dummy = self.left_BC self.left_BC = lambda t: dummy + 0*t if isinstance(self.right_BC,(int,float)): dummy1 = self.right_BC self.right_BC = lambda t: dummy1 + 0*t #Makint the boundary conditions a matrix for the electron case BC_E = np.zeros((len(c_E),len(t))) BC_E[0] = self.left_BC(t) BC_E[-1] = self.right_BC(t) #Checking the Lattice system boundary conditions if self.temp_data_Lat: if isinstance(self.left_BC_L,(int,float)): dummy2 = self.left_BC_L self.left_BC_L = lambda t: dummy2 + 0*t if isinstance(self.right_BC_L,(int,float)): dummy3 = self.right_BC_L self.right_BC_L = lambda t: dummy3 + 0*t #Makint the boundary conditions a matrix for the lattice case BC_L = np.zeros((len(c_L),len(t))) BC_L[0] = self.left_BC_L(t) BC_L[-1] = self.right_BC_L(t) #Checking the Spine system boundary conditions #It impies that we at least consider 2 temperatures -> under this "if-tree" if self.temp_data_Spin: if isinstance(self.left_BC_S,(int,float)): dummy4 = self.left_BC_S self.left_BC_S = lambda t: dummy4 + 0*t if isinstance(self.right_BC_S,(int,float)): dummy5 = self.right_BC_S self.right_BC_S = lambda t: dummy5 + 0*t #Makint the boundary conditions a matrix for the Spin case BC_S = np.zeros((len(c_S),len(t))) BC_S[0] = self.left_BC_S(t) BC_S[-1] = self.right_BC_S(t) #Check if the Lattice/Spin and Spin/Electron coupling constants have the right size if np.size(self.coupling_LS)<np.size(length)-1: self.coupling_LS = self.coupling_LS*np.ones(np.size(self.temp_data.length)-1) print('-----------------------------------------------------------') print('Not every layer has a unique Lattice-Spin coupling constant \'G_LS \'.\n')\ ('=> G_LS will be set to the value of the first layer = {coupling_LS[0]:.2e}\n for all other layers.'.format(coupling_LS=self.coupling_LS)) print('-----------------------------------------------------------') if np.size(self.coupling_SE)<np.size(length)-1: self.coupling_SE = self.coupling_SE*np.ones(np.size(self.temp_data.length)-1) print('-----------------------------------------------------------') print('Not every layer has a unique Spin-Electron coupling constant \'G_SE \'.\n')\ ('=> G_SE will be set to the value of the first layer = {coupling_SE[0]:.2e}\n for all other layers.'.format(coupling_SE=self.coupling_SE)) print('-----------------------------------------------------------') #If only the two temperature model is considered I only need to check one coupling constant if np.size(self.coupling)<np.size(length)-1: self.coupling = self.coupling*np.ones(np.size(self.temp_data.length)-1) print('-----------------------------------------------------------') print('Not every layer has a unique coupling constant \'G \'.\n')\ ('=> G will be set to the value of the first layer = {coupling[0]:.2e}\n for all other layers.'.format(coupling=self.coupling)) print('-----------------------------------------------------------') # The 3 Temperature Case is being considered if self.temp_data_Spin: #Setup arrays for electron temperature phi_E = np.zeros((len(t),len(x_plt_flat))); phi_E[0] = initphi_large Flow_1E = np.zeros(len(c_E)) Flow_2E = np.zeros(len(c_E)) dphi_E = np.zeros(len(c_E)) intphi_E = np.zeros(len(c_E)) #Setup arrays for lattice temperature phi_L = np.zeros((len(t),len(x_plt_flat))); phi_L[0] = initphi_large_L #300*np.ones(len(phi_L[0])) Flow_1L = np.zeros(len(c_L)) Flow_2L = np.zeros(len(c_L)) dphi_L = np.zeros(len(c_L)) intphi_L = np.zeros(len(c_L)) #Setup arrays for the spin temperature phi_S = np.zeros((len(t),len(x_plt_flat))); phi_S[0] = initphi_large_S #300*np.ones(len(phi_L[0])) Flow_1S = np.zeros(len(c_S)) Flow_2S = np.zeros(len(c_S)) dphi_S = np.zeros(len(c_S)) intphi_S = np.zeros(len(c_S)) #General setup for E.E. loop condi = np.array([np.arange(1,len(length)-1)])*(N-1) #Index to apply interface condition cnfill = np.array([np.arange(1,len(length)-1)])*(plp-1)#correct interface condition with real value for phi A00[0] = 1; A00[-1] = 1 #Avoide devide through 0 in dphi_L! Clar for BC before intphi calc. Abig_E =
np.copy(Abig)
numpy.copy
""" Module for performing Promiscuity Index calculations for the Hetaira web tool. """ import numpy as np from .util import process_data from string import ascii_lowercase def calculate_results(file): """ Working function to be called by main view function. """ data = process_data(file) promiscuity = Promiscuity(data[0], data[1], data[2]) return promiscuity.hetaira_results() class Promiscuity: """ A class to compute and return Promiscuity Indicies. Included are methods for calculating both the unweighted Promiscuity Index (I), and J, the Promiscuity Index weighted by dissimiliarity. Also available is the overall set dissimiliarity. """ def __init__(self, items, data, descriptors=None, min = 1e-6): self.items = items # min is the presumed lower bound of the functional unit self.data = np.asarray(data) + min self.descriptors = descriptors if self.descriptors is not None: self.d_length = len(descriptors) self.dset = self.dset() self.avg_dists = self.avg_dists() else: self.dset = 'not determined' def jaccard(self, u, v): """ Computes the Jaccard distance between two boolean 1-D arrays. """ dist = np.dot(u, v) / np.double(np.bitwise_or(u, v).sum()) return 1 - dist def avg_dists(self): """ Computes the average Jaccard distance between each 1-D boolean array and all the others in the set. """ d = self.descriptors # make an empty array to fill b/c it is a touch faster averages = np.empty([1, self.d_length]) for i, u in enumerate(d): s = 0 for j, v in enumerate(d): if i != j: s += self.jaccard(u, v) averages[0, i] = (s / (self.d_length-1)) return averages[0] def ivalue(self, idx): """ Calculates the unweighted Promicuity Index. The data should be strictly > 0 and more positive is 'better'. """ a = self.data[:,idx] / self.data[:,idx].sum() results = -(np.dot(a,
np.log(a)
numpy.log
"""Tests for the mask.py script.""" import pytest import sys import os import numpy as np import matplotlib.pyplot as plt import unittest.mock as mock from deltametrics import cube from deltametrics import mask from deltametrics.plan import OpeningAnglePlanform from deltametrics.sample_data import _get_rcm8_path, _get_golf_path rcm8_path = _get_rcm8_path() with pytest.warns(UserWarning): rcm8cube = cube.DataCube(rcm8_path) golf_path = _get_golf_path() golfcube = cube.DataCube(golf_path) _OAP_0 = OpeningAnglePlanform.from_elevation_data( golfcube['eta'][-1, :, :], elevation_threshold=0) _OAP_05 = OpeningAnglePlanform.from_elevation_data( golfcube['eta'][-1, :, :], elevation_threshold=0.5) @mock.patch.multiple(mask.BaseMask, __abstractmethods__=set()) class TestBaseMask: """ To test the BaseMask, we patch the base job with a filled abstract method `.run()`. .. note:: This patch is handled at the class level above!! """ fake_input = np.ones((100, 200)) @mock.patch('deltametrics.mask.BaseMask._set_shape_mask') def test_name_setter(self, patched): basemask = mask.BaseMask('somename', self.fake_input) assert basemask.mask_type == 'somename' patched.assert_called() # this would change the shape assert basemask.shape is None # so shape is not set assert basemask._mask is None # so mask is not set def test_simple_example(self): basemask = mask.BaseMask('field', self.fake_input) # make a bunch of assertions assert np.all(basemask._mask == False) assert np.all(basemask.integer_mask == 0) assert basemask._mask is basemask.mask assert basemask.shape == self.fake_input.shape def test_trim_mask_length(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) _l = 5 basemask.trim_mask(length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 0) assert np.all(basemask.integer_mask[_l:, :] == 1) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_trim_mask_cube(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) basemask.trim_mask(golfcube) # assert np.all(basemask.integer_mask[:5, :] == 0) # assert np.all(basemask.integer_mask[5:, :] == 1) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_trim_mask_noargs(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) basemask.trim_mask() # assert np.all(basemask.integer_mask[:5, :] == 0) # assert np.all(basemask.integer_mask[5:, :] == 1) def test_trim_mask_axis1_withlength(self): basemask = mask.BaseMask('field', self.fake_input) # mock as though the mask were made basemask._mask = self.fake_input.astype(bool) assert np.all(basemask.integer_mask == 1) _l = 5 basemask.trim_mask(axis=0, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:, :_l] == 0) assert np.all(basemask.integer_mask[:, _l:] == 1) def test_trim_mask_diff_True(self): basemask = mask.BaseMask('field', self.fake_input) # everything is False (0) assert np.all(basemask.integer_mask == 0) _l = 5 basemask.trim_mask(value=True, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) assert np.all(basemask.integer_mask[_l:, :] == 0) def test_trim_mask_diff_ints(self): basemask = mask.BaseMask('field', self.fake_input) # everything is False (0) assert np.all(basemask.integer_mask == 0) _l = 5 basemask.trim_mask(value=1, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) basemask.trim_mask(value=0, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 0) basemask.trim_mask(value=5, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) basemask.trim_mask(value=5.534, length=_l) assert basemask._mask.dtype == bool assert np.all(basemask.integer_mask[:_l, :] == 1) def test_trim_mask_toomanyargs(self): basemask = mask.BaseMask('field', self.fake_input) with pytest.raises(ValueError): basemask.trim_mask('arg1', 'arg2', value=1, length=1) def test_show(self): """ Here, we just test whether it works, and whether it takes a specific axis. """ basemask = mask.BaseMask('field', self.fake_input) # test show with nothing basemask.show() plt.close() # test show with colorbar basemask.show(colorbar=True) plt.close() # test show with title basemask.show(title='a title') plt.close() # test show with axes, bad values fig, ax = plt.subplots() basemask.show(ax=ax) plt.close() def test_show_error_nomask(self): """ Here, we just test whether it works, and whether it takes a specific axis. """ basemask = mask.BaseMask('field', self.fake_input) # mock as though something went wrong basemask._mask = None with pytest.raises(RuntimeError): basemask.show() def test_no_data(self): """Test when no data input raises error.""" with pytest.raises(ValueError, match=r'Expected 1 input, got 0.'): _ = mask.BaseMask('field') def test_invalid_data(self): """Test invalid data input.""" with pytest.raises(TypeError, match=r'Unexpected type was input: .*'): _ = mask.BaseMask('field', 'a string!!') def test_invalid_second_data(self): """Test invalid data input.""" with pytest.raises(TypeError, match=r'First input to mask .*'): _ = mask.BaseMask('field', np.zeros((100, 200)), 'a string!!') def test_return_empty(self): """Test when no data input, but allow empty, returns empty.""" empty_basemask = mask.BaseMask('field', allow_empty=True) assert empty_basemask.mask_type == 'field' assert empty_basemask.shape is None assert empty_basemask._mask is None assert empty_basemask._mask is empty_basemask.mask def test_is_mask_deprecationwarning(self): """Test that TypeError is raised if is_mask is invalid.""" with pytest.warns(DeprecationWarning): _ = mask.BaseMask('field', self.fake_input, is_mask='invalid') with pytest.warns(DeprecationWarning): _ = mask.BaseMask('field', self.fake_input, is_mask=True) def test_3dinput_deprecationerror(self): """Test that TypeError is raised if is_mask is invalid.""" with pytest.raises(ValueError, match=r'Creating a `Mask` .*'): _ = mask.BaseMask('field', np.random.uniform(size=(10, 100, 200))) class TestShorelineMask: """Tests associated with the mask.ShorelineMask class.""" # define an input mask for the mask instantiation pathway _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) # make assertions assert shoremask._input_flag == 'array' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool assert isinstance(shoremask._mask, np.ndarray) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask(rcm8cube, t=-1) # make assertions assert shoremask._input_flag == 'cube' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask(golfcube, t=-1) # make assertions assert shoremask._input_flag == 'cube' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_default_vals_mask(self): """Test that instantiation works for an array.""" # define the mask shoremask = mask.ShorelineMask(self._ElevationMask) # make assertions assert shoremask._input_flag == 'mask' assert shoremask.mask_type == 'shoreline' assert shoremask.angle_threshold > 0 assert shoremask._mask.dtype == bool def test_angle_threshold(self): """Test that instantiation works for an array.""" # define the mask shoremask_default = mask.ShorelineMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0) shoremask = mask.ShorelineMask( rcm8cube['eta'][-1, :, :], elevation_threshold=0, angle_threshold=45) # make assertions assert shoremask.angle_threshold == 45 assert not np.all(shoremask_default == shoremask) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask shoremask = mask.ShorelineMask( rcm8cube['eta'][0, :, :], elevation_threshold=0) # assert - expect all True values should be in one row _whr_edge = np.where(shoremask._mask[:, 0]) assert _whr_edge[0].size > 0 # if fails, no shoreline found! _row = int(_whr_edge[0][0]) assert np.all(shoremask._mask[_row, :] == 1) assert np.all(shoremask._mask[_row+1:, :] == 0) def test_static_from_OAP(self): shoremask = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfOAP = mask.ShorelineMask.from_OAP(_OAP_0) shoremask_05 = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) mfOAP_05 = mask.ShorelineMask.from_OAP(_OAP_05) assert np.all(shoremask._mask == mfOAP._mask) assert np.all(shoremask_05._mask == mfOAP_05._mask) def test_static_from_mask_ElevationMask(self): shoremask = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0) mfem = mask.ShorelineMask.from_mask(self._ElevationMask) shoremask_05 = mask.ShorelineMask( golfcube['eta'][-1, :, :], elevation_threshold=0.5) assert np.all(shoremask._mask == mfem._mask) assert np.sum(shoremask_05.integer_mask) < np.sum(shoremask.integer_mask) def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask _arr = np.ones((100, 200)) _arr[50:55, :] = 0 shoremask = mask.ShorelineMask.from_array(_arr) # make assertions assert shoremask.mask_type == 'shoreline' assert shoremask._input_flag is None assert np.all(shoremask._mask == _arr) _arr2 = np.random.uniform(size=(100, 200)) _arr2_bool = _arr2.astype(bool) assert _arr2.dtype == float shoremask2 = mask.ShorelineMask.from_array(_arr2) # make assertions assert shoremask2.mask_type == 'shoreline' assert shoremask2._input_flag is None assert np.all(shoremask2._mask == _arr2_bool) class TestElevationMask: """Tests associated with the mask.LandMask class.""" def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) # make assertions assert elevationmask._input_flag == 'array' assert elevationmask.mask_type == 'elevation' assert elevationmask.elevation_threshold == 0 assert elevationmask.threshold == 0 assert elevationmask.elevation_threshold is elevationmask.threshold assert elevationmask._mask.dtype == bool def test_all_below_threshold(self): elevationmask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=10) # make assertions assert elevationmask._input_flag == 'array' assert elevationmask.mask_type == 'elevation' assert elevationmask.elevation_threshold == 10 assert elevationmask.threshold == 10 assert elevationmask.elevation_threshold is elevationmask.threshold assert elevationmask._mask.dtype == bool assert np.all(elevationmask.mask == 0) def test_all_above_threshold(self): elevationmask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=-10) # make assertions assert elevationmask._input_flag == 'array' assert elevationmask.mask_type == 'elevation' assert elevationmask.elevation_threshold == -10 assert elevationmask.threshold == -10 assert elevationmask.elevation_threshold is elevationmask.threshold assert elevationmask._mask.dtype == bool assert np.all(elevationmask.mask == 1) def test_default_vals_array_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.ElevationMask(rcm8cube['eta'][-1, :, :]) def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask( rcm8cube, t=-1, elevation_threshold=0) # make assertions assert elevationmask._input_flag == 'cube' assert elevationmask.mask_type == 'elevation' assert elevationmask._mask.dtype == bool def test_default_vals_cubewithmeta(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask( golfcube, t=-1, elevation_threshold=0) # make assertions assert elevationmask._input_flag == 'cube' assert elevationmask.mask_type == 'elevation' assert elevationmask._mask.dtype == bool # compare with another instantiated from array elevationmask_comp = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) assert np.all(elevationmask_comp.mask == elevationmask.mask) # try with a different elevation_threshold (higher) elevationmask_higher = mask.ElevationMask( golfcube, t=-1, elevation_threshold=0.5) assert (np.sum(elevationmask_higher.integer_mask) < np.sum(elevationmask.integer_mask)) def test_default_vals_cube_needs_elevation_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.ElevationMask( rcm8cube, t=-1) with pytest.raises(TypeError, match=r'.* missing'): _ = mask.ElevationMask( golfcube, t=-1) def test_default_vals_mask_notimplemented(self): """Test that instantiation works for an array.""" # define the mask _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) with pytest.raises(NotImplementedError, match=r'Cannot instantiate .*'): _ = mask.ElevationMask( _ElevationMask, elevation_threshold=0) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask elevationmask = mask.ElevationMask( rcm8cube['eta'][0, :, :], elevation_threshold=0) # assert - expect all True values should be up to a point _whr_land = np.where(elevationmask._mask[:, 0]) assert _whr_land[0].size > 0 # if fails, no land found! _row = int(_whr_land[0][-1]) + 1 # last index third = elevationmask.shape[1]//3 # limit to left of inlet assert np.all(elevationmask._mask[:_row, :third] == 1) assert np.all(elevationmask._mask[_row:, :] == 0) @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask elevationmask = mask.ElevationMask.from_array(np.ones((100, 200))) # make assertions assert elevationmask._input_flag == 'elevation' class TestFlowMask: """Tests associated with the mask.LandMask class.""" def test_default_vals_array(self): """Test that instantiation works for an array.""" # define the mask flowmask = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=0.3) # make assertions assert flowmask._input_flag == 'array' assert flowmask.mask_type == 'flow' assert flowmask.flow_threshold == 0.3 assert flowmask.threshold == 0.3 assert flowmask.flow_threshold is flowmask.threshold assert flowmask._mask.dtype == bool # note that, the mask will take any array though... # define the mask flowmask_any = mask.FlowMask( golfcube['eta'][-1, :, :], flow_threshold=0) assert flowmask_any._input_flag == 'array' assert flowmask_any.mask_type == 'flow' assert flowmask_any.flow_threshold == 0 assert flowmask_any.threshold == 0 assert flowmask_any.flow_threshold is flowmask_any.threshold def test_all_below_threshold(self): flowmask = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=20) # make assertions assert flowmask._input_flag == 'array' assert flowmask.mask_type == 'flow' assert flowmask.flow_threshold == 20 assert flowmask.threshold == 20 assert flowmask.flow_threshold is flowmask.threshold assert flowmask._mask.dtype == bool assert np.all(flowmask.mask == 0) def test_all_above_threshold(self): flowmask = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=-5) # make assertions assert flowmask._input_flag == 'array' assert flowmask.mask_type == 'flow' assert flowmask.flow_threshold == -5 assert flowmask.threshold == -5 assert flowmask.flow_threshold is flowmask.threshold assert flowmask._mask.dtype == bool assert np.all(flowmask.mask == 1) def test_default_vals_array_needs_flow_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.FlowMask(rcm8cube['velocity'][-1, :, :]) def test_default_vals_cube(self): """Test that instantiation works for an array.""" # define the mask flowmask = mask.FlowMask( rcm8cube, t=-1, flow_threshold=0.3) # make assertions assert flowmask._input_flag == 'cube' assert flowmask.mask_type == 'flow' assert flowmask._mask.dtype == bool def test_vals_cube_different_fields(self): """Test that instantiation works for an array.""" # define the mask velmask = mask.FlowMask( rcm8cube, t=-1, cube_key='velocity', flow_threshold=0.3) # make assertions assert velmask._input_flag == 'cube' assert velmask.mask_type == 'flow' assert velmask._mask.dtype == bool dismask = mask.FlowMask( rcm8cube, t=-1, cube_key='discharge', flow_threshold=0.3) # make assertions assert dismask._input_flag == 'cube' assert dismask.mask_type == 'flow' assert dismask._mask.dtype == bool assert not np.all(velmask.mask == dismask.mask) def test_default_vals_cubewithmeta(self): """Test that instantiation works For a cube with metadata. """ # define the mask flowmask = mask.FlowMask( golfcube, t=-1, flow_threshold=0.3) # make assertions assert flowmask._input_flag == 'cube' assert flowmask.mask_type == 'flow' assert flowmask._mask.dtype == bool # compare with another instantiated from array flowmask_comp = mask.FlowMask( golfcube['velocity'][-1, :, :], flow_threshold=0.3) assert np.all(flowmask_comp.mask == flowmask.mask) def test_flowthresh_vals_cubewithmeta(self): # make default flowmask = mask.FlowMask( golfcube, t=-1, flow_threshold=0.3) # try with a different flow_threshold (higher) flowmask_higher = mask.FlowMask( golfcube, t=-1, flow_threshold=0.5) assert (np.sum(flowmask_higher.integer_mask) < np.sum(flowmask.integer_mask)) def test_default_vals_cube_needs_flow_threshold(self): """Test that instantiation works for an array.""" # define the mask with pytest.raises(TypeError, match=r'.* missing'): _ = mask.FlowMask( rcm8cube, t=-1) with pytest.raises(TypeError, match=r'.* missing'): _ = mask.FlowMask( golfcube, t=-1) def test_default_vals_mask_notimplemented(self): """Test that instantiation works for an array.""" # define the mask _ElevationMask = mask.ElevationMask( golfcube['eta'][-1, :, :], elevation_threshold=0) with pytest.raises(NotImplementedError, match=r'Cannot instantiate .*'): _ = mask.FlowMask( _ElevationMask, flow_threshold=0.3) def test_submergedLand(self): """Check what happens when there is no land above water.""" # define the mask flowmask = mask.FlowMask( rcm8cube['velocity'][0, :, :], flow_threshold=0.3) # assert - expect doesnt care about land assert flowmask.mask_type == 'flow' @pytest.mark.xfail(raises=NotImplementedError, strict=True, reason='Have not implemented pathway.') def test_static_from_array(self): """Test that instantiation works for an array.""" # define the mask flowmask = mask.FlowMask.from_array(
np.ones((100, 200))
numpy.ones
import csv import os import matplotlib.pyplot as plt import numpy as np from common.utils import load_summary, load_bo_json_log, read_json_file, compute_std_of_mean # ROOT = "/tank/zxxia/PCC-RL/results_0928/genet_no_reward_scale/genet_bbr_old" SAVE_ROOTS = ["/datamirror/zxxia/PCC-RL/results_1006/gap_vs_improvement/test", "/datamirror/zxxia/PCC-RL/results_1006/gap_vs_improvement_pretrained/test", "/datamirror/zxxia/PCC-RL/results_1006/gap_vs_improvement_1/test"] CONFIG_ROOTS = ["../../config/gap_vs_improvement", "../../config/gap_vs_improvement", "../../config/gap_vs_improvement"] def compute_improve(fig_idx, config_id, before, after): if fig_idx == 1 and config_id > 100: return after - before + 40 return after - before def load_results(save_dirs, cc='aurora'): rewards = [] for save_dir in save_dirs: if not os.path.exists(os.path.join(save_dir, '{}_summary.csv'.format(cc))): continue summary = load_summary(os.path.join(save_dir, '{}_summary.csv'.format(cc))) rewards.append(summary['pkt_level_reward']) return np.mean(rewards), np.std(rewards),
np.array(rewards)
numpy.array
import numpy as np from sympy import * from numpy import transpose from numpy import linalg as LA from fractions import Fraction import time import matplotlib.pyplot as plt from matplotlib import rcParams import random import copy import csv def number(str_input, str_error, str_error2, type_num): # str_input - строка выводимая пользователю при вводе # str_error - ошибка: число не является числом ('строка') # str_error2 - число не соответсвует указаным требованиям # type_num - все допустимые типы чисел """ Принимает значение вводимые с клавиатуры Производит проверку Выводит название ошибок\число """ print(str_input) num = input() if 'i' in num: num = itojnum(num) num.replace(" ", "") try: check = complex(num) # Проверка: является ли числом (комплексное можем взять от любого числа) except ValueError: print(str_error) return number(str_input, str_error, str_error2, type_num) if (complex in type_num) and check.imag != 0: # Проверки для комплексных чисел return jtoinum(num) elif (complex in type_num) and check.imag == 0: if (int in type_num): if check.real == round(check.real): return str(int(check.real)) if (float in type_num): if check.real != round(check.real): return str(float(check.real)) else: print(str_error2) return number(str_input, str_error, str_error2, type_num) elif (float in type_num): # Проверки для вещественных чисел if check.imag != 0: print(str_error2) return number(str_input, str_error, str_error2, type_num) if (int in type_num): if check.real == round(check.real): return str(int(check.real)) else: return str(float(check.real)) else: # Проверки для целых чисел if check.imag != 0: print(str_error2) return number(str_input, str_error, str_error2, type_num) elif check.real != round(check.real): print(str_error2) return number(str_input, str_error, str_error2, type_num) return str(int(check.real)) # Функция генерации рандомных чисел для CSV-файла и python. def random_numbers(row,minim,maxi): complex_numb=[] for i in range(row**3): floatnump=random.randint(1,6) numb_of_list=random.randint(1,2) if numb_of_list==1: a=random.randint(minim,maxi) else: a=round(random.uniform(minim,maxi),floatnump) numb_of_list=random.randint(1,2) if numb_of_list==1: b=random.randint(minim,maxi) else: b=round(random.uniform(minim,maxi),floatnump) complex_numb.append(complex(a,b)) result=[0]*row for i in range(row): floatnump=random.randint(1,6) numb_of_list=random.randint(1,3) if numb_of_list==1: result[i]=str(random.randint(minim,maxi)) if numb_of_list==2: result[i]=str(round(random.uniform(minim,maxi),floatnump)) if numb_of_list==3: result[i]=str(random.choice(complex_numb)) return result # Функция ввода матрицы через клавиатуру def default_matrix(): # N - кол-во строк, M - кол-во столбцов """ На вход принимает значение матрицы ЗАпоминает индекс Возвращает значения """ try: rowcol = list(map(int,input('Введите количество строк и столбцов: ').split())) N = rowcol[0] M = rowcol[1] if len(rowcol) > 2: print('Введено слишком много значений. Попробуйте ещё раз.') return default_matrix() except ValueError: print('Введено не целое значение строки и/или столбца. Попробуйте ещё раз.') return default_matrix() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return default_matrix() if N == 0 or M == 0: print('Введено нулевое значение! Количество строк и столбцов должно быть минимум 1!!') return default_matrix() mtx = [[0] * M for i in range(N)] for n in range(N): for m in range(M): mtx[n][m] = number(f'Введите значение для элемента матрицы a[{n + 1}][{m + 1}]: ', 'Введено неверное выражение. Попробуйте ещё раз', 'Введено число в неверном формате. Попробуйте ещё раз.', [complex, float, int]) for n in range(len(mtx)): #mtx[n].append('|') mtx[n].append(number(f'Введите значение для свободного члена {n + 1} строки: ', 'Введено неверное выражение. Попробуйте ещё раз', 'Введено число в неверном формате. Попробуйте ещё раз.', [complex, float, int])) return mtx # Функция ввода матрицы через радомную генерацию python. def python_generator(): """ Значение кол-во строк и столбцов Создает матрицу Выводит матрциу """ try: rowcol = list(map(int,input('Введите количество строк и столбцов (N M): ').split())) N = rowcol[0] M = rowcol[1] if len(rowcol) > 2: print('Введено слишком много значений. Попробуйте ещё раз.') return python_generator() except ValueError: print('Введено не целое значение строки и/или столбца. Попробуйте ещё раз.') return python_generator() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return python_generator() if N == 0 or M == 0: print('Введено нулевое значение! Количество строк и столбцов должно быть минимум 1!!') return python_generator() try: minmax = list(map(int,input('Введите минимальное и максимальное значене для элемента матрицы (также для мнимой части комплексного числа) (min max): ').split())) mini = minmax[0] maxi = minmax[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return python_generator() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return python_generator() if mini > maxi: print(f'Минимальное число не может быть больше максимального ({mini}!>{maxi})!!') return python_generator() result=[] for i in range(M): result.append(random_numbers(N,mini,maxi)) for row in range(len(result)): #result[row].append('|') result[row].append(random_numbers(1,mini,maxi)) result[row][-1]=str(result[row][-1][0]) result=jtoi(result) result=del_bracket(result) return result # Функция ввода матрицы через CSV-файл. def csv_generator(): """ На вход принимается кол-во столбцов и строк Считывается файл csv Выводит значения """ try: rowcol = list(map(int,input('Введите количество строк и столбцов (N M): ').split())) N = rowcol[0] M = rowcol[1] if len(rowcol) > 2: print('Введено слишком много значений. Попробуйте ещё раз.') return csv_generator() except ValueError: print('Введено не целое значение строки и/или столбца. Попробуйте ещё раз.') return csv_generator() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return csv_generator() if N == 0 or M == 0: print('Введено нулевое значение! Количество строк и столбцов должно быть минимум 1!!') return csv_generator() try: minmax = list(map(int,input('Введите минимальное и максимальное значене для элемента матрицы (также для мнимой части комплексного числа) (min max): ').split())) mini = minmax[0] maxi = minmax[1] except ValueError: print('Ошибка ввода. Попробуйте ещё раз.') return csv_generator() except IndexError: print('Введено слишком мало чисел. Попробуйте ещё раз.') return csv_generator() if mini > maxi: print(f'Минимальное число не может быть больше максимального ({mini}!>{maxi})!!') return csv_generator() result=[] for i in range(M): result.append(random_numbers(N,mini,maxi)) for row in range(len(result)): #result[row].append('|') result[row].append(random_numbers(1,mini,maxi)) result[row][-1]=str(result[row][-1][0]) result=jtoi(result) result=del_bracket(result) with open('Answer_file.csv','w',newline='') as csvfile: writer=csv.writer(csvfile,delimiter=';') for row in result: writer.writerow(row) Matrix_in=[] with open('Answer_file.csv',newline='') as csvfile: reader = csv.reader(csvfile,delimiter=';') Matrix_in=[] for row in reader: Matrix_in.append(list(row)) return Matrix_in # Функция преобразования "i" в "j" для списка def itoj(mtx): ans = [] for i in range(len(mtx)): temp = [] y = mtx[i] for j in y: temp.append(j.replace('i','j')) ans.append(temp) return ans # Функция преобразования "j)" в "i" для списка. def jtoi(mtx): ans = [] for i in range(len(mtx)): temp = [] y = mtx[i] for j in y: temp.append(j.replace('j)','i')) ans.append(temp) return ans # Функция преобразования удаления левой скобки для списка. def del_bracket(mtx): ans = [] for i in range(len(mtx)): temp = [] y = mtx[i] for j in y: temp.append(j.replace('(','')) ans.append(temp) return ans # Функция преобразования "i" в "j" для строки. def itojnum(st): ans = '' for i in st: ans += i.replace('i','j') return ans # Функция преобразования "j" в "i" для строки. def jtoinum(st): ans = '' for i in st: ans += i.replace('j','i') return ans # Функция итерации матрицы всеми способами. def iteration(): print("Как вы хотите ввести матрицу:\n 1 - С кливаитуры\n 2 - Рандомная генерация в python\n 3 - CSV Файл") try: choice = int(input('Вы ввели: ')) choices_dict = {1: default_matrix, 2: python_generator , 3: csv_generator} mtx = choices_dict[choice]() except KeyError: print('Введено неверное значение ввода матрицы. Попробуйте ещё раз.') return iteration() except ValueError: print('Введено неверное значение ввода матрицы. Попробуйте ещё раз.') return iteration() return mtx # Преобразование строковых значений в комплексные def str_to_complex(mtx1): mtx = copy.deepcopy(mtx1) for row in mtx: for i in range(len(row)): row[i]=complex(itojnum(row[i])) return(mtx) # Функция преобразует комплексные числа в другие типы чисел def complex_to_num(st): if st.imag==0: if round(st.real)==st.real: return int(st.real) else: return float(st.real) else: return complex(st.real, st.imag) # Создание из строковых чисел правильные дроби def numbers_to_fractions(mtx): for row in range(len(mtx)): for col in range(len(mtx[row])): if 'i' in mtx[row][col]: return 'Функция не работает с комплексными числами' mtx[row][col]=Fraction(mtx[row][col]) return mtx # Нахождение определителя матрицы def det_my_matrix(mtx): Lmtx=len(mtx) if Lmtx==1: return mtx[0][0] if Lmtx==2: return mtx[0][0]*mtx[1][1]-(mtx[0][1]*mtx[1][0]) result=0 for i in range(Lmtx): factor=1 if i % 2: factor=-1 mtx2=[] for row in range(Lmtx): mtx3=[] for col in range(Lmtx): if row!=0 and col!=i: mtx3.append(mtx[row][col]) if mtx3: mtx2.append(mtx3) result+=factor*mtx[0][i]*det_my_matrix(mtx2) return(result) # Вычисление обратной матрицы def inverse_matrix(mtx): Lmtx = len(mtx) mult = det_my_matrix(mtx) if mult == 0: return 'Матрица вырожденная' ans = [[0] * Lmtx for i in range(Lmtx)] for i in range(Lmtx): for j in range(Lmtx): factor=1 if (i+j) % 2: factor=-1 mtx2 = [] for i1 in range(Lmtx): if i1 != i: mtx3 = [] for j1 in range(Lmtx): if j1 != j: mtx3.append(mtx[i1][j1]) mtx2.append(mtx3) ans[j][i] = factor * det_my_matrix(mtx2) / mult return ans def diag(mtx1): mtx = copy.deepcopy(mtx1) for row in range(len(mtx)): for col in range(len(mtx[row])): if row==col: mtx[row]=list(np.array(mtx[row])/mtx[row][col]) return mtx # Вычисление матрицы коэффициентов def coeff_mtx(mtx): mtx1 = [] for i in range(len(mtx)): mtx1.append(mtx[i][:-1]) return mtx1 # Вычисление вектора своюодных членов def coeff_vect(mtx): mtx1 = [] for i in range(len(mtx)): mtx1.append(mtx[i][-1]) return mtx1 # Вычисление матодом простых итераций Якоби def jacobi(arr,x,acc): arr1 = coeff_mtx(arr) vect = coeff_vect(arr) D = np.diag(arr1) R = arr1 - np.diagflat(D) x1 = [i for i in x] x = (vect - np.dot(R,x)) / D fin = abs(x1 - x) itr = 0 while max(fin)>=acc: if itr >= 100: return 'Матрица расходится' itr += 1 x1 = [i for i in x] x = (vect - np.dot(R,x)) / D fin = abs(x1 - x) return x # Метод простых итераций Якоби def jacobian_method(mtx): mtx1 = str_to_complex(mtx) coeff = coeff_mtx(mtx1) vect = coeff_vect(mtx1) n = len(mtx) print('Прямая матрица коэффициентов:') for i in range(n): print(coeff[i]) rev = inverse_matrix(coeff) print('Обратная матрица коэффициентов:') for i in range(n): print(rev[i]) print('Решение СЛАУ методом простых итераций Якоби:') mtx2 = np.array(mtx1) x = np.array([0 for i in range(n)]) acc = 0.001 sol = jacobi(mtx2, x, acc) print(sol) print('Число обусловленности Матрицы Коэффициентов A: ') conditional_jac =
LA.cond(coeff)
numpy.linalg.cond
import os import copy import numpy as np from itertools import groupby from .utils_def import totim_to_datetime from . import import_optional_dependency class ZoneBudget: """ ZoneBudget class Parameters ---------- cbc_file : str or CellBudgetFile object The file name or CellBudgetFile object for which budgets will be computed. z : ndarray The array containing to zones to be used. kstpkper : tuple of ints A tuple containing the time step and stress period (kstp, kper). The kstp and kper values are zero based. totim : float The simulation time. aliases : dict A dictionary with key, value pairs of zones and aliases. Replaces the corresponding record and field names with the aliases provided. When using this option in conjunction with a list of zones, the zone(s) passed may either be all strings (aliases), all integers, or mixed. Returns ------- None Examples -------- >>> from flopy.utils.zonbud import ZoneBudget >>> zon = ZoneBudget.read_zone_file('zone_input_file') >>> zb = ZoneBudget('zonebudtest.cbc', zon, kstpkper=(0, 0)) >>> zb.to_csv('zonebudtest.csv') >>> zb_mgd = zb * 7.48052 / 1000000 """ def __init__( self, cbc_file, z, kstpkper=None, totim=None, aliases=None, verbose=False, **kwargs, ): from .binaryfile import CellBudgetFile if isinstance(cbc_file, CellBudgetFile): self.cbc = cbc_file elif isinstance(cbc_file, str) and os.path.isfile(cbc_file): self.cbc = CellBudgetFile(cbc_file) else: raise Exception(f"Cannot load cell budget file: {cbc_file}.") if isinstance(z, np.ndarray): assert np.issubdtype( z.dtype, np.integer ), "Zones dtype must be integer" else: e = ( "Please pass zones as a numpy ndarray of (positive)" " integers. {}".format(z.dtype) ) raise Exception(e) # Check for negative zone values if np.any(z < 0): raise Exception( "Negative zone value(s) found:", np.unique(z[z < 0]) ) self.dis = None if "model" in kwargs.keys(): self.model = kwargs.pop("model") self.dis = self.model.dis if "dis" in kwargs.keys(): self.dis = kwargs.pop("dis") if len(kwargs.keys()) > 0: args = ",".join(kwargs.keys()) raise Exception(f"LayerFile error: unrecognized kwargs: {args}") # Check the shape of the cbc budget file arrays self.cbc_shape = self.cbc.get_data(idx=0, full3D=True)[0].shape self.nlay, self.nrow, self.ncol = self.cbc_shape self.cbc_times = self.cbc.get_times() self.cbc_kstpkper = self.cbc.get_kstpkper() self.kstpkper = None self.totim = None if kstpkper is not None: if isinstance(kstpkper, tuple): kstpkper = [kstpkper] for kk in kstpkper: s = f"The specified time step/stress period does not exist {kk}" assert kk in self.cbc.get_kstpkper(), s self.kstpkper = kstpkper elif totim is not None: if isinstance(totim, float): totim = [totim] elif isinstance(totim, int): totim = [float(totim)] for t in totim: s = f"The specified simulation time does not exist {t}" assert t in self.cbc.get_times(), s self.totim = totim else: # No time step/stress period or simulation time pass self.kstpkper = self.cbc.get_kstpkper() # Set float and integer types self.float_type = np.float32 self.int_type = np.int32 # Check dimensions of input zone array s = ( "Row/col dimensions of zone array {}" " do not match model row/col dimensions {}".format( z.shape, self.cbc_shape ) ) assert z.shape[-2] == self.nrow and z.shape[-1] == self.ncol, s if z.shape == self.cbc_shape: izone = z.copy() elif len(z.shape) == 2: izone = np.zeros(self.cbc_shape, self.int_type) izone[:] = z[:, :] elif len(z.shape) == 3 and z.shape[0] == 1: izone = np.zeros(self.cbc_shape, self.int_type) izone[:] = z[0, :, :] else: e = f"Shape of the zone array is not recognized: {z.shape}" raise Exception(e) self.izone = izone self.allzones = np.unique(izone) self._zonenamedict = {z: f"ZONE_{z}" for z in self.allzones} if aliases is not None: s = ( "Input aliases not recognized. Please pass a dictionary " "with key,value pairs of zone/alias." ) assert isinstance(aliases, dict), s # Replace the relevant field names (ignore zone 0) seen = [] for z, a in iter(aliases.items()): if z != 0 and z in self._zonenamedict.keys(): if z in seen: raise Exception( "Zones may not have more than 1 alias." ) self._zonenamedict[z] = "_".join(a.split()) seen.append(z) # self._iflow_recnames = self._get_internal_flow_record_names() # All record names in the cell-by-cell budget binary file self.record_names = [ n.strip() for n in self.cbc.get_unique_record_names(decode=True) ] # Get imeth for each record in the CellBudgetFile record list self.imeth = {} for record in self.cbc.recordarray: self.imeth[record["text"].strip().decode("utf-8")] = record[ "imeth" ] # INTERNAL FLOW TERMS ARE USED TO CALCULATE FLOW BETWEEN ZONES. # CONSTANT-HEAD TERMS ARE USED TO IDENTIFY WHERE CONSTANT-HEAD CELLS # ARE AND THEN USE FACE FLOWS TO DETERMINE THE AMOUNT OF FLOW. # SWIADDTO--- terms are used by the SWI2 groundwater flow process. internal_flow_terms = [ "CONSTANT HEAD", "FLOW RIGHT FACE", "FLOW FRONT FACE", "FLOW LOWER FACE", "SWIADDTOCH", "SWIADDTOFRF", "SWIADDTOFFF", "SWIADDTOFLF", ] # Source/sink/storage term record names # These are all of the terms that are not related to constant # head cells or face flow terms self.ssst_record_names = [ n for n in self.record_names if n not in internal_flow_terms ] # Initialize budget recordarray array_list = [] if self.kstpkper is not None: for kk in self.kstpkper: recordarray = self._initialize_budget_recordarray( kstpkper=kk, totim=None ) array_list.append(recordarray) elif self.totim is not None: for t in self.totim: recordarray = self._initialize_budget_recordarray( kstpkper=None, totim=t ) array_list.append(recordarray) self._budget = np.concatenate(array_list, axis=0) # Update budget record array if self.kstpkper is not None: for kk in self.kstpkper: if verbose: s = ( "Computing the budget for" " time step {} in stress period {}".format( kk[0] + 1, kk[1] + 1 ) ) print(s) self._compute_budget(kstpkper=kk) elif self.totim is not None: for t in self.totim: if verbose: s = f"Computing the budget for time {t}" print(s) self._compute_budget(totim=t) def _compute_budget(self, kstpkper=None, totim=None): """ Creates a budget for the specified zone array. This function only supports the use of a single time step/stress period or time. Parameters ---------- kstpkper : tuple Tuple of kstp and kper to compute budget for (default is None). totim : float Totim to compute budget for (default is None). Returns ------- None """ # Initialize an array to track where the constant head cells # are located. ich = np.zeros(self.cbc_shape, self.int_type) swiich = np.zeros(self.cbc_shape, self.int_type) if "CONSTANT HEAD" in self.record_names: """ C-----CONSTANT-HEAD FLOW -- DON'T ACCUMULATE THE CELL-BY-CELL VALUES FOR C-----CONSTANT-HEAD FLOW BECAUSE THEY MAY INCLUDE PARTIALLY CANCELING C-----INS AND OUTS. USE CONSTANT-HEAD TERM TO IDENTIFY WHERE CONSTANT- C-----HEAD CELLS ARE AND THEN USE FACE FLOWS TO DETERMINE THE AMOUNT OF C-----FLOW. STORE CONSTANT-HEAD LOCATIONS IN ICH ARRAY. """ chd = self.cbc.get_data( text="CONSTANT HEAD", full3D=True, kstpkper=kstpkper, totim=totim, )[0] ich[np.ma.where(chd != 0.0)] = 1 if "FLOW RIGHT FACE" in self.record_names: self._accumulate_flow_frf("FLOW RIGHT FACE", ich, kstpkper, totim) if "FLOW FRONT FACE" in self.record_names: self._accumulate_flow_fff("FLOW FRONT FACE", ich, kstpkper, totim) if "FLOW LOWER FACE" in self.record_names: self._accumulate_flow_flf("FLOW LOWER FACE", ich, kstpkper, totim) if "SWIADDTOCH" in self.record_names: swichd = self.cbc.get_data( text="SWIADDTOCH", full3D=True, kstpkper=kstpkper, totim=totim )[0] swiich[swichd != 0] = 1 if "SWIADDTOFRF" in self.record_names: self._accumulate_flow_frf("SWIADDTOFRF", swiich, kstpkper, totim) if "SWIADDTOFFF" in self.record_names: self._accumulate_flow_fff("SWIADDTOFFF", swiich, kstpkper, totim) if "SWIADDTOFLF" in self.record_names: self._accumulate_flow_flf("SWIADDTOFLF", swiich, kstpkper, totim) # NOT AN INTERNAL FLOW TERM, SO MUST BE A SOURCE TERM OR STORAGE # ACCUMULATE THE FLOW BY ZONE # iterate over remaining items in the list for recname in self.ssst_record_names: self._accumulate_flow_ssst(recname, kstpkper, totim) # Compute mass balance terms self._compute_mass_balance(kstpkper, totim) return def _add_empty_record( self, recordarray, recname, kstpkper=None, totim=None ): """ Build an empty records based on the specified flow direction and record name for the given list of zones. Parameters ---------- recordarray : recname : kstpkper : tuple Tuple of kstp and kper to compute budget for (default is None). totim : float Totim to compute budget for (default is None). Returns ------- recordarray : np.recarray """ if kstpkper is not None: if len(self.cbc_times) > 0: totim = self.cbc_times[self.cbc_kstpkper.index(kstpkper)] else: totim = 0.0 elif totim is not None: if len(self.cbc_times) > 0: kstpkper = self.cbc_kstpkper[self.cbc_times.index(totim)] else: kstpkper = (0, 0) row = [totim, kstpkper[0], kstpkper[1], recname] row += [0.0 for _ in self._zonenamedict.values()] recs = np.array(tuple(row), dtype=recordarray.dtype) recordarray = np.append(recordarray, recs) return recordarray def _initialize_budget_recordarray(self, kstpkper=None, totim=None): """ Initialize the budget record array which will store all of the fluxes in the cell-budget file. Parameters ---------- kstpkper : tuple Tuple of kstp and kper to compute budget for (default is None). totim : float Totim to compute budget for (default is None). Returns ------- """ # Create empty array for the budget terms. dtype_list = [ ("totim", "<f4"), ("time_step", "<i4"), ("stress_period", "<i4"), ("name", (str, 50)), ] dtype_list += [ (n, self.float_type) for n in self._zonenamedict.values() ] dtype = np.dtype(dtype_list) recordarray = np.array([], dtype=dtype) # Add "from" records if "STORAGE" in self.record_names: recordarray = self._add_empty_record( recordarray, "FROM_STORAGE", kstpkper, totim ) if "CONSTANT HEAD" in self.record_names: recordarray = self._add_empty_record( recordarray, "FROM_CONSTANT_HEAD", kstpkper, totim ) for recname in self.ssst_record_names: if recname != "STORAGE": recordarray = self._add_empty_record( recordarray, "FROM_" + "_".join(recname.split()), kstpkper, totim, ) for z, n in self._zonenamedict.items(): if z == 0 and 0 not in self.allzones: continue else: recordarray = self._add_empty_record( recordarray, "FROM_" + "_".join(n.split()), kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "TOTAL_IN", kstpkper, totim ) # Add "out" records if "STORAGE" in self.record_names: recordarray = self._add_empty_record( recordarray, "TO_STORAGE", kstpkper, totim ) if "CONSTANT HEAD" in self.record_names: recordarray = self._add_empty_record( recordarray, "TO_CONSTANT_HEAD", kstpkper, totim ) for recname in self.ssst_record_names: if recname != "STORAGE": recordarray = self._add_empty_record( recordarray, "TO_" + "_".join(recname.split()), kstpkper, totim, ) for z, n in self._zonenamedict.items(): if z == 0 and 0 not in self.allzones: continue else: recordarray = self._add_empty_record( recordarray, "TO_" + "_".join(n.split()), kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "TOTAL_OUT", kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "IN-OUT", kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "PERCENT_DISCREPANCY", kstpkper, totim ) return recordarray @staticmethod def _filter_circular_flow(fz, tz, f): """ Parameters ---------- fz tz f Returns ------- """ e = np.equal(fz, tz) fz = fz[np.logical_not(e)] tz = tz[np.logical_not(e)] f = f[np.logical_not(e)] return fz, tz, f def _update_budget_fromfaceflow( self, fz, tz, f, kstpkper=None, totim=None ): """ Parameters ---------- fz tz f kstpkper totim Returns ------- """ # No circular flow within zones fz, tz, f = self._filter_circular_flow(fz, tz, f) if len(f) == 0: return # Inflows idx = tz != 0 fzi = fz[idx] tzi = tz[idx] rownames = ["FROM_" + self._zonenamedict[z] for z in fzi] colnames = [self._zonenamedict[z] for z in tzi] fluxes = f[idx] self._update_budget_recordarray( rownames, colnames, fluxes, kstpkper, totim ) # Outflows idx = fz != 0 fzi = fz[idx] tzi = tz[idx] rownames = ["TO_" + self._zonenamedict[z] for z in tzi] colnames = [self._zonenamedict[z] for z in fzi] fluxes = f[idx] self._update_budget_recordarray( rownames, colnames, fluxes, kstpkper, totim ) return def _update_budget_fromssst(self, fz, tz, f, kstpkper=None, totim=None): """ Parameters ---------- fz tz f kstpkper totim Returns ------- """ if len(f) == 0: return self._update_budget_recordarray(fz, tz, f, kstpkper, totim) return def _update_budget_recordarray( self, rownames, colnames, fluxes, kstpkper=None, totim=None ): """ Update the budget record array with the flux for the specified flow direction (in/out), record name, and column. Parameters ---------- rownames colnames fluxes kstpkper totim Returns ------- None """ try: if kstpkper is not None: for rn, cn, flux in zip(rownames, colnames, fluxes): rowidx = np.where( (self._budget["time_step"] == kstpkper[0]) & (self._budget["stress_period"] == kstpkper[1]) & (self._budget["name"] == rn) ) self._budget[cn][rowidx] += flux elif totim is not None: for rn, cn, flux in zip(rownames, colnames, fluxes): rowidx = np.where( (self._budget["totim"] == totim) & (self._budget["name"] == rn) ) self._budget[cn][rowidx] += flux except Exception as e: print(e) raise return def _accumulate_flow_frf(self, recname, ich, kstpkper, totim): """ Parameters ---------- recname ich kstpkper totim Returns ------- """ try: if self.ncol >= 2: data = self.cbc.get_data( text=recname, kstpkper=kstpkper, totim=totim )[0] # "FLOW RIGHT FACE" COMPUTE FLOW BETWEEN ZONES ACROSS COLUMNS. # COMPUTE FLOW ONLY BETWEEN A ZONE AND A HIGHER ZONE -- FLOW FROM # ZONE 4 TO 3 IS THE NEGATIVE OF FLOW FROM 3 TO 4. # 1ST, CALCULATE FLOW BETWEEN NODE J,I,K AND J-1,I,K k, i, j = np.where( self.izone[:, :, 1:] > self.izone[:, :, :-1] ) # Adjust column values to account for the starting position of "nz" j += 1 # Define the zone to which flow is going nz = self.izone[k, i, j] # Define the zone from which flow is coming jl = j - 1 nzl = self.izone[k, i, jl] # Get the face flow q = data[k, i, jl] # Get indices where flow face values are positive (flow out of higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzl[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # Get indices where flow face values are negative (flow into higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzl[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # FLOW BETWEEN NODE J,I,K AND J+1,I,K k, i, j = np.where( self.izone[:, :, :-1] > self.izone[:, :, 1:] ) # Define the zone from which flow is coming nz = self.izone[k, i, j] # Define the zone to which flow is going jr = j + 1 nzr = self.izone[k, i, jr] # Get the face flow q = data[k, i, j] # Get indices where flow face values are positive (flow out of higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzr[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # Get indices where flow face values are negative (flow into higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzr[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW TO CONSTANT-HEAD CELLS IN THIS DIRECTION k, i, j = np.where(ich == 1) k, i, j = k[j > 0], i[j > 0], j[j > 0] jl = j - 1 nzl = self.izone[k, i, jl] nz = self.izone[k, i, j] q = data[k, i, jl] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzl[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzl[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi[tzi != 0]] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) k, i, j = np.where(ich == 1) k, i, j = ( k[j < self.ncol - 1], i[j < self.ncol - 1], j[j < self.ncol - 1], ) nz = self.izone[k, i, j] jr = j + 1 nzr = self.izone[k, i, jr] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzr[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzr[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) except Exception as e: print(e) raise return def _accumulate_flow_fff(self, recname, ich, kstpkper, totim): """ Parameters ---------- recname ich kstpkper totim Returns ------- """ try: if self.nrow >= 2: data = self.cbc.get_data( text=recname, kstpkper=kstpkper, totim=totim )[0] # "FLOW FRONT FACE" # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I-1,K k, i, j = np.where( self.izone[:, 1:, :] < self.izone[:, :-1, :] ) i += 1 ia = i - 1 nza = self.izone[k, ia, j] nz = self.izone[k, i, j] q = data[k, ia, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nza[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nza[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I+1,K. k, i, j = np.where( self.izone[:, :-1, :] < self.izone[:, 1:, :] ) nz = self.izone[k, i, j] ib = i + 1 nzb = self.izone[k, ib, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzb[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW TO CONSTANT-HEAD CELLS IN THIS DIRECTION k, i, j = np.where(ich == 1) k, i, j = k[i > 0], i[i > 0], j[i > 0] ia = i - 1 nza = self.izone[k, ia, j] nz = self.izone[k, i, j] q = data[k, ia, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) k, i, j = np.where(ich == 1) k, i, j = ( k[i < self.nrow - 1], i[i < self.nrow - 1], j[i < self.nrow - 1], ) nz = self.izone[k, i, j] ib = i + 1 nzb = self.izone[k, ib, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) except Exception as e: print(e) raise return def _accumulate_flow_flf(self, recname, ich, kstpkper, totim): """ Parameters ---------- recname ich kstpkper totim Returns ------- """ try: if self.nlay >= 2: data = self.cbc.get_data( text=recname, kstpkper=kstpkper, totim=totim )[0] # "FLOW LOWER FACE" # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I,K-1 k, i, j = np.where( self.izone[1:, :, :] < self.izone[:-1, :, :] ) k += 1 ka = k - 1 nza = self.izone[ka, i, j] nz = self.izone[k, i, j] q = data[ka, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nza[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nza[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I,K+1 k, i, j = np.where( self.izone[:-1, :, :] < self.izone[1:, :, :] ) nz = self.izone[k, i, j] kb = k + 1 nzb = self.izone[kb, i, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzb[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW TO CONSTANT-HEAD CELLS IN THIS DIRECTION k, i, j = np.where(ich == 1) k, i, j = k[k > 0], i[k > 0], j[k > 0] ka = k - 1 nza = self.izone[ka, i, j] nz = self.izone[k, i, j] q = data[ka, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) k, i, j = np.where(ich == 1) k, i, j = ( k[k < self.nlay - 1], i[k < self.nlay - 1], j[k < self.nlay - 1], ) nz = self.izone[k, i, j] kb = k + 1 nzb = self.izone[kb, i, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) except Exception as e: print(e) raise return def _accumulate_flow_ssst(self, recname, kstpkper, totim): # NOT AN INTERNAL FLOW TERM, SO MUST BE A SOURCE TERM OR STORAGE # ACCUMULATE THE FLOW BY ZONE imeth = self.imeth[recname] data = self.cbc.get_data(text=recname, kstpkper=kstpkper, totim=totim) if len(data) == 0: # Empty data, can occur during the first time step of a transient # model when storage terms are zero and not in the cell-budget # file. return else: data = data[0] if imeth == 2 or imeth == 5: # LIST qin = np.ma.zeros( (self.nlay * self.nrow * self.ncol), self.float_type ) qout = np.ma.zeros( (self.nlay * self.nrow * self.ncol), self.float_type ) for [node, q] in zip(data["node"], data["q"]): idx = node - 1 if q > 0: qin.data[idx] += q elif q < 0: qout.data[idx] += q qin = np.ma.reshape(qin, (self.nlay, self.nrow, self.ncol)) qout = np.ma.reshape(qout, (self.nlay, self.nrow, self.ncol)) elif imeth == 0 or imeth == 1: # FULL 3-D ARRAY qin = np.ma.zeros(self.cbc_shape, self.float_type) qout = np.ma.zeros(self.cbc_shape, self.float_type) qin[data > 0] = data[data > 0] qout[data < 0] = data[data < 0] elif imeth == 3: # 1-LAYER ARRAY WITH LAYER INDICATOR ARRAY rlay, rdata = data[0], data[1] data = np.ma.zeros(self.cbc_shape, self.float_type) for (r, c), l in np.ndenumerate(rlay): data[l - 1, r, c] = rdata[r, c] qin = np.ma.zeros(self.cbc_shape, self.float_type) qout = np.ma.zeros(self.cbc_shape, self.float_type) qin[data > 0] = data[data > 0] qout[data < 0] = data[data < 0] elif imeth == 4: # 1-LAYER ARRAY THAT DEFINES LAYER 1 qin = np.ma.zeros(self.cbc_shape, self.float_type) qout = np.ma.zeros(self.cbc_shape, self.float_type) r, c = np.where(data > 0) qin[0, r, c] = data[r, c] r, c = np.where(data < 0) qout[0, r, c] = data[r, c] else: # Should not happen raise Exception( f'Unrecognized "imeth" for {recname} record: {imeth}' ) # Inflows fz = [] tz = [] f = [] for z in self.allzones: if z != 0: flux = qin[(self.izone == z)].sum() if type(flux) == np.ma.core.MaskedConstant: flux = 0.0 fz.append("FROM_" + "_".join(recname.split())) tz.append(self._zonenamedict[z]) f.append(flux) fz = np.array(fz) tz = np.array(tz) f = np.array(f) self._update_budget_fromssst(fz, tz, np.abs(f), kstpkper, totim) # Outflows fz = [] tz = [] f = [] for z in self.allzones: if z != 0: flux = qout[(self.izone == z)].sum() if type(flux) == np.ma.core.MaskedConstant: flux = 0.0 fz.append("TO_" + "_".join(recname.split())) tz.append(self._zonenamedict[z]) f.append(flux) fz = np.array(fz) tz = np.array(tz) f = np.array(f) self._update_budget_fromssst(fz, tz, np.abs(f), kstpkper, totim) def _compute_mass_balance(self, kstpkper, totim): # Returns a record array with total inflow, total outflow, # and percent error summed by column. skipcols = ["time_step", "stress_period", "totim", "name"] # Compute inflows recnames = self.get_record_names() innames = [n for n in recnames if n.startswith("FROM_")] outnames = [n for n in recnames if n.startswith("TO_")] if kstpkper is not None: rowidx = np.where( (self._budget["time_step"] == kstpkper[0]) & (self._budget["stress_period"] == kstpkper[1]) & np.in1d(self._budget["name"], innames) ) elif totim is not None: rowidx = np.where( (self._budget["totim"] == totim) & np.in1d(self._budget["name"], innames) ) a = _numpyvoid2numeric( self._budget[list(self._zonenamedict.values())][rowidx] ) intot = np.array(a.sum(axis=0)) tz = np.array( list([n for n in self._budget.dtype.names if n not in skipcols]) ) fz = np.array(["TOTAL_IN"] * len(tz)) self._update_budget_fromssst(fz, tz, intot, kstpkper, totim) # Compute outflows if kstpkper is not None: rowidx = np.where( (self._budget["time_step"] == kstpkper[0]) & (self._budget["stress_period"] == kstpkper[1]) & np.in1d(self._budget["name"], outnames) ) elif totim is not None: rowidx = np.where( (self._budget["totim"] == totim) & np.in1d(self._budget["name"], outnames) ) a = _numpyvoid2numeric( self._budget[list(self._zonenamedict.values())][rowidx] ) outot = np.array(a.sum(axis=0)) tz = np.array( list([n for n in self._budget.dtype.names if n not in skipcols]) ) fz = np.array(["TOTAL_OUT"] * len(tz)) self._update_budget_fromssst(fz, tz, outot, kstpkper, totim) # Compute IN-OUT tz = np.array( list([n for n in self._budget.dtype.names if n not in skipcols]) ) f = intot - outot fz = np.array(["IN-OUT"] * len(tz)) self._update_budget_fromssst(fz, tz, np.abs(f), kstpkper, totim) # Compute percent discrepancy tz = np.array( list([n for n in self._budget.dtype.names if n not in skipcols]) ) fz = np.array(["PERCENT_DISCREPANCY"] * len(tz)) in_minus_out = intot - outot in_plus_out = intot + outot f = 100 * in_minus_out / (in_plus_out / 2.0) self._update_budget_fromssst(fz, tz, np.abs(f), kstpkper, totim) def get_model_shape(self): """Get model shape Returns ------- nlay : int Number of layers nrow : int Number of rows ncol : int Number of columns """ return self.nlay, self.nrow, self.ncol def get_record_names(self, stripped=False): """ Get a list of water budget record names in the file. Returns ------- out : list of strings List of unique text names in the binary file. Examples -------- >>> zb = ZoneBudget('zonebudtest.cbc', zon, kstpkper=(0, 0)) >>> recnames = zb.get_record_names() """ return _get_record_names(self._budget, stripped=stripped) def get_budget(self, names=None, zones=None, net=False, pivot=False): """ Get a list of zonebudget record arrays. Parameters ---------- names : list of strings A list of strings containing the names of the records desired. zones : list of ints or strings A list of integer zone numbers or zone names desired. net : boolean If True, returns net IN-OUT for each record. pivot : boolean If True, returns data in a more user friendly format Returns ------- budget_list : list of record arrays A list of the zonebudget record arrays. Examples -------- >>> names = ['FROM_CONSTANT_HEAD', 'RIVER_LEAKAGE_OUT'] >>> zones = ['ZONE_1', 'ZONE_2'] >>> zb = ZoneBudget('zonebudtest.cbc', zon, kstpkper=(0, 0)) >>> bud = zb.get_budget(names=names, zones=zones) """ recarray = _get_budget( self._budget, self._zonenamedict, names=names, zones=zones, net=net ) if pivot: recarray = _pivot_recarray(recarray) return recarray def get_volumetric_budget( self, modeltime, recarray=None, extrapolate_kper=False ): """ Method to generate a volumetric budget table based on flux information Parameters ---------- modeltime : flopy.discretization.ModelTime object ModelTime object for calculating volumes recarray : np.recarray optional, user can pass in a numpy recarray to calculate volumetric budget. recarray must be pivoted before passing to get_volumetric_budget extrapolate_kper : bool flag to determine if we fill in data gaps with other timestep information from the same stress period. if True, we assume that flux is constant throughout a stress period and the pandas dataframe returned contains a volumetric budget per stress period if False, calculates volumes from available flux data Returns ------- pd.DataFrame """ if recarray is None: recarray = self.get_budget(pivot=True) return _volumetric_flux(recarray, modeltime, extrapolate_kper) def to_csv(self, fname): """ Saves the budget record arrays to a formatted comma-separated values file. Parameters ---------- fname : str The name of the output comma-separated values file. Returns ------- None """ # Needs updating to handle the new budget list structure. Write out # budgets for all kstpkper if kstpkper is None or pass list of # kstpkper/totim to save particular budgets. with open(fname, "w") as f: # Write header f.write(",".join(self._budget.dtype.names) + "\n") # Write rows for rowidx in range(self._budget.shape[0]): s = ( ",".join([str(i) for i in list(self._budget[:][rowidx])]) + "\n" ) f.write(s) return def get_dataframes( self, start_datetime=None, timeunit="D", index_key="totim", names=None, zones=None, net=False, pivot=False, ): """ Get pandas dataframes. Parameters ---------- start_datetime : str Datetime string indicating the time at which the simulation starts. timeunit : str String that indicates the time units used in the model. index_key : str Indicates the fields to be used (in addition to "record") in the resulting DataFrame multi-index. names : list of strings A list of strings containing the names of the records desired. zones : list of ints or strings A list of integer zone numbers or zone names desired. net : boolean If True, returns net IN-OUT for each record. pivot : bool If True, returns dataframe in a more user friendly format Returns ------- df : Pandas DataFrame Pandas DataFrame with the budget information. Examples -------- >>> from flopy.utils.zonbud import ZoneBudget >>> zon = ZoneBudget.read_zone_file('zone_input_file') >>> zb = ZoneBudget('zonebudtest.cbc', zon, kstpkper=(0, 0)) >>> df = zb.get_dataframes() """ recarray = self.get_budget(names, zones, net, pivot=pivot) return _recarray_to_dataframe( recarray, self._zonenamedict, start_datetime=start_datetime, timeunit=timeunit, index_key=index_key, zones=zones, pivot=pivot, ) @classmethod def _get_otype(cls, fname): """ Method to automatically distinguish output type based on the zonebudget header Parameters ---------- fname : str zonebudget output file name Returns ------- otype : int """ with open(fname) as foo: line = foo.readline() if "zonebudget version" in line.lower(): otype = 0 elif "time step" in line.lower(): otype = 1 elif "totim" in line.lower(): otype = 2 else: raise AssertionError("Cant distinguish output type") return otype @classmethod def read_output(cls, fname, net=False, dataframe=False, **kwargs): """ Method to read a zonebudget output file into a recarray or pandas dataframe Parameters ---------- fname : str zonebudget output file name net : bool boolean flag for net budget dataframe : bool boolean flag to return a pandas dataframe **kwargs pivot : bool start_datetime : str Datetime string indicating the time at which the simulation starts. Can be used when pandas dataframe is requested timeunit : str String that indicates the time units used in the model. Returns ------- np.recarray """ otype = ZoneBudget._get_otype(fname) if otype == 0: recarray = _read_zb_zblst(fname) elif otype == 1: recarray = _read_zb_csv(fname) else: add_prefix = kwargs.pop("add_prefix", True) recarray = _read_zb_csv2(fname, add_prefix=add_prefix) zonenamdict = { int(i.split("_")[-1]): i for i in recarray.dtype.names if i.startswith("ZONE") } pivot = kwargs.pop("pivot", False) recarray = _get_budget(recarray, zonenamdict, net=net) if pivot: recarray = _pivot_recarray(recarray) if not dataframe: return recarray else: start_datetime = kwargs.pop("start_datetime", None) timeunit = kwargs.pop("timeunit", "D") return _recarray_to_dataframe( recarray, zonenamdict, start_datetime=start_datetime, timeunit=timeunit, pivot=pivot, ) @classmethod def read_zone_file(cls, fname): """Method to read a zonebudget zone file into memory Parameters ---------- fname : str zone file name Returns ------- zones : np.array """ with open(fname, "r") as f: lines = f.readlines() # Initialize layer lay = 0 # Initialize data counter totlen = 0 i = 0 # First line contains array dimensions dimstring = lines.pop(0).strip().split() nlay, nrow, ncol = [int(v) for v in dimstring] zones = np.zeros((nlay, nrow, ncol), dtype=np.int32) # The number of values to read before placing # them into the zone array datalen = nrow * ncol # List of valid values for LOCAT locats = ["CONSTANT", "INTERNAL", "EXTERNAL"] # ITERATE OVER THE ROWS for line in lines: rowitems = line.strip().split() # Skip blank lines if len(rowitems) == 0: continue # HEADER if rowitems[0].upper() in locats: vals = [] locat = rowitems[0].upper() if locat == "CONSTANT": iconst = int(rowitems[1]) else: fmt = rowitems[1].strip("()") fmtin, iprn = [int(v) for v in fmt.split("I")] # ZONE DATA else: if locat == "CONSTANT": vals = np.ones((nrow, ncol), dtype=int) * iconst lay += 1 elif locat == "INTERNAL": # READ ZONES rowvals = [int(v) for v in rowitems] s = "Too many values encountered on this line." assert len(rowvals) <= fmtin, s vals.extend(rowvals) elif locat == "EXTERNAL": # READ EXTERNAL FILE fname = rowitems[0] if not os.path.isfile(fname): errmsg = f'Could not find external file "{fname}"' raise Exception(errmsg) with open(fname, "r") as ext_f: ext_flines = ext_f.readlines() for ext_frow in ext_flines: ext_frowitems = ext_frow.strip().split() rowvals = [int(v) for v in ext_frowitems] vals.extend(rowvals) if len(vals) != datalen: errmsg = ( "The number of values read from external " 'file "{}" does not match the expected ' "number.".format(len(vals)) ) raise Exception(errmsg) else: # Should not get here raise Exception(f"Locat not recognized: {locat}") # IGNORE COMPOSITE ZONES if len(vals) == datalen: # place values for the previous layer into the zone array vals =
np.array(vals, dtype=int)
numpy.array
""" this module contains a class that fits a gaussian model to the central part of an histogram, following schwartzman et al, 2009. This is typically necessary to estimate a fdr when one is not certain that the data behaves as a standard normal under H_0. Author : <NAME>, 2008-2009 """ # For scipy import import numpy as np from numpy.linalg import pinv from mvpa2.base import externals if externals.exists("scipy", raise_=True): import scipy.stats as st class FDR(object): """ This is the basic class to handle false discovery rate computation parameter: fdr.x the samples from which the fdr is derived x is assumed to be a normal variate The Benjamini-Horchberg procedure is used """ def __init__(self, x): """ x is assumed to be a 1-d array """ self.x = np.squeeze(x) def all_fdr(self, x=None, verbose=0): """ Returns all the FDR (false discovery rates) values for the sample x Parameters ----------- x : ndarray of shape (n) The normal variates Results ------- fdr : ndarray of shape (n) The set of all FDRs """ if x is None: x = self.x pvals = st.norm.sf(x) return self.all_fdr_from_pvals(pvals, verbose) def all_fdr_from_pvals(self, pv, verbose=0): """ Returns the fdr associated with each the values Parameters ----------- pv : ndarray of shape (n) The samples p-value Returns -------- q : array of shape(n) The corresponding fdrs """ pv = self.check_pv(pv) if pv is None: pv = self.pv n = np.size(pv) isx = np.argsort(pv) q = np.zeros(n) for ip in range(n): q[isx[ip]] = np.minimum( 1, np.maximum(n * pv[isx[ip]] / (ip + 1), q[isx[ip]]) ) if ip < n - 1: q[isx[ip + 1]] = q[isx[ip]] if verbose: import matplotlib.pylab as mp mp.figure() mp.plot(pv, q, ".") return q def check_pv(self, pv): """ Do some basic checks on the pv array: each value should be within [0,1] Parameters ---------- pv : array of shape (n) The sample p-values Returns -------- pv : array of shape (n) The sample p-values """ pv = np.squeeze(pv) if pv.min() < 0: print(pv.min()) raise ValueError("Negative p-values") if pv.max() > 1: print(pv.max()) raise ValueError("P-values greater than 1!") return pv def pth_from_pvals(self, pv, alpha=0.05): """ Given a set pv of p-values, returns the critical p-value associated with an FDR alpha Parameters ----------- alpha : float The desired FDR significance pv : array of shape (n) The samples p-value Returns ------- pth: float The p value corresponding to the FDR alpha """ pv = self.check_pv(pv) npv = np.size(pv) pcorr = alpha / npv spv = np.sort(pv) ip = 0 pth = 0.0 while (spv[ip] < pcorr * (ip + 1)) & (ip < npv): pth = spv[ip] ip = ip + 1 return pth def threshold_from_student(self, df, alpha=0.05, x=None): """ Given an array t of student variates with df dofs, returns the critical p-value associated with alpha. Parameters ----------- df : float The number of degrees of freedom alpha : float, optional The desired significance x : ndarray, optional The variate. By default self.x is used Returns -------- th : float The threshold in variate value """ df = float(df) if x is None: x = self.x pvals = st.t.sf(x, df) pth = self.pth_from_pvals(pvals, alpha) return st.t.isf(pth, df) def threshold(self, alpha=0.05, x=None): """ Given an array x of normal variates, this function returns the critical p-value associated with alpha. x is explicitly assumed to be normal distributed under H_0 Parameters ----------- alpha: float, optional The desired significance, by default 0.05 x : ndarray, optional The variate. By default self.x is used Returns -------- th : float The threshold in variate value """ if x is None: x = self.x pvals = st.norm.sf(x) pth = self.pth_from_pvals(pvals, alpha) return st.norm.isf(pth) class ENN(object): """ Class to compute the empirical null normal fit to the data. The data which is used to estimate the FDR, assuming a gaussian null from Schwartzmann et al., NeuroImage 44 (2009) 71--82 """ def __init__(self, x): """ Initiate an empirical null normal object. Parameters ----------- x : 1D ndarray The data used to estimate the empirical null. """ x = np.reshape(x, (-1,)) self.x = np.sort(x) self.n = np.size(x) self.learned = 0 def learn(self, left=0.2, right=0.8): """ Estimate the proportion, mean and variance of a gaussian distribution for a fraction of the data Parameters ----------- left : float, optional Left cut parameter to prevent fitting non-gaussian data right : float, optional Right cut parameter to prevent fitting non-gaussian data Notes ------ This method stores the following attributes: * mu = mu * p0 = min(1, np.exp(lp0)) * sqsigma : standard deviation of the estimated normal distribution * sigma = np.sqrt(sqsigma) : variance of the estimated normal distribution """ # take a central subsample of x x = self.x[int(self.n * left) : int(self.n * right)] # generate the histogram step = 3.5 * np.std(self.x) / np.exp(np.log(self.n) / 3) bins = int(max(10, (self.x.max() - self.x.min()) / step)) hist, ledge = np.histogram(x, bins=bins) # I think there was a change in some numpy version on what to return assert len(ledge) in (bins, bins + 1) if len(ledge) == bins + 1: # we are interested in left edges ledge = ledge[:bins] step = ledge[1] - ledge[0] medge = ledge + 0.5 * step # remove null bins whist = hist > 0 hist = hist[whist] medge = medge[whist] hist = hist.astype("f") # fit the histogram DMtx = np.ones((3, np.sum(whist))) DMtx[1] = medge DMtx[2] = medge ** 2 coef = np.dot(np.log(hist), pinv(DMtx)) sqsigma = -1.0 / (2 * coef[2]) mu = coef[1] * sqsigma lp0 = ( coef[0] - np.log(step * self.n) + 0.5 *
np.log(2 * np.pi * sqsigma)
numpy.log
from abc import ABC, abstractmethod import numpy as np from scipy.stats.mstats import gmean from dataset.fuzzy_sets import IntervalValuedFuzzySet class Aggregation(ABC): @abstractmethod def __init__(self): pass @abstractmethod def aggregate_numpy_arrays_representation(self, fuzzy_sets): """ :param fuzzy_sets: a numpy array holding fuzzy sets represented directly as numpy arrays :return: a fuzzy set, a numpy array result of aggregation """ pass def aggregate_interval_valued_fuzzy_sets(self, fuzzy_sets): """ :param fuzzy_sets: a numpy array holding fuzzy sets as IntervalValuedFuzzySet class instances :return: a fuzzy set, result of aggregation """ fuzzy_sets_as_numpy = np.array([f.numpy_representation for f in fuzzy_sets]) return self.aggregate_numpy_arrays_representation(fuzzy_sets_as_numpy) @staticmethod def change_aggregation_to_name(agg): if isinstance(agg, A1Aggregation): return 'A1' if isinstance(agg, A2Aggregation): return 'A2' if isinstance(agg, A3Aggregation): return 'A3' if isinstance(agg, A4Aggregation): return 'A4' if isinstance(agg, A5Aggregation): return 'A5' if isinstance(agg, A6Aggregation): return 'A6' if isinstance(agg, A7Aggregation): return 'A7' if isinstance(agg, A8Aggregation): return 'A8' if isinstance(agg, A9Aggregation): return 'A9' if isinstance(agg, A10Aggregation): return 'A10' # aggregations names comes from paper class A1Aggregation(Aggregation): def __init__(self): super().__init__() def aggregate_numpy_arrays_representation(self, fuzzy_sets): return fuzzy_sets.sum(axis=0) / fuzzy_sets.shape[0] class A2Aggregation(Aggregation): def __init__(self): super().__init__() def _f(self, sum, upper, lower, n): sum -= upper sum += lower return sum / n def aggregate_numpy_arrays_representation(self, fuzzy_sets): summed = fuzzy_sets.sum(axis=0) t = np.array([self._f(summed[1], f[1], f[0], fuzzy_sets.shape[0]) for f in fuzzy_sets]) #print(t) return np.array([summed[0] / fuzzy_sets.shape[0], np.max(t)]) class A3Aggregation(Aggregation): def __init__(self): super().__init__() def aggregate_numpy_arrays_representation(self, fuzzy_sets): summed = fuzzy_sets.sum(axis=0) # division by zero, here 0/0 = 0 if summed[1] == 0: return np.array([summed[0] / fuzzy_sets.shape[0], 0]) # standard way squared = np.square(fuzzy_sets[:, 1]) return np.array([summed[0] / fuzzy_sets.shape[0], np.sum(squared, axis=0) / summed[1]]) class A4Aggregation(Aggregation): def __init__(self, p): super().__init__() self.p = p def aggregate_numpy_arrays_representation(self, fuzzy_sets): summed = fuzzy_sets.sum(axis=0) # division by zero, here 0/0 = 0 if summed[1] == 0: return np.array([summed[0] / fuzzy_sets.shape[0], 0]) # standard way powered = np.power(fuzzy_sets[:, 1], self.p) powered_minus_one = np.power(fuzzy_sets[:, 1], self.p - 1) #print('powered', powered) return np.array([summed[0] / fuzzy_sets.shape[0], np.sum(powered, axis=0) / np.sum(powered_minus_one)]) class A5Aggregation(Aggregation): def __init__(self): super().__init__() def aggregate_numpy_arrays_representation(self, fuzzy_sets): lower = np.square(fuzzy_sets[:, 0]) upper = np.power(fuzzy_sets[:, 1], 3) n = fuzzy_sets.shape[0] return np.array([np.sqrt(lower.sum(axis=0) / n), np.sqrt(upper.sum(axis=0) / n)]) class A6Aggregation(Aggregation): def __init__(self): super().__init__() def aggregate_numpy_arrays_representation(self, fuzzy_sets): lower =
np.power(fuzzy_sets[:, 0], 3)
numpy.power
""" Implement optics algorithms for optical phase tomography using GPU <NAME> <EMAIL> <NAME> <EMAIL> October 22, 2018 """ import numpy as np import arrayfire as af import contexttimer from opticaltomography import settings from opticaltomography.opticsmodel import MultiTransmittance, MultiPhaseContrast from opticaltomography.opticsmodel import Defocus, Aberration from opticaltomography.opticsutil import ImageRotation, calculateNumericalGradient from opticaltomography.regularizers import Regularizer np_complex_datatype = settings.np_complex_datatype np_float_datatype = settings.np_float_datatype af_float_datatype = settings.af_float_datatype af_complex_datatype = settings.af_complex_datatype class AlgorithmConfigs: """ Class created for all parameters for tomography solver """ def __init__(self): self.method = "FISTA" self.stepsize = 1e-2 self.max_iter = 20 self.error = [] self.reg_term = 0.0 #L2 norm #FISTA self.fista_global_update = False self.restart = False #total variation regularization self.total_variation = False self.reg_tv = 1.0 #lambda self.max_iter_tv = 15 self.order_tv = 1 self.total_variation_gpu = False #lasso self.lasso = False self.reg_lasso = 1.0 #positivity constraint self.positivity_real = (False, "larger") self.positivity_imag = (False, "larger") self.pure_real = False self.pure_imag = False #aberration correction self.pupil_update = False self.pupil_global_update = False self.pupil_step_size = 1.0 self.pupil_update_method = "gradient" #batch gradient update self.batch_size = 1 #random order update self.random_order = False class PhaseObject3D: """ Class created for 3D objects. Depending on the scattering model, one of the following quantities will be used: - Refractive index (RI) - Transmittance function (Trans) - PhaseContrast - Scattering potential (V) shape: shape of object to be reconstructed in (x,y,z), tuple voxel_size: size of each voxel in (x,y,z), tuple RI_obj: refractive index of object(Optional) RI: background refractive index (Optional) slice_separation: For multislice algorithms, how far apart are slices separated, array (Optional) """ def __init__(self, shape, voxel_size, RI_obj = None, RI = 1.0, slice_separation = None): assert len(shape) == 3, "shape should be 3 dimensional!" self.shape = shape self.RI_obj = RI * np.ones(shape, dtype = np_complex_datatype) if RI_obj is None else RI_obj.astype(np_complex_datatype) self.RI = RI self.pixel_size = voxel_size[0] self.pixel_size_z = voxel_size[2] if slice_separation is not None: #for discontinuous slices assert len(slice_separation) == shape[2]-1, "number of separations should match with number of layers!" self.slice_separation = np.asarray(slice_separation).astype(np_float_datatype) else: #for continuous slices self.slice_separation = self.pixel_size_z * np.ones((shape[2]-1,), dtype = np_float_datatype) def convertRItoTrans(self, wavelength): k0 = 2.0 * np.pi / wavelength self.trans_obj = np.exp(1.0j*k0*(self.RI_obj - self.RI)*self.pixel_size_z) def convertRItoPhaseContrast(self): self.contrast_obj = self.RI_obj - self.RI def convertRItoV(self, wavelength): k0 = 2.0 * np.pi / wavelength self.V_obj = k0**2 * (self.RI**2 - self.RI_obj**2) def convertVtoRI(self, wavelength): k0 = 2.0 * np.pi / wavelength B = -1.0 * (self.RI**2 - self.V_obj.real/k0**2) C = -1.0 * (-1.0 * self.V_obj.imag/k0**2/2.0)**2 RI_obj_real = ((-1.0 * B + (B**2-4.0*C)**0.5)/2.0)**0.5 RI_obj_imag = -0.5 * self.V_obj.imag/k0**2/RI_obj_real self.RI_obj = RI_obj_real + 1.0j * RI_obj_imag class TomographySolver: """ Highest level solver object for tomography problem phase_obj_3d: phase_obj_3d object defined from class PhaseObject3D fx_illu_list: illumination angles in x, default = [0] (on axis) fy_illu_list: illumination angles in y rotation_angle_list: angles of rotation in tomogrpahy propagation_distance_list: defocus distances for each illumination """ def __init__(self, phase_obj_3d, fx_illu_list = [0], fy_illu_list = [0], rotation_angle_list = [0], propagation_distance_list = [0], **kwargs): self.phase_obj_3d = phase_obj_3d self.wavelength = kwargs["wavelength"] #Rotation angels and objects self.rot_angles = rotation_angle_list self.number_rot = len(self.rot_angles) self.rotation_pad = kwargs.get("rotation_pad", True) #Illumination angles assert len(fx_illu_list) == len(fy_illu_list) self.fx_illu_list = fx_illu_list self.fy_illu_list = fy_illu_list self.number_illum = len(self.fx_illu_list) #Aberation object self._aberration_obj = Aberration(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size,\ self.wavelength, kwargs["na"], pad = False) #Defocus distances and object self.prop_distances = propagation_distance_list self._defocus_obj = Defocus(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size, **kwargs) self.number_defocus = len(self.prop_distances) #Scattering models and algorithms self._opticsmodel = {"MultiTrans": MultiTransmittance, "MultiPhaseContrast": MultiPhaseContrast, } self._algorithms = {"GradientDescent": self._solveFirstOrderGradient, "FISTA": self._solveFirstOrderGradient } self.scat_model_args = kwargs def setScatteringMethod(self, model = "MultiTrans"): """ Define scattering method for tomography model: scattering models, it can be one of the followings: "MultiTrans", "MultiPhaseContrast"(Used in the paper) """ self.scat_model = model if hasattr(self, '_scattering_obj'): del self._scattering_obj if model == "MultiTrans": self.phase_obj_3d.convertRItoTrans(self.wavelength) self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.trans_obj if np.any(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 1, \ flag_gpu_inout = True, flag_inplace = True) elif model == "MultiPhaseContrast": if not hasattr(self.phase_obj_3d, 'contrast_obj'): self.phase_obj_3d.convertRItoPhaseContrast() self._x = self.phase_obj_3d.contrast_obj if np.any(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_inplace = True) else: if not hasattr(self.phase_obj_3d, 'V_obj'): self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.V_obj if np.any(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_inplace = True) self._scattering_obj = self._opticsmodel[model](self.phase_obj_3d, **self.scat_model_args) def forwardPredict(self, field = False): """ Uses current object in the phase_obj_3d to predict the amplitude of the exit wave Before calling, make sure correct object is contained """ obj_gpu = af.to_array(self._x) with contexttimer.Timer() as timer: forward_scattered_predict= [] if self._scattering_obj.back_scatter: back_scattered_predict = [] for rot_idx in range(self.number_rot): forward_scattered_predict.append([]) if self._scattering_obj.back_scatter: back_scattered_predict.append([]) if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, self.rot_angles[rot_idx]) for illu_idx in range(self.number_illum): fx_illu = self.fx_illu_list[illu_idx] fy_illu = self.fy_illu_list[illu_idx] fields = self._forwardMeasure(fx_illu, fy_illu, obj = obj_gpu) if field: forward_scattered_predict[rot_idx].append(np.array(fields["forward_scattered_field"])) if self._scattering_obj.back_scatter: back_scattered_predict[rot_idx].append(np.array(fields["back_scattered_field"])) else: forward_scattered_predict[rot_idx].append(np.abs(fields["forward_scattered_field"])) if self._scattering_obj.back_scatter: back_scattered_predict[rot_idx].append(np.abs(fields["back_scattered_field"])) if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, -1.0*self.rot_angles[rot_idx]) if len(forward_scattered_predict[0][0].shape)==2: forward_scattered_predict = np.array(forward_scattered_predict).transpose(2, 3, 1, 0) elif len(forward_scattered_predict[0][0].shape)==3: forward_scattered_predict = np.array(forward_scattered_predict).transpose(2, 3, 4, 1, 0) if self._scattering_obj.back_scatter: if len(back_scattered_predict[0][0].shape)==2: back_scattered_predict = np.array(back_scattered_predict).transpose(2, 3, 1, 0) elif len(back_scattered_predict[0][0].shape)==3: back_scattered_predict = np.array(back_scattered_predict).transpose(2, 3, 4, 1, 0) return forward_scattered_predict, back_scattered_predict else: return forward_scattered_predict def checkGradient(self, delta = 1e-4): """ check if the numerical gradient is similar to the analytical gradient. Only works for 64 bit data type. """ assert af_float_datatype == af.Dtype.f64, "This will only be accurate if 64 bit datatype is used!" shape = self.phase_obj_3d.shape point = (np.random.randint(shape[0]), np.random.randint(shape[1]), np.random.randint(shape[2])) illu_idx = np.random.randint(len(self.fx_illu_list)) fx_illu = self.fx_illu_list[illu_idx] fy_illu = self.fy_illu_list[illu_idx] x = np.ones(shape, dtype = np_complex_datatype) if self._defocus_obj.pad: amplitude = af.randu(shape[0]//2, shape[1]//2, dtype = af_float_datatype) else: amplitude = af.randu(shape[0], shape[1], dtype = af_float_datatype) print("testing the gradient at point : ", point) def func(x0): fields = self._scattering_obj.forward(x0, fx_illu, fy_illu) field_scattered = self._aberration_obj.forward(fields["forward_scattered_field"]) field_measure = self._defocus_obj.forward(field_scattered, self.prop_distances) residual = af.abs(field_measure) - amplitude function_value = af.sum(residual*af.conjg(residual)).real return function_value numerical_gradient = calculateNumericalGradient(func, x, point, delta = delta) fields = self._scattering_obj.forward(x, fx_illu, fy_illu) forward_scattered_field = fields["forward_scattered_field"] cache = fields["cache"] forward_scattered_field = self._aberration_obj.forward(forward_scattered_field) field_measure = self._defocus_obj.forward(forward_scattered_field, self.prop_distances) analytical_gradient = self._computeGradient(field_measure, amplitude, cache)[point] print("numerical gradient: %5.5e + %5.5e j" %(numerical_gradient.real, numerical_gradient.imag)) print("analytical gradient: %5.5e + %5.5e j" %(analytical_gradient.real, analytical_gradient.imag)) def _forwardMeasure(self, fx_illu, fy_illu, obj = None): """ From an illumination angle, this function computes the exit wave. fx_illu, fy_illu: illumination angle in x and y (scalars) obj: object to be passed through (Optional, default pick from phase_obj_3d) """ if obj is None: fields = self._scattering_obj.forward(self._x, fx_illu, fy_illu) else: fields = self._scattering_obj.forward(obj, fx_illu, fy_illu) field_scattered = self._aberration_obj.forward(fields["forward_scattered_field"]) field_scattered = self._defocus_obj.forward(field_scattered, self.prop_distances) fields["forward_scattered_field"] = field_scattered if self._scattering_obj.back_scatter: field_scattered = self._aberration_obj.forward(fields["back_scattered_field"]) field_scattered = self._defocus_obj.forward(field_scattered, self.prop_distances) fields["back_scattered_field"] = field_scattered return fields def _computeGradient(self, field_measure, amplitude, cache): """ Error backpropagation to return a gradient field_measure: exit wave computed in forward model amplitude: amplitude measured cache: exit wave at each layer, saved previously """ field_bp = field_measure - amplitude*af.exp(1.0j*af.arg(field_measure)) field_bp = self._defocus_obj.adjoint(field_bp, self.prop_distances) field_bp = self._aberration_obj.adjoint(field_bp) gradient = self._scattering_obj.adjoint(field_bp, cache) return gradient["gradient"] def _initialization(self,configs, x_init = None): """ Initialize algorithm configs: configs object from class AlgorithmConfigs x_init: initial guess of object """ if x_init is None: if self.scat_model is "MultiTrans": self._x[:, :, :] = 1.0 else: self._x[:, :, :] = 0.0 else: self._x[:, :, :] = x_init def _solveFirstOrderGradient(self, configs, amplitudes, verbose): """ MAIN part of the solver, runs the FISTA algorithm configs: configs object from class AlgorithmConfigs amplitudes: all measurements verbose: boolean variable to print verbosely """ flag_FISTA = False if configs.method == "FISTA": flag_FISTA = True # update multiple angles at a time batch_update = False if configs.fista_global_update or configs.batch_size != 1: gradient_batch = af.constant(0.0, self.phase_obj_3d.shape[0],\ self.phase_obj_3d.shape[1],\ self.phase_obj_3d.shape[2], dtype = af_complex_datatype) batch_update = True if configs.fista_global_update: configs.batch_size = 0 #TODO: what if num_batch is not an integer if configs.batch_size == 0: num_batch = 1 else: if self.number_rot < 2: num_batch = self.number_illum // configs.batch_size else: num_batch = self.number_rot // configs.batch_size stepsize = configs.stepsize max_iter = configs.max_iter reg_term = configs.reg_term configs.error = [] obj_gpu = af.constant(0.0, self.phase_obj_3d.shape[0],\ self.phase_obj_3d.shape[1],\ self.phase_obj_3d.shape[2], dtype = af_complex_datatype) #Initialization for FISTA update if flag_FISTA: restart = configs.restart y_k = self._x.copy() t_k = 1.0 #Start of iterative algorithm with contexttimer.Timer() as timer: if verbose: print("---- Start of the %5s algorithm ----" %(self.scat_model)) for iteration in range(max_iter): cost = 0.0 obj_gpu[:] = af.to_array(self._x) if configs.random_order: rot_order = np.random.permutation(range(self.number_rot)) illu_order = np.random.permutation(range(self.number_illum)) else: rot_order = range(self.number_rot) illu_order = range(self.number_illum) for batch_idx in range(num_batch): if batch_update: gradient_batch[:,:,:] = 0.0 if configs.batch_size == 0: rot_indices = rot_order illu_indices = illu_order else: if self.number_rot < 2: rot_indices = rot_order illu_indices = illu_order[batch_idx * configs.batch_size : (batch_idx+1) * configs.batch_size] else: illu_indices = illu_order rot_indices = rot_order[batch_idx * configs.batch_size : (batch_idx+1) * configs.batch_size] for rot_idx in rot_indices: # Rotate the object if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, self.rot_angles[rot_idx]) if batch_update: self._rot_obj.rotate(gradient_batch, self.rot_angles[rot_idx]) for illu_idx in illu_indices: #forward scattering fx_illu = self.fx_illu_list[illu_idx] fy_illu = self.fy_illu_list[illu_idx] fields = self._forwardMeasure(fx_illu, fy_illu, obj = obj_gpu) field_measure = fields["forward_scattered_field"] cache = fields["cache"] #calculate error amplitude = af.to_array(amplitudes[:,:,:,illu_idx, rot_idx]) residual = af.abs(field_measure) - amplitude cost += af.sum(residual*af.conjg(residual)).real #calculate gradient if batch_update: gradient_batch[:, :, :] += self._computeGradient(field_measure, amplitude, cache) else: obj_gpu[:, :, :] -= stepsize * self._computeGradient(field_measure, amplitude, cache) field_measure = None cache = None amplitude = None if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, -1.0*self.rot_angles[rot_idx]) if batch_update: self._rot_obj.rotate_adj(gradient_batch, self.rot_angles[rot_idx]) if batch_update: obj_gpu[:, :, :] -= stepsize * gradient_batch if
np.isnan(obj_gpu)
numpy.isnan
# Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: BSD 3 clause from __future__ import division from itertools import chain, combinations import warnings from itertools import combinations_with_replacement as combinations_w_r from distutils.version import LooseVersion import numpy as np from scipy import sparse from scipy import stats from scipy import optimize from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six import string_types from ..utils import check_array from ..utils.extmath import row_norms from ..utils.extmath import _incremental_mean_and_var from ..utils.fixes import boxcox, nanpercentile, nanmedian from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, incr_mean_variance_axis, min_max_axis) from ..utils.validation import (check_is_fitted, check_random_state, FLOAT_DTYPES) from ._encoders import OneHotEncoder BOUNDS_THRESHOLD = 1e-7 zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'QuantileTransformer', 'PowerTransformer', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'quantile_transform', 'power_transform', ] def _handle_zeros_in_scale(scale, copy=True): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == .0: scale = 1. return scale elif isinstance(scale, np.ndarray): if copy: # New array to avoid side-effects scale = scale.copy() scale[scale == 0.0] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : {array-like, sparse matrix} The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSC matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSC matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSC matrix. NaNs are treated as missing values: disregarded to compute the statistics, and maintained during the data transformation. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. See also -------- StandardScaler: Performs scaling to unit variance using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ # noqa X = check_array(X, accept_sparse='csc', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES, force_all_finite='allow-nan') if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if with_std: _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var, copy=False) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) if with_mean: mean_ = np.nanmean(X, axis) if with_std: scale_ = np.nanstd(X, axis) # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = np.nanmean(Xr, axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: scale_ = _handle_zeros_in_scale(scale_, copy=False) Xr /= scale_ if with_mean: mean_2 = np.nanmean(Xr, axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # scale_ is very small so that mean_2 = mean_1/scale_ > 0, even # if mean_1 was close to zero. The problem is thus essentially # due to the lack of precision of mean_. A solution is then to # subtract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range : tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. data_min_ : ndarray, shape (n_features,) Per feature minimum seen in the data .. versionadded:: 0.17 *data_min_* data_max_ : ndarray, shape (n_features,) Per feature maximum seen in the data .. versionadded:: 0.17 *data_max_* data_range_ : ndarray, shape (n_features,) Per feature range ``(data_max_ - data_min_)`` seen in the data .. versionadded:: 0.17 *data_range_* Examples -------- >>> from sklearn.preprocessing import MinMaxScaler >>> >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] >>> scaler = MinMaxScaler() >>> print(scaler.fit(data)) MinMaxScaler(copy=True, feature_range=(0, 1)) >>> print(scaler.data_max_) [ 1. 18.] >>> print(scaler.transform(data)) [[0. 0. ] [0.25 0.25] [0.5 0.5 ] [1. 1. ]] >>> print(scaler.transform([[2, 2]])) [[1.5 0. ]] See also -------- minmax_scale: Equivalent function without the estimator API. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.min_ del self.n_samples_seen_ del self.data_min_ del self.data_max_ del self.data_range_ def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of min and max on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) if sparse.issparse(X): raise TypeError("MinMaxScaler does no support sparse input. " "You may consider to use MaxAbsScaler instead.") X = check_array(X, copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES, force_all_finite="allow-nan") data_min = np.nanmin(X, axis=0) data_max = np.nanmax(X, axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next steps else: data_min = np.minimum(self.data_min_, data_min) data_max = np.maximum(self.data_max_, data_max) self.n_samples_seen_ += X.shape[0] data_range = data_max - data_min self.scale_ = ((feature_range[1] - feature_range[0]) / _handle_zeros_in_scale(data_range)) self.min_ = feature_range[0] - data_min * self.scale_ self.data_min_ = data_min self.data_max_ = data_max self.data_range_ = data_range return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES, force_all_finite="allow-nan") X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. It cannot be sparse. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES, force_all_finite="allow-nan") X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. .. versionadded:: 0.17 *minmax_scale* function interface to :class:`sklearn.preprocessing.MinMaxScaler`. Parameters ---------- X : array-like, shape (n_samples, n_features) The data. feature_range : tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). See also -------- MinMaxScaler: Performs scaling to a given range using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). Notes ----- For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. X = check_array(X, copy=False, ensure_2d=False, warn_on_dtype=True, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual features do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. This scaler can also be applied to sparse CSR or CSC matrices by passing `with_mean=False` to avoid breaking the sparsity structure of the data. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). Attributes ---------- scale_ : ndarray or None, shape (n_features,) Per feature relative scaling of the data. Equal to ``None`` when ``with_std=False``. .. versionadded:: 0.17 *scale_* mean_ : ndarray or None, shape (n_features,) The mean value for each feature in the training set. Equal to ``None`` when ``with_mean=False``. var_ : ndarray or None, shape (n_features,) The variance for each feature in the training set. Used to compute `scale_`. Equal to ``None`` when ``with_std=False``. n_samples_seen_ : int or array, shape (n_features,) The number of samples processed by the estimator for each feature. If there are not missing samples, the ``n_samples_seen`` will be an integer, otherwise it will be an array. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. Examples -------- >>> from sklearn.preprocessing import StandardScaler >>> data = [[0, 0], [0, 0], [1, 1], [1, 1]] >>> scaler = StandardScaler() >>> print(scaler.fit(data)) StandardScaler(copy=True, with_mean=True, with_std=True) >>> print(scaler.mean_) [0.5 0.5] >>> print(scaler.transform(data)) [[-1. -1.] [-1. -1.] [ 1. 1.] [ 1. 1.]] >>> print(scaler.transform([[2, 2]])) [[3. 3.]] See also -------- scale: Equivalent function without the estimator API. :class:`sklearn.decomposition.PCA` Further removes the linear correlation across features with 'whiten=True'. Notes ----- NaNs are treated as missing values: disregarded in fit, and maintained in transform. For a comparison of the different scalers, transformers, and normalizers, see :ref:`examples/preprocessing/plot_all_scaling.py <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`. """ # noqa def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.mean_ del self.var_ def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, <NAME>., <NAME>, and <NAME>. "Algorithms for computing the sample variance: Analysis and recommendations." The American Statistician 37.3 (1983): 242-247: Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y Ignored """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES, force_all_finite='allow-nan') # Even in the case of `with_mean=False`, we update the mean anyway # This is needed for the incremental computation of the var # See incr_mean_variance_axis and _incremental_mean_variance_axis # if n_samples_seen_ is an integer (i.e. no missing values), we need to # transform it to a NumPy array of shape (n_features,) required by # incr_mean_variance_axis and _incremental_variance_axis if (hasattr(self, 'n_samples_seen_') and isinstance(self.n_samples_seen_, (int, np.integer))): self.n_samples_seen_ = np.repeat(self.n_samples_seen_, X.shape[1]).astype(np.int64) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") sparse_constructor = (sparse.csr_matrix if X.format == 'csr' else sparse.csc_matrix) counts_nan = sparse_constructor( (np.isnan(X.data), X.indices, X.indptr), shape=X.shape).sum(axis=0).A.ravel() if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = (X.shape[0] - counts_nan).astype(np.int64) if self.with_std: # First pass if not hasattr(self, 'scale_'): self.mean_, self.var_ = mean_variance_axis(X, axis=0) # Next passes else: self.mean_, self.var_, self.n_samples_seen_ = \ incr_mean_variance_axis(X, axis=0, last_mean=self.mean_, last_var=self.var_, last_n=self.n_samples_seen_) else: self.mean_ = None self.var_ = None if hasattr(self, 'scale_'): self.n_samples_seen_ += X.shape[0] - counts_nan else: if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = np.zeros(X.shape[1], dtype=np.int64) # First pass if not hasattr(self, 'scale_'): self.mean_ = .0 if self.with_std: self.var_ = .0 else: self.var_ = None if not self.with_mean and not self.with_std: self.mean_ = None self.var_ = None self.n_samples_seen_ += X.shape[0] - np.isnan(X).sum(axis=0) else: self.mean_, self.var_, self.n_samples_seen_ = \ _incremental_mean_and_var(X, self.mean_, self.var_, self.n_samples_seen_) # for backward-compatibility, reduce n_samples_seen_ to an integer # if the number of samples is the same for each feature (i.e. no # missing values) if
np.ptp(self.n_samples_seen_)
numpy.ptp
from __future__ import division import numpy, pandas from scipy.signal import butter from scipy import interpolate import scipy import csv import click import sys, os, re, pprint from scipy.optimize import curve_fit from scipy.fftpack import fft from scipy.signal import butter, lfilter, find_peaks_cwt, detrend, periodogram, remez, iirfilter from scipy.interpolate import CubicSpline, interp1d, UnivariateSpline from src.utils import metadataExtractor, cxpPrinter import collections def gcamp_interpolate(gcamp, number_of_additional_timepoints): gcamp_len = len(gcamp) timelabels = range(0, gcamp_len) cs = scipy.interpolate.CubicSpline(timelabels, gcamp) timelabels_spline = numpy.arange(0, gcamp_len-1, 1/number_of_additional_timepoints) gcamp_spline = cs(timelabels_spline) return gcamp_spline def gcamp_normalize(gcamp, gcamp_min, gcamp_max): # signal min already remove during extraction return numpy.asarray(gcamp) / (gcamp_max - gcamp_min) def gcamp_fwhm(gcamp, window_length, peak_ind, original_gcamp_length): win_rise = peak_ind - window_length if peak_ind >= window_length else 0 win_fall = peak_ind + window_length + 1 if peak_ind < len(gcamp) - window_length else len(gcamp) gcamp_windowed = gcamp[win_rise:win_fall] # look for a minimum within the window # argrelextrema requires an *order* less than or equal to half the length of the input array if window_length > len(gcamp_windowed) / 2: min_ind = scipy.signal.argrelextrema(gcamp_windowed, numpy.less, order=numpy.floor(len(gcamp_windowed) / 2).astype(int)) else: min_ind = scipy.signal.argrelextrema(gcamp_windowed, numpy.less, order=window_length) if len(min_ind[0]) == 0: min_ind = numpy.where(gcamp_windowed == numpy.min(gcamp_windowed)) fwhm_cutoff = (gcamp[peak_ind] - numpy.min(gcamp_windowed[min_ind])) / 2 + numpy.min(gcamp_windowed[min_ind]) window_length_expanded = window_length * 2 # after determining a cutoff expand the search in case of assymettry between rise and fall # a fold change of 2 implies the decay of a signal could take twice as long as the activation of length *window_length* # alternatively, the entire time-series could be searched. This might be better since processing costs for this length of signal are neglgible win_rise_expanded = peak_ind - window_length_expanded if peak_ind >= window_length_expanded else 0 win_fall_expanded = peak_ind + window_length_expanded + 1 if peak_ind < len( gcamp) - window_length_expanded else len(gcamp) gcamp_windowed_expanded = gcamp[win_rise_expanded:win_fall_expanded] peak_ind_expanded = peak_ind - win_rise_expanded # There are special cases when the signal in the window does not reach the *fwhm_cutoff*. # When this happens the fwhm will just use the ends of the window. # The first point past the cutoff is chosen by numpy.min() and numpy.max(). # To choose the closest index, the first point just before the closet index must also be considered. fwhm_rise_ind = numpy.where(gcamp_windowed_expanded[:peak_ind_expanded] < fwhm_cutoff) if len(fwhm_rise_ind[0]) == 0: fwhm_rise = peak_ind - win_rise_expanded else: fwhm_riseA = numpy.asscalar(peak_ind_expanded - numpy.max(fwhm_rise_ind)) fwhm_rise_testA = abs(gcamp_windowed_expanded[peak_ind_expanded - fwhm_riseA] - fwhm_cutoff) fwhm_rise_testB = abs(gcamp_windowed_expanded[peak_ind_expanded - fwhm_riseA + 1] - fwhm_cutoff) fwhm_rise = fwhm_riseA if fwhm_rise_testA <= fwhm_rise_testB else fwhm_riseA - 1 fwhm_fall_ind = numpy.where(gcamp_windowed_expanded[peak_ind_expanded:] < fwhm_cutoff) if len(fwhm_fall_ind[0]) == 0: fwhm_fall = win_fall_expanded - peak_ind - 1 # the *-1* is to correct for an offset else: fwhm_fallA = numpy.asscalar(numpy.min(fwhm_fall_ind)) fwhm_fall_testA = abs(gcamp_windowed_expanded[fwhm_fallA + peak_ind_expanded] - fwhm_cutoff) fwhm_fall_testB = abs(gcamp_windowed_expanded[fwhm_fallA + peak_ind_expanded - 1] - fwhm_cutoff) fwhm_fall = fwhm_fallA if fwhm_fall_testA <= fwhm_fall_testB else fwhm_fallA - 1 # fwhm_rise and fwhm_fall should be greater than zero fwhm_rise = 1 if fwhm_rise == 0 else fwhm_rise fwhm_fall = 1 if fwhm_fall == 0 else fwhm_fall # peak width peak_start_ind = (peak_ind - fwhm_rise) if (peak_ind - fwhm_rise) > 0 else 0 peak_end_ind = (peak_ind + fwhm_fall) if (peak_ind + fwhm_fall) < len(gcamp) else len(gcamp)-1 peak_width = peak_end_ind - peak_start_ind # same as fwhm_rise + fwhm_fall # area under the curve (area under the peak only) area_under_curve = numpy.trapz(gcamp[peak_start_ind:peak_end_ind+1], dx=original_gcamp_length/len(gcamp)) return fwhm_rise, fwhm_fall, fwhm_cutoff, peak_width, area_under_curve # To find in array the element closest to value def find_nearest(array,value,startIdx,endIdx): if endIdx < len(array)-1: endIdx = endIdx+1 idx = (numpy.abs(array[startIdx:endIdx]-value)).argmin() + startIdx return idx # - To obtain half maximum points, peak start/end, height # - Half max data not used currently, this method also returns other important # metrics such as peak height, etc. def getPeakDefiningPoints(signal, peaks, valleys, wellmin): half_maximums, peak_halfmax_starts, peak_halfmax_ends = [],[],[] # halfmax values (halfmax,halfmax start, halfmax end) peak_rise_starts, peak_fall_ends= [],[] peak_heights_localmin, peak_heights_signalmin, peak_heights_wellmin = [],[],[] for idx,peak in enumerate(peaks): # Step 1: Get valleys between previous and current peak if len(peaks) > 1 and idx > 0: valleys_considered = valleys[(valleys > peaks[idx - 1]) & (valleys < peak)] else: valleys_considered = valleys[(valleys < peak)] # Step 2: Determine peak start index if len(valleys_considered) > 0: peak_start = valleys_considered[-1] # 1st valley to the left of current peak else: peak_start = 0 peak_rise_starts.append(peak_start) # Step 3: Determine peak end idx if idx <= len(peaks) - 2: # if there is at least 1 more peak in peaks # valleys between current and next peak nextValleys = valleys[(valleys > peak) & (valleys < peaks[idx + 1])] else: # valleys between current peak and end of signal nextValleys = valleys[(valleys > peak) & (valleys < (len(signal)-1))] # take 1st valley to the right of current peak if len(nextValleys) > 0: peak_end = nextValleys[0] else: peak_end = len(signal) - 1 peak_fall_ends.append(peak_end) # Step 4: Compute halfmax and approximate corresponding halfmax start/end index halfmax = (max(signal[peak] - signal[peak_start], signal[peak] - signal[peak_end]))/2.0 + signal[peak_start] half_maximums.append(halfmax) halfmax_start = find_nearest(signal, halfmax, peak_start, peak) peak_halfmax_starts.append(halfmax_start) peak_halfmax_ends.append(find_nearest(signal, signal[halfmax_start], peak, peak_end)) # Step 5: Compute peak height # Method 1: Difference between gcamp signal and minimum value of that same gcamp signal. peakheight_signalmin = signal[peak] - min(signal) peak_heights_signalmin.append(peakheight_signalmin) # Method 2: Difference between gcamp signal and local minimum of the peak under analysis. peakheight_localmin = max(signal[peak] - signal[peak_start], signal[peak] - signal[peak_end]) peak_heights_localmin.append(peakheight_localmin) # Method 3: Difference between gcamp signal and minimum gcamp value (avg background intensity of well) # This difference correspond to the height of the signal itself as it is corrected for background intensity already. peakheight_wellmin = signal[peak] peak_heights_wellmin.append(peakheight_wellmin) return half_maximums, peak_halfmax_starts, peak_halfmax_ends, peak_rise_starts, peak_fall_ends, peak_heights_signalmin, peak_heights_localmin, peak_heights_wellmin def wavelet_peak(gcamp, max_scale, min_length_0, min_snr_0, noise_perc_0): widths = numpy.arange(1,max_scale,1) peakind = find_peaks_cwt(detrend(gcamp), widths, max_distances=widths/2, gap_thresh=3, min_length=min_length_0, min_snr=min_snr_0, noise_perc=noise_perc_0) if len(peakind) == 0: peakind = [0] return peakind """ x: signal min_peak_height: anything smaller than that will be rejected edge: {'rising','falling','both'} --> determine which indices to keep for irregular peaks, plateaus, etc. valley: if true, will returns indices of valleys instead of peaks min_rel_height_neighbor: specifies a minimum relative height difference between peaks and their immediate neighbors min_peak_distance: minimum distance that must separate each peak for them to be valid keep_peaks_same_height: keep peaks of same height even if closer than min_peak_distance Returns indices of identified peaks """ def find_peaks(x, min_peak_height=None, edge='rising', valley=False, min_rel_height_neighbor=0, min_peak_distance=1, keep_peaks_same_height=False): # need at least 3 points to identify valid peaks if x.size < 3: return numpy.array([], dtype=int) # if looking for valleys, invert the signal and look for peaks if valley: x = -x # identify the different types of peaks dx = numpy.diff(x) singlePointPeaks, risingEdgePeaks, fallingEdgePeaks = numpy.array([[], [], []], dtype=int) if not edge: singlePointPeaks = numpy.where((numpy.hstack((dx, 0)) < 0) & (numpy.hstack((0, dx)) > 0))[0] else: if edge.lower() in ['rising', 'both']: risingEdgePeaks = numpy.where((numpy.hstack((dx, 0)) <= 0) & (numpy.hstack((0, dx)) > 0))[0] if edge.lower() in ['falling', 'both']: fallingEdgePeaks = numpy.where((numpy.hstack((dx, 0)) < 0) & (numpy.hstack((0, dx)) >= 0))[0] ind = numpy.unique(numpy.hstack((singlePointPeaks, risingEdgePeaks, fallingEdgePeaks))) # first and last values of x cannot be peaks if ind.size and ind[0] == 0: ind = ind[1:] if ind.size and ind[-1] == x.size - 1: ind = ind[:-1] # keep only peaks > minimum peak height if ind.size and min_peak_height is not None: ind = ind[x[ind] >= min_peak_height] # remove peaks that are less than "neighbor_threshold" higher than their neighbors if ind.size and min_rel_height_neighbor > 0: dx_neighbors = numpy.min(numpy.vstack([x[ind] - x[ind - 1], x[ind] - x[ind + 1]]), axis=0) ind = numpy.delete(ind, numpy.where(dx_neighbors < min_rel_height_neighbor)[0]) # identify peaks closer to one another than min_peak_distance if ind.size and min_peak_distance > 1: ind = ind[numpy.argsort(x[ind])][::-1] # sort ind by peak height idel = numpy.zeros(ind.size, dtype=bool) for i in range(ind.size): if not idel[i]: # keep peaks with the same height if kpsh is True idel = idel | (ind >= ind[i] - min_peak_distance) & (ind <= ind[i] + min_peak_distance) \ & (x[ind[i]] > x[ind] if keep_peaks_same_height else True) idel[i] = 0 # Keep current peak # remove the small peaks and sort back the indexes by their occurrence ind = numpy.sort(ind[~idel]) return ind # Returns wavelet analysis and periodogram stored in ordered dictionary def wavelet_periodogram_extraction(gcamp, original_gcamp_length): d = collections.OrderedDict() # correction factor to account for interpolation correction_factor = original_gcamp_length / len(gcamp) # Wavelet 8 (8 is better as a general peak identifier) window_length_wavelet8 = 15 peak_ind_wavelet8 = wavelet_peak(gcamp, 8, 5, 2, 10) # peak_ind_wavelet8 = [i for i in peak_ind_wavelet8 if gcamp[i] >= threshold] if len(peak_ind_wavelet8) == 0 or (len(peak_ind_wavelet8) == 1 and peak_ind_wavelet8[0] == 0): d["wavelet8_peak_count"] = 0 d["wavelet8_firing_rate"] = 0 else: # full-width half-maximum computations fwhm_wavelet8 = [gcamp_fwhm(gcamp, window_length_wavelet8, pk, original_gcamp_length) for pk in peak_ind_wavelet8] fwhm_wavelet8_arr = numpy.asarray(fwhm_wavelet8) fwhm_wavelet8_average = numpy.average(fwhm_wavelet8_arr, 0) fwhm_wavelet8_sum = numpy.sum(fwhm_wavelet8_arr, 0) # used for total AUC # add features to dictionary d["wavelet8_peak_count"] = len(peak_ind_wavelet8) d["wavelet8_firing_rate"] = len(peak_ind_wavelet8) / original_gcamp_length d["wavelet8_amplitude"] = numpy.mean(gcamp[peak_ind_wavelet8]) d["wavelet8_fwhm_rise_time"] = fwhm_wavelet8_average[0] * correction_factor d["wavelet8_fwhm_fall_time"] = fwhm_wavelet8_average[1] * correction_factor d["wavelet8_fwhm_cutoff"] = fwhm_wavelet8_average[2] d["wavelet8_fwhm_peak_width"] = fwhm_wavelet8_average[3] * correction_factor d["wavelet8_fwhm_area_under_curve"] = fwhm_wavelet8_average[4] d["wavelet8_fwhm_total_area_under_curve"] = fwhm_wavelet8_sum[4] d["wavelet8_fwhm_rise_fall_ratio_mean"] = numpy.mean( numpy.divide(fwhm_wavelet8_arr[:, 0], fwhm_wavelet8_arr[:, 1])) if len(peak_ind_wavelet8) > 1: d["wavelet8_spike_interval_mean"] = numpy.mean(numpy.diff(peak_ind_wavelet8) * correction_factor) d["wavelet8_spike_interval_var"] = numpy.var(numpy.diff(peak_ind_wavelet8) * correction_factor) # Wavelet 4 (4 is good for identifying peaks of smaller amplitude) window_length_wavelet4 = 9 peak_ind_wavelet4 = wavelet_peak(gcamp, 4, 3, 1, 10) if len(peak_ind_wavelet4) == 0 or (len(peak_ind_wavelet4) == 1 and peak_ind_wavelet4[0] == 0): d["wavelet4_peak_count"] = 0 d["wavelet4_firing_rate"] = 0 else: # full-width half-maximum computations fwhm_wavelet4 = [gcamp_fwhm(gcamp, window_length_wavelet4, pk, original_gcamp_length) for pk in peak_ind_wavelet4] fwhm_wavelet4_arr = numpy.asarray(fwhm_wavelet4) fwhm_wavelet4_average = numpy.average(fwhm_wavelet4_arr, 0) fwhm_wavelet4_sum = numpy.sum(fwhm_wavelet4_arr, 0) # used for total AUC # add features to dictionary d["wavelet4_peak_count"] = len(peak_ind_wavelet4) d["wavelet4_firing_rate"] = len(peak_ind_wavelet4) / original_gcamp_length d["wavelet4_amplitude"] = numpy.mean(gcamp[peak_ind_wavelet4]) d["wavelet4_fwhm_rise_time"] = fwhm_wavelet4_average[0] * correction_factor d["wavelet4_fwhm_fall_time"] = fwhm_wavelet4_average[1] * correction_factor d["wavelet4_fwhm_cutoff"] = fwhm_wavelet4_average[2] d["wavelet4_fwhm_peak_width"] = fwhm_wavelet4_average[3] * correction_factor d["wavelet4_fwhm_area_under_curve"] = fwhm_wavelet4_average[4] d["wavelet4_fwhm_total_area_under_curve"] = fwhm_wavelet4_sum[4] d["wavelet4_fwhm_rise_fall_ratio_mean"] = numpy.mean( numpy.divide(fwhm_wavelet4_arr[:, 0], fwhm_wavelet4_arr[:, 1])) if len(peak_ind_wavelet4) > 1: d["wavelet4_spike_interval_mean"] = numpy.mean(numpy.diff(peak_ind_wavelet4) * correction_factor) d["wavelet4_spike_interval_var"] = numpy.var(numpy.diff(peak_ind_wavelet4) * correction_factor) # Periodogram (Fourier Fast Transform, Power Spectral Density) # For a typical 45-timepoint series, we expect 89 distinct frequencies along with their weights (aka power) # The number of distinct frequency components can be computed using the following formula: # numFreq = len(gcamp)/2 + 1 # If gcamp is non interpolated, then --> numFreq = ((len(gcamp)-1)*num_additional_points)/2 + 1 f, Pxx_den = scipy.signal.periodogram(scipy.signal.detrend(gcamp)) for index, power in enumerate(Pxx_den): key = "periodogram_{0}".format(index) d[key] = power return d # Gets gcamp features (processes a single object, i.e. a gcamp time series) def gcamp_feature_extraction(gcamp,well,obj_number, thresholds, original_gcamp_length, platename, well_types_dict, wellmins): # retrieve well type well_type = 'unspecified' # default well type for key in well_types_dict.keys(): if well in well_types_dict[key]: well_type = key break # instantiate ordered dictionary d = collections.OrderedDict() d["plate"] = platename d["well"] = well d["well_type"] = well_type d["obj_number"] = obj_number # signal stats d["signal_mean"] = numpy.mean(gcamp) d["signal_var"] =
numpy.var(gcamp)
numpy.var
"""Generic protoplanetary disk model The density is given by .. math:: \\rho = \\frac{\\Sigma(r,\\phi)}{H_p\\sqrt{(2\\pi)}} \\exp{\\left(-\\frac{z^2}{2H_p^2}\\right)} * :math:`\Sigma` - surface density * :math:`H_{\\rm p}` - Pressure scale height There are two options for the functional form of surface density as a function of radius. For a simple power-law the surface density is given by * :math:`\Sigma(r) = \\Sigma_0\\left(\\frac{r}{r_{\\rm out}}\\right)^p` alternatively the surface density can also have an exponential outer tapering: * :math:`\Sigma(r) = \\Sigma_0\\left(\\frac{r}{r_{\\rm out}}\\right)^p\\exp{\\left\\{-\\left(\\frac{r}{r_{\\rm out}}\\right)^{2+p}\\right\\}}` The molecular abundance function takes into account dissociation and freeze-out of the molecules For photodissociation only the continuum (dust) shielding is taken into account in a way that whenever the continuum optical depth radially drops below a threshold value the molecular abundance is dropped to zero. For freeze-out the molecular abundance below a threshold temperature is decreased by a given fractor. """ from __future__ import absolute_import from __future__ import print_function import warnings import traceback try: import numpy as np except ImportError: np = None print(' Numpy cannot be imported ') print(' To use the python module of RADMC-3D you need to install Numpy') print(traceback.format_exc()) from .. natconst import * from .. import analyze def getModelDesc(): """Returns the brief description of the model. """ return "Generic protoplanetary disk model" def getDefaultParams(): """Function to provide default parameter values of the model. Returns a list whose elements are also lists with three elements: 1) parameter name, 2) parameter value, 3) parameter description All three elements should be strings. The string of the parameter value will be directly written out to the parameter file if requested, and the value of the string expression will be evaluated and be put to radmc3dData.ppar. The third element contains the description of the parameter which will be written in the comment field of the line when a parameter file is written. """ defpar = [ ['xres_nlev', '3', 'Number of refinement levels'], ['xres_nspan', '3', 'Number of the original grid cells to refine'], ['xres_nstep', '3', 'Number of grid cells to create in a refinement level'], ['nx', '[30,50]', 'Number of grid points in the first dimension'], ['xbound', '[1.0*au,1.05*au, 100.0*au]', 'Number of radial grid points'], ['ny', '[10,30,30,10]', 'Number of grid points in the first dimension'], ['ybound', '[0., pi/3., pi/2., 2.*pi/3., pi]', 'Number of radial grid points'], ['nz', '30', 'Number of grid points in the first dimension'], ['zbound', '[0., 2.0*pi]', 'Number of radial grid points'], ['gasspec_mol_name', "['co']", ''], ['gasspec_mol_abun', '[1e-4]', ''], ['gasspec_mol_dbase_type', "['leiden']", ''], ['gasspec_mol_dissoc_taulim', '[1.0]', 'Continuum optical depth limit below which all molecules dissociate'], ['gasspec_mol_freezeout_temp', '[19.0]', 'Freeze-out temperature of the molecules in Kelvin'], ['gasspec_mol_freezeout_dfact', '[1e-3]', 'Factor by which the molecular abundance should be decreased in the frezze-out zone'], ['gasspec_vturb', '0.2e5', 'Microturbulent line width'], ['rin', '1.0*au', ' Inner radius of the disk'], ['rdisk', '100.0*au', ' Outer radius of the disk'], ['hrdisk', '0.1', ' Ratio of the pressure scale height over radius at hrpivot'], ['hrpivot', "100.0*au", ' Reference radius at which Hp/R is taken'], ['plh', '1./7.', ' Flaring index'], ['plsig1', '-1.0', ' Power exponent of the surface density distribution as a function of radius'], ['sig0', '0.0', ' Surface density at rdisk'], ['mdisk', '1e-3*ms', ' Mass of the disk (either sig0 or mdisk should be set to zero or commented out)'], ['bgdens', '1e-30', ' Background density (g/cm^3)'], ['srim_rout', '0.0', 'Outer boundary of the smoothing in the inner rim in terms of rin'], ['srim_plsig', '0.0', 'Power exponent of the density reduction inside of srim_rout*rin'], ['prim_rout', '0.0', 'Outer boundary of the puffed-up inner rim in terms of rin'], ['hpr_prim_rout', '0.0', 'Pressure scale height at rin'], ['gap_rin', '[0e0*au]', ' Inner radius of the gap'], ['gap_rout', '[0e0*au]', ' Outer radius of the gap'], ['gap_drfact', '[0e0]', ' Density reduction factor in the gap'], ['sigma_type', '0', ' Surface density type (0 - polynomial, 1 - exponential outer edge (viscous self-similar solution)'], ['dusttogas', '0.01', ' Dust-to-gas mass ratio']] return defpar def getDustDensity(grid=None, ppar=None): """Calculates the dust density distribution in a protoplanetary disk. Parameters ---------- grid : radmc3dGrid An instance of the radmc3dGrid class containing the spatial and frequency/wavelength grid ppar : dictionary A dictionary containing all parameters of the model Returns ------- Returns the volume density in g/cm^3 """ # Get the gas density rhogas = getGasDensity(grid=grid, ppar=ppar) rho = np.array(rhogas) * ppar['dusttogas'] # Split up the disk density distribution according to the given abundances if 'ngs' in ppar: if ppar['ngs'] > 1: ngs = ppar['ngs'] # # WARNING!!!!!! # At the moment I assume that the multiple dust population differ from each other only in # grain size but not in bulk density thus when I calculate the abundances / mass fractions # they are independent of the grains bulk density since abundances/mass fractions are normalized # to the total mass. Thus I use 1g/cm^3 for all grain sizes. # TODO: Add the possibility to handle multiple dust species with different bulk densities and # with multiple grain sizes. # gdens = np.zeros(ngs, dtype=float) + 1.0 gs = ppar['gsmin'] * (ppar['gsmax']/ppar['gsmin'])**(np.arange(ppar['ngs'], dtype=np.float64) / (float(ppar['ngs'])-1.)) gmass = 4./3.*np.pi*gs**3. * gdens gsfact = gmass * gs**(ppar['gsdist_powex']+1) gsfact = gsfact / gsfact.sum() else: gsfact = [1.0] ngs = 1 elif 'mfrac' in ppar: ngs = len(ppar['mfrac']) gsfact = ppar['mfrac'] / ppar['mfrac'].sum() else: ngs = 1 gsfact = [1.0] # if ppar.has_key('dustkappa_ext'): # ngs = len(ppar['dustkappa_ext']) # if ppar.has_key('mfrac'): # gsfact = ppar['mfrac'] / ppar['mfrac'].sum() # else: # ngs = 1 # gsfact = [1.0] # else: # ngs = ppar['ngs'] # # WARNING!!!!!! # At the moment I assume that the multiple dust population differ from each other only in # grain size but not in bulk density thus when I calculate the abundances / mass fractions # they are independent of the grains bulk density since abundances/mass fractions are normalized # to the total mass. Thus I use 1g/cm^3 for all grain sizes. # TODO: Add the possibility to handle multiple dust species with different bulk densities and # with multiple grain sizes. # # gdens = zeros(ngs, dtype=float) + 1.0 # gs = ppar['gsmin'] * (ppar['gsmax']/ppar['gsmin'])**(arange(ppar['ngs'], dtype=float64) # / (float(ppar['ngs'])-1.)) # gmass = 4./3.*np.pi*gs**3. * gdens # gsfact = gmass * gs**(ppar['gsdist_powex']+1) # gsfact = gsfact / gsfact.sum() rho_old = np.array(rho) rho = np.zeros([grid.nx, grid.ny, grid.nz, ngs], dtype=np.float64) for igs in range(ngs): rho[:, :, :, igs] = rho_old[:, :, :] * gsfact[igs] return rho def getGasDensity(grid=None, ppar=None): """Calculates the gas density distribution in a protoplanetary disk. Parameters ---------- grid : radmc3dGrid An instance of the radmc3dGrid class containing the spatial and frequency/wavelength grid ppar : dictionary A dictionary containing all parameters of the model Returns ------- Returns the volume density in g/cm^3 """ rr, th = np.meshgrid(grid.x, grid.y) zz = rr * np.cos(th) rcyl = rr * np.sin(th) # Calculate the pressure scale height as a function of r, phi hp = np.zeros([grid.nx, grid.ny, grid.nz], dtype=np.float64) dum = ppar['hrdisk'] * (rcyl/ppar['hrpivot'])**ppar['plh'] * rcyl if 'prim_rout' in ppar: if ppar['prim_rout'] >= 1.: dum_hrdisk = ppar['hrdisk'] * (rcyl/ppar['hrpivot'])**ppar['plh'] hpr0 = ppar['hrdisk'] * (ppar['prim_rout'] * ppar['rin']/ppar['hrpivot'])**ppar['plh'] dummy =
np.log10(hpr0 / ppar['hpr_prim_rout'])
numpy.log10
import numpy as np import matplotlib.pyplot as plt import time from IPython import display # Implemented methods methods = ['DynProg', 'ValIter']; # Some colours LIGHT_RED = '#FFC4CC'; LIGHT_GREEN = '#95FD99'; BLACK = '#000000'; WHITE = '#FFFFFF'; LIGHT_PURPLE = '#E8D0FF'; LIGHT_ORANGE = '#FAE0C3'; SEB_GREEN = '#52B92C'; BUSTED_BLUE = '#5993B5' class RobbingBanks: # Actions STAY = 0 MOVE_LEFT = 1 MOVE_RIGHT = 2 MOVE_UP = 3 MOVE_DOWN = 4 # Give names to actions actions_names = { STAY: "stay", MOVE_LEFT: "move left", MOVE_RIGHT: "move right", MOVE_UP: "move up", MOVE_DOWN: "move down" } # Reward values def __init__(self, town_map): """ Constructor of the environment town_map. """ self.STEP_REWARD = 0 self.BANK_REWARD = 10 self.CAUGHT_REWARD = -50 self.town_map = town_map; self.initial_state = np.array([0,0,1,2]) self.actions = self.__actions(); self.states, self.map = self.__states(); self.n_actions = len(self.actions); self.n_states = len(self.states); self.transition_probabilities = self.__transitions(); self.rewards = self.__rewards(); def __actions(self): actions = dict(); actions[self.STAY] = np.array([0, 0]); actions[self.MOVE_LEFT] = np.array([0,-1]); actions[self.MOVE_RIGHT] =
np.array([0, 1])
numpy.array
import json import numpy as np import tensorflow as tf from utils.load_data import load_data from utils.extraction_model import load_model def find_face_units(model, data, verbose=False): """ Implementation of the method "Face-selective population estimation" from the paper : ""Convolutional neural networks explain tuning properties of anterior, but not middle, face-processing areas in macaque inferotemporal cortex https://www.nature.com/articles/s42003-020-0945-x :param model: :param config: :return: """ print("shape data", np.shape(data)) x_face = data[:50] x_object = data[50:] FSI_list = [] for layer in model.layers: if "conv" in layer.name: if verbose: print("layer:", layer.name) # cut model m = tf.keras.Model(inputs=model.input, outputs=layer.output) # predict face and non_face outputs preds_face = m.predict(x_face) preds_object = m.predict(x_object) # flatten array preds_face = np.reshape(preds_face, (np.shape(preds_face)[0], -1)) preds_object = np.reshape(preds_object, (np.shape(preds_object)[0], -1)) n_features =
np.shape(preds_face)
numpy.shape
""" Script that splits the dataset by ratio """ import shutil import os import numpy as np import argparse def get_files_from_folder(path): files = os.listdir(path) return np.asarray(files) def main(path_to_data, path_to_test_data, train_ratio): # get dirs _, dirs, _ = next(os.walk(path_to_data)) # calculates how many train data per class data_counter_per_class = np.zeros((len(dirs))) for i in range(len(dirs)): path = os.path.join(path_to_data, dirs[i]) files = get_files_from_folder(path) data_counter_per_class[i] = len(files) test_counter =
np.round(data_counter_per_class * (1 - train_ratio))
numpy.round
from config import * import numpy as np import networkx as nx import scipy.stats import glob, os def read_G(sub,ds,corr): """ read the correlation graph for a subject with a given denoising strategy """ files = glob.glob(rootdir + "/data/04_correlations/corr-%s/ds-%s/*%s*.gexf" %(corr,ds,sub)) return nx.read_gexf(files[0]) def read_M(sub,ds,corr): """ read the correlation matrix for a subject with a given denoising strategy """ filesnp = glob.glob(rootdir + "/data/04_correlations/corr-%s/ds-%s/*%s*.npy" %(corr,ds,sub)) return
np.load(filesnp[0])
numpy.load
import numpy as np import cv2 from skimage.exposure import rescale_intensity as rescale_int import matplotlib.cm as cm import SimpleITK as sitk """Different image utils.""" __author__ = '<NAME>' def get_pad_crop_bound(size): """Gets the padding or cropping bounds using the max of the input (padding) or output (cropping) size.""" max_size = np.max(size) lb = [] ub = [] for sz in size: diff = int(max_size - sz) lb.append(diff / 2) ub.append(diff - diff/2) return lb, ub def pad_resize(image, output_size, hw_only=False, interpolator=sitk.sitkNearestNeighbor, make_copy=True): """Resizes an image and pads it to a square or cubic image if required. :param image: numpy array (hw, dhw, hwc, or dhwc) or SimpleITK Image (xy or xyz). :param output_size: output size, (height, width) or (depth, height, width). :param hw_only: if True, only zero-pad the height and width. 3D image only. :param interpolator: SimpleITK interpolator. E.g. sitk.sitkNearestNeighbor, sitk.sitkLinear. :param make_copy: if True, a copy of the image is returned if there is no modification. :return: Resized image. """ if len(output_size) == 2: hw_only = False original_image = image # Remember image type for numpy array image_type = None if not isinstance(image, sitk.Image): image_type = image.dtype # Get input size in xy or xyz if isinstance(image, sitk.Image): input_size = image.GetSize() else: input_size = image.shape[::-1] if image.ndim == len(output_size) + 1: input_size = input_size[1:] # Get output size in xy or xyz output_size = output_size[::-1] # Pad square or cube if necessary # Same size for all directions (2D, 3D) if np.unique(output_size).size == 1 and np.unique(input_size).size != 1 and not hw_only: lb, ub = get_pad_crop_bound(input_size) image = pad_or_crop(sitk.ConstantPad, image, lb, ub) # Same size for height and width only (3D) elif np.unique(output_size[:2]).size == 1 and np.unique(input_size[:2]).size != 1: lb, ub = get_pad_crop_bound(input_size[:2]) image = pad_or_crop(sitk.ConstantPad, image, lb + [0], ub + [0]) # Resize if not all(input_size[i] == output_size[i] for i in range(len(output_size))): image = resize(image=image, output_size=output_size[::-1], interpolator=interpolator) # Restore type if image_type is not None: image = get_array(image) image = np.asarray(image, dtype=image_type) # Make a copy if no change if original_image is image and make_copy: if isinstance(image, sitk.Image): image = sitk.Cast(image, image.GetPixelID()) else: image = image.copy() return image def pad_or_crop(ops, image, lb, ub): """Pads or crops an image. :param ops: operation, sitk.ConstantPad or sitk.Crop. :param image: input image. Can be numpy array or SimpleITK Image. :param lb: padding lower bound. :param ub: padding upper bound. :return: padded image (SimpleITK Image). """ # Single-channel if (isinstance(image, sitk.Image) and image.GetNumberOfComponentsPerPixel() == 1) or image.ndim == len(lb): image = get_sitk_image(image) image = ops(image, lb, ub) # Multi-channel else: image = get_array(image) image = np.moveaxis(image, -1, 0) image_channels = [ops(get_sitk_image(img), lb, ub) for img in image] image = sitk.Compose(image_channels) return image def reverse_pad_resize(image, output_size, hw_only=False, interpolator=sitk.sitkNearestNeighbor): """Reverses the process of pad_resize and returns the original sized image. This function is useful for resizing the CNN output mask to fit the original image. :param image: numpy array (hw, dhw, hwc or dhwc) or SimpleITK Image (xy or xyz). :param output_size: output size, (height, width) or (depth, height, width), usually the shape of the original image before pad_resize. :param hw_only: if True, only crop the height and width. Needs to be consistent with pad_resize. :param interpolator: SimpleITK interpolator. E.g. sitk.sitkNearestNeighbor, sitk.sitkLinear. :return the resized image with output_size. """ if len(output_size) == 2: hw_only = False original_image = image # Remember image type for numpy array image_type = None if not isinstance(image, sitk.Image): image_type = image.dtype # Get input size in xy or xyz if isinstance(image, sitk.Image): input_size = image.GetSize() else: input_size = image.shape[::-1] if image.ndim == len(output_size) + 1: input_size = input_size[1:] # Get output size in xy or xyz output_size = output_size[::-1] # Resize and crop # Same size for all directions (2D, 3D) if np.unique(input_size).size == 1 and np.unique(output_size).size != 1 and not hw_only: size = np.ones(len(output_size)) * np.max(output_size) image = resize(image=image, output_size=size, interpolator=interpolator) lb, ub = get_pad_crop_bound(output_size) image = pad_or_crop(sitk.Crop, image, lb, ub) # Same size for height and width only (3D) elif np.unique(input_size[:2]).size == 1 and np.unique(output_size[:2]).size != 1: xy = output_size[:2] size = [output_size[2]] + list(np.ones(len(xy)) * np.max(xy)) # dhw image = resize(image=image, output_size=size, interpolator=interpolator) lb, ub = get_pad_crop_bound(xy) image = pad_or_crop(sitk.Crop, image, lb + [0], ub + [0]) # Resize only else: image = resize(image=image, output_size=output_size[::-1], interpolator=interpolator) # Restore type if image_type is not None: image = get_array(image) image = np.asarray(image, dtype=image_type) # Make a copy if no change if original_image is image: if isinstance(image, sitk.Image): image = sitk.Cast(image, image.GetPixelID()) else: image = image.copy() return image def resize_by_spacing(image, input_spacing=None, interpolator=sitk.sitkNearestNeighbor): """Resizes an image to isotropic spacing. The smallest spacing is used. This is useful as the image may be abnormally deformed when spacing information is discarded. :param image: numpy array (hw or dhw) or SimpleITK Image (xy or xyz). :param input_spacing: input image spacing, (height, width) or (depth, height, width). :param interpolator: SimpleITK interpolator. E.g. sitk.sitkNearestNeighbor, sitk.sitkLinear. :return: Resized image. """ if input_spacing is None: if isinstance(image, sitk.Image): input_spacing = image.GetSpacing() else: raise Exception('Input spacing must be provided for non-SimpleITK images.') # The smallest spacing is used output_spacing = np.ones(len(input_spacing)) * np.min(input_spacing) return resize(image=image, output_spacing=output_spacing, interpolator=interpolator) def resize(image, output_size=None, output_spacing=None, interpolator=sitk.sitkNearestNeighbor): """Resizes an image by the given output size and/or output spacing. :param image: numpy array (hw or dhw) or SimpleITK Image (xy or xyz). :param output_size: output size, (height, width) or (depth, height, width). :param output_spacing: output spacing, (height, width) or (depth, height, width). :param interpolator: SimpleITK interpolator. E.g. sitk.sitkNearestNeighbor, sitk.sitkLinear. :return: Resized image. """ if output_size is None and output_spacing is None: raise Exception('Both output_size and output_spacing are None.') image_type = None if not isinstance(image, sitk.Image): # Check if vector image if output_size is not None: target_dim = len(output_size) else: target_dim = len(output_spacing) isVector = False if image.ndim == target_dim + 1: isVector = True image_type = image.dtype # Remember the original type which may be changed during operations image = get_sitk_image(image, isVector=isVector) input_spacing = np.asarray(image.GetSpacing()) input_size = np.asarray(image.GetSize()) physical_size = input_spacing * input_size # Change to SimpleITK format, xy or xyz if output_size is not None: output_size = np.asarray(output_size)[::-1] if output_spacing is not None: output_spacing = np.asarray(output_spacing)[::-1] # Compute missing arguments assuming same physical size if output_spacing is None: output_spacing = physical_size / output_size elif output_size is None: output_size = physical_size / output_spacing resample = sitk.ResampleImageFilter() resample.SetInterpolator(interpolator) resample.SetSize(np.asarray(output_size, np.int)) resample.SetOutputSpacing(output_spacing) resample.SetOutputOrigin(image.GetOrigin()) image = resample.Execute(image) if image_type is not None: image = get_array(image) image = np.asarray(image, dtype=image_type) return image def get_sitk_image(image, isVector=False): """Converts to a SimpleITK Image if necessary. :param image: numpy array (hw or dhw) or SimpleITK Image (xy or xyz). :return: SimpleITK Image. """ if not isinstance(image, sitk.Image): image = sitk.GetImageFromArray(image, isVector=isVector) # Transpose is taken care by SimpleITK return image def get_array(image): """Converts to a numpy array if necessary. :param image: numpy array (hw or dhw) or SimpleITK Image (xy or xyz). :return: numpy array. """ if isinstance(image, sitk.Image): image = sitk.GetArrayFromImage(image) # Transpose is taken care by SimpleITK return image def modify_size_channel(image, output_size, channels, interpolator=sitk.sitkNearestNeighbor): """Modifies image size and channel. :param image: numpy array, channels_last, hwc or dhwc. :param output_size: output size, (height, width) or (depth, height, width). :param channels: output channels (1 or 3). :param interpolator: SimpleITK interpolator. E.g. sitk.sitkNearestNeighbor, sitk.sitkLinear. :return: modified image. """ if image.ndim not in [3, 4]: raise Exception('Input image must be 2D or 3D with channels.') # Resize all channels input_channels = image.shape[-1] output_image = [] for i in range(input_channels): output_image.append(resize(image=image[..., i], output_size=output_size, interpolator=interpolator)) image = np.array(output_image) # channels_first # Modify channels if needed if channels == 1 and input_channels == 3: image = image.mean(axis=0, keepdims=True) elif channels == 3 and input_channels == 1: image = image.repeat(channels, axis=0) # Change to channels_last axes = range(image.ndim) axes = axes[1:] + axes[:1] image = image.transpose(axes) return image def modify_size_channel_batch(image, output_size, channels, interpolator=sitk.sitkNearestNeighbor): """Modifies image size and channels of an image batch. :param image: numpy array, channels_last, bhwc or bdhwc. :param output_size: output size, (height, width) or (depth, height, width). :param channels: output channels (1 or 3). :param interpolator: SimpleITK interpolator. E.g. sitk.sitkNearestNeighbor, sitk.sitkLinear. :return: modified image batch. """ assert image.ndim in [4, 5] output_image = [] for img in image: output_image.append( modify_size_channel(image=img, output_size=output_size, channels=channels, interpolator=interpolator)) image = np.array(output_image) return image def bound_by_labels(labels, scale=1.0, pad_square=True): """ Gets a bounding box from a label image. :param labels: grey-level label image. :param scale: isotropic scaling of the bounding box. :param pad_square: True if padding the shorter side of the bounding box. :return: the bounding box with shape (2, 2). The first index is for the dimension (h, w), and the second index is for the lower and upper bounds (lb, ub). Cropping with the bounding box can be performed as: cropped = image[ bound[0][0]:bound[0][1], bound[1][0]:bound[1][1]] """ # Get bounding box _, contours, _ = cv2.findContours(labels.astype(np.uint8), mode=cv2.RETR_LIST, method=cv2.CHAIN_APPROX_SIMPLE) points = np.concatenate(contours) bound = cv2.boundingRect(points) # [x, y, w, h] # Convert format sz = np.array([bound[3], bound[2]]) bound = np.array([[bound[1], bound[1]+bound[3]], [bound[0], bound[0]+bound[2]]]) # Rescale if scale != 1.0: for i in range(2): diff = (scale-1) * 0.5 * sz[i] bound[i][0] -= diff # lower bound bound[i][1] += diff # upper bound bound = bound.astype(np.int) # Pad square sz = bound[:, 1] - bound[:, 0] if pad_square and sz[0] != sz[1]: diff = sz.max() - sz.min() idx = sz.argmin() bound[idx][0] -= diff/2 bound[idx][1] += diff/2 + diff % 2 # Correct index for i in range(2): bound[i][0] = bound[i][0] if bound[i][0] >= 0 else 0 bound[i][1] = bound[i][1] if bound[i][1] <= labels.shape[i] else labels.shape[i] return bound def windowing(image, window_center, window_width): """Performs windowing on an image. :param numpy.array image: grey-level image. :param int/list/array window_center: for a scalar, it is used as the window center. For a list or array, its length must be a multiple of two to represent pairs of possible ranges. A random number generated between a pair is used as the window center. The pair used is the same as that of window_width if it is also a list or array. :param int/list/array window_width: for a scalar, it is used as the window width. For a list or array, its length must be a multiple of two to represent pairs of possible ranges. A random number generated between a pair is used as the window width. The pair used is the same as that of window_center if it is also a list or array. :return windowed image window_center and window_width must have the same length if both are not scalar. """ idx = None # Index to both window_center and window_width if
np.isscalar(window_center)
numpy.isscalar
import numpy as np from matplotlib import pyplot as plt from torch_geometric.data import Data, DataLoader import pandas as pd import torch.optim as optim import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import MultiStepLR from torch.utils.data import TensorDataset params = { 'font.size': 12, 'xtick.labelsize': 'small', 'ytick.labelsize': 'small', 'axes.linewidth': 1.3} plt.rcParams.update(params) # Load Data labels = pd.read_csv("./data/labels.csv") print(labels.iloc[:, 1]) maximum = np.max(labels.iloc[:, 1]) minimum = np.min(labels.iloc[:, 1]) drag = labels.iloc[:, 1] # Update plotting parameters params = { 'font.size': 12, 'xtick.labelsize': 'small', 'ytick.labelsize': 'small', 'axes.linewidth': 1.3} plt.rcParams.update(params) testnodes = [] trainnodes = [] r2nodes = [] nodes = 700 X = np.zeros((0, 2 * nodes)) c = 0 lim = 1500 y = np.zeros(0) for label in labels.iloc[0:lim, 0]: if label == 'fx79w660a': c = c + 1 continue adjvel = np.loadtxt('./data/' + str(nodes) + 'manadjvel/' + label + '_adjvel', dtype='double').reshape(1, -1) meanorig = np.mean(labels.iloc[0:lim, 1]) stdorig = np.std(labels.iloc[0:lim, 1]) if (labels.iloc[c, 1] > meanorig + 2 * stdorig): print("drag too high, filtered") c = c + 1 continue if (labels.iloc[c, 1] < meanorig - 3 * stdorig): print(meanorig - 4 * stdorig) print(labels.iloc[c, 1], c) print("drag too low, filtered") c = c + 1 continue else: X = np.vstack((X, adjvel)) y = np.append(y, labels.iloc[c, 1]) c = c + 1 X_avg = np.zeros((X.shape[0], X.shape[1] - 5)) for i in range(2 * nodes - 5): X_avg[:, i] = np.mean(X[:, i:i + 5], axis=1) mean =
np.mean(y)
numpy.mean
#!/bin/env python3 import subprocess import numpy as np import matplotlib.pyplot as plt import yaml import pickle import os def layer_perf(): m = 2 #nthreads = np.arange(1, 9) nthreads = np.array([4]) means = np.zeros(nthreads.shape, dtype=np.float) std = np.zeros(nthreads.shape, dtype=np.float) times = np.zeros((m,), dtype=np.float) for i, nthread in enumerate(nthreads): print(nthread, end=": ") for j in range(m): p = subprocess.Popen("./test_layer_perf {:d}".format(nthread), shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) lines = [x.decode('ascii').rstrip() for x in p.stdout.readlines()] p.wait() times[j] = float(lines[0]) print(times[j], end=" ") print("") means[i] = np.mean(times) std[i] = np.std(times) return nthreads, means, std def main_scaling(): m = 2 modes = ["sync", "async", "rma"] with open("../config.yaml", "r") as file: config = yaml.load(file) configs = dict() for mode in modes: configs[mode] = config.copy() configs['sync']['nb_particles_per_cycle'] = 100000 configs['async']['nb_particles_per_cycle'] = 1000 configs['rma']['nb_particles_per_cycle'] = 65000 print("=== Configs ===") for mode in modes: print("{}: {}".format(mode, configs[mode])) print("===============") N = np.array([1, 2, 4, 5, 8, 10]) #N = np.array([1, 5]) res = dict() res["N"] = N res['modes'] = modes for mode in modes: print(mode) res[mode] = dict() res[mode]["means"] = np.zeros(N.shape, dtype=np.float) res[mode]["std"] =
np.zeros(N.shape, dtype=np.float)
numpy.zeros
#------------------------------------------------------------------------------ # Plotting.py # # Create publication-ready 3D and 2D plots using matplotlib # # # Created: 4/4/18 - <NAME> -- <EMAIL> # # Modified: # * 4/4/18 - DMN -- <EMAIL> # - Added documentation for this script # #------------------------------------------------------------------------------ import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib import ticker as mtick from matplotlib import rc from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import numpy as np import os from scipy.interpolate import griddata from cycler import cycler from pandas.plotting import register_matplotlib_converters import datetime from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) from matplotlib.ticker import Formatter import matplotlib.dates as mdates import matplotlib.colors as colors ### MATPLOTLIBRC FORMAT #mpl.rcParams['backend'] = 'MacOSX' # LINES mpl.rcParams['lines.linewidth'] = 2.0 # line width in points mpl.rcParams['lines.dash_capstyle'] = 'round' # butt|round|projecting # FONT mpl.rcParams['font.family'] = 'serif' mpl.rcParams['font.weight'] = 'normal' #font.size : 12.0 # mpl.rcParams['font.serif'] = 'DejaVu Serif', 'CMU Serif', 'Bitstream Vera Serif', 'New Century Schoolbook', 'Century Schoolbook L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L', 'Times New Roman', 'Times', 'Palatino', 'Charter', 'serif' mpl.rcParams['font.serif'] = 'DejaVu Serif' # TEXT mpl.rcParams['text.hinting_factor'] = 8 # Specifies the amount of softness for hinting in the # horizontal direction. A value of 1 will hint to full # pixels. A value of 2 will hint to half pixels etc. mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preview'] = True mpl.rcParams['text.latex.preamble']=[r"\usepackage{amsmath} \boldmath"] # AXES mpl.rcParams['axes.labelsize'] = 22 # fontsize of the x any y labels mpl.rcParams['axes.labelweight'] = 'medium' # weight of the x and y labels mpl.rcParams['axes.prop_cycle'] = cycler('color', ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#ffff33', '#a65628']) ## color cycle for plot lines as list of string ## colorspecs: single letter, long name, or web-style hex ## Note the use of string escapes here ('1f77b4', instead of 1f77b4) # TICKS mpl.rcParams['xtick.labelsize'] = 18 # fontsize of the tick labels mpl.rcParams['ytick.labelsize'] = 18 # fontsize of the tick labels # GRID mpl.rcParams['grid.color'] = '0.75' # grid color mpl.rcParams['grid.linestyle'] = ':' # dotted # LEGEND mpl.rcParams['legend.fancybox'] = True # if True, use a rounded box for the # legend, else a rectangle mpl.rcParams['legend.fontsize'] = 16 mpl.rcParams['legend.borderaxespad'] = 0.1 # the border between the axes and legend edge in fraction of fontsize # FIGURE mpl.rcParams['figure.figsize'] = 6,4 # figure size in inches mpl.rcParams['figure.subplot.left'] = 0.2 # the left side of the subplots of the figure mpl.rcParams['figure.subplot.right'] = 0.9 # the right side of the subplots of the figure mpl.rcParams['figure.subplot.bottom'] = 0.2 # the bottom of the subplots of the figure mpl.rcParams['figure.subplot.top'] = 0.85 # the top of the subplots of the figure mpl.rcParams['figure.subplot.wspace'] = 0.2 # the amount of width reserved for blank space between subplots mpl.rcParams['figure.subplot.hspace'] = 0.2 # the amount of height reserved for white space between subplots # SAVEFIG mpl.rcParams['savefig.dpi'] = 600 # figure dots per inch mpl.rcParams['savefig.format'] = 'svg' # png, ps, pdf, svg # To generically create multiple plots plot_linestyle = ['-','--','-.',':'] marker_weight = [30,60,40,40] plot_markerstyle = ['o','x','v','^'] def set_lims(ax,X,Y,xmin,xmax,ymin,ymax): if xmax == 0.: xmax += 0.3 # Determine the lower and upper bounds of the horizontal axis if xmax == None: xmax = np.amax(X) if xmin == None: xmin = np.amin(X) # Set the limits of the plot plt.xlim(xmin, xmax) if not isinstance(ymax,np.ndarray): # Set the window limits plt.ylim(np.amin(Y) - ymin * abs(np.amin(Y)), np.amax(Y) + ymax * abs(np.amax(Y)-np.amin(Y))) else: plt.ylim(ymin[0],ymax[0]) # Container for all plots def generate_plot( X,Y,labels,xlabel,ylabel, plot_type = 'Plot', ymax = 0.1, ymin = 0.1, xmax = None, xmin = None, tick_increment = None, showplot = False, save_plot = False, log_y = False, log_x = False, transparent = False, grid = False, folder = None, filename = 'Plot', num_col = 2, legend_loc = 'upper right', experimental_args = None, xlabelpad = 5, hide_origin = False, for_notebook=False, template='publication', file_type='pdf' ): ''' This is a function which accepts a series of data and plots it based on preset defaults as well as user-defined, custom inputs. Creator : <NAME> - <EMAIL> Mandatory Inputs: X - x-coordinate of the plot Y - y-coordinates of the plot. Must have an axis of the same length as X labels - list of strings which form the labels we will use for the legend xlabel - Label along the X-axis ylabel - Label along the Y-axis Optional Inputs: plot_type - String indicating the type of plot ymax - multiplicative value for the maximum Y value ymin - multiplicative value for the minimum Y value xmax - maximum X value xmin - minimum X value tick_increment - spacing between y-axis ticks showplot - boolean indicating whether the plot is displayed log_y - boolean indicating whether the y-axis should be on a log scale transparent - boolean indicating whether to save a transparent .png grid - boolean indicating whether to show the grid folder - subfolder in which to save the figure filename - string indicating the name of the saved file num_col - number of columns in the legend legend_loc - string indicating the location of the legend experimental_args - experimental values to show on the plot xlabelpad - spacing between the x-axis and the x-label ''' if template.lower() == 'large': plt.figure(figsize=(10,6.67)) elif template.lower() == 'wide': plt.figure(figsize=(12,4)) elif template.lower() == 'presentation': plt.figure(figsize=(9,6)) elif template.lower() == 'presentation-wide': plt.figure(figsize=(12,6)) else: plt.figure() # Customize the axes ax = plt.gca() # Make sure the Y data is at least 2-D Y = np.atleast_2d(Y) # Ensure the compatibility of the X and Y data if Y.shape[0] != X.shape[0] and Y.shape[1] != X.shape[0]: raise ValueError( '''The Shape of X, [{}], is not compatible with the shape of Y, [{}]...\n Exiting''' .format(X.shape,Y.shape)) return elif Y.shape[0] != X.shape[0]: Y = Y.T if Y.shape[1] != len(labels): raise ValueError('Please ensure the number of legend labels matches the number of data plots.') if plot_type.lower() == 'plot': # Plot all of the available data for i in np.arange(0,len(labels)): if labels[i].lower() == 'vtol': plt.plot(X, Y[:,i], label=r'$V_{tol}$', color='k', linestyle=plot_linestyle[1], # Linestyle given from array at the beginning of this document linewidth=1) elif 'sigma' in labels[i].lower(): plt.plot(X, Y[:,i], label=r'\textbf{' + labels[i] + '}', color='k', linestyle=plot_linestyle[1], # Linestyle given from array at the beginning of this document linewidth=2) else: if log_y: plt.semilogy(X, Y[:,i], label=r'\textbf{' + labels[i] + '}', linestyle=plot_linestyle[i], # Linestyle given from array at the beginning of this document linewidth=2) else: plt.plot(X, Y[:,i], label=r'\textbf{' + labels[i] + '}', linestyle=plot_linestyle[i], # Linestyle given from array at the beginning of this document linewidth=2) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') if tick_increment is not None: loc = mtick.MultipleLocator(base=tick_increment) # this locator puts ticks at regular intervals ax.yaxis.set_major_locator(loc) set_lims(ax,X,Y,xmin,xmax,ymin,ymax) # Show the grid, if desired ax.grid(grid) ax.set_axisbelow(True) # If we want to plot experimental data if experimental_args is not None: data,positions = experimental_args if len(np.atleast_2d(data)[:,0]) > 1: # This code is for closely grouped experimental data that doesn't ened a box and whisker plot means = np.average(data,axis=0) maxes =
np.amax(data,axis=0)
numpy.amax
import numpy as np import joblib from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.ensemble import GradientBoostingClassifier from matplotlib.lines import Line2D from xgboost import XGBClassifier import xgboost as xgb from src.data.features_util import list_test_files from src.data.workout import Activity from src.config import ( TRAIN_BOOT_DIR, TRAIN_POLE_DIR, TRAIN_FEATURES_FILENAME, TRAIN_LABELS_FILENAME ) from numpy import ndarray from pathlib import Path def create_model() -> any: return GradientBoostingClassifier(verbose=True) def create_xgboost() -> any: return XGBClassifier(verbosity=2, use_label_encoder=False) def evaluate_model_accuracy(features: ndarray, labels: ndarray, model: any = create_model()): """ Evaluate model accuracy using k-fold cross-validation """ print('Evaluating model accuracy...') cv = RepeatedStratifiedKFold(n_splits=4, n_repeats=1, random_state=1) n_scores = cross_val_score(model, features, labels, scoring='accuracy', cv=cv, n_jobs=-1, verbose=1) print('Mean Accuracy: %.3f (%.3f)' % (np.mean(n_scores), np.std(n_scores))) def train_model(activity: Activity, model: any = create_model): data_dir: Path = TRAIN_BOOT_DIR if activity == Activity.Boot else TRAIN_POLE_DIR features: ndarray = np.load(data_dir / TRAIN_FEATURES_FILENAME) labels: ndarray =
np.load(data_dir / TRAIN_LABELS_FILENAME)
numpy.load
import unittest import numpy as np import syft from syft import TensorBase class ConvenienceTests(unittest.TestCase): def test_zeros(self): self.assertTrue((syft.zeros(5).data == np.zeros(5)).all()) def test_ones(self): self.assertTrue((syft.ones(5).data == np.ones(5)).all()) def test_rand(self): np.random.seed(0) x = syft.rand(5).data np.random.seed(0) y = np.random.rand(5) self.assertTrue((x == y).all()) class DotTests(unittest.TestCase): def test_dot_int(self): t1 = TensorBase(np.array([1, 2, 3])) t2 = TensorBase(np.array([4, 5, 6])) self.assertEqual(syft.dot(t1, t2), 32) def test_dot_float(self): t1 = TensorBase(np.array([1.3, 2.5, 3.7])) t2 = TensorBase(np.array([4.9, 5.8, 6.5])) self.assertEqual(syft.dot(t1, t2), 44.92) class DiagTests(unittest.TestCase): def test_one_dim_tensor_main_diag(self): t = TensorBase(np.array([1, 2, 3, 4])) self.assertTrue(syft.equal(syft.diag(t), TensorBase([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]))) def test_one_dim_tensor_upper_diag(self): t = TensorBase(np.array([1, 2, 3, 4])) self.assertTrue(syft.equal(syft.diag(t, 1), TensorBase([[0, 1, 0, 0, 0], [0, 0, 2, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 4], [0, 0, 0, 0, 0]]))) def test_one_dim_tensor_below_diag(self): t = TensorBase(np.array([1, 2, 3, 4])) self.assertTrue(syft.equal(syft.diag(t, -1), TensorBase([[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0], [0, 0, 0, 4, 0]]))) def test_two_dim_tensor_main_diag(self): t = TensorBase(np.array([[0, 1], [2, 3]])) self.assertTrue(syft.equal(syft.diag(t, 0), TensorBase([0, 3]))) def test_two_dim_tensor_upper_diag(self): t = TensorBase(np.array([[0, 1], [2, 3]])) self.assertTrue(syft.equal(syft.diag(t, 1), TensorBase([1]))) def test_two_dim_tensor_below_diag(self): t = TensorBase(np.array([[0, 1], [2, 3]])) self.assertTrue(syft.equal(syft.diag(t, -1), TensorBase([2]))) class CeilTests(unittest.TestCase): def test_ceil(self): t1 = TensorBase(np.array([[2.3, 4.1], [7.4, 8.3]])) self.assertTrue(syft.equal(syft.ceil(t1), TensorBase([[3., 5.], [8., 9.]]))) class FloorTests(unittest.TestCase): def test_floor(self): t1 = TensorBase(np.array([[2.3, 4.1], [7.4, 8.3]])) self.assertTrue(syft.equal(syft.math.floor(t1), TensorBase([[2., 4.], [7., 8.]]))) class SinTests(unittest.TestCase): def test_sin(self): # int t1 = TensorBase(np.array([[3, 1, 2], [0, -1, 2]])) t2 = syft.math.sin(t1) self.assertTrue(syft.equal(t1.data, np.array([[3, 1, 2], [0, -1, 2]]))) self.assertTrue(syft.equal(t2.data, np.sin(np.array([[3, 1, 2], [0, -1, 2]])))) # float t1 = TensorBase(np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]])) t2 = syft.math.sin(t1) self.assertTrue(syft.equal(t1.data, np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]]))) self.assertTrue(syft.equal(t2.data, np.sin(np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]])))) class SinhTests(unittest.TestCase): def test_sinh(self): # int t1 = TensorBase(np.array([[3, 1, 2], [0, -1, 2]])) t2 = syft.math.sinh(t1) self.assertTrue(syft.equal(t1.data, np.array([[3, 1, 2], [0, -1, 2]]))) self.assertTrue(syft.equal(t2.data, np.sinh(np.array([[3, 1, 2], [0, -1, 2]])))) # float t1 = TensorBase(np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]])) t2 = syft.math.sinh(t1) self.assertTrue(syft.equal(t1.data, np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]]))) self.assertTrue(syft.equal(t2.data, np.sinh(np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]])))) class CosTests(unittest.TestCase): def test_cos(self): # int t1 = TensorBase(np.array([[3, 1, 2], [0, -1, 2]])) t2 = syft.math.cos(t1) self.assertTrue(syft.equal(t1.data, np.array([[3, 1, 2], [0, -1, 2]]))) self.assertTrue(syft.equal(t2.data, np.cos(np.array([[3, 1, 2], [0, -1, 2]])))) # float t1 = TensorBase(np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]])) t2 = syft.math.cos(t1) self.assertTrue(syft.equal(t1.data,
np.array([[3.3, 1.3, 2.2], [0.0, -1.3, 2.4]])
numpy.array
import matplotlib.pyplot as plt import numpy as np import pandas as pd # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnLSTMtanhMakespan0=[799, 798, 799, 799, 805, 806, 799, 805, 805, 800, 798, 798] drnnLSTMtanhMakespan1=[800, 798, 796, 800, 796, 794, 795, 798, 800, 798, 805, 798] drnnLSTMtanhMakespan2=[796, 800, 798, 804, 800, 798, 798, 798, 800, 800, 802, 797] drnnLSTMtanhMakespan3=[805, 800, 800, 803, 794, 802, 800, 798, 799, 804, 799, 806] drnnLSTMtanhMakespan4=[796, 798, 795, 798, 796, 799, 800, 796, 796, 798, 806, 800] drnnLSTMtanhMakespan5=[798, 798, 799, 800, 800, 808, 798, 798, 801, 796, 799, 798] drnnLSTMtanhMakespan6=[800, 796, 805, 798, 798, 796, 799, 800, 803, 800, 798, 800] drnnLSTMtanhMakespan7=[799, 805, 802, 805, 800, 799, 800, 799, 805, 800, 794, 796] drnnLSTMtanhMakespan8=[799, 798, 800, 798, 798, 800, 800, 800, 804, 799, 800, 804] drnnLSTMtanhMakespan9=[795, 800, 795, 796, 798, 796, 797, 800, 797, 798, 796, 795] drnnLSTMtanhMakespan10=[804, 799, 805, 798, 798, 798, 805, 800, 796, 804, 796, 799] drnnLSTMtanhMakespan11=[795, 803, 805, 798, 795, 801, 798, 798, 804, 803, 799, 804] drnnLSTMtanhMakespan12=[798, 798, 799, 800, 798, 798, 799, 799, 801, 796, 799, 798] drnnLSTMtanhMakespan13=[798, 798, 799, 797, 796, 796, 800, 797, 805, 800, 800, 794] drnnLSTMtanhMakespan14=[800, 798, 798, 796, 800, 800, 798, 798, 802, 798, 802, 798] drnnLSTMtanhMakespan15=[796, 796, 800, 801, 800, 800, 796, 794, 796, 800, 796, 798] drnnLSTMtanhMakespan16=[798, 798, 795, 797, 795, 799, 800, 796, 795, 796, 800, 800] drnnLSTMtanhMakespan17=[794, 795, 800, 798, 795, 796, 798, 796, 795, 794, 798, 796] drnnLSTMtanhMakespan18=[797, 795, 794, 794, 800, 796, 796, 795, 798, 795, 798, 794] drnnLSTMtanhMakespan19=[797, 795, 795, 796, 798, 799, 795, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan20=[796, 794, 798, 797, 798, 799, 795, 795, 797, 795, 795, 792] drnnLSTMtanhMakespan21=[797, 795, 797, 793, 794, 794, 800, 794, 798, 795, 797, 795] drnnLSTMtanhMakespan22=[794, 800, 798, 795, 795, 796, 796, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan23=[795, 795, 794, 795, 794, 794, 797, 799, 796, 794, 794, 795] drnnLSTMtanhMakespan24=[798, 795, 795, 795, 792, 794, 795, 794, 794, 795, 795, 795] drnnLSTMtanhMakespan25=[794, 792, 794, 795, 795, 794, 794, 794, 794, 795, 794, 793] drnnLSTMtanhMakespan26=[794, 794, 795, 796, 798, 795, 794, 794, 794, 794, 795, 794] drnnLSTMtanhMakespan27=[795, 794, 795, 795, 795, 794, 794, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan28=[795, 794, 794, 795, 794, 795, 795, 795, 795, 794, 795, 794] drnnLSTMtanhMakespan29=[792, 794, 795, 794, 794, 795, 794, 793, 795, 794, 795, 792] drnnLSTMtanhMakespan30=[795, 794, 795, 795, 794, 794, 794, 795, 794, 794, 794, 794] drnnLSTMtanhMakespan31=[794, 794, 795, 794, 795, 793, 795, 795, 795, 792, 794, 794] drnnLSTMtanhMakespan32=[795, 795, 794, 793, 795, 795, 795, 795, 794, 794, 795, 794] drnnLSTMtanhMakespan33=[793, 794, 795, 793, 792, 795, 794, 794, 794, 794, 794, 795] drnnLSTMtanhMakespan34=[794, 795, 795, 794, 794, 794, 794, 793, 794, 794, 794, 794] drnnLSTMtanhMakespan35=[794, 794, 797, 793, 792, 794, 793, 794, 795, 794, 795, 792] drnnLSTMtanhMakespan36=[794, 794, 793, 794, 795, 797, 795, 795, 794, 795, 793, 794] drnnLSTMtanhMakespan37=[795, 793, 795, 794, 795, 798, 795, 794, 795, 793, 795, 794] drnnLSTMtanhMakespan38=[794, 795, 793, 795, 794, 794, 794, 794, 794, 794, 797, 795] drnnLSTMtanhMakespan39=[794, 794, 795, 794, 795, 795, 794, 795, 794, 795, 798, 797] drnnLSTMtanhMakespan40=[795, 795, 794, 795, 794, 795, 795, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan41=[794, 795, 792, 794, 794, 798, 795, 794, 794, 794, 793, 795] drnnLSTMtanhMakespan42=[793, 795, 794, 793, 794, 794, 792, 794, 795, 794, 794, 793] drnnLSTMtanhMakespan43=[793, 792, 793, 794, 794, 795, 792, 794, 795, 794, 795, 794] drnnLSTMtanhMakespan44=[793, 794, 795, 795, 794, 794, 795, 798, 794, 792, 795, 794] drnnLSTMtanhMakespan45=[795, 794, 794, 794, 794, 792, 794, 795, 794, 796, 795, 794] drnnLSTMtanhMakespan46=[794, 793, 793, 795, 795, 794, 794, 794, 794, 796, 794, 794] drnnLSTMtanhMakespan47=[794, 794, 795, 794, 794, 795, 792, 795, 794, 795, 795, 794] drnnLSTMtanhMakespan48=[794, 795, 794, 794, 794, 792, 794, 795, 796, 794, 794, 795] drnnLSTMtanhMakespan49=[794, 794, 794, 794, 794, 794, 792, 794, 793, 794, 795, 794] drnnLSTMtanhRewards0=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17725973169122497, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards1=[-0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards2=[-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17653532907770195, -0.17562802996914942] drnnLSTMtanhRewards3=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17671654929577466, -0.17508269018743108, -0.17653532907770195, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.1768976897689769, -0.1759911894273128, -0.17725973169122497] drnnLSTMtanhRewards4=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.17617264919621228] drnnLSTMtanhRewards5=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards6=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMtanhRewards7=[-0.1759911894273128, -0.177078750549934, -0.17653532907770195, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drnnLSTMtanhRewards8=[-0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769] drnnLSTMtanhRewards9=[-0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drnnLSTMtanhRewards10=[-0.1768976897689769, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128] drnnLSTMtanhRewards11=[-0.17526455026455026, -0.17671654929577466, -0.177078750549934, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.1759911894273128, -0.1768976897689769] drnnLSTMtanhRewards12=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108] drnnLSTMtanhRewards14=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765] drnnLSTMtanhRewards15=[-0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnLSTMtanhRewards16=[-0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228] drnnLSTMtanhRewards17=[-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drnnLSTMtanhRewards18=[-0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drnnLSTMtanhRewards19=[-0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards20=[-0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards21=[-0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards22=[-0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards23=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards24=[-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards25=[-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards26=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards27=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards28=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards29=[-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards31=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards32=[-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards33=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards34=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards35=[-0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards36=[-0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108] drnnLSTMtanhRewards37=[-0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards38=[-0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards39=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drnnLSTMtanhRewards40=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards41=[-0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drnnLSTMtanhRewards42=[-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards43=[-0.1749007498897221, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards44=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards45=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards46=[-0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards48=[-0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards49=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnLSTMreluMakespan0=[805, 800, 800, 800, 794, 800, 798, 809, 795, 800, 798, 798] drnnLSTMreluMakespan1=[798, 798, 796, 799, 800, 796, 796, 798, 798, 794, 798, 800] drnnLSTMreluMakespan2=[805, 805, 798, 799, 806, 799, 806, 799, 800, 798, 805, 795] drnnLSTMreluMakespan3=[800, 800, 800, 796, 800, 800, 799, 806, 808, 798, 797, 798] drnnLSTMreluMakespan4=[805, 805, 795, 796, 799, 804, 798, 794, 798, 794, 796, 810] drnnLSTMreluMakespan5=[798, 798, 798, 795, 800, 798, 796, 802, 800, 800, 805, 801] drnnLSTMreluMakespan6=[800, 798, 798, 795, 800, 796, 800, 798, 799, 796, 805, 800] drnnLSTMreluMakespan7=[800, 800, 800, 799, 798, 798, 800, 805, 800, 799, 800, 801] drnnLSTMreluMakespan8=[799, 800, 800, 799, 795, 795, 805, 795, 798, 800, 798, 800] drnnLSTMreluMakespan9=[800, 796, 805, 798, 798, 795, 805, 800, 799, 795, 800, 805] drnnLSTMreluMakespan10=[805, 798, 805, 800, 801, 805, 799, 805, 798, 800, 800, 798] drnnLSTMreluMakespan11=[798, 803, 800, 797, 795, 796, 794, 799, 800, 800, 800, 796] drnnLSTMreluMakespan12=[799, 798, 799, 795, 798, 795, 798, 798, 798, 795, 798, 798] drnnLSTMreluMakespan13=[798, 798, 799, 796, 798, 796, 800, 799, 796, 794, 796, 795] drnnLSTMreluMakespan14=[796, 798, 806, 799, 804, 798, 805, 798, 800, 805, 794, 800] drnnLSTMreluMakespan15=[806, 795, 800, 796, 798, 796, 810, 798, 799, 798, 800, 800] drnnLSTMreluMakespan16=[799, 796, 798, 798, 798, 800, 798, 810, 796, 805, 800, 795] drnnLSTMreluMakespan17=[798, 798, 798, 794, 798, 805, 801, 798, 800, 799, 798, 798] drnnLSTMreluMakespan18=[795, 800, 794, 798, 797, 798, 794, 800, 797, 796, 794, 794] drnnLSTMreluMakespan19=[798, 802, 794, 798, 799, 795, 797, 795, 800, 796, 797, 796] drnnLSTMreluMakespan20=[794, 797, 795, 794, 799, 795, 795, 795, 800, 797, 794, 798] drnnLSTMreluMakespan21=[799, 798, 796, 795, 794, 798, 795, 795, 798, 798, 795, 794] drnnLSTMreluMakespan22=[794, 794, 795, 797, 795, 795, 795, 792, 794, 795, 794, 794] drnnLSTMreluMakespan23=[794, 794, 794, 794, 795, 796, 793, 794, 795, 794, 797, 795] drnnLSTMreluMakespan24=[794, 792, 792, 794, 796, 792, 794, 795, 794, 792, 796, 795] drnnLSTMreluMakespan25=[794, 795, 795, 794, 794, 792, 795, 792, 795, 794, 794, 794] drnnLSTMreluMakespan26=[795, 794, 794, 795, 794, 794, 793, 794, 797, 795, 794, 795] drnnLSTMreluMakespan27=[794, 794, 795, 796, 795, 797, 794, 794, 795, 801, 794, 795] drnnLSTMreluMakespan28=[795, 795, 795, 795, 794, 792, 794, 797, 794, 795, 795, 795] drnnLSTMreluMakespan29=[794, 792, 798, 794, 797, 795, 793, 795, 795, 794, 795, 795] drnnLSTMreluMakespan30=[795, 794, 798, 794, 794, 795, 792, 796, 794, 796, 794, 794] drnnLSTMreluMakespan31=[794, 795, 795, 794, 795, 794, 795, 795, 794, 794, 795, 795] drnnLSTMreluMakespan32=[798, 794, 794, 794, 798, 792, 795, 795, 795, 796, 794, 795] drnnLSTMreluMakespan33=[794, 796, 794, 794, 794, 795, 794, 794, 797, 793, 793, 795] drnnLSTMreluMakespan34=[794, 794, 795, 794, 794, 793, 794, 795, 793, 795, 795, 794] drnnLSTMreluMakespan35=[798, 796, 795, 794, 795, 795, 795, 795, 794, 795, 797, 795] drnnLSTMreluMakespan36=[794, 796, 794, 794, 794, 794, 795, 795, 797, 796, 795, 795] drnnLSTMreluMakespan37=[795, 794, 796, 795, 795, 795, 795, 794, 792, 797, 794, 793] drnnLSTMreluMakespan38=[794, 798, 794, 792, 794, 792, 795, 797, 793, 794, 794, 797] drnnLSTMreluMakespan39=[792, 794, 794, 794, 792, 795, 795, 795, 794, 794, 795, 794] drnnLSTMreluMakespan40=[792, 795, 795, 792, 795, 795, 794, 795, 794, 795, 794, 795] drnnLSTMreluMakespan41=[794, 797, 795, 794, 795, 795, 798, 794, 795, 796, 796, 794] drnnLSTMreluMakespan42=[794, 795, 795, 795, 794, 795, 795, 794, 794, 795, 793, 795] drnnLSTMreluMakespan43=[795, 794, 795, 794, 795, 795, 792, 794, 794, 795, 794, 795] drnnLSTMreluMakespan44=[795, 794, 792, 795, 794, 794, 795, 794, 796, 795, 796, 794] drnnLSTMreluMakespan45=[795, 794, 793, 794, 793, 795, 794, 794, 795, 794, 795, 794] drnnLSTMreluMakespan46=[794, 796, 793, 794, 794, 795, 799, 795, 794, 794, 794, 794] drnnLSTMreluMakespan47=[794, 794, 794, 794, 795, 793, 795, 795, 794, 795, 795, 795] drnnLSTMreluMakespan48=[794, 794, 795, 794, 795, 795, 795, 794, 794, 795, 795, 794] drnnLSTMreluMakespan49=[795, 795, 795, 794, 795, 795, 794, 795, 793, 793, 792, 792] drnnLSTMreluRewards0=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.1778021978021978, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards1=[-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards2=[-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17526455026455026] drnnLSTMreluRewards3=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnLSTMreluRewards4=[-0.177078750549934, -0.177078750549934, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17798286090969018] drnnLSTMreluRewards5=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17653532907770195, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.1763540290620872] drnnLSTMreluRewards6=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.17617264919621228] drnnLSTMreluRewards7=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872] drnnLSTMreluRewards8=[-0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards9=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17617264919621228, -0.177078750549934] drnnLSTMreluRewards10=[-0.177078750549934, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drnnLSTMreluRewards11=[-0.17580964970257765, -0.17671654929577466, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387] drnnLSTMreluRewards12=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards14=[-0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228] drnnLSTMreluRewards15=[-0.17725973169122497, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17798286090969018, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnLSTMreluRewards16=[-0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17544633017412387, -0.177078750549934, -0.17617264919621228, -0.17526455026455026] drnnLSTMreluRewards17=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards18=[-0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards19=[-0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387] drnnLSTMreluRewards20=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765] drnnLSTMreluRewards21=[-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards22=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards23=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards24=[-0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17544633017412387, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards25=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards26=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards27=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards28=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards29=[-0.17508269018743108, -0.17471872931833224, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards31=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards32=[-0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards33=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards34=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards35=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards36=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards37=[-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17562802996914942, -0.17508269018743108, -0.1749007498897221] drnnLSTMreluRewards38=[-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] drnnLSTMreluRewards39=[-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards40=[-0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards41=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards42=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards43=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards44=[-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards45=[-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards46=[-0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards48=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards49=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.1749007498897221, -0.17471872931833224, -0.17471872931833224] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnGRUtanhMakespan0 = [798, 799, 798, 804, 805, 799, 801, 801, 801, 799, 798, 796] drnnGRUtanhMakespan1 = [800, 798, 798, 798, 798, 798, 801, 798, 795, 796, 800, 796] drnnGRUtanhMakespan2 = [795, 804, 805, 800, 800, 796, 804, 800, 795, 798, 798, 801] drnnGRUtanhMakespan3 = [806, 796, 794, 797, 798, 800, 800, 808, 805, 798, 800, 809] drnnGRUtanhMakespan4 = [805, 801, 795, 798, 798, 800, 796, 796, 805, 798, 799, 798] drnnGRUtanhMakespan5 = [804, 799, 798, 804, 796, 799, 798, 805, 796, 805, 798, 800] drnnGRUtanhMakespan6 = [800, 799, 794, 801, 799, 796, 800, 804, 797, 796, 800, 798] drnnGRUtanhMakespan7 = [798, 800, 810, 810, 805, 800, 795, 798, 800, 805, 799, 800] drnnGRUtanhMakespan8 = [798, 797, 800, 800, 804, 805, 798, 798, 801, 795, 798, 809] drnnGRUtanhMakespan9 = [803, 800, 800, 805, 805, 798, 804, 803, 805, 801, 810, 801] drnnGRUtanhMakespan10 = [798, 799, 798, 798, 805, 804, 805, 798, 799, 798, 800, 800] drnnGRUtanhMakespan11 = [796, 795, 805, 800, 800, 798, 795, 804, 805, 798, 800, 800] drnnGRUtanhMakespan12 = [799, 799, 809, 800, 799, 799, 797, 805, 799, 800, 798, 795] drnnGRUtanhMakespan13 = [805, 800, 800, 805, 800, 799, 798, 801, 798, 797, 805, 800] drnnGRUtanhMakespan14 = [800, 798, 800, 800, 800, 804, 804, 799, 799, 800, 798, 798] drnnGRUtanhMakespan15 = [805, 800, 795, 800, 804, 795, 800, 798, 799, 798, 800, 796] drnnGRUtanhMakespan16 = [806, 795, 801, 799, 799, 796, 796, 794, 802, 796, 800, 802] drnnGRUtanhMakespan17 = [796, 800, 798, 800, 794, 800, 804, 805, 798, 810, 800, 798] drnnGRUtanhMakespan18 = [798, 800, 794, 794, 797, 798, 800, 805, 798, 798, 804, 798] drnnGRUtanhMakespan19 = [796, 800, 806, 799, 796, 800, 798, 805, 798, 799, 797, 805] drnnGRUtanhMakespan20 = [805, 800, 799, 796, 805, 805, 805, 794, 809, 796, 800, 797] drnnGRUtanhMakespan21 = [798, 800, 800, 800, 798, 801, 796, 801, 801, 801, 795, 799] drnnGRUtanhMakespan22 = [798, 801, 797, 800, 799, 795, 799, 799, 800, 801, 800, 799] drnnGRUtanhMakespan23 = [800, 798, 799, 805, 794, 800, 798, 796, 796, 804, 800, 794] drnnGRUtanhMakespan24 = [800, 800, 798, 805, 804, 799, 798, 801, 800, 798, 798, 798] drnnGRUtanhMakespan25 = [798, 798, 798, 795, 800, 803, 798, 798, 800, 799, 796, 798] drnnGRUtanhMakespan26 = [796, 798, 798, 798, 805, 796, 798, 798, 805, 795, 801, 796] drnnGRUtanhMakespan27 = [794, 796, 796, 800, 800, 798, 800, 798, 802, 798, 797, 798] drnnGRUtanhMakespan28 = [799, 799, 800, 800, 798, 802, 799, 798, 795, 795, 794, 798] drnnGRUtanhMakespan29 = [798, 796, 796, 797, 796, 798, 800, 800, 796, 798, 800, 795] drnnGRUtanhMakespan30 = [799, 798, 795, 795, 800, 795, 798, 798, 799, 798, 805, 799] drnnGRUtanhMakespan31 = [795, 799, 794, 794, 796, 795, 795, 794, 798, 797, 798, 795] drnnGRUtanhMakespan32 = [797, 798, 795, 796, 798, 795, 797, 798, 795, 794, 795, 796] drnnGRUtanhMakespan33 = [799, 795, 794, 794, 798, 795, 798, 797, 800, 796, 795, 794] drnnGRUtanhMakespan34 = [798, 795, 798, 796, 798, 794, 796, 798, 798, 798, 796, 797] drnnGRUtanhMakespan35 = [795, 798, 796, 798, 794, 801, 795, 800, 795, 800, 794, 800] drnnGRUtanhMakespan36 = [798, 799, 796, 797, 795, 794, 800, 795, 795, 794, 795, 795] drnnGRUtanhMakespan37 = [799, 798, 795, 795, 794, 795, 795, 796, 805, 795, 798, 796] drnnGRUtanhMakespan38 = [798, 794, 795, 795, 795, 796, 795, 796, 800, 798, 797, 796] drnnGRUtanhMakespan39 = [794, 795, 795, 797, 795, 795, 794, 794, 798, 795, 794, 798] drnnGRUtanhMakespan40 = [795, 795, 795, 795, 795, 795, 794, 794, 793, 797, 794, 795] drnnGRUtanhMakespan41 = [794, 794, 795, 793, 795, 795, 792, 794, 795, 794, 794, 794] drnnGRUtanhMakespan42 = [795, 795, 795, 796, 794, 797, 795, 795, 792, 795, 796, 793] drnnGRUtanhMakespan43 = [794, 795, 795, 794, 795, 794, 798, 794, 797, 795, 794, 794] drnnGRUtanhMakespan44 = [795, 795, 793, 794, 795, 794, 795, 795, 794, 794, 795, 794] drnnGRUtanhMakespan45 = [794, 794, 794, 794, 794, 794, 795, 794, 794, 794, 796, 795] drnnGRUtanhMakespan46 = [795, 794, 795, 794, 794, 794, 793, 794, 795, 795, 794, 797] drnnGRUtanhMakespan47 = [794, 794, 794, 794, 795, 794, 795, 792, 794, 795, 794, 794] drnnGRUtanhMakespan48 = [795, 794, 794, 794, 795, 798, 794, 794, 794, 795, 794, 794] drnnGRUtanhMakespan49 = [795, 795, 794, 795, 793, 795, 796, 794, 795, 794, 794, 797] drnnGRUtanhRewards0 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards1 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards2 = [-0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872] drnnGRUtanhRewards3 = [-0.17725973169122497, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1778021978021978] drnnGRUtanhRewards4 = [-0.177078750549934, -0.1763540290620872, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUtanhRewards5 = [-0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUtanhRewards6 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.1763540290620872, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards7 = [-0.17580964970257765, -0.17617264919621228, -0.17798286090969018, -0.177078750549934, -0.17798286090969018, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUtanhRewards8 = [-0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.1778021978021978] drnnGRUtanhRewards9 = [-0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.177078750549934, -0.1763540290620872, -0.17798286090969018, -0.1763540290620872] drnnGRUtanhRewards10 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards11 = [-0.17544633017412387, -0.17526455026455026, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards12 = [-0.1759911894273128, -0.1759911894273128, -0.1778021978021978, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17562802996914942, -0.177078750549934, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards13 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17617264919621228] drnnGRUtanhRewards14 = [-0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1768976897689769, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards15 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.1768976897689769, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards16 = [-0.17725973169122497, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108, -0.17653532907770195, -0.17544633017412387, -0.17617264919621228, -0.17653532907770195] drnnGRUtanhRewards17 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17798286090969018, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards18 = [-0.17580964970257765, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17580964970257765] drnnGRUtanhRewards19 = [-0.17544633017412387, -0.17617264919621228, -0.17725973169122497, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17562802996914942, -0.1759911894273128, -0.177078750549934] drnnGRUtanhRewards20 = [-0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.177078750549934, -0.177078750549934, -0.17508269018743108, -0.1778021978021978, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942] drnnGRUtanhRewards21 = [-0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUtanhRewards22 = [-0.17580964970257765, -0.1763540290620872, -0.17562802996914942, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.1759911894273128] drnnGRUtanhRewards23 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108] drnnGRUtanhRewards24 = [-0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.1768976897689769, -0.17580964970257765, -0.1763540290620872, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards25 = [-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUtanhRewards26 = [-0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387] drnnGRUtanhRewards27 = [-0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnGRUtanhRewards28 = [-0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drnnGRUtanhRewards29 = [-0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026] drnnGRUtanhRewards30 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1759911894273128] drnnGRUtanhRewards31 = [-0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards32 = [-0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards33 = [-0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards34 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942] drnnGRUtanhRewards35 = [-0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drnnGRUtanhRewards36 = [-0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnGRUtanhRewards37 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards38 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387] drnnGRUtanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765] drnnGRUtanhRewards40 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026] drnnGRUtanhRewards41 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards42 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221] drnnGRUtanhRewards43 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards44 = [-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards45 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards46 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942] drnnGRUtanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards49 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnGRUreluMakespan0 = [800, 799, 798, 797, 798, 800, 800, 796, 800, 794, 800, 800] drnnGRUreluMakespan1 = [798, 800, 805, 795, 799, 808, 795, 800, 796, 798, 799, 798] drnnGRUreluMakespan2 = [799, 800, 806, 800, 800, 805, 805, 798, 799, 807, 800, 800] drnnGRUreluMakespan3 = [798, 795, 799, 800, 800, 796, 798, 800, 800, 804, 805, 800] drnnGRUreluMakespan4 = [811, 800, 799, 800, 805, 798, 798, 799, 796, 804, 805, 804] drnnGRUreluMakespan5 = [799, 795, 797, 800, 798, 800, 800, 798, 800, 797, 800, 798] drnnGRUreluMakespan6 = [798, 800, 798, 799, 797, 798, 800, 796, 801, 799, 795, 798] drnnGRUreluMakespan7 = [800, 804, 795, 801, 796, 806, 805, 798, 800, 799, 799, 804] drnnGRUreluMakespan8 = [800, 799, 799, 800, 805, 796, 800, 800, 810, 796, 800, 798] drnnGRUreluMakespan9 = [794, 800, 799, 805, 800, 800, 798, 798, 796, 795, 798, 796] drnnGRUreluMakespan10 = [798, 800, 798, 801, 795, 802, 796, 809, 800, 800, 798, 795] drnnGRUreluMakespan11 = [804, 800, 799, 799, 798, 803, 798, 798, 805, 803, 800, 796] drnnGRUreluMakespan12 = [800, 799, 805, 797, 798, 796, 799, 794, 799, 805, 799, 800] drnnGRUreluMakespan13 = [796, 800, 798, 800, 795, 799, 800, 804, 800, 794, 805, 805] drnnGRUreluMakespan14 = [800, 795, 796, 798, 798, 801, 805, 794, 800, 801, 801, 796] drnnGRUreluMakespan15 = [798, 800, 796, 796, 798, 794, 797, 800, 796, 801, 795, 799] drnnGRUreluMakespan16 = [800, 805, 794, 800, 799, 800, 805, 801, 798, 800, 801, 799] drnnGRUreluMakespan17 = [797, 803, 801, 808, 794, 799, 799, 800, 805, 796, 801, 796] drnnGRUreluMakespan18 = [805, 800, 800, 804, 799, 798, 800, 799, 804, 796, 800, 804] drnnGRUreluMakespan19 = [804, 798, 800, 799, 799, 799, 805, 795, 801, 799, 799, 805] drnnGRUreluMakespan20 = [799, 804, 796, 798, 796, 798, 800, 805, 799, 810, 800, 800] drnnGRUreluMakespan21 = [798, 799, 799, 805, 798, 798, 805, 798, 794, 799, 798, 798] drnnGRUreluMakespan22 = [799, 798, 798, 796, 798, 805, 799, 798, 798, 799, 796, 798] drnnGRUreluMakespan23 = [798, 805, 808, 798, 798, 805, 810, 796, 804, 799, 800, 799] drnnGRUreluMakespan24 = [798, 796, 798, 795, 800, 798, 799, 798, 797, 805, 798, 800] drnnGRUreluMakespan25 = [799, 796, 799, 798, 805, 798, 798, 800, 796, 794, 810, 798] drnnGRUreluMakespan26 = [799, 798, 805, 800, 802, 798, 799, 799, 799, 794, 802, 797] drnnGRUreluMakespan27 = [798, 800, 805, 796, 798, 795, 802, 796, 798, 800, 798, 794] drnnGRUreluMakespan28 = [796, 805, 798, 800, 800, 798, 810, 798, 798, 798, 796, 796] drnnGRUreluMakespan29 = [800, 798, 798, 802, 794, 798, 796, 808, 800, 800, 798, 799] drnnGRUreluMakespan30 = [798, 796, 798, 798, 794, 798, 794, 800, 796, 794, 800, 800] drnnGRUreluMakespan31 = [794, 802, 797, 799, 798, 800, 799, 799, 796, 796, 798, 798] drnnGRUreluMakespan32 = [799, 798, 794, 795, 798, 805, 804, 797, 795, 800, 796, 798] drnnGRUreluMakespan33 = [803, 799, 805, 796, 794, 798, 797, 798, 798, 794, 794, 798] drnnGRUreluMakespan34 = [810, 796, 795, 798, 799, 798, 796, 795, 795, 797, 798, 798] drnnGRUreluMakespan35 = [799, 799, 799, 799, 795, 798, 795, 800, 796, 795, 795, 796] drnnGRUreluMakespan36 = [795, 797, 798, 799, 799, 799, 800, 794, 796, 795, 798, 800] drnnGRUreluMakespan37 = [800, 798, 799, 794, 800, 796, 798, 798, 797, 800, 794, 798] drnnGRUreluMakespan38 = [800, 799, 794, 796, 795, 800, 796, 804, 800, 795, 800, 798] drnnGRUreluMakespan39 = [794, 798, 795, 804, 805, 799, 798, 800, 796, 798, 795, 794] drnnGRUreluMakespan40 = [799, 798, 796, 798, 798, 799, 800, 796, 798, 798, 799, 798] drnnGRUreluMakespan41 = [796, 798, 800, 797, 799, 796, 797, 796, 799, 804, 805, 798] drnnGRUreluMakespan42 = [798, 794, 795, 799, 799, 798, 797, 798, 798, 798, 798, 795] drnnGRUreluMakespan43 = [799, 798, 794, 794, 795, 794, 795, 799, 799, 800, 799, 794] drnnGRUreluMakespan44 = [795, 796, 795, 799, 794, 795, 794, 796, 795, 794, 795, 796] drnnGRUreluMakespan45 = [794, 797, 794, 795, 796, 795, 794, 799, 795, 794, 798, 798] drnnGRUreluMakespan46 = [795, 795, 794, 795, 794, 794, 792, 794, 795, 797, 794, 794] drnnGRUreluMakespan47 = [798, 796, 797, 798, 794, 798, 794, 797, 794, 803, 798, 798] drnnGRUreluMakespan48 = [795, 794, 796, 798, 795, 794, 796, 795, 796, 794, 796, 796] drnnGRUreluMakespan49 = [798, 798, 796, 798, 798, 796, 796, 798, 798, 798, 796, 798] drnnGRUreluRewards0 = [-0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards1 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17526455026455026, -0.1759911894273128, -0.1776214552648934, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards2 = [-0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.1774406332453826, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards3 = [-0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17617264919621228] drnnGRUreluRewards4 = [-0.1781634446397188, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.1768976897689769, -0.177078750549934, -0.1768976897689769] drnnGRUreluRewards5 = [-0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards6 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765] drnnGRUreluRewards7 = [-0.17617264919621228, -0.1768976897689769, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387, -0.17725973169122497, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1768976897689769] drnnGRUreluRewards8 = [-0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17798286090969018, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards9 = [-0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUreluRewards10 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.1778021978021978, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards11 = [-0.1768976897689769, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17671654929577466, -0.17617264919621228, -0.17544633017412387] drnnGRUreluRewards12 = [-0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.1759911894273128, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUreluRewards13 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108, -0.177078750549934, -0.177078750549934] drnnGRUreluRewards14 = [-0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1763540290620872, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards15 = [-0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUreluRewards16 = [-0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128] drnnGRUreluRewards17 = [-0.17562802996914942, -0.17671654929577466, -0.1763540290620872, -0.1776214552648934, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards18 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769] drnnGRUreluRewards19 = [-0.1768976897689769, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.177078750549934] drnnGRUreluRewards20 = [-0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards21 = [-0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards22 = [-0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards23 = [-0.17580964970257765, -0.177078750549934, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17798286090969018, -0.17544633017412387, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128] drnnGRUreluRewards24 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards25 = [-0.1759911894273128, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17798286090969018, -0.17580964970257765] drnnGRUreluRewards26 = [-0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17508269018743108, -0.17653532907770195, -0.17562802996914942] drnnGRUreluRewards27 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17508269018743108] drnnGRUreluRewards28 = [-0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards29 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.1776214552648934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128] drnnGRUreluRewards30 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards31 = [-0.17508269018743108, -0.17653532907770195, -0.17562802996914942, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards32 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards33 = [-0.17671654929577466, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards34 = [-0.17798286090969018, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards35 = [-0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards36 = [-0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards37 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards38 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards39 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnGRUreluRewards40 = [-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards41 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.177078750549934, -0.17580964970257765] drnnGRUreluRewards42 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards43 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.17508269018743108] drnnGRUreluRewards44 = [-0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards45 = [-0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards46 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108] drnnGRUreluRewards47 = [-0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards49 = [-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion tanh, 12 episodios, 50 iteraciones drlTanhMakespan0 = [794, 794, 805, 799, 810, 800, 794, 810, 804, 806, 812, 808] drlTanhMakespan1 = [796, 795, 795, 798, 799, 800, 800, 795, 797, 796, 797, 799] drlTanhMakespan2 = [800, 797, 798, 801, 799, 800, 796, 795, 797, 796, 794, 798] drlTanhMakespan3 = [800, 795, 799, 796, 799, 798, 795, 799, 795, 799, 798, 796] drlTanhMakespan4 = [809, 795, 795, 800, 797, 795, 798, 798, 799, 799, 798, 798] drlTanhMakespan5 = [795, 795, 795, 799, 795, 798, 795, 800, 795, 796, 795, 805] drlTanhMakespan6 = [794, 800, 795, 793, 798, 795, 794, 798, 795, 799, 795, 796] drlTanhMakespan7 = [795, 795, 795, 795, 798, 795, 797, 797, 795, 795, 798, 797] drlTanhMakespan8 = [795, 795, 795, 794, 800, 800, 794, 795, 794, 794, 797, 795] drlTanhMakespan9 = [793, 794, 796, 795, 796, 800, 794, 797, 793, 795, 798, 795] drlTanhMakespan10 = [795, 795, 797, 794, 795, 798, 797, 795, 798, 794, 794, 794] drlTanhMakespan11 = [795, 795, 795, 795, 797, 795, 795, 794, 795, 795, 795, 794] drlTanhMakespan12 = [794, 798, 795, 794, 795, 795, 795, 797, 799, 795, 795, 795] drlTanhMakespan13 = [795, 797, 795, 800, 796, 795, 796, 795, 795, 795, 798, 794] drlTanhMakespan14 = [795, 795, 796, 794, 794, 794, 797, 795, 798, 795, 795, 793] drlTanhMakespan15 = [799, 794, 795, 795, 795, 796, 801, 797, 795, 794, 795, 799] drlTanhMakespan16 = [795, 795, 796, 798, 795, 795, 795, 795, 795, 798, 798, 796] drlTanhMakespan17 = [800, 798, 795, 795, 798, 794, 795, 795, 797, 795, 796, 794] drlTanhMakespan18 = [797, 800, 798, 797, 796, 794, 799, 797, 795, 796, 799, 798] drlTanhMakespan19 = [797, 800, 795, 794, 794, 796, 795, 798, 796, 798, 797, 795] drlTanhMakespan20 = [794, 795, 795, 799, 798, 797, 795, 795, 798, 795, 798, 795] drlTanhMakespan21 = [796, 795, 795, 795, 795, 797, 798, 794, 797, 795, 796, 794] drlTanhMakespan22 = [799, 796, 795, 795, 795, 795, 796, 795, 796, 798, 796, 795] drlTanhMakespan23 = [799, 799, 795, 796, 796, 799, 796, 797, 794, 794, 798, 796] drlTanhMakespan24 = [795, 795, 797, 800, 797, 795, 795, 796, 795, 795, 798, 799] drlTanhMakespan25 = [795, 797, 795, 795, 795, 795, 800, 796, 795, 797, 795, 795] drlTanhMakespan26 = [795, 795, 799, 794, 797, 794, 794, 798, 794, 796, 795, 798] drlTanhMakespan27 = [796, 796, 795, 796, 798, 797, 794, 795, 794, 794, 794, 798] drlTanhMakespan28 = [795, 795, 794, 798, 796, 796, 800, 797, 797, 796, 795, 794] drlTanhMakespan29 = [795, 795, 798, 800, 797, 794, 796, 794, 792, 794, 794, 795] drlTanhMakespan30 = [798, 797, 795, 799, 797, 800, 798, 799, 797, 800, 794, 796] drlTanhMakespan31 = [794, 795, 800, 798, 800, 794, 800, 798, 799, 798, 798, 798] drlTanhMakespan32 = [795, 795, 795, 794, 794, 794, 793, 795, 794, 793, 794, 795] drlTanhMakespan33 = [794, 797, 792, 794, 795, 795, 797, 795, 795, 794, 792, 795] drlTanhMakespan34 = [795, 794, 795, 798, 795, 796, 794, 795, 794, 794, 795, 794] drlTanhMakespan35 = [796, 794, 797, 793, 794, 798, 795, 794, 793, 793, 795, 794] drlTanhMakespan36 = [795, 795, 794, 795, 795, 795, 794, 795, 795, 793, 795, 794] drlTanhMakespan37 = [794, 794, 798, 794, 794, 796, 795, 794, 793, 795, 795, 792] drlTanhMakespan38 = [794, 796, 795, 794, 798, 798, 795, 795, 794, 794, 795, 794] drlTanhMakespan39 = [794, 795, 795, 796, 792, 794, 795, 794, 795, 794, 794, 795] drlTanhMakespan40 = [798, 795, 794, 795, 794, 794, 793, 795, 794, 794, 797, 794] drlTanhMakespan41 = [795, 792, 795, 794, 794, 795, 794, 795, 792, 797, 795, 795] drlTanhMakespan42 = [792, 794, 794, 795, 794, 794, 795, 794, 792, 794, 794, 794] drlTanhMakespan43 = [794, 796, 794, 793, 795, 795, 793, 798, 794, 794, 798, 794] drlTanhMakespan44 = [794, 794, 794, 794, 795, 794, 793, 794, 794, 795, 795, 794] drlTanhMakespan45 = [790, 794, 793, 794, 793, 794, 795, 794, 791, 795, 795, 794] drlTanhMakespan46 = [792, 794, 794, 794, 794, 794, 794, 793, 794, 794, 794, 794] drlTanhMakespan47 = [794, 794, 794, 794, 794, 794, 794, 794, 792, 795, 793, 795] drlTanhMakespan48 = [794, 794, 792, 792, 797, 794, 792, 794, 794, 795, 794, 795] drlTanhMakespan49 = [795, 794, 794, 796, 794, 797, 794, 794, 794, 794, 794, 794] drlTanhMakespan50 = [794, 792, 795, 794, 794, 794, 794, 794, 795, 794, 795, 794] drlTanhMakespan51 = [794, 792, 796, 795, 794, 794, 795, 794, 795, 795, 795, 794] drlTanhMakespan52 = [794, 794, 795, 792, 795, 795, 795, 792, 794, 793, 795, 794] drlTanhMakespan53 = [794, 792, 794, 792, 794, 794, 794, 795, 795, 794, 794, 792] drlTanhMakespan54 = [795, 793, 794, 794, 794, 792, 795, 794, 794, 792, 794, 796] drlTanhMakespan55 = [795, 794, 794, 795, 795, 793, 794, 795, 794, 797, 795, 792] drlTanhMakespan56 = [795, 795, 792, 795, 794, 795, 794, 794, 794, 795, 795, 795] drlTanhMakespan57 = [795, 792, 795, 794, 795, 795, 792, 795, 794, 797, 792, 792] drlTanhMakespan58 = [795, 795, 794, 795, 792, 794, 794, 794, 792, 792, 792, 793] drlTanhMakespan59 = [795, 794, 792, 794, 794, 794, 792, 794, 794, 794, 793, 795] drlTanhMakespan60 = [794, 795, 795, 795, 798, 794, 794, 794, 794, 794, 794, 792] drlTanhMakespan61 = [792, 795, 794, 794, 795, 794, 792, 795, 795, 794, 794, 795] drlTanhMakespan62 = [795, 794, 794, 794, 799, 794, 792, 794, 795, 795, 794, 793] drlTanhMakespan63 = [791, 795, 792, 796, 794, 794, 792, 795, 793, 794, 792, 794] drlTanhRewards0 = [-0.17508269018743108, -0.17508269018743108, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17508269018743108, -0.17798286090969018, -0.1768976897689769, -0.17725973169122497, -0.17834394904458598, -0.1776214552648934] drlTanhRewards1 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlTanhRewards2 = [-0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765] drlTanhRewards3 = [-0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drlTanhRewards4 = [-0.1778021978021978, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drlTanhRewards5 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.177078750549934] drlTanhRewards6 = [-0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387] drlTanhRewards7 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drlTanhRewards8 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drlTanhRewards9 = [-0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026] drlTanhRewards10 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards11 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards12 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards13 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drlTanhRewards14 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1749007498897221] drlTanhRewards15 = [-0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1763540290620872, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128] drlTanhRewards16 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drlTanhRewards17 = [-0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards18 = [-0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drlTanhRewards19 = [-0.17562802996914942, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026] drlTanhRewards20 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026] drlTanhRewards21 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards22 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drlTanhRewards23 = [-0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drlTanhRewards24 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128] drlTanhRewards25 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards26 = [-0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765] drlTanhRewards27 = [-0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards28 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlTanhRewards29 = [-0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards30 = [-0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drlTanhRewards31 = [-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drlTanhRewards32 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026] drlTanhRewards33 = [-0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026] drlTanhRewards34 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards35 = [-0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards36 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards37 = [-0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224] drlTanhRewards38 = [-0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108] drlTanhRewards41 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026] drlTanhRewards42 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards43 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards44 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards45 = [-0.1749007498897221, -0.17435444714191128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17453662842012357, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards46 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drlTanhRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards49 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards50 = [-0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drlTanhRewards51 = [-0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards52 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards53 = [-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards54 = [-0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387] drlTanhRewards55 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drlTanhRewards56 = [-0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards57 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17471872931833224] drlTanhRewards58 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17471872931833224, -0.1749007498897221] drlTanhRewards59 = [-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drlTanhRewards60 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards61 = [-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards62 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drlTanhRewards63 = [-0.17453662842012357, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion relu, 12 episodios, 50 iteraciones drlReluMakespan0 = [796, 798, 809, 798, 796, 800, 798, 799, 800, 794, 800, 798] drlReluMakespan1 = [800, 800, 801, 806, 804, 806, 808, 798, 796, 796, 798, 800] drlReluMakespan2 = [805, 805, 798, 800, 800, 798, 801, 799, 800, 806, 800, 800] drlReluMakespan3 = [798, 799, 798, 795, 798, 808, 803, 800, 798, 795, 799, 800] drlReluMakespan4 = [805, 805, 799, 796, 798, 803, 799, 800, 800, 800, 795, 794] drlReluMakespan5 = [799, 796, 795, 800, 801, 796, 800, 795, 803, 800, 800, 805] drlReluMakespan6 = [799, 795, 798, 794, 805, 796, 795, 799, 798, 795, 804, 796] drlReluMakespan7 = [795, 798, 799, 798, 798, 799, 795, 794, 796, 794, 795, 805] drlReluMakespan8 = [805, 794, 794, 795, 798, 795, 798, 795, 799, 800, 796, 798] drlReluMakespan9 = [797, 797, 797, 794, 795, 794, 794, 797, 796, 795, 801, 799] drlReluMakespan10 = [799, 794, 797, 795, 794, 794, 795, 795, 795, 796, 797, 799] drlReluMakespan11 = [796, 798, 800, 795, 805, 794, 798, 796, 795, 794, 798, 795] drlReluMakespan12 = [800, 795, 794, 798, 800, 805, 800, 798, 804, 799, 794, 803] drlReluMakespan13 = [796, 799, 798, 794, 800, 794, 795, 796, 798, 795, 794, 799] drlReluMakespan14 = [795, 798, 798, 798, 805, 798, 798, 798, 795, 794, 800, 796] drlReluMakespan15 = [795, 798, 795, 805, 798, 794, 795, 798, 796, 794, 795, 796] drlReluMakespan16 = [798, 795, 796, 799, 796, 798, 798, 795, 795, 795, 795, 799] drlReluMakespan17 = [794, 798, 796, 798, 795, 801, 794, 798, 797, 795, 796, 801] drlReluMakespan18 = [798, 795, 798, 798, 801, 798, 795, 795, 797, 800, 794, 800] drlReluMakespan19 = [795, 798, 794, 800, 796, 795, 798, 797, 795, 794, 796, 796] drlReluMakespan20 = [794, 794, 795, 795, 795, 795, 796, 798, 799, 799, 799, 795] drlReluMakespan21 = [802, 796, 794, 797, 797, 800, 794, 794, 804, 803, 798, 797] drlReluMakespan22 = [794, 795, 795, 795, 798, 795, 794, 799, 794, 803, 795, 794] drlReluMakespan23 = [794, 798, 799, 794, 795, 795, 799, 795, 796, 795, 797, 799] drlReluMakespan24 = [795, 794, 797, 800, 794, 795, 795, 795, 795, 800, 800, 798] drlReluMakespan25 = [795, 794, 797, 796, 798, 795, 795, 794, 799, 795, 794, 798] drlReluMakespan26 = [801, 795, 800, 794, 794, 796, 800, 798, 798, 799, 794, 796] drlReluMakespan27 = [796, 795, 796, 795, 796, 795, 795, 800, 794, 794, 794, 796] drlReluMakespan28 = [794, 794, 795, 796, 794, 795, 795, 797, 794, 794, 796, 795] drlReluMakespan29 = [793, 794, 795, 800, 795, 795, 794, 798, 798, 796, 795, 794] drlReluMakespan30 = [802, 794, 794, 798, 794, 796, 805, 794, 800, 794, 796, 794] drlReluMakespan31 = [797, 794, 794, 794, 800, 800, 794, 794, 798, 795, 794, 798] drlReluMakespan32 = [794, 798, 794, 795, 794, 795, 798, 794, 794, 795, 794, 798] drlReluMakespan33 = [798, 794, 798, 795, 794, 793, 797, 798, 794, 794, 801, 793] drlReluMakespan34 = [794, 798, 794, 795, 794, 793, 798, 795, 794, 800, 794, 795] drlReluMakespan35 = [794, 796, 794, 796, 806, 795, 795, 795, 796, 795, 795, 799] drlReluMakespan36 = [795, 794, 794, 796, 796, 798, 794, 796, 794, 795, 794, 795] drlReluMakespan37 = [795, 794, 795, 798, 794, 794, 794, 794, 794, 794, 795, 797] drlReluMakespan38 = [794, 798, 794, 798, 797, 794, 794, 795, 795, 794, 795, 795] drlReluMakespan39 = [797, 794, 795, 796, 796, 796, 798, 794, 794, 795, 794, 798] drlReluMakespan40 = [798, 795, 795, 798, 792, 795, 795, 794, 795, 794, 798, 794] drlReluMakespan41 = [795, 794, 794, 794, 794, 794, 798, 793, 794, 794, 794, 793] drlReluMakespan42 = [794, 794, 794, 794, 799, 794, 795, 794, 796, 794, 794, 794] drlReluMakespan43 = [794, 797, 795, 794, 795, 794, 794, 795, 794, 794, 793, 794] drlReluMakespan44 = [794, 792, 793, 794, 794, 796, 794, 798, 795, 794, 794, 796] drlReluMakespan45 = [795, 794, 799, 794, 794, 793, 794, 795, 795, 793, 796, 794] drlReluMakespan46 = [794, 796, 794, 794, 794, 794, 794, 793, 799, 792, 794, 794] drlReluMakespan47 = [795, 794, 793, 794, 796, 797, 794, 794, 795, 794, 794, 794] drlReluMakespan48 = [794, 794, 794, 792, 794, 794, 795, 794, 794, 794, 794, 794] drlReluMakespan49 = [794, 794, 795, 792, 797, 797, 794, 794, 792, 800, 795, 795] drlReluRewards0 = [-0.17544633017412387, -0.17580964970257765, -0.1778021978021978, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards1 = [-0.17617264919621228, -0.17617264919621228, -0.1763540290620872, -0.17725973169122497, -0.1768976897689769, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228] drlReluRewards2 = [-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228] drlReluRewards3 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1776214552648934, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228] drlReluRewards4 = [-0.177078750549934, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17671654929577466, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108] drlReluRewards5 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.1763540290620872, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934] drlReluRewards6 = [-0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.177078750549934, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.17544633017412387] drlReluRewards7 = [-0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.177078750549934] drlReluRewards8 = [-0.177078750549934, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drlReluRewards9 = [-0.17562802996914942, -0.17562802996914942, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128] drlReluRewards10 = [-0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlReluRewards11 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.177078750549934, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026] drlReluRewards12 = [-0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466] drlReluRewards13 = [-0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128] drlReluRewards14 = [-0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387] drlReluRewards15 = [-0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drlReluRewards16 = [-0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards17 = [-0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1763540290620872] drlReluRewards18 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drlReluRewards19 = [-0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drlReluRewards20 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026] drlReluRewards21 = [-0.17653532907770195, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.17562802996914942] drlReluRewards22 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466, -0.17526455026455026, -0.17508269018743108] drlReluRewards23 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128] drlReluRewards24 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards25 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards26 = [-0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387] drlReluRewards27 = [-0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards28 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drlReluRewards29 = [-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlReluRewards30 = [-0.17653532907770195, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108] drlReluRewards31 = [-0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765] drlReluRewards32 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards33 = [-0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.1763540290620872, -0.1749007498897221] drlReluRewards34 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026] drlReluRewards35 = [-0.17508269018743108, -0.17544633017412387, -0.17725973169122497, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards36 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlReluRewards37 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942] drlReluRewards38 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drlReluRewards39 = [-0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlReluRewards41 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drlReluRewards42 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards43 = [-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108] drlReluRewards44 = [-0.17508269018743108, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards45 = [-0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17544633017412387, -0.17508269018743108] drlReluRewards46 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108] drlReluRewards47 = [-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards49 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026] if __name__ == "__main__": ############################################## ############################################## ############################################## # Deep Recurrent Reinforcement Learning with 1 GRU layer and 4 Dense layers drnnGRUtanhMakespan = [] drnnGRUtanhRewards = [] drnnGRUtanhMakespanList = [] drnnGRUtanhRewardsList = [] drnnGRUtanhMakespanValues = [] drnnGRUtanhRewardsValues = [] drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan0)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan1)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan2)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan3)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan4)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan5)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan6)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan7)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan8)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan9)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan10)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan11)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan12)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan13)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan14)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan15)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan16)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan17)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan18)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan19)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan20)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan21)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan22)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan23)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan24)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan25)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan26)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan27)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan28)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan29)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan30)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan31)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan32)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan33)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan34)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan35)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan36)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan37)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan38)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan39)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan40)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan41)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan42)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan43)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan44)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan45)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan46)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan47)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan48)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan49)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards0)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards1)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards2)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards3)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards4)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards5)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards6)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards7)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards8)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards9)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards10)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards11)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards12)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards13)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards14)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards15)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards16)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards17)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards18)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards19)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards20)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards21)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards22)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards23)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards24)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards25)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards26)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards27)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards28)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards29)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards30)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards31)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards32)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards33)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards34)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards35)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards36)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards37)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards38)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards39)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards40)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards41)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards42)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards43)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards44)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards45)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards46)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards47)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards48)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards49)) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan0) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan1) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan2) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan3) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan4) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan5) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan6) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan7) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan8) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan9) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan10) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan11) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan12) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan13) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan14) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan15) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan16) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan17) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan18) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan19) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan20) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan21) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan22) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan23) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan24) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan25) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan26) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan27) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan28) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan29) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan30) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan31) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan32) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan33) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan34) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan35) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan36) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan37) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan38) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan39) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan40) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan41) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan42) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan43) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan44) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan45) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan46) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan47) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan48) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan49) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards0) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards1) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards2) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards3) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards4) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards5) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards6) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards7) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards8) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards9) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards10) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards11) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards12) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards13) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards14) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards15) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards16) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards17) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards18) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards19) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards20) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards21) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards22) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards23) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards24) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards25) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards26) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards27) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards28) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards29) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards30) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards31) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards32) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards33) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards34) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards35) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards36) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards37) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards38) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards39) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards40) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards41) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards42) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards43) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards44) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards45) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards46) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards47) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards48) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards49) drnnGRUreluMakespan = [] drnnGRUreluRewards = [] drnnGRUreluMakespanList = [] drnnGRUreluRewardsList = [] drnnGRUreluMakespanValues = [] drnnGRUreluRewardsValues = [] drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan0)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan1)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan2)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan3)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan4)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan5)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan6)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan7)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan8)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan9)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan10)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan11)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan12)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan13)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan14)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan15)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan16)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan17)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan18)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan19)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan20)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan21)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan22)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan23)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan24)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan25)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan26)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan27)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan28)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan29)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan30)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan31)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan32)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan33)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan34)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan35)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan36)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan37)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan38)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan39)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan40)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan41)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan42)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan43)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan44)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan45)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan46)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan47)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan48)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan49)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards0)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards1)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards2)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards3)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards4)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards5)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards6)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards7)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards8)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards9)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards10)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards11)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards12)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards13)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards14)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards15)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards16)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards17)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards18)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards19)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards20)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards21)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards22)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards23)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards24)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards25)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards26)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards27)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards28)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards29)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards30)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards31)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards32)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards33)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards34)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards35)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards36)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards37)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards38)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards39)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards40)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards41)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards42)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards43)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards44)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards45)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards46)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards47)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards48)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards49)) drnnGRUreluMakespanList.append(drnnGRUreluMakespan0) drnnGRUreluMakespanList.append(drnnGRUreluMakespan1) drnnGRUreluMakespanList.append(drnnGRUreluMakespan2) drnnGRUreluMakespanList.append(drnnGRUreluMakespan3) drnnGRUreluMakespanList.append(drnnGRUreluMakespan4) drnnGRUreluMakespanList.append(drnnGRUreluMakespan5) drnnGRUreluMakespanList.append(drnnGRUreluMakespan6) drnnGRUreluMakespanList.append(drnnGRUreluMakespan7) drnnGRUreluMakespanList.append(drnnGRUreluMakespan8) drnnGRUreluMakespanList.append(drnnGRUreluMakespan9) drnnGRUreluMakespanList.append(drnnGRUreluMakespan10) drnnGRUreluMakespanList.append(drnnGRUreluMakespan11) drnnGRUreluMakespanList.append(drnnGRUreluMakespan12) drnnGRUreluMakespanList.append(drnnGRUreluMakespan13) drnnGRUreluMakespanList.append(drnnGRUreluMakespan14) drnnGRUreluMakespanList.append(drnnGRUreluMakespan15) drnnGRUreluMakespanList.append(drnnGRUreluMakespan16) drnnGRUreluMakespanList.append(drnnGRUreluMakespan17) drnnGRUreluMakespanList.append(drnnGRUreluMakespan18) drnnGRUreluMakespanList.append(drnnGRUreluMakespan19) drnnGRUreluMakespanList.append(drnnGRUreluMakespan20) drnnGRUreluMakespanList.append(drnnGRUreluMakespan21) drnnGRUreluMakespanList.append(drnnGRUreluMakespan22) drnnGRUreluMakespanList.append(drnnGRUreluMakespan23) drnnGRUreluMakespanList.append(drnnGRUreluMakespan24) drnnGRUreluMakespanList.append(drnnGRUreluMakespan25) drnnGRUreluMakespanList.append(drnnGRUreluMakespan26) drnnGRUreluMakespanList.append(drnnGRUreluMakespan27) drnnGRUreluMakespanList.append(drnnGRUreluMakespan28) drnnGRUreluMakespanList.append(drnnGRUreluMakespan29) drnnGRUreluMakespanList.append(drnnGRUreluMakespan30) drnnGRUreluMakespanList.append(drnnGRUreluMakespan31) drnnGRUreluMakespanList.append(drnnGRUreluMakespan32) drnnGRUreluMakespanList.append(drnnGRUreluMakespan33) drnnGRUreluMakespanList.append(drnnGRUreluMakespan34) drnnGRUreluMakespanList.append(drnnGRUreluMakespan35) drnnGRUreluMakespanList.append(drnnGRUreluMakespan36) drnnGRUreluMakespanList.append(drnnGRUreluMakespan37) drnnGRUreluMakespanList.append(drnnGRUreluMakespan38) drnnGRUreluMakespanList.append(drnnGRUreluMakespan39) drnnGRUreluMakespanList.append(drnnGRUreluMakespan40) drnnGRUreluMakespanList.append(drnnGRUreluMakespan41) drnnGRUreluMakespanList.append(drnnGRUreluMakespan42) drnnGRUreluMakespanList.append(drnnGRUreluMakespan43) drnnGRUreluMakespanList.append(drnnGRUreluMakespan44) drnnGRUreluMakespanList.append(drnnGRUreluMakespan45) drnnGRUreluMakespanList.append(drnnGRUreluMakespan46) drnnGRUreluMakespanList.append(drnnGRUreluMakespan47) drnnGRUreluMakespanList.append(drnnGRUreluMakespan48) drnnGRUreluMakespanList.append(drnnGRUreluMakespan49) drnnGRUreluRewardsList.append(drnnGRUreluRewards0) drnnGRUreluRewardsList.append(drnnGRUreluRewards1) drnnGRUreluRewardsList.append(drnnGRUreluRewards2) drnnGRUreluRewardsList.append(drnnGRUreluRewards3) drnnGRUreluRewardsList.append(drnnGRUreluRewards4) drnnGRUreluRewardsList.append(drnnGRUreluRewards5) drnnGRUreluRewardsList.append(drnnGRUreluRewards6) drnnGRUreluRewardsList.append(drnnGRUreluRewards7) drnnGRUreluRewardsList.append(drnnGRUreluRewards8) drnnGRUreluRewardsList.append(drnnGRUreluRewards9) drnnGRUreluRewardsList.append(drnnGRUreluRewards10) drnnGRUreluRewardsList.append(drnnGRUreluRewards11) drnnGRUreluRewardsList.append(drnnGRUreluRewards12) drnnGRUreluRewardsList.append(drnnGRUreluRewards13) drnnGRUreluRewardsList.append(drnnGRUreluRewards14) drnnGRUreluRewardsList.append(drnnGRUreluRewards15) drnnGRUreluRewardsList.append(drnnGRUreluRewards16) drnnGRUreluRewardsList.append(drnnGRUreluRewards17) drnnGRUreluRewardsList.append(drnnGRUreluRewards18) drnnGRUreluRewardsList.append(drnnGRUreluRewards19) drnnGRUreluRewardsList.append(drnnGRUreluRewards20) drnnGRUreluRewardsList.append(drnnGRUreluRewards21) drnnGRUreluRewardsList.append(drnnGRUreluRewards22) drnnGRUreluRewardsList.append(drnnGRUreluRewards23) drnnGRUreluRewardsList.append(drnnGRUreluRewards24) drnnGRUreluRewardsList.append(drnnGRUreluRewards25) drnnGRUreluRewardsList.append(drnnGRUreluRewards26) drnnGRUreluRewardsList.append(drnnGRUreluRewards27) drnnGRUreluRewardsList.append(drnnGRUreluRewards28) drnnGRUreluRewardsList.append(drnnGRUreluRewards29) drnnGRUreluRewardsList.append(drnnGRUreluRewards30) drnnGRUreluRewardsList.append(drnnGRUreluRewards31) drnnGRUreluRewardsList.append(drnnGRUreluRewards32) drnnGRUreluRewardsList.append(drnnGRUreluRewards33) drnnGRUreluRewardsList.append(drnnGRUreluRewards34) drnnGRUreluRewardsList.append(drnnGRUreluRewards35) drnnGRUreluRewardsList.append(drnnGRUreluRewards36) drnnGRUreluRewardsList.append(drnnGRUreluRewards37) drnnGRUreluRewardsList.append(drnnGRUreluRewards38) drnnGRUreluRewardsList.append(drnnGRUreluRewards39) drnnGRUreluRewardsList.append(drnnGRUreluRewards40) drnnGRUreluRewardsList.append(drnnGRUreluRewards41) drnnGRUreluRewardsList.append(drnnGRUreluRewards42) drnnGRUreluRewardsList.append(drnnGRUreluRewards43) drnnGRUreluRewardsList.append(drnnGRUreluRewards44) drnnGRUreluRewardsList.append(drnnGRUreluRewards45) drnnGRUreluRewardsList.append(drnnGRUreluRewards46) drnnGRUreluRewardsList.append(drnnGRUreluRewards47) drnnGRUreluRewardsList.append(drnnGRUreluRewards48) drnnGRUreluRewardsList.append(drnnGRUreluRewards49) for vector in drnnGRUtanhMakespanList: for element in vector: drnnGRUtanhMakespanValues.append(element) for vector in drnnGRUtanhRewardsList: for element in vector: drnnGRUtanhRewardsValues.append(element) ################## for vector in drnnGRUreluMakespanList: for element in vector: drnnGRUreluMakespanValues.append(element) for vector in drnnGRUreluRewardsList: for element in vector: drnnGRUreluRewardsValues.append(element) ##################### smoothGRUtanhMakespanValues = pd.Series(drnnGRUtanhMakespanValues).rolling(12).mean() plt.plot(smoothGRUtanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.show() smoothGRUtanhRewardsValues = pd.Series(drnnGRUtanhRewardsValues).rolling(12).mean() plt.plot(smoothGRUtanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.show() ##################### smoothGRUreluMakespanValues = pd.Series(drnnGRUreluMakespanValues).rolling(12).mean() plt.plot(smoothGRUreluMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() smoothGRUreluRewardsValues = pd.Series(drnnGRUreluRewardsValues).rolling(12).mean() plt.plot(smoothGRUreluRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() ################### plt.plot(smoothGRUtanhMakespanValues, color='blue', label='tanh') plt.plot(smoothGRUreluMakespanValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### plt.plot(smoothGRUtanhRewardsValues, color='blue', label='tanh') plt.plot(smoothGRUreluRewardsValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### drnnLSTMtanhMakespan = [] drnnLSTMtanhRewards = [] drnnLSTMtanhMakespanList = [] drnnLSTMtanhRewardsList = [] drnnLSTMtanhMakespanValues = [] drnnLSTMtanhRewardsValues = [] drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan0)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan1)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan2)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan3)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan4)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan5)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan6)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan7)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan8)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan9)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan10)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan11)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan12)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan13)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan14)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan15)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan16)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan17)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan18)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan19)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan20)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan21)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan22)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan23)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan24)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan25)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan26)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan27)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan28)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan29)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan30)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan31)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan32)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan33)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan34)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan35)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan36)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan37)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan38)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan39)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan40)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan41)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan42)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan43)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan44)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan45)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan46)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan47)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan48)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan49)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards0)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards1)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards2)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards3)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards4)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards5)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards6)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards7)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards8)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards9)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards10)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards11)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards12)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards13)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards14)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards15)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards16)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards17)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards18)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards19)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards20)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards21)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards22)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards23)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards24)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards25)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards26)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards27)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards28)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards29)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards30)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards31)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards32)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards33)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards34)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards35)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards36)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards37)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards38)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards39)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards40)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards41)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards42)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards43)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards44)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards45)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards46)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards47)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards48)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards49)) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan0) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan1) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan2) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan3) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan4) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan5) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan6) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan7) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan8) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan9) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan10) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan11) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan12) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan13) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan14) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan15) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan16) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan17) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan18) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan19) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan20) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan21) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan22) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan23) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan24) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan25) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan26) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan27) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan28) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan29) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan30) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan31) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan32) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan33) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan34) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan35) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan36) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan37) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan38) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan39) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan40) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan41) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan42) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan43) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan44) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan45) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan46) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan47) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan48) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan49) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards0) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards1) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards2) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards3) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards4) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards5) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards6) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards7) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards8) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards9) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards10) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards11) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards12) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards13) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards14) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards15) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards16) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards17) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards18) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards19) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards20) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards21) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards22) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards23) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards24) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards25) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards26) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards27) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards28) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards29) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards30) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards31) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards32) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards33) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards34) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards35) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards36) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards37) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards38) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards39) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards40) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards41) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards42) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards43) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards44) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards45) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards46) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards47) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards48) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards49) for vector in drnnLSTMtanhMakespanList: for element in vector: drnnLSTMtanhMakespanValues.append(element) for vector in drnnLSTMtanhRewardsList: for element in vector: drnnLSTMtanhRewardsValues.append(element) smoothLSTMtanhMakespanValues = pd.Series(drnnLSTMtanhMakespanValues).rolling(12).mean() plt.plot(smoothLSTMtanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' utilizando LSTM con tanh") plt.show() smoothLSTMtanhRewardsValues = pd.Series(drnnLSTMtanhRewardsValues).rolling(12).mean() plt.plot(smoothLSTMtanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' utilizando LSTM con tanh") plt.show() #################### drnnLSTMreluMakespan = [] drnnLSTMreluRewards = [] drnnLSTMreluMakespanList = [] drnnLSTMreluRewardsList = [] drnnLSTMreluMakespanValues = [] drnnLSTMreluRewardsValues = [] drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan0)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan1)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan2)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan3)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan4)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan5)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan6)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan7)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan8)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan9)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan10)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan11)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan12)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan13)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan14)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan15)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan16)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan17)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan18)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan19)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan20)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan21)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan22)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan23)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan24)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan25)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan26)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan27)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan28)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan29)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan30)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan31)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan32)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan33)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan34)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan35)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan36)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan37)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan38)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan39)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan40)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan41)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan42)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan43)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan44)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan45)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan46)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan47)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan48)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan49)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards0)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards1)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards2)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards3)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards4)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards5)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards6)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards7)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards8)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards9)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards10)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards11)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards12)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards13)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards14)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards15)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards16)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards17)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards18)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards19)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards20)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards21)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards22)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards23)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards24)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards25)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards26)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards27)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards28)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards29)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards30)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards31)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards32)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards33)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards34)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards35)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards36)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards37)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards38)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards39)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards40)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards41)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards42)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards43)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards44)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards45)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards46)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards47)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards48)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards49)) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan0) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan1) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan2) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan3) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan4) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan5) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan6) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan7) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan8) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan9) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan10) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan11) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan12) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan13) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan14) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan15) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan16) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan17) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan18) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan19) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan20) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan21) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan22) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan23) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan24) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan25) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan26) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan27) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan28) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan29) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan30) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan31) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan32) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan33) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan34) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan35) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan36) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan37) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan38) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan39) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan40) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan41) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan42) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan43) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan44) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan45) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan46) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan47) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan48) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan49) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards0) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards1) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards2) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards3) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards4) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards5) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards6) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards7) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards8) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards9) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards10) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards11) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards12) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards13) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards14) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards15) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards16) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards17) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards18) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards19) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards20) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards21) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards22) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards23) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards24) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards25) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards26) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards27) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards28) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards29) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards30) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards31) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards32) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards33) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards34) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards35) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards36) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards37) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards38) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards39) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards40) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards41) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards42) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards43) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards44) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards45) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards46) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards47) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards48) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards49) for vector in drnnLSTMreluMakespanList: for element in vector: drnnLSTMreluMakespanValues.append(element) for vector in drnnLSTMreluRewardsList: for element in vector: drnnLSTMreluRewardsValues.append(element) smoothLSTMreluMakespanValues = pd.Series(drnnLSTMreluMakespanValues).rolling(12).mean() plt.plot(smoothLSTMreluMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' utilizando LSTM con relu") plt.show() smoothLSTMreluRewardsValues = pd.Series(drnnLSTMreluRewardsValues).rolling(12).mean() plt.plot(smoothLSTMreluRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' utilizando LSTM con relu") plt.show() ################## plt.plot(smoothLSTMtanhMakespanValues, color='blue', label='tanh') plt.plot(smoothLSTMreluMakespanValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa LSTM") plt.legend() plt.show() ################## plt.plot(smoothLSTMtanhRewardsValues, color='blue', label='tanh') plt.plot(smoothLSTMreluRewardsValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa LSTM") plt.legend() plt.show() ################## ################## ################## drlTanhMakespan = [] drlTanhRewards = [] drlTanhMakespanList = [] drlTanhRewardsList = [] drlTanhMakespanValues = [] drlTanhRewardsValues = [] drlTanhMakespan.append(np.mean(drlTanhMakespan0)) drlTanhMakespan.append(np.mean(drlTanhMakespan1)) drlTanhMakespan.append(np.mean(drlTanhMakespan2)) drlTanhMakespan.append(np.mean(drlTanhMakespan3)) drlTanhMakespan.append(np.mean(drlTanhMakespan4)) drlTanhMakespan.append(np.mean(drlTanhMakespan5)) drlTanhMakespan.append(np.mean(drlTanhMakespan6)) drlTanhMakespan.append(np.mean(drlTanhMakespan7)) drlTanhMakespan.append(np.mean(drlTanhMakespan8)) drlTanhMakespan.append(np.mean(drlTanhMakespan9)) drlTanhMakespan.append(np.mean(drlTanhMakespan10)) drlTanhMakespan.append(np.mean(drlTanhMakespan11)) drlTanhMakespan.append(np.mean(drlTanhMakespan12)) drlTanhMakespan.append(np.mean(drlTanhMakespan13)) drlTanhMakespan.append(np.mean(drlTanhMakespan14)) drlTanhMakespan.append(
np.mean(drlTanhMakespan15)
numpy.mean
"""Functions to clean images by fitting linear trends to the initial scans.""" try: import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec HAS_MPL = True except ImportError: HAS_MPL = False from .fit import contiguous_regions from .utils import jit, vectorize from .histograms import histogram2d import numpy as np __all__ = ["fit_full_image", "display_intermediate"] @vectorize('(float64(float64,float64,float64,float64))', nopython=True) def _align_fast(x, scan, m, q): """Align ``scan`` to a linear function.""" return scan - x * m - q XBUFFER = None YBUFFER = None def _get_coords(xedges, yedges): """Get coordinates given the edges of the histogram.""" global XBUFFER, YBUFFER if XBUFFER is None: xcenters = (xedges[:-1] + xedges[1:]) / 2 ycenters = (yedges[:-1] + yedges[1:]) / 2 X, Y = np.meshgrid(xcenters, ycenters) XBUFFER = X YBUFFER = Y return XBUFFER, YBUFFER EXPOMAP = None def _calculate_image(x, y, counts, bx, by, nsamp): """Calculate the image.""" global EXPOMAP if EXPOMAP is None: EXPOMAP, xedges, yedges = histogram2d(x, y, bins=(bx, by), weights=nsamp) histograms, xedges, yedges = \ histogram2d(x, y, bins=(bx, by), weights=[counts * nsamp, (counts) ** 2 * nsamp]) img, img_var = histograms X, Y = _get_coords(xedges, yedges) good = EXPOMAP > 0 mean = img.copy() mean[good] /= EXPOMAP[good] img_var[good] = img_var[good] / EXPOMAP[good] - mean[good] ** 2 return X, Y, mean.T, img_var.T @jit # (nopython=True) def _align_all(newd_t, newd_c, data_idx, par): ms = np.zeros_like(newd_c, dtype=np.float64) qs = np.zeros_like(newd_c, dtype=np.float64) for i_p in range(0, len(par), 2): i0, i1 = data_idx[i_p // 2] if i0 == i1: continue sliceobj = slice(i0, i1) ms[sliceobj] = par[i_p] qs[sliceobj] = par[i_p + 1] return _align_fast(newd_t, newd_c, ms, qs) def counter(initial_value=0): count = initial_value while True: yield count count += 1 ITERATION_COUNT = counter(0) CURR_CHANNEL = "Feed0_RCP" def _save_intermediate(filename, par): np.savetxt(filename, par) def _get_saved_pars(filename): return np.genfromtxt(filename) def _save_iteration(par): iteration = next(ITERATION_COUNT) print(iteration, end="\r") if iteration % 2 == 0: _save_intermediate("out_iter_{}_{:03d}.txt".format(CURR_CHANNEL, iteration), par) def _obj_fun(par, data, data_idx, excluded, bx, by): """ This is the function we have to minimize. Parameters ---------- par : array([m0, q0, m1, q1, ...]) linear baseline parameters for the image. data : [times, idxs, x, y, counts] All five quantities are ``numpy`` ``array``s; ``time`` is time from the start of the scan; ``x``, ``y`` are the image coordinates, ``idx`` corresponds to the scan number and ``counts`` to the scan values at those coordinates. excluded : [[centerx0, centery0, radius0]] list of circular regions to exclude from fitting (e.g. strong sources that might alter the total rms) """ newd_t, _, newd_x, newd_y, newd_c, newd_e = data newd_c_new = _align_all(newd_t, newd_c, data_idx, par) X, Y, img, img_var = _calculate_image(newd_x, newd_y, newd_c_new, bx, by, newd_e) good = img != 0. if excluded is not None: for e in excluded: centerx, centery, radius = e filt = (X - centerx) ** 2 + (Y - centery) ** 2 < radius ** 2 good[filt] = 0 stat = np.sum(img_var[good]) + np.var(img[good]) * img[good].size return stat def _resample_scans(data): """Resample all scans to match the pixels of the image.""" t, idx, x, y, c = data xmax, xmin = np.max(x), np.min(x) ymax, ymin = np.max(y), np.min(y) x_range = xmax - xmin y_range = ymax - ymin bx = np.linspace(xmin, xmax, int(x_range) + 1) by = np.linspace(ymin, ymax, int(y_range) + 1) newt = np.array([], dtype=np.float64) newi = np.array([], dtype=int) newx = np.array([], dtype=np.float64) newy = np.array([], dtype=np.float64) newc = np.array([], dtype=np.float64) newe = np.array([], dtype=np.float64) for i in list(set(idx)): good = idx == i x_filt = x[good] n = len(x_filt) if n == 0: continue y_filt = y[good] c_filt = c[good] t_filt = t[good] t_filt -= t_filt[0] hists, _, _ = \ histogram2d(x_filt, y_filt, bins=(bx, by), weights=[np.ones(n), t_filt, x_filt, y_filt, c_filt]) expo, time, X, Y, counts = hists good = expo > 0 goodexpo = expo[good] tdum = np.ndarray.flatten(time[good] / goodexpo) cdum = np.ndarray.flatten(counts[good] / goodexpo) idum = np.ndarray.flatten(i + np.zeros(len(goodexpo), dtype=int)) xdum = np.ndarray.flatten(X[good] / goodexpo) ydum = np.ndarray.flatten(Y[good] / goodexpo) edum = np.ndarray.flatten(goodexpo) newt = np.append(newt, tdum) newc =
np.append(newc, cdum)
numpy.append
# Copyright (c) 2022 Mira Geoscience Ltd. # # This file is part of geoapps. # # geoapps is distributed under the terms and conditions of the MIT License # (see LICENSE file at the root of this source code package). from __future__ import annotations import sys from os import path import numpy as np from dask import delayed from dask.distributed import Client, get_client from geoh5py.groups import ContainerGroup from geoh5py.objects import Curve, Points from geoh5py.ui_json import InputFile from tqdm import tqdm from geoapps.base.application import BaseApplication from geoapps.utils import geophysical_systems from geoapps.utils.formatters import string_name from geoapps.utils.utils import hex_to_rgb from .params import PeakFinderParams from .utils import default_groups_from_property_group, find_anomalies class PeakFinderDriver: def __init__(self, params: PeakFinderParams): self.params: PeakFinderParams = params def run(self, output_group=None): print("Reading parameters...") try: client = get_client() except ValueError: client = Client() workspace = self.params.geoh5 survey = self.params.objects prop_group = [pg for pg in survey.property_groups if pg.uid == self.params.data] if self.params.tem_checkbox: system = geophysical_systems.parameters()[self.params.system] normalization = system["normalization"] else: normalization = [1] if output_group is None: output_group = ContainerGroup.create( workspace, name=string_name(self.params.ga_group_name) ) line_field = self.params.line_field lines = np.unique(line_field.values) if self.params.group_auto and any(prop_group): channel_groups = default_groups_from_property_group(prop_group[0]) else: channel_groups = self.params.groups_from_free_params() active_channels = {} for group in channel_groups.values(): for channel in group["properties"]: obj = workspace.get_entity(channel)[0] active_channels[channel] = {"name": obj.name} for uid, channel_params in active_channels.items(): obj = workspace.get_entity(uid)[0] if self.params.tem_checkbox: channel = [ch for ch in system["channels"].keys() if ch in obj.name] if any(channel): channel_params["time"] = system["channels"][channel[0]] else: continue channel_params["values"] = client.scatter( obj.values.copy() * (-1.0) ** self.params.flip_sign ) print("Submitting parallel jobs:") anomalies = [] locations = client.scatter(survey.vertices.copy()) for line_id in tqdm(list(lines)): line_indices = np.where(line_field.values == line_id)[0] anomalies += [ client.compute( delayed(find_anomalies)( locations, line_indices, active_channels, channel_groups, data_normalization=normalization, smoothing=self.params.smoothing, min_amplitude=self.params.min_amplitude, min_value=self.params.min_value, min_width=self.params.min_width, max_migration=self.params.max_migration, min_channels=self.params.min_channels, minimal_output=True, ) ) ] ( channel_group, tau, migration, azimuth, cox, amplitude, inflx_up, inflx_dwn, start, end, skew, peaks, ) = ([], [], [], [], [], [], [], [], [], [], [], []) print("Processing and collecting results:") for future_line in tqdm(anomalies): line = future_line.result() for group in line: if "channel_group" in group.keys() and len(group["cox"]) > 0: channel_group += group["channel_group"]["label"] if group["linear_fit"] is None: tau += [0] else: tau += [np.abs(group["linear_fit"][0] ** -1.0)] migration += [group["migration"]] amplitude += [group["amplitude"]] azimuth += [group["azimuth"]] cox += [group["cox"]] inflx_dwn += [group["inflx_dwn"]] inflx_up += [group["inflx_up"]] start += [group["start"]] end += [group["end"]] skew += [group["skew"]] peaks += [group["peaks"]] print("Exporting...") if cox: channel_group = np.hstack(channel_group) # Start count at 1 # Create reference values and color_map group_map, color_map = {}, [] for ind, (name, group) in enumerate(channel_groups.items()): group_map[ind + 1] = name color_map += [[ind + 1] + hex_to_rgb(group["color"]) + [1]] color_map = np.core.records.fromarrays( np.vstack(color_map).T, names=["Value", "Red", "Green", "Blue", "Alpha"] ) points = Points.create( self.params.geoh5, name="PointMarkers", vertices=np.vstack(cox), parent=output_group, ) points.entity_type.name = self.params.ga_group_name migration = np.hstack(migration) dip = migration / migration.max() dip = np.rad2deg(np.arccos(dip)) skew = np.hstack(skew) azimuth = np.hstack(azimuth) points.add_data( { "amplitude": {"values": np.hstack(amplitude)}, "skew": {"values": skew}, } ) if self.params.tem_checkbox: points.add_data( { "tau": {"values": np.hstack(tau)}, "azimuth": {"values": azimuth}, "dip": {"values": dip}, } ) channel_group_data = points.add_data( { "channel_group": { "type": "referenced", "values": np.hstack(channel_group), "value_map": group_map, } } ) channel_group_data.entity_type.color_map = { "name": "Time Groups", "values": color_map, } if self.params.tem_checkbox: group = points.find_or_create_property_group( name="AzmDip", property_group_type="Dip direction & dip" ) group.properties = [ points.get_data("azimuth")[0].uid, points.get_data("dip")[0].uid, ] # Add structural markers if self.params.structural_markers: if self.params.tem_checkbox: markers = [] def rotation_2D(angle): R = np.r_[ np.c_[ np.cos(np.pi * angle / 180), -np.sin(np.pi * angle / 180), ], np.c_[ np.sin(np.pi * angle / 180), np.cos(np.pi * angle / 180) ], ] return R for azm, xyz, mig in zip( np.hstack(azimuth).tolist(), np.vstack(cox).tolist(), migration.tolist(), ): marker = np.r_[ np.c_[-0.5, 0.0] * 50, np.c_[0.5, 0] * 50, np.c_[0.0, 0.0], np.c_[0.0, 1.0] * mig, ] marker = ( np.c_[np.dot(rotation_2D(-azm), marker.T).T, np.zeros(4)] + xyz ) markers.append(marker.squeeze()) curves = Curve.create( self.params.geoh5, name="TickMarkers", vertices=np.vstack(markers), cells=np.arange(len(markers) * 4, dtype="uint32").reshape( (-1, 2) ), parent=output_group, ) channel_group_data = curves.add_data( { "channel_group": { "type": "referenced", "values": np.kron(np.hstack(channel_group), np.ones(4)), "value_map": group_map, } } ) channel_group_data.entity_type.color_map = { "name": "Time Groups", "values": color_map, } inflx_pts = Points.create( self.params.geoh5, name="Inflections_Up", vertices=
np.vstack(inflx_up)
numpy.vstack