prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
"""Main entry points for scripts.""" from __future__ import print_function, division from argparse import ArgumentParser from collections import OrderedDict from copy import copy from datetime import datetime import glob import json import logging import math import os import scipy.stats import numpy as np from .version import __version__ from .psffuncs import gaussian_moffat_psf from .psf import TabularPSF, GaussianMoffatPSF from .io import read_datacube, write_results, read_results from .fitting import (guess_sky, fit_galaxy_single, fit_galaxy_sky_multi, fit_position_sky, fit_position_sky_sn_multi, RegularizationPenalty) from .utils import yxbounds from .extern import ADR, Hyper_PSF3D_PL __all__ = ["cubefit", "cubefit_subtract", "cubefit_plot"] MODEL_SHAPE = (32, 32) SPAXEL_SIZE = 0.43 MIN_NMAD = 2.5 # Minimum Number of Median Absolute Deviations above # the minimum spaxel value in fit_position LBFGSB_FACTOR = 1e10 REFWAVE = 5000. # reference wavelength in Angstroms for PSF params and ADR POSITION_BOUND = 3. # Bound on fitted positions relative in initial positions def snfpsf(wave, psfparams, header, psftype): """Create a 3-d PSF based on SNFactory-specific parameterization of Gaussian + Moffat PSF parameters and ADR.""" # Get Gaussian+Moffat parameters at each wavelength. relwave = wave / REFWAVE - 1.0 ellipticity = abs(psfparams[0]) * np.ones_like(wave) alpha = np.abs(psfparams[1] + psfparams[2] * relwave + psfparams[3] * relwave**2) # correlated parameters (coefficients determined externally) sigma = 0.545 + 0.215 * alpha # Gaussian parameter beta = 1.685 + 0.345 * alpha # Moffat parameter eta = 1.040 + 0.0 * alpha # gaussian ampl. / moffat ampl. # Atmospheric differential refraction (ADR): Because of ADR, # the center of the PSF will be different at each wavelength, # by an amount that we can determine (pretty well) from the # atmospheric conditions and the pointing and angle of the # instrument. We calculate the offsets here as a function of # observation and wavelength and input these to the model. # Correction to parallactic angle and airmass for 2nd-order effects # such as MLA rotation, mechanical flexures or finite-exposure # corrections. These values have been trained on faint-std star # exposures. # # `predict_adr_params` uses 'AIRMASS', 'PARANG' and 'CHANNEL' keys # in input dictionary. delta, theta = Hyper_PSF3D_PL.predict_adr_params(header) # check for crazy values of pressure and temperature, and assign default # values. pressure = header.get('PRESSURE', 617.) if not 550. < pressure < 650.: pressure = 617. temp = header.get('TEMP', 2.) if not -20. < temp < 20.: temp = 2. adr = ADR(pressure, temp, lref=REFWAVE, delta=delta, theta=theta) adr_refract = adr.refract(0, 0, wave, unit=SPAXEL_SIZE) # adr_refract[0, :] corresponds to x, adr_refract[1, :] => y xctr, yctr = adr_refract if psftype == 'gaussian-moffat': return GaussianMoffatPSF(sigma, alpha, beta, ellipticity, eta, yctr, xctr, MODEL_SHAPE, subpix=3) elif psftype == 'tabular': A = gaussian_moffat_psf(sigma, alpha, beta, ellipticity, eta, yctr, xctr, MODEL_SHAPE, subpix=3) return TabularPSF(A) else: raise ValueError("unknown psf type: " + repr(psftype)) def setup_logging(loglevel, logfname=None): # if loglevel isn't an integer, parse it as "debug", "info", etc: if not isinstance(loglevel, int): loglevel = getattr(logging, loglevel.upper(), None) if not isinstance(loglevel, int): print('Invalid log level: %s' % loglevel) exit(1) # remove logfile if it already exists if logfname is not None and os.path.exists(logfname): os.remove(logfname) logging.basicConfig(filename=logfname, format="%(levelname)s %(message)s", level=loglevel) def cubefit(argv=None): DESCRIPTION = "Fit SN + galaxy model to SNFactory data cubes." parser = ArgumentParser(prog="cubefit", description=DESCRIPTION) parser.add_argument("configfile", help="configuration file name (JSON format)") parser.add_argument("outfile", help="Output file name (FITS format)") parser.add_argument("--dataprefix", default="", help="path prepended to data file names; default is " "empty string") parser.add_argument("--logfile", help="Write log to this file " "(default: print to stdout)", default=None) parser.add_argument("--loglevel", default="info", help="one of: debug, info, warning (default is info)") parser.add_argument("--diagdir", default=None, help="If given, write intermediate diagnostic results " "to this directory") parser.add_argument("--refitgal", default=False, action="store_true", help="Add an iteration where galaxy model is fit " "using all epochs and then data/SN positions are " "refit") parser.add_argument("--mu_wave", default=0.07, type=float, help="Wavelength regularization parameter. " "Default is 0.07.") parser.add_argument("--mu_xy", default=0.001, type=float, help="Spatial regularization parameter. " "Default is 0.001.") parser.add_argument("--psftype", default="gaussian-moffat", help="Type of PSF: 'gaussian-moffat' or 'tabular'. " "Currently, tabular means generate a tabular PSF from " "gaussian-moffat parameters.") args = parser.parse_args(argv) setup_logging(args.loglevel, logfname=args.logfile) # record start time tstart = datetime.now() logging.info("cubefit v%s started at %s", __version__, tstart.strftime("%Y-%m-%d %H:%M:%S")) tsteps = OrderedDict() # finish time of each step. logging.info("parameters: mu_wave={:.3g} mu_xy={:.3g} refitgal={}" .format(args.mu_wave, args.mu_xy, args.refitgal)) logging.info(" psftype={}".format(args.psftype)) logging.info("reading config file") with open(args.configfile) as f: cfg = json.load(f) # basic checks on config contents. assert (len(cfg["filenames"]) == len(cfg["xcenters"]) == len(cfg["ycenters"]) == len(cfg["psf_params"])) # ------------------------------------------------------------------------- # Load data cubes from the list of FITS files. nt = len(cfg["filenames"]) logging.info("reading %d data cubes", nt) cubes = [] for fname in cfg["filenames"]: logging.debug(" reading %s", fname) cubes.append(read_datacube(os.path.join(args.dataprefix, fname))) wave = cubes[0].wave nw = len(wave) # assign some local variables for convenience refs = cfg["refs"] master_ref = cfg["master_ref"] if master_ref not in refs: raise ValueError("master ref choice must be one of the final refs (" + " ".join(refs.astype(str)) + ")") nonmaster_refs = [i for i in refs if i != master_ref] nonrefs = [i for i in range(nt) if i not in refs] # Ensure that all cubes have the same wavelengths. if not all(np.all(cubes[i].wave == wave) for i in range(1, nt)): raise ValueError("all data must have same wavelengths") # ------------------------------------------------------------------------- # PSF for each observation logging.info("setting up PSF for all %d epochs", nt) psfs = [snfpsf(wave, cfg["psf_params"][i], cubes[i].header, args.psftype) for i in range(nt)] # ------------------------------------------------------------------------- # Initialize all model parameters to be fit yctr0 = np.array(cfg["ycenters"]) xctr0 = np.array(cfg["xcenters"]) galaxy = np.zeros((nw, MODEL_SHAPE[0], MODEL_SHAPE[1]), dtype=np.float64) sn = np.zeros((nt, nw), dtype=np.float64) # SN spectrum at each epoch skys = np.zeros((nt, nw), dtype=np.float64) # Sky spectrum at each epoch yctr = yctr0.copy() xctr = xctr0.copy() snctr = (0., 0.) # For writing out to FITS modelwcs = {"CRVAL1": -SPAXEL_SIZE * (MODEL_SHAPE[0] - 1) / 2., "CRPIX1": 1, "CDELT1": SPAXEL_SIZE, "CRVAL2": -SPAXEL_SIZE * (MODEL_SHAPE[1] - 1) / 2., "CRPIX2": 1, "CDELT2": SPAXEL_SIZE, "CRVAL3": cubes[0].header["CRVAL3"], "CRPIX3": cubes[0].header["CRPIX3"], "CDELT3": cubes[0].header["CDELT3"]} # ------------------------------------------------------------------------- # Position bounds # Bounds on data position: shape=(nt, 2) xctrbounds = np.vstack((xctr - POSITION_BOUND, xctr + POSITION_BOUND)).T yctrbounds = np.vstack((yctr - POSITION_BOUND, yctr + POSITION_BOUND)).T snctrbounds = (-POSITION_BOUND, POSITION_BOUND) # For data positions, check that bounds do not extend # past the edge of the model and adjust the minbound and maxbound. # This doesn't apply to SN position. gshape = galaxy.shape[1:3] # model shape for i in range(nt): dshape = cubes[i].data.shape[1:3] (yminabs, ymaxabs), (xminabs, xmaxabs) = yxbounds(gshape, dshape) yctrbounds[i, 0] = max(yctrbounds[i, 0], yminabs) yctrbounds[i, 1] = min(yctrbounds[i, 1], ymaxabs) xctrbounds[i, 0] = max(xctrbounds[i, 0], xminabs) xctrbounds[i, 1] = min(xctrbounds[i, 1], xmaxabs) # ------------------------------------------------------------------------- # Guess sky logging.info("guessing sky for all %d epochs", nt) for i, cube in enumerate(cubes): skys[i, :] = guess_sky(cube, npix=30) # ------------------------------------------------------------------------- # Regularization penalty parameters # Calculate rough average galaxy spectrum from all final refs. spectra = np.zeros((len(refs), len(wave)), dtype=np.float64) for j, i in enumerate(refs): avg_spec = np.average(cubes[i].data, axis=(1, 2)) - skys[i] mean_spec, bins, bn = scipy.stats.binned_statistic(wave, avg_spec, bins=len(wave)/10) spectra[j] = np.interp(wave, bins[:-1] +
np.diff(bins)
numpy.diff
import numpy as np from rlpyt.agents.base import AgentInputs from rlpyt.samplers.parallel.gpu.action_server import ( ActionServer, AlternatingActionServer, NoOverlapAlternatingActionServer, ) class AsyncActionServer(ActionServer): def serve_actions_evaluation(self, itr): """Similar to normal action-server, but with different signaling logic for ending evaluation early; receive signal from main sampler process and pass it along to my workers. """ obs_ready, act_ready = self.sync.obs_ready, self.sync.act_ready step_np, step_pyt = self.eval_step_buffer_np, self.eval_step_buffer_pyt self.agent.reset() agent_inputs = AgentInputs( step_pyt.observation, step_pyt.action, step_pyt.reward ) # Fixed buffer objects. for t in range(self.eval_max_T): for b in obs_ready: b.acquire() for b_reset in np.where(step_np.done)[0]: step_np.action[b_reset] = 0 # Null prev_action. step_np.reward[b_reset] = 0 # Null prev_reward. self.agent.reset_one(idx=b_reset) action, agent_info = self.agent.step(*agent_inputs) step_np.action[:] = action step_np.agent_info[:] = agent_info if self.ctrl.stop_eval.value: # From overall master process. self.sync.stop_eval.value = True # Give to my workers. for w in act_ready: # assert not w.acquire(block=False) # Debug check. w.release() if self.sync.stop_eval.value: # Signal from sampler runner. break for b in obs_ready: b.acquire() # Workers always do extra release; drain it. assert not b.acquire(block=False) # Debug check. for w in act_ready: assert not w.acquire(block=False) # Debug check. class AsyncAlternatingActionServer(AlternatingActionServer): def serve_actions_evaluation(self, itr): """Similar to normal action-server, but with different signaling logic for ending evaluation early; receive signal from main sampler process and pass it along to my workers. """ obs_ready, act_ready = self.sync.obs_ready, self.sync.act_ready obs_ready_pair = self.obs_ready_pair act_ready_pair = self.act_ready_pair step_np, step_np_pair = self.eval_step_buffer_np, self.eval_step_buffer_np_pair agent_inputs_pair = self.eval_agent_inputs_pair self.agent.reset() step_np.action[:] = 0 # Null prev_action. step_np.reward[:] = 0 # Null prev_reward. stop = False for t in range(self.eval_max_T): for alt in range(2): step_h = step_np_pair[alt] for b in obs_ready_pair[alt]: b.acquire() # assert not b.acquire(block=False) # Debug check. for b_reset in
np.where(step_h.done)
numpy.where
# This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. """ ``Histogram`` plots a histogram for a region drawn in the image, or for the entire image. **Plugin Type: Local** ``Histogram`` is a local plugin, which means it is associated with a channel. An instance can be opened for each channel. **Usage** Click and drag to define a region within the image that will be used to calculate the histogram. To take the histogram of the full image, click the button in the UI labeled "Full Image". .. note:: Depending on the size of the image, calculating the full histogram may take time. If a new image is selected for the channel, the histogram plot will be recalculated based on the current parameters with the new data. Unless disabled in the settings file for the histogram plugin, a line of simple statistics for the box is calculated and shown in a line below the plot. **UI Controls** Three radio buttons at the bottom of the UI are used to control the effects of the click/drag action: * select "Move" to drag the region to a different location * select "Draw" to draw a new region * select "Edit" to edit the region To make a log plot of the histogram, check the "Log Histogram" checkbox. To plot by the full range of values in the image instead of by the range within the cut values, uncheck the "Plot By Cuts" checkbox. The "NumBins" parameter determines how many bins are used in calculating the histogram. Type a number in the box and press "Enter" to change the default value. **Cut Levels Convenience Controls** Because a histogram is useful feedback for setting the cut levels, controls are provided in the UI for setting the low and high cut levels in the image, as well as for performing an auto cut levels, according to the auto cut levels settings in the channel preferences. **User Configuration** """ import numpy as np from ginga.gw import Widgets from ginga import GingaPlugin from ginga import AutoCuts try: from ginga.gw import Plot from ginga.util import plots have_mpl = True except ImportError: have_mpl = False __all__ = ['Histogram'] class Histogram(GingaPlugin.LocalPlugin): def __init__(self, fv, fitsimage): # superclass defines some variables for us, like logger super(Histogram, self).__init__(fv, fitsimage) self.layertag = 'histogram-canvas' self.histtag = None # If True, limits X axis to lo/hi cut levels self.xlimbycuts = True self._split_sizes = [400, 500] # get Histogram preferences prefs = self.fv.get_preferences() self.settings = prefs.create_category('plugin_Histogram') self.settings.add_defaults(draw_then_move=True, num_bins=2048, hist_color='aquamarine', show_stats=True, maxdigits=7) self.settings.load(onError='silent') # Set up histogram control parameters self.histcolor = self.settings.get('hist_color', 'aquamarine') self.numbins = self.settings.get('num_bins', 2048) self.autocuts = AutoCuts.Histogram(self.logger) # for formatting statistics line self.show_stats = self.settings.get('show_stats', True) maxdigits = self.settings.get('maxdigits', 7) self.fmt_cell = '{:< %d.%dg}' % (maxdigits - 1, maxdigits // 2) self.dc = self.fv.get_draw_classes() canvas = self.dc.DrawingCanvas() canvas.enable_draw(True) canvas.enable_edit(True) canvas.set_drawtype('rectangle', color='cyan', linestyle='dash', drawdims=True) canvas.set_callback('draw-event', self.draw_cb) canvas.set_callback('edit-event', self.edit_cb) canvas.add_draw_mode('move', down=self.drag, move=self.drag, up=self.update) canvas.register_for_cursor_drawing(self.fitsimage) canvas.set_surface(self.fitsimage) canvas.set_draw_mode('draw') self.canvas = canvas fitssettings = fitsimage.get_settings() for name in ['cuts']: fitssettings.get_setting(name).add_callback( 'set', self.cutset_ext_cb, fitsimage) self.gui_up = False def build_gui(self, container): if not have_mpl: raise ImportError('Install matplotlib to use this plugin') top = Widgets.VBox() top.set_border_width(4) # Make the cuts plot box, sw, orientation = Widgets.get_oriented_box(container) box.set_border_width(4) box.set_spacing(2) paned = Widgets.Splitter(orientation=orientation) self.w.splitter = paned self.plot = plots.Plot(logger=self.logger, width=400, height=400) ax = self.plot.add_axis() ax.grid(True) w = Plot.PlotWidget(self.plot) w.resize(400, 400) paned.add_widget(Widgets.hadjust(w, orientation)) vbox = Widgets.VBox() vbox.set_border_width(2) # for statistics line self.w.stats1 = Widgets.Label('') vbox.add_widget(self.w.stats1) captions = (('Cut Low:', 'label', 'Cut Low', 'entry'), ('Cut High:', 'label', 'Cut High', 'entry', 'Cut Levels', 'button'), ('Auto Levels', 'button'), ('Log Histogram', 'checkbutton', 'Plot By Cuts', 'checkbutton'), ('NumBins:', 'label', 'NumBins', 'entry'), ('Full Image', 'button'), ) w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) b.cut_levels.set_tooltip("Set cut levels manually") b.auto_levels.set_tooltip("Set cut levels by algorithm") b.cut_low.set_tooltip("Set low cut level (press Enter)") b.cut_high.set_tooltip("Set high cut level (press Enter)") b.log_histogram.set_tooltip("Use the log of the pixel values for the " "histogram (empty bins map to 10^-1)") b.plot_by_cuts.set_tooltip("Only show the part of the histogram " "between the cuts") b.numbins.set_tooltip("Number of bins for the histogram") b.full_image.set_tooltip("Use the full image for calculating the " "histogram") b.numbins.set_text(str(self.numbins)) b.cut_low.add_callback('activated', lambda w: self.cut_levels()) b.cut_high.add_callback('activated', lambda w: self.cut_levels()) b.cut_levels.add_callback('activated', lambda w: self.cut_levels()) b.auto_levels.add_callback('activated', lambda w: self.auto_levels()) b.log_histogram.set_state(self.plot.logy) b.log_histogram.add_callback('activated', self.log_histogram_cb) b.plot_by_cuts.set_state(self.xlimbycuts) b.plot_by_cuts.add_callback('activated', self.plot_by_cuts_cb) b.numbins.add_callback('activated', lambda w: self.set_numbins_cb()) b.full_image.add_callback('activated', lambda w: self.full_image_cb()) fr = Widgets.Frame("Histogram") vbox.add_widget(w) fr.set_widget(vbox) box.add_widget(fr, stretch=0) paned.add_widget(sw) paned.set_sizes(self._split_sizes) mode = self.canvas.get_draw_mode() hbox = Widgets.HBox() btn1 = Widgets.RadioButton("Move") btn1.set_state(mode == 'move') btn1.add_callback('activated', lambda w, val: self.set_mode_cb('move', val)) btn1.set_tooltip("Choose this to position box") self.w.btn_move = btn1 hbox.add_widget(btn1) btn2 = Widgets.RadioButton("Draw", group=btn1) btn2.set_state(mode == 'draw') btn2.add_callback('activated', lambda w, val: self.set_mode_cb('draw', val)) btn2.set_tooltip("Choose this to draw a replacement box") self.w.btn_draw = btn2 hbox.add_widget(btn2) btn3 = Widgets.RadioButton("Edit", group=btn1) btn3.set_state(mode == 'edit') btn3.add_callback('activated', lambda w, val: self.set_mode_cb('edit', val)) btn3.set_tooltip("Choose this to edit a box") self.w.btn_edit = btn3 hbox.add_widget(btn3) if self.histtag is None: self.w.btn_move.set_enabled(False) self.w.btn_edit.set_enabled(False) hbox.add_widget(Widgets.Label(''), stretch=1) top.add_widget(paned, stretch=5) top.add_widget(hbox, stretch=0) btns = Widgets.HBox() btns.set_border_width(4) btns.set_spacing(3) btn = Widgets.Button("Close") btn.add_callback('activated', lambda w: self.close()) btns.add_widget(btn, stretch=0) btn = Widgets.Button("Help") btn.add_callback('activated', lambda w: self.help()) btns.add_widget(btn, stretch=0) btns.add_widget(Widgets.Label(''), stretch=1) top.add_widget(btns, stretch=0) container.add_widget(top, stretch=1) self.gui_up = True def close(self): self.fv.stop_local_plugin(self.chname, str(self)) return True def start(self): self.plot.set_titles(rtitle="Histogram") # insert canvas, if not already p_canvas = self.fitsimage.get_canvas() try: p_canvas.get_object_by_tag(self.layertag) except KeyError: # Add ruler layer p_canvas.add(self.canvas, tag=self.layertag) #self.canvas.delete_all_objects() self.resume() def pause(self): self.canvas.ui_set_active(False) def resume(self): # turn off any mode user may be in self.modes_off() self.canvas.ui_set_active(True) self.fv.show_status("Draw a rectangle with the right mouse button") def stop(self): self.gui_up = False self._split_sizes = self.w.splitter.get_sizes() # remove the rect from the canvas ## try: ## self.canvas.delete_object_by_tag(self.histtag) ## except Exception: ## pass ##self.histtag = None # remove the canvas from the image p_canvas = self.fitsimage.get_canvas() try: p_canvas.delete_object_by_tag(self.layertag) except Exception: pass self.fv.show_status("") def full_image_cb(self): canvas = self.canvas try: canvas.delete_object_by_tag(self.histtag) except Exception: pass image = self.fitsimage.get_image() width, height = image.get_size() x1, y1, x2, y2 = 0, 0, width - 1, height - 1 tag = canvas.add(self.dc.Rectangle(x1, y1, x2, y2, color='cyan', linestyle='dash')) self.draw_cb(canvas, tag) def get_data(self, image, x1, y1, x2, y2, z=None): if z is not None: data = image.get_data() data = data[y1:y2, x1:x2, z] else: tup = image.cutout_adjust(x1, y1, x2, y2) data = tup[0] return data def histogram(self, image, x1, y1, x2, y2, z=None, pct=1.0, numbins=2048): self.logger.warning("This call will be deprecated soon. " "Use get_data() and histogram_data().") data_np = self.get_data(image, x1, y1, x2, y2, z=z) return self.histogram_data(data_np, pct=pct, numbins=numbins) def histogram_data(self, data, pct=1.0, numbins=2048): return self.autocuts.calc_histogram(data, pct=pct, numbins=numbins) def redo(self): if self.histtag is None: return obj = self.canvas.get_object_by_tag(self.histtag) if obj.kind != 'compound': return True bbox = obj.objects[0] # Do histogram on the points within the rect image = self.fitsimage.get_image() self.plot.clear() numbins = self.numbins depth = image.get_depth() if depth != 3: data_np = self.get_data(image, int(bbox.x1), int(bbox.y1), int(bbox.x2), int(bbox.y2)) res = self.histogram_data(data_np, pct=1.0, numbins=numbins) # used with 'steps-post' drawstyle, this x and y assignment # gives correct histogram-steps x = res.bins y = np.append(res.dist, res.dist[-1]) ymax = y.max() if self.plot.logy: y = np.choose(y > 0, (.1, y)) self.plot.plot(x, y, xtitle="Pixel value", ytitle="Number", title="Pixel Value Distribution", color='blue', alpha=1.0, drawstyle='steps-post') else: colors = ('red', 'green', 'blue') ymax = 0 for z in range(depth): data_np = self.get_data(image, int(bbox.x1), int(bbox.y1), int(bbox.x2), int(bbox.y2), z=z) res = self.histogram_data(data_np, pct=1.0, numbins=numbins) # used with 'steps-post' drawstyle, this x and y assignment # gives correct histogram-steps x = res.bins y = np.append(res.dist, res.dist[-1]) ymax = max(ymax, y.max()) if self.plot.logy: y = np.choose(y > 0, (.1, y)) self.plot.plot(x, y, xtitle="Pixel value", ytitle="Number", title="Pixel Value Distribution", color=colors[z], alpha=0.33, drawstyle='steps-post') # show cut levels loval, hival = self.fitsimage.get_cut_levels() self.loline = self.plot.ax.axvline(loval, 0.0, 0.99, linestyle='-', color='red') self.hiline = self.plot.ax.axvline(hival, 0.0, 0.99, linestyle='-', color='green') if self.xlimbycuts: self.plot.ax.set_xlim(loval, hival) # Make x axis labels a little more readable ## lbls = self.plot.ax.xaxis.get_ticklabels() ## for lbl in lbls: ## lbl.set(rotation=45, horizontalalignment='right') self.w.cut_low.set_text(str(loval)) self.w.cut_high.set_text(str(hival)) self.plot.fig.canvas.draw() if self.show_stats: # calculate statistics on finite elements in box i = np.isfinite(data_np) if np.any(i): maxval =
np.max(data_np[i])
numpy.max
import torch as th import os from torch import nn from torch.optim import Adam, RMSprop import numpy as np from pytorch_DRL.common.Agent import Agent from pytorch_DRL.common.Model import ActorNetwork, CriticNetwork from pytorch_DRL.common.utils import entropy, index_to_one_hot, to_tensor_var, dict_to_arr class MAA2C(Agent): """ An multi-agent learned with Advantage Actor-Critic - Actor takes its local observations as input - agent interact with environment to collect experience - agent training with experience to update policy Parameters - training_strategy: - cocurrent - each agent learns its own individual policy which is independent - multiple policies are optimized simultaneously - centralized (see MADDPG in [1] for details) - centralized training and decentralized execution - decentralized actor map it's local observations to action using individual policy - centralized critic takes both state and action from all agents as input, each actor has its own critic for estimating the value function, which allows each actor has different reward structure, e.g., cooperative, competitive, mixed task - actor_parameter_sharing: - True: all actors share a single policy which enables parameters and experiences sharing, this is mostly useful where the agents are homogeneous. Please see Sec. 4.3 in [2] and Sec. 4.1 & 4.2 in [3] for details. - False: each actor use independent policy - critic_parameter_sharing: - True: all actors share a single critic which enables parameters and experiences sharing, this is mostly useful where the agents are homogeneous and reward sharing holds. Please see Sec. 4.1 in [3] for details. - False: each actor use independent critic (though each critic can take other agents actions as input, see MADDPG in [1] for details) Reference: [1] Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments [2] Cooperative Multi-Agent Control Using Deep Reinforcement Learning [3] Parameter Sharing Deep Deterministic Policy Gradient for Cooperative Multi-agent Reinforcement Learning """ def __init__(self, env, n_agents, state_dim, action_dim, memory_capacity=10000, max_steps=None, roll_out_n_steps=10, reward_gamma=0.99, reward_scale=1., done_penalty=None, actor_hidden_size=32, critic_hidden_size=32, actor_output_act=nn.functional.log_softmax, critic_loss="mse", actor_lr=0.001, critic_lr=0.001, optimizer_type="rmsprop", entropy_reg=0.01, max_grad_norm=0.5, batch_size=100, episodes_before_train=100, epsilon_start=0.9, epsilon_end=0.01, epsilon_decay=200, use_cuda=True, training_strategy="cocurrent", actor_parameter_sharing=False, critic_parameter_sharing=False): super(MAA2C, self).__init__(env, state_dim, action_dim, memory_capacity, max_steps, reward_gamma, reward_scale, done_penalty, actor_hidden_size, critic_hidden_size, actor_output_act, critic_loss, actor_lr, critic_lr, optimizer_type, entropy_reg, max_grad_norm, batch_size, episodes_before_train, epsilon_start, epsilon_end, epsilon_decay, use_cuda) assert training_strategy in ["cocurrent", "centralized"] self.n_agents = n_agents self.roll_out_n_steps = roll_out_n_steps self.training_strategy = training_strategy self.actor_parameter_sharing = actor_parameter_sharing self.critic_parameter_sharing = critic_parameter_sharing self.env_state = dict_to_arr(self.env.reset(), self.n_agents) self.actors = [ActorNetwork(self.state_dim, self.actor_hidden_size, self.action_dim, self.actor_output_act)] * self.n_agents if self.training_strategy == "cocurrent": self.critics = [CriticNetwork(self.state_dim, self.action_dim, self.critic_hidden_size, 1)] * self.n_agents elif self.training_strategy == "centralized": critic_state_dim = self.n_agents * self.state_dim critic_action_dim = self.n_agents * self.action_dim self.critics = [CriticNetwork(critic_state_dim, critic_action_dim, self.critic_hidden_size, 1)] * self.n_agents if optimizer_type == "adam": self.actor_optimizers = [Adam(a.parameters(), lr=self.actor_lr) for a in self.actors] self.critic_optimizers = [Adam(c.parameters(), lr=self.critic_lr) for c in self.critics] elif optimizer_type == "rmsprop": self.actor_optimizers = [RMSprop(a.parameters(), lr=self.actor_lr) for a in self.actors] self.critic_optimizers = [RMSprop(c.parameters(), lr=self.critic_lr) for c in self.critics] # tricky and memory consumed implementation of parameter sharing if self.actor_parameter_sharing: for agent_id in range(1, self.n_agents): self.actors[agent_id] = self.actors[0] self.actor_optimizers[agent_id] = self.actor_optimizers[0] if self.critic_parameter_sharing: for agent_id in range(1, self.n_agents): self.critics[agent_id] = self.critics[0] self.critic_optimizers[agent_id] = self.critic_optimizers[0] if self.use_cuda: for a in self.actors: a.cuda() for c in self.critics: c.cuda() # agent interact with the environment to collect experience def interact(self): if (self.max_steps is not None) and (self.n_steps >= self.max_steps): # env_state is dictionary self.env_state = self.env.reset() # tranfrom from dict to arr self.env_state = dict_to_arr(self.env.reset(), self.n_agents) states = [] actions = [] rewards = [] # take n steps for i in range(self.roll_out_n_steps): states.append(self.env_state) action = self.exploration_action(self.env_state) # print(action[0].shape) # action from arr to dictionary action_dict = {agent_id: action[agent_id] for agent_id in range(self.n_agents)} next_state, reward, done, _ = self.env.step(action_dict) # next_state, reward, done return as a dictionary next_state = dict_to_arr(self.env.reset(), self.n_agents) reward = dict_to_arr(self.env.reset(), self.n_agents) done =dict_to_arr(self.env.reset(), self.n_agents) actions.append([index_to_one_hot(a, self.action_dim) for a in action]) rewards.append(reward) done = done[0] final_state = next_state self.env_state = next_state if done: self.env_state = self.env.reset() self.env_state = dict_to_arr(self.env.reset(), self.n_agents) break # discount reward if done: final_r = [0.0] * self.n_agents self.n_episodes += 1 self.episode_done = True else: self.episode_done = False final_action = self.action(final_state) one_hot_action = [index_to_one_hot(a, self.action_dim) for a in final_action] final_r = self.value(final_state, one_hot_action) rewards = np.array(rewards) for agent_id in range(self.n_agents): rewards[:,agent_id] = self._discount_reward(rewards[:,agent_id], final_r[agent_id]) rewards = rewards.tolist() self.n_steps += 1 self.memory.push(states, actions, rewards) # train on a roll out batch def train(self): if self.n_episodes <= self.episodes_before_train: pass batch = self.memory.sample(self.batch_size) states_var = to_tensor_var(batch.states, self.use_cuda).view(-1, self.n_agents, self.state_dim) actions_var = to_tensor_var(batch.actions, self.use_cuda).view(-1, self.n_agents, self.action_dim) rewards_var = to_tensor_var(batch.rewards, self.use_cuda).view(-1, self.n_agents, 1) whole_states_var = states_var.view(-1, self.n_agents*self.state_dim) whole_actions_var = actions_var.view(-1, self.n_agents*self.action_dim) for agent_id in range(self.n_agents): # update actor network self.actor_optimizers[agent_id].zero_grad() action_log_probs = self.actors[agent_id](states_var[:,agent_id,:]) entropy_loss = th.mean(entropy(th.exp(action_log_probs))) action_log_probs = th.sum(action_log_probs * actions_var[:,agent_id,:], 1) if self.training_strategy == "cocurrent": values = self.critics[agent_id](states_var[:,agent_id,:], actions_var[:,agent_id,:]) elif self.training_strategy == "centralized": values = self.critics[agent_id](whole_states_var, whole_actions_var) advantages = rewards_var[:,agent_id,:] - values.detach() pg_loss = -th.mean(action_log_probs * advantages) actor_loss = pg_loss - entropy_loss * self.entropy_reg actor_loss.backward() if self.max_grad_norm is not None: nn.utils.clip_grad_norm(self.actors[agent_id].parameters(), self.max_grad_norm) self.actor_optimizers[agent_id].step() # update critic network self.critic_optimizers[agent_id].zero_grad() target_values = rewards_var[:,agent_id,:] if self.critic_loss == "huber": critic_loss = nn.functional.smooth_l1_loss(values, target_values) else: critic_loss = nn.MSELoss()(values, target_values) critic_loss.backward() if self.max_grad_norm is not None: nn.utils.clip_grad_norm(self.critics[agent_id].parameters(), self.max_grad_norm) self.critic_optimizers[agent_id].step() # predict softmax action based on state def _softmax_action(self, state): state_var = to_tensor_var([state], self.use_cuda) softmax_action = np.zeros((self.n_agents, self.action_dim), dtype=np.float64) for agent_id in range(self.n_agents): softmax_action_var = th.exp(self.actors[agent_id](state_var[:,agent_id,:])) if self.use_cuda: softmax_action[agent_id] = softmax_action_var.data.cpu().numpy()[0] else: softmax_action[agent_id] = softmax_action_var.data.numpy()[0] return softmax_action # predict action based on state, added random noise for exploration in training def exploration_action(self, state): softmax_action = self._softmax_action(state) actions = [0]*self.n_agents epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ np.exp(-1. * self.n_steps / self.epsilon_decay) for agent_id in range(self.n_agents): if np.random.rand() < epsilon: actions[agent_id] = np.random.choice(self.action_dim) else: actions[agent_id] = np.argmax(softmax_action[agent_id]) return actions # predict action based on state for execution def action(self, state): softmax_actions = self._softmax_action(state) actions =
np.argmax(softmax_actions, axis=1)
numpy.argmax
import abc import logging import numpy as np from numpy.linalg import norm from gail.crowd_sim.envs.policy.policy_factory import policy_factory from gail.crowd_sim.envs.utils.action import ActionXY, ActionRot from gail.crowd_sim.envs.utils.state import JointState, ObservableState, FullState class Agent(object): def __init__(self, config, section, max_rot=1, kinematics='holonomic'): """ Base class for robot and human. Have the physical attributes of an agent. """ self.visible = getattr(config, section).visible self.v_pref = getattr(config, section).v_pref self.radius = getattr(config, section).radius self.policy = policy_factory[getattr(config, section).policy]() self.sensor = getattr(config, section).sensor # self.kinematics = self.policy.kinematics if self.policy is not None else None self.kinematics = kinematics if self.policy is not None else None self.px = None self.py = None self.gx = None self.gy = None self.vx = None self.vy = None self.theta = None self.time_step = None self.max_rot = max_rot def print_info(self): logging.info('Agent is {} and has {} kinematic constraint'.format( 'visible' if self.visible else 'invisible', self.kinematics)) def set_policy(self, policy): if self.time_step is None: raise ValueError('Time step is None') policy.set_time_step(self.time_step) self.policy = policy self.kinematics = self.kinematics #policy.kinematics def sample_random_attributes(self): """ Sample agent radius and v_pref attribute from certain distribution :return: """ self.v_pref = np.random.uniform(0.5, 1.5) self.radius = np.random.uniform(0.3, 0.5) def set(self, px, py, gx, gy, vx, vy, theta, radius=None, v_pref=None): self.px = px self.py = py self.sx = px self.sy = py self.gx = gx self.gy = gy self.vx = vx self.vy = vy self.theta = theta if radius is not None: self.radius = radius if v_pref is not None: self.v_pref = v_pref def get_observable_state(self): return ObservableState(self.px, self.py, self.vx, self.vy, self.radius) def get_next_observable_state(self, action): self.check_validity(action) pos = self.compute_position(action, self.time_step) next_px, next_py = pos if self.kinematics == 'holonomic': next_vx = action.vx next_vy = action.vy else: next_vx = action.v * np.cos(self.theta) next_vy = action.v * np.sin(self.theta) return ObservableState(next_px, next_py, next_vx, next_vy, self.radius) def get_next_full_state(self, action): self.check_validity(action) pos = self.compute_position(action, self.time_step) next_px, next_py = pos if self.kinematics == 'holonomic': next_theta = self.theta next_vx = action.vx next_vy = action.vy else: next_theta = (self.theta + action[1]*self.max_rot) % (2 * np.pi) next_vx = action.v * np.cos(self.theta) next_vy = action.v * np.sin(self.theta) return FullState(next_px, next_py, next_vx, next_vy, self.radius, self.gx, self.gy, self.v_pref, next_theta) def get_full_state(self): return FullState(self.px, self.py, self.vx, self.vy, self.radius, self.gx, self.gy, self.v_pref, self.theta) def get_position(self): return self.px, self.py def set_position(self, position): self.px = position[0] self.py = position[1] def get_goal_position(self): return self.gx, self.gy def get_start_position(self): return self.sx, self.sy def get_velocity(self): return self.vx, self.vy def set_velocity(self, velocity): self.vx = velocity[0] self.vy = velocity[1] @abc.abstractmethod def act(self, ob): """ Compute state using received observation and pass it to policy """ return def check_validity(self, action): if type(action) is np.ndarray: assert action.shape[0] == 2 else: if self.kinematics == 'holonomic': assert isinstance(action, ActionXY) else: assert isinstance(action, ActionRot) def compute_position(self, action, delta_t): self.check_validity(action) if self.kinematics == 'holonomic': px = self.px + action[0] * delta_t py = self.py + action[1] * delta_t else: if self.reverse: action_v = action[0] else: action_v = (action[0]+1)/2 theta = self.theta + action[1]*self.max_rot px = self.px + np.cos(theta) * action_v * delta_t py = self.py + np.sin(theta) * action_v * delta_t return px, py def step(self, action): """ Perform an action and update the state """ self.check_validity(action) pos = self.compute_position(action, self.time_step) self.px, self.py = pos if type(action) is np.ndarray: if self.kinematics == 'holonomic': self.vx = action[0] self.vy = action[1] else: self.theta = (self.theta + action[1]*self.max_rot) % (2 * np.pi) self.vx = action[0] * np.cos(self.theta) self.vy = action[0] * np.sin(self.theta) else: if self.kinematics == 'holonomic': self.vx = action.vx self.vy = action.vy else: self.theta = (self.theta + action.r*self.max_rot) % (2 * np.pi) self.vx = action.v * np.cos(self.theta) self.vy = action.v * np.sin(self.theta) def reached_destination(self): return norm(np.array(self.get_position()) - np.array(self.get_goal_position())) < self.radius class BasicPolicy(): def __init__(self): self.multiagent_training = False class BasicRobot(Agent): def __init__(self, relative=False, xy_relative=True, max_rot=np.pi/10, kinematics='holonomic', reverse=True, value=None): self.visible = True self.v_pref = 1 self.radius = 0.3 self.sensor = "coordinates" self.px = None self.py = None self.gx = None self.gy = None self.vx = None self.vy = None self.theta = None self.time_step = None self.sensor_radius = 15 #Policy is required to pass asserts later, it isn't used at all due to the custom act self.policy = BasicPolicy() self.kinematics = kinematics self.relative = relative self.xy_relative = xy_relative self.max_rot = max_rot self.reverse=reverse # Required to visualise self.value = value def engagement2(self, target): r = self.get_full_state() pos = np.array([r.px, r.py]) target = np.array([target[0], target[1]]) dist = np.linalg.norm(target - pos) yaw = r.theta % (2 * np.pi) R = np.array([[np.cos(yaw), np.sin(yaw)], [-np.sin(yaw), np.cos(yaw)]]) T_p = target.pos() - self.pos() T_p = R.dot(T_p) alpha = np.arctan2(T_p[1], T_p[0]) if self.xy_relative: return dist*np.cos(alpha), dist*np.sin(alpha) else: return alpha, dist def set_act(self, action_function): self.action_function = action_function def act(self, ob): r = self.get_full_state() obs = [] if self.relative: #In relative mode the robot does not have access to its current global position. r.px = 0 r.py = 0 #Engagement 2 translates the position of a target to the robots coordinate frame in this case its the goal. goal_rel = self.engagement2([r.gx,r.gy]) r.gx = goal_rel[0] r.gy = goal_rel[1] #Translate each human to the robots coordinate frame. for o in ob: rel = self.engagement2(o) obs.append(ObservableState(rel[0], rel[1], o.vx, o.vy, o.radius)) #Combine the robot and human observations state = JointState(r, ob) return self.action_function(state) def step(self, action): """ Perform an action and update the state """ self.check_validity(action) pos = self.compute_position(action, self.time_step) self.px, self.py = pos if type(action) is np.ndarray: if self.kinematics == 'holonomic': self.vx = action[0] self.vy = action[1] else: #The rotation of the robot is reduced by self.max_rot by default np.pi/10 self.theta = (self.theta + action[1]*self.max_rot) % (2 * np.pi) if self.reverse: action_v = action[0] else: action_v = (action[0]+1)/2 self.vx = action_v * np.cos(self.theta) self.vy = action_v * np.sin(self.theta) else: if self.kinematics == 'holonomic': self.vx = action.vx self.vy = action.vy else: #The rotation of the robot is reduced by self.max_rot by default np.pi/10 self.theta = (self.theta + action.r*self.max_rot) % (2 * np.pi) if self.reverse: action_v = action.v else: action_v = (action.v+1)/2 self.vx = action_v *
np.cos(self.theta)
numpy.cos
#-*- coding:Utf-8 -*- from __future__ import print_function """ .. currentmodule:: pylayers.antprop.signature .. autosummary:: :members: """ import os import glob import doctest import numpy as np #import scipy as sp import scipy.linalg as la import pdb import h5py import copy import time import pickle import logging import networkx as nx import shapely.geometry as shg import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pylayers.gis.layout as layout import pylayers.util.geomutil as geu import pylayers.util.cone as cone #import pylayers.util.graphutil as gph import pylayers.util.pyutil as pyu import pylayers.util.plotutil as plu from pylayers.antprop.rays import Rays from pylayers.util.project import * import heapq import shapely.geometry as sh import shapely.ops as sho from tqdm import tqdm #from numba import autojit logger = logging.getLogger(__name__) def plot_lines(ax, ob, color = []): """ plot lines with colors Parameters ---------- ax : matplotlib axis ob : list of lines color : list (optional) """ from descartes.patch import PolygonPatch for ii,line in enumerate(ob): if color == []: if ii ==0 : c ='g' elif ii == len(ob)-1: c ='r' else: c= 'k' else: c=color x, y = line.xy ax.plot(x, y, color=c, alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2) return ax def plot_poly(ax, ob, color = []): """ plot polygon Parameters ---------- ax : ob : """ from descartes.patch import PolygonPatch for ii,poly in enumerate(ob): pp = PolygonPatch(poly,alpha=0.3) ax.add_patch(pp) return ax def showsig(L,s,tx=[],rx=[]): """ show signature Parameters ---------- L : Layout s : tx : rx : """ L.display['thin']=True fig,ax = L.showGs() L.display['thin']=False L.display['edlabel']=True L.showGs(fig=fig,ax=ax,edlist=s,width=4) if tx !=[]: plt.plot(tx[0],tx[1],'x') if rx !=[]: plt.plot(rx[0],rx[1],'+') plt.title(str(s)) plt.show() L.display['edlabel']=False def gidl(g): """ gi without diffraction Returns ------- gr : A graph """ edlist=[] pos={} for n in g.nodes(): if len(n)>1: edlist.append(n) gr = g.subgraph(edlist) for k in gr.edges(): #print(k) di = gr[k[0]][k[1]] ke = di['output'].keys() va = di['output'].values() keva = zip(ke,va) keva_valid = [ x for x in keva if len(x[0])>1] gr[k[0]][k[1]]['output'] = dict(keva_valid) dpos = {k:g.pos[k] for k in edlist} gr.pos=dpos return(gr) def shLtmp(L): seg_connect = {x:L.Gs.edge[x].keys() for x in L.Gs.nodes() if x >0} dpts = {x[0]:(L.Gs.pos[x[1][0]],L.Gs.pos[x[1][1]]) for x in seg_connect.items() } L._shseg = {p[0]:sh.LineString(p[1]) for p in dpts.items()} def showsig2(lsig,L,tahe): if isinstance(lsig,list): lsig = np.array([(i[0],len(i)) for i in lsig]) for k in lsig: k0 = k[0] k1 = k[1] if k0>0: npt = L.Gs[k0].keys() pta = np.array(L.Gs.pos[npt[0]]) phe = np.array(L.Gs.pos[npt[1]]) if k1==2: plu.displot(pta.reshape(2,1),phe.reshape(2,1),color='r',linewidth=2) if k1 ==3: plu.displot(pta.reshape(2,1),phe.reshape(2,1),color='g',linewidth=2) for th in tahe: ta = th[0] he = th[1] plu.displot(ta.reshape(2,1),he.reshape(2,1),color='k',linewidth=1) tahe = np.array(tahe) # Nseg x tahe x xy pta = tahe[:,0,:].T #2 x Nseg phe = tahe[:,1,:].T # 2 x Nseg seq = lsig[:,0] if not (geu.ccw(pta[:,0],phe[:,0],phe[:,-1]) ^ geu.ccw(phe[:,0],phe[:,-1],pta[:,-1]) ): vr = ( pta[:,0],phe[:,-1]) vl = ( phe[:,0],pta[:,-1]) # twisted = True lef = sh.LineString((pta[:,0],phe[:,-1])) rig = sh.LineString((phe[:,0],pta[:,-1])) else: vr = ( pta[:,0],pta[:,-1]) vl = ( phe[:,0],phe[:,-1]) lef = sh.LineString((pta[:,0],pta[:,-1])) rig = sh.LineString((phe[:,0],phe[:,-1])) plt.ion() plt.gcf() #L.showG('s',labels=True) lines = [L._shseg[seq[0]]] plt.title(str(lsig)) plot_lines(ax=plt.gca(),ob=lines) plot_lines(ax=plt.gca(),ob=[lef],color='g') plot_lines(ax=plt.gca(),ob=[rig],color='r') plt.scatter(pta[0,:],pta[1,:],marker='d',s=70,label='tail') plt.scatter(phe[0,:],phe[1,:],marker='s',s=70,label='head') #plu.displot(vl[0].reshape(2,1),vl[1].reshape(2,1),arrow=True) #plu.displot(vr[0].reshape(2,1),vr[1].reshape(2,1),arrow=True) plt.axis('auto') plt.legend() #@profile def valid(lsig,L,tahe=[]): """ Check if a signature is valid. if a segment of a given signature is not in or touches the polygon described by the 1st and last segment, the signature is not valid Parameters ---------- lsig : list of tuple from run |signatures L : layout tahe : lensig , ta|he , x,y Returns ------- inside : boolean is the signature valid ? """ lensi = len(lsig) if lensi<=3: return True # DEBUG # if lensi == 4: # if np.all(lsig == np.array([[ 5, 2, 67, 58],[ 2, 2, 3, 2]]).T): # import ipdb # ipdb.set_trace() # ensure compatibility with Signature.run where # lsig is a list of tuple if isinstance(lsig,list): lsig = np.array([(i[0],len(i)) for i in lsig]) pta = np.empty((2,lensi)) phe = np.empty((2,lensi)) seq = lsig[:,0] # upos = np.where(seq>0)[0] # uneg = np.where(seq<0)[0] # tahep = L.seg2pts(seq[upos]) # tahen = np.array([L.Gs.pos[i] for i in seq[uneg]]).T # tahen = np.vstack((tahen,tahen)) # tahe = np.empty((4,lensi)) # tahe[:,upos]=tahep # try: # tahe[:,uneg]=tahen # except: # pass # pts = [k for i in seq for k in [L.Gs[i].keys()[0],L.Gs[i].keys()[1]]] # if tahe ==[]: # print 'run tahe\n',np.array(tahe) # if tahe == []: # pts = [L.Gs[i].keys() for i in seq] # tahe = np.array([[L.Gs.pos[p[0]],L.Gs.pos[p[1]]] for p in pts]) # pta[:,0] = tahe[0,0,:] # phe[:,0] = tahe[0,1,:] # typ = lsig[:,1] # mirror=[] # # lines = [L._shseg[seq[0]]] # for i in range(1,lensi): # # pam = pa[:,i].reshape(2,1) # # pbm = pb[:,i].reshape(2,1) # pam = tahe[i,0,:].reshape(2,1) # pbm = tahe[i,1,:].reshape(2,1) # if typ[i] == 2: # R # for m in mirror: # pam = geu.mirror(pam,pta[:,m],phe[:,m]) # pbm = geu.mirror(pbm,pta[:,m],phe[:,m]) # pta[:,i] = pam.reshape(2) # phe[:,i] = pbm.reshape(2) # mirror.append(i) # elif typ[i] == 3 : # T # for m in mirror: # pam = geu.mirror(pam,pta[:,m],phe[:,m]) # pbm = geu.mirror(pbm,pta[:,m],phe[:,m]) # pta[:,i] = pam.reshape(2) # phe[:,i] = pbm.reshape(2) # elif typ[i] == 1 : # D # pta[:,i] = pam.reshape(2) # phe[:,i] = pbm.reshape(2) # else: tahe = np.array(tahe) # Nseg x tahe x xy pdb.set_trace() pta = tahe[:,0,:].T #2 x Nseg phe = tahe[:,1,:].T # 2 x Nseg # ### ONLY FOR TEST TO BE DELETED # pts = [L.Gs[i].keys() for i in seq] # tahetest = np.array([[L.Gs.pos[p[0]],L.Gs.pos[p[1]]] for p in pts]) # ptat = np.empty((2,lensi)) # phet = np.empty((2,lensi)) # ptat[:,0] = tahetest[0,0,:] # phet[:,0] = tahetest[0,1,:] # typ = lsig[:,1] # mirror=[] #lines = [L._shseg[seq[0]]] # for i in range(1,lensi): # # pam = pa[:,i].reshape(2,1) # # pbm = pb[:,i].reshape(2,1) # pam = tahetest[i,0,:].reshape(2,1) # pbm = tahetest[i,1,:].reshape(2,1) # if typ[i] == 2: # R # for m in mirror: # pam = geu.mirror(pam,ptat[:,m],phet[:,m]) # pbm = geu.mirror(pbm,ptat[:,m],phet[:,m]) # ptat[:,i] = pam.reshape(2) # phet[:,i] = pbm.reshape(2) # mirror.append(i) # elif typ[i] == 3 : # T # for m in mirror: # pam = geu.mirror(pam,ptat[:,m],phet[:,m]) # pbm = geu.mirror(pbm,ptat[:,m],phet[:,m]) # ptat[:,i] = pam.reshape(2) # phet[:,i] = pbm.reshape(2) # elif typ[i] == 1 : # D # ptat[:,i] = pam.reshape(2) # phet[:,i] = pbm.reshape(2) # tahetest = np.dstack((ptat.T,phet.T)).swapaxes(1,2) # if np.sum(tahe-tahetest) != 0: # import ipdb # ipdb.set_trace() # determine the 2 side of the polygon ( top/bottom = tahe[0]/tahe[-1]) #vl and vr are 2 director vector lying on the polygon side. if not (geu.ccw(pta[:,0],phe[:,0],phe[:,-1]) ^ geu.ccw(phe[:,0],phe[:,-1],pta[:,-1]) ): vr = ( pta[:,0],pta[:,-1]) vl = ( phe[:,0],phe[:,-1]) # vr = ( pta[:,0],phe[:,-1]) # vl = ( phe[:,0],pta[:,-1]) # twisted = True #lef = sh.LineString((pta[:,0],pta[:,-1])) #rig = sh.LineString((phe[:,0],phe[:,-1])) else: vr = ( pta[:,0], phe[:,-1]) vl = ( phe[:,0],pta[:,-1]) # vr = ( pta[:,0],pta[:,-1]) # vl = ( phe[:,0],phe[:,-1]) # twisted = False #lef = sh.LineString((pta[:,0],phe[:,-1])) #rig = sh.LineString((pta[:,-1],phe[:,0])) # looking situation where Tail and head are not inside the polygon # => both tahe are left of vr and vl #=> both tahe are right of vr and vl lta = geu.isleft(pta[:,1:-1],vl[0][:,None],vl[1][:,None]) rta = geu.isleft(pta[:,1:-1],vr[0][:,None],vr[1][:,None]) lhe = geu.isleft(phe[:,1:-1],vl[0][:,None],vl[1][:,None]) rhe = geu.isleft(phe[:,1:-1],vr[0][:,None],vr[1][:,None]) out = (lta & lhe ) | (~rta & ~rhe) inside = ~out # #debug # plt.ion() # plt.gcf() # #plt.title(str(cond)) # #Ok plot_lines(ax=plt.gca(),ob=lines) # plot_lines(ax=plt.gca(),ob=[lef],color='g') # plot_lines(ax=plt.gca(),ob=[rig],color='r') # plt.scatter(pta[0,:],pta[1,:],marker='d',s=70,label='tail') # plt.scatter(phe[0,:],phe[1,:],marker='s',s=70,label='head') # plu.displot(vl[0].reshape(2,1),vl[1].reshape(2,1),arrow=True) # plu.displot(vr[0].reshape(2,1),vr[1].reshape(2,1),arrow=True) # plt.legend() return np.all(inside) class Signatures(PyLayers,dict): """ set of Signature given 2 Gt cycle (convex) indices Attributes ---------- L : gis.Layout source : int source convex cycle target : int target convex cycle """ def __init__(self,L,source,target,cutoff=3,threshold = 0.6): """ object constructor Parameters ---------- L : Layout dump : int source : int cycle number target : int cycle index cutoff : int limiting depth level in graph exploration (default 3) A signature ia a dict of arrays The array is an interleaving between nstr and type of interaction typeInt = 1,2,3 (extremity,diffraction,reflexion,transmission) Si[1] np.array([5,2,19,2,26,2,72,2]) """ self.L = L self.dump = -1 self.source = source self.target = target self.cutoff = cutoff self.threshold = threshold self.ratio = {} self.filename = self.L._filename.split('.')[0] +'_' + str(self.source) +'_' + str(self.target) +'_' + str(self.cutoff) +'.sig' def __repr__(self): def fun1(x): if x==1: return('R') if x==2: return('T') if x==3: return('D') size = {} s = self.__class__.__name__ + '\n' + '----------'+'\n' #s = s + str(self.__sizeof__())+'\n' for k in self: size[k] = int(len(self[k])/2) s = s + 'from cycle : '+ str(self.source) + ' to cycle ' + str(self.target)+'\n' if self.dump==-1: ldump = self.keys() else: ldump = self.dump for k in ldump: s = s + str(k) + ' : ' + str(size[k]) + '\n' a = np.swapaxes(self[k].reshape(size[k],2,k),0,2) # nl x 2 x nsig for l in np.arange(a.shape[2]): for i in range(k): if i==k-1: s = s + '('+str(a[i,0,l])+','+str(a[i,1,l])+')' else: s = s + '('+str(a[i,0,l])+','+str(a[i,1,l])+'),' s = s+'\n' return(s) def __len__(self): nsig = 0 for k in self: size = int(len(self[k])/2) nsig += size return(nsig) def compl(self,lint,L): """ completion from lint Parameters ---------- lint : list list of interactions Examples -------- >>> Si.compl([(6220,3),(6262,3),(6241,3)],DL.L) """ # all group of interactions for k in self: if k > len(lint): Si = self[k] Ns,Nb = Si.shape # all signatures form a group of interactions for l in range(int(Ns/2)): # all interactions b1 = True for i1,it in enumerate(lint): if ((Si[2*l,i1] == it[0]) and (Si[2*l+1,i1] == it[1])): pass else: b1 = False if b1: sig = Si[2*l:2*l+2,:] sigi = self.sig2inter(L,sig) #print(k,l,' :',sigi) # all def sig2inter(self,L,lsi=[]): ''' convert signature to corresponding list of interactions in Gi Paramaters: ---------- L : Layout lsi : nd.array signature (2xnb_sig,sig_length) Examples: --------- >>> lsi = DL.Si[3] >>> DL.Si.sig2inter(DL.L,lsi) """ ''' assert L.isbuilt, AttributeError('Layout is not built') assert len(lsi)%2==0, AttributeError('Incorrect signature(s) shape') tlinter = [] for uu in range(0,len(lsi),2): si = lsi[uu:uu+2,:] lsig = si.shape[1] linter = [] for k in range(lsig): # nstr : seg or points nstr = si[0,k] typ = si[1,k] # cycles connected to seg or point seg_cy = copy.deepcopy(L.Gs.node[nstr]['ncycles']) if k == 0: cy0 = self.source lcy0 =[cy0] if (typ==3) or (typ==2): cy0 = list(set(seg_cy).intersection(set(lcy0)))[0] cy1 = [x for x in seg_cy if x!= cy0 ][0] if k == (lsig -1): cy1 = self.target if typ == 1: inter = (nstr,) lcy0 = L.Gs.node[nstr]['ncycles'] elif typ == 2: inter = (nstr,cy0) elif typ == 3: inter = (nstr,cy0,cy1) # changing cycle lcy0 = [cy1] linter.append(inter) tlinter.append(linter) if len(lsi) == 2: tlinter=tlinter[0] return tlinter def sig2prob(self,L,lsi): """ get signatures probability Parameters --------- L : Layout lsi : nd.array signature (2xnb_sig,sig_length) Returns ------- tlproba : list (nb_sig,sig_length-2) output proba of each triplet of interaction """ slsi = lsi.shape[1] assert L.isbuilt, AttributeError('Layout is not built') assert hasattr(L,'Gi'), AttributeError('Layout has not Gi Graph') assert L.Gi.size != 0, AttributeError('Gi Graph is empty') assert len(lsi)%2==0, AttributeError('Incorrect signature(s) shape') assert slsi>=3, AttributeError('Proba available for signature with at least 3 interacitons') linter = self.sig2inter(L,lsi) if len(lsi) == 2: linter=[linter] tlproba = [] for inter in linter: lproba = [] for k in range(slsi-2): proba = L.Gi[inter[k]][inter[k+1]]['output'][inter[k+2]] lproba.append(proba) tlproba.append(lproba) return tlproba def num(self): """ determine the number of signatures """ self.nsig = 0 self.nint = 0 for k in self: size = int(len(self[k])/2) self.nsig += size self.nint += size*k def info(self): # print "Signatures for scenario defined by :" # print "Layout" # print "======" # L = self.L.info() # print "================================" # print "source : ", self.source # print "target : ", self.target size = {} print(self.__class__.__name__ + '\n' + '----------'+'\n') #s = s + str(self.__sizeof__())+'\n' for k in self: size[k] = int(len(self[k])/2) print('from cycle : '+ str(self.source) + ' to cycle ' + str(self.target)+'\n') pyu.printout('Reflection',pyu.BLUE) print(' ') pyu.printout('Transmission',pyu.GREEN) print(' ') pyu.printout('Diffraction',pyu.RED) print(' \n') for k in self: print(str(k) + ' : ' + str(size[k])) a = np.swapaxes(self[k].reshape(size[k],2,k),0,2) # nl x 2 x nsig for i in range(k): nstr=a[i,0,:] typ=a[i,1,:] print('[',) for n,t in zip(nstr,typ): if t==1: pyu.printout(str(n),pyu.BLUE) if t==2: pyu.printout(str(n),pyu.GREEN) if t==3: pyu.printout(str(n),pyu.RED) print(']') print('\n') # s = s + ' '+ str(a[i,0,:]) + '\n' # s = s + ' '+ str(a[i,1,:]) + '\n' def check(self): """ check signature Returns ------- OK : np.array KO : np.array """ OK = Signatures(self.L,self.target,self.source) KO = Signatures(self.L,self.target,self.source) for i in self: sigs = self[i] for s in range(int(len(sigs)/2)): sig = sigs[2*s:2*s+2,:] ok = valid(sig.T,self.L) if ok : try : OK[i]=np.vstack((OK[i],sig)) except: OK[i]=[] OK[i]=sig pass else : try : KO[i]=np.vstack((KO[i],sig)) except: KO[i]=[] KO[i]=sig pass return OK,KO def saveh5(self): """ save signatures in hdf5 format """ filename=pyu.getlong(self.filename+'.h5',pstruc['DIRSIG']) f=h5py.File(filename,'w') # try/except to avoid loosing the h5 file if # read/write error try: f.attrs['L']=self.L._filename f.attrs['source']=self.source f.attrs['target']=self.target f.attrs['cutoff']=self.cutoff for k in self.keys(): f.create_dataset(str(k),shape=np.shape(self[k]),data=self[k]) f.close() except: f.close() raise NameError('Signature: issue when writting h5py file') def loadh5(self,filename=[]): """ load signatures hdf5 format """ if filename == []: _filename = self.filename else : _filename = filename filename=pyu.getlong(_filename+'.h5',pstruc['DIRSIG']) # try/except to avoid loosing the h5 file if # read/write error try: f=h5py.File(filename,'r') for k in f.keys(): self.update({eval(k):f[k][:]}) f.close() except: f.close() raise NameError('Signature: issue when reading h5py file') _fileL=pyu.getshort(filename).split('_')[0]+'.ini' self.L=layout.Layout(_fileL) try: self.L.dumpr() except: self.L.build() self.L.dumpw() def _saveh5(self,filenameh5,grpname): """ Save in hdf5 compliant with Links Parameters ---------- filenameh5 hrpname """ filename=pyu.getlong(filenameh5,pstruc['DIRLNK']) # if grpname == '': # grpname = str(self.source) +'_'+str(self.target) +'_'+ str(self.cutoff) try: # file management fh5=h5py.File(filename,'a') if not grpname in fh5['sig'].keys(): fh5['sig'].create_group(grpname) else : raise NameError('sig/'+grpname +'already exists in '+filenameh5) f=fh5['sig/'+grpname] # write data f.attrs['L']=self.L._filename f.attrs['source']=self.source f.attrs['target']=self.target f.attrs['cutoff']=self.cutoff f.attrs['threshold']=self.threshold f.create_group('ratio') f.create_group('sig') for k in self.keys(): f['sig'].create_dataset(str(k),shape=np.shape(self[k]),data=self[k]) f['ratio'].create_dataset(str(k),shape=np.shape(self.ratio[k]),data=self.ratio[k]) fh5.close() except: fh5.close() raise NameError('Signature: issue when writting h5py file') def _loadh5(self,filenameh5,grpname,**kwargs): """ load signatures in hdf5 format compliant with class Links Parameters ---------- filenameh5 : string filename of the h5py file (from Links Class) grpname : string groupname of the h5py file (from Links Class) kwargs may contain a L: layout object if L = [] the layout is loaded from the layout name stored into the h5 file if L = Layout the layout passed in arg is used See Also -------- pylayers.simul.links """ filename=pyu.getlong(filenameh5,pstruc['DIRLNK']) # if grpname =='': # grpname = str(self.source) +'_'+str(self.target) +'_'+ str(self.cutoff) # try/except to avoid loosing the h5 file if # read/write error try: fh5=h5py.File(filename,'r') f=fh5['sig/'+grpname] # compliant with new h5 format: if 'sig' in f.keys(): for k in f['sig'].keys(): self.update({eval(k):f['sig'][k][:]}) self.ratio.update({eval(k):f['ratio'][k][:]}) # old h5 format else: for k in f.keys(): self.update({eval(k):f[k][:]}) Lname=f.attrs['L'] self.cutoff = f.attrs['cutoff'] if 'threshold' in f.attrs.keys(): self.threshold = f.attrs['threshold'] # ensure backward compatibility else: # find threshold th = np.min([np.min(self.ratio[x]) for x in self.ratio]) self.threshold = th.round(decimals=2) fh5.close() except: fh5.close() raise NameError('Signature: issue when reading h5py file') if 'L' in kwargs: self.L = kwargs['L'] else: self.L = layout.Layout(Lname) try: self.L.dumpr() except: self.L.build() self.L.dumpw() def save(self): """ save signatures """ L=copy.deepcopy(self.L) del(self.L) filename=pyu.getlong(self.filename+'.h5',pstruc['DIRSIG']) with open(filename, 'wb') as handle: pickle.dump(self, handle) self.L=L def load(self,filename=[]): """ load signatures """ if filename == []: _filename = self.filename else : _filename = filename filename=pyu.getlong(_filename,pstruc['DIRSIG']) try: handle=open(filename, 'rb') sitmp = pickle.load(handle) except: raise NameError(filename +' does not exist') # to load a dictionary, use update self.update(sitmp) _fileL=pyu.getshort(filename).split('_')[0]+'.ini' self.L=layout.Layout(_fileL) try: self.L.dumpr() except: self.L.build() self.L.dumpw() def sp(self,G, source, target, cutoff=None): """ algorithm for signature determination Parameters ---------- G : Graph source : tuple or int target : tuple or int cutoff : int See Also -------- pylayers.antprop.signature.run3 """ if cutoff < 1: return visited = [source] stack = [iter(G[source])] while stack: children = stack[-1] child = next(children, None) if child is None: stack.pop() visited.pop() elif len(visited) < cutoff: if child == target: for i in range(len(self.ds[source])): s=self.ds[target][i] + visited self.ds[target].append(s) # yield visited +[target] elif child not in visited: visited.append(child) stack.append(iter(G[child])) else: #len(visited) == cutoff: if child == target or target in children: for i in range(len(self.ds[source])): s=self.ds[target][i] + visited self.ds[target].append(s) stack.pop() visited.pop() def calsig(self,G,dia={},cutoff=None): """ calculates signature Parameters ---------- G : graph dia : dictionnary of interactions cutoff : integer """ if cutoff < 1: return di=copy.deepcopy(dia) source = 'Tx' target = 'Rx' d={} visited = [source] stack = [iter(G[source])] out=[] while stack: # pdb.set_trace() children = stack[-1] child = next(children, None) if child is None: stack.pop() visited.pop() if len(out) !=0: out.pop() out.pop() elif len(visited) < cutoff: if child == target: lot = len(out) try: d.update({lot:d[lot]+(out)}) except: d[lot]=[] d.update({lot:d[lot]+(out)}) # yield visited + [target] elif child not in visited: visited.append(child) out.extend(di[child]) stack.append(iter(G[child])) else: #len(visited) == cutoff: if child == target or target in children: # yield visited + [target] lot = len(out) try: d.update({lot:d[lot]+(out)}) except: d[lot]=[] d.update({lot:d[lot]+(out)}) stack.pop() visited.pop() if len(out) !=0: out.pop() out.pop() return d def exist(self,seq): """ verifies if seq exists in signatures Parameters ---------- seq : list of tuple [(2,2),(5,3),(7,2)] 1 : Diffraction 2 : Reflexion 3 : Diffraction Returns ------- Examples -------- >>> DL=DLink() >>> DL.eval() >>> seq = [(2,3)] # transmission through segment 2 >>> DL.Si.exist(seq) """ # Number of interactions N = len(seq) # signatures with N interaction sig = self[N] # Number signature with N interaction Nsig = int(sig.shape[0]/2) nstr = sig[::2,:] typ = sig[1::2,:] # List of signat lsig = [] for k in range(Nsig): lint = [] for l in range(N): lint.append((nstr[k,l],typ[k,l])) lsig.append(lint) if seq in lsig: return True else: return False def run(self,**kwargs): """ evaluate signatures between cycle of tx and cycle of rx Parameters ---------- cutoff : int limit the exploration of all_simple_path bt : boolean backtrace (allow to visit already visited nodes in simple path algorithm) progress : boolean display the time passed in the loop diffraction : boolean activate diffraction threshold : float for reducing calculation time animations : boolean nD : int maximum number of diffraction nR : int maximum number of reflection nT : int maximum number of transmission See Also -------- pylayers.simul.link.Dlink.eval """ defaults = {'cutoff' : 2, 'threshold': 0.1, 'delay_excess_max_ns': 400, 'nD': 1, 'nR': 10, 'nT': 10, 'bt' : True, 'progress': True, 'diffraction' : True, 'animation' : False } self.cpt = 0 for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] self.cutoff = kwargs['cutoff'] if 'threshold' not in kwargs: kwargs['threshold'] = self.threshold else: self.threshold=kwargs['threshold'] nD = kwargs['nD'] nT = kwargs['nT'] nR = kwargs['nR'] bt = kwargs['bt'] progress = kwargs['progress'] diffraction = kwargs['diffraction'] animation = kwargs['animation'] delay_excess_max_ns = kwargs['delay_excess_max_ns'] dist_excess_max = delay_excess_max_ns*0.3 self.filename = self.L._filename.split('.')[0] +'_' + str(self.source) +'_' + str(self.target) +'_' + str(self.cutoff) +'.sig' # # AIR : editable AIR separation # _AIR : constructed AIR separation # lair = self.L.name['AIR'] + self.L.name['_AIR'] # list of interactions visible from source lisR, lisT, lisD = self.L.intercy(self.source,typ='source') if diffraction: lis = lisT + lisR + lisD else: lis = lisT + lisR # list of interactions visible from target litR, litT, litD = self.L.intercy(self.target,typ='target') if diffraction: lit = litT + litR + litD else: lit = litT + litR pt_source = np.array(self.L.Gt.node[self.source]['polyg'].centroid.coords.xy) pt_target = np.array(self.L.Gt.node[self.target]['polyg'].centroid.coords.xy) d_source_target = np.linalg.norm(pt_source - pt_target) #print("source,lis :",self.source,lis) #print("target,lit :",self.target,lit) # for u in lit: # print u # print "-------------" Gi = self.L.Gi Gi.pos = self.L.Gi.pos # # remove diffractions from Gi # if not diffraction: Gi = gidl(Gi) # initialize dout dictionnary dout = {} # progresss stuff... lmax = len(lis)*len(lit) pe = 0 tic = time.time() tic0 = tic #for interaction source in list of source interactions bvisu = False # signature counter cptsig = 0 if animation: fig,ax = self.L.showG('s',aw=1) ax.plot(self.L.Gt.pos[self.source][0],self.L.Gt.pos[self.source][1],'ob') ax.plot(self.L.Gt.pos[self.target][0],self.L.Gt.pos[self.target][1],'or') # # Loop over all interactions seen from the source # # us : loop counter # s : interaction tuple # s[0] : point (<0) or segment (>0)a # pts : list of neighbour nodes from s[0] # tahe : segment extremities or point coordinates (repeated twice) lhash = [] if progress : pbar = tqdm(total=100, desc='Signatures') for us,s in enumerate(lis): if progress: pbar.update(100./(1.*len(lis))) # start from a segment if s[0] > 0: pts = list(dict(self.L.Gs[s[0]]).keys()) tahe = [ np.array([ self.L.Gs.pos[pts[0]], self.L.Gs.pos[pts[1]]]) ] # start from a point else: tahe = [np.array([self.L.Gs.pos[s[0]], self.L.Gs.pos[s[0]]])] # R is a list which contains reflexion matrices (Sn) and translation matrices(vn) # for interaction mirroring # R=[[S0,v0],[S1,v1],...] R = [(np.eye(2),np.array([0,0]))] # initialize visited list sequence with the first intercation s visited = [s] # if # s is in target interaction list # or # arrival cycle is equal to target cycle # then stack a new signature in self[len(typ)] # # TODO : It concerns self[1] : only one interaction (i.e several single reflection or diffraction) # if (s in lit) or (s[-1]==self.target): #anstr = np.array(map(lambda x: x[0],visited)) anstr = np.array([ x[0] for x in visited ]) #typ = np.array(map(lambda x: len(x),visited)) typ =np.array([len(x) for x in visited ]) assert(len(typ)==1) try: self[len(typ)] = np.vstack((self[len(typ)],anstr,typ)) self.ratio[len(typ)] = np.append(self.ratio[len(typ)],1.) except: self[len(typ)] = np.vstack((anstr,typ)) self.ratio[len(typ)] = np.array([1.]) # update signature counter cptsig +=1 # stack is a list of iterators # # stack = [iter(Gi[s])] # air walls do not intervene in the number of transmission (cutoff criteria) # lawp is the list of airwall position in visited sequence # handle the case of the first segment which can be an airwall # if len(s)==3: nseg = s[0] if ((self.L.Gs.node[nseg]['name']=='_AIR') or (self.L.Gs.node[nseg]['name']=='AIR')): lawp = [1] else: lawp = [0] else: lawp = [0] # while the stack of iterators is not void cpt = 0 while stack: # # iter_on_interactions is the last iterator in the stack iter_on_interactions = stack[-1] # next interaction child interaction = next(iter_on_interactions, None) #print visited #if ((visited ==[(6236,74,91),(-213,)]) and (interaction==(-1002,))): # print(interaction) # pdb.set_trace() #if (visited ==[(6236,74,91),(-213,),(6248,99,111)]): #if (visited ==[(6236,74,91),(-213,),(6248,99,111),(6287,111,118)]): #pdb.set_trace() # import ipdb # cond1 : there is no more interactions # continue if True cond1 = not(interaction is None) # cond2 : enable reverberation # interaction has not been visited yet # or # bt : True (allow reentrance) (unconditionnaly) # continue if True #cond2 = (interaction in visited) and bt (old) cond2 = not (interaction in visited) or bt # cond3 : test the cutoff condition not get to the limit # continue if True cond3 = not(len(visited) > (self.cutoff + sum(lawp))) uD = [ k for k in range(len(visited)) if len(visited[k])==1 ] uR = [ k for k in range(len(visited)) if len(visited[k])==2 ] uT = [ k for k in range(len(visited)) if len(visited[k])==3 ] if cond1: condD = True condR = True condT = True if ((len(interaction)==1) and (len(uD)==nD)): condD = False if ((len(interaction)==2) and (len(uR)==nR)): condR = False if ((len(interaction)==3) and (len(uT)==nT)): condT = False # # animation # if animation : cpt = cpt+1 edge = zip(visited[:-1],visited[1:]) N = nx.draw_networkx_nodes(Gi,pos=Gi.pos, nodelist=visited,labels={}, node_size=15,ax=ax,fig=fig) E = nx.draw_networkx_edges(Gi,pos=Gi.pos, edgelist=edge,labels={},width=0.1, arrows=False,ax=ax,fig=fig) plt.savefig('./figure/' +str(us) +'_' + str(cpt) +'.png') try: ax.collections.remove(N) except: pass try: ax.collections.remove(E) except: pass if (cond1 and cond2 and cond3): if (condD and condR and condT): visited.append(interaction) self.cpt+=1 #print(visited) # [(44,2,7),(62,7,15),(21,15),(62,15,7),(44,7,2),(16,2)] # if visited ==[(6236,74,91),(141,91)]: # import ipdb # ipdb.set_trace() # update list of airwalls if interaction[0] in lair: lawp.append(1) else: lawp.append(0) # update number of useful segments # if there is airwall in visited nstr = interaction[0] # # # # Testing the type of interaction at rank -2 # R is a list which contains a rotation matrix # and a translation vector for doing the mirroring # operation # diffraction (retrieve a point) if len(visited[-2]) == 1: #th = self.L.Gs.pos[nstr] R.append((np.eye(2),np.array([0,0]))) elif len(visited[-2])==2: # # l'avant dernier point est une reflection # nseg_points = list(dict(self.L.Gs[visited[-2][0]]).keys()) ta_seg = np.array(self.L.Gs.pos[nseg_points[0]]) he_seg = np.array(self.L.Gs.pos[nseg_points[1]]) # # get reflection matrix from segment visited[-2] # R.append(geu.axmat(ta_seg,he_seg)) # direct order #R.append(geu.axmat(tahe[-1][0],tahe[-1][1])) # transmission do nothing else : pass # current interaction is of segment type if (nstr>0): nseg_points = list(dict(self.L.Gs[nstr]).keys()) th = np.array([self.L.Gs.pos[nseg_points[0]], self.L.Gs.pos[nseg_points[1]]]) else: th = self.L.Gs.pos[nstr] th = np.array([th,th]) # current interaction is of point type (diffraction) # apply current chain of symmetries # # th is the current segment tail-head coordinates # tahe is a list of well mirrored tail-head coordinates #tahe.append(a) #if ((visited[0]==(104,23,17)) and (visited[1]==(1,17))): # print("th (avant mirror)",th) ik = 1 r = R[-ik] # # dtarget : distance between th and target # pt_th = np.sum(th,axis=0)/2. d_target = np.linalg.norm(pt_target-pt_th) # # mirroring th until the previous point # th_mirror = copy.copy(th) while np.any(r[0] != np.eye(2)): th_mirror = np.einsum('ki,ij->kj',th_mirror,r[0])+r[1] ik = ik + 1 r = R[-ik] pt_mirror = np.sum(th_mirror,axis=0)/2. d_source = np.linalg.norm(pt_source-pt_mirror) d_excess = d_source + d_target - d_source_target # if at least 2 interactions # or previous point is a diffraction if (len(tahe)<2) or (len(visited[-2])==1) or (len(visited[-1])==1): ratio = 1.0 ratio2 = 1.0 else: # Determine the origin of the cone # either the transmitter (ilast =0) # or the last diffraction point (ilast=udiff[-1] ) udiff = [ k for k in range(len(visited)) if len(visited[k])==1 ] if udiff==[]: ilast = 0 else: ilast=udiff[-1] #print(tahe) pta0 = tahe[ilast][0] # tail first segment (last difraction) phe0 = tahe[ilast][1] # head first segment # # TODO : it would be better to replace pta_ and phe_ with the intersection # of the previous cone with tahe[-1] # pta_ = tahe[-1][0] # tail last segment phe_ = tahe[-1][1] # head last segment # # Calculates the left and right vector of the cone # # vl left vector # vr right vector # # # Detect situations of connected segments # # [(60, 2, 8), (61, 8, 11), (15, 11), (61, 11, 8), (60 ,8, 2), (44, 2, 7)] # if visited == [(60, 2, 8), (61, 8, 11), (15, 11), (61, 11, 8), (60 ,8, 2), (44, 2, 7)]: # print '\n',visited # import ipdb # ipdb.set_trace() connected = False if (pta0==pta_).all(): apex = pta0 connected = True v0 = phe0 - apex v_ = phe_ - apex elif (pta0==phe_).all(): apex = pta0 connected = True v0 = phe0 - apex v_ = pta_ - apex elif (phe0==pta_).all(): apex = phe0 connected = True v0 = pta0 - apex v_ = phe_ - apex elif (phe0==phe_).all(): apex = phe0 connected = True v0 = pta0 - apex v_ = pta_ - apex if connected: if ((np.linalg.norm(v0)==0) or (np.linalg.norm(v_)==0)): logger.debug("pta0 : %g,%g", pta0[0], pta0[1]) logger.debug("pta_ : %g,%g", pta_[0], pta_[1]) logger.debug("phe0 : %g,%g", phe0[0], phe0[1]) logger.debug("phe_ : %g,%g", phe_[0], phe_[1]) logger.debug("v0 : %g,%g", v0[0], v0[1]) logger.debug("v_ : %g,%g", v_[0], v_[1]) # # Does the cone is built from 2 connected segments or # 2 unconnected segments # if not connected: if not (geu.ccw(pta0,phe0,phe_) ^ geu.ccw(phe0,phe_,pta_) ): vr = (pta0,phe_) vl = (phe0,pta_) else: # twisted case vr = (pta0,pta_) vl = (phe0,phe_) # cone dot product # print vr # print vl vr_n = (vr[1]-vr[0])/np.linalg.norm(vr[1]-vr[0]) vl_n = (vl[1]-vl[0])/np.linalg.norm(vl[1]-vl[0]) vrdotvl = np.dot(vr_n,vl_n) # cone angle angle_cone = np.arccos(np.maximum(np.minimum(vrdotvl,1.0),-1.0)) #angle_cone = np.arccos(vrdotvl) # prepare lines and seg argument for intersection checking if angle_cone!=0: linel = (vl[0],vl[1]-vl[0]) liner = (vr[0],vr[1]-vr[0]) # from origin mirrored segment to be tested seg = (th_mirror[0],th_mirror[1]) # apex calculation a0u = np.dot(pta0,vr_n) a0v = np.dot(pta0,vl_n) b0u = np.dot(phe0,vr_n) b0v = np.dot(phe0,vl_n) #import warnings #warnings.filterwarnings("error") try: kb = ((b0v-a0v)-vrdotvl*(b0u-a0u))/(vrdotvl*vrdotvl-1) except: pdb.set_trace() apex = phe0 + kb*vl_n else: # cone from connected segments v0n = v0/np.linalg.norm(v0) try: v_n = v_/np.linalg.norm(v_) except: pdb.set_trace() # import ipdb # ipdb.set_trace() sign = np.sign(np.cross(v_n,v0n)) if sign>0: vr_n = -v0n vl_n = v_n else: vr_n = v_n vl_n = -v0n vrdotvl = np.dot(vr_n,vl_n) # cone angle angle_cone = np.arccos(np.maximum(np.minimum(vrdotvl,1.0),-1.)) # # the illuminating cone is defined # the th_mirror to be tested with this cone are known # if ( (not np.isclose(angle_cone,0,atol=1e-6) ) and ( not np.isclose(angle_cone,np.pi)) ) : #if self.cpt==16176: # pdb.set_trace() seg,ratio2 = geu.intersect_cone_seg((apex,vl_n),(apex,vr_n),(th_mirror[0],th_mirror[1]),bvis=False) elif ( not np.isclose(angle_cone,0) ): ratio2 = 1 else: ratio2 = 0 #print ratio if len(seg)==2: th_mirror = np.vstack((seg[0],seg[1])) else: pass al = np.arctan2(vl_n[1],vl_n[0]) ar = np.arctan2(vr_n[1],vr_n[0]) if np.allclose(th_mirror[0],apex) or np.allclose(th_mirror[1],apex): ratio2 = 1. # On connecte l'apex du cone courant aux extrémités du segment courant mirroré # Dans certaines circonstances par example un cone emanant d'un point colinéaire # avec le segment d'arrivé" (-4) (6,4) le point -4 est aligné avec le segment 6 # l'ouverture du cone est nul => arret. Cela pourrait être géré dans Gi en interdisant # la visibilité (-4) (6,4) # if angle_cone ==0: # ratio = 0 # else: # if np.allclose(th_mirror[0],apex) or np.allclose(th_mirror[1],apex): # ratio = 1. # else: # wseg0 = th_mirror[0] - apex # wseg1 = th_mirror[1] - apex # mod_wseg0 = np.sqrt(np.sum(wseg0*wseg0,axis=0)) # mod_wseg1 = np.sqrt(np.sum(wseg1*wseg1,axis=0)) # # if np.isclose(mod_wseg0,0): # #bvisu = True # #pdb.set_trace()# # pass # if np.isclose(mod_wseg1,0): # #bvisu = True # #pdb.set_trace()# # pass # #wseg0_n = wseg0/mod_wseg0 # #wseg1_n = wseg1/mod_wseg1 # wseg0_n = wseg0/np.linalg.norm(wseg0) # wseg1_n = wseg1/np.linalg.norm(wseg1) # aseg0 = np.arctan2(wseg0_n[1],wseg0_n[0]) # aseg1 = np.arctan2(wseg1_n[1],wseg1_n[0]) # # # if al==aseg0 or al==aseg1 or ar==aseg0 or ar==aseg1: # # ratio = 1 # #print "toto" # # else: # I = geu.angle_intersection2(al,ar,aseg0,aseg1) # ratio = I/angle_cone # #if ratio>=1: # # pdb.set_trace() # # # if connected: # # print "ratio :",ratio # # # #if visited == [(104, 23, 17), (1, 17), (53, 17)]: # if (bvisu): # fig ,ax = self.L.showG('s',aw=1,labels=0) # # # # magenta : start of the cone # # cyan : # # yellow : last interaction # # # ax = geu.linet(ax,pta0,phe0,al=1,color='magenta',linewidth=3) # ax = geu.linet(ax,pta_,phe_,al=1,color='cyan',linewidth=3) # ax = geu.linet(ax,np.array(self.L.Gs.pos[nseg_points[0]]),np.array(self.L.Gs.pos[nseg_points[1]]),al=1,color='yellow',linewidth=4) # # ax = geu.linet(ax,vr[0],vr[1],al=1,color='red',linewidth=3) # # ax = geu.linet(ax,vl[0],vl[1],al=1,color='blue',linewidth=3) # ax = geu.linet(ax,seg[0],seg[1],al=1,color='k',linewidth=3) # ax = geu.linet(ax,th_mirror[0,:],th_mirror[1,:],al=1,color='green',linewidth=3) # nx.draw_networkx_labels(self.L.Gi, # self.L.Gi.pos,labels={x:str(x) for x in visited}, # ax=ax,fontsize=18) # plt.title(str(visited)+' '+str(ratio)) # ax.plot(apex[0],apex[1],'or') # plt.axis('auto') # pdb.set_trace() # #if visited == [(104, 23, 17), (1, 17), (53, 17), (108, 17, 18)]: # # if visited == [(104, 23, 17), (1, 17), (53, 17)]: # if (1==0): # fig ,ax = self.L.showG('s',aw=1,labels=0) # ax = geu.linet(ax,pta0,phe0,al=1,color='magenta',linewidth=3) # ax = geu.linet(ax,pta_,phe_,al=1,color='cyan',linewidth=3) # # ax = geu.linet(ax,np.array(self.L.Gs.pos[pts[0]]),np.array(self.L.Gs.pos[pts[1]]),al=1,color='yellow',linewidth=4) # ax = geu.linet(ax,vr[0],vr[1],al=1,color='red',linewidth=3) # ax = geu.linet(ax,vl[0],vl[1],al=1,color='blue',linewidth=3) # #ax = geu.linet(ax,seg[0],seg[1],al=1,color='k',linewidth=3) # ax = geu.linet(ax,th[0,:],th[1,:],al=1,color='green',linewidth=3) # plt.title(str(visited)+' '+str(ratio)) # ax.plot(apex[0],apex[1],'or') # plt.axis('auto') # plt.show() #else: # th = self.L.Gs.pos[nstr] # th = np.array([th,th]) # ratio = 1 #print self.cpt,ratio,ratio2 #if (ratio>0.1) and (ratio2==0): # pdb.set_trace() #print d_excess,dist_excess_max #if (ratio2 > self.threshold) and (d_excess<dist_excess_max): if (ratio2 > self.threshold) and (d_excess<dist_excess_max): #if (ratio > self.threshold): # # Update sequence of mirrored points # if nstr<0: tahe.append(th) else: tahe.append(th_mirror) #if (tahe[-1][0]==tahe[-1][1]).all(): # pdb.set_trace() # # Check if the target has been reached # sequence is valid and last interaction is in the list of targets #if (interaction in lit) or (interaction[-1]==self.target): if (interaction in lit): # idea here is to produce signature without any airwalls # lawp_tmp is a mask where 0 mean no air wall and 1 = airwall # anstr does not contains airwalls # lawp_tmp = [0]+lawp # lll = [x[0] for ix,x in enumerate(visited) if lawp_tmp[ix]==1] # print([self.L.Gs.node[x]['name'] for x in lll]) #anstr = np.array([x[0] for ix,x in enumerate(visited) # if ((lawp[ix]!=1) or (x[0] in self.L.name['AIR']) or (x in (lit+lis)))] ) #typ = np.array([len(x) for ix,x in enumerate(visited) # if ((lawp[ix]!=1) or (x[0] in self.L.name['AIR']) or (x in (lit+lis)))] ) #sig = np.array([anstr,typ]) #sighash = hash(str(sig)) # if len(anstr) == 2: # if (anstr == np.array([323,351])).all(): # import ipdb # ipdb.set_trace() anstr = np.array([x[0] for x in visited ]) typ = np.array([len(x) for x in visited]) sig = np.array([anstr,typ]) sighash = hash(str(sig)) if sighash not in lhash: lhash.append(sighash) try: self[len(typ)] = np.vstack((self[len(typ)],sig)) self.ratio[len(typ)] = np.append(self.ratio[len(typ)],ratio) except: self[len(typ)] = np.vstack((sig)) self.ratio[len(typ)] = np.array([ratio]) # print ('added',visited) cptsig +=1 if animation: Nf = nx.draw_networkx_nodes(Gi,pos=Gi.pos, nodelist=visited,labels={}, node_color='b', node_size=40, ax=ax,fig=fig) Ef = nx.draw_networkx_edges(Gi,pos=Gi.pos, edgelist=edge,labels={}, width=0.1,arrows=False, ax=ax,fig=fig) cpt=cpt+1 plt.savefig('./figure/' +str(us) +'_' + str(cpt) +'.png') try: ax.collections.remove(Nf) except: pass try: ax.collections.remove(Ef) except: pass outint = Gi[visited[-2]][interaction]['output'].keys() # # proint not used # proint = Gi[visited[-2]][interaction]['output'].values() nexti = [it for it in outint ] stack.append(iter(nexti)) # 1590 ratio <= threshold else: if len(visited)>1: if ((len(visited[-2])==2) or len(visited[-2])==1): R.pop() last = visited.pop() lawp.pop() # 1389 condR and condT and condD else: pass # 1388 cond1 and cond2 and cond3 else: # if at least 2 interactions # and antepenultiem is a reflexion if len(visited)>1: if ((len(visited[-2])==2) or len(visited[-2])==1): R.pop() last = visited.pop() # # Poping # tahe # lawp # stack #if (tahe[-1][0]==tahe[-1][1]).all(): # pdb.set_trace() tahe.pop() try: lawp.pop() except: pass stack.pop() #stack.pop() def plot_cones(self,L,i=0,s=0,fig=[],ax=[],figsize=(10,10)): """ display cones of an unfolded signature Parameters ---------- L : Layout i : int the interaction block s : int the signature number in the block fig : ax : figsize : """ if fig == []: fig= plt.figure() ax = fig.add_subplot(111) elif ax ==[]: ax = fig.add_subplot(111) pta,phe = self.unfold(L,i=i,s=s) # create a global array or tahe segments seg = np.vstack((pta,phe)) lensi = np.shape(seg)[1] for s in range(1,lensi): pseg0 = seg[:,s-1].reshape(2,2).T pseg1 = seg[:,s].reshape(2,2).T # # create the cone seg0 seg1 # cn = cone.Cone() cn.from2segs(pseg0,pseg1) fig,ax = cn.show(fig = fig,ax = ax,figsize = figsize) return (fig,ax) def unfold(self,L,i=0,s=0): """ unfold a given signature return 2 np.ndarray of pta and phe "aligned" (reflexion interaction are mirrored) Parameters ---------- L : Layout i : int the interaction block s : int the signature number in the block Returns ------- pta,phe See Also -------- Signature.unfold """ si = Signature(self[i][(2*s):(2*s)+2]) si.ev(L) pta,phe = si.unfold() return pta,phe def pltunfold(self,L,i=0,s=0): import shapely.ops as sho from descartes.patch import PolygonPatch plt.ion() plt.gcf() plt.clf() def plot_lines(ax, ob, color = []): for ii,line in enumerate(ob): if color == []: if ii ==0 : c ='g' elif ii == len(ob)-1: c ='r' else: c= 'k' else: c=color x, y = line.xy ax.plot(x, y, color=c, alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2) return ax def plot_poly(ax, ob, color = []): for ii,poly in enumerate(ob): pp = PolygonPatch(poly,alpha=0.3) ax.add_patch(pp) return ax pta,phe=self.unfold(L=L,i=i,s=s) ML =sh.MultiLineString([((pta[0][i],pta[1][i]),(phe[0][i],phe[1][i])) for i in range(pta.shape[1])]) fig=plt.gcf() ax=plt.gca() ax = plot_lines(ax,ML) s0=sh.LineString([(pta[0,0],pta[1,0]),(phe[0,-1],phe[1,-1])]) s1=sh.LineString([(phe[0,0],phe[1,0]),(pta[0,-1],pta[1,-1])]) if s0.crosses(s1): s0=sh.LineString([(pta[0,0],pta[1,0]),(pta[0,-1],pta[1,-1])]) s1=sh.LineString([(phe[0,0],phe[1,0]),(phe[0,-1],phe[1,-1])]) cross = sh.MultiLineString([s0,s1,ML[0],ML[-1]]) poly=sho.polygonize(cross) # ax = plot_lines(ax,cross,color='b') ax = plot_poly(ax,poly) def show(self,L,**kwargs): """ plot signatures in the simulated environment Parameters ---------- L : Layout i : list or -1 (default = all groups) list of interaction group numbers s : list or -1 (default = all sig) list of indices of signature in interaction group ctx : cycle of tx (optional) crx : cycle of rx (optional) graph : type of graph to be displayed color : string alphasig : float widthsig : float colsig : string ms : int ctx : int crx :int """ defaults = {'i':-1, 's':-1, 'fig':[], 'ax':[], 'graph':'s', 'color':'black', 'alphasig':1, 'widthsig':0.1, 'colsig':'black', 'ms':5, 'ctx':-1, 'crx':-1, 'aw':True } for key, value in defaults.items(): if key not in kwargs: kwargs[key] = value # display layout fig,ax = L.showG(**kwargs) if kwargs['ctx']!=-1: Tpoly = self.L.Gt.node[kwargs['ctx']]['polyg'] Tpoly.coul='r' Tpoly.plot(fig=fig,ax=ax,color='r') if kwargs['crx']!=-1: Rpoly = self.L.Gt.node[kwargs['crx']]['polyg'] Rpoly.plot(fig=fig,ax=ax,color='g') # i=-1 all rays # else block of interactions i if kwargs['i']==-1: lgrint = self.keys() else: lgrint = [kwargs['i']] if kwargs['s'] == -1: for i in lgrint: lsig = range(int(len(self[i])/2)) for j in lsig: sig = [ self.L.Gs.pos[x] for x in self[i][2*j] ] siga = np.array(sig) ax.plot(siga[:,0], siga[:,1], alpha = kwargs['alphasig'], color = kwargs['colsig'], linewidth = kwargs['widthsig']) ax.axis('off') else: lsig = [kwargs['s']] for s1 in lsig: sig = [ self.L.Gs.pos[x[0]] for x in s1] siga = np.array(sig) ax.plot(siga[:,0], siga[:,1], alpha = kwargs['alphasig'], color = kwargs['colsig'], linewidth = kwargs['widthsig']) ax.axis('off') return(fig,ax) def showi(self,uni=0,us=0): """ interactive show press n to visit signatures sequentially Parameters ---------- uni : index of interaction dictionnary keys us : signature index """ plt.ion() fig = plt.figure() nit = self.keys() ni = nit[uni] ust = len(self[ni])/2 polyS = self.L.Gt.node[self.source]['polyg'] cp1 = polyS.centroid.xy polyT = self.L.Gt.node[self.target]['polyg'] cp2 = polyT.centroid.xy ptx = np.array([cp1[0][0],cp1[1][0]]) prx = np.array([cp2[0][0],cp2[1][0]]) st='a' while st != 'q': inter=[] ax = fig.add_subplot(111) fig,ax=self.L.showG(fig=fig,ax=ax,graph='s') title = '# interaction :', ni, 'signature #',us,'/',ust ax.set_title(title) line = ptx # draw terminal points (centroid of source and target cycle) ax.plot(ptx[0],prx[1],'xr') ax.plot(prx[0],prx[1],'xb') if ni not in self.keys(): print("incorrect number of interactions") pos={} try: for u in self[ni][us*2]: pos.update({u:self.L.Gs.pos[u]}) line = np.vstack((line,np.array((self.L.Gs.pos[u])))) nx.draw_networkx_nodes(self.L.Gs,pos=pos,nodelist=pos.keys(),node_color='r',ax=ax) for ii in self[ni][(us*2)+1]: if ii == 1: inter.append('R') if ii == 2: inter.append('T') if ii == 3: inter.append('D') except: print("signature index out of bounds of signature") line = np.vstack((line,prx)) ax.plot(line[:,0],line[:,1]) plt.draw() print(inter) st = raw_input() ax.cla() if st == 'n': if us+2 <= ust: us=us+2 else: uni = uni+1 try: ni = nit[uni] ust = len(self[ni])/2 us=0 except: uni=0 ni=nit[uni] us = 0 else: print('press n for next signature') def rays(self,ptx=0,prx=1): """ from signatures dict to 2D rays Parameters ---------- ptx : numpy.array or int Tx coordinates is the center of gravity of the cycle number if type(tx)=int prx : numpy.array or int Rx coordinates is the center of gravity of the cycle number if sigtype(rx)=int Returns ------- rays : Rays Notes ----- In the same time the signature of the ray is stored in the Rays object Todo : Find the best memory implementation See Also -------- Signature.sig2ray Signature.raysv """ if type(ptx) == int: ptx = np.array(self.L.Gt.pos[ptx]) if type(prx) == int: prx = np.array(self.L.Gt.pos[prx]) rays = Rays(ptx,prx) # # detect LOS situation # # # cycle on a line between 2 cycles # lc = self.L.cycleinline(self.source,self.target) # # if source and target in the same merged cycle # and ptx != prx # los = shg.LineString(((ptx[0], ptx[1]), (prx[0], prx[1]))) # convex cycle of each point cyptx = self.L.pt2cy(ptx) cyprx = self.L.pt2cy(prx) # merged cycle of each point polyctx = self.L.Gt.node[cyptx]['polyg'] polycrx = self.L.Gt.node[cyprx]['polyg'] # # Handling LOS ray # dtxrx = np.sum((ptx-prx)*(ptx-prx)) if dtxrx>1e-15: if cyptx==cyprx: if polyctx.contains(los): rays.los = True else: rays.los = False # k : Loop on interaction group # l : loop on signature # ---> # this part should be a generator # for k in self: # print 'block#',k # if k ==3: # import ipdb # ipdb.set_trace() # get signature block with k interactions tsig = self[k] shsig = np.shape(tsig) for l in range(shsig[0]/2): sig = tsig[2*l:2*l+2,:] ns0 = sig[0,0] nse = sig[0,-1] validtx = True validrx = True if (ns0<0): pD = self.L.Gs.pos[ns0] TxD = shg.LineString(((ptx[0], ptx[1]), (pD[0], pD[1]))) seg = polyctx.intersection(TxD) validtx = seg.almost_equals(TxD,decimal=4) if not validtx: pass #print "Signature.rays": ns0 if (nse<0): pD = self.L.Gs.pos[nse] DRx = shg.LineString(((pD[0], pD[1]), (prx[0], prx[1]))) validrx = polyctx.contains(DRx) if not validrx: pass #print nse if validtx & validrx: # print sig # print pD s = Signature(sig) # # Transform signature into a ray # --> sig2ray isray,Yi = s.sig2ray(self.L, ptx[:2], prx[:2]) if isray: Yi = np.fliplr(Yi) if k in rays.keys(): Yi3d = np.vstack((Yi[:, 1:-1], np.zeros((1, k)))) Yi3d = Yi3d.reshape(3, k, 1) rays[k]['pt'] = np.dstack(( rays[k]['pt'], Yi3d)) rays[k]['sig'] = np.dstack(( rays[k]['sig'], sig.reshape(2, k, 1))) else: rays[k] = {'pt': np.zeros((3, k, 1)), 'sig': np.zeros((2, k, 1),dtype=int)} rays[k]['pt'][0:2, :, 0] = Yi[:, 1:-1] rays[k]['sig'][:, :, 0] = sig rays.nb_origin_sig = len(self) rays.origin_sig_name = self.filename return rays def raysv(self, ptx=0, prx=1): """ transform dict of signatures into 2D rays - default vectorized version Parameters ---------- ptx : numpy.array or int Tx coordinates is the center of gravity of the cycle ptx if type(ptx)=int prx : numpy.array or int Rx coordinates is the center of gravity of the cycle prx if type(prx)=int Returns ------- rays : Rays Notes ----- This is a vectorized version of Signatures.rays. This implementation takes advantage of the np.ndarray and calculates images and backtrace for block of signatures. A block of signatures gathers all signatures with the same number of interactions. For mathematical details see : @phdthesis{amiot:tel-00971809, TITLE = {{Design of simulation platform joigning site specific radio propagation and human mobility for localization applications}}, AUTHOR = {<NAME>}, URL = {https://tel.archives-ouvertes.fr/tel-00971809}, NUMBER = {2013REN1S125}, SCHOOL = {{Universit{\'e} Rennes 1}}, YEAR = {2013}, MONTH = Dec, TYPE = {Theses}, HAL_ID = {tel-00971809}, HAL_VERSION = {v1}, } See Also -------- Signatures.image Signatures.backtrace """ if type(ptx)==int: ptx = np.array(self.L.Gt.pos[ptx]) if type(prx)==int: prx = np.array(self.L.Gt.pos[prx]) if len(ptx) == 2: ptx= np.r_[ptx, 0.5] if len(ptx) == 2: prx= np.r_[prx, 0.5] rays = Rays(ptx,prx) # # detect LOS situation # # # cycle on a line between 2 cycles # lc = self.L.cycleinline(self.source,self.target) # # if source and target are in the same merged cycle # and ptx != prx # los = shg.LineString(((ptx[0], ptx[1]), (prx[0], prx[1]))) # convex cycle of each point cyptx = self.L.pt2cy(ptx) cyprx = self.L.pt2cy(prx) polyctx = self.L.Gt.node[cyptx]['polyg'] polycrx = self.L.Gt.node[cyprx]['polyg'] # The Line of sight situation is detected here # dtxtx : square distance between Tx and Rx dtxrx = np.sum((ptx-prx)*(ptx-prx)) if dtxrx>1e-15: if polyctx.contains(los): rays.los = True else: rays.los = False M = self.image2(ptx) R = self.backtrace(ptx,prx,M) # # Add LOS ray in ray 2D # if rays.los: R[0]= {'sig':np.zeros(shape=(0,0,1)),'pt': np.zeros(shape=(2,1,0))} rays.update(R) rays.nb_origin_sig = len(self.keys()) rays.origin_sig_name = self.filename return rays def backtrace(self, tx, rx, M): ''' backtracing betwen tx and rx Parameters ---------- tx : ndarray position of tx (2,) rx : ndarray position of tx (2,) M : dict position of intermediate points obtained from self.image() Returns ------- rayp : dict key = number_of_interactions value =ndarray positions of interactions for creating rays Notes ----- dictionnary of intermediate coordinated : key = number_of_interactions value = nd array M with shape : (2,nb_signatures,nb_interactions) and 2 represent x and y coordinates See Also -------- pylayers.antprop.signature.image ''' if len(tx) > 2: tx = tx[:2] if len(rx) > 2: rx = rx[:2] rayp={} # loop on number of interactions for ninter in self.keys(): signatures = copy.deepcopy(self[ninter]) #get segment ids of signature with ninter interactions # seg = self[ninter][::2] # unegseg=np.where(seg<0) # uninegseg,idx = np.unique(seg[unegseg],return_inverse=True) # pneg = np.array([self.L.Gs.pos[x] for x in uninegseg]) # nsig = len(seg) # # determine positions of points limiting the semgments # #1 get index in L.tahe # # 2 get associated position in L.pt # utahe = self.L.tahe[:,self.L.tgs[seg]] # # pt : (xycoord (2),pt indexes (2),nb_signatures,nb_interactions) # pt = self.L.pt[:,utahe] # ####WARNING BIG TRICK HERE : # #### pa and pb are not set as the same value # #### to avoid a singular matrixnext. # #### set pa =-pb has no incidence but avoid complex and vain code # #### modification for handling diffractions # try: # pt[:,0,unegseg[0],unegseg[1]]=pneg[idx].T # pt[:,1,unegseg[0],unegseg[1]]=-pneg[idx].T # except: # pass # pt shape = # 0 : (x,y) coordinates x=0,y=1 # 1 : 2 points (linking the semgnet) a=0,b=1 #2 : nb of found signatures/segments # 3 : nb interaction ################################ ############################### ####### This part between hash has been copy/paste from self.image2 ###### should be considered to become a function #get segment ids of signature with ninter interactions # nid = node id nid = self[ninter][::2] nsig = len(nid) # pt shape = # 0 : (x,y) coordinates x=0,y=1 # 1 : 2 points (linking the nidment) a=0,b=1 # 2 : nb of found signatures/nidments # 3 : nb interactions pt = np.empty((2,2,nsig,ninter)) # 1 negative points # seek for diffraction # negative index points are diffraction points upoint = np.where(nid<0) unipoint,idx = np.unique(nid[upoint],return_inverse=True) #get their coordinates # # TO BE FIXED # #upointcoord = self.L.iupnt[-unipoint] #pointcoord = self.L.pt[:,upointcoord] pointcoord = np.array([ (self.L.Gs.pos[x][0],self.L.Gs.pos[x][1]) for x in unipoint ]).T # #### WARNING BIG TRICK HERE : # #### pa and pb are not set as the same value # #### to avoid a singular matrixnext. # #### set pa =-pb has no incidence but avoid complex and vain code # #### modification for handling diffractions try: pt[:,0,upoint[0],upoint[1]] = pointcoord[:,idx] pt[:,1,upoint[0],upoint[1]] = -pointcoord[:,idx] except: pass # 2 positive points # seek for segments useg = np.where(nid>0) # removing duplicates ( for increasing speed) uniseg,idxp = np.unique(nid[useg],return_inverse=True) # determine positions of points limiting the nidments #1 get index in L.tahe utahe = self.L.tahe[:,self.L.tgs[uniseg]] segcoord = self.L.pt[:,utahe] pt[:,:,useg[0],useg[1]]=segcoord[:,:,idxp] ################################### ######################################## # how to do this into a while loop ? p=rx # creating W matrix required in eq (2.70) thesis Nicolas AMIOT # Warning W is rolled after and becomes (nsig,4,4) W = np.zeros((4,4,nsig)) I = np.eye(2)[:,:,np.newaxis]*np.ones((nsig)) W[:2,:2,...] = I W[2:4,:2,...] = I # once rolled : # W (nsig,4,4) W = np.rollaxis(W,-1) kinter=ninter-1 ptr = pt Mr = copy.deepcopy(M) epsilon = 1e-12 rayp_i = np.zeros((3,nsig,ninter)) # rayp_i[:2,:,-1]=rx[:,None] #backtrace process # if ninter == 6: # print np.where(((signatures[:,0]==42) &(signatures[:,1]==-277) & (signatures[:,2]==135) & (signatures[:,3]==21) & (signatures[:,4]==46) & (signatures[:,5]==319))) # import ipdb # ipdb.set_trace() while kinter > -1: #Initilization, using the Tx position if kinter == ninter-1: p_min_m = p[:,np.newaxis]-Mr[ninter][:,:,kinter] else : p_min_m = pvalid[:].T-Mr[ninter][:,:,kinter] a_min_b = ptr[:,0,:,kinter]-ptr[:,1,:,kinter] # Creating W from eq (2.71) # a_min_b <=> a_{Lh-l}-b_{Lh-l} # p_min_m <=> \tilde{p}_{Lh}-\tilde{b}_{Lh-l} # W (nsig,4,4) # p_min_m (2,nsig) # a_min_b (2,nsig) W[...,:2,2] = p_min_m.T W[...,2:,3] = a_min_b.T # create 2nd member from eq (2.72) if kinter == ninter-1: y= np.concatenate((p[:,np.newaxis]*np.ones((nsig)),ptr[:,0,:,kinter])) else: y= np.concatenate((pvalid.T,ptr[:,0,:,kinter])) # y once transposed : # y (nsig,4) y=y.T # search and remove point with singular matrix invalid_sig=np.where(abs(np.linalg.det(W))<1e-15) W = np.delete(W,invalid_sig,axis=0) y = np.delete(y,invalid_sig,axis=0) ptr = np.delete(ptr,invalid_sig,axis=2) Mr[ninter] = np.delete(Mr[ninter],invalid_sig,axis=1) rayp_i = np.delete(rayp_i,invalid_sig,axis=1) #remove signatures usig = np.repeat(invalid_sig[0],2) usig[::2]=usig[::2]*2 usig[1::2]=usig[1::2]*2+1 signatures = np.delete(signatures,usig,axis=0) # detect diffrac uD = signatures[1::2,kinter]==1 uuD = np.where(signatures[1::2,kinter]==1)[0] psolved = np.linalg.solve(W,y) #valid ray is : 0 < \alpha < 1 and 0< \beta < 1 # alpha uvalidA = psolved[:,2]>0. uvalidB = psolved[:,2]<1. #beta uvalidC = psolved[:,3] >= epsilon uvalidD = psolved[:,3] <=1.-epsilon valid = uvalidA & uvalidB & uvalidC & uvalidD # consider valid diffraction interactions valid = valid | uD uvalid = np.where(valid)[0] # re-add correct position of diffraction interations #indeed diffraction point should not been solved with linalg, # but by setting pa=-pb, no singular matrix appear #and diffraction points can be re-add thereafter. psolved[uuD,:2] = ptr[:,0,uuD,kinter].T pvalid = psolved[uvalid,:2] # keep only valid rays for ptr and Mr Mr[ninter]=Mr[ninter][:,uvalid,:] ptr=ptr[:,:,uvalid,:] W = W[uvalid,:,:] # remove signatures usigv = np.repeat(uvalid,2) usigv[::2]=usigv[::2]*2 usigv[1::2]=usigv[1::2]*2+1 signatures = signatures[usigv,:] rayp_i[:2,uvalid,kinter] = pvalid.T rayp_i = rayp_i[:,uvalid,:] #if no more rays are valid , then quit block # (kinter <0 is the exit while condition) if len(uvalid) > 0 : kinter=kinter-1 else : kinter = -2 # rayp_i[:2,:,0]=tx[:,None] if len(uvalid) !=0: N = int(len(usigv)/2) sir1=signatures[::2].T.reshape(ninter,N) sir2=signatures[1::2].T.reshape(ninter,N) sig = np.empty((2,ninter,N)) sig[0,:,:]=sir1 sig[1,:,:]=sir2 rayp_i=np.swapaxes(rayp_i,1,2) rayp.update({ninter:{'pt':rayp_i,'sig':sig.astype('int')}}) return rayp def image2(self,tx): """ determine rays from images (second implementation) Parameters ---------- tx : point """ if len(tx) > 2: tx = tx[:2] dM={} # loop on number of interactions for ninter in self.keys(): #get segment ids of signature with ninter interactions # nid = node id nid = self[ninter][::2] nsig = len(nid) M = np.empty((2,nsig,ninter)) # pt shape = # 0 : (x,y) coordinates x=0,y=1 # 1 : 2 points (linking the nidment) a=0,b=1 # 2 : nb of found signatures/nidments # 3 : nb interactions try: pt = np.nan*np.zeros((2,2,nsig,ninter)) except: pdb.set_trace() #1 negative points # seek for diffraction # negative index points are diffraction points upoint = np.where(nid<0) unipoint,idxpt = np.unique(nid[upoint],return_inverse=True) #get their coordinates # # To be FIXED # #upointcoord = self.L.iupnt[-unipoint] #pointcoord = self.L.pt[:,upointcoord] pointcoord = np.array([ (self.L.Gs.pos[x][0],self.L.Gs.pos[x][1]) for x in unipoint ]).T # try except to handle the case where there is no diffraction point try: pt[:,0,upoint[0],upoint[1]] = pointcoord[:,idxpt] pt[:,1,upoint[0],upoint[1]] = pointcoord[:,idxpt] except: pass #2 positive points #seek for segments useg = np.where(nid>0) # removing duplicates ( for increasing speed) uniseg,idxseg = np.unique(nid[useg],return_inverse=True) # determine positions of points limiting the nidments #1 get index in L.tahe utahe = self.L.tahe[:,self.L.tgs[uniseg]] segcoord = self.L.pt[:,utahe] pt[:,:,useg[0],useg[1]]=segcoord[:,:,idxseg] # check every element of pt is filled assert not np.isnan(pt).any() # # TODO Upgrading layout for handling slab offsets # # uncomment those two lines when the numpy array L.norm and # L.offset exist #norm = self.L.normal[:,utahe] #offset = self.L.offset[:,utahe] # pt = pt + offset*norm ############ #formula 2.61 -> 2.64 N.AMIOT PH.D thesis ############ sx = pt[0,1,:,:]-pt[0,0,:,:] sy = pt[1,1,:,:]-pt[1,0,:,:] den = sx**2+sy**2 # den = ((pt[0,0,:,:]-pt[0,1,:,:])**2+(pt[1,0,:,:]-pt[1,1,:,:])**2) # avoiding singularity (should not be possible) uz = np.where(den==0) den[uz] = 1. a = 1 - (2. / den) * (pt[1,0,:, :] - pt[1,1,:, :]) ** 2 b= (2. / den) * (pt[0,1,:, :] - pt[0,0,:, :]) * (pt[1,0,:, :] - pt[1,1,:, :]) c = (2. / den) * (pt[0,0,:, :] * (pt[1,0,:, :] - pt[1,1,:, :]) ** 2 + pt[1,0,:, :] * (pt[1,0,:, :] - pt[1,1,:, :]) * (pt[0,1,:, :] - pt[0,0,:, :])) d = (2. / den) * (pt[1,0,:, :] * (pt[0,1,:, :] - pt[0,0,:, :]) ** 2 + pt[0,0,:, :] * (pt[1,0,:, :] - pt[1,1,:, :]) * (pt[0,1,:, :] - pt[0,0,:, :])) # a = ((pt[0,0,:,:]-pt[0,1,:,:])**2-(pt[1,0,:,:]-pt[1,1,:,:])**2) # a=a/(1.*den) # b = 2*(pt[0,1,:,:]-pt[0,0,:,:])*(pt[1,1,:,:]-pt[1,0,:,:]) # b=b/(1.*den) # c= 2*(pt[0,0,:,:]*(pt[1,0,:,:]-pt[1,1,:,:])**2+pt[1,0,:,:]*(pt[0,1,:,:]-pt[0,0,:,:])*(pt[1,0,:,:]-pt[1,1,:,:])) # c = c/(1.*den) # d= 2*(pt[0,0,:,:]*(pt[1,0,:,:]-pt[1,1,:,:])*(pt[0,1,:,:]-pt[0,0,:,:])+pt[1,0,:,:]*(pt[0,1,:,:]-pt[0,0,:,:])**2) # d= d/(1.*den) # K=np.array([[a,-b],[-b,-a]]) K = np.array([[a,-b],[-b,-a]]) # translation vector v (2.60) v =np.array(([c,d])) ityp = self[ninter][1::2] for n in np.arange(ninter): #get segment ids of signature with ninter interactions uT = np.where(ityp[:,n]==3)[0] uR =
np.where(ityp[:,n]==2)
numpy.where
import numpy as np import pandas as pd import scipy.stats import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.ticker as ticker import matplotlib.colors as colors from matplotlib.colors import hsv_to_rgb import seaborn as sns import scipy.cluster.hierarchy as hierarchy from cycler import cycler import copy from . import stats from . import map as qtl_map def setup_figure(aw=4.5, ah=3, xspace=[0.75,0.25], yspace=[0.75,0.25], colorbar=False, ds=0.15, cw=0.15, ct=0, ch=None): """ """ dl, dr = xspace db, dt = yspace fw = dl + aw + dr fh = db + ah + dt fig = plt.figure(facecolor=(1,1,1), figsize=(fw,fh)) ax = fig.add_axes([dl/fw, db/fh, aw/fw, ah/fh]) if not colorbar: return ax else: if ch is None: ch = ah/2 cax = fig.add_axes([(dl+aw+ds)/fw, (db+ah-ch-ct)/fh, cw/fw, ch/fh]) return ax, cax # if not box: # ax.spines['left'].set_position(('outward', 6)) # ax.spines['bottom'].set_position(('outward', 6)) # ax.spines['right'].set_visible(False) # ax.spines['top'].set_visible(False) # ax.tick_params(axis='both', which='both', direction='out', labelsize=fontsize) def get_axgrid(nr, nc, ntot=None, sharex=False, sharey=False, x_offset=6, y_offset=6, dl=0.5, aw=2, dx=0.75, dr=0.25, db=0.5, ah=2, dy=0.75, dt=0.25, colorbar=False, ds=0.15, cw=0.15, ct=0, ch=None, tri=None, fontsize=10, hide=['top', 'right']): """ """ if ntot is None: ntot = nr * nc fw = dl + nc*aw + (nc-1)*dx + dr fh = db + nr*ah + (nr-1)*dy + dt fig = plt.figure(figsize=(fw,fh)) axes = [] n = 0 if tri is None: si = lambda x: 0 elif tri == 'upper': si = lambda x: x for j in range(nr): for i in range(si(j), nc): if n<ntot: ax = fig.add_axes([(dl+i*(aw+dx))/fw, (db+(nr-j-1)*(ah+dy))/fh, aw/fw, ah/fh], facecolor='none', sharex=axes[0] if sharex and n>0 else None, sharey=axes[0] if sharey and n>0 else None) format_plot(ax, fontsize=fontsize, hide=hide, x_offset=x_offset, y_offset=y_offset) axes.append(ax) n += 1 if not colorbar: return axes else: if ch is None: ch = ah/2 cax = fig.add_axes([(dl+nc*aw+(nc-1)*dx+ds)/fw, (db+nr*ah+(nr-1)*dy-ch-ct)/fh, cw/fw, ch/fh]) # cax = fig.add_axes([(dl+aw+ds)/fw, (db+ah-ch-ct)/fh, cw/fw, ch/fh]) return axes, cax def format_plot(ax, tick_direction='out', tick_length=4, hide=['top', 'right'], hide_spines=True, lw=1, fontsize=10, equal_limits=False, x_offset=0, y_offset=0, vmin=None): # ax.autoscale(False) for i in ['left', 'bottom', 'right', 'top']: ax.spines[i].set_linewidth(lw) ax.tick_params(axis='both', which='both', direction=tick_direction, labelsize=fontsize) # set tick positions if 'top' in hide and 'bottom' in hide: ax.get_xaxis().set_ticks_position('none') elif 'top' in hide: ax.get_xaxis().set_ticks_position('bottom') elif 'bottom' in hide: ax.get_xaxis().set_ticks_position('top') else: ax.get_xaxis().set_ticks_position('both') if 'left' in hide and 'right' in hide: ax.get_yaxis().set_ticks_position('none') elif 'left' in hide: ax.get_yaxis().set_ticks_position('right') elif 'right' in hide: ax.get_yaxis().set_ticks_position('left') elif len(hide)==0: ax.get_xaxis().set_ticks_position('bottom') ax.get_yaxis().set_ticks_position('left') else: ax.get_yaxis().set_ticks_position('both') if hide_spines: for i in hide: ax.spines[i].set_visible(False) # adjust tick size for line in ax.xaxis.get_ticklines() + ax.yaxis.get_ticklines(): line.set_markersize(tick_length) line.set_markeredgewidth(lw) for line in (ax.xaxis.get_ticklines(minor=True) + ax.yaxis.get_ticklines(minor=True)): line.set_markersize(tick_length/2) line.set_markeredgewidth(lw/2) ax.spines['left'].set_position(('outward', y_offset)) ax.spines['bottom'].set_position(('outward', x_offset)) if equal_limits: xlim = ax.get_xlim() ylim = ax.get_ylim() lims = [
np.minimum(xlim[0], ylim[0])
numpy.minimum
import ctypes import numpy import os import time from scipy.linalg.blas import daxpy, saxpy import functools from numba import jit, prange, njit import sys n_axpby = numpy.frompyfunc(lambda x,y,a,b: a*x + b*y, 4,1) print ("current dir ", os.path.abspath(__file__)) N = 1048 if len(sys.argv) > 1: N = int(sys.argv[1]) shape = (N, N) A = numpy.float32(2.) B = numpy.float32(1.) numpy.random.seed(1) a = numpy.random.random(shape) b =
numpy.random.random(shape)
numpy.random.random
""" This class uses matrix least squares analysis for circular weighing measurement sequences For more information, see 'A General Approach to Comparisons in the Presence of Drift' Some outputs available within this class: - The design matrices, expected values, and variance-covariance matrix - Estimates of item differences and their standard deviations - Drift parameters and their standard deviations """ import numpy as np from ..log import log class CircWeigh(object): _sequences = {2: 5, 3: 4, 4: 3, 5: 3, 6: 3, 7: 3} # key: number of weight groups in weighing, value: number of cycles _driftorder = {'no drift': 0, 'linear drift': 1, 'quadratic drift': 2, 'cubic drift': 3} _orderdrift = {0: 'no drift', 1 : 'linear drift', 2 : 'quadratic drift', 3 : 'cubic drift'} def __init__(self, scheme_entry): """Initialises a circular weighing for a single weighing in the scheme Parameters ---------- scheme_entry : str the groups of weights to be weighed in order of weighing. groups of weights should be separated by a space; weights within a group should be separated by a + sign Examples ---------- e.g. scheme_entry = "1a 1b 1c 1d" for four individual weights For a 5, 3, 2, 1 sequence, the four scheme entries are: scheme_entry1 = "5 5s 3+2" scheme_entry2 = "3 2s+1s 2+1" scheme_entry3 = "2 2s 1+1s" scheme_entry4 = "1 1s 0.5+0.5s" """ self.wtgrps = scheme_entry.split() self.num_wtgrps = len(self.wtgrps) # q in paper self.num_cycles = (self._sequences[self.num_wtgrps]) self.num_readings = self.num_cycles*self.num_wtgrps # p in paper self.matrices = {} self.t_matrices = {} self.b = {} self.residuals = {} self.stdev = {} self.varcovar = {} self.driftcoeffs = {} self.grpdiffs = {} def generate_design_matrices(self, times): """Sets up design matrices for linear, quadratic and cubic drift Parameters ---------- times : list list of times for each measurement. Ideally these will be equally spaced in time. Could be [0, 1, 2, 3, ...] or could be from 'Timestamps' attr of dataset Returns ------- M1 : numpy array design matrix for linear drift M2 : numpy array design matrix for quadratic drift M3 : numpy array design matrix for cubic drift """ if len(times) < self.num_readings: # Fill time as simple ascending array, [0,1,2,3...] times = np.arange(self.num_readings) self.trend = 'reading' else: # Ensure that time is a numpy array object. times = np.array(times) self.trend = 'minute' # Prepare matrices for each order of drift correction id =
np.identity(self.num_wtgrps)
numpy.identity
import functools import io import random import unittest import attrdict import numpy as np from sqsgenerator.compat import have_mpi_support from sqsgenerator.core import default_shell_distances from sqsgenerator.adapters import to_ase_atoms, to_pymatgen_structure from sqsgenerator.io import read_settings_file from sqsgenerator.settings.defaults import ATOL, RTOL from sqsgenerator.settings.readers import read_atol, \ read_rtol, \ read_mode, \ read_which, \ read_structure, \ read_iterations, \ read_composition, \ read_pair_weights, \ read_shell_weights, \ read_shell_distances, \ read_target_objective, \ read_threads_per_rank, \ read_max_output_configurations, \ BadSettings, IterationMode, Structure, process_settings, build_structure def settings(recursive=True, **kwargs): return attrdict.AttrDict({**kwargs}, recursive=recursive) def test_function(test_f): def test_f_wrapper(**kwargs): return test_f(settings(**kwargs)) def _decorator(f): def _inner(self): return f(self, test_f_wrapper) return _inner return _decorator class TestSettingReaders(unittest.TestCase): def setUp(self) -> None: self.raw_dict = read_settings_file('resources/cs-cl.sqs.yaml') self.raw_dict_from_file = read_settings_file('resources/cs-cl.poscar.sqs.yaml') self.file_name = self.raw_dict_from_file.structure.file self.structure = read_structure(self.raw_dict) self.distances = default_shell_distances(self.structure, ATOL, RTOL) self.processed = process_settings(self.raw_dict) def assertStructureEquals(self, s1: Structure, s2: Structure, prec=3): self.assertEqual(s1.num_unique_species, s2.num_unique_species) self.assertTrue(np.allclose(s1.numbers, s2.numbers)) coords_close = np.allclose(np.round(s1.frac_coords, prec), np.round(s2.frac_coords, prec)) self.assertTrue(coords_close) def override_default(self, **kwargs): cp = attrdict.AttrDict(self.processed.copy()) cp.update(**kwargs) return cp @test_function(read_atol) def test_read_atol(self, f): self.assertAlmostEqual(f(), ATOL) self.assertAlmostEqual(f(atol=1.5), 1.5) with self.assertRaises(BadSettings): f(atol=-1) with self.assertRaises(BadSettings): f(atol="adsfasdf") @test_function(read_rtol) def test_read_rtol(self, f): self.assertAlmostEqual(f(), RTOL) self.assertAlmostEqual(f(rtol=1.5), 1.5) with self.assertRaises(BadSettings): f(rtol=-1) @test_function(read_mode) def test_read_mode(self, f): for mode, obj in IterationMode.names.items(): self.assertEqual(f(mode=mode), obj) self.assertEqual(f(mode=obj), obj) with self.assertRaises(BadSettings): f(mode='atol') self.assertEqual(f(), IterationMode.random) @test_function(read_iterations) def test_read_iterations(self, f): self.assertEqual(f(mode=IterationMode.random), 1e5) self.assertEqual(f(mode=IterationMode.systematic), -1) num_iterations = random.randint(1000, 10000) self.assertEqual(f(mode=IterationMode.systematic, iterations=num_iterations), num_iterations) self.assertEqual(f(mode=IterationMode.random, iterations=num_iterations), num_iterations) with self.assertRaises(BadSettings): # raise a TypeError in convert f(iterations=()) with self.assertRaises(BadSettings): # raise a ValueError in convert f(iterations="adsfasdf") with self.assertRaises(BadSettings): # raise a TypeError in convert f(iterations=-23) @test_function(read_max_output_configurations) def test_read_max_output_configurations(self, f): self.assertEqual(f(), 10) self.assertEqual(f(max_output_configurations=1000), 1000) self.assertEqual(f(max_output_configurations=1e3), 1000) with self.assertRaises(BadSettings): # raise a TypeError in convert f(max_output_configurations=()) with self.assertRaises(BadSettings): # raise a ValueError in convert f(max_output_configurations="adsfasdf") with self.assertRaises(BadSettings): # raise a TypeError in convert f(max_output_configurations=-23) @test_function(read_structure) def test_read_structure(self, f): self.assertStructureEquals(f(structure=self.structure), self.structure) self.assertStructureEquals(f(structure=self.structure), self.structure) self.assertStructureEquals(f(**self.raw_dict_from_file), self.structure) self.assertStructureEquals(f(structure=to_ase_atoms(self.structure)), self.structure) self.assertStructureEquals(f(structure=to_pymatgen_structure(self.structure)), self.structure) with self.assertRaises(BadSettings): f() with self.assertRaises(BadSettings): f(structure={'A': 1}) with self.assertRaises(BadSettings): # wrong supercell arguments shape = (2, 3) repetitions = np.prod(shape) structure_dictionary = self.structure.to_dict() structure_dictionary.update(supercell=(2, 3)) f(structure=structure_dictionary) with self.assertRaises(BadSettings): # completely wrong unknown data type f(structure=io.StringIO()) @test_function(read_composition) def test_read_composition(self, f): which = tuple(range(len(self.structure))) ff = functools.partial(f, structure=self.structure, which=which) with self.assertRaises(BadSettings): # raise a TypeError in convert ff(composition={}) with self.assertRaises(BadSettings): # raise a wrong number of total atoms ff(composition=dict(Fr=18, Lu=18)) with self.assertRaises(BadSettings): # correct number but less than one ff(composition=dict(Fr=54, Lu=0)) with self.assertRaises(BadSettings): # correct number but negative number ff(composition=dict(Fr=55, Lu=-1)) with self.assertRaises(BadSettings): # wrong species ff(composition=dict(Fr=27, Kf=27)) with self.assertRaises(BadSettings): # type error in atom number ff(composition=dict(Fr=27, Na='asdf')) with self.assertRaises(BadSettings): # too few atoms on sublattice f(structure=self.structure, composition=dict(Fr=0, Na=1), which=(0,)) with self.assertRaises(BadSettings): # wrong number of atoms on sublattice f(structure=self.structure, composition=dict(Fr=27, Kf=27), which=which) s = settings(structure=self.structure, composition=dict(Cs=27, Cl=27), which=which) read_composition(s) sublattice = [0,2,4,5,6,7,8,9] s = settings(structure=self.structure, composition=dict(H=4, He=4), which=sublattice) read_composition(s) @test_function(read_shell_distances) def test_read_shell_distances(self, f): atol = read_atol(settings()) rtol = read_rtol(settings()) default_which = read_which(settings(structure=self.structure)) default_composition = read_composition(settings(structure=self.structure, which=default_which)) distances = f( atol=atol, rtol=rtol, which=default_which, structure=self.structure, composition=default_composition ) np.testing.assert_array_almost_equal(distances, default_shell_distances(self.structure, atol, rtol)) with self.assertRaises(BadSettings): f(shell_distances=[0, -1, 2, 3, 4]) with self.assertRaises(BadSettings): f(shell_distances="Wrong type") with self.assertRaises(BadSettings): f(shell_distances=[0, 1, 2, 3, complex(1, 2)]) with self.assertRaises(BadSettings): f(shell_distances=[]) with self.assertRaises(BadSettings): f(shell_distances=[0.0]*2) custom_distances = [0, 1, 2, 4, 5] np.testing.assert_array_almost_equal(custom_distances, f(shell_distances=custom_distances)) custom_distances = [1, 2, 4, 5] np.testing.assert_array_almost_equal([0.0]+custom_distances, f(shell_distances=custom_distances)) @test_function(read_shell_weights) def test_read_shell_weights(self, f): atol = read_atol(settings()) rtol = read_rtol(settings()) default_which = read_which(settings(structure=self.structure)) default_composition = read_composition(settings(structure=self.structure, which=default_which)) distances = read_shell_distances( settings( atol=atol, rtol=rtol, which=default_which, structure=self.structure, composition=default_composition ) ) ff = functools.partial(f, shell_distances=distances) weights = f(shell_distances=distances) for i, w in weights.items(): self.assertAlmostEqual(w, 1.0/i) self.assertEqual(len(weights)+1, len(distances)) with self.assertRaises(BadSettings): ff(shell_weights={len(distances)+1: 1.0}) with self.assertRaises(BadSettings): ff(shell_weights={-1: 1.0}) with self.assertRaises(BadSettings): ff(shell_weights={}) with self.assertRaises(BadSettings): ff(shell_weights=[1.0]) shells = {1: 1.0} validated = ff(shell_weights=shells) self.assertDictEqual(shells, validated) @test_function(read_pair_weights) def test_read_pair_weights(self, f): ff = functools.partial(f, structure=self.structure) ns = self.structure.num_unique_species def make_actual_structure(settings): return build_structure(settings.composition, settings.structure[settings.which]) ns = make_actual_structure(self.processed).num_unique_species num_shells = len(self.processed.shell_weights) shape = (num_shells, ns, ns) with self.assertRaises(BadSettings): # right shape but non symmetric fake = np.arange(np.prod(shape)).reshape(shape) f(**self.override_default(pair_weights=fake)) with self.assertRaises(BadSettings): # wrong shape f(**self.override_default(pair_weights=np.zeros((num_shells+1, ns, ns)))) with self.assertRaises(BadSettings): # wrong number of dimensions f(**self.override_default(pair_weights=np.zeros((num_shells+1, ns, ns, ns)))) proper_value = np.ones(shape) np.testing.assert_array_almost_equal(f(**self.override_default(pair_weights=proper_value)), proper_value) @test_function(read_target_objective) def test_read_test_target_objective(self, f): default_which = read_which(settings(structure=self.structure)) default_composition = read_composition(settings(structure=self.structure, which=default_which)) ff = functools.partial( f, structure=self.structure, shell_distances=self.distances, which=default_which, composition=default_composition ) default_sw = read_shell_weights(settings(structure=self.structure, atol=ATOL, rtol=RTOL, shell_distances=self.distances)) ns = self.structure.num_unique_species def shape(sw : dict = default_sw): return (len(sw), ns, ns) max_num_shells = len(default_sw) for nshells in range(1, max_num_shells+1): sw = {i: 1.0/i for i in range(1, nshells+1)} self.assertEqual(ff(shell_weights=sw).shape, shape(sw)) targets = ff(shell_weights=sw, target_objective=1) self.assertEqual(targets.shape, shape(sw)) for shell, w in sw.items(): actual = targets[shell-1, :, :] should_be = np.ones_like(actual) np.testing.assert_array_almost_equal(actual, should_be) fff = functools.partial(ff, shell_weights=default_sw) with self.assertRaises(BadSettings): fff(target_objective="sadf") with self.assertRaises(BadSettings): fff(target_objective=np.arange(10)) with self.assertRaises(BadSettings): fff(target_objective=np.ones((2,2,2,2))) # test 3D array all_ones = np.ones(shape()) np.testing.assert_array_almost_equal(all_ones, fff(target_objective=all_ones)) with self.assertRaises(BadSettings): # test non symmetric sub-arrays fff(target_objective=np.arange(np.prod(shape())).reshape(shape())) with self.assertRaises(BadSettings): fff(target_objective=np.zeros((2, ns+1, ns))) # test 2D arrays all_ones = np.ones((ns, ns)) target_objective = fff(target_objective=all_ones) for shell in sorted(default_sw): np.testing.assert_array_almost_equal(target_objective[shell-1],
np.ones_like(all_ones)
numpy.ones_like
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data =
np.array([])
numpy.array
""" auralib module containing plotting functions and related stuff... Author: <NAME> Created: 20-Jan-2017 Last Mod: 20-Aug-2016 """ import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.widgets import MultiCursor import numpy as np def t2xy(d1, d2, d3, norm=True): c1 = np.array([0, 0]) c2 = np.array([1, 0]) c3 = np.array([0.5, 0.866]) d1 = np.array(d1) d2 = np.array(d2) d3 = np.array(d3) # apply normalization if norm: datasum = np.sum(np.vstack([d1, d2, d3]), axis=0) d1 = d1/datasum d2 = d2/datasum d3 = d3/datasum px = c1[0]*d1 + c2[0]*d2 + c3[0]*d3 py = c1[1]*d1 + c2[1]*d2 + c3[1]*d3 return px, py def tern(ax, lbls=['C1', 'C2', 'C3']): # Corner points of triangular axes c1 = np.array([0, 0]) c2 = np.array([1, 0]) c3 = np.array([0.5, 0.866]) # Draw axes and add labels axbg_patch = mpatches.Polygon(np.vstack([c1, c2, c3]), closed=True, fc='white', ec=None, zorder=1) ax.add_patch(axbg_patch) ax.plot([0, 1, 0.5, 0], [0, 0, 0.866, 0], 'k', lw=1.5, zorder=5) ax.text(c1[0], c1[1], lbls[0], ha='right', va='top', fontsize=14) ax.text(c2[0], c2[1], lbls[1], ha='left', va='top', fontsize=14) ax.text(c3[0], c3[1], lbls[2], ha='center', va='bottom', fontsize=14) # Draw gridlines for i in np.arange(0.1, 1, 0.1): l1 = [i, i] l2 = 1.0 - i lx, ly = t2xy(l1, [0, l2], [l2, 0]) ax.plot(lx, ly, ':', lw=1.0, color=u'0.4', zorder=2) ax.text(lx[-1]+0.01, ly[-1]-0.03, '%.2f' % i, ha='center', va='center', rotation=-60.0) l1 = [i, i] l2 = 1.0 - i lx, ly = t2xy([0, l2], l1, [l2, 0]) ax.plot(lx, ly, ':', lw=1.0, color=u'0.4', zorder=2) ax.text(lx[0]+0.005, ly[0]+0.03, '%.2f' % i, ha='left', va='center', rotation=60.0) l1 = [i, i] l2 = 1.0 - i lx, ly = t2xy([0, l2], [l2, 0], l1) ax.plot(lx, ly, ':', lw=1.0, color=u'0.4', zorder=2) ax.text(lx[-1]-0.01, ly[0], '%.2f' % i, ha='right', va='center') ax.set_xlim([-0.1, 1.1]) ax.set_ylim([-0.1, 0.966]) ax.set_aspect('equal') ax.set_axis_off() #ax.xaxis.set_visible(False) #ax.yaxis.set_visible(False) #ax.spines['top'].set_visible(False) #ax.spines['right'].set_visible(False) #ax.spines['bottom'].set_visible(False) #ax.spines['left'].set_visible(False) def tern_scatter(ax, d1, d2, d3, s=25, color=None, marker=None, cmap=None, lw=None, ec=None, alpha=1.0, label=None): # Transform points from XY -> C1, C2, C3 coordinate system px, py = t2xy(d1, d2, d3) # Plot points on pts = ax.scatter(px, py, s=s, c=color, marker=marker, cmap=cmap, lw=lw, edgecolor=ec, alpha=alpha, label=label, zorder=10) return pts def tern_line(ax, d1, d2, d3, c=None, lw=None, ls=None, label=None): # Transform points from XY -> C1, C2, C3 coordinate system px, py = t2xy(d1, d2, d3) # Plot points on hdl = ax.plot(px, py, c=c, lw=lw, ls=ls, label=label, zorder=10) return hdl def plot_blocky(ax, data, zdata, linespec='b-', lw=1): """ Convenience function for plotting a blocky log. Ensure that the zdata log has 1 more sample than the data log. """ for i in range(0, len(data)): ax.plot([data[i], data[i]], [zdata[i], zdata[i+1]], linespec, lw=lw) for i in range(1, len(data)): ax.plot([data[i-1], data[i]], [zdata[i], zdata[i]], linespec, lw=lw) def radar(ax, data, data_names, lw=1.0, color='k', ls='-', marker=None, label=None): """ function to produce a radar plot ax = axis handle of a polar axis to do plotting in data = 1D array or list of data values data_names = 1D list of data names """ # get number of values in data vector N = len(data) # append the first data value to the end of the list so we can make closed # polygonal regions for plotting and filling data = np.array(data) data = data.tolist() data.append(data[0]) # What will be the angle of each axis in the plot? # (we divide the plot / number of variable) angles = [n / float(N) * 2 * np.pi for n in range(N)] angles += angles[:1] # Draw one axe per variable + add labels labels yet plt.sca(ax) plt.xticks(angles[:-1], data_names) # Draw ylabels ax.set_rlabel_position(0) plt.yticks(color="grey", size=8) # Plot data ax.plot(angles, data, lw=lw, color=color, ls=ls, marker=marker, label=label) # Fill area ax.fill(angles, data, color=color, alpha=0.1) ax.grid(True, ls=':') def plot_filled_logs(ax, logs, z, fill_colors, labels, lw=1.0, alpha=0.3): """ Plot a series of logs using fill colors between each log. Designed to show a series of mineral fraction logs or fluid saturation logs """ import matplotlib as mpl nlogs = len(logs) # take the log fill colors, and make them darker to be used for the log # line colors. This will make them more prominent in the display log_colors = [] for color in fill_colors: rgb = mpl.colors.to_rgb(color) rgb = np.array(rgb) rgb = rgb*0.3 log_colors.append(rgb) # first plot the log fills logsum = 0 # cumulative log value for i in range(nlogs): curlog = logs[i] + logsum ax.fill_betweenx(z, curlog, logsum, where=curlog>=logsum, facecolor=fill_colors[i], alpha=alpha, label=labels[i]) logsum = logsum + logs[i] # next plot the log curves to visually separate the filled areas logsum = 0 # cumulative log value for i in range(nlogs): curlog = logs[i] + logsum ax.plot(curlog, z, c=log_colors[i], lw=lw, alpha=alpha) logsum = logsum + logs[i] def format_log_axes(axes, ylabel): """ Function to format a series of axes displaying simple log curves. """ for ax in axes: ax.xaxis.set_ticks_position('top') ax.xaxis.set_label_position('top') ax.grid(True, ls=':') for ax in axes[1:-1]: plt.setp(ax.get_yticklabels(), visible=False) axes[0].set_ylabel(ylabel) axes[-1].set_ylabel(ylabel) axes[-1].yaxis.set_ticks_position('right') axes[-1].yaxis.set_label_position('right')\ def make_wellview(ntrack=5, figsize=(5, 5)): """ Function for creating a blank, multi-track well viewer with a well header area, a well log header area for each track, and a well log data area. """ fig = plt.figure(num=1, figsize=figsize) fig.clf() nrow = 30 ncol = ntrack ttl = 0 hdr = 1 dat = 4 axd = [plt.subplot2grid((nrow, ncol), (dat, 0), rowspan=nrow-3)] axh = [plt.subplot2grid((nrow, ncol), (hdr, 0), rowspan=3, sharex=axd[0])] for i in range(1, ncol): axd.append(plt.subplot2grid((nrow, ncol), (dat, i), rowspan=nrow-2, sharey=axd[0])) axh.append(plt.subplot2grid((nrow, ncol), (hdr, i), rowspan=3, sharex=axd[i], sharey=axh[0])) axttl = plt.subplot2grid((nrow, ncol), (ttl, 0), colspan=ncol) for ax in fig.get_axes(): ax.tick_params(which='both', direction='in') curs = MultiCursor(fig.canvas, axd, vertOn=False, horizOn=True, lw=1, c=u'0.3') wview = {'fig': fig, 'axd': axd, 'axh': axh, 'axttl': axttl, 'curs': curs} return wview def plot_log(wview, tracknum, aura_log, fmtstr='%.1f', numlogs=1, logpos=1, xscale='normal'): """ Function to plot logs in a Well Viewer created using the aura.plot.make_wellvew() function. Input logs are required to be aura.well.AuraLog() objects. """ axd = wview['axd'] axh = wview['axh'] if xscale=='log': axd[tracknum].set_xscale('log') axh[tracknum].set_xscale('log') axd[tracknum].plot(aura_log.data, aura_log.zref, color=aura_log.c, lw=aura_log.lw) axd[tracknum].set_xlim(aura_log.plt_range) xlim = axd[tracknum].get_xlim() data_range = np.abs(xlim[1] - xlim[0]) if xscale == 'log': data_lim_offset0 = xlim[0] data_lim_offset1 = xlim[1] else: data_lim_offset0 = data_range*0.02 + xlim[0] data_lim_offset1 = -data_range*0.02 + xlim[1] axh[tracknum].plot([data_lim_offset0, data_lim_offset1], (logpos, logpos), c=aura_log.c, lw=aura_log.lw) bbox = dict(fc='white', ec='white', alpha=1.0, pad=0.5) axh[tracknum].text(data_lim_offset0, logpos, fmtstr % xlim[0], va='top', ha='left', color=aura_log.c, bbox=bbox, fontsize=aura_log.fs) axh[tracknum].text(data_lim_offset1, logpos, fmtstr % xlim[1], va='top', ha='right', color=aura_log.c, bbox=bbox, fontsize=aura_log.fs) if xscale=='log': xpos_logname = np.sqrt(np.cumsum(xlim)) else: xpos_logname = np.mean(xlim) if len(aura_log.units)>0: axh[tracknum].text(xpos_logname, logpos, aura_log.name+' ('+aura_log.units+')', va='bottom', ha='center', color=aura_log.c, fontsize=aura_log.fs) else: axh[tracknum].text(xpos_logname, logpos, aura_log.name, va='bottom', ha='center', color=aura_log.c, fontsize=aura_log.fs) axh[tracknum].set_ylim([0, numlogs+1]) axh[tracknum].set_xlim(xlim) def format_wellview(wview, ylabel='Depth', title_text='Title', ylim='none'): """ Once all well data are plotted in an aura wellviewer figure, call this function to make the well viewer figure look nice. """ fig = wview['fig'] axd = wview['axd'] axh = wview['axh'] axttl = wview['axttl'] axd[0].invert_yaxis() if ylim != 'none': axd[0].set_ylim(ylim) ntrack = len(axd) count = 1 for (axdi, axhi) in zip(axd, axh): axdi.grid(True, which='major', ls=':', lw=0.5) axdi.grid(True, which='minor', ls=':', lw=0.5) axdi.minorticks_on() axdi.xaxis.set_ticks_position('top') axdi.xaxis.set_label_position('top') [label.set_visible(False) for label in axdi.get_xticklabels()] axhi.set_facecolor('white') axhi.set_frame_on(True) axhi.grid(False) axhi.xaxis.set_visible(False) axhi.yaxis.set_visible(False) axdi.yaxis.set_ticks_position('both') if (count==1): axdi.set_ylabel(ylabel) elif count==ntrack: axdi.set_ylabel(ylabel) axdi.yaxis.set_ticks_position('right') axdi.yaxis.set_label_position('right') else: axdi.tick_params(labelright=True) [label.set_visible(False) for label in axdi.get_yticklabels()] count += 1 axttl.set_facecolor('#fcfcc4') axttl.set_frame_on(True) axttl.grid(False) axttl.xaxis.set_visible(False) axttl.yaxis.set_visible(False) axttl.text(0.5, 0.5, title_text, ha='center', va='center', weight='normal') axttl.set_xlim([0, 1]) axttl.set_ylim([0, 1]) fig.tight_layout(w_pad=0.00, h_pad=0.00) def add_van_krevelan_template(ax, lw=2, fs=14, c='k'): T1 = np.array([[ 3.89993785, 97.72755495], [ 4.27284027, 140.94126413], [ 3.89993785, 182.6648454 ], [ 3.89993785, 227.36868248], [ 3.89993785, 260.15149634], [ 3.89993785, 291.44418229], [ 4.27284027, 324.22699615], [ 4.27284027, 376.38147274], [ 4.27284027, 419.59518192], [ 4.27284027, 456.84837949], [ 5.39154755, 489.63119334], [ 5.01864512, 514.96336769], [ 6.13735239, 559.66720477], [ 7.25605966, 601.39078604], [ 7.62896209, 629.70321619], [ 8.00186451, 659.50577425], [ 10.61218148, 701.22935552], [ 12.84959602, 735.50229728], [ 15.08701057, 769.77523904], [ 16.95152268, 793.61728548], [ 20.68054692, 824.90997144], [ 23.29086389, 856.20265739], [ 25.90118086, 877.06444803], [ 28.1385954 , 897.92623867], [ 32.61342449, 921.76828511], [ 37.08825357, 941.13994785], [ 40.07147296, 962.00173848], [ 43.8004972 , 976.90301751]]) T2 = np.array([[ 8.37476694, 99.21768285], [ 8.37476694, 123.05972929], [ 8.00186451, 160.31292686], [ 8.00186451, 202.03650813], [ 8.74766936, 242.26996151], [ 8.37476694, 286.97379858], [ 8.37476694, 321.24674035], [ 8.37476694, 355.51968211], [ 9.12057178, 382.34198435], [ 10.61218148, 415.12479821], [ 13.22249845, 450.88786788], [ 16.95152268, 479.20029803], [ 20.68054692, 498.57196076], [ 24.78247359, 522.4140072 ], [ 28.1385954 , 543.27579784], [ 32.61342449, 567.11784428], [ 36.34244873, 583.50925121], [ 40.81727781, 601.39078604], [ 49.02113114, 620.76244878], [ 54.24176507, 635.6637278 ], [ 60.58110628, 652.05513473], [ 64.31013052, 660.99590215], [ 69.53076445, 666.95641376], [ 75.49720323, 675.89718117], [ 80.71783717, 680.36756488]]) T3 = np.array([[ 14.34120572, 39.61256675], [ 18.07022996, 56.00397367], [ 23.66376631, 67.9249969 ], [ 34.47793661, 78.35589221], [ 43.8004972 , 85.80653173], [ 51.25854568, 97.72755495], [ 59.83530143, 108.15845027], [ 67.29334991, 117.09921768], [ 74.37849596, 124.5498572 ], [ 83.32815413, 127.530113 ], [ 96.00683654, 137.96100832], [103.46488502, 142.43139203], [115.39776259, 145.41164783], [128.82224984, 152.86228735], [138.89061529, 158.82279896], [147.46737104, 163.29318266], [159.77315103, 167.76356637], [169.84151647, 172.23395008], [179.90988191, 173.72407798], [187.74083282, 178.19446169], [193.33436917, 181.1747175 ]]) L1 = np.array([[1.70913611e-01, 2.35936918e+00], [1.99673710e+02, 9.99254936e+02]]) L2 = np.array([[5.43816035e-01, 2.35936918e+00], [1.99673710e+02, 5.98410530e+02]]) ax.plot(T1[:, 0], T1[:, 1], color=c, lw=lw) ax.plot(T2[:, 0], T2[:, 1], color=c, lw=lw) ax.plot(T3[:, 0], T3[:, 1], color=c, lw=lw) ax.plot(L1[:, 0], L1[:, 1], color=c, ls='--', lw=lw) ax.plot(L2[:, 0], L2[:, 1], color=c, ls='--', lw=lw) ax.text(T1[-1, 0], T1[-1, 1], 'Type I', ha='left', va='center', fontsize=fs, color=c) ax.text(T2[-1, 0], T2[-1, 1], 'Type II', ha='left', va='center', fontsize=fs, color=c) ax.text(T3[-1, 0], T3[-1, 1], 'Type III', ha='right', va='bottom', fontsize=fs, color=c) ax.text(80, 35, 'Type IV', fontsize=fs, color=c) ax.text(110, 875, 'Oil', fontsize=fs, color=c) ax.text(157, 626, 'Mixed', fontsize=fs, color=c) ax.text(166, 382, 'Gas', fontsize=fs, color=c) def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues, fig=None, flip_text_color=False): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels if not title: if normalize: title = 'Normalized Confusion Matrix' else: title = 'Confusion Matrix, Without Normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) # Only use the labels that appear in the data classes = classes[unique_labels(y_true, y_pred)] if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized Confusion Matrix') else: print('Confusion Matrix, Without Normalization') print(cm) if not fig: fig = plt.figure(num=1) fig.clf() ax = fig.add_subplot(111) im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=
np.arange(cm.shape[0])
numpy.arange
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import pytest import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.neural_network import flexible_shape_utils from coremltools.models.utils import macos_version, is_macos np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: # check if shape has 0 valued dimension if np.prod(np_preds.shape) == 0 and np.prod(coreml_preds.shape) == 0: return True return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) try: prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) finally: # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not is_macos() or macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) self.assertEquals(len(input_dim), builder._get_rank('output')) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) for output_ in output_names: self.assertEqual(len(input_dim), builder._get_rank(output_)) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_linear_activation(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected) def test_padding_constant(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) builder.add_padding(name='pad', left=1, right=0, top=2, bottom=0, value=-1, input_name='data', output_name='output') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape( np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3], [-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_padding_replication(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name='pad', left=1, top=2, input_name='data', output_name='output', padding_type='replication') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_3(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_reshape_target_shape_4(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (1, 10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (1, 10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_bias_matrix_cpu(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_linear_activation_cpu(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=True) @unittest.skipIf(not is_macos() or macos_version() < LAYERS_10_15_MACOS_VERSION, 'macOS 10.15+ required. Skipping tests.') class NewLayersSimpleTest(CorrectnessTest): def test_shape_flexibility_range(self): input_features = [('data', datatypes.Array(*(3,4)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data', lower_bounds=[1,1], upper_bounds=[-1,5]) shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)] for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration(self, rank=4): default_shape = tuple(np.random.randint(1, 15, size=rank)) input_features = [('data', datatypes.Array(*default_shape))] builder = neural_network.NeuralNetworkBuilder( input_features=input_features, output_features=[('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec shapes = [tuple(np.random.randint(1, 15, size=rank)), tuple(np.random.randint(1, 15, size=rank))] flexible_shape_utils.add_multiarray_ndshape_enumeration( spec, feature_name='data', enumerated_shapes=shapes) shapes.append(default_shape) for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration_rank3(self): self.test_shape_flexibility_enumeration(rank=3) def test_shape_flexibility_enumeration_rank2(self): self.test_shape_flexibility_enumeration(rank=2) def test_transpose_cpu(self): for rank in range(1, 6): axes = np.random.permutation(rank) axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes] input_shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_transpose(name='TransposeND', axes=axes, input_name='data', output_name='output') x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.transpose(x, axes)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_dynamic_weight_conv(self): input_dim = (1, 3, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (4, 3, 3, 3) output_dim = (1, 4, 14, 14) kernel_channels = input_dim[0] output_channels, kernel_channels, height, width = weight_dim input_features = [ ('input', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='two_input_conv_layer', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, input_name=['input', 'weight'], output_name='output') # Assigning everything to ones should cover the execution path # and engine failures, but is not a complete check on numerics. input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'input': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected, useCPUOnly=True) self._test_model(builder.spec, feed_dict, expected, useCPUOnly=False) @pytest.mark.xfail def test_dynamic_weight_deconv(self): # Expect to fail in Core ML 3 input_dim = (1, 1, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (1, 1, 3, 3) output_dim = (1, 1, 18, 18) output_channels, kernel_channels, height, width = weight_dim input_features = [ ('data', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='deconv', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, is_deconv=True, input_name=['data', 'weight'], output_name='output') input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'data': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected) def test_batched_mat_mul_cpu(self, cpu_only=True): a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4), (1, 3, 1, 2, 3), (2, 3, 1, 3, 4)] b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5), (1, 4, 3, 2), (2, 1, 2, 4, 5)] out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5), (1, 3, 4, 2, 2), (2, 3, 2, 3, 5)] for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes): input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['A', 'B'], output_name='output', transpose_a=False, transpose_b=False) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input_ = {'A': a, 'B': b} expected = {'output': np.array(np.matmul(a, b))} shape_dict = {'output': outShape} self._test_model(builder.spec, input_, expected, useCPUOnly=cpu_only, output_name_shape_dict=shape_dict) self.assertEqual(len(outShape), builder._get_rank('output')) def test_batched_mat_mul_gpu(self): self.test_batched_mat_mul_cpu(cpu_only=False) def test_batched_mat_mul_with_transposes_cpu(self, cpu_only=True): for transpose_a, transpose_b in itertools.product([True, False], [True, False]): a_shape = (3, 4) b_shape = (4, 5) a_shape = a_shape[::-1] if transpose_a else a_shape b_shape = b_shape[::-1] if transpose_b else b_shape input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_batched_mat_mul( name='BatchedMatMul', input_names=['A', 'B'], output_name='output', transpose_a=transpose_a, transpose_b=transpose_b ) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) inputs = {'A': a, 'B': b} a = a.T if transpose_a else a b = b.T if transpose_b else b expected = {'output': np.matmul(a, b)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_batched_mat_mul_with_transposes_gpu(self): self.test_batched_mat_mul_with_transposes_cpu(cpu_only=False) def test_batched_mat_mul_single_input_cpu(self, model_precision=_MLMODEL_FULL_PRECISION, cpu_only=True): X1 = 11 X2 = 23 W = np.random.rand(X1, X2) bias = np.random.rand(X2) input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1), (2, 3, 1, 5, X1)] for input_shape in input_shapes: x = np.random.rand(*input_shape) np_out = np.matmul(x, W) + bias expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['data'], output_name='output', weight_matrix_rows=X1, weight_matrix_columns=X2, W=W, bias=bias) inputs = {'data': x} self._test_model( builder.spec, inputs, expected, model_precision=model_precision, useCPUOnly=cpu_only) def test_batched_mat_mul_single_input_half_precision_cpu(self): self.test_batched_mat_mul_single_input_cpu( model_precision=_MLMODEL_HALF_PRECISION, cpu_only=True) def test_batched_mat_mul_single_input_gpu(self): self.test_batched_mat_mul_single_input_cpu(model_precision=_MLMODEL_FULL_PRECISION, cpu_only=False) def test_embedding_nd_cpu( self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True): vocab_size = 10 embedding_size = 19 W = np.random.rand(embedding_size, vocab_size) input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1), (2, 3, 1, 5, 1)] for input_shape in input_shapes: x = np.random.randint(vocab_size, size=input_shape) np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0) expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_embedding_nd(name='embedding_nd', input_name='data', output_name='output', vocab_size=vocab_size, embedding_size=embedding_size, W=W) input = {'data': x.astype(np.float32)} self._test_model( builder.spec, input, expected, model_precision=model_precision, useCPUOnly=use_cpu_only) def test_embedding_nd_half_precision_cpu(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True) def test_embedding_nd_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False) def test_embedding_nd_half_precision_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False) def test_softmax_nan_bug_cpu(self): input_shape = [2,2] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] for axis in [0,1]: builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.array([[0.5, 0.5],[1e8, 1e8]]) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_softmax_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.random.rand(*input_shape) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_softmax_nd_gpu(self): self.test_softmax_nd_cpu(cpu_only=False) def test_concat_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_inputs = np.random.choice(range(2, 5)) output_shape = np.random.randint(low=2, high=5, size=rank) output_shape[axis] = 0 input_shapes = [] input_features = [] input_names = [] for _ in range(n_inputs): input_shapes.append(np.copy(output_shape)) input_shapes[-1][axis] = np.random.choice(range(2, 8)) output_shape[axis] += input_shapes[-1][axis] for i, input_dim in enumerate(input_shapes): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append((input_name, datatypes.Array(*input_dim))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) builder.add_concat_nd(name='concat_nd', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for input_dim in input_shapes: input_tensors.append(np.random.rand(*input_dim)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.concatenate(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_concat_nd_gpu(self): self.test_concat_nd_cpu(cpu_only=False) def test_fill_like_cpu(self, cpu_only=True): for rank in range(1, 6): target_shape = np.random.randint(low=2, high=6, size=rank) value = float(np.random.rand()) input_features = [('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_like(name='fill_like', input_name='tensor', output_name='output', value=value) tensor = np.random.rand(*target_shape) input = {'tensor': tensor} expected = {'output': np.zeros(target_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_fill_like_gpu(self): self.test_fill_like_cpu(cpu_only=False) def test_fill_static_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] value = float(np.random.rand()) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_static(name='fill_static', output_name='tmp', output_shape=list(shape), value=value) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.random.rand(*shape) input = {'data': data} expected = {'output': data + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(shape), builder._get_rank('output')) def test_fill_static_gpu(self): self.test_fill_static_cpu(cpu_only=False) def test_fill_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) value = float(np.random.rand()) input_features = [('shape', datatypes.Array(len(input_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic', input_name='shape', output_name='output', value=value) input = {'shape': np.array(input_shape, dtype='float')} expected = {'output': np.zeros(input_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_fill_dynamic_gpu(self): self.test_fill_dynamic_cpu(cpu_only=False) def test_broadcast_to_like_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_like(name='broadcast_to_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_broadcast_to_like_gpu(self): self.test_broadcast_to_like_cpu(cpu_only=False) def test_broadcast_to_static_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_static(name='broadcast_to_static', input_name='data', output_name='output', output_shape=list(target_shape)) data = np.random.rand(*input_shape) input = {'data': data} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_broadcast_to_static_gpu(self): self.test_broadcast_to_static_cpu(cpu_only=False) def test_broadcast_to_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_broadcast_to_dynamic_gpu(self): self.test_broadcast_to_dynamic_cpu(cpu_only=False) # Test Rank being set to unknown when one of the input rank is unknown # For max rank case def test_unknown_rank(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('x', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['x', 'shape'], output_name='y') condition = np.random.randint(0, 2, input_shape).astype(np.float32) builder.add_load_constant_nd(name='load_constant_condition', output_name='condition', constant_value=condition, shape=input_shape) builder.add_where_broadcastable(name='where', input_names=['condition', 'x', 'y'], output_name='output') self.assertEqual(builder._get_rank('output'), -1) def test_trigonometry_cpu(self, cpu_only=True): ops = ['sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh'] for op in ops: for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) x = np.random.rand(*shape) if op == 'sin': builder.add_sin(name=op, input_name='data', output_name='output') expected = {'output': np.sin(x)} elif op == 'cos': builder.add_cos(name=op, input_name='data', output_name='output') expected = {'output': np.cos(x)} elif op == 'tan': builder.add_tan(name=op, input_name='data', output_name='output') expected = {'output': np.tan(x)} elif op == 'asin': builder.add_asin(name=op, input_name='data', output_name='output') expected = {'output': np.arcsin(x)} elif op == 'acos': builder.add_acos(name=op, input_name='data', output_name='output') expected = {'output': np.arccos(x)} elif op == 'atan': builder.add_atan(name=op, input_name='data', output_name='output') expected = {'output': np.arctan(x)} elif op == 'sinh': builder.add_sinh(name=op, input_name='data', output_name='output') expected = {'output': np.sinh(x)} elif op == 'cosh': builder.add_cosh(name=op, input_name='data', output_name='output') expected = {'output': np.cosh(x)} elif op == 'tanh': builder.add_tanh(name=op, input_name='data', output_name='output') expected = {'output': np.tanh(x)} elif op == 'asinh': builder.add_asinh(name=op, input_name='data', output_name='output') expected = {'output': np.arcsinh(x)} elif op == 'acosh': x = np.random.choice([10, np.e, 1], tuple(shape)).astype(np.float32) builder.add_acosh(name=op, input_name='data', output_name='output') expected = {'output': np.arccosh(x)} elif op == 'atanh': builder.add_atanh(name=op, input_name='data', output_name='output') expected = {'output': np.arctanh(x)} self._test_model(builder.spec, {'data': x}, expected, useCPUOnly=cpu_only) def test_trigonometry_gpu(self): self.test_trigonometry_cpu(cpu_only=False) def test_exp2_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_exp2(name='exp2', input_name='data', output_name='output') x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.exp2(x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_exp2_gpu(self): self.test_exp2_cpu(cpu_only=False) def test_elementwise_binary_cpu(self, cpu_only=True): input_names = ['A', 'B'] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal', 'logical_and', 'logical_or', 'logical_xor', 'add', 'subtract', 'multiply', 'divide', 'power', 'maximum', 'minimum', 'floor_divide', 'mod'] for test_case in test_cases: for _ in range(10): rank_a = np.random.randint(low=1, high=6) rank_b = np.random.randint(low=1, high=6) rank_out = max(rank_a, rank_b) shape_a = np.random.randint(low=2, high=8, size=rank_a) shape_b = np.random.randint(low=2, high=8, size=rank_b) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_a: dims.append(shape_a[i]) if -i <= rank_b: dims.append(shape_b[i]) dim = np.random.choice(dims) if -i <= rank_a: shape_a[i] = np.random.choice([1, dim]) if -i <= rank_b: shape_b[i] = np.random.choice([1, dim]) input_shapes = [shape_a, shape_b] input_features = [('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1]))] builder = neural_network.NeuralNetworkBuilder(input_features, [ ('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output') elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output') elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True) elif test_case == 'logical_and': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='AND') elif test_case == 'logical_or': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='OR') elif test_case == 'logical_xor': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='XOR') elif test_case == 'add': builder.add_add_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'subtract': builder.add_subtract_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'multiply': builder.add_multiply_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'divide': builder.add_divide_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'power': builder.add_pow_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'maximum': builder.add_max_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'minimum': builder.add_min_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'floor_divide': builder.add_floor_div_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'mod': builder.add_mod_broadcastable(test_case, input_names=input_names, output_name='output') a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input = {'A': a, 'B': b} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_binary_gpu(self): self.test_elementwise_binary_cpu(cpu_only=False) def test_elementwise_boolean_unary_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal'] for test_case in test_cases: for shape in shapes: input_features = [('input', datatypes.Array(*shape))] b = np.random.rand() builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True, alpha=b) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True, alpha=b) a = np.random.rand(*shape) input = {'input': a} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_boolean_unary_gpu(self): self.test_elementwise_boolean_unary_cpu(cpu_only=False) def test_logical_not_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] for shape in shapes: input_features = [('input', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_logical('logical_not', input_names=input_names, output_name='output', mode='NOT') a = np.random.rand(*shape) input = {'input': a} expected = {'output': np.logical_not(a)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_logical_not_gpu(self): self.test_logical_not_cpu(cpu_only=False) def test_stack_cpu(self, cpu_only=True): for input_rank in range(1, 5): for axis in range(-input_rank - 1, input_rank + 1): n_inputs = np.random.choice(range(2, 5)) input_shape = np.random.randint(low=2, high=5, size=input_rank) input_features = [] input_names = [] for i in range(n_inputs): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append( (input_name, datatypes.Array(*input_shape))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_stack(name='stack', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for _ in range(n_inputs): input_tensors.append(np.random.rand(*input_shape)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.stack(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(input_rank + 1, builder._get_rank('output')) def test_stack_gpu(self): self.test_stack_cpu(cpu_only=False) def test_ceil_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_ceil(name='ceil', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.ceil(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_ceil_gpu(self): self.test_ceil_cpu(cpu_only=False) def test_floor_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_floor(name='floor', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.floor(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_floor_gpu(self): self.test_floor_cpu(cpu_only=False) def test_round_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_round(name='round', input_name='data', output_name='output') x = np.float32(np.random.rand(*shape) * np.random.randint(low=-100, high=101)) inputs = {'data': x} expected = {'output': np.around(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_round_gpu(self): self.test_round_cpu(cpu_only=False) def test_sign_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sign(name='sign', input_name='data', output_name='output') x = np.random.choice([-np.random.rand(1), 0.0, np.random.rand(1)], tuple(shape)).astype(np.float32) inputs = {'data': x} expected = {'output': np.sign(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_sign_gpu(self): self.test_sign_cpu(cpu_only=False) def test_clip_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] x = np.random.rand(*shape) min_value = np.percentile(x, 25) max_value = np.percentile(x, 75) input = {'data': x} builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_clip(name='clip', input_name='data', output_name='output', min_value=min_value, max_value=max_value) expected = {'output': np.clip(x, min_value, max_value)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_clip_gpu(self): self.test_clip_cpu(cpu_only=False) def test_split_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes = [] output_features = [] output_names = [] almost_equal = random.choice([True, False]) remainder = np.random.choice( range(1, n_outputs)) if almost_equal else 0 value = np.random.choice(range(2, 5)) for k in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][ axis] = value + 1 if k < remainder else value input_shape[axis] += output_shapes[-1][axis] for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, num_splits=n_outputs) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip( output_names, np.array_split(x, n_outputs, axis=axis) if almost_equal else np.split(x, n_outputs, axis=axis) ) ) # Explicitly trying to compare against both versions of numpy split self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_gpu(self): self.test_split_nd_cpu(cpu_only=False) def test_split_nd_with_split_sizes_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes, output_features, output_names = [], [], [] sections, split_sizes = [], [] for _ in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][axis] = np.random.choice(range(2, 5)) input_shape[axis] += output_shapes[-1][axis] sections.append(input_shape[axis]) split_sizes.append(output_shapes[-1][axis]) sections.pop() for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, split_sizes=split_sizes) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip(output_names, np.split(x, sections, axis=axis))) self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_with_split_sizes_gpu(self): self.test_split_nd_with_split_sizes_cpu(cpu_only=False) def test_slice_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(200): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_slice_static('slice_static', 'data', 'output', begin_ids=begin_ids, end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) x = np.random.rand(*input_shape) inputs = {'data': x} expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_static_gpu(self): self.test_slice_static_cpu(cpu_only=False) def test_slice_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) # test different number of inputs, from 2 inputs up to 6 inputs # when num_inputs == 2, begin_ids are inputs, rest are read from parameters # when num_inputs == 6, all read from inputs, none are read from parameters for num_inputs in [2, 3, 4, 5, 6]: x = np.random.rand(*input_shape) input_features = [('data', datatypes.Array(*input_shape))] input_names = ['data'] inputs = dict() inputs['data'] = x if num_inputs == 2: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids)))] input_names = ['data', 'begin_ids'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) elif num_inputs == 3: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids)))] input_names = ['data', 'begin_ids', 'end_ids'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) elif num_inputs == 4: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) elif num_inputs == 5: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides))), ('begin_masks', datatypes.Array(len(begin_masks)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32) elif num_inputs == 6: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides))), ('begin_masks', datatypes.Array(len(begin_masks))), ('end_masks', datatypes.Array(len(end_masks)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks', 'end_masks'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32) inputs['end_masks'] = np.array(end_masks, dtype=np.int32) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) if num_inputs == 2: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 3: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', strides=strides, begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 4: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 5: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', end_masks=end_masks) elif num_inputs == 6: builder.add_slice_dynamic('slice_dynamic', input_names, 'output') expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_dynamic_gpu(self): self.test_slice_dynamic_cpu(cpu_only=False) def test_tile_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=5, size=rank) for rep_rank in range(1,rank+1): reps = list(np.random.randint(low=1, high=9, size=rep_rank)) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_tile('Tile', 'data', 'output', reps) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.tile(x, reps)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_tile_gpu(self): self.test_tile_cpu(cpu_only=False) def test_sliding_windows_cpu(self, cpu_only=True): def numpy_sliding_windows(a, np_axis, np_size, np_step): n = (a.shape[np_axis] - np_size) // np_step + 1 shape = list(a.shape) shape[np_axis] = n if np_axis < 0: np_axis += len(shape) shape.insert(np_axis + 1, np_size) strides = list(a.strides) effstride = strides[np_axis] * np_step strides.insert(np_axis, effstride) return np.lib.stride_tricks.as_strided(a, shape, strides) for rank in range(1, 5): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) output_shape = list(input_shape) window_size = np.random.randint(low=1, high=input_shape[axis]) length = 0 while length <= 0: step = np.random.randint(low=1, high=input_shape[axis]) length = (input_shape[axis] - window_size) // step + 1 output_shape[axis] = length pos_axis = axis if axis >= 0 else axis + rank output_shape.insert(pos_axis + 1, window_size) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sliding_windows('sliding_windows', input_name='data', output_name='output', axis=axis, window_size=window_size, step=step) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': numpy_sliding_windows(x, axis, window_size, step)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(rank+1, builder._get_rank('output')) def test_sliding_windows_gpu(self): self.test_sliding_windows_cpu(cpu_only=False) def test_range_static_cpu(self, cpu_only=True): params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2), (5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)] for param in params: start, end, step = param input_features = [('multiplicative_input', datatypes.Array(1))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_range_static('range_static', 'output_range', end=end, start=start, step=step) builder.add_multiply_broadcastable( name='multiply_broadcastable', input_names=['multiplicative_input', 'output_range'], output_name='output') # save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) inputs = dict() inputs['multiplicative_input'] = np.ones((1,), dtype=np.float64) expected = {'output': np.arange(start, end, step)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(1, builder._get_rank('output')) def test_range_static_gpu(self): self.test_range_static_cpu(cpu_only=False) def test_range_dynamic_cpu(self, cpu_only=True): params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2), (5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)] # input size == 1: end is input, start and step are read from parameters # input size == 2: end, start are inputs, step is read from parameters # input size == 3: start, end, step are all inputs, none of the parameters are used. for num_inputs in [1, 2, 3]: for param in params: inputs = dict() start, end, step = param if num_inputs == 1: input_features = [('end', datatypes.Array(1))] elif num_inputs == 2: input_features = [('end', datatypes.Array(1)), ('start', datatypes.Array(1))] elif num_inputs == 3: input_features = [('end', datatypes.Array(1)), ('start', datatypes.Array(1)), ('step', datatypes.Array(1))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) if num_inputs == 1: inputs['end'] = end * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end'], start=start, step=step) elif num_inputs == 2: inputs['end'] = end * np.ones((1,), dtype=np.float64) inputs['start'] = start * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end', 'start'], step=step) elif num_inputs == 3: inputs['end'] = end * np.ones((1,), dtype=np.float64) inputs['start'] = start * np.ones((1,), dtype=np.float64) inputs['step'] = step * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end', 'start', 'step']) expected = {'output': np.arange(start, end, step)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(1, builder._get_rank('output')) def test_range_dynamic_gpu(self): self.test_range_dynamic_cpu(cpu_only=False) def test_linear_activation_different_ranks_cpu(self, cpu_only=True): for input_dim in [(10, 15), (10, 15, 2, 3), (10, 2, 4, 15, 1, 4), (6,)]: input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_linear_activation_different_ranks_gpu(self): self.test_linear_activation_different_ranks_cpu(cpu_only=False) def test_topk_cpu(self, cpu_only=True): test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)] K = [3, 5] axes = [[0], [0, 1], [1, 2], [0, 3, 1], [1, 3, 4]] for ii, input_shape in enumerate(test_input_shapes): for k in K: for n_inputs in [1, 2]: for bottom_k_flag in [False, True]: for axis in axes[ii]: for negative_axis in [False, True]: if negative_axis: axis = axis - len(input_shape) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('values', None), ('indices', None)] input_names = ['data'] output_names = ['values', 'indices'] if n_inputs == 2: input_names.append('k_in') input_features.append(('k_in', datatypes.Array(1))) builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_topk('topk', input_names, output_names, axis=axis, use_bottom_k=bottom_k_flag) else: builder.add_topk('topk', input_names, output_names, k=k, axis=axis, use_bottom_k=bottom_k_flag) data = np.random.randint(low=0, high=int(np.prod(input_shape)), size=input_shape) data = data.astype(np.float32) input = {'data': data} if n_inputs == 2: input['k_in'] = k * np.ones([1], dtype=np.float32) # numpy reference values if bottom_k_flag: ref_indices = np.argsort(data, axis=axis) else: ref_indices = np.argsort(-data, axis=axis) slc = [slice(None)] * len(input_shape) slc[axis] = slice(0, k) ref_indices = ref_indices[tuple(slc)] ref_values = np.take_along_axis(data, ref_indices, axis=axis) expected = {'values': ref_values, 'indices': ref_indices} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_topk_gpu(self): self.test_topk_cpu(cpu_only=False) def test_const_pad_cpu(self, cpu_only=True): def get_reference(data, pads, value): with tf.Graph().as_default(), tf.Session() as sess: x = tf.placeholder(tf.float32, shape=data.shape) p = tf.placeholder(tf.int32, shape=pads.shape) y = tf.pad(x, p, mode='CONSTANT', constant_values=value) return sess.run(y, feed_dict={x: data, p: pads}) value = 34.0 shapes = [(3,), (4, 5), (2, 4, 5), (12, 6, 3, 5, 7), (1, 24, 2, 4, 8)] ctr = 0 for shape in shapes: rank = len(shape) for force_zeros_in_end in [0, 2, 6]: for max_pad_value in range(1, 6): for n_inputs in [1, 2]: pads = np.random.randint(low=0, high=max_pad_value, size=(rank, 2)) if force_zeros_in_end > 2 * rank: continue # pads = np.reshape(np.array([1,1,1,0,0,1]), (rank, 2)) if force_zeros_in_end != 0: pads[-force_zeros_in_end:] = 0 data = np.random.rand(*shape) reference = get_reference(data, pads, value) ctr += 1 input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] input_names = ['data'] if n_inputs == 2: input_names.append('pads') input_features.append(('pads', datatypes.Array(2*rank,))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_constant_pad('pad', input_names, 'output', value=value) else: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_amounts=pads.flatten()) input = {'data': data} if n_inputs == 2: input['pads'] = pads.flatten().astype(np.float) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_const_pad_gpu(self): self.test_const_pad_cpu(cpu_only=False) def test_const_pad_mode2_cpu(self, cpu_only=True): def get_reference(data, output_shape, value, left_pad=False): with tf.Graph().as_default(), tf.Session() as sess: x = tf.placeholder(tf.float32, shape=data.shape) p = tf.placeholder(tf.int32, shape=(len(output_shape), 2)) y = tf.pad(x, p, mode='CONSTANT', constant_values=value) pads = np.zeros((len(output_shape), 2)) if left_pad: pads[:, 0] = np.array(output_shape) - np.array(data.shape) else: pads[:, 1] = np.array(output_shape) - np.array(data.shape) return sess.run(y, feed_dict={x: data, p: pads}) value = 34.0 shapes = [(3,), (4, 5), (2, 4, 5), (12, 6, 3, 5, 7), (1, 24, 2, 4, 8)] out_shapes = [(5,), (4, 8), (2, 4, 10), (20, 6, 7, 10, 7), (5, 24, 10, 4, 10)] ctr = 0 for ii, shape in enumerate(shapes): rank = len(shape) for left_pad in [True, False]: for n_inputs in [1, 2]: data = np.random.rand(*shape) reference = get_reference(data, out_shapes[ii], value, left_pad) pads = np.zeros((rank, 2)) tmp = np.zeros((rank)) for i in range(rank): if out_shapes[ii][i] == shape[i]: tmp[i] = 0 else: tmp[i] = out_shapes[ii][i] if left_pad: pads[:, 0] = tmp else: pads[:, 1] = tmp ctr += 1 input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] input_names = ['data'] if n_inputs == 2: input_names.append('pads') input_features.append(('pads', datatypes.Array(2*rank,))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_to_given_output_size_mode=True) else: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_amounts=pads.flatten(), pad_to_given_output_size_mode=True) input = {'data': data} if n_inputs == 2: input['pads'] = pads.flatten().astype(np.float) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_const_pad_mode2_gpu(self): self.test_const_pad_mode2_cpu(cpu_only=False) def test_nms_cpu(self, cpu_only=True): def _compute_iou_matrix(boxes): # input is (N,4), in order [center_w, center_h, width, height] assert len(boxes.shape) == 2 assert boxes.shape[1] == 4 boxes = boxes.astype(np.float) center_w, center_h, width, height = np.split(boxes, 4, axis=1) # outs are all (N,1) top = center_h + 0.5 * height bottom = center_h - 0.5 * height left = center_w - 0.5 * width right = center_w + 0.5 * width area = width * height hB = np.minimum(top, np.transpose(top)) wB = np.minimum(right, np.transpose(right)) hA = np.maximum(bottom, np.transpose(bottom)) wA = np.maximum(left, np.transpose(left)) intersection_area = np.maximum(0, hB - hA) * np.maximum(0, wB - wA) union_area = area + np.transpose(area) - intersection_area iou = intersection_area / union_area return iou def _nms_TF(boxes, scores, iou_threshold, score_threshold, per_class_suppression, M): # boxes is (B,N,4), in order [center_w, center_h, width, height] # scores is (B,N,C) # output shapes: (B,M,4), (B,M,C), (B,M), (B,) ''' this is implementation of CoreML's NMS layer ''' B, N, C = scores.shape iou_threshold = iou_threshold.astype(np.float32) score_threshold = score_threshold.astype(np.float32) # convert box ids to TF style center_w, center_h, width, height = np.split(boxes, 4, axis=-1) # outs are all (B,N,1) y1 = center_h - 0.5 * height y2 = center_h + 0.5 * height x1 = center_w - 0.5 * width x2 = center_w + 0.5 * width boxes_tf = np.concatenate((y1, x1, y2, x2), axis=-1) # (B,N,4) out1 = np.zeros((B, M, 4)) out2 = np.zeros((B, M, C)) out3 = -1 * np.ones((B, M)) out4 = np.zeros((B,)) for b in range(B): box_coord_matrix = boxes_tf[b, :, :] # (N,4) score_vector = np.max(scores[b, :, :], axis=-1) # (N,) if not per_class_suppression: # this is the simple case as TF directly supports it with tf.Graph().as_default(), tf.Session() as sess: box_coord_matrix_pl = tf.placeholder(tf.float32, shape=box_coord_matrix.shape) score_vector_pl = tf.placeholder(tf.float32, shape=score_vector.shape) ids_g = tf.image.non_max_suppression(box_coord_matrix_pl, score_vector_pl, max_output_size=M, iou_threshold=iou_threshold, score_threshold=score_threshold) ids = sess.run(ids_g, feed_dict={box_coord_matrix_pl: box_coord_matrix, score_vector_pl: score_vector}) else: # this is slightly complicated as TF does not directly support it class_ids = np.argmax(scores[b, :, :], axis=-1) # (N,) sorted_score_ids = np.argsort(-score_vector) box_coord_matrix2 = np.take(box_coord_matrix, sorted_score_ids, axis=0) score_vector2 = np.take(score_vector, sorted_score_ids) class_ids = np.take(class_ids, sorted_score_ids) classes_seen = dict() ids_intermediate = np.array([], dtype=np.int) for n in range(N): if class_ids[n] in classes_seen: continue c = class_ids[n] classes_seen[c] = True current_class_ids = np.where(class_ids == c)[0] if len(current_class_ids) > 0: feed_in1 = np.take(box_coord_matrix2, current_class_ids, axis=0) feed_in2 = np.take(score_vector2, current_class_ids) with tf.Graph().as_default(), tf.Session() as sess: box_coord_matrix_pl = tf.placeholder(tf.float32, shape=feed_in1.shape) score_vector_pl = tf.placeholder(tf.float32, shape=feed_in2.shape) cur_ids_g = tf.image.non_max_suppression(box_coord_matrix_pl, score_vector_pl, max_output_size=M, iou_threshold=iou_threshold, score_threshold=score_threshold) cur_ids = sess.run(cur_ids_g, feed_dict={box_coord_matrix_pl: feed_in1, score_vector_pl: feed_in2}) from_sort_ids = np.take(current_class_ids, cur_ids) ids_intermediate = np.append(ids_intermediate, from_sort_ids) ids_intermediate.sort() ids = np.take(sorted_score_ids, ids_intermediate) xx = len(ids) if xx == 0: ids = np.array([np.argmax(score_vector)]) xx = 1 if xx > M: ids = ids[:M] xx = len(ids) out1[b, :xx, :] = np.take(boxes[b, :, :], ids, axis=0) out2[b, :xx, :] = np.take(scores[b, :, :], ids, axis=0) out3[b, :xx] = ids out4[b] = xx return out1, out2, out3, out4 iou_threshold_percentile = [0, 30, 80, 100] score_threshold_percentile_arr = [0, 40, 100] N_M_pairs_to_test = [[100, 48], [100, 112]] # N : boxes in, M: max boxes out number_of_test = 0 for N_M in N_M_pairs_to_test: for B in [1, 5]: for C in [1, 7]: N, M = N_M boxes = np.random.rand(B, N, 4) scores = np.random.rand(B, N, C) iou_matrix = _compute_iou_matrix(boxes[0, :, :]) # (N,N) iou_matrix = iou_matrix[~np.eye(iou_matrix.shape[0], dtype=bool)].reshape(iou_matrix.shape[0], -1) for per_class_suppression in [False, True]: for iou_thresh in iou_threshold_percentile: for score_thresh in score_threshold_percentile_arr: for is_dynamic in [False, True]: if score_thresh == 0: score_threshold = np.min(scores) - 1 elif score_thresh == 100: score_threshold = np.max(scores) + 1 else: score_threshold = np.percentile(scores, score_thresh) + .01 if iou_thresh == 0: iou_threshold = np.maximum(np.min(iou_matrix) - .01, 0.0) else: iou_threshold = np.percentile(iou_matrix, iou_thresh) + .01 number_of_test += 1 tf_boxes, tf_scores, tf_ids, tf_num_boxes = _nms_TF(boxes, scores, iou_threshold, score_threshold, per_class_suppression, M) expected = dict() expected['selected_boxes'] = tf_boxes expected['selected_scores'] = tf_scores expected['selected_box_ids'] = tf_ids expected['number_of_boxes'] = tf_num_boxes # define CoreML model input_features = [('boxes', datatypes.Array(B,N,4)), ('scores', datatypes.Array(B,N,C))] output_features = [('selected_boxes', None), ('selected_scores', None), ('selected_box_ids', None), ('number_of_boxes', None)] input_names = ['boxes', 'scores'] if is_dynamic: input_names.extend(['iou_threshold', 'score_threshold', 'max_boxes']) input_features.append(('iou_threshold', datatypes.Array(1, ))) input_features.append(('score_threshold', datatypes.Array(1, ))) input_features.append(('max_boxes', datatypes.Array(1, ))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) input_dict = dict() input_dict['boxes'] = boxes input_dict['scores'] = scores if is_dynamic: builder.add_nms('nms', input_names, ['selected_boxes', 'selected_scores', 'selected_box_ids','number_of_boxes'], per_class_suppression=per_class_suppression) input_dict['iou_threshold'] = iou_threshold * np.ones([1], dtype=np.float) input_dict['score_threshold'] = score_threshold * np.ones([1], dtype=np.float) input_dict['max_boxes'] = M * np.ones([1], dtype=np.float) else: builder.add_nms('nms', input_names, ['selected_boxes', 'selected_scores', 'selected_box_ids','number_of_boxes'], iou_threshold=iou_threshold, score_threshold=score_threshold, max_boxes=M, per_class_suppression=per_class_suppression) self._test_model(builder.spec, input_dict, expected, useCPUOnly=cpu_only) def test_nms_gpu(self): self.test_nms_cpu(cpu_only=False) def test_rank_preserving_reshape(self): input_shapes = [(20, 10), (20, 10, 5), (10, 3, 5)] target_shapes = [(5, -1), (0, 2, 25), (25, 0, -1)] output_shapes = [(5, 40), (20, 2, 25), (25, 3, 2)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_rank_preserving_reshape( name='rank_preserving_reshape', input_name='data', output_name='output', output_shape=target_shapes[i]) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_expand_dims(self): input_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (10,)] axes = [(0, 1), (0, 2), (2, 0), (-2, -1), (1, 0, -2)] output_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (1, 10, 1, 5), (10, 5, 1, 1), (1, 1, 1, 10)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_expand_dims( name='expand_dims', input_name='data', output_name='output', axes=axes[i] ) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_squeeze(self): input_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7)] axes = [(0, 1), (0, 2), (-2, -1), (-1, -2), (0,), (3, -2), (1,)] output_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (1,), (10, 5), (3, 7)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_squeeze(name='squeeze_layer', input_name='data', output_name='output', axes=list(axes[i])) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_squeeze_all(self): input_shapes = [ (1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7), (3,), (5, 6) ] for input_shape in input_shapes: input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_squeeze(name='squeeze_layer', input_name='data', output_name='output', squeeze_all=True) x = np.random.rand(*input_shape) input = {'data': x} reference = np.squeeze(x) if not reference.shape: reference = np.reshape(reference, (1,)) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(-1, builder._get_rank('output')) def test_argmax_argmin(self): test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)] # (1+2+3+4+5) * 2^3 = 120 test cases for input_shape in test_input_shapes: for negative_axis in [False, True]: for mode in ['argmax', 'argmin']: for keep_dims in [True, False]: for axis in np.arange(len(input_shape)): if negative_axis: axis_val = axis - len(input_shape) else: axis_val = axis input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) x = np.random.rand(*input_shape) if mode == 'argmax': builder.add_argmax('argmax', 'data', 'output', axis=axis_val, keepdims=keep_dims) np_out = np.argmax(x, axis=axis_val) else: builder.add_argmin('argmin', 'data', 'output', axis=axis_val, keepdims=keep_dims) np_out = np.argmin(x, axis=axis_val) if keep_dims: np_out = np.expand_dims(np_out, axis=axis_val) elif len(input_shape) == 1: np_out = np.expand_dims(np_out, axis=axis_val) input = {'data': x} expected = {'output': np_out} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(np_out.shape), builder._get_rank('output')) def test_get_shape(self): dims = [1, 2, 3, 4, 5] for rank in range(1, len(dims) + 1): input_shape = dims[:rank] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_get_shape(name='get_shape_layer', input_name='data', output_name='output') feed = {'data': np.random.rand(*input_shape)} expected = {'output': np.array(input_shape)} self._test_model(builder.spec, feed, expected, useCPUOnly=True) self.assertEqual(1, builder._get_rank('output')) def test_load_constant_nd(self): dims = [2, 3, 4, 5, 6] for rank in range(1, len(dims) + 1): input_shape = dims[:rank] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_load_constant_nd('load_const_nd_layer', 'tmp', constant_value=np.ones(input_shape), shape=input_shape) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') feed = {'data': np.random.rand(*input_shape)} expected = {'output': feed['data'] + 1} self._test_model(builder.spec, feed, expected, useCPUOnly=True) self.assertEqual(rank, builder._get_rank('output')) @unittest.skip('fix') def test_simple_array_alloc_scatter(self): alloc_shape = [2, 3, 4] value_shape = [1, 3, 4] input_features = [('alloc_shape', datatypes.Array(len(alloc_shape))), ('value', datatypes.Array(*value_shape)), ('index', datatypes.Array(1))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic_layer', input_name='alloc_shape', output_name='array', value=np.float(0.0)) # CoreML input order: container (array), indices, slices (value) builder.add_scatter(name='scatter_layer', input_names=['array', 'index', 'value'], output_name='output') value = np.random.rand(*value_shape).astype('float') feed = {'alloc_shape': np.array(alloc_shape, dtype='float'), 'value': value, 'index': np.array([1], dtype='float')} ref = np.zeros(alloc_shape) ref[1, :, :] = value expected = {'output': ref} self._test_model(builder.spec, feed, expected, useCPUOnly=True) def test_erf_activation_cpu(self, cpu_only=True): input_features = [('data', datatypes.Array(10, 45))] output_features = [('output', datatypes.Array(10, 45))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_erf(name='erf', input_name='data', output_name='output') x = np.random.rand(10, 45) input = {'data': x} expected = { 'output': np.asarray([math.erf(i) for i in x.flatten().tolist()]).reshape(10, 45) } self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_erf_activation_gpu(self): self.test_erf_activation_cpu(cpu_only=False) def test_gelu_activation(self): for mode in ['EXACT', 'TANH_APPROXIMATION', 'SIGMOID_APPROXIMATION']: for rank in range(1, 6): shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_gelu(name='gelu', input_name='data', output_name='output', mode=mode) x = np.random.rand(*shape) input = {'data': x} exact = np.asarray([0.5 * i * (1.0 + math.erf(i / math.sqrt(2))) for i in x.flatten().tolist()]).reshape(*shape) expected = {'output': exact} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_lower_triangular_cpu(self, cpu_only=True): for rank in range(2, 6): for k in range(-3, 4): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_lower_triangular('tril', 'data', 'output', k=k) x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.tril(x, k=k)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_lower_triangular_gpu(self): self.test_lower_triangular_cpu(cpu_only=False) def test_upper_triangular_cpu(self, cpu_only=True): for rank in range(2, 6): for k in range(-3, 4): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_upper_triangular('triu', 'data', 'output', k=k) x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.triu(x, k=k)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_upper_triangular_gpu(self): self.test_upper_triangular_cpu(cpu_only=False) def test_where_broadcastable_cpu(self, cpu_only=True): for _ in range(150): rank_cond = np.random.randint(low=1, high=6) rank_true = np.random.randint(low=1, high=6) rank_false = np.random.randint(low=1, high=6) rank_out = max(rank_cond, rank_true, rank_false) shape_cond = np.random.randint(low=2, high=8, size=rank_cond) shape_true = np.random.randint(low=2, high=8, size=rank_true) shape_false = np.random.randint(low=2, high=8, size=rank_false) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_cond: dims.append(shape_cond[i]) if -i <= rank_true: dims.append(shape_true[i]) if -i <= rank_false: dims.append(shape_false[i]) dim = np.random.choice(dims) if -i <= rank_cond: shape_cond[i] = np.random.choice([1, dim]) if -i <= rank_true: shape_true[i] = np.random.choice([1, dim]) if -i <= rank_false: shape_false[i] = np.random.choice([1, dim]) input_features = [ ('cond', datatypes.Array(*shape_cond)), ('true', datatypes.Array(*shape_true)), ('false', datatypes.Array(*shape_false)) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_where_broadcastable('if_broadcastable', input_names=['cond', 'true', 'false'], output_name='output') cond = np.random.choice([1.0, 0.0], size=shape_cond) true = np.random.rand(*shape_true) false = np.random.rand(*shape_false) input = {'cond': cond, 'true': true, 'false': false} expected = {'output': np.where(cond, true, false)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(expected['output'].shape), builder._get_rank('output')) def test_where_broadcastable_gpu(self): self.test_where_broadcastable_cpu(cpu_only=False) def test_random_normal_like_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(5, -1, -1): if rank > 0: low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) else: # one extra test to test more moments shape = np.array([10, 10, 10, 10, 10000]) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_like(name='random_normal_like', input_name='tensor', output_name='output', mean=mean, stddev=stddev, seed=seed) inputs = {'tensor': np.random.rand(*shape)} expected = {'output': np.random.normal(mean, stddev, shape)} if rank > 0: CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) else: # one extra test to test more moments CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=6) def test_random_normal_like_gpu(self): self.test_random_normal_like_cpu(cpu_only=False) def test_random_normal_static_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_static(name='random_normal_static', output_name='tmp', output_shape=list(shape), mean=mean, stddev=stddev, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.normal(mean, stddev, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_normal_static_gpu(self): self.test_random_normal_static_cpu(cpu_only=False) def test_random_normal_dynamic_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_dynamic(name='random_normal_dynamic', input_names=['shape'], output_name='output', mean=mean, stddev=stddev, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.normal(mean, stddev, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_random_normal_dynamic_gpu(self): self.test_random_normal_dynamic_cpu(cpu_only=False) def test_random_uniform_like_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_like(name='random_uniform_like', input_name='tensor', output_name='output', minval=minval, maxval=maxval, seed=seed) tensor = np.random.rand(*shape) inputs = {'tensor': tensor} expected = {'output': np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_uniform_like_gpu(self): self.test_random_uniform_like_cpu(cpu_only=False) def test_random_uniform_static_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_static(name='random_uniform_static', output_name='tmp', output_shape=list(shape), minval=minval, maxval=maxval, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_uniform_static_gpu(self): self.test_random_uniform_static_cpu(cpu_only=False) def test_random_uniform_dynamic_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_dynamic(name='random_uniform_dynamic', input_names=['shape'], output_name='output', minval=minval, maxval=maxval, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_random_uniform_dynamic_gpu(self): self.test_random_uniform_dynamic_cpu(cpu_only=False) def test_random_bernoulli_like_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_like(name='random_bernoulli_like', input_name='tensor', output_name='output', prob=prob, seed=seed) tensor = np.random.rand(*shape) inputs = {'tensor': tensor} expected = {'output': np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_like_gpu(self): self.test_random_bernoulli_like_cpu(cpu_only=False) def test_random_bernoulli_static_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_static(name='random_bernoulli_static', output_name='tmp', output_shape=list(shape), prob=prob, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_static_gpu(self): self.test_random_bernoulli_static_cpu(cpu_only=False) def test_random_bernoulli_dynamic_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_dynamic(name='random_bernoulli_dynamic', input_names=['shape'], output_name='output', prob=prob, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_dynamic_gpu(self): self.test_random_bernoulli_dynamic_cpu(cpu_only=False) def test_categorical_distribution_cpu_shapes(self): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) num_samples = np.random.randint(low=10, high=1000) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name='data', output_name='output', num_samples=num_samples) x = np.random.randint(low=0, high=20, size=shape).astype(np.float32) inputs = {'data': x} shape[-1] = num_samples expected = {'output': np.random.rand(*shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=True, validate_shapes_only=True) def test_categorical_distribution_cpu_logits(self): def softmax(data): e_data = np.exp(data - np.max(data)) return e_data / e_data.sum() num_samples, num_class = 50000, 10 input_name, output_name = 'data', 'output' shapes = [(2, num_class), (2, 1, num_class), (1, 2, num_class), (2, 1, 1, num_class), (1, 2, 1, num_class), (1, 1, 2, num_class), (2, 1, 1, 1, num_class), (1, 2, 1, 1, num_class), (1, 1, 2, 1, num_class), (1, 1, 1, 2, num_class)] for shape in shapes: input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name=input_name, output_name=output_name, num_samples=num_samples, is_logits=True, seed=42) x = np.random.rand(*shape) inputs = {input_name: x} model = builder.spec if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=True) prediction = model.predict(inputs, useCPUOnly=True) # validate each distribution separately logits = x.reshape(2, num_class) probs = [softmax(logits[0]), softmax(logits[1])] ref0 = np.random.multinomial(num_samples, probs[0]) ref1 = np.random.multinomial(num_samples, probs[1]) pre0 = prediction[output_name].reshape(2, num_samples)[0] pre1 = prediction[output_name].reshape(2, num_samples)[1] expected = {output_name: np.stack((pre0, pre1))} # convert to bincount and validate probabilities pre0 = np.bincount(np.array(pre0).astype(np.int), minlength=num_class) pre1 = np.bincount(np.array(pre1).astype(np.int), minlength=num_class) assert np.allclose(np.true_divide(pre0, num_samples), probs[0], atol=1e-2) assert np.allclose(np.true_divide(pre0, num_samples), np.true_divide(ref0, num_samples), atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), probs[1], atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), np.true_divide(ref1, num_samples), atol=1e-2) self._test_model(model, inputs, expected, useCPUOnly=True, output_name_shape_dict={'output': prediction['output'].shape}) def test_categorical_distribution_cpu_probs(self): def softmax(data): e_data = np.exp(data - np.max(data)) return e_data / e_data.sum() num_samples, num_class = 50000, 10 input_name, output_name = 'data', 'output' shapes = [(2, num_class), (2, 1, num_class), (1, 2, num_class), (2, 1, 1, num_class), (1, 2, 1, num_class), (1, 1, 2, num_class), (2, 1, 1, 1, num_class), (1, 2, 1, 1, num_class), (1, 1, 2, 1, num_class), (1, 1, 1, 2, num_class)] for shape in shapes: input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name=input_name, output_name=output_name, num_samples=num_samples, is_logits=False, seed=42) x = np.random.rand(*shape) probs = x.reshape(2, num_class) probs[0], probs[1] = softmax(probs[0]), softmax(probs[1]) inputs = {input_name: np.reshape(probs, shape)} model = builder.spec if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=True) prediction = model.predict(inputs, useCPUOnly=True) # validate each distribution separately probs = probs.reshape(2, num_class) ref0 = np.random.multinomial(num_samples, probs[0]) ref1 = np.random.multinomial(num_samples, probs[1]) pre0 = prediction[output_name].reshape(2, num_samples)[0] pre1 = prediction[output_name].reshape(2, num_samples)[1] expected = {output_name: np.stack((pre0, pre1))} # convert to bincount and validate probabilities pre0 = np.bincount(np.array(pre0).astype(np.int), minlength=num_class) pre1 = np.bincount(np.array(pre1).astype(np.int), minlength=num_class) assert np.allclose(np.true_divide(pre0, num_samples), probs[0], atol=1e-2) assert np.allclose(np.true_divide(pre0, num_samples), np.true_divide(ref0, num_samples), atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), probs[1], atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), np.true_divide(ref1, num_samples), atol=1e-2) self._test_model(model, inputs, expected, useCPUOnly=True, output_name_shape_dict={'output': prediction['output'].shape}) def test_reverse_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) reverse_dim = [np.random.choice([True, False]) for _ in range(rank)] axes = [i for i in range(rank) if reverse_dim[i] == True] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_reverse('reverse', 'data', 'output', reverse_dim) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.flip(x, axis=axes)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reverse_gpu(self): self.test_reverse_cpu(cpu_only=False) def test_matrix_band_part_cpu(self, cpu_only=True): for rank in range(2, 6): for _ in range(20): num_lower = np.random.randint(low=-7, high=8) num_upper = np.random.randint(low=-7, high=8) shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_matrix_band_part('matrix_band_part', 'data', 'output', num_lower=num_lower, num_upper=num_upper) x = np.random.rand(*shape) input = {'data': x} rows, cols = shape[-2:] band = np.ones((rows, cols)) for m in range(rows): for n in range(cols): band[m, n] = (num_lower < 0 or (m - n) <= num_lower) and (num_upper < 0 or (n - m) <= num_upper) expected = {'output': np.multiply(band, x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_matrix_band_part_gpu(self): self.test_matrix_band_part_cpu(cpu_only=False) def test_flatten_to_2d_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank + 1): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_flatten_to_2d('flatten_to_2d', 'data', 'output', axis=axis) x = np.random.rand(*shape) np_axis = axis + rank if axis < 0 else axis pl, pr = 1, 1 for i in range(0, np_axis): pl *= shape[i] for i in range(np_axis, len(shape)): pr *= shape[i] new_shape = [pl, pr] ref = x.reshape(new_shape) input = {'data': x} expected = {'output': ref} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(2, builder._get_rank('output')) def test_flatten_to_2d_gpu(self): self.test_flatten_to_2d_cpu(cpu_only=False) def test_reshape_like_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = n // np.prod(target_shape) np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_like(name='reshape_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_reshape_like_gpu(self): self.test_reshape_like_cpu(cpu_only=False) def test_reshape_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = -1 np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_static(name='reshape_static', input_name='data', output_name='output', output_shape=target_shape) data = np.random.rand(*input_shape) inputs = {'data': data} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(len(target_shape), builder._get_rank('output')) def test_reshape_static_gpu(self): self.test_reshape_static_cpu(cpu_only=False) def test_reshape_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = -1 np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_dynamic(name='reshape_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_reshape_dynamic_gpu(self): self.test_reshape_dynamic_cpu(cpu_only=False) def test_reduce_sum_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_sum('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.add.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) expected_rank = len(expected['output'].shape) if expected_rank == 0: expected_rank = 1 self.assertEqual(expected_rank, builder._get_rank('output')) def test_reduce_sum_gpu(self): self.test_reduce_sum_cpu(cpu_only=False) def test_reduce_prod_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_prod('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.multiply.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) expected_rank = len(expected['output'].shape) if expected_rank == 0: expected_rank = 1 self.assertEqual(expected_rank, builder._get_rank('output')) def test_reduce_prod_gpu(self): self.test_reduce_prod_cpu(cpu_only=False) def test_reduce_mean_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_mean('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.mean(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_mean_gpu(self): self.test_reduce_mean_cpu(cpu_only=False) def test_reduce_max_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_max('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.maximum.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_max_gpu(self): self.test_reduce_max_cpu(cpu_only=False) def test_reduce_min_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_min('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.minimum.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_min_gpu(self): self.test_reduce_min_cpu(cpu_only=False) def test_reduce_l2_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_l2('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.sqrt(np.sum(np.square(x), axis=axes, keepdims=keep_dims))} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_l2_gpu(self): self.test_reduce_l2_cpu(cpu_only=False) def test_reduce_l1_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_l1('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.sum(np.abs(x), axis=axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_l1_gpu(self): self.test_reduce_l1_cpu(cpu_only=False) def test_reduce_sumsquare_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_sumsquare('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.sum(np.square(x), axis=axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_sumsquare_gpu(self): self.test_reduce_sumsquare_cpu(cpu_only=False) def test_reduce_logsum_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_logsum('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.log(np.sum(x, axis=axes, keepdims=keep_dims))} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_logsum_gpu(self): self.test_reduce_logsum_cpu(cpu_only=False) def test_reduce_logsumexp_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_logsumexp('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.log(np.sum(np.exp(x), axis=axes, keepdims=keep_dims))} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_logsumexp_gpu(self): self.test_reduce_logsumexp_cpu(cpu_only=False) def test_reverse_sequence_cpu(self, cpu_only=True): for rank in range(2, 6): for i in range(20): input_shape = np.random.randint(low=2, high=6, size=rank) seq_axis = np.random.randint(low=-rank, high=rank) batch_axis = np.random.randint(low=-rank, high=rank) pos_batch_axis = batch_axis if batch_axis >= 0 else rank + batch_axis pos_seq_axis = seq_axis if seq_axis >= 0 else rank + seq_axis while pos_batch_axis >= pos_seq_axis: seq_axis = np.random.randint(low=-rank, high=rank) batch_axis = np.random.randint(low=-rank, high=rank) pos_batch_axis = batch_axis if batch_axis >= 0 else rank + batch_axis pos_seq_axis = seq_axis if seq_axis >= 0 else rank + seq_axis input_features = [('data', datatypes.Array(*input_shape)), ('lengths', datatypes.Array(input_shape[batch_axis]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reverse_sequence('reverse_sequence', ['data', 'lengths'], 'output', batch_axis=batch_axis, seq_axis=seq_axis) data =
np.random.rand(*input_shape)
numpy.random.rand
import numpy import SimpleITK as sitk from radiomics_ria import base, cShape, deprecated class RadiomicsShape(base.RadiomicsFeaturesBase): def __init__(self, inputImage, inputMask, **kwargs): assert inputMask.GetDimension() == 3, 'Shape features are only available in 3D. If 2D, use shape2D instead' super(RadiomicsShape, self).__init__(inputImage, inputMask, **kwargs) def _initSegmentBasedCalculation(self): self.pixelSpacing = numpy.array(self.inputImage.GetSpacing()[::-1]) self.maskArray = (sitk.GetArrayFromImage(self.inputMask) == self.label) self.imageArray = self._applyBinning(self.imageArray) pass def update_focus(self, focus): mask = (self.imageArray == focus) & (self.maskArray) mask = mask * 1 cpif = sitk.ConstantPadImageFilter() padding = numpy.tile(1, 3) try: cpif.SetPadLowerBound(padding) cpif.SetPadUpperBound(padding) except TypeError: # newer versions of SITK/python want a tuple or list cpif.SetPadLowerBound(padding.tolist()) cpif.SetPadUpperBound(padding.tolist()) mask_itk = sitk.GetImageFromArray(mask) mask_itk.SetSpacing(self.pixelSpacing) mask = sitk.GetArrayFromImage(cpif.Execute(mask_itk)) self.labelledVoxelCoordinates = numpy.where(mask != 0) Np = len(self.labelledVoxelCoordinates[0]) self.SurfaceArea, self.Volume, self.diameters = cShape.calculate_coefficients(mask, self.pixelSpacing) # self.Volume = self.pixelSpacing[0] * self.pixelSpacing[1] * self.pixelSpacing[2] * Np # if self.Volume == 0: # self.Volume = 0.001 # if self.SurfaceArea == 0: # self.SurfaceArea = 0.001 # Compute eigenvalues and -vectors if self.Volume != 0: coordinates = numpy.array(self.labelledVoxelCoordinates, dtype='int').transpose((1, 0)) physicalCoordinates = coordinates * self.pixelSpacing[None, :] try: physicalCoordinates -= numpy.mean(physicalCoordinates, axis=0) # Centered at 0 except Exception: pass physicalCoordinates /= numpy.sqrt(Np) covariance = numpy.dot(physicalCoordinates.T.copy(), physicalCoordinates) self.eigenValues =
numpy.linalg.eigvals(covariance)
numpy.linalg.eigvals
import numpy as np import copy import logging from prettytable import PrettyTable from utils_for_wp import np_filter from wp_reid_dataset import WPReID class DataBank(object): def __init__(self, minframes): data_dict = WPReID().get_dict() self.images_dir_list = copy.deepcopy(data_dict['dir']) self.gps_info = data_dict['gps'] self.trajectory_info = data_dict['trajectory'] self.test_info, self.probe_index, self.gallery_index, self.junk_index = self._preprocess(data_dict, minframes) self.test_person_num = np.unique(self.test_info[:, 0]).size self.test_image_num = np.sum(self.test_info[:, 4]) self.test_frames_len_min = np.min(self.test_info[:, 4]) self.test_frames_len_max = np.max(self.test_info[:, 4]) self.test_cam_num = np.unique(self.test_info[:, 1]).size def _get_raw_data_info(self, data_dict): print(data_dict['info']) probe_info = np.asarray(data_dict['probe'], np.int64) gallery_info = np.asarray(data_dict['gallery'], np.int64) return probe_info, gallery_info def _check(self, test_info, probe_info, gallery_info): assert np.unique(test_info[:, 2]).size == test_info.shape[0] if self.minframes is not None: probe_info_new = [] probe_info_drop = [] for probe_i in range(probe_info.shape[0]): data_info = probe_info[probe_i] p_id = data_info[0] p_cam_id = data_info[1] g_info = np_filter(gallery_info, [p_id]) g_cam_id = np.unique(g_info[:, 1]) if np.setdiff1d(g_cam_id, np.asarray([p_cam_id])).size == 0: # there is no tracklet of this person in the gallery set with different camera id. probe_info_drop.append(data_info) else: probe_info_new.append(data_info) print('After drop videos less than: test {:2d} frames, check cam number'.format(self.minframes)) if len(probe_info_drop) > 0: for drop_info in probe_info_drop: print('No related gallery track with different camera id. Drop probe ' + str(drop_info)) probe_info = np.stack(probe_info_new) test_info = self._merge_to_test(probe_info, gallery_info) else: print('All probe track have related gallery track with different camera id.') assert np.sum(test_info[:, 3] - test_info[:, 2] - test_info[:, 4]) == 0 assert np.sum(probe_info[:, 3] - probe_info[:, 2] - probe_info[:, 4]) == 0 assert np.sum(gallery_info[:, 3] - gallery_info[:, 2] - gallery_info[:, 4]) == 0 test_id = np.unique(test_info[:, 0]) probe_id = np.unique(probe_info[:, 0]) gallery_id = np.unique(gallery_info[:, 0]) assert -1 not in set(test_id) # junk id set to be -1, it should have been removed. assert np.setdiff1d(probe_id, gallery_id).size == 0 assert set(test_id) == set(probe_id).union(set(gallery_id)) for probe_i in range(probe_info.shape[0]): data_info = probe_info[probe_i] p_id = data_info[0] p_cam_id = data_info[1] g_info = np_filter(gallery_info, [p_id]) g_cam_id = np.unique(g_info[:, 1]) if not np.setdiff1d(g_cam_id, np.asarray([p_cam_id])).size > 0: print('All gallery trackets have the same camera id with probe tracklet for ID: ' + str(p_id)) assert np.unique(test_info[:, 2]).size == np.unique(np.concatenate((probe_info, gallery_info))[:, 2]).size assert np.unique(test_info[:, 2]).size == test_info.shape[0] assert np.unique(probe_info[:, 2]).size == probe_info.shape[0] assert np.unique(gallery_info[:, 2]).size == gallery_info.shape[0] return test_info, probe_info @staticmethod def _get_index(rawset, subset): index = [] for i_probe in range(subset.shape[0]): begin = subset[i_probe, 2] temp_index = np.where(rawset[:, 2] == begin)[0] assert temp_index.size == 1 temp_index = temp_index[0] index.append(temp_index) index = np.asarray(index, dtype=np.int64) return index def _merge_to_test(self, probe_info, gallery_info): begin_idx_box = gallery_info[:, 2].tolist() temp_info = [] for probe_i in range(probe_info.shape[0]): probe_i_info = probe_info[probe_i] if probe_i_info[2] not in begin_idx_box: temp_info.append(probe_i_info) begin_idx_box.append(probe_i_info[2]) if len(temp_info) == 0: return gallery_info.copy() else: temp_info = np.asarray(temp_info, np.int64) test_info = np.concatenate((temp_info, gallery_info), axis=0) return test_info def _preprocess(self, data_dict, minframes): probe_info, gallery_info = self._get_raw_data_info(data_dict) test_info = self._merge_to_test(probe_info, gallery_info) if test_info[:, 4].max() > 1: self.is_image_dataset = False self.minframes = minframes else: self.is_image_dataset = True self.minframes = None self._print_info(test_info, probe_info, gallery_info, 'Raw') if self.minframes is not None: test_info = test_info[test_info[:, 4] >= self.minframes] probe_info = probe_info[probe_info[:, 4] >= self.minframes] gallery_info = gallery_info[gallery_info[:, 4] >= self.minframes] test_info, probe_info = self._check(test_info, probe_info, gallery_info) if self.minframes is not None: self._print_info(test_info, probe_info, gallery_info, 'After Drop') probe_idx = DataBank._get_index(test_info, probe_info) gallery_idx = DataBank._get_index(test_info, gallery_info) junk_idx = np.where(test_info[:, 0] == -1)[0] return test_info, probe_idx, gallery_idx, junk_idx def _print_info(self, test_info, probe_info, gallery_info, extra_info: str): GalleryInds = np.unique(gallery_info[:, 0]) probeInds = np.unique(probe_info[:, 0]) print('Gallery ID diff Probe ID: %s' % np.setdiff1d(GalleryInds, probeInds)) table = PrettyTable([extra_info, 'Test', 'Probe', 'Gallery']) table.add_row(['#ID', np.unique(test_info[:, 0]).size, np.unique(probe_info[:, 0]).size, np.unique(gallery_info[:, 0]).size]) table.add_row(['#Track', test_info.shape[0], probe_info.shape[0], gallery_info.shape[0]]) table.add_row(['#Image', np.sum(test_info[:, 4]), np.sum(probe_info[:, 4]), np.sum(gallery_info[:, 4])]) table.add_row(['#Cam', np.unique(test_info[:, 1]).size, np.unique(probe_info[:, 1]).size, np.unique(gallery_info[:, 1]).size]) table.add_row(['MaxLen', np.max(test_info[:, 4]), np.max(probe_info[:, 4]), np.max(gallery_info[:, 4])]) table.add_row(['MinLen', np.min(test_info[:, 4]), np.min(probe_info[:, 4]),
np.min(gallery_info[:, 4])
numpy.min
""" Plot gas, tar, char, water, and water vapor from primary and secondary reactions based on Blasi / Chan / Liden kinetic schemes for biomass pyrolysis. This combined scheme is referred to as the Cpc 2016 kinetic scheme. A similar scheme but without water reaction was proposed in Papadikis 2010 paper. References: Blasi, 1993. Combustion Science and Technology, 90, pp 315–340. <NAME>, Krieger, 1985. Fuel, 64, pp 1505–1513. <NAME>, Scott, 1988. Chem. Eng. Comm., 65, pp 207-221. <NAME>, 2010. Fuel Processing Technology, 91, pp 68–79. """ import numpy as np import matplotlib.pyplot as py # Parameters # ------------------------------------------------------------------------------ T = 773 # temperature for rate constants, K mc = 0.20 # moisture content as weight fraction, (-) dt = 0.01 # time step, delta t tmax = 25 # max time, s t = np.linspace(0, tmax, num=tmax/dt) # time vector nt = len(t) # total number of time steps # Function for Cpc 2016 Kinetic Scheme # ------------------------------------------------------------------------------ def cpc(wood, gas, tar, char, water, vapor, T, dt, s=1): """ Primary and secondary kinetic reactions for Cpc 2016 scheme based on Blasi 1993, Chan 1985, and Liden 1988 kinetics. Same scheme as presented in Papadikis 2010 but with the addition of the water reaction. Parameters ---------- wood = wood concentration, kg/m^3 gas = gas concentation, kg/m^3 tar = tar concentation, kg/m^3 char = char concentation, kg/m^3 water = water concentration based on moisture content, kg/m^3 vapor = water vapor concentration, kg/m^3 T = temperature, K dt = time step, s s = 1 primary reactions only, 2 primary and secondary reactions Returns ------- nwood = new wood concentration, kg/m^3 ngas = new gas concentration, kg/m^3 ntar = new tar concentration, kg/m^3 nchar = new char concentration, kg/m^3 nwater = new water concentration, kg/m^3 nvapor = new water vapor concentration, kg/m^3 """ # A = pre-factor (1/s) and E = activation energy (kJ/mol) A1 = 1.3e8; E1 = 140 # wood -> gas from Chan 1985 A2 = 2.0e8; E2 = 133 # wood -> tar from Chan 1985 A3 = 1.08e7; E3 = 121 # wood -> char from Chan 1985 A4 = 4.28e6; E4 = 107.5 # tar -> gas from Liden 1988 A5 = 1.0e6; E5 = 108 # tar -> char from Blasi 1993 Aw = 5.13e6; Ew = 87.9 # water -> water vapor from Chan 1985 R = 0.008314 # universal gas constant, kJ/mol*K # reaction rate constant for each reaction, 1/s K1 = A1 * np.exp(-E1 / (R * T)) # wood -> gas K2 = A2 *
np.exp(-E2 / (R * T))
numpy.exp
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ab = np.array(np.loadtxt('ab_plot.txt')) c = np.array(np.loadtxt('c_plot.txt')) fu= np.array(np.loadtxt('fu_plot.txt')) #fu= np.array(np.loadtxt('fu50e3_plot.txt')) fo = np.array(np.loadtxt('fo_plot.txt')) x_all_1 = np.insert(c.T[0], [0],ab.T[0])#, ra_cepfo.degree) x_all_2 = np.insert(x_all_1, [0], fo.T[0]) x_all = np.insert(x_all_2, [0], fu.T[0]) y_all_1 = np.insert(c.T[1], [0],ab.T[1])#, ra_cepfo.degree) y_all_2 = np.insert(y_all_1, [0], fo.T[1]) y_all = np.insert(y_all_2, [0], fu.T[1]) z_all_1 =
np.insert(c.T[2], [0],ab.T[2])
numpy.insert
''' Common methods for beamtools package Created Fri May 12 @author: cpkmanchee ''' import numpy as np from beamtools.file_formats import file_formats import dill __all__ = ['saveObj','loadObj','normalize','rmbg','gaussian','sech2','lorentzian', 'gaussian2D','rk4','moments','d4sigma','roi','alias_dict'] class Func: def __init__(self, value=None, index=None): self.val = value self.ind = index def at(self,x): return np.interp(x, self.ind, self.val) def diff(self): self.gradient = np.gradient(self.val)/np.gradient(self.ind) def diff_at(self,x): return np.interp(x,self.ind,self.gradient) class FitResult(): def __init__(self, ffunc, ftype, popt, pcov=0, indep_var='time', bgform='constant'): self.ffunc = ffunc self.ftype = ftype self.popt = popt self.pcov = pcov self.iv = indep_var self.bgform = bgform def subs(self,x): return self.ffunc(x,*self.popt) def get_args(self): return inspect.getargspec(self.ffunc) class DataObj(dict): def __init__(self,d): self.__dict__ = d def fields(self): return self.__dict__.keys() def properties(self): [print(k,v) for k,v in file_formats[self.filetype].items()] return def saveObj(obj, filename): with open(filename, 'wb') as output: dill.dump(obj, output, -1) def loadObj(filename): with open(filename, 'rb') as input: obj = dill.load(input) return obj def normalize(f, offset=0, method='normal'): '''Normalize array of data. Optional offset. ''' norm = (f-f.min())/(f.max()-f.min()) + offset if method.lower() in ['area']: norm = norm/np.sum(norm) return norm def rmbg(data, fit=None, form='constant'): '''Removes background from data data = [x,y] if sending poly fit params: p[0]*x**(N-1) + ... + p[N-1] return --> y - background ''' if fit is None: #estimate background from given form if form.lower() in alias_dict['constant']: p = min(y) elif form.lower() in alias_dict['linear']: p = np.linalg.solve([[1,x[0]],[1,x[-1]]], [y[0],y[-1]]) p = np.flipud(p) elif form.lower() in alias_dict['quadratic']: index =
np.argmin(y)
numpy.argmin
import os.path import pickle import shutil import tempfile import unittest import pcl import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal _data = [(i, 2 * i, 3 * i + 0.2) for i in range(5)] _DATA = """0.0, 0.0, 0.2; 1.0, 2.0, 3.2; 2.0, 4.0, 6.2; 3.0, 6.0, 9.2; 4.0, 8.0, 12.2""" class TestListIO(unittest.TestCase): def setUp(self): self.p = pcl.PointCloud(_data) def testFromList(self): for i, d in enumerate(_data): pt = self.p[i] assert np.allclose(pt, _data[i]) def testToList(self): l = self.p.to_list() assert np.allclose(l, _data) class TestNumpyIO(unittest.TestCase): def setUp(self): self.a = np.array(np.mat(_DATA, dtype=np.float32)) self.p = pcl.PointCloud(self.a) def testFromNumpy(self): for i, d in enumerate(_data): pt = self.p[i] assert np.allclose(pt, _data[i]) def testToNumpy(self): a = self.p.to_array() self.assertTrue(np.alltrue(a == self.a)) def test_asarray(self): p = pcl.PointCloud(self.p) # copy # old0 = p[0] a = np.asarray(p) # view a[:] += 6 assert_array_almost_equal(p[0], a[0]) # Regression test: deleting a second view would previously # reset the view count to zero. b = np.asarray(p) del b self.assertRaises(ValueError, p.resize, 2 * len(p)) def test_pickle(self): """Test pickle support.""" # In this testcase because picking reduces to pickling NumPy arrays. s = pickle.dumps(self.p) p = pickle.loads(s) self.assertTrue(np.all(self.a == p.to_array())) # copy the output of seg SEGDATA = """ 0.352222 -0.151883 2; -0.106395 -0.397406 1; -0.473106 0.292602 1; -0.731898 0.667105 -2; 0.441304 -0.734766 1; 0.854581 -0.0361733 1; -0.4607 -0.277468 4; -0.916762 0.183749 1; 0.968809 0.512055 1; -0.998983 -0.463871 1; 0.691785 0.716053 1; 0.525135 -0.523004 1; 0.439387 0.56706 1; 0.905417 -0.579787 1; 0.898706 -0.504929 1""" SEGINLIERS = """-0.106395 -0.397406 1; -0.473106 0.292602 1; 0.441304 -0.734766 1; 0.854581 -0.0361733 1; -0.916762 0.183749 1; 0.968809 0.512055 1; -0.998983 -0.463871 1; 0.691785 0.716053 1; 0.525135 -0.523004 1; 0.439387 0.56706 1; 0.905417 -0.579787 1; 0.898706 -0.504929 1""" SEGINLIERSIDX = [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14] SEGCOEFF = [0.0, 0.0, 1.0, -1.0] class TestSegmentPlane(unittest.TestCase): def setUp(self): self.a = np.array(np.mat(SEGDATA, dtype=np.float32)) self.p = pcl.PointCloud() self.p.from_array(self.a) def testLoad(self): npts = self.a.shape[0] self.assertEqual(npts, self.p.size) self.assertEqual(npts, self.p.width) self.assertEqual(1, self.p.height) def testSegmentPlaneObject(self): seg = self.p.make_segmenter() seg.set_optimize_coefficients(True) seg.set_model_type(pcl.SACMODEL_PLANE) seg.set_method_type(pcl.SAC_RANSAC) seg.set_distance_threshold(0.01) indices, model = seg.segment() self.assertListEqual(indices, SEGINLIERSIDX) self.assertListEqual(model, SEGCOEFF) def test_pcd_read(): TMPL = """# .PCD v.7 - Point Cloud Data file format VERSION .7 FIELDS x y z SIZE 4 4 4 TYPE F F F COUNT 1 1 1 WIDTH %(npts)d HEIGHT 1 VIEWPOINT 0.1 0 0.5 0 1 0 0 POINTS %(npts)d DATA ascii %(data)s""" a = np.array(np.mat(SEGDATA, dtype=np.float32)) npts = a.shape[0] tmp_file = tempfile.mkstemp(suffix='.pcd')[1] with open(tmp_file, "w") as f: f.write(TMPL % {"npts": npts, "data": SEGDATA.replace(";", "")}) p = pcl.load(tmp_file) assert p.width == npts assert p.height == 1 for i, row in enumerate(a): pt = np.array(p[i]) ssd = sum((row - pt) ** 2) assert ssd < 1e-6 assert_array_equal(p.sensor_orientation, np.array([0, 1, 0, 0], dtype=np.float32)) assert_array_equal(p.sensor_origin, np.array([.1, 0, .5, 0], dtype=np.float32)) def test_copy(): a = np.random.randn(100, 3).astype(np.float32) p1 = pcl.PointCloud(a) p2 = pcl.PointCloud(p1) assert_array_equal(p2.to_array(), a) SEGCYLMOD = [0.0552167, 0.0547035, 0.757707, -0.0270852, -4.41026, -2.88995, 0.0387603] SEGCYLIN = 11462 class TestSegmentCylinder(unittest.TestCase): def setUp(self): self.p = pcl.load("tests" + os.path.sep + "table_scene_mug_stereo_textured_noplane.pcd") def testSegment(self): seg = self.p.make_segmenter_normals(50) seg.set_optimize_coefficients(True) seg.set_model_type(pcl.SACMODEL_CYLINDER) seg.set_method_type(pcl.SAC_RANSAC) seg.set_normal_distance_weight(0.1) seg.set_max_iterations(10000) seg.set_distance_threshold(0.05) seg.set_radius_limits(0, 0.1) indices, model = seg.segment() self.assertEqual(len(indices), SEGCYLIN) # npexp = np.array(SEGCYLMOD) # npmod = np.array(model) # ssd = sum((npexp - npmod) ** 2) # self.assertLess(ssd, 1e-6) class TestSave(unittest.TestCase): def setUp(self): self.p = pcl.load("tests" + os.path.sep + "table_scene_mug_stereo_textured_noplane.pcd") self.tmpdir = tempfile.mkdtemp(suffix='pcl-test') def tearDown(self): shutil.rmtree(self.tmpdir) def testSave(self): for ext in ["pcd", "ply"]: d = os.path.join(self.tmpdir, "foo." + ext) pcl.save(self.p, d) p = pcl.load(d) self.assertEqual(self.p.size, p.size) class TestFilter(unittest.TestCase): def setUp(self): self.p = pcl.load("tests" + os.path.sep + "flydracyl.pcd") def testFilter(self): mls = self.p.make_moving_least_squares() mls.set_search_radius(0.5) mls.set_polynomial_order(2) mls.set_polynomial_fit(True) f = mls.process() # new instance is returned self.assertNotEqual(self.p, f) # mls filter retains the same number of points self.assertEqual(self.p.size, f.size) class TestExtract(unittest.TestCase): def setUp(self): self.p = pcl.load("tests" + os.path.sep + "flydracyl.pcd") def testExtractPos(self): p2 = self.p.extract([1, 2, 3], False) # new instance is returned self.assertNotEqual(self.p, p2) self.assertEqual(p2.size, 3) def testExtractNeg(self): p2 = self.p.extract([1, 2, 3], True) self.assertNotEqual(self.p, p2) self.assertEqual(p2.size, self.p.size - 3) class TestExceptions(unittest.TestCase): def setUp(self): self.p = pcl.PointCloud(np.arange(9, dtype=np.float32).reshape(3, 3)) def testIndex(self): self.assertRaises(IndexError, self.p.__getitem__, self.p.size) self.assertRaises(Exception, self.p.get_point, self.p.size, 1) def testResize(self): # XXX MemoryError isn't actually the prettiest exception for a # negative argument. Don't hesitate to change this test to reflect # better exceptions. self.assertRaises(MemoryError, self.p.resize, -1) class TestSegmenterNormal(unittest.TestCase): def setUp(self): self.p = pcl.load("tests" + os.path.sep + "table_scene_mug_stereo_textured_noplane.pcd") def _tpos(self, c): self.assertEqual(c.size, 22745) self.assertEqual(c.width, 22745) self.assertEqual(c.height, 1) self.assertTrue(c.is_dense) def _tneg(self, c): self.assertEqual(c.size, 1015) self.assertEqual(c.width, 1015) self.assertEqual(c.height, 1) self.assertTrue(c.is_dense) def testFilterPos(self): fil = self.p.make_statistical_outlier_filter() fil.set_mean_k(50) self.assertEqual(fil.mean_k, 50) fil.set_std_dev_mul_thresh(1.0) self.assertEqual(fil.stddev_mul_thresh, 1.0) c = fil.filter() self._tpos(c) def testFilterNeg(self): fil = self.p.make_statistical_outlier_filter() fil.set_mean_k(50) fil.set_std_dev_mul_thresh(1.0) self.assertEqual(fil.negative, False) fil.set_negative(True) self.assertEqual(fil.negative, True) c = fil.filter() self._tneg(c) def testFilterPosNeg(self): fil = self.p.make_statistical_outlier_filter() fil.set_mean_k(50) fil.set_std_dev_mul_thresh(1.0) c = fil.filter() self._tpos(c) fil.set_negative(True) c = fil.filter() self._tneg(c) class TestVoxelGridFilter(unittest.TestCase): def setUp(self): self.p = pcl.load("tests" + os.path.sep + "table_scene_mug_stereo_textured_noplane.pcd") def testFilter(self): fil = self.p.make_voxel_grid_filter() fil.set_leaf_size(0.01, 0.01, 0.01) c = fil.filter() self.assertTrue(c.size < self.p.size) self.assertEqual(c.size, 719) class TestPassthroughFilter(unittest.TestCase): def setUp(self): self.p = pcl.load("tests/table_scene_mug_stereo_textured_noplane.pcd") def testFilter(self): fil = self.p.make_passthrough_filter() fil.set_filter_field_name("z") fil.set_filter_limits(0, 0.75) c = fil.filter() self.assertTrue(c.size < self.p.size) self.assertEqual(c.size, 7751) def testFilterBoth(self): total = self.p.size fil = self.p.make_passthrough_filter() fil.set_filter_field_name("z") fil.set_filter_limits(0, 0.75) front = fil.filter().size fil.set_filter_limits(0.75, 100) back = fil.filter().size self.assertEqual(total, front + back) class TestKdTree(unittest.TestCase): def setUp(self): rng =
np.random.RandomState(42)
numpy.random.RandomState
#only run if CountyHospitalCombined.csv is not yet made, script will take a while to gather geolocation data because of API restrictions. #This python script combines together 2 of the data sets (Hospitals.csv, and co-est2019-alldata.csv) # into one county wise dataset (CountyHospitalCombined.csv) #<NAME> import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd sys.path.append('..') import lib Hospitals = lib.loadHospitals() USCountyPopData = lib.loadCountyPopEst() #the most important information in Hospitals is COUNTY and BEDS # this can be used to create a dataset of total hospital beds per county # other interesting columns is TRAUMA and HELIPAD hospitalCounties = Hospitals['COUNTY']#Only 1604 counties present hospitalStates = Hospitals['STATE']#we also need states to specify which county hospitalBeds = Hospitals['BEDS']#NAN are stored as -999 this needs changed. 662 nans hospitalTrauma = Hospitals['TRAUMA']#many changes need to be made before data is usable #^actually seems like most entries are not there so this may be useless information hospitalHelipad = Hospitals['HELIPAD']#ready off the bat hospitalOwner = Hospitals['OWNER']#GOVERNMENT, NON-PROFIT, PROPRIETARY #print(hospitalBeds.value_counts()) #plt.hist(HospitalCounties) #plt.hist(HospitalBeds) #plt.hist(HospitalTrauma) #plt.hist(HospitalHelipad) #create a list of all counties #start with USCountyPopData[CTYNAME] but filter out the numbers for the states countyMask = (USCountyPopData['SUMLEV']==50).to_numpy()#this code filters by counties/like countiesNames = USCountyPopData['CTYNAME'].iloc[countyMask]#one issue here is that some states have counties with the same names statesNames = USCountyPopData['STNAME'].iloc[countyMask]#so lets store state names also countiesPops = USCountyPopData['POPESTIMATE2019'].iloc[countyMask] hospitalStatesExp = [] for stateCode in hospitalStates: hospitalStatesExp.append(lib.stateDict[stateCode]) hospitalStatesExp = pd.Series(hospitalStatesExp) #have to remove Palau, American Samoa, Northern Mariana Islands, US Virgin Islands, Guam, and Puerto Rico hospitalStatesExpMask = (~hospitalStatesExp.isin(['Palau', 'American Samoa', 'Northern Mariana Islands', 'U.S. Virgin Islands', 'Guam', 'Puerto Rico'])).to_numpy() hospitalStatesExp = hospitalStatesExp.iloc[hospitalStatesExpMask] hospitalCounties = hospitalCounties.iloc[hospitalStatesExpMask] hospitalBeds = pd.Series(hospitalBeds.iloc[hospitalStatesExpMask],dtype=np.float) #hospitalTrauma = hospitalTrauma.iloc[hospitalStatesExpMask] decided info was not worth effort hospitalHelipad = hospitalHelipad.iloc[hospitalStatesExpMask] hospitalOwner = hospitalOwner.iloc[hospitalStatesExpMask] #create hospitalOwnerInts to NON-PROFIT, PROPRIETARY, and GOVERNMENT per county nonProfHOint = np.zeros(hospitalOwner.shape, dtype=np.intc) privateHOint = np.zeros(hospitalOwner.shape, dtype=np.intc) governmHOint = np.zeros(hospitalOwner.shape, dtype=np.intc) for n, owner in enumerate(hospitalOwner): if('NON-PROFIT' in owner): nonProfHOint[n] += 1 elif('PROPRIETARY' in owner): privateHOint[n] += 1 elif('GOVERNMENT' in owner): governmHOint[n] += 1 nonProfHOint = pd.Series(nonProfHOint) privateHOint = pd.Series(privateHOint) governmHOint = pd.Series(governmHOint) #turn -999 to NaNs in HospitalBeds hospitalBeds = hospitalBeds.where(hospitalBeds >= 0) #turn Ys to 1 and Ns to 0 hospitalHelipadInt = np.zeros(hospitalHelipad.shape, dtype=np.intc) for (n, hosHeli) in enumerate(hospitalHelipad): if (hosHeli=='Y'): hospitalHelipadInt[n] += 1 hospitalHelipadInt = pd.Series(hospitalHelipadInt) people = np.sum(countiesPops.to_numpy()) beds = np.nansum(hospitalBeds.to_numpy()) helipads = np.sum(hospitalHelipadInt.to_numpy()) #interesting totals #remove county/bourough/parish/Census Area from countiesNames and capitalize\ countiesHolder=np.array(countiesNames, dtype=str) for n, county in enumerate(countiesNames): if(county.endswith(' County')): county = county[:-7] if(county.endswith(' Borough')): county = county[:-8] if(county.endswith(' Municipality')): county = county[:-13] if(county.endswith(' Census Area')): county = county[:-12] if(county.endswith(' Parish')): county = county[:-7] countiesHolder[n] = county.upper() county=countiesHolder[204] state=statesNames[204] #^LA for testing #Abstract hospitalOwner to NON-PROFIT, PROPRIETARY, and GOVERNMENT per county nonProfHperCounty = np.zeros(countiesNames.shape, dtype=np.intc) privateHperCounty = np.zeros(countiesNames.shape, dtype=np.intc) governmHperCounty = np.zeros(countiesNames.shape, dtype=np.intc) #empty lists to be filled bedsPerCounty = np.zeros(countiesNames.shape, dtype=np.double) helipadsPerCounty = np.zeros(countiesNames.shape, dtype=np.intc) #Loop for fetching county wise data from Hospitals #O(n^2) for n, (county, state) in enumerate(zip(countiesHolder, statesNames.to_numpy())): countiesMask=(hospitalCounties==county).to_numpy() statesMask=(hospitalStatesExp==state).to_numpy() stateAndCountyMask = countiesMask&statesMask bedsPerCounty[n] += np.nansum(hospitalBeds.iloc[stateAndCountyMask].to_numpy()) helipadsPerCounty[n] += np.nansum(hospitalHelipadInt.iloc[stateAndCountyMask].to_numpy()) nonProfHperCounty[n] += np.sum(nonProfHOint.iloc[stateAndCountyMask].to_numpy()) privateHperCounty[n] += np.sum(privateHOint.iloc[stateAndCountyMask].to_numpy()) governmHperCounty[n] += np.sum(governmHOint.iloc[stateAndCountyMask].to_numpy()) #bedsPerCounty = pd.Series(bedsPerCounty) #helipadsPerCounty = pd.Series(helipadsPerCounty) #nonProfHperCounty = pd.Series(nonProfHperCounty) #privateHperCounty = pd.Series(privateHperCounty) #governmHperCounty = pd.Series(governmHperCounty) #countiesNames_partial = countiesNames.iloc[:1] #statesNames_partial = statesNames.iloc[:1] #this takes more than an hour because of api limits countiesLocs = lib.countyState_to_LatLong(countiesNames, statesNames) countiesLat = np.zeros(countiesNames.shape, dtype=float) countiesLon =
np.zeros(countiesNames.shape, dtype=float)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Mon Sep 27 22:17:33 2021 @author: sjfre """ #%% Import & Data Setup - MUST RUN import numpy as np import matplotlib.pyplot as plt from numpy import genfromtxt import pandas as pd from datetime import date from datetime import datetime as dt from scipy import interpolate path='/Users/sjfre/Documents/DataAnalysis/Class Files/Lab 1/' fname='weekly_in_situ_co2_mlo.csv' data=genfromtxt(path+fname,delimiter=',',skip_header=44) df=pd.read_csv(path+fname, sep=',',header=44) #%% Figure 1: Year Data + Linear & Quadratic Fit CO2=[] TIME=[] for i in df.values[:,0]: a=date.fromisoformat(i) day2=dt(a.year,a.month,a.day) day0=dt(a.year,1,1) days=day2-day0 Fraction_year=(days.days)/365. TIME.append(a.year + Fraction_year) for i in df.values[:,1]: CO2.append(i) plt.plot(TIME, CO2, '-b') fit = np.polyfit(TIME, CO2, 2, full=True) lfit = np.polyfit(TIME, CO2, 1, full=True) pred = np.poly1d(fit[0]) lin = np.poly1d(lfit[0]) plt.plot(TIME, pred(TIME),'-r') plt.plot(TIME, lin(TIME),'-g') plt.title("Year Data With Fit") plt.legend(['Year', 'Quadratic Fit', 'Linear Fit']) #%% Figure 2: Year Data De-Trended plt.figure() co2D = CO2 - pred(TIME) plt.plot(TIME, co2D, '-r') plt.title("Year Data, De-Trended") #%% Figure 3: Fractional Year Cycles + Mean plt.figure() TIME_1=[] for i in df.values[:,0]: a=date.fromisoformat(i) day2=dt(a.year,a.month,a.day) day0=dt(a.year,1,1) days=day2-day0 Fraction_year=(days.days)/365. TIME_1.append(Fraction_year) plt.plot(TIME_1, co2D, 'or') bin_size = 0.02 season_bin = np.arange(0,1.01, bin_size) mean = [] for i in season_bin: res = np.where(np.logical_and(TIME_1 >= i-bin_size/2., TIME_1 <= i+bin_size/2.)) mean.append(np.mean(co2D[res])) plt.plot(season_bin, mean, '-g') plt.title("Fractional Year Cycles") plt.legend(['Fractional Year Values', 'Mean']) #%% Figure 4: Mean Mapped to Original Years plt.figure() inter = interpolate.interp1d(season_bin, mean) season = inter(TIME_1) plt.plot(TIME, season, '-g') plt.title("Mean Mapped to Original Years") #%% Figure 5: Year Data Offset from Mean plt.figure() plt.plot(TIME, co2D - season, 'og') plt.title("Year Data Relative to Mean") #%% Stationary Tests from statsmodels.tsa.stattools import adfuller print('\nADF stationary test for the original data') result = adfuller(CO2) print('ADF Statistic: %f' % result[0]) print('p-value: %f' % result[1]) print('Critical Values:') for key, value in result[4].items(): print('\t%s: %.3f' % (key, value)) # With a p-value of 0.9968, the data is 99.68% likely to be non-stationary # and we cannot reject that there is a unit root. #%% Histograms plt.figure() import seaborn as sns sns.histplot(data=CO2, kde=True,bins=50) plt.xlabel('CO2 Concentration (ppb)',size=25) plt.ylabel('Density',size=25) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.title("CO2 Original",size=20) plt.figure() sns.histplot(data=co2D, kde=True,bins=50) plt.xlabel('CO2 Concentration (ppb)',size=25) plt.ylabel('Density',size=25) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.title("CO2 De-Trend and De-Season",size=20) #%% Gaussian Noise from random import gauss, seed seed(1) y1 = [] for i in range(1000): value = gauss(0,1) y1.append(value) y2 = [] for i in range(10000): value = gauss(0,1) y2.append(value) plt.figure() sns.histplot(data=y1, kde=True,bins=100) plt.title("1000 Sample") plt.figure() sns.histplot(data=y2, kde=True,bins=100) plt.title("10000 Sample") #%% FFT of Noise from scipy.fft import fft def smooth(y, box_pts): box = np.ones(box_pts)/box_pts y_smooth = np.convolve(y, box, mode='same') return y_smooth plt.figure() y2_g = fft(y2) N_g = len(y2) T = 1./52 x2_g = np.linspace(0., 1./(2.*T), N_g//2) plt.loglog(x2_g[1:N_g//2], 2.0/N_g * np.abs(y2_g[1:N_g//2]), '-g') plt.loglog(x2_g[1:N_g//2], smooth(2.0/N_g * np.abs(y2_g[1:N_g//2]),10), '-r') #%% Smoothing CO2 Data plt.figure() co2D_s = smooth(co2D - season, 110) plt.plot(TIME, co2D - season, '-y') plt.plot(TIME, co2D_s, '-r') #%% FFT of CO2 plt.figure() yf = fft(co2D - season) yf_s = fft(co2D_s) N = len(co2D) xf = np.linspace(0., 1./(2.*T), N//2) plt.loglog(x2_g[1:N_g//2], 2.0/N_g * np.abs(y2_g[1:N_g//2]), '-g') plt.loglog(xf[1:N//2], 2.0/N * np.abs(yf[1:N//2]), '-b') plt.loglog(xf[1:N//2], 2.0/N *
np.abs(yf_s[1:N//2])
numpy.abs
coords = [[[0,9],[5,9]], [[8,0],[0,8]], [[9,4],[3,4]], [[2,2],[2,1]], [[7,0],[7,4]], [[6,4],[2,0]], [[0,9],[2,9]], [[3,4],[1,4]], [[0,0],[8,8]], [[5,5],[8,2]]] coords = [[[284,294], [733,743]], [[625,347], [653,375]], [[561,848], [561,181]], [[836,102], [836,339]], [[946,941], [22,17]], [[18,954], [956,16]], [[370,142], [370,700]], [[990,966], [677,966]], [[366,603], [366,465]], [[728,942], [57,271]], [[615,493], [847,493]], [[584,281], [301,281]], [[125,356], [301,180]], [[941,569], [555,183]], [[151,116], [509,116]], [[41,18], [841,818]], [[627,670], [627,630]], [[965,472], [965,100]], [[93,404], [330,641]], [[475,963], [475,514]], [[389,389], [389,326]], [[842,565], [842,576]], [[454,700], [650,700]], [[73,810], [73,319]], [[450,212], [450,284]], [[316,392], [316,697]], [[915,592], [578,592]], [[622,485], [434,485]], [[109,853], [952,10]], [[305,73], [305,222]], [[27,489], [157,489]], [[191,979], [867,979]], [[527,329], [527,292]], [[301,645], [301,162]], [[639,730], [176,730]], [[46,964], [46,458]], [[727,422], [435,714]], [[28,552], [404,552]], [[33,108], [33,21]], [[227,249], [327,249]], [[414,903], [784,903]], [[69,422], [888,422]], [[422,924], [103,605]], [[793,353], [450,10]], [[714,682], [714,972]], [[201,745], [410,745]], [[408,713], [408,847]], [[174,842], [818,198]], [[863,353], [775,353]], [[199,780], [670,780]], [[877,947], [340,410]], [[163,202], [163,91]], [[955,919], [955,585]], [[836,271], [533,271]], [[258,366], [728,836]], [[582,749], [582,12]], [[80,40], [80,704]], [[287,213], [287,635]], [[390,546], [390,194]], [[837,511], [538,810]], [[473,281], [902,281]], [[851,865], [731,745]], [[918,59], [445,532]], [[796,215], [796,248]], [[875,111], [604,111]], [[660,805], [538,805]], [[507,850], [145,850]], [[585,861], [585,52]], [[426,74], [700,348]], [[206,405], [529,405]], [[418,333], [418,17]], [[368,457], [33,792]], [[186,81], [957,852]], [[505,283], [113,283]], [[20,878], [462,878]], [[750,237], [69,918]], [[15,280], [358,623]], [[798,981], [500,683]], [[965,970], [22,970]], [[950,970], [148,970]], [[660,392], [660,884]], [[862,405], [862,527]], [[801,283], [801,361]], [[71,837], [136,837]], [[651,438], [945,144]], [[524,607], [614,517]], [[348,955], [138,955]], [[957,164], [404,717]], [[531,581], [454,504]], [[710,185], [710,271]], [[822,86], [822,966]], [[745,233], [490,488]], [[350,823], [663,823]], [[824,67], [447,444]], [[846,667], [796,617]], [[666,24], [666,906]], [[640,39], [640,145]], [[654,481], [985,481]], [[581,894], [416,729]], [[443,11], [697,11]], [[318,627], [799,146]], [[113,78], [891,856]], [[181,149], [179,151]], [[451,74], [451,262]], [[458,726], [314,726]], [[218,662], [533,662]], [[965,108], [527,108]], [[782,481], [896,367]], [[557,927], [557,938]], [[506,242], [941,677]], [[948,778], [948,629]], [[567,816], [567,956]], [[323,773], [323,364]], [[864,980], [864,12]], [[611,699], [611,886]], [[613,392], [901,104]], [[528,905], [156,905]], [[632,206], [798,40]], [[338,237], [919,818]], [[256,889], [11,644]], [[835,52], [55,832]], [[464,144], [322,144]], [[254,747], [254,509]], [[866,892], [866,916]], [[827,946], [30,149]], [[899,84], [177,806]], [[134,634], [357,634]], [[781,492], [244,492]], [[817,762], [817,976]], [[818,749], [818,860]], [[262,480], [263,480]], [[409,576], [409,698]], [[242,151], [981,890]], [[149,519], [149,557]], [[42,990], [42,930]], [[687,974], [50,337]], [[758,382], [465,382]], [[760,861], [760,934]], [[17,835], [17,915]], [[645,923], [645,648]], [[702,116], [72,746]], [[153,162], [955,964]], [[185,101], [918,834]], [[554,179], [554,353]], [[879,673], [879,949]], [[368,13], [368,512]], [[582,105], [591,114]], [[146,291], [600,745]], [[609,538], [930,538]], [[320,604], [320,146]], [[566,698], [443,575]], [[167,708], [844,31]], [[712,630], [712,421]], [[912,930], [64,82]], [[980,931], [87,38]], [[23,893], [888,28]], [[640,435], [676,435]], [[701,516], [190,516]], [[684,145], [62,767]], [[127,471], [91,435]], [[685,197], [78,197]], [[103,493], [103,522]], [[309,986], [309,850]], [[938,270], [938,300]], [[295,72], [354,72]], [[948,889], [948,455]], [[254,733], [254,175]], [[95,329], [942,329]], [[19,672], [19,445]], [[206,807], [206,934]], [[886,961], [886,690]], [[117,386], [117,292]], [[199,59], [668,528]], [[299,263], [299,878]], [[28,295], [638,905]], [[10,140], [276,406]], [[279,526], [921,526]], [[485,128], [856,499]], [[418,398], [186,398]], [[296,577], [296,521]], [[514,261], [10,765]], [[691,673], [776,758]], [[131,430], [152,430]], [[858,85], [62,85]], [[394,846], [270,970]], [[827,913], [827,376]], [[634,669], [910,669]], [[12,53], [945,986]], [[782,467], [782,421]], [[159,832], [109,832]], [[793,807], [79,93]], [[120,584], [356,584]], [[645,16], [645,355]], [[526,685], [217,376]], [[296,305], [296,929]], [[954,144], [954,839]], [[748,88], [103,733]], [[523,804], [473,754]], [[524,316], [524,756]], [[696,183], [912,183]], [[288,564], [55,797]], [[568,103], [568,348]], [[468,626], [682,412]], [[163,163], [961,961]], [[762,824], [27,89]], [[623,625], [32,34]], [[865,343], [490,718]], [[259,458], [259,33]], [[944,660], [944,176]], [[781,804], [826,759]], [[15,702], [15,553]], [[403,310], [918,825]], [[438,734], [835,734]], [[825,13], [825,245]], [[129,611], [370,611]], [[49,939], [172,939]], [[687,906], [687,532]], [[629,482], [273,126]], [[727,218], [424,218]], [[447,451], [233,451]], [[142,779], [813,779]], [[527,27], [527,804]], [[482,55], [482,200]], [[39,264], [806,264]], [[884,636], [458,636]], [[467,121], [199,389]], [[856,925], [856,666]], [[666,359], [378,359]], [[11,946], [705,946]], [[491,281], [940,730]], [[86,112], [918,944]], [[974,807], [974,707]], [[445,67], [914,536]], [[953,394], [953,822]], [[468,398], [157,87]], [[231,620], [231,646]], [[979,869], [979,911]], [[450,330], [450,79]], [[675,659], [617,659]], [[66,181], [66,723]], [[181,406], [181,192]], [[908,334], [908,526]], [[254,891], [282,891]], [[777,791], [127,141]], [[469,58], [694,58]], [[954,957], [566,569]], [[957,957], [123,123]], [[741,359], [741,986]], [[763,526], [763,101]], [[857,427], [600,170]], [[527,756], [490,719]], [[625,249], [397,249]], [[798,702], [712,702]], [[868,75], [868,853]], [[332,296], [332,629]], [[211,829], [100,940]], [[12,139], [12,218]], [[655,978], [655,242]], [[99,852], [855,96]], [[486,267], [486,855]], [[474,90], [474,244]], [[948,491], [186,491]], [[896,59], [278,677]], [[295,732], [629,732]], [[860,936], [860,556]], [[143,790], [143,26]], [[371,847], [395,847]], [[739,301], [739,44]], [[384,716], [748,716]], [[848,423], [848,923]], [[855,23], [218,660]], [[381,805], [381,438]], [[451,610], [91,610]], [[906,957], [191,957]], [[118,675], [169,675]], [[836,818], [95,818]], [[368,945], [825,488]], [[165,299], [899,299]], [[392,327], [926,861]], [[663,16], [131,548]], [[630,302], [888,302]], [[206,869], [206,331]], [[979,413], [979,204]], [[894,860], [62,28]], [[444,897], [962,379]], [[550,158], [550,885]], [[845,736], [811,736]], [[846,857], [12,857]], [[981,730], [981,154]], [[694,835], [88,835]], [[21,101], [21,385]], [[19,960], [964,15]], [[283,721], [450,721]], [[59,136], [758,835]], [[287,313], [719,313]], [[471,252], [849,630]], [[682,189], [168,189]], [[10,921], [774,157]], [[884,598], [884,540]], [[207,615], [207,443]], [[627,408], [67,408]], [[285,36], [285,792]], [[116,585], [254,585]], [[183,86], [183,702]], [[220,138], [868,138]], [[833,68], [286,615]], [[367,534], [766,534]], [[907,514], [621,228]], [[133,593], [133,581]], [[164,727], [768,123]], [[566,227], [566,555]], [[983,988], [105,110]], [[620,177], [620,821]], [[612,413], [612,176]], [[168,889], [168,210]], [[871,487], [559,175]], [[399,870], [761,870]], [[236,976], [582,630]], [[699,216], [699,887]], [[153,745], [790,745]], [[444,749], [444,257]], [[808,165], [939,165]], [[546,525], [95,976]], [[583,179], [373,389]], [[235,816], [840,816]], [[744,89], [832,89]], [[425,317], [465,357]], [[267,235], [114,82]], [[887,59], [572,374]], [[808,237], [808,626]], [[431,352], [400,383]], [[815,376], [815,905]], [[249,218], [989,958]], [[120,435], [357,198]], [[807,551], [490,234]], [[910,524], [910,725]], [[802,304], [447,659]], [[789,228], [678,339]], [[229,322], [52,322]], [[658,393], [506,393]], [[378,438], [378,569]], [[163,981], [473,671]], [[537,984], [935,586]], [[58,945], [966,37]], [[132,696], [565,263]], [[136,813], [136,284]], [[606,656], [298,348]], [[533,572], [673,712]], [[872,912], [301,341]], [[16,287], [16,613]], [[571,541], [980,950]], [[117,495], [35,495]], [[85,79], [682,676]], [[425,431], [117,739]], [[982,984], [10,12]], [[28,75], [431,478]], [[259,529], [259,436]], [[762,267], [170,859]], [[323,135], [929,741]], [[81,238], [561,718]], [[128,213], [876,961]], [[649,466], [649,540]], [[715,863], [119,863]], [[830,624], [794,660]], [[123,968], [977,114]], [[489,466], [489,811]], [[27,10], [980,963]], [[255,732], [255,484]], [[574,829], [431,829]], [[548,743], [22,217]], [[903,297], [903,763]], [[684,774], [64,154]], [[260,823], [683,823]], [[422,211], [422,826]], [[10,196], [988,196]], [[108,802], [15,802]], [[104,70], [104,452]], [[885,59], [885,36]], [[68,854], [68,774]], [[731,935], [731,718]], [[657,986], [617,986]], [[732,292], [732,32]], [[841,56], [841,83]], [[74,108], [862,896]], [[654,895], [323,895]], [[374,952], [374,217]], [[90,723], [750,63]], [[246,89], [911,754]], [[453,301], [755,301]], [[983,988], [23,28]], [[81,705], [133,757]], [[752,743], [752,397]], [[53,243], [449,639]], [[451,811], [451,187]], [[26,672], [26,699]], [[254,861], [943,861]], [[643,740], [643,966]], [[486,655], [149,318]], [[375,146], [375,973]], [[76,293], [103,293]], [[246,398], [246,248]], [[324,392], [595,121]], [[130,577], [131,577]], [[380,623], [549,454]], [[224,181], [985,942]], [[310,223], [310,594]], [[23,982], [23,738]], [[19,858], [832,858]], [[726,531], [726,578]], [[730,433], [196,433]], [[606,599], [242,599]], [[444,832], [444,238]], [[198,870], [47,870]], [[944,473], [795,473]], [[737,386], [178,945]], [[328,902], [328,644]], [[422,851], [567,851]], [[674,781], [215,781]], [[920,757], [302,757]], [[225,932], [640,517]], [[359,337], [791,337]], [[935,430], [935,262]], [[772,850], [280,358]], [[175,829], [175,451]], [[938,204], [234,908]], [[253,749], [308,749]], [[704,458], [468,458]], [[222,95], [743,616]], [[968,840], [123,840]], [[491,619], [491,889]], [[979,580], [979,459]], [[901,193], [171,923]], [[246,155], [246,680]], [[711,755], [247,755]], [[671,734], [475,734]], [[803,783], [129,109]], [[145,890], [920,115]], [[463,521], [463,700]], [[782,99], [782,311]], [[547,467], [630,467]], [[14,88], [795,869]], [[653,899], [653,90]], [[488,874], [488,570]], [[93,879], [645,327]], [[320,658], [40,938]], [[611,246], [611,22]], [[258,935], [258,829]], [[931,436], [931,263]], [[252,460], [252,461]], [[490,382], [965,382]], [[242,89], [242,617]], [[271,111], [595,435]], [[462,706], [242,486]], [[557,328], [747,328]], [[486,99], [486,333]], [[156,40], [488,372]], [[323,482], [138,297]], [[595,539], [812,756]], [[923,861], [377,315]], [[934,952], [256,274]], [[314,777], [314,12]], [[508,47], [508,144]], [[888,807], [701,807]], [[745,774], [878,907]], [[740,716], [740,215]], [[62,43], [62,12]], [[571,196], [454,196]], [[568,107], [408,107]], [[549,676], [404,676]], [[595,573], [595,970]], [[148,168], [193,123]], [[763,71], [759,71]], [[797,64], [307,64]], [[959,984], [32,57]], [[457,562], [634,562]], [[127,521], [601,47]], [[112,296], [112,120]], [[148,755], [451,755]], [[636,494], [870,494]], [[910,242], [945,277]], [[912,911], [912,892]], [[759,815], [759,314]], [[391,285], [391,959]], [[455,460], [182,460]], [[112,78], [112,385]], [[842,179], [842,592]], [[236,424], [421,424]], [[508,907], [30,907]], [[637,219], [34,822]], [[503,375], [503,205]], [[570,533], [626,533]], [[658,11], [658,94]], [[179,286], [326,433]], [[918,214], [200,932]], [[339,887], [81,887]], [[794,91], [50,835]], [[225,356], [225,261]], [[80,160], [80,335]], [[148,64], [847,763]], [[595,393], [941,393]]] field_size = 1000 field = [[0 for i in range(field_size)] for i in range(field_size)] count = 0 import numpy as np for coord_pair in coords: start = coord_pair[0] end = coord_pair[1] if start[1] != end[1] and start[0] != end[0]: continue range = max(1, max(abs(start[0] - end[0]), abs(start[1] - end[1]))) x_coords = np.linspace(start[0], end[0], range+1, dtype=int) y_coords = np.linspace(start[1], end[1], range+1, dtype=int) coords =
np.array([x_coords, y_coords])
numpy.array
""" Tests for conformers.py. """ import numpy as np import unittest from rdkit import Chem from vs_utils.utils.rdkit_utils import conformers class TestConformerGenerator(unittest.TestCase): """ Tests for ConformerGenerator. """ def setUp(self): """ Set up tests. """ aspirin_smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O aspirin' self.mol = Chem.MolFromSmiles(aspirin_smiles.split()[0]) self.mol.SetProp('_Name', 'aspirin') assert self.mol.GetNumConformers() == 0 self.engine = conformers.ConformerGenerator() def test_generate_conformers(self): """ Generate molecule conformers using default parameters. """ mol = self.engine.generate_conformers(self.mol) assert mol.GetNumConformers() > 0 # check that molecule names are retained assert self.mol.GetProp('_Name') == mol.GetProp('_Name') def test_mmff94_minimization(self): """ Generate conformers and minimize with MMFF94 force field. """ engine = conformers.ConformerGenerator(force_field='mmff94') mol = engine.generate_conformers(self.mol) assert mol.GetNumConformers() > 0 def test_mmff94s_minimization(self): """ Generate conformers and minimize with MMFF94s force field. """ engine = conformers.ConformerGenerator(force_field='mmff94s') mol = engine.generate_conformers(self.mol) assert mol.GetNumConformers() > 0 def test_embed_molecule(self): """ Test ConformerGenerator.embed_molecule. """ mol = self.engine.embed_molecule(self.mol) assert mol.GetNumConformers() > 0 def test_minimize_conformers(self): """ Test ConformerGenerator.minimize_conformers. """ mol = self.engine.embed_molecule(self.mol) assert mol.GetNumConformers() > 0 start = self.engine.get_conformer_energies(mol) self.engine.minimize_conformers(mol) finish = self.engine.get_conformer_energies(mol) # check that all minimized energies are lower assert np.all(start > finish), (start, finish) def test_get_conformer_energies(self): """ Test ConformerGenerator.get_conformer_energies. """ mol = self.engine.embed_molecule(self.mol) assert mol.GetNumConformers() > 0 energies = self.engine.get_conformer_energies(mol) # check that the number of energies matches the number of # conformers assert len(energies) == mol.GetNumConformers() def test_prune_conformers(self): """ Test ConformerGenerator.prune_conformers. """ engine = conformers.ConformerGenerator(max_conformers=10) mol = engine.embed_molecule(self.mol) # check that there is more than one conformer assert mol.GetNumConformers() > 1 engine.minimize_conformers(mol) energies = engine.get_conformer_energies(mol) pruned = engine.prune_conformers(mol) pruned_energies = engine.get_conformer_energies(pruned) # check that the number of conformers is not to large assert pruned.GetNumConformers() <= engine.max_conformers # check that the number of conformers has not increased assert pruned.GetNumConformers() <= mol.GetNumConformers() # check that lowest energy conformer was selected assert np.allclose(min(energies), min(pruned_energies)) # check that pruned energies are taken from the original set for energy in pruned_energies: assert np.allclose(min(np.fabs(energies - energy)), 0) # check that conformers are in order of increasing energy sort = np.argsort(pruned_energies) assert np.array_equal(sort, np.arange(len(pruned_energies))), sort def test_get_conformer_rmsd(self): """ Test ConformerGenerator.get_conformer_rmsd. """ engine = conformers.ConformerGenerator(max_conformers=10) mol = engine.embed_molecule(self.mol) # check that there is more than one conformer assert mol.GetNumConformers() > 1 rmsd = engine.get_conformer_rmsd(mol) # check for a valid distance matrix assert rmsd.shape[0] == rmsd.shape[1] == mol.GetNumConformers() assert np.allclose(
np.diag(rmsd)
numpy.diag
##~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~## ## ## ## This file forms part of the Badlands surface processes modelling application. ## ## ## ## For full license and copyright information, please refer to the LICENSE.md file ## ## located at the project root, or contact the authors. ## ## ## ##~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~## """ This file defines the functions used to build **badlands** meshes and surface grids. """ import os import time import numpy as np from scipy.interpolate import griddata if 'READTHEDOCS' not in os.environ: from badlands import (partitionTIN, FVmethod, elevationTIN, raster2TIN, waveSed, eroMesh, strataMesh, isoFlex, stratiWedge, carbMesh, forceSim) def construct_mesh(input, filename, verbose=False): """ The following function is taking parsed values from the XML to: * build model grids & meshes, * initialise Finite Volume discretisation, * define the partitioning when parallelisation is enable. Args: input: class containing XML input file parameters. filename: (str) this is a string containing the path to the regular grid file. verbose : (bool) when :code:`True`, output additional debug information (default: :code:`False`). Returns ------- recGrid class describing the regular grid characteristics. FVmesh class describing the finite volume mesh. force class describing the forcing parameters. tMesh class describing the TIN mesh. lGIDs numpy 1D array containing the node indices. fixIDs numpy 1D array containing the fixed node indices. inGIDs numpy 1D array containing the node indices inside the mesh. totPts total number of points in the mesh. elevation numpy array containing the elevations for the domain. cumdiff cumulative total erosion/deposition changes cumhill cumulative hillslope erosion/deposition changes cumfail cumulative failure induced erosion/deposition changes cumflex cumlative changes induced by flexural isostasy strata stratigraphic class parameters mapero underlying erodibility map characteristics tinFlex class describing the flexural TIN mesh. flex class describing the flexural isostasy functions. wave class describing the wave functions. straTIN class describing the stratigraphic TIN mesh. carbTIN class describing the carbonate TIN mesh. """ cumflex = None flex = None wave = None tinFlex = None strata = None mapero = None # Get DEM regular grid and create Badlands TIN. recGrid = raster2TIN.raster2TIN(filename, areaDelFactor=input.Afactor) fixIDs = recGrid.boundsPt + recGrid.edgesPt force = forceSim.forceSim(input.seafile, input.seapos, input.rainMap, input.rainTime, input.rainVal, input.orographic, input.orographiclin, input.rbgd, input.rmin, input.rmax, input.rzmax, input.windx, input.windy, input.tauc, input.tauf, input.nm, input.cw, input.hw, input.ortime, input.tectFile, input.tectTime, recGrid.regX, recGrid.regY, input.riverPos, input.riverTime, input.riverQws, input.riverRck, input.riverNb, input.rockNb, input.tDisplay, input.carbValSp1, input.carbValSp2, input.carbTime) if input.disp3d: force.time3d = input.time3d if input.merge3d == 0. or input.merge3d > recGrid.resEdges: force.merge3d = input.Afactor * recGrid.resEdges * 0.5 else: force.merge3d = input.merge3d # Partition the TIN walltime = time.clock() FVmesh = FVmethod.FVmethod(recGrid.tinMesh['vertices'], recGrid.tinMesh['triangles'], recGrid.tinMesh['edges']) # Perform partitioning by equivalent domain splitting partitionIDs, RowProc, ColProc = partitionTIN.simple(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1]) FVmesh.partIDs = partitionIDs # Get each partition global node ID inGIDs = np.where(partitionIDs == 0)[0] # Build Finite Volume discretisation # Define overlapping partitions lGIDs, localTIN = partitionTIN.overlap(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1], RowProc, ColProc, 2*recGrid.resEdges, verbose) # Set parameters of the finite volume mesh tMesh = FVmethod.FVmethod(localTIN['vertices'], localTIN['triangles'], localTIN['edges']) # Define Finite Volume parameters walltime = time.clock() totPts = len(recGrid.tinMesh['vertices'][:, 0]) FVmesh.neighbours = np.zeros((totPts, 20), dtype=np.int32, order='F') FVmesh.neighbours.fill(-2) FVmesh.edge_length = np.zeros((totPts, 20), dtype=np.float, order='F') FVmesh.vor_edges = np.zeros((totPts, 20), dtype=np.float, order='F') FVmesh.control_volumes = np.zeros(totPts, dtype=np.float) # Compute Finite Volume parameters tGIDs, tNgbh, tEdgs, tVors, tVols = tMesh.construct_FV(inGIDs, lGIDs, totPts, recGrid.resEdges*input.Afactor, verbose) FVmesh.neighbours[tGIDs,:tMesh.maxNgbh] = tNgbh FVmesh.edge_length[tGIDs,:tMesh.maxNgbh] = tEdgs FVmesh.vor_edges[tGIDs,:tMesh.maxNgbh] = tVors FVmesh.control_volumes[tGIDs] = tVols if verbose: print(" - FV mesh ", time.clock() - walltime) # Define TIN parameters if input.flexure: elevation, cumdiff, cumhill, cumfail, cumflex, inIDs, parentIDs = _define_TINparams(totPts, input, FVmesh, recGrid, verbose) else: elevation, cumdiff, cumhill, cumfail, inIDs, parentIDs = _define_TINparams(totPts, input, FVmesh, recGrid, verbose) # Build stratigraphic and erodibility meshes if ((input.laytime and input.laytime > 0) and (input.erolays and input.erolays >= 0)): strata, mapero = _build_strateroMesh(input, FVmesh, recGrid, cumdiff, verbose) elif (input.laytime and input.laytime > 0): strata = _build_strateroMesh(input, FVmesh, recGrid, cumdiff, verbose) elif (input.erolays and input.erolays >= 0): mapero = _build_strateroMesh(input, FVmesh, recGrid, cumdiff, verbose) # Set default to no rain force.update_force_TIN(FVmesh.node_coords[:,:2]) # Flexural isostasy initialisation if input.flexure: flex, tinFlex, cumflex = _init_flexure(FVmesh, input, recGrid, force, elevation, cumdiff, cumflex, totPts, verbose) # Wavesed grid initialisation if input.waveSed: ref_elev = get_reference_elevation(input,recGrid,elevation) wave = _init_wavesed(input,ref_elev, recGrid, force, verbose) wave.build_tree(FVmesh.node_coords[:,:2]) # Stratigraphic TIN initialisation if input.rockNb > 0: layNb = int((input.tEnd - input.tStart)/input.laytime)+2 bPts = recGrid.boundsPt ePts = recGrid.edgesPt if input.restart: straTIN = stratiWedge.stratiWedge(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.actlay, input.outDir, input.strath5file, input.rockNb, recGrid.regX, recGrid.regY, elevation, input.rockCk, cumdiff, input.rfolder, input.rstep) else: straTIN = stratiWedge.stratiWedge(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.actlay, input.outDir, input.strath5file, input.rockNb, recGrid.regX, recGrid.regY, elevation, input.rockCk) else: straTIN = None # Stratigraphic grid in case of carbonate and/or pelagic growth functions if input.carbonate: layNb = int((input.tEnd - input.tStart)/input.tDisplay)+2 bPts = recGrid.boundsPt ePts = recGrid.edgesPt if input.carbonate2: nbSed = 3 else: nbSed = 2 if input.restart: carbTIN = carbMesh.carbMesh(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.outDir, input.strath5file, input.baseMap, nbSed, recGrid.regX, recGrid.regY, elevation, input.rfolder, input.rstep) else: carbTIN = carbMesh.carbMesh(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.outDir, input.strath5file, input.baseMap, nbSed, recGrid.regX, recGrid.regY, elevation) else: carbTIN = None return recGrid, FVmesh, force, tMesh, lGIDs, fixIDs, \ inIDs, parentIDs, inGIDs, totPts, elevation, cumdiff, \ cumhill, cumfail, cumflex, strata, mapero, tinFlex, flex, wave, \ straTIN, carbTIN def reconstruct_mesh(recGrid, input, verbose=False): """ The following function is used after 3D displacements to: * rebuild model grids & meshes, * reinitialise Finite Volume discretisation, * redefine the partitioning when parallelisation is enable. Args: recGrid: class describing the regular grid characteristics. input: class containing XML input file parameters. verbose : (bool) when :code:`True`, output additional debug information (default: :code:`False`). Returns ------- FVmesh class describing the finite volume mesh. tMesh class describing the TIN mesh. lGIDs numpy 1D array containing the node indices. inIDs numpy 1D array containing the local node indices inside the mesh. inGIDs numpy 1D array containing the node indices inside the mesh. totPts total number of points in the mesh. """ walltime = time.clock() FVmesh = FVmethod.FVmethod(recGrid.tinMesh['vertices'], recGrid.tinMesh['triangles'], recGrid.tinMesh['edges']) # Perform partitioning by equivalent domain splitting partitionIDs, RowProc, ColProc = partitionTIN.simple(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1]) FVmesh.partIDs = partitionIDs # Get each partition global node ID inGIDs = np.where(partitionIDs == 0)[0] if verbose: print(" - partition TIN amongst processors ", time.clock() - walltime) # Define overlapping partitions walltime = time.clock() lGIDs, localTIN = partitionTIN.overlap(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1], RowProc, ColProc, 2*recGrid.resEdges, verbose) # Set parameters of the finite volume mesh tMesh = FVmethod.FVmethod(localTIN['vertices'], localTIN['triangles'], localTIN['edges']) # Define Finite Volume parameters totPts = len(recGrid.tinMesh['vertices'][:, 0]) FVmesh.neighbours = np.zeros((totPts, 20), dtype=np.int32, order='F') FVmesh.neighbours.fill(-2) FVmesh.edge_length =
np.zeros((totPts, 20), dtype=np.float, order='F')
numpy.zeros
# docking.py #import necessary modules. import krpc import time import numpy as np def acquire_target(conn,vessel,target): # conn is a krpc.connect() object, vessel is a vessel object, target is a string. # vessel_list is a list of all vessels currently in use. vessel_list = conn.space_center.vessels # n is the number of vessels currently in use. n = len(vessel_list) # the loop cycles through all vessels in the list, and if the vessel's name matches the target string provided, it sets it as the target vessel. for i in range(0,n): vessel_name = vessel_list[i].name if vessel_name == target: conn.space_center.target_vessel = vessel_list[i] return None def orbit_finder(conn,vessel): # IMPORTANT: The more circular the vessel's initial orbit is, the more accurate the orbit finder will be. # conn is a krpc.connect() object, vessel is a vessel object. while True: # retrieves the target vessel as a vessel object. target = conn.space_center.target_vessel # finds the period of the current orbit. vessel_period = vessel.orbit.period # creates an array of times ranging from 0 to the vessel's period to be used to test where best to fire engines for a Hohmann transfer. times = np.linspace(0,vessel_period,1000) # retrieves the current time. current_time = conn.space_center.ut # retrieves the vessel's current speed. current_v = vessel.orbit.speed #retrieves the current orbital radius. vessel_radius = vessel.orbit.radius # the Hohmann transfer orbit used to intercept the target will have a semi-major axis of the average of the original vessel orbit and the target orbit. needed_a = (vessel_radius + target.orbit.radius)/2 # retrieves the gravitational constant. G = conn.space_center.g # retrieves the mass of the body the vessel is orbiting. M = vessel.orbit.body.mass # plugs in the previously defined variables into the vis-viva equation to find the needed velocity. needed_v = np.sqrt(G*M*(2/vessel_radius - 1/needed_a)) # finds the delta V needed for the maneuver. delta_v = needed_v - current_v # the program loops over each time in the times array and creates a maneuver node at that time with the needed delta V. # Using the orbit created by the node, it then checks how close the target and vessel will be when the vessel is at apoapsis (since that is when the vessel will cross the target's orbit). # If the distance is close enough, the node is returned to be used as a variable in later programs. # If the distance is not close enough, the node is deleted and the program moves on to the next time. for i in times: maneuver_time = current_time + i node = vessel.control.add_node(maneuver_time, prograde=delta_v) possible_orbit = node.orbit time_to_pred_apoapsis = possible_orbit.period / 2 node_position = np.array(node.position(vessel.orbit.body.reference_frame)) node_unit_vector = np.array([node_position[0]/np.linalg.norm(node_position),node_position[1]/np.linalg.norm(node_position),node_position[2]/np.linalg.norm(node_position)]) possible_apoapsis = possible_orbit.apoapsis vessel_position_at_apoapsis = possible_apoapsis * -1 * node_unit_vector target_position_at_apoapsis = target.orbit.position_at(maneuver_time+time_to_pred_apoapsis,target.orbit.body.reference_frame) dist_vector = [vessel_position_at_apoapsis[0] - target_position_at_apoapsis[0],vessel_position_at_apoapsis[1] - target_position_at_apoapsis[1],vessel_position_at_apoapsis[2] - target_position_at_apoapsis[2]] dist = np.linalg.norm(dist_vector) if dist < 1700: return node else: vessel.control.remove_nodes() # If no maneuvers result in a close enough distance, the program warps the vessel forward in time, and then restarts the search. # Since the vessel has fast-forwarded, new times will be available to check. conn.space_center.rails_warp_factor = 4 time.sleep(3) conn.space_center.rails_warp_factor = 0 def first_slowdown(conn,vessel): # conn is a krpc.connect() object, vessel is a vessel object. # retrieves the target vessel as a vessel object. target = conn.space_center.target_vessel # initializes a reference frame centered on the target. This makes it easy to measure how far the vessel is from the target and to get the velocity relative to the target. target_ref = target.orbital_reference_frame # sets the autopilot reference frame to the target-centered reference frame. vessel.auto_pilot.reference_frame = target_ref # engages the autopilot. vessel.auto_pilot.engage() while True: # returns the velocity of the vessel relative to the target as a tuple. velocity_vector = vessel.flight(target_ref).velocity # using the velocity vector, it sets the direction the autopilot should point the vessel to retrograde. vessel.auto_pilot.target_direction = (-velocity_vector[0],-velocity_vector[1],-velocity_vector[2]) # retrieves the current time. current_time = conn.space_center.ut # returns the position of the vessel relative to the target as a tuple. current_position = vessel.orbit.position_at(current_time,target_ref) # finds the current distance by finding the magnitude of the current position. current_distance = np.linalg.norm(current_position) # when the vessel is 15000 meters away, the engines turn on to slow the vessel relative to the target. # once the vessel's relative speed is less than 40 m/s, the engines turn off and this function exits. if current_distance < 15000: conn.space_center.rails_warp_factor = 0 vessel.control.throttle = 1 if vessel.flight(target_ref).speed < 40: vessel.control.throttle = 0 return None # when the distance is greater than 30000 meters, the vessel warps to save time. Then it goes back to normal time flow. elif current_distance > 30000: conn.space_center.rails_warp_factor = 4 else: conn.space_center.rails_warp_factor = 0 def zeroing_inclination(conn,vessel): # conn is a krpc.connect() object, vessel is a vessel object. # retrieves the target vessel as a vessel object. target = conn.space_center.target_vessel # sets the autopilot reference frame to the vessel's orbital reference frame (so that the normal/anti-normal directions are basis vectors). vessel.auto_pilot.reference_frame = vessel.orbital_reference_frame # engages the autopilot. vessel.auto_pilot.engage() while True: # finds the relative incline of the target (in radians). incline = vessel.orbit.relative_inclination(target) # finds the angular separation from the periapsis to the ascending node (in radians). an_location = vessel.orbit.true_anomaly_at_an(target) # finds the angular separation between the vessel and the periapsis (in radians). vessel_location = vessel.orbit.true_anomaly # when the incline is small enough, the engines should turn off and the function will exit. if abs(incline) < 0.0005: vessel.control.throttle = 0 return None # if the inclination is positive, the vessel points in the anti-normal direction. If the inclination is negative, the vessel points in the normal direction. if incline > 0: vessel.auto_pilot.target_direction = (0,0,-1) else: vessel.auto_pilot.target_direction = (0,0,1) # if the angular separation of the ascending node and the vessel is low, the engines should fire. Otherwise, the engines should not fire. if abs(an_location-vessel_location) < 0.05: vessel.control.throttle = 1 else: vessel.control.throttle = 0 # controls if the vessel should warp forward in time depending on how close the ascending node and the vessel are (to save time). if abs(an_location-vessel_location) > np.pi / 12: conn.space_center.rails_warp_factor = 4 else: conn.space_center.rails_warp_factor = 0 def execute_transfer_burn(conn,vessel,node): # conn is a krpc.connect() object, vessel is a vessel object, and node is a node object. # arrived is a boolean that will ensure that if the vessel gets to the maneuver node, it will not stop the engines until the maneuver is complete. arrived = False while True: # sets the reference frame to the vessel's orbital reference frame so that the velocity vector is a basis vector. vessel.auto_pilot.reference_frame = vessel.orbital_reference_frame # engages the autopilot. vessel.auto_pilot.engage() # sets the target direction to prograde. vessel.auto_pilot.target_direction = (0,1,0) # if the vessel has ever been 20 seconds from the node, fire the engines. if node.time_to < 20 or arrived == True: arrived = True vessel.control.throttle = 1 # once the vessel orbit's apoapsis is higher than the node orbit's apoapsis, the burn is complete and the engines turn off, the node is deleted, and this function exits. if node.orbit.apoapsis_altitude < vessel.orbit.apoapsis_altitude: vessel.control.throttle = 0 node.remove() return None # determines if the vessel should warp forward in time to save time. if node.time_to > 400: conn.space_center.rails_warp_factor = 4 else: conn.space_center.rails_warp_factor = 0 def second_slowdown(conn,vessel): # conn is a krpc.connect() object, vessel is a vessel object. # retrieves the target vessel as a vessel object. target = conn.space_center.target_vessel # initializes a reference frame centered on the target. This makes it easy to measure how far the vessel is from the target and to get the velocity relative to the target. target_ref = target.orbital_reference_frame # sets the autopilot reference frame to the target-centered reference frame. vessel.auto_pilot.reference_frame = target_ref # engages the autopilot. vessel.auto_pilot.engage() while True: # returns the velocity of the vessel relative to the target as a tuple. velocity_vector = vessel.flight(target_ref).velocity # using the velocity vector, it sets the direction the autopilot should point the vessel to prograde. vessel.auto_pilot.target_direction = (velocity_vector[0],velocity_vector[1],velocity_vector[2]) # waits until the vessel is pointed in the right direction. vessel.auto_pilot.wait() # retrieves the current time. current_time = conn.space_center.ut # returns the position of the vessel relative to the target as a tuple. current_position = vessel.orbit.position_at(current_time,target_ref) # finds the current distance by finding the magnitude of the current position. current_distance =
np.linalg.norm(current_position)
numpy.linalg.norm
from unittest import TestCase import numpy as np import numpy.testing as npt from frispy import EOM class TestEOM(TestCase): def setUp(self): super().setUp() # Coordinates for the default self.phi = 0 self.theta = 0 self.vel = np.array([1, 0, 0]) self.ang_vel = np.array([0, 0, 62]) self.kwargs = { "area": 0.058556, # m^2 "I_zz": 0.002352, # kg*m^2 "I_xx": 0.001219, # kg*m^2 "mass": 0.175, # kg } def test_smoke(self): eom = EOM(**self.kwargs) assert eom is not None def test_eom_has_properties(self): eom = EOM(**self.kwargs) assert hasattr(eom, "model") assert hasattr(eom, "environment") def test_compute_forces(self): eom = EOM(**self.kwargs) result = eom.compute_forces(self.phi, self.theta, self.vel, self.ang_vel) for f in ["F_lift", "F_drag", "F_grav", "F_total", "Acc"]: assert f in result assert result[f].shape == (3,) assert result[f].dtype == np.float def test_F_drag_direction(self): eom = EOM(**self.kwargs) result = eom.compute_forces(self.phi, self.theta, self.vel, self.ang_vel) assert result["F_drag"][0] < 0 # backwards assert result["F_drag"][1] == 0 assert result["F_drag"][2] == 0 def test_F_lift_cross_component(self): eom = EOM(**self.kwargs) result = eom.compute_forces(self.phi, self.theta, self.vel, self.ang_vel) assert result["F_lift"][1] == 0 # from cross product def test_F_grav_direction(self): eom = EOM(**self.kwargs) result = eom.compute_forces(self.phi, self.theta, self.vel, self.ang_vel) assert result["F_grav"][0] == 0 assert result["F_grav"][1] == 0 assert result["F_grav"][2] < 0 # downwards def test_F_total_Acc_relation(self): eom = EOM(**self.kwargs) result = eom.compute_forces(self.phi, self.theta, self.vel, self.ang_vel) assert all(result["F_total"] == result["Acc"] * eom.mass) def test_compute_torques_smoke(self): eom = EOM(**self.kwargs) result = eom.compute_forces(self.phi, self.theta, self.vel, self.ang_vel) result = eom.compute_torques(self.vel, result) assert "torque_amplitude" in result assert isinstance(result["torque_amplitude"], float) for t in ["T_x_lab", "T_y_lab", "T_x", "T_y", "T_z", "T"]: assert t in result assert result[t].shape == (3,) assert result[t].dtype == np.float def test_compute_derivatives_smoke(self): eom = EOM(**self.kwargs) coords = np.array([0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 62]) der = eom.compute_derivatives(0, coords) assert der.shape == (12,) assert der.dtype == np.float def test_rotation_matrix(self): def trig_functions(phi, theta): return np.sin(phi), np.cos(phi), np.sin(theta),
np.cos(theta)
numpy.cos
""" This module contains our thermodynamic calculations. Calculation of pressure, fugacity coefficient, and max density are handled by an Eos object so that these functions can be used with any EOS. The thermodynamics module contains a series of wrapper to handle the inputs and outputs of these functions. """ import numpy as np from scipy import interpolate import scipy.optimize as spo from scipy.ndimage.filters import gaussian_filter1d import copy import logging import despasito.utils.general_toolbox as gtb from despasito import fundamental_constants as constants import despasito.utils.general_toolbox as gtb logger = logging.getLogger(__name__) def pressure_vs_volume_arrays( T, xi, Eos, min_density_fraction=(1.0 / 500000.0), density_increment=5.0, max_volume_increment=1.0e-4, pressure_min=100, maxiter=25, multfactor=2, extended_npts=20, max_density=None, density_max_opts={}, **kwargs ): r""" Output arrays with specific volume and pressure arrays calculated from the given EOS. This function is fundamental to every calculation, the options of which are passed through higher level calculation with the keyword variable ``density_opts``. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. min_density_fraction : float, Optional, default=(1.0/500000.0) Fraction of the maximum density used to calculate, and is equal to, the minimum density of the density array. The minimum density is the reciprocal of the maximum specific volume used to calculate the roots. density_increment : float, Optional, default=5.0 The increment between density values in the density array. max_volume_increment : float, Optional, default=1.0E-4 Maximum increment between specific volume array values. After conversion from density to specific volume, the increment values are compared to this value. pressure_min : float, Optional, default=100 Ensure pressure curve reaches down to this value multfactor : int, Optional, default=2 Multiplication factor to extend range extended_npts : int, Optional, default=20 Number of points in extended range maxiter : int, Optional, default=25 Number of times to multiply range by to obtain full pressure vs. specific volume curve max_density : float, Optional, default=None [mol/:math:`m^3`] Maximum molar density defined, if default of None is used then the Eos object method, density_max is used. density_max_opts : dict, Optional, default={} Keyword arguments for density_max method for EOS object Returns ------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_arrays' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.any(np.isnan(xi)): raise ValueError("Given mole fractions are NaN") if isinstance(xi, list): xi = np.array(xi) # estimate the maximum density based on the hard sphere packing fraction, part of EOS if not max_density: max_density = Eos.density_max(xi, T, **density_max_opts) elif gtb.isiterable(max_density): logger.error( " Maxrho should be type float. Given value: {}".format(max_density) ) max_density = max_density[0] if max_density > 1e5: raise ValueError( "Max density of {} mol/m^3 is not feasible, check parameters.".format( max_density ) ) # min rho is a fraction of max rho, such that minrho << rhogassat minrho = max_density * min_density_fraction # list of densities for P,rho and P,v if (max_density - minrho) < density_increment: raise ValueError( "Density range, {}, is less than increment, {}. Check parameters used in Eos.density_max().".format( (max_density - minrho), density_increment ) ) rholist = np.arange(minrho, max_density, density_increment) # check rholist to see when the spacing vspace = (1.0 / rholist[:-1]) - (1.0 / rholist[1:]) if np.amax(vspace) > max_volume_increment: vspaceswitch = np.where(vspace > max_volume_increment)[0][-1] rholist_2 = ( 1.0 / np.arange( 1.0 / rholist[vspaceswitch + 1], 1.0 / minrho, max_volume_increment )[::-1] ) rholist = np.append(rholist_2, rholist[vspaceswitch + 2 :]) # compute Pressures (Plist) for rholist Plist = Eos.pressure(rholist, T, xi) # Make sure enough of the pressure curve is obtained for i in range(maxiter): if Plist[0] > pressure_min: rhotmp = np.linspace(rholist[0] / 2, rholist[0], extended_npts)[:-1] Ptmp = Eos.pressure(rhotmp, T, xi) Plist = np.append(Ptmp, Plist) rholist = np.append(rhotmp, rholist) else: break # Flip Plist and rholist arrays Plist = Plist[:][::-1] rholist = rholist[:][::-1] vlist = 1.0 / rholist return vlist, Plist def pressure_vs_volume_spline(vlist, Plist): r""" Fit arrays of specific volume and pressure values to a cubic Univariate Spline. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Returns ------- Pvspline : obj Function object of pressure vs. specific volume roots : list List of specific volume roots. Subtract a system pressure from the output of Pvsrho to find density of vapor and/or liquid densities. extrema : list List of specific volume values corresponding to local minima and maxima. """ # Larger sigma value Psmoothed = gaussian_filter1d(Plist, sigma=1.0e-2) Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed) roots = Pvspline.roots().tolist() Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed, k=4) extrema = Pvspline.derivative().roots().tolist() if extrema: if len(extrema) > 2: extrema = extrema[0:2] # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if np.any(np.isnan(Plist)): roots = [np.nan] return Pvspline, roots, extrema def pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=[], **kwargs): r""" Plot pressure vs. specific volume. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Pvspline : obj Function object of pressure vs. specific volume markers : list, Optional, default=[] List of plot markers used in plot """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_plot' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) try: import matplotlib.pyplot as plt plt.figure(1) plt.plot(vlist, Plist, label="Orig.") plt.plot(vlist, Pvspline(vlist), label="Smoothed") plt.plot([vlist[0], vlist[-1]], [0, 0], "k") for k in range(len(markers)): plt.plot([markers[k], markers[k]], [min(Plist), max(Plist)], "k") plt.xlabel("Specific Volume [$m^3$/mol]"), plt.ylabel("Pressure [Pa]") # plt.ylim(min(Plist)/2,np.abs(min(Plist))/2) plt.legend(loc="best") plt.tight_layout() plt.show() except Exception: logger.error("Matplotlib package is not installed, could not plot") def calc_saturation_properties( T, xi, Eos, density_opts={}, tol=1e-6, Pconverged=1, **kwargs ): r""" Computes the saturated pressure, gas and liquid densities for a single component system. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` tol : float, Optional, default=1e-6 Tolerance to accept pressure value Pconverged : float, Optional, default=1.0 If the pressure is negative (under tension), we search from a value just above vacuum Returns ------- Psat : float [Pa] Saturation pressure given system information rhov : float [mol/:math:`m^3`] Density of vapor at saturation pressure rhol : float [mol/:math:`m^3`] Density of liquid at saturation pressure """ if len(kwargs) > 0: logger.debug( " 'calc_saturation_properties' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.count_nonzero(xi) != 1: if np.count_nonzero(xi > 0.1) != 1: raise ValueError( "Multiple components have compositions greater than 10%, check code for source" ) else: ind = np.where((xi > 0.1) == True)[0] raise ValueError( "Multiple components have compositions greater than 0. Do you mean to obtain the saturation pressure of {} with a mole fraction of {}?".format( Eos.beads[ind], xi[ind] ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) if not extrema or len(extrema) < 2 or np.any(np.isnan(roots)): logger.warning(" The component is above its critical point") Psat, rhol, rhov = np.nan, np.nan, np.nan else: ind_Pmin1 = np.argwhere(np.diff(Plist) > 0)[0][0] ind_Pmax1 = np.argmax(Plist[ind_Pmin1:]) + ind_Pmin1 Pmaxsearch = Plist[ind_Pmax1] Pminsearch = max(Pconverged, np.amin(Plist[ind_Pmin1:ind_Pmax1])) # Using computed Psat find the roots in the maxwell construction to give liquid (first root) and vapor (last root) densities Psat = spo.minimize_scalar( objective_saturation_pressure, args=(Plist, vlist), bounds=(Pminsearch, Pmaxsearch), method="bounded", ) Psat = Psat.x obj_value = objective_saturation_pressure(Psat, Plist, vlist) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist - Psat) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if obj_value < tol: logger.debug( " Psat found: {} Pa, obj value: {}, with {} roots and {} extrema".format( Psat, obj_value, np.size(roots), np.size(extrema) ) ) if len(roots) == 2: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:] - Psat, 1) vroot = -yroot / slope if vroot < 0.0: vroot = np.finfo(float).eps rho_tmp = spo.minimize( pressure_spline_error, 1.0 / vroot, args=(Psat, T, xi, Eos), bounds=[(1.0 / (vroot * 1e2), 1.0 / (1.1 * roots[-1]))], ) roots = np.append(roots, [1.0 / rho_tmp.x]) rhol = 1.0 / roots[0] rhov = 1.0 / roots[2] else: logger.warning( " Psat NOT found: {} Pa, obj value: {}, consider decreasing 'pressure_min' option in density_opts".format( Psat, obj_value ) ) Psat, rhol, rhov = np.nan, np.nan, np.nan tmpv, _, _ = calc_vapor_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) tmpl, _, _ = calc_liquid_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) logger.debug(" phiv: {}, phil: {}".format(tmpv, tmpl)) return Psat, rhol, rhov def objective_saturation_pressure(shift, Pv, vlist): r""" Objective function used to calculate the saturation pressure. Parameters ---------- shift : float [Pa] Guess in Psat value used to translate the pressure vs. specific volume curve Pv : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition vlist : numpy.ndarray [mol/:math:`m^3`] Specific volume array. Length depends on values in density_opts passed to :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- obj_value : float Output of objective function, the addition of the positive area between first two roots, and negative area between second and third roots, quantity squared. """ Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Pv - shift) if len(roots) >= 3: a = Pvspline.integral(roots[0], roots[1]) b = Pvspline.integral(roots[1], roots[2]) elif len(roots) == 2: a = Pvspline.integral(roots[0], roots[1]) # If the curve hasn't decayed to 0 yet, estimate the remaining area as a triangle. This isn't super accurate but we are just using the saturation pressure to get started. slope, yroot = np.polyfit(vlist[-4:], Pv[-4:] - shift, 1) b = ( Pvspline.integral(roots[1], vlist[-1]) + (Pv[-1] - shift) * (-yroot / slope - vlist[-1]) / 2 ) # raise ValueError("Pressure curve only has two roots. If the curve hasn't fully decayed, either increase maximum specific volume or decrease 'pressure_min' in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays`.") elif np.any(np.isnan(roots)): raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing pressure." ) else: raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing min_density_fraction" ) # pressure_vs_volume_plot(vlist, Pv-shift, Pvspline, markers=extrema) return (a + b) ** 2 def calc_vapor_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes vapor density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhov: P {} Pa, roots {} m^3/mol".format(P, roots)) flag_NoOpt = False l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]) < 0: try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vlist[0], args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) flag = 3 rho_tmp = np.nan elif l_roots == 1: if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) elif l_roots == 2: if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and yi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: # 3 roots logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure.".format( T, xi ) ) rho_tmp = 1.0 / roots[2] flag = 0 if flag in [0, 2]: # vapor or critical fluid tmp = [rho_tmp * 0.99, rho_tmp * 1.01] if rho_tmp * 1.01 > Eos.density_max(xi, T, maxpack=0.99): tmp[1] = Eos.density_max(xi, T, maxpack=0.99) if ( pressure_spline_error(tmp[0], P, T, xi, Eos) * pressure_spline_error(tmp[1], P, T, xi, Eos) ) < 0: rho_tmp = spo.brentq( pressure_spline_error, tmp[0], tmp[1], args=(P, T, xi, Eos), rtol=0.0000001, ) else: if Plist[0] < 0: logger.warning( " Density value could not be bounded with (rhomin,rhomax), {}. Using approximate density value".format( tmp ) ) elif not flag_NoOpt: rho_tmp = spo.least_squares( pressure_spline_error, rho_tmp, args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x logger.debug(" Vapor Density: {} mol/m^3, flag {}".format(rho_tmp, flag)) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) # Flag: 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas return rho_tmp, flag def calc_liquid_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes liquid density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhol : float [mol/:math:`m^3`] Density of liquid at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true """ if len(kwargs) > 0: logger.debug( " 'calc_liquid_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) # Get roots and local minima and maxima vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhol: P {} Pa, roots {} m^3/mol".format(P, str(roots))) flag_NoOpt = False if extrema: if len(extrema) == 1: logger.warning( " One extrema at {}, assume weird minima behavior. Check your parameters.".format( 1 / extrema[0] ) ) # Assess roots, what is the liquid density l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]): try: bounds = (1 / vlist[0], Eos.density_max(xi, T, maxpack=0.99)) rho_tmp = spo.least_squares( pressure_spline_error, np.mean(bounds), args=(P, T, xi, Eos), bounds=bounds, ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1.0 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and xi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: flag = 3 logger.error( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( str(T), str(xi) ) ) rho_tmp = np.nan # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) elif l_roots == 2: # 2 roots if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and xi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: # There should be three roots, but the values of specific volume don't go far enough to pick up the last one flag = 1 rho_tmp = 1.0 / roots[0] elif l_roots == 1: # 1 root if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and xi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: # 3 roots rho_tmp = 1.0 / roots[0] flag = 1 logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) if flag in [1, 2]: # liquid or critical fluid tmp = [rho_tmp * 0.99, rho_tmp * 1.01] P_tmp = [ pressure_spline_error(tmp[0], P, T, xi, Eos), pressure_spline_error(tmp[1], P, T, xi, Eos), ] if (P_tmp[0] * P_tmp[1]) < 0: rho_tmp = spo.brentq( pressure_spline_error, tmp[0], tmp[1], args=(P, T, xi, Eos), rtol=1e-7 ) else: if P_tmp[0] < 0: logger.warning( " Density value could not be bounded with (rhomin,rhomax), {}. Using approximate density value".format( tmp ) ) elif not flag_NoOpt: rho_tmp = spo.least_squares( pressure_spline_error, rho_tmp, args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x[0] logger.debug(" Liquid Density: {} mol/m^3, flag {}".format(rho_tmp, flag)) # Flag: 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true return rho_tmp, flag def pressure_spline_error(rho, Pset, T, xi, Eos): """ Calculate difference between set point pressure and computed pressure for a given density. Used to ensure an accurate value from the EOS rather than an estimate from a spline. Parameters ---------- rho : float [mol/:math:`m^3`] Density of system Pset : float [Pa] Guess in pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. Returns ------- pressure_spline_error : float [Pa] Difference in set pressure and predicted pressure given system conditions. """ Pguess = Eos.pressure(rho, T, xi) return Pguess - Pset def calc_vapor_fugacity_coefficient(P, T, yi, Eos, density_opts={}, **kwargs): r""" Computes vapor fugacity coefficient under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system yi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- phiv : float Fugacity coefficient of vapor at system pressure rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_fugacity_coefficient' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) rhov, flagv = calc_vapor_density(P, T, yi, Eos, density_opts) if flagv == 4: phiv = np.ones_like(yi) rhov = 0.0 logger.info(" rhov set to 0.") elif flagv == 3: phiv = np.array([np.nan, np.nan]) else: phiv = Eos.fugacity_coefficient(P, rhov, yi, T) return phiv, rhov, flagv def calc_liquid_fugacity_coefficient(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes liquid fugacity coefficient under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- phil : float Fugacity coefficient of liquid at system pressure rhol : float [mol/:math:`m^3`] Density of liquid at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true. """ if len(kwargs) > 0: logger.debug( " 'calc_liquid_fugacity_coefficient' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) rhol, flagl = calc_liquid_density(P, T, xi, Eos, density_opts) if flagl == 3: phil = np.array([np.nan, np.nan]) else: phil = Eos.fugacity_coefficient(P, rhol, xi, T) return phil, rhol, flagl def calc_new_mole_fractions(phase_1_mole_fraction, phil, phiv, phase=None): r""" Calculate the alternative phase composition given the composition and fugacity coefficients of one phase, and the fugacity coefficients of the target phase. Parameters ---------- phase_1_mole_fraction : numpy.ndarray Mole fraction of each component, sum(mole fraction) must equal 1.0 phil : float Fugacity coefficient of liquid at system pressure phiv : float Fugacity coefficient of vapor at system pressure phase : str, default=None Use either 'vapor' or 'liquid' to define the mole fraction **being computed**. Default is None and it will fail to ensure the user specifies the correct phase Returns ------- phase_2_mole_fraction : numpy.ndarray Mole fraction of each component computed from fugacity coefficients, sum(xi) should equal 1.0 when the solution is found, but the resulting values may not during an equilibrium calculation (e.g. bubble point). """ if phase == None or phase not in ["vapor", "liquid"]: raise ValueError( "The user must specify the desired mole fraction as either 'vapor' or 'liquid'." ) if np.sum(phase_1_mole_fraction) != 1.0: raise ValueError("Given mole fractions must add up to one.") if np.any(np.isnan(phiv)): raise ValueError("Vapor fugacity coefficients should not be NaN") if np.any(np.isnan(phil)): raise ValueError("Liquid fugacity coefficients should not be NaN") phase_2_mole_fraction = np.zeros(len(phase_1_mole_fraction)) ind = np.where(phase_1_mole_fraction != 0.0)[0] if phase == "vapor": for i in ind: phase_2_mole_fraction[i] = phase_1_mole_fraction[i] * phil[i] / phiv[i] elif phase == "liquid": for i in ind: phase_2_mole_fraction[i] = phase_1_mole_fraction[i] * phiv[i] / phil[i] return phase_2_mole_fraction def equilibrium_objective(phase_1_mole_fraction, phil, phiv, phase=None): r""" Computes the objective value used to determine equilibrium between phases. sum(phase_1_mole_fraction * phase_1_phi / phase_2_phi ) - 1.0, where `phase` is phase 2. Parameters ---------- phase_1_mole_fraction : numpy.ndarray Mole fraction of each component, sum(mole fraction) must equal 1.0 phil : float Fugacity coefficient of liquid at system pressure phiv : float Fugacity coefficient of vapor at system pressure phase : str, default=None Use either 'vapor' or 'liquid' to define the mole fraction **being computed**. Default is None and it will fail to ensure the user specifies the correct phase Returns ------- objective_value : numpy.ndarray Objective value indicating how close to equilibrium we are """ if phase == None or phase not in ["vapor", "liquid"]: raise ValueError( "The user must specify the desired mole fraction as either 'vapor' or 'liquid'." ) if np.sum(phase_1_mole_fraction) != 1.0: raise ValueError("Given mole fractions must add up to one.") if np.any(np.isnan(phiv)): raise ValueError("Vapor fugacity coefficients should not be NaN") if np.any(np.isnan(phil)): raise ValueError("Liquid fugacity coefficients should not be NaN") if phase == "vapor": objective_value = float((np.nansum(phase_1_mole_fraction * phil / phiv)) - 1.0) elif phase == "liquid": objective_value = float((np.nansum(phase_1_mole_fraction * phiv / phil)) - 1.0) return objective_value def _clean_plot_data(x_old, y_old): r""" Reorder array and remove duplicates, then repeat process for the corresponding array. Parameters ---------- x_old : numpy.ndarray Original independent variable y_old : numpy.ndarray Original dependent variable Returns ------- x_new : numpy.ndarray New independent variable y_new : numpy.ndarray New dependent variable """ x_new = np.sort(np.array(list(set(x_old)))) y_new = np.array([y_old[np.where(np.array(x_old) == x)[0][0]] for x in x_new]) return x_new, y_new def calc_Prange_xi( T, xi, yi, Eos, density_opts={}, Pmin=None, Pmax=None, maxiter=200, mole_fraction_options={}, ptol=1e-2, xytol=0.01, maxfactor=2, minfactor=0.5, Pmin_allowed=100, **kwargs ): r""" Obtain minimum and maximum pressure values for bubble point calculation. The liquid mole fraction is set and the objective function at each of those values is of opposite sign. Parameters ---------- T : float Temperature of the system [K] xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : float, Optional, default=200 Maximum number of iterations in both the loop to find Pmin and the loop to find Pmax Pmin : float, Optional, default=1000.0 [Pa] Minimum pressure in pressure range that restricts searched space. Pmax : float, Optional, default=100000 If no local minima or maxima are identified for the liquid composition at this temperature, this value is used as an initial estimate of the maximum pressure range. Pmin_allowed : float, Optional, default=100 Minimum allowed pressure in search, before looking for a super critical fluid mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm ptol : float, Optional, default=1e-2 If two iterations in the search for the maximum pressure are within this tolerance, the search is discontinued xytol : float, Optional, default=0.01 If the sum of absolute relative difference between the vapor and liquid mole fractions are less than this total, the pressure is assumed to be super critical and the maximum pressure is sought at a lower value. maxfactor : float, Optional, default=2 Factor to multiply by the pressure if it is too low (produces liquid or positive objective value). Not used if an unfeasible maximum pressure is found to bound the problem (critical for NaN result). minfactor : float, Optional, default=0.5 Factor to multiply by the minimum pressure if it is too high (produces critical value). Returns ------- Prange : list List of min and max pressure range Pguess : float An interpolated guess in the equilibrium pressure from Prange """ if len(kwargs) > 0: logger.debug( "'calc_Prange_xi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _yi_global # Guess a range from Pmin to the local max of the liquid curve vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) flag_hard_min = False if Pmin != None: flag_hard_min = True if gtb.isiterable(Pmin): Pmin = Pmin[0] elif len(extrema): Pmin = min(Pvspline(extrema)) if Pmin < 0: Pmin = 1e3 else: Pmin = 1e3 flag_hard_max = False if Pmax != None: flag_hard_max = True if gtb.isiterable(Pmax): Pmax = Pmax[0] elif len(extrema): Pmax = max(Pvspline(extrema)) else: Pmax = 1e5 if Pmax < Pmin: Pmax = Pmin * maxfactor Prange = np.array([Pmin, Pmax]) #################### Find Minimum Pressure and Objective Function Value ############### # Root of min from liquid curve is absolute minimum ObjRange = np.zeros(2) yi_range = yi flag_max = False flag_min = False flag_critical = False flag_liquid = False flag_vapor = False p = Prange[0] for z in range(maxiter): # Liquid properties phil, rhol, flagl = calc_liquid_fugacity_coefficient( p, T, xi, Eos, density_opts=density_opts ) if any(np.isnan(phil)): logger.error("Estimated minimum pressure is too high.") flag_max = True flag_liquid = True ObjRange[1] = np.inf Prange[1] = p if flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = minfactor * p if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan continue if flagl in [1, 2]: # 'liquid' phase is as expected # Calculate vapor phase properties and obj value yi_range, phiv_min, flagv_min = calc_vapor_composition( yi_range, xi, phil, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(xi, phil, phiv_min, phase="vapor") if np.any(np.isnan(yi_range)): logger.info("Estimated minimum pressure produces NaN") flag_max = True flag_liquid = True Prange[1] = p ObjRange[1] = obj phiv_max, flagv_max = phiv_min, flagv_min p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] # If within tolerance of liquid mole fraction elif np.sum(np.abs(xi - yi_range) / xi) < xytol and flagv_min == 2: logger.info( "Estimated minimum pressure reproduces xi: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if ( flag_max or flag_hard_max ) and flag_liquid: # If a liquid phase exists at a higher pressure, this must bound the lower pressure flag_min = True ObjRange[0] = obj Prange[0] = p p = (Prange[1] - Prange[0]) / 2 + Prange[0] if np.abs(Prange[1] - Prange[0]) < ptol: flag_critical = True flag_max = False ObjRange = [np.inf, np.inf] Prange = [Pmin, Pmax] if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * Pmin if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan elif ( flag_min or flag_hard_min ) and flag_vapor: # If the 'liquid' phase is vapor at a lower pressure, this must bound the upper pressure flag_max = True ObjRange[1] = obj Prange[1] = p phiv_max, flagv_max = phiv_min, flagv_min p = (Prange[1] - Prange[0]) / 2 + Prange[0] elif ( flag_critical ): # Couldn't find phase by lowering pressure, now raise it ObjRange[0] = obj Prange[0] = p if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * p if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: flag_max = True ObjRange[1] = obj Prange[1] = p phiv_max, flagv_max = phiv_min, flagv_min if flag_hard_min: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = minfactor * p if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan if p < Pmin_allowed: # Less than a kPa and can't find phase, go up flag_critical = True flag_max = False ObjRange = [np.inf, np.inf] Prange = [Pmin, Pmax] if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * Pmin if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan # If 'vapor' phase is liquid or unattainable elif flagv_min not in [0, 2, 4]: logger.info( "Estimated minimum pressure produces liquid: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if flag_hard_min and p <= Pmin: flag_critical = True if flag_max: flag_max = False flag_liquid = True if flag_critical: # Looking for a super critical fluid Prange[0] = p ObjRange[0] = obj flag_min = True if flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * maxfactor if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: # Looking for a vapor Prange[1] = p ObjRange[1] = obj flag_max = True phiv_max, flagv_max = phiv_min, flagv_min if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan # Found minimum pressure! elif obj > 0: logger.info( "Found estimated minimum pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) Prange[0] = p ObjRange[0] = obj break elif obj < 0: logger.info( "Estimated minimum pressure too high: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) flag_liquid = True flag_max = True ObjRange[1] = obj Prange[1] = p phiv_max, flagv_max = phiv_min, flagv_min if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan else: raise ValueError( "This shouldn't happen: xi {}, phil {}, flagl {}, yi {}, phiv {}, flagv {}, obj {}, flags: {} {} {}".format( xi, phil, flagl, yi_range, phiv_min, flagv_min, obj, flag_min, flag_max, flag_critical, ) ) else: logger.info( "Estimated minimum pressure produced vapor as a 'liquid' phase: {}, Range {}".format( p, Prange ) ) flag_vapor = True flag_min = True Prange[0] = p ObjRange[0] = np.nan if flag_max or flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = maxfactor * Prange[0] if ( (flag_hard_min or flag_min) and (flag_hard_max or flag_max) and (p < Prange[0] or p > Prange[1]) ): # if (p < Prange[0] and Prange[0] != Prange[1]) or (flag_max and p > Prange[1]): p = (Prange[1] - Prange[0]) / 1 + Prange[0] if p <= 0.0: raise ValueError( "Pressure, {}, cannot be equal to or less than zero. Given composition, {}, and T {}".format( p, xi, T ) ) if flag_hard_min and Pmin == p: raise ValueError( "In searching for the minimum pressure, the range {}, converged without a solution".format( Prange ) ) if z == maxiter - 1: raise ValueError( "Maximum Number of Iterations Reached: Proper minimum pressure for liquid density could not be found" ) # A flag value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas #################### Find Maximum Pressure and Objective Function Value ############### # Be sure guess in upper bound is larger than lower bound if Prange[1] <= Prange[0]: Prange[1] = Prange[0] * maxfactor ObjRange[1] == 0.0 flag_min = ( False ) # Signals that the objective value starts to increase again and we must go back p = Prange[1] Parray = [Prange[1]] ObjArray = [ObjRange[1]] for z in range(maxiter): # Liquid properties phil, rhol, flagl = calc_liquid_fugacity_coefficient( p, T, xi, Eos, density_opts=density_opts ) if any(np.isnan(phil)): logger.info( "Liquid fugacity coefficient should not be NaN, pressure could be too high." ) flag_max = True Prange[1] = p ObjRange[1] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] continue # Calculate vapor phase properties and obj value yi_range, phiv_max, flagv_max = calc_vapor_composition( yi_range, xi, phil, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(xi, phil, phiv_max, phase="vapor") # If 'vapor' phase is a liquid if flagv_max not in [0, 2, 4] or np.any(np.isnan(yi_range)): logger.info( "New Maximum Pressure: {} isn't vapor, flag={}, Obj Func: {}, Range {}".format( p, flagv_max, obj, Prange ) ) if flag_critical: # looking for critical fluid Prange[0] = p ObjRange[0] = obj if flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * maxfactor if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: # Looking for vapor phase flag_max = True Prange[1] = p ObjRange[1] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] # If 'liquid' composition is reproduced elif np.sum(np.abs(xi - yi_range) / xi) < xytol: # If less than 2% logger.info( "Estimated Maximum Pressure Reproduces xi: {}, Obj. Func: {}".format( p, obj ) ) flag_max = True ObjRange[1] = obj Prange[1] = p p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] # Suitable objective value found elif obj < 0: logger.info( "New Max Pressure: {}, flag={}, Obj Func: {}, Range {}".format( p, flagv_max, obj, Prange ) ) if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_min = False break else: Parray.append(p) ObjArray.append(obj) # In an objective value "well" if (z > 0 and ObjArray[-1] > 1.1 * ObjArray[-2]) or flag_min: if not flag_min: flag_min = True Prange[1] = p ObjRange[1] = obj logger.info( "Maximum Pressure (if it exists) between Pressure: {} and Obj Range: {}".format( Prange, ObjRange ) ) P0 = np.mean(Prange) scale_factor = 10 ** (np.ceil(np.log10(P0))) args = (xi, T, Eos, density_opts, mole_fraction_options, scale_factor) p = gtb.solve_root( lambda x, xi, T, Eos, density_opts, mole_fraction_options, scale_factor: objective_bubble_pressure( x * scale_factor, xi, T, Eos, density_opts, mole_fraction_options, ), args=args, x0=P0 / scale_factor, method="TNC", bounds=Prange / scale_factor, ) p = p[0] * scale_factor obj = objective_bubble_pressure( p, xi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if p < 0: parray = np.linspace(Prange[0], Prange[1], 20) obj_array = [] for ptmp in parray: obj_tmp = objective_dew_pressure( ptmp, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) obj_array.append(obj_tmp) spline = interpolate.Akima1DInterpolator(parray, obj_array) p_min = spline.derivative().roots() if len(p_min) > 1: obj_tmp = [] for p_min_tmp in p_min: obj_tmp.append( objective_bubble_pressure( p_min_tmp, xi, T, Eos, density_opts=density_opts ) ) p_min = p_min[obj_tmp == np.nanmin(obj_tmp)] elif len(p_min) == 0: logger.error( "Could not find minimum in pressure range:\n Pressure: {}\n Obj Value: {}".format( parray, obj_array ) ) p = p_min obj = objective_bubble_pressure( p, xi, T, Eos, density_opts=density_opts ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if obj > 0: Prange[1] = p ObjRange[1] = obj logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_min = False else: logger.error( "Could not find maximum in pressure range:\n Pressure range {} best {}\n Obj Value range {} best {}".format( Prange, p, ObjRange, obj ) ) break elif flag_max: logger.info( "New Minimum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) Prange[0] = p ObjRange[0] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: logger.info( "New Maximum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if not flag_hard_max: if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] if flag_hard_max: p = (Prange[1] - Prange[0]) * np.random.rand(1)[0] + Prange[0] else: p = np.nanmax([-intercept / slope, maxfactor * Prange[1]]) if p <= 0.0: raise ValueError( "Pressure, {}, cannot be equal to or less than zero. Given composition, {}, and T {}".format( p, xi, T ) ) if np.abs(Prange[1] - Prange[0]) < ptol: raise ValueError( "In searching for the minimum pressure, the range {}, converged without a solution".format( Prange ) ) if z == maxiter - 1 or flag_min: if flag_min: logger.error( "Cannot reach objective value of zero. Final Pressure: {}, Obj. Func: {}".format( p, obj ) ) else: logger.error( "Maximum Number of Iterations Reached: A change in sign for the objective function could not be found, inspect progress" ) Prange = np.array([np.nan, np.nan]) Pguess = np.nan else: logger.info( "[Pmin, Pmax]: {}, Obj. Values: {}".format(str(Prange), str(ObjRange)) ) logger.info("Initial guess in pressure: {} Pa".format(Pguess)) _yi_global = yi_range return Prange, Pguess def calc_Prange_yi( T, xi, yi, Eos, density_opts={}, mole_fraction_options={}, Pmin=None, Pmax=None, Pmin_allowed=100, maxiter=200, ptol=1e-2, xytol=0.01, maxfactor=2, minfactor=0.5, **kwargs ): r""" Obtain min and max pressure values. The vapor mole fraction is set and the objective function at each of those values is of opposite sign. Parameters ---------- T : float Temperature of the system [K] xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : float, Optional, default=200 Maximum number of iterations in both the loop to find Pmin and the loop to find Pmax Pmin : float, Optional, default=1000.0 [Pa] Minimum pressure in pressure range that restricts searched space. Used if local minimum isn't available for pressure curve for vapor composition. Pmax : float, Optional, default=100000 If no local minima or maxima are identified for the liquid composition at this temperature, this value is used as an initial estimate of the maximum pressure range. Pmin_allowed : float, Optional, default=100 Minimum allowed pressure in search, before looking for a super critical fluid mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm ptol : float, Optional, default=1e-2 If two iterations in the search for the maximum pressure are within this tolerance, the search is discontinued xytol : float, Optional, default=0.01 If the sum of absolute relative difference between the vapor and liquid mole fractions are less than this total, the pressure is assumed to be super critical and the maximum pressure is sought at a lower value. maxfactor : float, Optional, default=2 Factor to multiply by the pressure if it is too low (produces liquid or positive objective value). Not used if an unfeasible maximum pressure is found to bound the problem (critical for NaN result). minfactor : float, Optional, default=0.5 Factor to multiply by the minimum pressure if it is too high (produces critical value). Returns ------- Prange : list List of min and max pressure range Pguess : float An interpolated guess in the equilibrium pressure from Prange """ if len(kwargs) > 0: logger.debug( "'calc_Prange_yi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _xi_global # Guess a range from Pmin to the local max of the liquid curve vlist, Plist = pressure_vs_volume_arrays(T, yi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) # Calculation the highest pressure possible flag_hard_min = False if Pmin != None: flag_hard_min = True if gtb.isiterable(Pmin): Pmin = Pmin[0] elif len(extrema): Pmin = min(Pvspline(extrema)) if Pmin < 0: Pmin = 1e3 else: Pmin = 1e3 flag_hard_max = False if Pmax != None: flag_hard_max = True if gtb.isiterable(Pmax): Pmax = Pmax[0] elif len(extrema): Pmax = max(Pvspline(extrema)) else: Pmax = 1e5 if Pmax < Pmin: Pmax = Pmin * maxfactor Prange = np.array([Pmin, Pmax]) ObjRange = np.zeros(2) xi_range = xi #################### Find Minimum Pressure and Objective Function Value ############### flag_min = False flag_max = False flag_critical = False flag_vapor = False p = Prange[0] for z in range(maxiter): # Vapor properties phiv, _, flagv = calc_vapor_fugacity_coefficient( p, T, yi, Eos, density_opts=density_opts ) if any(np.isnan(phiv)): logger.error("Estimated minimum pressure is too high.") flag_max = True ObjRange[1] = np.inf Prange[1] = p if flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = minfactor * p if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan continue if flagv in [0, 2, 4]: # Calculate the liquid phase properties xi_range, phil_min, flagl_min = calc_liquid_composition( xi_range, yi, phiv, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(yi, phil_min, phiv, phase="liquid") if np.any(np.isnan(xi_range)): logger.info("Estimated Minimum Pressure produces NaN") flag_max = True flag_vapor = True Prange[1] = p ObjRange[1] = obj if flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor elif ( np.sum(np.abs(yi - xi_range) / yi) < xytol and flagl_min == 2 ): # If within 2% of liquid mole fraction logger.info( "Estimated Minimum Pressure Reproduces yi: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if ( flag_critical ): # Couldn't find phase by lowering pressure, now raise it ObjRange[0] = obj Prange[0] = p if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * p if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: flag_max = True ObjRange[1] = obj Prange[1] = p phil_max, flagl_max = phil_min, flagl_min if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = minfactor * p if p < Pmin_allowed: # Less than a kPa and can't find phase, go up flag_critical = True flag_max = False ObjRange = [np.inf, np.inf] Prange = [Pmin, Pmax] if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * Pmin if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan elif obj < 0: Prange[0] = p ObjRange[0] = obj logger.info( "Obtained estimated Minimum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) break elif obj > 0: flag_max = True logger.info( "Estimated Minimum Pressure too High: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) ObjRange[1] = obj Prange[1] = p phil_max, flagl_max = phil_min, flagl_min p = (Prange[1] - Prange[0]) * minfactor + Prange[0] else: logger.info( "Estimated Minimum Pressure Produced Liquid instead of Vapor Phase: {}, Range {}".format( p, Prange ) ) if flag_hard_min and p <= Pmin: flag_critical = True if flag_max: flag_max = False if flag_critical: # Looking for a super critical fluid Prange[0] = p ObjRange[0] = obj flag_min = True if flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * maxfactor if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: # Looking for a vapor Prange[1] = p ObjRange[1] = obj flag_max = True if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan if Prange[0] > Prange[1]: if flag_max and not flag_min and not flag_hard_min: Prange[0] = minfactor * Prange[1] ObjRange[0] = ObjRange[1] elif not flag_hard_max: Prange[1] = maxfactor * Prange[0] ObjRange[1] = ObjRange[0] else: raise ValueError("Pmin should never be greater than Pmax") if ( (flag_max or flag_hard_max) and (flag_min or flag_hard_min) and not Prange[0] <= p <= Prange[1] ): p = (Prange[1] - Prange[0]) * np.random.rand(1)[0] + Prange[0] if flag_hard_min and Pmin == p: raise ValueError( "In searching for the minimum pressure, the range {}, converged without a solution".format( Prange ) ) if p <= 0.0: raise ValueError( "Pressure, {}, cannot be equal to or less than zero. Given composition, {}, and T {}, results in a supercritical value without a coexistent fluid.".format( p, xi, T ) ) if z == maxiter - 1: raise ValueError( "Maximum Number of Iterations Reached: Proper minimum pressure for liquid density could not be found" ) # Be sure guess in pressure is larger than lower bound if Prange[1] <= Prange[0]: Prange[1] = Prange[0] * 1.1 if z == 0: ObjRange[1] == 0.0 ## Check Pmax flag_sol = False flag_vapor = False flag_min = False p = Prange[1] Parray = [Prange[1]] ObjArray = [ObjRange[1]] for z in range(maxiter): # Calculate objective value phiv, _, flagv = calc_vapor_fugacity_coefficient( p, T, yi, Eos, density_opts=density_opts ) xi_range, phil, flagl = calc_liquid_composition( xi_range, yi, phiv, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(yi, phil, phiv, phase="liquid") if z == 0: ObjRange[1] = obj if flagv not in [0, 2, 4]: # Ensure vapor is produced flag_vapor = True Prange[1] = p ObjRange[1] = obj logger.info( "New Max Pressure: {} doesn't produce vapor, flag={}, Obj Func: {}, Range {}".format( Prange[1], flagv, ObjRange[1], Prange ) ) p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] elif obj > 0: # Check pressure range if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj logger.info( "New Max Pressure: {}, flag={}, Obj Func: {}, Range {}".format( Prange[1], flagv, ObjRange[1], Prange ) ) logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_sol = True flag_min = False break elif flag_vapor: Prange[0] = p ObjRange[0] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] logger.info( "New Max Pressure: {}, Obj. Func: {}, Range {}".format( Prange[0], ObjRange[0], Prange ) ) else: Parray.append(p) ObjArray.append(obj) # In an objective value "well" if (z > 0 and ObjArray[-1] < 1.1 * ObjArray[-2]) or flag_min: if not flag_min: flag_min = True Prange[1] = p ObjRange[1] = obj logger.info( "Maximum Pressure (if it exists) between Pressure: {} and Obj Range: {}".format( Prange, ObjRange ) ) P0 = np.mean(Prange) scale_factor = 10 ** (np.ceil(np.log10(P0))) args = (yi, T, Eos, density_opts, mole_fraction_options, scale_factor) p = gtb.solve_root( lambda x, yi, T, Eos, density_opts, mole_fraction_options, scale_factor: -objective_dew_pressure( x * scale_factor, yi, T, Eos, density_opts, mole_fraction_options, ), args=args, x0=P0 / scale_factor, method="TNC", bounds=Prange / scale_factor, ) p = p[0] * scale_factor obj = objective_dew_pressure( p, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if p < 0: parray = np.linspace(Prange[0], Prange[1], 20) obj_array = [] for ptmp in parray: obj_tmp = objective_dew_pressure( ptmp, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) obj_array.append(obj_tmp) spline = interpolate.Akima1DInterpolator(parray, obj_array) p_min = spline.derivative().roots() if len(p_min) > 1: obj_tmp = [] for p_min_tmp in p_min: obj_tmp.append( objective_bubble_pressure( p_min_tmp, xi, T, Eos, density_opts=density_opts ) ) p_min = p_min[obj_tmp == np.nanmin(obj_tmp)] elif len(p_min) == 0: logger.error( "Could not find minimum in pressure range:\n Pressure: {}\n Obj Value: {}".format( parray, obj_array ) ) p = p_min obj = objective_bubble_pressure( p, xi, T, Eos, density_opts=density_opts ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if obj > 0: Prange[1] = p ObjRange[1] = obj logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_min = False else: logger.error( "Could not find maximum in pressure range:\n Pressure range {} best {}\n Obj Value range {} best {}".format( Prange, p, ObjRange, obj ) ) break elif flag_hard_max: logger.info( "New Minimum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) Prange[0] = p ObjRange[0] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: logger.info( "New Maximum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if not flag_hard_max: if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] p = np.nanmax([-intercept / slope, maxfactor * Prange[1]]) if z == maxiter - 1 or flag_min: if flag_min: logger.error( "Cannot reach objective value of zero. Final Pressure: {}, Obj. Func: {}".format( p, obj ) ) else: logger.error( "Maximum Number of Iterations Reached: A change in sign for the objective function could not be found, inspect progress" ) Prange = np.array([np.nan, np.nan]) Pguess = np.nan elif flag_sol: logger.info( "[Pmin, Pmax]: {}, Obj. Values: {}".format(str(Prange), str(ObjRange)) ) logger.info("Initial guess in pressure: {} Pa".format(Pguess)) else: logger.error( "Maximum Number of Iterations Reached: A change in sign for the objective function could not be found, inspect progress" ) _xi_global = xi_range return Prange, Pguess def calc_vapor_composition( yi, xi, phil, P, T, Eos, density_opts={}, maxiter=50, tol=1e-6, tol_trivial=0.05, **kwargs ): r""" Find vapor mole fraction given pressure, liquid mole fraction, and temperature. Objective function is the sum of the predicted "mole numbers" predicted by the computed fugacity coefficients. Note that by "mole number" we mean that the prediction will only sum to one when the correct pressure is chosen in the outer loop. In this inner loop, we seek to find a mole fraction that is converged to reproduce itself in a prediction. If it hasn't, the new "mole numbers" are normalized into mole fractions and used as the next guess. In the case that a guess doesn't produce a gas or critical fluid, we use another function to produce a new guess. Parameters ---------- yi : numpy.ndarray Guess in vapor mole fraction of each component, sum(xi) should equal 1.0 xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 phil : float Fugacity coefficient of liquid at system pressure P : float [Pa] Pressure of the system T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : int, Optional, default=50 Maximum number of iteration for both the outer pressure and inner vapor mole fraction loops tol : float, Optional, default=1e-6 Tolerance in sum of predicted yi "mole numbers" tol_trivial : float, Optional, default=0.05 If the vapor and liquid mole fractions are within this tolerance, search for a different composition kwargs : NA, Optional Other other keyword arguments for :func:`~despasito.thermodynamics.calc.find_new_yi` Returns ------- yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 phiv : float Fugacity coefficient of vapor at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if np.any(np.isnan(phil)): raise ValueError( "Cannot obtain vapor mole fraction with fugacity coefficients of NaN" ) global _yi_global yi_total = [np.sum(yi)] yi /= np.sum(yi) flag_check_vapor = True # Make sure we only search for vapor compositions once flag_trivial_sol = ( True ) # Make sure we only try to find alternative to trivial solution once logger.info(" Solve yi: P {}, T {}, xi {}, phil {}".format(P, T, xi, phil)) for z in range(maxiter): yi_tmp = yi / np.sum(yi) # Try yi phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi_tmp, Eos, density_opts=density_opts ) if ( any(np.isnan(phiv)) or flagv == 1 ) and flag_check_vapor: # If vapor density doesn't exist flag_check_vapor = False if all(yi_tmp != 0.0) and len(yi_tmp) == 2: logger.debug(" Composition doesn't produce a vapor, let's find one!") yi_tmp = find_new_yi( P, T, phil, xi, Eos, density_opts=density_opts, **kwargs ) flag_trivial_sol = False if np.any(np.isnan(yi_tmp)): phiv, _, flagv = [np.nan, np.nan, 3] yinew = yi_tmp break else: phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi_tmp, Eos, density_opts=density_opts ) yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") else: logger.debug( " Composition doesn't produce a vapor, we need a function to search compositions for more than two components." ) yinew = yi elif np.sum(np.abs(xi - yi_tmp) / xi) < tol_trivial and flag_trivial_sol: flag_trivial_sol = False if all(yi_tmp != 0.0) and len(yi_tmp) == 2: logger.debug( " Composition produces trivial solution, let's find a different one!" ) yi_tmp = find_new_yi( P, T, phil, xi, Eos, density_opts=density_opts, **kwargs ) flag_check_vapor = False else: logger.debug( " Composition produces trivial solution, using random guess to reset" ) yi_tmp = np.random.rand(len(yi_tmp)) yi_tmp /= np.sum(yi_tmp) if np.any(np.isnan(yi_tmp)): phiv, _, flagv = [np.nan, np.nan, 3] yinew = yi_tmp break else: phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi_tmp, Eos, density_opts=density_opts ) yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") else: yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") yinew[np.isnan(yinew)] = 0.0 yi2 = yinew / np.sum(yinew) phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) if any(np.isnan(phiv)): phiv = np.nan logger.error( "Fugacity coefficient of vapor should not be NaN, pressure could be too high." ) # Check for bouncing between values if len(yi_total) > 3: tmp1 = np.abs(np.sum(yinew) - yi_total[-2]) + np.abs( yi_total[-1] - yi_total[-3] ) if tmp1 < np.abs(np.sum(yinew) - yi_total[-1]) and flagv != flagv2: logger.debug( " Composition bouncing between values, let's find the answer!" ) bounds = np.sort([yi_tmp[0], yi2[0]]) yi2, obj = bracket_bounding_yi( P, T, phil, xi, Eos, bounds=bounds, density_opts=density_opts ) phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) _yi_global = yi2 logger.info( " Inner Loop Final (from bracketing bouncing values) yi: {}, Final Error on Smallest Fraction: {}".format( yi2, obj ) ) break logger.debug( " yi guess {}, yi calc {}, phiv {}, flag {}".format( yi_tmp, yinew, phiv, flagv ) ) logger.debug( " Old yi_total: {}, New yi_total: {}, Change: {}".format( yi_total[-1], np.sum(yinew), np.sum(yinew) - yi_total[-1] ) ) # Check convergence if abs(np.sum(yinew) - yi_total[-1]) < tol: ind_tmp = np.where(yi_tmp == min(yi_tmp[yi_tmp > 0]))[0] if np.abs(yi2[ind_tmp] - yi_tmp[ind_tmp]) / yi_tmp[ind_tmp] < tol: _yi_global = yi2 logger.info( " Inner Loop Final yi: {}, Final Error on Smallest Fraction: {}%".format( yi2, np.abs(yi2[ind_tmp] - yi_tmp[ind_tmp]) / yi_tmp[ind_tmp] * 100, ) ) break if z < maxiter - 1: yi_total.append(np.sum(yinew)) yi = yinew ## If yi wasn't found in defined number of iterations ind_tmp = np.where(yi_tmp == min(yi_tmp[yi_tmp > 0.0]))[0] if flagv == 3: yi2 = yinew / np.sum(yinew) logger.info(" Could not converged mole fraction") phiv2 = np.full(len(yi_tmp), np.nan) flagv2 = np.nan elif z == maxiter - 1: yi2 = yinew / np.sum(yinew) tmp = np.abs(yi2[ind_tmp] - yi_tmp[ind_tmp]) / yi_tmp[ind_tmp] logger.warning( " More than {} iterations needed. Error in Smallest Fraction: {}%".format( maxiter, tmp * 100 ) ) if tmp > 0.1: # If difference is greater than 10% yinew = find_new_yi( P, T, phil, xi, Eos, density_opts=density_opts, **kwargs ) yi2 = yinew / np.sum(yinew) y1 = spo.least_squares( objective_find_yi, yi2[0], bounds=(0.0, 1.0), args=(P, T, phil, xi, Eos, density_opts), ) yi = y1.x[0] yi2 = np.array([yi, 1 - yi]) phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) obj = objective_find_yi(yi2, P, T, phil, xi, Eos, density_opts=density_opts) logger.warning( " Find yi with root algorithm, yi {}, obj {}".format(yi2, obj) ) if obj > tol: logger.error("Could not converge mole fraction") phiv2 = np.full(len(yi_tmp), np.nan) flagv2 = 3 return yi2, phiv2, flagv2 def calc_liquid_composition( xi, yi, phiv, P, T, Eos, density_opts={}, maxiter=20, tol=1e-6, tol_trivial=0.05, **kwargs ): r""" Find liquid mole fraction given pressure, vapor mole fraction, and temperature. Objective function is the sum of the predicted "mole numbers" predicted by the computed fugacity coefficients. Note that by "mole number" we mean that the prediction will only sum to one when the correct pressure is chosen in the outer loop. In this inner loop, we seek to find a mole fraction that is converged to reproduce itself in a prediction. If it hasn't, the new "mole numbers" are normalized into mole fractions and used as the next guess. In the case that a guess doesn't produce a liquid or critical fluid, we use another function to produce a new guess. Parameters ---------- xi : numpy.ndarray Guess in liquid mole fraction of each component, sum(xi) should equal 1.0 yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 phiv : float Fugacity coefficient of liquid at system pressure P : float [Pa] Pressure of the system T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : int, Optional, default=20 Maximum number of iteration for both the outer pressure and inner vapor mole fraction loops tol : float, Optional, default=1e-6 Tolerance in sum of predicted xi "mole numbers" tol_trivial : float, Optional, default=0.05 If the vapor and liquid mole fractions are within this tolerance, search for a different composition kwargs : dict, Optional Optional keywords for :func:`~despasito.thermodynamics.calc.find_new_xi` Returns ------- xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 phil : float Fugacity coefficient of liquid at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true """ global _xi_global if np.any(np.isnan(phiv)): raise ValueError( "Cannot obtain liquid mole fraction with fugacity coefficients of NaN" ) xi /= np.sum(xi) xi_total = [np.sum(xi)] flag_check_liquid = True # Make sure we only search for liquid compositions once flag_trivial_sol = ( True ) # Make sure we only try to find alternative to trivial solution once logger.info(" Solve xi: P {}, T {}, yi {}, phiv {}".format(P, T, yi, phiv)) for z in range(maxiter): xi_tmp = xi / np.sum(xi) # Try xi phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi_tmp, Eos, density_opts=density_opts ) if (any(np.isnan(phil)) or flagl in [0, 4]) and flag_check_liquid: flag_check_liquid = False if all(xi_tmp != 0.0) and len(xi_tmp) == 2: logger.debug( " Composition doesn't produce a liquid, let's find one!" ) xi_tmp = find_new_xi( P, T, phiv, yi, Eos, density_opts=density_opts, **kwargs ) flag_trivial_sol = False if np.any(np.isnan(xi_tmp)): phil, rhol, flagl = [np.nan, np.nan, 3] xinew = xi_tmp break else: phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi_tmp, Eos, density_opts=density_opts ) xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") else: logger.debug( " Composition doesn't produce a liquid, we need a function to search compositions for more than two components." ) xinew = xi elif np.sum(np.abs(yi - xi_tmp) / yi) < tol_trivial and flag_trivial_sol: flag_trivial_sol = False if all(xi_tmp != 0.0) and len(xi_tmp) == 2: logger.debug( " Composition produces trivial solution, let's find a different one!" ) xi_tmp = find_new_xi( P, T, phiv, yi, Eos, density_opts=density_opts, **kwargs ) flag_check_liquid = False else: logger.debug( " Composition produces trivial solution, using random guess to reset" ) xi_tmp = np.random.rand(len(xi_tmp)) xi_tmp /= np.sum(xi_tmp) if np.any(np.isnan(xi_tmp)): phil, rhol, flagl = [np.nan, np.nan, 3] xinew = xi_tmp break else: phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi_tmp, Eos, density_opts=density_opts ) xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") else: xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") xinew[np.isnan(xinew)] = 0.0 logger.debug( " xi guess {}, xi calc {}, phil {}".format( xi_tmp, xinew / np.sum(xinew), phil ) ) logger.debug( " Old xi_total: {}, New xi_total: {}, Change: {}".format( xi_total[-1], np.sum(xinew), np.sum(xinew) - xi_total[-1] ) ) # Check convergence if abs(np.sum(xinew) - xi_total[-1]) < tol: ind_tmp = np.where(xi_tmp == min(xi_tmp[xi_tmp > 0]))[0] xi2 = xinew / np.sum(xinew) if np.abs(xi2[ind_tmp] - xi_tmp[ind_tmp]) / xi_tmp[ind_tmp] < tol: _xi_global = xi2 logger.info( " Inner Loop Final xi: {}, Final Error on Smallest Fraction: {}%".format( xi2, np.abs(xi2[ind_tmp] - xi_tmp[ind_tmp]) / xi_tmp[ind_tmp] * 100, ) ) break if z < maxiter - 1: xi_total.append(np.sum(xinew)) xi = xinew xi2 = xinew / np.sum(xinew) ind_tmp = np.where(xi_tmp == min(xi_tmp[xi_tmp > 0]))[0] if z == maxiter - 1: tmp = np.abs(xi2[ind_tmp] - xi_tmp[ind_tmp]) / xi_tmp[ind_tmp] logger.warning( " More than {} iterations needed. Error in Smallest Fraction: {} %%".format( maxiter, tmp * 100 ) ) if tmp > 0.1: # If difference is greater than 10% xinew = find_new_xi( P, T, phiv, yi, Eos, density_opts=density_opts, **kwargs ) xinew = spo.least_squares( objective_find_xi, xinew[0], bounds=(0.0, 1.0), args=(P, T, phiv, yi, Eos, density_opts), ) xi = xinew.x[0] xi_tmp = np.array([xi, 1 - xi]) obj = objective_find_xi(xi_tmp, P, T, phiv, yi, Eos, density_opts=density_opts) logger.warning( " Find xi with root algorithm, xi {}, obj {}".format(xi_tmp, obj) ) return xi_tmp, phil, flagl def find_new_yi( P, T, phil, xi, Eos, bounds=(0.01, 0.99), npoints=30, density_opts={}, **kwargs ): r""" Search vapor mole fraction combinations for a new estimate that produces a vapor density. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system phil : float Fugacity coefficient of liquid at system pressure xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. bounds : tuple, Optional, default=(0.01, 0.99) These bounds dictate the lower and upper boundary for the first component in a binary system. npoints : float, Optional, default=30 Number of points to test between the bounds. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 """ if len(kwargs) > 0: logger.debug( " 'find_new_yi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) yi_ext = np.linspace(bounds[0], bounds[1], npoints) # Guess for yi obj_ext = np.zeros(len(yi_ext)) flag_ext = np.zeros(len(yi_ext)) for i, yi in enumerate(yi_ext): yi = np.array([yi, 1 - yi]) obj, flagv = objective_find_yi( yi, P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) flag_ext[i] = flagv obj_ext[i] = obj tmp = np.count_nonzero(~np.isnan(obj_ext)) logger.debug(" Number of valid mole fractions: {}".format(tmp)) if tmp == 0: yi_final = np.nan obj_final = np.nan else: # Remove any NaN obj_tmp = obj_ext[~np.isnan(obj_ext)] yi_tmp = yi_ext[~np.isnan(obj_ext)] # Fit spline spline = interpolate.Akima1DInterpolator(yi_tmp, obj_tmp) yi_min = spline.derivative().roots() if len(yi_min) > 1: # Remove local maxima yi_concav = spline.derivative(nu=2)(yi_min) yi_min = [yi_min[i] for i in range(len(yi_min)) if yi_concav[i] > 0.0] # Add end points if relevant if len(yi_tmp) > 1: if obj_tmp[0] < obj_tmp[1]: yi_min.insert(0, yi_tmp[0]) if obj_tmp[-1] < obj_tmp[-2]: yi_min.append(yi_tmp[-1]) yi_min = np.array(yi_min) ## Remove trivial solution obj_trivial = np.abs(yi_min - xi[0]) / xi[0] ind = np.where(obj_trivial == min(obj_trivial))[0][0] logger.debug( " Found multiple minima: {}, discard {} as trivial solution".format( yi_min, yi_min[ind] ) ) # Remove liquid roots yi_min = np.array([yi_min[ii] for ii in range(len(yi_min)) if ii != ind]) if len(yi_min) > 1: lyi = len(yi_min) obj_tmp2 = np.zeros(lyi) flagv_tmp2 = np.zeros(lyi) for ii in range(lyi): obj_tmp2[ii], flagv_tmp2[ii] = objective_find_yi( yi_min[ii], P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True, ) yi_tmp2 = [ yi_min[ii] for ii in range(len(yi_min)) if flagv_tmp2[ii] != 1 ] if len(yi_tmp2): obj_tmp2 = [ obj_tmp2[ii] for ii in range(len(obj_tmp2)) if flagv_tmp2[ii] != 1 ] yi_min = [yi_tmp2[np.where(obj_tmp2 == min(obj_tmp2))[0][0]]] else: yi_min = [yi_min[np.where(obj_tmp2 == min(obj_tmp2))[0][0]]] if not len(yi_min): # Choose values with lowest objective function ind = np.where(np.abs(obj_tmp) == min(np.abs(obj_tmp)))[0][0] obj_final = obj_tmp[ind] yi_final = yi_tmp[ind] else: yi_final = yi_min[0] obj_final = spline(yi_min[0]) logger.debug(" Found new guess in yi: {}, Obj: {}".format(yi_final, obj_final)) if not gtb.isiterable(yi_final): yi_final = np.array([yi_final, 1 - yi_final]) return yi_final def bracket_bounding_yi( P, T, phil, xi, Eos, bounds=(0.01, 0.99), maxiter=50, tol=1e-7, density_opts={}, **kwargs ): r""" Search binary vapor mole fraction combinations for a new estimate that produces a vapor density. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system phil : float Fugacity coefficient of liquid at system pressure xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. bounds : tuple, Optional, default=(0.01, 0.99) These bounds dictate the lower and upper boundary for the first component in a binary system. maxiter : int, Optional, default=50 Maximum number of iterations tol : float, Optional, default=1e-7 Tolerance to quit search for yi density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if len(kwargs) > 0: logger.debug( " 'calc_saturation_properties' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.size(bounds) != 2: raise ValueError("Given bounds on y1 must be of length two.") bounds = np.array(bounds) obj_bounds = np.zeros(2) flag_bounds = np.zeros(2) obj_bounds[0], flag_bounds[0] = objective_find_yi( bounds[0], P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) obj_bounds[1], flag_bounds[1] = objective_find_yi( bounds[1], P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) if flag_bounds[0] == flag_bounds[1]: logger.error( " Both mole fractions have flag, {}, continue seeking convergence".format( flag_bounds[0] ) ) y1 = bounds[1] flagv = flag_bounds[1] else: flag_high_vapor = False for i in np.arange(maxiter): y1 = np.mean(bounds) obj, flagv = objective_find_yi( y1, P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) if not flag_high_vapor: ind = np.where(flag_bounds == flagv)[0][0] if flagv == 0 and obj > 1 / tol: flag_high_vapor = True bounds[0], obj_bounds[0], flag_bounds[0] = ( bounds[ind], obj_bounds[ind], flag_bounds[ind], ) ind = 1 else: if obj < obj_bounds[0]: ind = 0 else: ind = 1 bounds[ind], obj_bounds[ind], flag_bounds[ind] = y1, obj, flagv logger.debug( " Bouncing mole fraction new bounds: {}, obj: {}, flag: {}".format( bounds, obj_bounds, flag_bounds ) ) # Check convergence if np.abs(bounds[1] - bounds[0]) < tol: break ind_array = np.where(flag_bounds == 0)[0] if np.size(ind_array) == 1: ind = ind_array[0] else: ind = np.where(obj_bounds == np.min(obj_bounds))[0][0] y1, flagv = bounds[ind], flag_bounds[ind] if i == maxiter - 1: logger.debug( " Bouncing mole fraction, max iterations ended with, y1={}, flagv={}".format( y1, flagv ) ) else: logger.debug( " Bouncing mole fractions converged to y1={}, flagv={}".format(y1, flagv) ) return np.array([y1, 1 - y1]), flagv def objective_find_yi(yi, P, T, phil, xi, Eos, density_opts={}, return_flag=False): r""" Objective function for solving for stable vapor mole fraction. Parameters ---------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 P : float [Pa] Pressure of the system T : float [K] Temperature of the system phil : float Fugacity coefficient of liquid at system pressure xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` return_flag : bool, Optional, default=False If True, the objective value and flagv is returned, otherwise, just the objective value is returned Returns ------- obj : numpy.ndarray Objective function for solving for vapor mole fractions flag : int, Optional Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed. Only outputted when `return_flag` is True """ if type(yi) == float or np.size(yi) == 1: if gtb.isiterable(yi): yi = np.array([yi[0], 1 - yi[0]]) else: yi = np.array([yi, 1 - yi]) elif isinstance(yi, list): yi = np.array(yi) yi /= np.sum(yi) phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi, Eos, density_opts=density_opts ) yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") yi2 = yinew / np.sum(yinew) if np.any(np.isnan(yi2)): obj = np.nan else: phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) obj = np.sum(np.abs(yinew - xi * phil / phiv2)) logger.debug( " Guess yi: {}, calc yi: {}, diff={}, flagv {}".format(yi, yi2, obj, flagv) ) if return_flag: return obj, flagv else: return obj def find_new_xi( P, T, phiv, yi, Eos, density_opts={}, bounds=(0.001, 0.999), npoints=30, **kwargs ): r""" Search liquid mole fraction combinations for a new estimate that produces a liquid density. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system phiv : float Fugacity coefficient of vapor at system pressure yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` bounds : tuple, Optional, default=(0.001, 0.999) These bounds dictate the lower and upper boundary for the first component in a binary system. npoints : float, Optional, default=30 Number of points to test between the bounds. Returns ------- xi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 """ if len(kwargs) > 0: logger.debug( " 'find_new_xi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) xi_ext = np.linspace(bounds[0], bounds[1], npoints) # Guess for yi obj_ext = np.zeros(len(xi_ext)) flag_ext = np.zeros(len(xi_ext)) for i, xi in enumerate(xi_ext): xi = np.array([xi, 1 - xi]) obj, flagl = objective_find_xi( xi, P, T, phiv, yi, Eos, density_opts=density_opts, return_flag=True ) flag_ext[i] = flagl obj_ext[i] = obj tmp = np.count_nonzero(~np.isnan(obj_ext)) logger.debug(" Number of valid mole fractions: {}".format(tmp)) if tmp == 0: xi_final = np.nan obj_final = np.nan else: # Remove any NaN obj_tmp = obj_ext[~np.isnan(obj_ext)] xi_tmp = xi_ext[~np.isnan(obj_ext)] spline = interpolate.Akima1DInterpolator(xi_tmp, obj_tmp) xi_min = spline.derivative().roots() if len(xi_min) > 1: # Remove local maxima xi_concav = spline.derivative(nu=2)(xi_min) xi_min = [xi_min[i] for i in range(len(xi_min)) if xi_concav[i] > 0.0] # Add end points if relevant if len(xi_tmp) > 1: if obj_tmp[0] < obj_tmp[1]: xi_min.insert(0, xi_tmp[0]) if obj_tmp[-1] < obj_tmp[-2]: xi_min.append(xi_tmp[-1]) xi_min = np.array(xi_min) # Remove trivial solution obj_trivial = np.abs(xi_min - yi[0]) / yi[0] ind = np.where(obj_trivial == min(obj_trivial))[0][0] logger.debug( " Found multiple minima: {}, discard {} as trivial solution".format( xi_min, xi_min[ind] ) ) xi_min = np.array([xi_min[ii] for ii in range(len(xi_min)) if ii != ind]) if not len(xi_min): # Choose values with lowest objective function ind = np.where(np.abs(obj_tmp) == min(np.abs(obj_tmp)))[0][0] obj_final = obj_tmp[ind] xi_final = xi_tmp[ind] else: xi_final = xi_min[0] obj_final = spline(xi_min[0]) logger.debug(" Found new guess in xi: {}, Obj: {}".format(xi_final, obj_final)) if not gtb.isiterable(xi_final): xi_final = np.array([xi_final, 1 - xi_final]) return xi_final def objective_find_xi(xi, P, T, phiv, yi, Eos, density_opts={}, return_flag=False): r""" Objective function for solving for stable vapor mole fraction. Parameters ---------- xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 P : float [Pa] Pressure of the system T : float [K] Temperature of the system phiv : float Fugacity coefficient of vapor at system pressure yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` return_flag : bool, Optional, default=False If True, the objective value and flagl is returned, otherwise, just the objective value is returned Returns ------- obj : numpy.ndarray Objective function for solving for liquid mole fractions flag : int, Optional Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed. Only outputted when `return_flag` is True """ if isinstance(xi, float) or len(xi) == 1: if gtb.isiterable(xi): xi = np.array([xi[0], 1 - xi[0]]) else: xi = np.array([xi, 1 - xi]) elif isinstance(xi, list): xi = np.array(xi) xi /= np.sum(xi) phil, _, flagl = calc_liquid_fugacity_coefficient( P, T, xi, Eos, density_opts=density_opts ) xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") xi2 = xinew / np.sum(xinew) if np.any(np.isnan(xi2)): obj = np.nan else: phil2, _, flagl2 = calc_liquid_fugacity_coefficient( P, T, xi2, Eos, density_opts=density_opts ) obj = np.sum(np.abs(xinew - xi * phiv / phil2)) logger.debug( " Guess xi: {}, calc xi: {}, diff={}, flagl {}".format(xi, xi2, obj, flagl) ) if return_flag: return obj, flagl else: return obj def objective_bubble_pressure( P, xi, T, Eos, density_opts={}, mole_fraction_options={}, **kwargs ): r""" Objective function used to search pressure values and solve outer loop of constant temperature bubble point calculations. Parameters ---------- P : float [Pa] Guess in pressure of the system xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm Returns ------- obj_value : float :math:`\sum\frac{x_{i}\phi_{l}}{\phi_v}-1` """ if len(kwargs) > 0: logger.debug( "'objective_bubble_pressure' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _yi_global if P < 0: return 10.0 logger.info("P Guess: {} Pa".format(P)) # find liquid density phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi, Eos, density_opts=density_opts ) yinew, phiv, flagv = calc_vapor_composition( _yi_global, xi, phil, P, T, Eos, density_opts=density_opts, **mole_fraction_options ) _yi_global = yinew / np.sum(yinew) # given final yi recompute phiv, rhov, flagv = calc_vapor_fugacity_coefficient( P, T, _yi_global, Eos, density_opts=density_opts ) Pv_test = Eos.pressure(rhov, T, _yi_global) obj_value = equilibrium_objective(xi, phil, phiv, phase="vapor") logger.info("Obj Func: {}, Pset: {}, Pcalc: {}".format(obj_value, P, Pv_test[0])) return obj_value def objective_dew_pressure( P, yi, T, Eos, density_opts={}, mole_fraction_options={}, **kwargs ): r""" Objective function used to search pressure values and solve outer loop of constant temperature dew point calculations. Parameters ---------- P : float [Pa] Guess in pressure of the system yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm Returns ------- obj_value : list :math:`\sum\frac{y_{i}\phi_v}{\phi_l}-1` """ if len(kwargs) > 0: logger.debug( "'objective_dew_pressure' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _xi_global if P < 0: return 10.0 logger.info("P Guess: {} Pa".format(P)) # find liquid density phiv, rhov, flagv = calc_vapor_fugacity_coefficient( P, T, yi, Eos, density_opts=density_opts ) xinew, phil, flagl = calc_liquid_composition( _xi_global, yi, phiv, P, T, Eos, density_opts=density_opts, **mole_fraction_options ) _xi_global = xinew / np.sum(xinew) # given final yi recompute phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, _xi_global, Eos, density_opts=density_opts ) Pv_test = Eos.pressure(rhol, T, _xi_global) obj_value = equilibrium_objective(yi, phil, phiv, phase="liquid") logger.info("Obj Func: {}, Pset: {}, Pcalc: {}".format(obj_value, P, Pv_test[0])) return obj_value def calc_dew_pressure( yi, T, Eos, density_opts={}, mole_fraction_options={}, Pguess=None, method="bisect", pressure_options={}, Psat_set=1e7, **kwargs ): r""" Calculate dew point mole fraction and pressure given system vapor mole fraction and temperature. Parameters ---------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm Pguess : float, Optional, default=None [Pa] Guess the system pressure at the dew point. A negative value will force an estimation based on the saturation pressure of each component. Psat_set : float, Optional, default=1e+7 [Pa] Set the saturation pressure if the pure component is above the critical point in these conditions method : str, Optional, default="bisect" Choose the method used to solve the dew point calculation pressure_options : dict, Optional, default={} Options used in the given method, "method", to solve the outer loop in the solving algorithm kwargs Keyword arguments for :func:`~despasito.thermodynamics.calc.calc_saturation_properties` Returns ------- P : float [Pa] Pressure of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 flagl : int Flag identifying the fluid type for the liquid mole fractions, expected is liquid, 1. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true flagv : int Flag identifying the fluid type for the vapor mole fractions, expected is vapor or 0. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed obj : float Objective function value """ if len(kwargs) > 0: logger.debug( "'calc_dew_pressure' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _xi_global # Estimate pure component vapor pressures Psat = np.zeros_like(yi) for i in range(np.size(yi)): yi_tmp = np.zeros_like(yi) yi_tmp[i] = 1.0 Psat[i], _, _ = calc_saturation_properties( T, yi_tmp, Eos, density_opts=density_opts, **kwargs ) if np.isnan(Psat[i]): Psat[i] = Psat_set logger.warning( "Component, {}, is above its critical point. Psat is assumed to be {}.".format( i + 1, Psat[i] ) ) # Estimate initial pressure if Pguess is None: P = 1.0 / np.sum(yi / Psat) else: P = Pguess # Estimate initial xi if "_xi_global" not in globals() or any(np.isnan(_xi_global)): _xi_global = P * (yi / Psat) _xi_global /= np.sum(_xi_global) _xi_global = copy.deepcopy(_xi_global) logger.info("Guess xi in calc_dew_pressure with Psat: {}".format(_xi_global)) xi = _xi_global Prange, Pestimate = calc_Prange_yi( T, xi, yi, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, **kwargs ) if np.any(np.isnan(Prange)): raise ValueError( "Neither a suitable pressure range, or guess in pressure could be found nor was given." ) else: if Pguess is not None: if Pguess > Prange[1] or Pguess < Prange[0]: logger.warning( "Given guess in pressure, {}, is outside of the identified pressure range, {}. Using estimated pressure, {}.".format( Pguess, Prange, Pestimate ) ) P = Pestimate else: logger.warning( "Using given guess in pressure, {}, that is inside identified pressure range.".format( Pguess ) ) P = Pguess else: P = Pestimate P = gtb.solve_root( objective_dew_pressure, args=(yi, T, Eos, density_opts, mole_fraction_options), x0=P, method=method, bounds=Prange, options=pressure_options, ) # find vapor density and fugacity phiv, rhov, flagv = calc_vapor_fugacity_coefficient( P, T, yi, Eos, density_opts=density_opts ) phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi, Eos, density_opts=density_opts ) if "tol" in mole_fraction_options: if mole_fraction_options["tol"] > 1e-10: mole_fraction_options["tol"] = 1e-10 obj = objective_dew_pressure( P, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) logger.info( "Final Output: Obj {}, P {} Pa, flagl {}, xi {}".format( obj, P, flagl, _xi_global ) ) return P, xi, flagl, flagv, obj def calc_bubble_pressure( xi, T, Eos, density_opts={}, mole_fraction_options={}, Pguess=None, Psat_set=1e7, method="bisect", pressure_options={}, **kwargs ): r""" Calculate bubble point mole fraction and pressure given system liquid mole fraction and temperature. Parameters ---------- xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm Pguess : float, Optional, default=None [Pa] Guess the system pressure at the dew point. A value of None will force an estimation based on the saturation pressure of each component. Psat_set : float, Optional, default=1e+7 [Pa] Set the saturation pressure if the pure component is above the critical point in these conditions method : str, Optional, default="bisect" Choose the method used to solve the dew point calculation pressure_options : dict, Optional, default={} Options used in the given method, ``method``, to solve the outer loop in the solving algorithm kwargs Keyword arguments for :func:`~despasito.thermodynamics.calc.calc_saturation_properties` Returns ------- P : float [Pa] Pressure of the system yi : numpy.ndarray Mole fraction of each component, sum(yi) should equal 1.0 flagv : int Flag identifying the fluid type for the vapor mole fractions, expected is vapor or 0. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed flagl : int Flag identifying the fluid type for the liquid mole fractions, expected is liquid, 1. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true obj : float Objective function value """ if len(kwargs) > 0: logger.debug( "'calc_bubble_pressure' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _yi_global Psat = np.zeros_like(xi) for i in range(np.size(xi)): xi_tmp = np.zeros_like(xi) xi_tmp[i] = 1.0 Psat[i], _, _ = calc_saturation_properties( T, xi_tmp, Eos, density_opts=density_opts, **kwargs ) if np.isnan(Psat[i]): Psat[i] = Psat_set logger.warning( "Component, {}, is above its critical point. Psat is assumed to be {}.".format( i + 1, Psat[i] ) ) # Estimate initial pressure if Pguess == None: P = 1.0 / np.sum(xi / Psat) else: P = Pguess if "_yi_global" not in globals() or any(np.isnan(_yi_global)): _yi_global = xi * Psat / P _yi_global /= np.nansum(_yi_global) _yi_global = copy.deepcopy(_yi_global) logger.info("Guess yi in calc_bubble_pressure with Psat: {}".format(_yi_global)) yi = _yi_global Prange, Pestimate = calc_Prange_xi( T, xi, yi, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, **kwargs ) if np.any(np.isnan(Prange)): raise ValueError( "Neither a suitable pressure range, or guess in pressure could be found nor was given." ) else: if Pguess != None: if Pguess > Prange[1] or Pguess < Prange[0]: logger.warning( "Given guess in pressure, {}, is outside of the identified pressure range, {}. Using estimated pressure, {}.".format( Pguess, Prange, Pestimate ) ) P = Pestimate else: logger.warning( "Using given guess in pressure, {}, that is inside identified pressure range.".format( Pguess ) ) P = Pguess else: P = Pestimate P = gtb.solve_root( objective_bubble_pressure, args=(xi, T, Eos, density_opts, mole_fraction_options), x0=P, method=method, bounds=Prange, options=pressure_options, ) # find liquid density and fugacity phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi, Eos, density_opts=density_opts ) phiv, rhov, flagv = calc_vapor_fugacity_coefficient( P, T, yi, Eos, density_opts=density_opts ) if "tol" in mole_fraction_options: if mole_fraction_options["tol"] > 1e-10: mole_fraction_options["tol"] = 1e-10 obj = objective_bubble_pressure( P, xi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) logger.info( "Final Output: Obj {}, P {} Pa, flagv {}, yi {}".format( obj, P, flagv, _yi_global ) ) return P, _yi_global, flagv, flagl, obj def hildebrand_solubility( rhol, xi, T, Eos, dT=0.1, tol=1e-4, density_opts={}, **kwargs ): r""" Calculate the solubility parameter based on temperature and composition. This function is based on the method used in <NAME>., <NAME>, and <NAME> *Calculation of Solubility Parameter Using Perturbed-Chain SAFT and Cubic-Plus-Association Equations of State* Ind. Eng. Chem. Res. 2008. 47, 9663-9669. Parameters ---------- rhol : float Liquid molar density [mol/:math:`m^3`] xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 T : float Temperature of the system [K] Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. dT : float, Optional, default=0.1 Change in temperature used in calculating the derivative with central difference method tol : float, Optional, default=1e-4 This cutoff value evaluates the extent to which the integrand of the calculation has decayed. If the last value if the array is greater than tol, then the remaining area is estimated as a triangle, where the intercept is estimated from an interpolation of the previous four points. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- delta : float Solubility parameter [:math:`Pa^(1/2)`], ratio of cohesive energy and molar volume """ if len(kwargs) > 0: logger.debug( "'hildebrand_solubility' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) R = constants.Nav * constants.kb RT = T * R if gtb.isiterable(rhol): logger.info("rhol should be a float, not {}".format(rhol)) # Find dZdT vlist, Plist1 = pressure_vs_volume_arrays( T - dT, xi, Eos, **density_opts, max_density=rhol ) vlist2, Plist2 = pressure_vs_volume_arrays( T + dT, xi, Eos, **density_opts, max_density=rhol ) vlist, Plist = pressure_vs_volume_arrays( T, xi, Eos, **density_opts, max_density=rhol ) if any(vlist != vlist2): logger.error("Dependant variable vectors must be identical.") int_tmp = (Plist2 - Plist1) / (2 * dT) / R - Plist / (RT) integrand_list = gaussian_filter1d(int_tmp, sigma=0.1) # Calculate U_res integrand_spline = interpolate.InterpolatedUnivariateSpline( vlist, integrand_list, ext=1 ) U_res = -RT * integrand_spline.integral(1 / rhol, vlist[-1]) # Check if function converged before taking integral, if not, correct area if integrand_list[-1] > tol: slope, yroot =
np.polyfit(vlist[-4:], integrand_list[-4:], 1)
numpy.polyfit
import os import sys import numpy as np import scipy import pandas as pd import torch import torch.nn as nn import torch.optim as optim import cv2 from PIL import Image from skimage import io from skimage.transform import resize import matplotlib.pyplot as plt sys.path.append('../') from model.models import CRNet from config.cfg import cfg def viz(img_path, model=CRNet()): model = model.float() device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") model = nn.DataParallel(model) model.load_state_dict(torch.load('./model/crnet.pth')) model = model.to(device) model.eval() image = resize(io.imread(img_path), (224, 224), mode='constant') image[:, :, 0] -= np.mean(image[:, :, 0]) image[:, :, 1] -= np.mean(image[:, :, 1]) image[:, :, 2] -= np.mean(image[:, :, 2]) image =
np.transpose(image, [2, 0, 1])
numpy.transpose
import os import numpy as np import time import argparse import sys from math import ceil from random import Random import time import random import torch import torch.distributed as dist import torch.utils.data.distributed import torch.nn as nn import torch.nn.functional as F from torch.multiprocessing import Process import torchvision from torchvision import datasets, transforms import torch.backends.cudnn as cudnn import torchvision.models as models from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler import datetime import LocalSGD as optim import util_v4 as util from comm_helpers import SyncAllreduce, SyncAllreduce_1, SyncAllreduce_2 import os from scipy.io import loadmat import json from scipy import io from dataset.cifar import get_cifar10, get_emnist, get_svhn from torch.optim.lr_scheduler import LambdaLR import math parser = argparse.ArgumentParser(description='CIFAR-10 baseline') parser.add_argument('--name','-n', default="default", type=str, help='experiment name, used for saving results') parser.add_argument('--backend', default="nccl", type=str, help='experiment name, used for saving results') parser.add_argument('--GPU_list', default='0', type=str, help='gpu list') parser.add_argument('--dataset', default="cifar10", type=str, help='dataset name') parser.add_argument('--model', default="res_gn", type=str, help='neural network model') parser.add_argument('--alpha', default=0.2, type=float, help='alpha') parser.add_argument('--gmf', default=0, type=float, help='global momentum factor') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--basicLabelRatio', default=0.4, type=float, help='basicLabelRatio') parser.add_argument('--bs', default=64, type=int, help='batch size on each worker') parser.add_argument('--epoch', default=300, type=int, help='total epoch') parser.add_argument('--cp', default=8, type=int, help='communication period / work per clock') parser.add_argument('--print_freq', default=100, type=int, help='print info frequency') parser.add_argument('--rank', default=0, type=int, help='the rank of worker') parser.add_argument('--size', default=8, type=int, help='number of workers') parser.add_argument('--seed', default=1, type=int, help='random seed') parser.add_argument('--num_comm_ue', default=11, type=int, help='communication user number') parser.add_argument('--iid', default=1, type=int, help='iid') parser.add_argument('--class_per_device', default=1, type=int, help='class_per_device') parser.add_argument('--labeled', default=0, type=int, help='labeled all data') parser.add_argument('--H', default=0, type=int, help='whether use hierarchical method') parser.add_argument('--save', '-s', action='store_true', help='whether save the training results') parser.add_argument('--ip_address', default="10.129.2.142", type=str, help='ip_address') parser.add_argument('--master_port', default="29021", type=str, help='master port') parser.add_argument('--experiment_name', default="Major1_setting1", type=str, help='name of this experiment') parser.add_argument('--k-img', default=65536, type=int, ### 65536 help='number of examples') parser.add_argument('--num_data_server', default=1000, type=int, help='number of samples in server') parser.add_argument('--num-data-server', default=1000, type=int, help='number of labeled examples in server') parser.add_argument('--num-devices', default=10, type=int, help='num of devices') args = parser.parse_args() def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=7./16., last_epoch=-1,lr_weight=1): def _lr_lambda(current_step): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) no_progress = float(current_step - num_warmup_steps) / \ float(max(1, num_training_steps - num_warmup_steps)) num_cycles = 7.0/16.0*(1024*1024 - num_warmup_steps)/(1024*200 - num_warmup_steps) return max(0.00000, math.cos(math.pi * num_cycles * no_progress)) return LambdaLR(optimizer, _lr_lambda, last_epoch) ######### Assign Ranks to different GPUs GRU_list = [i for i in args.GPU_list] if args.H: increase_tmp = args.size//len(GRU_list) else: increase_tmp = (args.size+1)//len(GRU_list) ranks_list = np.arange(0,args.size).tolist() rank_group = [] for rank_id in range(len(GRU_list)): if rank_id == len(GRU_list)-1: ranks = ranks_list[rank_id*increase_tmp:] else: ranks = ranks_list[rank_id*increase_tmp:(rank_id+1)*increase_tmp] rank_group.append(ranks) for group_id in range(len(GRU_list)): if args.rank in set(rank_group[group_id]): os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id] break device = 'cuda' if torch.cuda.is_available() else 'cpu' DATASET_GETTERS = {'cifar10': get_cifar10, 'emnist': get_emnist, 'svhn':get_svhn} ### generate the index of the server dataset and the device dataset if args.iid: path_device_idxs = f'{args.dataset}_post_data/iid/{args.size - 1 - args.H}_{args.num_data_server}' else: path_device_idxs = f'{args.dataset}_post_data/noniid/{args.size - 1 - args.H}_{args.num_data_server}_{args.class_per_device}_{args.basicLabelRatio}' if args.dataset == 'emnist': if args.iid: path_device_idxs = f'{args.dataset}_post_data/iid/{47}_{args.num_data_server}' else: path_device_idxs = f'{args.dataset}_post_data/noniid/{47}_{args.num_data_server}_{args.class_per_device}_{args.basicLabelRatio}' device_ids = np.load(path_device_idxs + '/device_idxs' + '.npy', allow_pickle=True).item() server_idxs = np.load(path_device_idxs + '/server_idxs' + '.npy', allow_pickle=True).item() device_ids = device_ids['device_idxs'] server_idxs = server_idxs['server_idxs'] if args.num_comm_ue < args.size - 1 - args.H: ue_list_epoches = np.load(path_device_idxs + '/ue_list_epoch' + '.npy', allow_pickle=True).item() ue_list_epoches = ue_list_epoches['ue_list_epoch'] else: ue_list_epoches = [] print('get dataset') labeled_dataset, unlabeled_dataset, test_dataset = DATASET_GETTERS[args.dataset]( './data', args.k_img, args.k_img * len(device_ids), device_ids, server_idxs) print('get dataset, done') train_sampler = RandomSampler labeled_trainloader = DataLoader( labeled_dataset, sampler=train_sampler(labeled_dataset), batch_size=args.bs, num_workers=0, drop_last=True) unlabeled_trainloader_list = [] for id in range(len(unlabeled_dataset)): unlabeled_trainloader = DataLoader( unlabeled_dataset[id], sampler=train_sampler(unlabeled_dataset[id]), batch_size=args.bs, num_workers=0, drop_last=True) unlabeled_trainloader_list.append(unlabeled_trainloader) test_loader = DataLoader(test_dataset, batch_size=args.bs, shuffle=False) print(args) def run(rank, size, G): # initiate experiments folder save_path = './results_v0/' if not os.path.exists(save_path): os.makedirs(save_path) folder_name = save_path+args.name+'/' if rank == 0 and os.path.isdir(folder_name)==False and args.save: os.makedirs(folder_name) dist.barrier() # seed for reproducibility torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.deterministic = True # load datasets if args.H: if args.dataset == 'emnist': labeled_set = [0,48,49,50,51] if rank in set(labeled_set): train_loader = labeled_trainloader else: train_loader = unlabeled_trainloader_list[rank - 1] else: if rank == 0 or rank == args.size -1: train_loader = labeled_trainloader else: train_loader = unlabeled_trainloader_list[rank - 1] else: if rank == 0: train_loader = labeled_trainloader else: train_loader = unlabeled_trainloader_list[rank - 1] # define neural nets model, criterion, and optimizer model = util.select_model(args.model, args).cuda() criterion = nn.CrossEntropyLoss().cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, alpha=args.alpha, gmf=args.gmf, size=size, momentum=0.9, nesterov = True, weight_decay=1e-4) args.iteration = args.k_img // args.bs total_steps = 1024 * args.iteration # total_steps = args.epoch * args.iteration warmup_epoch = 5 if args.dataset == 'emnist': warmup_epoch = 0 total_steps = args.epoch * args.iteration scheduler = get_cosine_schedule_with_warmup( optimizer, warmup_epoch * args.iteration, total_steps,lr_weight=1) batch_meter = util.Meter(ptag='Time') comm_meter = util.Meter(ptag='Time') best_test_accuracy = 0 req = None acc_list = [] print('Now train the model') for epoch in range(args.epoch): if rank == 0: begin_time = time.time() train(rank, model, criterion, optimizer,scheduler, batch_meter, comm_meter, train_loader, epoch, device, ue_list_epoches, G) ### test the server model if rank == 0: test_acc = evaluate(model, test_loader) acc_list.append(round(test_acc, 2)) print('test acc',epoch, test_acc,time.time() - begin_time) if args.H: filename = f"./results_v0/{args.experiment_name}_{args.dataset}_iid{args.iid}_UE{args.size - 1}_{args.basicLabelRatio}_{args.model}_bs{args.bs}_H1_cp{args.cp}.txt" else: filename = f"./results_v0/{args.experiment_name}_{args.dataset}_iid{args.iid}_UE{args.size - 1 - args.H}_{args.basicLabelRatio}_comUE{args.num_comm_ue}_{args.model}_bs{args.bs}_H0_cp{args.cp}.txt" if filename: with open(filename, 'w') as f: json.dump(acc_list, f) path_checkpoint = f"./checkpoint/{args.experiment_name}/" if not os.path.exists(path_checkpoint): os.makedirs(path_checkpoint) torch.save({'epoch': epoch,'model_state_dict': model.state_dict()}, path_checkpoint+f'{rank}_weights.pth') def evaluate(model, test_loader): model.eval() top1 = util.AverageMeter() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): data = data.cuda(non_blocking = True) target = target.cuda(non_blocking = True) outputs = model(data) acc1 = util.comp_accuracy(outputs, target) top1.update(acc1[0].item(), data.size(0)) return top1.avg def train(rank, model, criterion, optimizer,scheduler, batch_meter, comm_meter, loader, epoch, device, ue_list_epoches, G): model.train() top1 = util.Meter(ptag='Prec@1') iter_time = time.time() if args.H: if args.dataset == 'emnist': group1 = [0] + np.arange(1, 11).tolist() group2 = [48] + np.arange(11, 21).tolist() group3 = [49] +
np.arange(21, 31)
numpy.arange
# -*- coding: utf-8 -*- """ Lots of functions for drawing and plotting visiony things """ # TODO: New naming scheme # viz_<funcname> should clear everything. The current axes and fig: clf, cla. # # Will add annotations # interact_<funcname> should clear everything and start user interactions. # show_<funcname> should always clear the current axes, but not fig: cla # # Might # add annotates? plot_<funcname> should not clear the axes or figure. # More useful for graphs draw_<funcname> same as plot for now. More useful for # images import logging import itertools as it import utool as ut # NOQA import matplotlib as mpl import matplotlib.pyplot as plt try: from mpl_toolkits.axes_grid1 import make_axes_locatable except ImportError as ex: ut.printex( ex, 'try pip install mpl_toolkits.axes_grid1 or something. idk yet', iswarning=False, ) raise # import colorsys import pylab import warnings import numpy as np from os.path import relpath try: import cv2 except ImportError as ex: print('ERROR PLOTTOOL CANNOT IMPORT CV2') print(ex) from wbia.plottool import mpl_keypoint as mpl_kp from wbia.plottool import color_funcs as color_fns from wbia.plottool import custom_constants from wbia.plottool import custom_figure from wbia.plottool import fig_presenter DEBUG = False (print, rrr, profile) = ut.inject2(__name__) logger = logging.getLogger('wbia') def is_texmode(): return mpl.rcParams['text.usetex'] # Bring over moved functions that still have dependants elsewhere TAU = np.pi * 2 distinct_colors = color_fns.distinct_colors lighten_rgb = color_fns.lighten_rgb to_base255 = color_fns.to_base255 DARKEN = ut.get_argval( '--darken', type_=float, default=(0.7 if ut.get_argflag('--darken') else None) ) # logger.info('DARKEN = %r' % (DARKEN,)) all_figures_bring_to_front = fig_presenter.all_figures_bring_to_front all_figures_tile = fig_presenter.all_figures_tile close_all_figures = fig_presenter.close_all_figures close_figure = fig_presenter.close_figure iup = fig_presenter.iup iupdate = fig_presenter.iupdate present = fig_presenter.present reset = fig_presenter.reset update = fig_presenter.update ORANGE = custom_constants.ORANGE RED = custom_constants.RED GREEN = custom_constants.GREEN BLUE = custom_constants.BLUE YELLOW = custom_constants.YELLOW BLACK = custom_constants.BLACK WHITE = custom_constants.WHITE GRAY = custom_constants.GRAY LIGHTGRAY = custom_constants.LIGHTGRAY DEEP_PINK = custom_constants.DEEP_PINK PINK = custom_constants.PINK FALSE_RED = custom_constants.FALSE_RED TRUE_GREEN = custom_constants.TRUE_GREEN TRUE_BLUE = custom_constants.TRUE_BLUE DARK_GREEN = custom_constants.DARK_GREEN DARK_BLUE = custom_constants.DARK_BLUE DARK_RED = custom_constants.DARK_RED DARK_ORANGE = custom_constants.DARK_ORANGE DARK_YELLOW = custom_constants.DARK_YELLOW PURPLE = custom_constants.PURPLE LIGHT_BLUE = custom_constants.LIGHT_BLUE UNKNOWN_PURP = custom_constants.UNKNOWN_PURP TRUE = TRUE_BLUE FALSE = FALSE_RED figure = custom_figure.figure gca = custom_figure.gca gcf = custom_figure.gcf get_fig = custom_figure.get_fig save_figure = custom_figure.save_figure set_figtitle = custom_figure.set_figtitle set_title = custom_figure.set_title set_xlabel = custom_figure.set_xlabel set_xticks = custom_figure.set_xticks set_ylabel = custom_figure.set_ylabel set_yticks = custom_figure.set_yticks VERBOSE = ut.get_argflag(('--verbose-df2', '--verb-pt')) # ================ # GLOBALS # ================ TMP_mevent = None plotWidget = None def show_was_requested(): """ returns True if --show is specified on the commandline or you are in IPython (and presumably want some sort of interaction """ return not ut.get_argflag(('--noshow')) and ( ut.get_argflag(('--show', '--save')) or ut.inIPython() ) # return ut.show_was_requested() class OffsetImage2(mpl.offsetbox.OffsetBox): """ TODO: If this works reapply to mpl """ def __init__( self, arr, zoom=1, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, dpi_cor=True, **kwargs ): mpl.offsetbox.OffsetBox.__init__(self) self._dpi_cor = dpi_cor self.image = mpl.offsetbox.BboxImage( bbox=self.get_window_extent, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._children = [self.image] self.set_zoom(zoom) self.set_data(arr) def set_data(self, arr): self._data =
np.asarray(arr)
numpy.asarray
""" Constraint functions for grasp sampling Author: <NAME> """ from abc import ABCMeta, abstractmethod import numpy as np class GraspConstraintFn(object): """ Abstract constraint functions for grasp sampling. """ __metaclass__ = ABCMeta def __init__(self, config): # set params self._config = config def __call__(self, grasp): """ Evaluates whether or not a grasp is valid. Parameters ---------- grasp : :obj:`Grasp2D` grasp to evaluate Returns ------- bool True if the grasp satisfies constraints, False otherwise """ return self.satisfies_constraints(grasp) @abstractmethod def satisfies_constraints(self, grasp): """ Evaluates whether or not a grasp is valid. Parameters ---------- grasp : :obj:`Grasp2D` grasp to evaluate Returns ------- bool True if the grasp satisfies constraints, False otherwise """ pass class DiscreteApproachGraspConstraintFn(GraspConstraintFn): """ Constrains the grasp approach direction into a discrete set of angles from the world z direction. """ def __init__(self, config): # init superclass GraspConstraintFn.__init__(self, config) self._max_approach_angle = self._config['max_approach_angle'] self._angular_tolerance = self._config['angular_tolerance'] self._angular_step = self._config['angular_step'] self._T_camera_world = self._config['camera_pose'] def satisfies_constraints(self, grasp): """ Evaluates whether or not a grasp is valid by evaluating the angle between the approach axis and the world z direction. Parameters ---------- grasp : :obj:`Grasp2D` grasp to evaluate Returns ------- bool True if the grasp satisfies constraints, False otherwise """ # find grasp angle in world coordinates axis_world = self._T_camera_world.rotation.dot(grasp.approach_axis) angle = np.arccos(-axis_world[2]) # check closest available angle available_angles = np.array([0.0]) if self._angular_step > 0: available_angles = np.arange(start=0.0, stop=self._max_approach_angle, step=self._angular_step) diff = np.abs(available_angles - angle) angle_index =
np.argmin(diff)
numpy.argmin
# -*- coding: utf-8 -*- """ Created on Tue Nov 15 12:05:40 2016 @author: sjjoo """ #%% #import sys import mne #import imageio from mne.utils import run_subprocess, logger import os from os import path as op import copy #import shutil import numpy as np from numpy.random import randn from scipy import stats as stats #import scipy.io as sio import time from functools import partial from mne.stats import (spatio_temporal_cluster_1samp_test, summarize_clusters_stc) from mne import set_config import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager from pandas import DataFrame from sklearn import linear_model import statsmodels.api as sm #import csv os.chdir(os.path.join("D:\\", "git","BrainTools","projects","NLR_MEG")) from plotit3 import plotit3 from plotsig3 import plotsig3 from plotit2 import plotit2 from plotsig2 import plotsig2 from plotcorr3 import plotcorr3 set_config('MNE_MEMMAP_MIN_SIZE', '1M') set_config('MNE_CACHE_DIR', '.tmp') mne.set_config('MNE_USE_CUDA', 'true') this_env = copy.copy(os.environ) fs_dir = 'D://subjects' this_env['SUBJECTS_DIR'] = fs_dir raw_dir = os.path.join("D:\\","NLR_MEG") os.chdir(raw_dir) import seaborn as sns sns.set(style="darkgrid") #%% subs = ['NLR_102_RS','NLR_103_AC','NLR_105_BB','NLR_110_HH','NLR_127_AM', 'NLR_130_RW','NLR_132_WP','NLR_133_ML','NLR_145_AC','NLR_150_MG', 'NLR_151_RD','NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_163_LF', 'NLR_164_SF','NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM', 'NLR_180_ZD','NLR_187_NB','NLR_201_GS','NLR_203_AM', 'NLR_204_AM','NLR_205_AC','NLR_206_LM','NLR_207_AH','NLR_211_LB', 'NLR_GB310','NLR_KB218','NLR_JB423','NLR_GB267','NLR_JB420', 'NLR_HB275','NLR_197_BK','NLR_GB355','NLR_GB387','NLR_HB205', 'NLR_IB217','NLR_IB319','NLR_JB227','NLR_JB486','NLR_KB396', 'NLR_IB357'] session1 = ['102_rs160618','103_ac150609','105_bb150713','110_hh160608','127_am151022', '130_rw151221','132_wp160919','133_ml151124','145_ac160621','150_mg160606', '151_rd160620','152_tc160422','160_ek160627','161_ak160627','163_lf160707', '164_sf160707','170_gm160613','172_th160614','174_hs160620','179_gm160701', '180_zd160621','187_nb161017','201_gs150818','203_am150831', '204_am150829','205_ac151123','206_lm151119','207_ah160608','211_lb160617', 'nlr_gb310170614','nlr_kb218170619','nlr_jb423170620','nlr_gb267170620','nlr_jb420170621', 'nlr_hb275170622','197_bk170622','nlr_gb355170606','nlr_gb387170608','nlr_hb205170825', 'nlr_ib217170831','nlr_ib319170825','nlr_jb227170811','nlr_jb486170803','nlr_kb396170808', 'nlr_ib357170912'] subs2 = ['NLR_102_RS','NLR_110_HH','NLR_145_AC','NLR_150_MG', 'NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_162_EF','NLR_163_LF', # 162, 201 only had the second session 'NLR_164_SF','NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM', # 'NLR_170_GM': no EOG channel 'NLR_180_ZD','NLR_201_GS', 'NLR_204_AM','NLR_205_AC','NLR_207_AH','NLR_210_SB','NLR_211_LB', 'NLR_GB310','NLR_KB218','NLR_GB267','NLR_JB420', 'NLR_HB275','NLR_GB355'] session2 = ['102_rs160815','110_hh160809','145_ac160823','150_mg160825', '152_tc160623','160_ek160915','161_ak160916','162_ef160829','163_lf160920', '164_sf160920','170_gm160822','172_th160825','174_hs160829','179_gm160913', '180_zd160826','201_gs150925', '204_am151120','205_ac160202','207_ah160809','210_sb160822','211_lb160823', 'nlr_gb310170829','nlr_kb218170829','nlr_gb267170911','nlr_jb420170828','nlr_hb275170828','nlr_gb355170907'] subIndex1 = np.nonzero(np.in1d(subs,subs2))[0] subIndex2 = np.empty([1,len(subIndex1)],dtype=int)[0] for i in range(0,len(subIndex1)): subIndex2[i] = np.nonzero(np.in1d(subs2,subs[subIndex1[i]]))[0] twre_index = [87,93,108,66,116,85,110,71,84,92,87,86,63,81,60,55,71,63,68,67,64,127,79, 73,59,84,79,91,57,67,77,57,80,53,72,58,85,79,116,117,107,78,66,101,67] twre_index = np.array(twre_index) brs = [87,102,108,78,122,91,121,77,91,93,93,88,75,90,66,59,81,84,81,72,71,121, 81,75,66,90,93,101,56,78,83,69,88,60,88,73,82,81,115,127,124,88,68,110,96] brs = np.array(brs) twre_index1 = twre_index[subIndex1] twre_index2_all = [90,76,94,115, 85,75,82,64,75, 63,83,77,84,75, 68,79, 62,90,105,75,71, 69,83,76,62,73,94] twre_index2_all = np.array(twre_index2_all) twre_index2 = twre_index2_all[subIndex2] brs1 = brs[subIndex1] brs2_all = [98,88,102,110,99,91,88,79,105,86,81,88,89,77,83,81,86,98,116,104,86,90,91,97,57,99,102] brs2_all = np.array(brs2_all) brs2 = brs2_all[subIndex2] twre_diff = np.subtract(twre_index2,twre_index1) brs_diff = np.subtract(brs2,brs1) swe_raw = [62, 76, 74, 42, 75, 67, 76, 21, 54, 35, 21, 61, 45, 48, 17, 11, 70, 19, 10, 57, 12, 86, 53, 51, 13, 28, 54, 25, 27, 10, 66, 18, 18, 20, 37, 23, 17, 36, 79, 82, 74, 64, 42, 78, 35] swe_raw = np.array(swe_raw) lwid = [49,60,60,51,62,54,65,23,44,35,31,52,44,39,27,30,57,33,24,48,19,66,45, 43,22,33,51,36,35,25,55,34,26,26,39,27,24,29,61,71,65,56,36,62,51] lwid = np.array(lwid) rf = [88,103,95,67,120,85,108,71,91,87,88,76,76,93,60,40,86,61,66,81,59,130,93,85,49,76,90,96,42,64,74,49,84,56, 76,61,80,89,111,120,132,88,65,102,72] rf = np.array(rf) age = [125.6885, 132.9501, 122.0434, 138.4349, 97.6347, 138.1420, 108.2457, 98.0631, 105.8147, 89.9132, 87.6465, 131.8660, 123.7174, 95.959, 112.416, 133.8042, 152.4639, 103.4823, 89.8475, 138.4020, 93.8568, 117.0814, 123.6202, 122.9304, 109.1656, 90.6058, 111.9593,86.0381,147.2063,95.8699,148.0802,122.5896,88.7162,123.0495,110.6645,105.3069,88.9143,95.2879,106.2852, 122.2915,114.4389,136.1496,128.6246,137.9216,122.7528] age = np.divide(age, 12) wasi_vocab = [51,62,52,39,80,59,56,np.nan,52,47,64,44,49,48,55,53,44,44,53,45,62, 76,45,55,48,56,41,43,40,52,54,50,62,67,59,48,60,60,62,79,74,44,49,50,60] wasi_mr = [47,64,44,58,60,51,56,np.nan,56,43,37,37,51,55,36,33,52,48,49,41,51, 56,56,53,42,41,46,51,34,51,50,51,55,53,44,44,47,59,66,74,65,53,54,47,60] n_subjects = len(subs) c_table = ( (0.6510, 0.8078, 0.8902), # Blue, Green, Red, Orange, Purple, yellow (0.1216, 0.4706, 0.7059), (0.6980, 0.8745, 0.5412), (0.2000, 0.6275, 0.1725), (0.9843, 0.6039, 0.6000), (0.8902, 0.1020, 0.1098), (0.9922, 0.7490, 0.4353), (1.0000, 0.4980, 0), (0.7922, 0.6980, 0.8392), (0.4157, 0.2392, 0.6039), (1.0000, 1.0000, 0.6000), (0.6941, 0.3490, 0.1569)) fname_data = op.join(raw_dir, 'session1_data_loose_depth8_normal.npy') #%% """ Here we load the data for Session 1 """ t0 = time.time() os.chdir(raw_dir) X13 = np.load(fname_data) orig_times = np.load('session1_times.npy') tstep = np.load('session1_tstep.npy') n_epochs = np.load('session1_n_averages.npy') tmin = -0.1 """ Downsample the data """ ss = 3 # was originally 2 sample = np.arange(0,len(orig_times),ss) sRate = 600 / ss times = orig_times[sample] tstep = ss*tstep X11 = X13[:,sample,:,:] del X13 X11 = np.abs(X11) print("\n\nElasped time: %0.2d mins %0.2d secs\n\n" % (divmod(time.time()-t0, 60))) #%% """ Grouping subjects """ reading_thresh = 80 m1 = np.logical_and(np.transpose(twre_index) > reading_thresh, np.transpose(age) <= 13) m2 = np.logical_and(np.transpose(twre_index) <= reading_thresh, np.transpose(age) <= 13) #m1 = np.logical_and(np.transpose(brs) >= reading_thresh, np.transpose(age) <= 13) #m2 = np.logical_and(np.transpose(brs) < reading_thresh, np.transpose(age) <= 13) #m1 = np.logical_and(np.transpose(swe_raw) >= np.median(swe_raw), np.transpose(age) <= 13) #m2 = np.logical_and(np.transpose(swe_raw) < np.median(swe_raw), np.transpose(age) <= 13) orig_twre = twre_index orig_age = age orig_swe = swe_raw m3 = np.mean(n_epochs,axis=1) < 40 m1[np.where(m3)] = False m2[np.where(m3)] = False twre_index = twre_index[np.where(~m3)[0]] age = age[np.where(~m3)[0]] #swe_raw = swe_raw[np.where(~m3)[0]] good_readers = np.where(m1)[0] poor_readers = np.where(m2)[0] a1 = np.transpose(age) > np.mean(age) a2 = np.logical_not(a1) a1[np.where(m3)] = False a2[np.where(m3)] = False old_readers = np.where(a1)[0] young_readers = np.where(a2)[0] #wasi_vocab_G = [wasi_vocab[i] for i in good_readers] #wasi_vocab_P = [wasi_vocab[i] for i in poor_readers] #wasi_mr_G = [wasi_mr[i] for i in good_readers] #wasi_mr_P = [wasi_mr[i] for i in poor_readers] #age_G = [orig_age[i] for i in good_readers] #age_P = [orig_age[i] for i in poor_readers] #twre_G = [orig_twre[i] for i in good_readers] #twre_P = [orig_twre[i] for i in poor_readers] # #n,p = stats.ttest_ind(wasi_vocab_G,wasi_vocab_P,nan_policy='omit') #n,p = stats.ttest_ind(wasi_mr_G,wasi_mr_P,nan_policy='omit') #n,p = stats.ttest_ind(age_G,age_P,nan_policy='omit') #n,p = stats.ttest_ind(twre_G,twre_P,nan_policy='omit') all_subject = [] all_subject.extend(good_readers) all_subject.extend(poor_readers) all_subject.sort() fs_vertices = [np.arange(10242)] * 2 n_epoch = np.empty((45,4)) n_epoch[:,0] = [np.int(n_epochs[i,0]) for i in range(0,45)] n_epoch[:,1] = [np.int(n_epochs[i,3]) for i in range(0,45)] n_epoch[:,2] = [np.int(n_epochs[i,5]) for i in range(0,45)] n_epoch[:,3] = [np.int(n_epochs[i,8]) for i in range(0,45)] removal = np.sum(60 - n_epoch, axis = 1) a = [removal[i] for i in zip(good_readers)] b = [removal[i] for i in zip(poor_readers)] c = [removal[i] for i in zip(all_subject)] d = [removal[i] for i in zip(young_readers)] e = [removal[i] for i in zip(old_readers)] stats.ttest_ind(a,b) stats.ttest_ind(d,e) stats.pearsonr(c,age) stats.pearsonr(c,twre_index) figureDir = '%s/figures' % raw_dir plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(age, c, deg=1) ax.plot(age, fit[0] * age + fit[1], color=[0,0,0]) ax.plot(age, c, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlabel('Age') plt.ylabel('# of rejected trials') os.chdir(figureDir) # plt.savefig('Corr_reject_age.png',dpi=600,papertype='letter',format='png') # plt.savefig('Corr_reject_age.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(twre_index, c, deg=1) ax.plot(twre_index, fit[0] * twre_index + fit[1], color=[0,0,0]) ax.plot(twre_index, c, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlabel('Reading skill') plt.ylabel('# of rejected trials') os.chdir(figureDir) # plt.savefig('Corr_reject_reading.png',dpi=600,papertype='letter',format='png') # plt.savefig('Corr_reject_reading.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Read HCP labels """ labels = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir) #regexp=aparc_label_name #aparc_label_name = 'PHT_ROI'#'_IP'#'IFSp_ROI'#'STSvp_ROI'#'STSdp_ROI'#'PH_ROI'#'TE2p_ROI' #'SFL_ROI' #'IFSp_ROI' #'TE2p_ROI' #'inferiortemporal' #'pericalcarine' anat_label = mne.read_labels_from_annot('fsaverage', parc='aparc.a2009s',surf_name='white', subjects_dir=fs_dir) #, regexp=aparc_label_name) #%% #TE2p_mask_lh = mne.Label.get_vertices_used(TE2p_label[0]) #TE2p_mask_rh = mne.Label.get_vertices_used(TE2p_label[1]) PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] TE2a_label_lh = [label for label in labels if label.name == 'L_TE2a_ROI-lh'][0] TE2a_label_rh = [label for label in labels if label.name == 'R_TE2a_ROI-rh'][0] TF_label_lh = [label for label in labels if label.name == 'L_TF_ROI-lh'][0] TF_label_rh = [label for label in labels if label.name == 'R_TF_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] a8C_label_lh = [label for label in labels if label.name == 'L_8C_ROI-lh'][0] a8C_label_rh = [label for label in labels if label.name == 'R_8C_ROI-rh'][0] p946v_label_lh = [label for label in labels if label.name == 'L_p9-46v_ROI-lh'][0] p946v_label_rh = [label for label in labels if label.name == 'R_p9-46v_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFSa_label_lh = [label for label in labels if label.name == 'L_IFSa_ROI-lh'][0] IFSa_label_rh = [label for label in labels if label.name == 'R_IFSa_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] a43_label_lh = [label for label in labels if label.name == 'L_43_ROI-lh'][0] a43_label_rh = [label for label in labels if label.name == 'R_43_ROI-rh'][0] a9_46v_lh = [label for label in labels if label.name == 'L_a9-46v_ROI-lh'][0] a9_46v_rh = [label for label in labels if label.name == 'R_a9-46v_ROI-rh'][0] PGi_label_lh = [label for label in labels if label.name == 'L_PGi_ROI-lh'][0] PGi_label_rh = [label for label in labels if label.name == 'R_PGi_ROI-rh'][0] PGs_label_lh = [label for label in labels if label.name == 'L_PGs_ROI-lh'][0] PGs_label_rh = [label for label in labels if label.name == 'R_PGs_ROI-rh'][0] STSvp_label_lh = [label for label in labels if label.name == 'L_STSvp_ROI-lh'][0] STSvp_label_rh = [label for label in labels if label.name == 'R_STSvp_ROI-rh'][0] STSdp_label_lh = [label for label in labels if label.name == 'L_STSdp_ROI-lh'][0] STSdp_label_rh = [label for label in labels if label.name == 'R_STSdp_ROI-rh'][0] STSva_label_lh = [label for label in labels if label.name == 'L_STSva_ROI-lh'][0] STSva_label_rh = [label for label in labels if label.name == 'R_STSva_ROI-rh'][0] STSda_label_lh = [label for label in labels if label.name == 'L_STSda_ROI-lh'][0] STSda_label_rh = [label for label in labels if label.name == 'R_STSda_ROI-rh'][0] TPOJ1_label_lh = [label for label in labels if label.name == 'L_TPOJ1_ROI-lh'][0] TPOJ1_label_rh = [label for label in labels if label.name == 'R_TPOJ1_ROI-rh'][0] TPOJ2_label_lh = [label for label in labels if label.name == 'L_TPOJ2_ROI-lh'][0] TPOJ2_label_rh = [label for label in labels if label.name == 'R_TPOJ2_ROI-rh'][0] V1_label_lh = [label for label in labels if label.name == 'L_V1_ROI-lh'][0] V1_label_rh = [label for label in labels if label.name == 'R_V1_ROI-rh'][0] V4_label_lh = [label for label in labels if label.name == 'L_V4_ROI-lh'][0] V4_label_rh = [label for label in labels if label.name == 'R_V4_ROI-rh'][0] LIPd_label_lh = [label for label in labels if label.name == 'L_LIPd_ROI-lh'][0] LIPd_label_rh = [label for label in labels if label.name == 'R_LIPd_ROI-rh'][0] LIPv_label_lh = [label for label in labels if label.name == 'L_LIPv_ROI-lh'][0] LIPv_label_rh = [label for label in labels if label.name == 'R_LIPv_ROI-rh'][0] IPS1_label_lh = [label for label in labels if label.name == 'L_IPS1_ROI-lh'][0] IPS1_label_rh = [label for label in labels if label.name == 'R_IPS1_ROI-rh'][0] _7Am_label_lh = [label for label in labels if label.name == 'L_7Am_ROI-lh'][0] _7Am_label_rh = [label for label in labels if label.name == 'R_7Am_ROI-rh'][0] VIP_label_lh = [label for label in labels if label.name == 'L_VIP_ROI-lh'][0] VIP_label_rh = [label for label in labels if label.name == 'R_VIP_ROI-rh'][0] _7AL_label_lh = [label for label in labels if label.name == 'L_7AL_ROI-lh'][0] _7AL_label_rh = [label for label in labels if label.name == 'R_7AL_ROI-rh'][0] PBelt_label_lh = [label for label in labels if label.name == 'L_PBelt_ROI-lh'][0] PBelt_label_rh = [label for label in labels if label.name == 'R_PBelt_ROI-rh'][0] PSL_label_lh = [label for label in labels if label.name == 'L_PSL_ROI-lh'][0] PSL_label_rh = [label for label in labels if label.name == 'R_PSL_ROI-rh'][0] LBelt_label_lh = [label for label in labels if label.name == 'L_LBelt_ROI-lh'][0] LBelt_label_rh = [label for label in labels if label.name == 'R_LBelt_ROI-rh'][0] A1_label_lh = [label for label in labels if label.name == 'L_A1_ROI-lh'][0] A1_label_rh = [label for label in labels if label.name == 'R_A1_ROI-rh'][0] MBelt_label_lh = [label for label in labels if label.name == 'L_MBelt_ROI-lh'][0] MBelt_label_rh = [label for label in labels if label.name == 'R_MBelt_ROI-rh'][0] RI_label_lh = [label for label in labels if label.name == 'L_RI_ROI-lh'][0] RI_label_rh = [label for label in labels if label.name == 'R_RI_ROI-rh'][0] A4_label_lh = [label for label in labels if label.name == 'L_A4_ROI-lh'][0] A4_label_rh = [label for label in labels if label.name == 'R_A4_ROI-rh'][0] PFcm_label_lh = [label for label in labels if label.name == 'L_PFcm_ROI-lh'][0] PFcm_label_rh = [label for label in labels if label.name == 'R_PFcm_ROI-rh'][0] PFm_label_lh = [label for label in labels if label.name == 'L_PFm_ROI-lh'][0] PFm_label_rh = [label for label in labels if label.name == 'R_PFm_ROI-rh'][0] _4_label_lh = [label for label in labels if label.name == 'L_4_ROI-lh'][0] _4_label_rh = [label for label in labels if label.name == 'R_4_ROI-rh'][0] _1_label_lh = [label for label in labels if label.name == 'L_1_ROI-lh'][0] _1_label_rh = [label for label in labels if label.name == 'R_1_ROI-rh'][0] _2_label_lh = [label for label in labels if label.name == 'L_2_ROI-lh'][0] _2_label_rh = [label for label in labels if label.name == 'R_2_ROI-rh'][0] _3a_label_lh = [label for label in labels if label.name == 'L_3a_ROI-lh'][0] _3a_label_rh = [label for label in labels if label.name == 'R_3a_ROI-rh'][0] _3b_label_lh = [label for label in labels if label.name == 'L_3b_ROI-lh'][0] _3b_label_rh = [label for label in labels if label.name == 'R_3b_ROI-rh'][0] _43_label_lh = [label for label in labels if label.name == 'L_43_ROI-lh'][0] _43_label_rh = [label for label in labels if label.name == 'R_43_ROI-rh'][0] _6r_label_lh = [label for label in labels if label.name == 'L_6r_ROI-lh'][0] _6r_label_rh = [label for label in labels if label.name == 'R_6r_ROI-rh'][0] OP1_label_lh = [label for label in labels if label.name == 'L_OP1_ROI-lh'][0] OP1_label_rh = [label for label in labels if label.name == 'R_OP1_ROI-rh'][0] OP23_label_lh = [label for label in labels if label.name == 'L_OP2-3_ROI-lh'][0] OP23_label_rh = [label for label in labels if label.name == 'R_OP2-3_ROI-rh'][0] OP4_label_lh = [label for label in labels if label.name == 'L_OP4_ROI-lh'][0] OP4_label_rh = [label for label in labels if label.name == 'R_OP4_ROI-rh'][0] PFop_label_lh = [label for label in labels if label.name == 'L_PFop_ROI-lh'][0] PFop_label_rh = [label for label in labels if label.name == 'R_PFop_ROI-rh'][0] A5_label_lh = [label for label in labels if label.name == 'L_A5_ROI-lh'][0] A5_label_rh = [label for label in labels if label.name == 'R_A5_ROI-rh'][0] STV_label_lh = [label for label in labels if label.name == 'L_STV_ROI-lh'][0] STV_label_rh = [label for label in labels if label.name == 'R_STV_ROI-rh'][0] RI_label_lh = [label for label in labels if label.name == 'L_RI_ROI-lh'][0] RI_label_rh = [label for label in labels if label.name == 'R_RI_ROI-rh'][0] PF_label_lh = [label for label in labels if label.name == 'L_PF_ROI-lh'][0] PF_label_rh = [label for label in labels if label.name == 'R_PF_ROI-rh'][0] PFt_label_lh = [label for label in labels if label.name == 'L_PFt_ROI-lh'][0] PFt_label_rh = [label for label in labels if label.name == 'R_PFt_ROI-rh'][0] p47r_label_lh = [label for label in labels if label.name == 'L_p47r_ROI-lh'][0] p47r_label_rh = [label for label in labels if label.name == 'R_p47r_ROI-rh'][0] FOP5_label_lh = [label for label in labels if label.name == 'L_FOP5_ROI-lh'][0] FOP5_label_rh = [label for label in labels if label.name == 'R_FOP5_ROI-rh'][0] FOP4_label_lh = [label for label in labels if label.name == 'L_FOP4_ROI-lh'][0] FOP4_label_rh = [label for label in labels if label.name == 'R_FOP4_ROI-rh'][0] FOP3_label_lh = [label for label in labels if label.name == 'L_FOP3_ROI-lh'][0] FOP3_label_rh = [label for label in labels if label.name == 'R_FOP3_ROI-rh'][0] FOP2_label_lh = [label for label in labels if label.name == 'L_FOP2_ROI-lh'][0] FOP2_label_rh = [label for label in labels if label.name == 'R_FOP2_ROI-rh'][0] Ig_label_lh = [label for label in labels if label.name == 'L_Ig_ROI-lh'][0] Ig_label_rh = [label for label in labels if label.name == 'R_Ig_ROI-rh'][0] AVI_label_lh = [label for label in labels if label.name == 'L_AVI_ROI-lh'][0] AVI_label_rh = [label for label in labels if label.name == 'R_AVI_ROI-rh'][0] _47l_label_lh = [label for label in labels if label.name == 'L_47l_ROI-lh'][0] _47l_label_rh = [label for label in labels if label.name == 'R_47l_ROI-rh'][0] temp1_label_lh = [label for label in anat_label if label.name == 'Pole_occipital-lh'][0] #temp1_label_rh = [label for label in anat_label if label.name == 'parsopercularis-rh'][0] temp2_label_lh = [label for label in anat_label if label.name == 'S_occipital_ant-lh'][0] #temp2_label_rh = [label for label in anat_label if label.name == 'parsorbitalis-rh'][0] temp3_label_lh = [label for label in anat_label if label.name == 'G_and_S_occipital_inf-lh'][0] #temp3_label_rh = [label for label in anat_label if label.name == 'parstriangularis-rh'][0] temp4_label_lh = [label for label in anat_label if label.name == 'S_calcarine-lh'][0] #temp4_label_rh = [label for label in anat_label if label.name == 'precentral-rh'][0] #%% """ Lexical task: Word - Noise """ data11 = X11[:,:,all_subject,5] - X11[:,:,all_subject,8] data11 = np.transpose(data11,[2,1,0]) data11_good = X11[:,:,good_readers,5] - X11[:,:,good_readers,8] data11_good = np.transpose(data11_good,[2,1,0]) data11_poor = X11[:,:,poor_readers,5] - X11[:,:,poor_readers,8] data11_poor = np.transpose(data11_poor,[2,1,0]) """ Dot task: Word - Noise """ data12 = X11[:,:,all_subject,0] - X11[:,:,all_subject,3] data12 = np.transpose(data12,[2,1,0]) data12_good = X11[:,:,good_readers,0] - X11[:,:,good_readers,3] data12_good = np.transpose(data12_good,[2,1,0]) data12_poor = X11[:,:,poor_readers,0] - X11[:,:,poor_readers,3] data12_poor = np.transpose(data12_poor,[2,1,0]) """ Lexical task: High contrast - Low contrast """ #data12 = X11[:,31:65,all_subject,5] - X11[:,31:65,all_subject,7] #data12 = np.transpose(data12,[2,1,0]) #data12[:,:,medial_vertices] = 0. #%% """ Spatio-temporal clustering: session 1 Lexical task""" t0 = time.time() print("\n\n Start time: %s \n\n" % time.ctime()) p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., n_subjects - 1) s_space = mne.grade_to_tris(5) # Left hemisphere s_space_lh = s_space[s_space[:,0] < 10242] #connectivity = mne.spatial_tris_connectivity(s_space_lh, remap_vertices = True) connectivity = mne.spatial_tris_connectivity(s_space) T_obs, clusters, cluster_p_values, H0 = clu = \ mne.stats.spatio_temporal_cluster_1samp_test(data11[:,:,:], n_permutations=1024, connectivity=connectivity, n_jobs=12, threshold=t_threshold) good_cluster_inds = np.where(cluster_p_values < p_threshold)[0] #fsave_vertices = [np.arange(10242), np.array([], int)] fsave_vertices = [np.arange(10242), np.arange(10242)] #fsave_vertices = [np.arange(10242), np.array([], int)] stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') print("\n\n Elasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60))) #%% """ Just source estimates """ stat_fun = partial(mne.stats.ttest_1samp_no_p) p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., len(good_readers) - 1) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data12_good[:,:,:])), fs_vertices, tmin, tstep, subject='fsaverage') brain3_1 = temp3.plot(hemi='both', subjects_dir=fs_dir, views = 'lat', initial_time=0.35, #['lat','ven','med'] clim=dict(kind='value', lims=[1.7, t_threshold, 3.5]))#clim=dict(kind='value', lims=[2, t_threshold, 7]), size=(800,800)) #%% """ Spatio-temporal clustering: session 1 Dot task""" dur_thresh = 100 t0 = time.time() T_obs, clusters, cluster_p_values, H0 = clu = \ mne.stats.permutation_cluster_1samp_test(data12[:,166:199,:], n_permutations=1024, connectivity=connectivity, n_jobs=12, threshold=t_threshold) good_cluster_inds = np.where(cluster_p_values < 0.05)[0] fsave_vertices = [np.arange(10242), np.arange(10242)] dot_stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') print("\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60))) brain3 = dot_stc_all_cluster_vis.plot( hemi='lh', views='lateral', subjects_dir=fs_dir, time_label='Duration significant (ms)', size=(800, 800), smoothing_steps=20, clim=dict(kind='value', lims=[0, 10, 50]),background='white',foreground='black') #%% """ ROI definition """ dur_thresh = 100 """ plot(self, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, transparent=None, alpha=1.0, time_viewer=False, subjects_dir=None, figure=None, views='lat', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground='white', initial_time=None, time_unit='s') """ brain1 = stc_all_cluster_vis.plot( hemi='lh', views='lateral', subjects_dir=fs_dir, time_label='Duration significant (ms)', size=(800, 800), smoothing_steps=20, clim=dict(kind='value', lims=[40, dur_thresh, 200]),background='white',foreground='black') """ Sort out vertices here """ #temp_frontal_label_l = mne.Label(FOP4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP4_label_lh.pos, \ # values= FOP4_label_lh.values) # #brain1.add_label(temp_frontal_label_l, borders=True, color=c_table[8]) # #lh_label = stc_all_cluster_vis.in_label(temp_frontal_label_l) #data = lh_label.data #lh_label.data[data < dur_thresh] = 0. # #temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, # subjects_dir=fs_dir, connected=False) #temp = stc_all_cluster_vis.in_label(temp_labels) #frontal_vertices_l = temp.vertices[0] # #new_label = mne.Label(frontal_vertices_l, hemi='lh') #brain1.add_label(new_label, borders=True, color=c_table[8]) """ Done """ os.chdir('figures') #brain1.save_image('Lexical_LH_STClustering.pdf', antialiased=True) #brain1.save_image('Lexical_LH_STClustering.png', antialiased=True) os.chdir('..') brain1.add_label(A1_label_lh, borders=True, color=[0,0,0]) # Show A1 temp_auditory_label_l = mne.Label(A4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=A4_label_lh.pos,values= A4_label_lh.values) + \ mne.Label(A5_label_lh.vertices, hemi='lh',name=u'sts_l',pos=A5_label_lh.pos,values= A5_label_lh.values) + \ mne.Label(STSdp_label_lh.vertices, hemi='lh',name=u'sts_l',pos=STSdp_label_lh.pos,values= STSdp_label_lh.values)+ \ mne.Label(TPOJ1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=TPOJ1_label_lh.pos,values= TPOJ1_label_lh.values)+ \ mne.Label(PBelt_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PBelt_label_lh.pos,values= PBelt_label_lh.values)+ \ mne.Label(LBelt_label_lh.vertices, hemi='lh',name=u'sts_l',pos=LBelt_label_lh.pos,values= LBelt_label_lh.values) #brain1.add_label(temp_auditory_label_l, borders=True, color=c_table[2]) lh_label = stc_all_cluster_vis.in_label(temp_auditory_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) stg_vertices_l = temp.vertices[0] new_label = mne.Label(stg_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[1]) #brain1.remove_labels() temp_auditory2_label_l = mne.Label(PFcm_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PFcm_label_lh.pos,values= PFcm_label_lh.values) + \ mne.Label(RI_label_lh.vertices, hemi='lh',name=u'sts_l',pos=RI_label_lh.pos,values= RI_label_lh.values)+ \ mne.Label(PF_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PF_label_lh.pos,values= PF_label_lh.values) #brain1.add_label(temp_auditory2_label_l, borders=True, color=c_table[0]) lh_label = stc_all_cluster_vis.in_label(temp_auditory2_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) tpj_vertices_l = temp.vertices[0] tpj_vertices_l = np.sort(np.concatenate((tpj_vertices_l, \ [16, 2051, 2677, 2678, 2679, 5042, 8296, 8297, 8299, 8722, 8723, 9376]))) new_label = mne.Label(tpj_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[0]) #brain1.add_label(_1_label_lh, borders=True, color=c_table[4]) temp_motor_label_l = mne.Label(_3a_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_3a_label_lh.pos,values= _3a_label_lh.values) + \ mne.Label(_3b_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_3b_label_lh.pos,values= _3b_label_lh.values) + \ mne.Label(_4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_4_label_lh.pos,values= _4_label_lh.values) + \ mne.Label(_1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_1_label_lh.pos,values= _1_label_lh.values) #brain1.add_label(temp_motor_label_l, borders=True, color=c_table[4]) lh_label = stc_all_cluster_vis.in_label(temp_motor_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) motor_vertices_l = temp.vertices[0] new_label = mne.Label(motor_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[4]) temp_broca_label_l = \ mne.Label(a44_label_lh.vertices, hemi='lh',name=u'sts_l',pos=a44_label_lh.pos,values= a44_label_lh.values) + \ mne.Label(a45_label_lh.vertices, hemi='lh',name=u'sts_l',pos=a45_label_lh.pos,values= a45_label_lh.values) + \ mne.Label(AVI_label_lh.vertices, hemi='lh',name=u'sts_l',pos=AVI_label_lh.pos,values= AVI_label_lh.values) + \ mne.Label(FOP5_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP5_label_lh.pos,values= FOP5_label_lh.values) + \ mne.Label(_47l_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_47l_label_lh.pos,values= _47l_label_lh.values) #brain1.add_label(temp_broca_label_l, borders=True, color=c_table[6]) lh_label = stc_all_cluster_vis.in_label(temp_broca_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) broca_vertices_l = temp.vertices[0] broca_vertices_l = np.sort(np.concatenate((broca_vertices_l,[1187,3107,3108,3109,6745,7690,7691]))) new_label = mne.Label(broca_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[6]) temp_sylvian_label_l = mne.Label(OP23_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP23_label_lh.pos,values= OP23_label_lh.values) + \ mne.Label(Ig_label_lh.vertices, hemi='lh',name=u'sts_l',pos=Ig_label_lh.pos,values= Ig_label_lh.values) + \ mne.Label(OP4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP4_label_lh.pos,values= OP4_label_lh.values) + \ mne.Label(OP1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP1_label_lh.pos,values= OP1_label_lh.values) + \ mne.Label(FOP2_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP2_label_lh.pos,values= FOP2_label_lh.values) + \ mne.Label(_6r_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_6r_label_lh.pos,values= _6r_label_lh.values) #brain1.add_label(temp_sylvian_label_l, borders=True, color=c_table[8]) lh_label = stc_all_cluster_vis.in_label(temp_sylvian_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) sylvian_vertices_l = temp.vertices[0] sylvian_vertices_l = np.sort(np.concatenate((sylvian_vertices_l,[905,1892,2825,2526,4157,4158,4159,6239,8290,8293,9194,9203]))) new_label = mne.Label(sylvian_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[8]) # right hemisphere #brain2 = stc_all_cluster_vis.plot( # hemi='rh', views='lateral', subjects_dir=fs_dir, # time_label='Duration significant (ms)', size=(800, 800), # smoothing_steps=20, clim=dict(kind='value', lims=[40, dur_thresh, 200]),background='white',foreground='black') # #stg_vertices_r = A5_label_rh.vertices #stg_vertices_r = np.sort([2001,2002,2419,2420,2421,2418,2754,2417,13075,13076,13077,13078,\ # 13079,13080,13081,12069,12070,12071,12072]) #new_label = mne.Label(stg_vertices_r, hemi='rh') #brain2.add_label(new_label, borders=True, color=c_table[5]) # #os.chdir('figures') #brain2.save_image('RH_STClustering.pdf', antialiased=True) #brain2.save_image('RH_STClustering.png', antialiased=True) #os.chdir('..') # V1 #lh_label = dot_stc_all_cluster_vis.in_label(V1_label_lh) #data = lh_label.data #lh_label.data[data < 50] = 0. # #temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, # subjects_dir=fs_dir, connected=False) #temp = dot_stc_all_cluster_vis.in_label(temp_labels) #tV1_vertices_l = temp.vertices[0] #new_label = mne.Label(tV1_vertices_l, hemi='lh') #brain1.add_label(new_label, borders=True, color='r') # #M = np.mean(np.mean(tX11[tV1_vertices_l,:,:,:],axis=0),axis=1) #errM = np.std(np.mean(tX11[tV1_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) #t0 = time.time() #plotit2(times, M, errM, 5, 0, yMin=0, yMax=2.7, subject = 'all') #plotsig2(times,nReps,X, 5, 0, all_subject, boot_pVal) np.save('STG_Vert', stg_vertices_l) np.save('IFG_Vert', broca_vertices_l) np.save('TPJ_Vert', tpj_vertices_l) np.save('Motor_Vert', motor_vertices_l) np.save('Sylvian_Vert', sylvian_vertices_l) np.save('STG_Vert_r', stg_vertices_r) #%% figureDir = '%s/figures' % raw_dir nReps = 3000 boot_pVal = 0.05 #%% """ Left STG: Word vs. Noise """ stg_vertices_l = np.load('STG_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) MM = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) diffScore = np.mean((MM[:,:,5]-MM[:,:,8]), axis = 1) diffScore2 = np.mean((MM[:,:,0]-MM[:,:,3]), axis = 1) del temp1 plt.figure() plt.clf() plt.plot(times, diffScore) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('STG: Lexical task') os.chdir(figureDir) plt.savefig('STG_Word_Scramble_lex.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_Word_Scramble_lex.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() plt.plot(times, diffScore2) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('STG: Fixation task') os.chdir(figureDir) plt.savefig('STG_Word_Scramble_fix.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_Word_Scramble_fix.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[stg_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[stg_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) diffM3 = np.mean(np.mean(temp1[stg_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,8],axis=0),axis=1) diffM4 = np.mean(np.mean(temp1[stg_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,3],axis=0),axis=1) del temp1 # For calculating p-values X = np.mean(X11[stg_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STG_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STG_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Correlation """ temp1 = X11[:,:,all_subject,:] M = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[stg_vertices_l,:,:,:],axis=0) del temp1, temp2 #%% """ Plot """ t1 = 350 t_window1 = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4.5]) os.chdir('figures') plt.savefig('STG_corr_lexical_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lexical_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_lex = temp_meg """ Correlation: Dot task """ t1 = 300 t_window1_dot = np.multiply(np.divide(np.add([t1,t1+100],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4.5]) os.chdir('figures') plt.savefig('STG_corr_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_fix = temp_meg """ Corr: Difference score lexical vs. fixation """ plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg_fix, temp_meg_lex, deg=1) ax.plot(temp_meg_fix, fit[0] * temp_meg_fix + fit[1], color=[0,0,0]) ax.plot(temp_meg_fix, temp_meg_lex, 'o', markerfacecolor=[0.5,0.5,0.5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=c_table[3], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([-1.5, 4.5]) plt.xlim([-1.5, 4.5]) r, p = stats.pearsonr(temp_meg_fix,temp_meg_lex) print('STG: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('STG_lexical_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """Equivalence test""" import statsmodels sstep = 10 p = np.empty((int(len(range(0,800,sstep))),1)) lower_p = np.empty((int(len(range(0,800,sstep))),1)) upper_p = np.empty((int(len(range(0,800,sstep))),1)) for tt, ttime in zip(range(0, len(range(0,800,sstep))),range(0,800,sstep)): t_window1 = np.multiply(np.divide(np.add([ttime,ttime+sstep],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_meg_lex = temp_meg """ Correlation: Dot task """ t_window1_dot = np.multiply(np.divide(np.add([ttime,ttime+sstep],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_meg_fix = temp_meg err = 0.8 * np.std(temp_meg_lex - temp_meg_fix) # p[tt], a, b = statsmodels.stats.weightstats.ttost_paired(temp_meg_lex, temp_meg_fix, err, -err) xx, lower_p[tt] = stats.ttest_1samp(temp_meg_lex-temp_meg_fix,-err) xx, upper_p[tt] = stats.ttest_1samp(temp_meg_lex-temp_meg_fix,err) p[tt] = max(lower_p[tt], upper_p[tt])*2 plt.figure() plt.clf() plt.plot(range(0,800,sstep), p) plt.plot([0, 800],[0.05,0.05],'--') plt.xlabel('Time after stimulus onset (ms)') plt.ylabel('P-value from the equivalence test') os.chdir(figureDir) plt.savefig('STG_equivalence.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_equivalence.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #tempa = np.random.normal(100,5,(1,100)) #tempb = np.random.normal(10,5,(1,100)) #err = 0.8*5 #tempp, fjsdk, fjdskl = statsmodels.stats.weightstats.ttost_paired(tempa[0], tempb[0], err, -err) #xxx, xxxx = stats.ttest_rel(tempa[0],tempb[0]) #%% """Correlation over time""" sstep = 10 tstart = 0 n_ttest = np.empty((len(range(tstart,800,sstep)),1)) p_ttest = np.empty((len(range(tstart,800,sstep)),1)) r_lex = np.empty((len(range(tstart,800,sstep)),1)) p_lex = np.empty((len(range(tstart,800,sstep)),1)) r_dot = np.empty((len(range(tstart,800,sstep)),1)) p_dot = np.empty((len(range(tstart,800,sstep)),1)) r_bet = np.empty((len(range(tstart,800,sstep)),1)) p_bet = np.empty((len(range(tstart,800,sstep)),1)) temp_meg_lex = np.empty((len(all_subject),len(range(tstart,800,sstep)))) temp_meg_fix = np.empty((len(all_subject),len(range(tstart,800,sstep)))) for ii, t1 in zip(range(0,len(range(tstart,800,sstep))), range(tstart,800,sstep)): t_window1 = np.multiply(np.divide(np.add([t1,t1+10],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1 = np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_lex[ii], p_lex[ii] = stats.pearsonr(temp_read,temp_meg) n_ttest[ii], p_ttest[ii] = stats.ttest_1samp(lowNoise1,0) temp_meg_lex[:,ii] = temp_meg task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_dot[ii], p_dot[ii] = stats.pearsonr(temp_read,temp_meg) temp_meg_fix[:,ii] = temp_meg r_bet[ii], p_bet[ii] = stats.pearsonr(temp_meg_fix[:,ii],temp_meg_lex[:,ii]) #%% """Correlation over time""" c = ( (0.6196, 0.0039, 0.2588), (0.8353, 0.2431, 0.3098), (0.9569, 0.4275, 0.2627), (0.9922, 0.6824, 0.3804), (0.9961, 0.8784, 0.5451), (1.0000, 1.0000, 0.7490) ) plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_lex, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('STG: Lexical task') for ttt in range(0, len(range(tstart,800,sstep))): if p_lex[ttt] >= 0.05: al = plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_lex[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_lex[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_lex[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_lex_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lex_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_dot, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('STG: Fixation task') for ttt in range(0, len(range(tstart,800,sstep))): if p_dot[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_dot[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_dot[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_dot[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_dot_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_bet, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation between tasks (r-value)') plt.title('STG') for ttt in range(0, len(range(tstart,800,sstep))): if p_bet[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_bet[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_bet[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_bet[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_bettasks_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_bettasks_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% del M, M1, M2 #%% """ Broca """ broca_vertices_l = np.load('IFG_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 plt.figure() plt.clf() plt.plot(times, M[:,5]-M[:,8]) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('IFG: Lexical task') os.chdir(figureDir) plt.savefig('IFG_Word_Scramble_lex.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_Word_Scramble_lex.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() plt.plot(times, M[:,0]-M[:,3]) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('IFG: Fixation task') os.chdir(figureDir) plt.savefig('IFG_Word_Scramble_fix.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_Word_Scramble_fix.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[broca_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: IFG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('IFG_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: IFG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: IFG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: IFG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('IFG_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: IFG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: IFG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Correlation: Lexical """ temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[broca_vertices_l,:,:,:],axis=0) del temp1, temp2 #%% """Plot""" t1 = 350 t_window1 = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-2,3]) os.chdir('figures') plt.savefig('IFG_corr_lexical_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_lexical_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_lex = temp_meg """ Correlation: Dot task """ #t1 = 400 t_window1_dot = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4]) os.chdir('figures') plt.savefig('IFG_corr_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_fix = temp_meg """ Corr: Difference score lexical vs. fixation """ plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg_fix, temp_meg_lex, deg=1) ax.plot(temp_meg_fix, fit[0] * temp_meg_fix + fit[1], color=[0,0,0]) ax.plot(temp_meg_fix, temp_meg_lex, 'o', markerfacecolor=[0.5,0.5,0.5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=c_table[3], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([-1.5, 4.5]) plt.xlim([-1.5, 4]) r, p = stats.pearsonr(temp_meg_fix,temp_meg_lex) print('STG: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('IFG_lexical_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """Correlation over time""" """ Correlation """ temp1 = X11[:,:,all_subject,:] M = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[broca_vertices_l,:,:,:],axis=0) del temp1, temp2 sstep = 10 tstart = 200 n_ttest = np.empty((len(range(tstart,800,sstep)),1)) p_ttest = np.empty((len(range(tstart,800,sstep)),1)) r_lex = np.empty((len(range(tstart,800,sstep)),1)) p_lex = np.empty((len(range(tstart,800,sstep)),1)) r_dot = np.empty((len(range(tstart,800,sstep)),1)) p_dot = np.empty((len(range(tstart,800,sstep)),1)) r_bet = np.empty((len(range(tstart,800,sstep)),1)) p_bet = np.empty((len(range(tstart,800,sstep)),1)) temp_meg_lex = np.empty((len(all_subject),len(range(tstart,800,sstep)))) temp_meg_fix = np.empty((len(all_subject),len(range(tstart,800,sstep)))) for ii, t1 in zip(range(0,len(range(tstart,800,sstep))), range(tstart,800,sstep)): t_window1 = np.multiply(np.divide(np.add([t1,t1+50],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1 = np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_lex[ii], p_lex[ii] = stats.pearsonr(temp_read,temp_meg) n_ttest[ii], p_ttest[ii] = stats.ttest_1samp(lowNoise1,0) temp_meg_lex[:,ii] = temp_meg task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_dot[ii], p_dot[ii] = stats.pearsonr(temp_read,temp_meg) temp_meg_fix[:,ii] = temp_meg r_bet[ii], p_bet[ii] = stats.pearsonr(temp_meg_fix[:,ii],temp_meg_lex[:,ii]) #%% """Correlation over time""" c = ( (0.6196, 0.0039, 0.2588), (0.8353, 0.2431, 0.3098), (0.9569, 0.4275, 0.2627), (0.9922, 0.6824, 0.3804), (0.9961, 0.8784, 0.5451), (1.0000, 1.0000, 0.7490) ) plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_lex, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('IFG: Lexical task') for ttt in range(0, len(range(tstart,800,sstep))): if p_lex[ttt] >= 0.05: al = plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_lex[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_lex[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_lex[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_lex_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_lex_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_dot, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('IFG: Fixation task') for ttt in range(0, len(range(tstart,800,sstep))): if p_dot[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_dot[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_dot[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_dot[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_dot_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_dot_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_bet, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation between tasks (r-value)') plt.title('IFG') for ttt in range(0, len(range(tstart,800,sstep))): if p_bet[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_bet[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_bet[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_bet[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_bettasks_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_bettasks_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ TPJ """ tpj_vertices_l = np.load('TPJ_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) diffM3 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,8],axis=0),axis=1) diffM4 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,3],axis=0),axis=1) del temp1 # For calculating p-values X = np.mean(X11[tpj_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: TPJ') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: TPJ') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: TPJ') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: TPJ') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: TPJ') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: TPJ') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Correlation: Lexical """ temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[tpj_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[tpj_vertices_l,:,:,:],axis=0) del temp1, temp2 t_window1 = np.multiply(np.divide(np.add([400,500],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) os.chdir('figures') plt.savefig('TPJ_corr_lexical.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_corr_lexical.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') np.corrcoef(temp_read,temp_meg) r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[good_readers],lowNoise1_good) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[poor_readers],lowNoise1_poor) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) """ Correlation: Dot task """ t_window1_dot = np.multiply(np.divide(np.add([300,400],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) os.chdir('figures') plt.savefig('TPJ_corr_dot.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_corr_dot.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') np.corrcoef(temp_read,temp_meg) r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[good_readers],lowNoise1_good) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[poor_readers],lowNoise1_poor) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) """ Task effects: Word response in lexical vs. dot task """ t0 = time.time() task1 = 0 task2 = 5 temp2_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task2], axis = 0) temp2_poor = np.mean(M2[np.int(t_window1[0]):np.int(t_window1[1]),:,task2], axis = 0) temp3_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task1], axis = 0) temp3_poor = np.mean(M2[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task1], axis = 0) temp2 = np.concatenate((temp2_good,temp2_poor)) # lexical temp3 = np.concatenate((temp3_good,temp3_poor)) # dot plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp3, temp2, deg=1) ax.plot(temp3, fit[0] * temp3 + fit[1], color=[0,0,0]) ax.plot(temp3_poor, temp2_poor, 'o', markerfacecolor=[.5,.5,.5], markeredgecolor=[1,1,1], markersize=10) ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=[.5,.5,.5], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([0, 7]) plt.xlim([0, 7]) r, p = stats.pearsonr(temp3,temp2) print('TPJ: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('TPJ_lexical_dot.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_dot.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') del M, M1, M2 #%% """ Motor """ M = np.mean(np.mean(tX11[motor_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(tX11[motor_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[motor_vertices_l,:,:,:],axis=0) ############################################################################### t0 = time.time() plotit2(times, M, errM, 0, 3, yMin=0, yMax=2.3, subject = 'all') plotsig2(times,nReps,X, 0, 3, all_subject, boot_pVal) C = np.mean(X11[motor_vertices_l,:,:,0],axis=0) - np.mean(X11[motor_vertices_l,:,:,3],axis=0) #corr = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.5,np.str(times[np.where(corr == np.max(corr))[0][0]])) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.4,np.str(np.max(corr))) os.chdir(figureDir) plt.savefig('Motor_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 0, 3, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 0, 3, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 0, 3, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 0, 3, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) ############################################################################### t0 = time.time() plotit2(times, M, errM, 5, 8, yMin=0, yMax=2.3, subject = 'all') plotsig2(times,nReps,X, 5, 8, all_subject, boot_pVal) #C = np.mean(X11[motor_vertices_l,:,:,5],axis=0) - np.mean(X11[motor_vertices_l,:,:,8],axis=0) #corr2 = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.5,np.str(times[np.where(corr2 == np.max(corr2))[0][0]])) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.4,np.str(np.max(corr2))) os.chdir(figureDir) plt.savefig('Motor_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 5, 8, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 5, 8, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 5, 8, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 5, 8, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) #%% """ Sylvian """ M = np.mean(np.mean(tX11[sylvian_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(tX11[sylvian_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[sylvian_vertices_l,:,:,:],axis=0) ############################################################################### t0 = time.time() plotit2(times, M, errM, 0, 3, yMin=0, yMax=2.7, subject = 'all') plotsig2(times,nReps,X, 0, 3, all_subject, boot_pVal) #C = np.mean(X11[sylvian_vertices_l,:,:,0],axis=0) - np.mean(X11[sylvian_vertices_l,:,:,3],axis=0) #corr = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.5,np.str(times[np.where(corr == np.max(corr))[0][0]])) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.4,np.str(np.max(corr))) os.chdir(figureDir) plt.savefig('Sylvian_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 0, 3, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 0, 3, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 0, 3, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 0, 3, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) ############################################################################### t0 = time.time() plotit2(times, M, errM, 5, 8, yMin=0, yMax=2.7, subject = 'all') plotsig2(times,nReps,X, 5, 8, all_subject, boot_pVal) #C = np.mean(X11[sylvian_vertices_l,:,:,5],axis=0) - np.mean(X11[sylvian_vertices_l,:,:,8],axis=0) #corr2 = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.5,np.str(times[np.where(corr2 == np.max(corr2))[0][0]])) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.4,np.str(np.max(corr2))) os.chdir(figureDir) plt.savefig('Sylvian_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 5, 8, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 5, 8, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 5, 8, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 5, 8, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) #%% """ Making bar plots """ t_window1 = np.multiply(np.divide(np.add([300,600],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] dot_window1 = np.multiply(np.divide(np.add([300,600],[100,100]),1000.), sRate) dot_window1 = [np.int(i) for i in dot_window1] t_window2 = np.multiply(np.divide(np.add([600,700],[100,100]),1000.), sRate) t_window2 = [np.int(i) for i in t_window2] dot_early = np.multiply(np.divide(np.add([300,400],[100,100]),1000.), sRate) dot_early = [np.int(i) for i in dot_early] dot_late = np.multiply(np.divide(np.add([500,600],[100,100]),1000.), sRate) dot_late = [np.int(i) for i in dot_late] #temp_vertices = broca_vertices_l temp_vertices = stg_vertices_l # AUD 1 # Lexical task task = 5 temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[temp_vertices,:,:,:],axis=0) lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) medNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+1], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) medNoise1_good_err = np.std(medNoise1_good) / np.sqrt(len(medNoise1_good)) del temp1 temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[temp_vertices,:,:,:],axis=0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) medNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task+1], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) medNoise1_poor_err = np.std(medNoise1_poor) / np.sqrt(len(medNoise1_poor)) #lowNoise2_poor = np.mean(M2[t_window2[0]:t_window2[1],:,task], axis = 0) - np.mean(M2[t_window2[0]:t_window2[1],:,task+3], axis = 0) #lowNoise2_poor_err = np.std(lowNoise2_poor) / np.sqrt(len(lowNoise2_poor)) #medNoise2_poor = np.mean(M2[t_window2[0]:t_window2[1],:,task+1], axis = 0) - np.mean(M2[t_window2[0]:t_window2[1],:,task+3], axis = 0) #medNoise2_poor_err = np.std(medNoise2_poor) / np.sqrt(len(medNoise2_poor)) del temp2 # Dot task task = 0 temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[temp_vertices,:,:,:],axis=0) dot_lowNoise1_good = np.mean(M1[dot_window1[0]:dot_window1[1],:,task], axis = 0) - np.mean(M1[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_lowNoise1_good_err = np.std(dot_lowNoise1_good) / np.sqrt(len(dot_lowNoise1_good)) dot_medNoise1_good = np.mean(M1[dot_window1[0]:dot_window1[1],:,task+1], axis = 0) - np.mean(M1[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_medNoise1_good_err = np.std(dot_medNoise1_good) / np.sqrt(len(dot_medNoise1_good)) dot_lowNoise2_early_good = np.mean(M1[dot_early[0]:dot_early[1],:,task], axis = 0) - np.mean(M1[dot_early[0]:dot_early[1],:,task+3], axis = 0) dot_lowNoise2_early_good_err = np.std(dot_lowNoise2_early_good) / np.sqrt(len(dot_lowNoise2_early_good)) dot_lowNoise2_late_good = np.mean(M1[dot_late[0]:dot_late[1],:,task], axis = 0) - np.mean(M1[dot_late[0]:dot_late[1],:,task+3], axis = 0) dot_lowNoise2_late_good_err = np.std(dot_lowNoise2_late_good) / np.sqrt(len(dot_lowNoise2_late_good)) del temp1 temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[temp_vertices,:,:,:],axis=0) dot_lowNoise1_poor = np.mean(M2[dot_window1[0]:dot_window1[1],:,task], axis = 0) - np.mean(M2[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_lowNoise1_poor_err = np.std(dot_lowNoise1_poor) / np.sqrt(len(dot_lowNoise1_poor)) dot_medNoise1_poor = np.mean(M2[dot_window1[0]:dot_window1[1],:,task+1], axis = 0) - np.mean(M2[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_medNoise1_poor_err = np.std(dot_medNoise1_poor) / np.sqrt(len(dot_medNoise1_poor)) dot_lowNoise2_early_poor = np.mean(M2[dot_early[0]:dot_early[1],:,task], axis = 0) - np.mean(M2[dot_early[0]:dot_early[1],:,task+3], axis = 0) dot_lowNoise2_early_poor_err = np.std(dot_lowNoise2_early_poor) / np.sqrt(len(dot_lowNoise2_early_poor)) dot_lowNoise2_late_poor = np.mean(M2[dot_late[0]:dot_late[1],:,task], axis = 0) - np.mean(M2[dot_late[0]:dot_late[1],:,task+3], axis = 0) dot_lowNoise2_late_poor_err = np.std(dot_lowNoise2_late_poor) / np.sqrt(len(dot_lowNoise2_late_poor)) del temp2 """ Correlation """ aaa = np.array(subs) temp_meg1 = np.concatenate((dot_lowNoise1_good,dot_lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) temp_brs = np.concatenate((brs[good_readers],brs[poor_readers])) temp_rf = np.concatenate((rf[good_readers],rf[poor_readers])) temp_raw = np.concatenate((orig_swe[good_readers],orig_swe[poor_readers])) temp_age = np.concatenate((orig_age[good_readers],orig_age[poor_readers])) #temp_read = temp_raw #temp_id = np.where(temp_meg>4.5)[0] #temp_meg = np.concatenate((temp_meg[0:temp_id], temp_meg[temp_id+1:len(temp_meg)])) #temp_read = np.concatenate((temp_read[0:temp_id], temp_read[temp_id+1:len(temp_read)])) plt.figure(20) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg1, temp_read, deg=1) ax.plot(temp_meg1, fit[0] * temp_meg1 + fit[1], color=[0,0,0]) #fit = np.polyfit(dot_lowNoise1_good, orig_twre[good_readers], deg=1) #ax.plot(dot_lowNoise1_good, fit[0] * dot_lowNoise1_good + fit[1], color=c_table[5]) ax.plot(temp_meg1, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(dot_lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=c_table[5], markeredgecolor=[1,1,1], markersize=10) #plt.xlim([-1,4]) #for i, txt in enumerate(temp_age): # ax.annotate(temp_age[i], (temp_meg1[i], temp_read[i])) #plt.ylim([-1,6]) #plt.xlim([50,130]) np.corrcoef(temp_read,temp_meg1) r, p = stats.pearsonr(temp_read,temp_meg1) print('dot(all): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[good_readers],dot_lowNoise1_good) r, p = stats.pearsonr(orig_twre[good_readers],dot_lowNoise1_good) print('dot(good): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[poor_readers],dot_lowNoise1_poor) r, p = stats.pearsonr(orig_twre[poor_readers],dot_lowNoise1_poor) print('dot(poor): correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_dot.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Lexical task """ temp_meg2 = np.concatenate((lowNoise1_good,lowNoise1_poor)) plt.figure(21) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg2, temp_read, deg=1) ax.plot(temp_meg2, fit[0] * temp_meg2 + fit[1], color=[0,0,0]) #fit = np.polyfit(lowNoise1_good, orig_twre[good_readers], deg=1) #ax.plot(lowNoise1_good, fit[0] * lowNoise1_good + fit[1], color=c_table[5]) ax.plot(temp_meg2, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=c_table[5], markeredgecolor=[1,1,1], markersize=10) #plt.xlim([-1,4]) np.corrcoef(temp_read,temp_meg2) r, p = stats.pearsonr(temp_read,temp_meg2) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[good_readers],lowNoise1_good) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[poor_readers],lowNoise1_poor) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_lexical.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lexical.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Dot vs. Lexical """ plt.figure(22) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg2, temp_meg1, deg=1) ax.plot(temp_meg2, fit[0] * temp_meg2 + fit[1], color=[0,0,0]) #fit = np.polyfit(lowNoise1_good, orig_twre[good_readers], deg=1) #ax.plot(lowNoise1_good, fit[0] * lowNoise1_good + fit[1], color=c_table[5]) ax.plot(temp_meg2, temp_meg1, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=c_table[5], markeredgecolor=[1,1,1], markersize=10) #plt.xlim([-1,4]) #plt.ylim([-1,4]) np.corrcoef(temp_meg1,temp_meg2) r, p = stats.pearsonr(temp_meg1,temp_meg2) print('Dot_Lexical: correlation = %.4f, p = %.4f' %(r, p)) #np.corrcoef(orig_twre[good_readers],lowNoise1_good) #r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) #print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) #np.corrcoef(orig_twre[poor_readers],lowNoise1_poor) #r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) #print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_dot_lexical.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_lexical.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp_meg3 = np.concatenate((dot_lowNoise2_early_good,dot_lowNoise2_early_poor)) plt.figure(23) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg3, temp_read, deg=1) ax.plot(temp_meg3, fit[0] * temp_meg3 + fit[1], color=[0,0,0]) ax.plot(temp_meg3, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) np.corrcoef(temp_read,temp_meg3) r, p = stats.pearsonr(temp_read,temp_meg3) print('dot(all)_early: correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_dot_early.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_early.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp_meg4 = np.concatenate((dot_lowNoise2_late_good,dot_lowNoise2_late_poor)) plt.figure(23) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg4, temp_read, deg=1) ax.plot(temp_meg4, fit[0] * temp_meg4 + fit[1], color=[0,0,0]) ax.plot(temp_meg4, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) np.corrcoef(temp_read,temp_meg4) r, p = stats.pearsonr(temp_read,temp_meg4) print('dot(all)_late: correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_dot_late.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_late.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure(24) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg4, temp_meg3, deg=1) ax.plot(temp_meg4, fit[0] * temp_meg4 + fit[1], color=[0,0,0]) ax.plot(temp_meg4, temp_meg3, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) np.corrcoef(temp_meg3,temp_meg4) r, p = stats.pearsonr(temp_meg3,temp_meg4) print('dot(all)_late: correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_dot_early_late.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_early_late.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure(25) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_age, temp_meg1, deg=1) ax.plot(temp_age, fit[0] * temp_age + fit[1], color=[0,0,0]) ax.plot(temp_age, temp_meg1, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) np.corrcoef(temp_meg1,temp_age) r, p = stats.pearsonr(temp_meg1,temp_age) print('dot(all)_age: correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_dot_age.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_age.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure(26) plt.clf() ax = plt.subplot() fit = np.polyfit(temp_age, temp_meg2, deg=1) ax.plot(temp_age, fit[0] * temp_age + fit[1], color=[0,0,0]) ax.plot(temp_age, temp_meg2, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) np.corrcoef(temp_meg2,temp_age) r, p = stats.pearsonr(temp_meg2,temp_age) print('lexical(all)_age: correlation = %.4f, p = %.4f' %(r, p)) os.chdir('figures') plt.savefig('STG_corr_lexical_age.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lexical_age.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Right STG: Word vs. Noise """ stg_vertices_r = np.load('STG_Vert_r.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[stg_vertices_r,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[stg_vertices_r,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[stg_vertices_r,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[stg_vertices_r,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[stg_vertices_r,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_r,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[stg_vertices_r,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_r,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[stg_vertices_r,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[stg_vertices_r,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) diffM3 = np.mean(np.mean(temp1[stg_vertices_r,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_r,:,:,8],axis=0),axis=1) diffM4 = np.mean(np.mean(temp1[stg_vertices_r,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_r,:,:,3],axis=0),axis=1) del temp1 # For calculating p-values X = np.mean(X11[stg_vertices_r,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STGr_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STGr_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('STGr_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STGr_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('STGr_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STGr_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STGr_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STGr_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('STGr_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STGr_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('STGr_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STGr_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Correlation: Lexical """ temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[stg_vertices_r,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[stg_vertices_r,:,:,:],axis=0) del temp1, temp2 t_window1 = np.multiply(np.divide(np.add([400,500],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):
np.int(t_window1[1])
numpy.int
""" Based on torchvision.models.resnet This is basically resnet50, just to get you started. """ import logging import torch from torch import nn import torch.nn.functional as F from torch.utils.data import DataLoader from torch.optim.lr_scheduler import LambdaLR import pugh_torch as pt from pugh_torch.models import resnet50 from pugh_torch.modules import conv3x3, conv1x1 from pugh_torch.modules.meta import BatchLinear import pytorch_lightning as pl from pytorch_lightning.metrics.functional import accuracy import albumentations as A from albumentations.pytorch import ToTensorV2 import cv2 from scipy.interpolate import griddata import numpy as np from pathlib import Path from math import sqrt from dataset import ImageNetSample, SingleImageDataset, unnormalize_coords from callbacks import RasterMontageCallback, LinearHistogramCallback log = logging.getLogger(__name__) this_file_path = Path(__file__).resolve() this_file_dir = this_file_path.parent class HyperHead(nn.Module): """For the multi-heads in a HyperNetwork""" def __init__(self, f_in, hypo_in, hypo_out): super().__init__() self.hypo_in = hypo_in self.hypo_out = hypo_out self.weight_linear = nn.Linear(f_in, hypo_in * hypo_out) self.bias_linear = nn.Linear(f_in, hypo_out) self._hyper_weight_init(self.weight_linear) self._hyper_bias_init(self.bias_linear) def _hyper_weight_init(self, m): nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity="relu", mode="fan_in") m.weight.data = m.weight.data / 1.0e2 with torch.no_grad(): m.bias.uniform_(-1 / self.hypo_in, 1 / self.hypo_in) def _hyper_bias_init(self, m): nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity="relu", mode="fan_in") m.weight.data = m.weight.data / 1.0e2 fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight) with torch.no_grad(): m.bias.uniform_(-1 / fan_in, 1 / fan_in) def forward(self, x): batch = x.shape[0] weight = self.weight_linear(x) weight = weight.reshape(batch, self.hypo_out, self.hypo_in) bias = self.bias_linear(x) return weight, bias class HyperNetwork(nn.Module): def __init__( self, input, hidden, hypo_network, activation="relu", ): """ input : int number feature in from embedding hidden : list List of ints, hidden layer nodes for hyper network hypo_network : nn.Sequential Sequential hypo_network """ super().__init__() self.activation = pt.modules.Activation(activation) self.layers = nn.ModuleList() if hidden: self.layers.append(nn.Linear(input, hidden[0])) self.layers.append(self.activation) for h_in, h_out in zip(hidden, hidden[1:]): self.layers.append(nn.Linear(h_in, h_out)) self.layers.append(self.activation) num_encoding = hidden[-1] else: num_encoding = input # Create all the heads to predict the hyponetwork parameters self.heads = nn.ModuleList() for module in hypo_network: if not isinstance(module, nn.Linear): continue f_out, f_in = module.weight.shape self.heads.append(HyperHead(num_encoding, f_in, f_out)) def forward(self, x): # Run it through the hidden layers for layer in self.layers: x = layer(x) # Run it through the heads outputs = [] for head in self.heads: outputs.append(head(x)) # unpack the outputs weights = [x[0] for x in outputs] biases = [x[1] for x in outputs] return weights, biases class SIREN(nn.Sequential): def __init__(self, layers, bias=True): """ Parameters ---------- layers : list List of integers describing the numbers of node per layer where layers[0] is the number of input features and """ modules = [] modules.append(BatchLinear(layers[0], layers[1], bias=bias)) modules.append(pt.modules.Activation("sine", modules[-1], first=True)) # hidden layers for f_in, f_out in zip(layers[1:-2], layers[2:-1]): modules.append(BatchLinear(f_in, f_out, bias=bias)) modules.append(pt.modules.Activation("sine", modules[-1])) modules.append(BatchLinear(layers[-2], layers[-1])) super().__init__(*modules) def forward(self, input, weights=None, biases=None): bl_count = 0 if weights is None or biases is None: assert weights is None and biases is None return super().forward(input) for module in self: if isinstance(module, BatchLinear): input = module(input, weights[bl_count], biases[bl_count]) bl_count += 1 else: input = module(input) return input class HyperSIRENPTL(pt.LightningModule): """Trainable network that contains 3 main components: 1. Encoder - any CNN for feature extraction. Here it's ResNet50 and it produces a 256 element feature vector 2. HyperNetwork - A FC network that predicts weights and biases for a SIREN network. 3. SIREN - Technically in this usecase, this has no learnable parameters because it uses the output of the HyperNetwork. End goal is to produce better SIREN initializations for learning coordinate->image mappings faster. """ def __init__( self, *, cfg=None, encoder={}, hyper={}, siren={}, learning_rate=0.002, optimizer="adamw", optimizer_kwargs={}, ): super().__init__() self.save_hyperparameters() self.cfg = cfg self.encoder_cfg = encoder self.hyper_cfg = hyper self.siren_cfg = siren self.learning_rate = learning_rate self.optimizer = optimizer self.optimizer_kwargs = optimizer_kwargs embedding_size = encoder.get("size", 256) self.encoder_net = resnet50(pretrained=True, num_classes=embedding_size) self.encoder_activation = pt.modules.Activation(hyper.get("activation", "relu")) siren_nodes = [2, *siren.get("layers", [128] * 5), 3] self.siren_net = SIREN(siren_nodes) hyper_hidden = hyper.get("layers", [256]) self.hyper_net = HyperNetwork(embedding_size, hyper_hidden, self.siren_net) self.siren_loss_fn = pt.losses.get_functional_loss( siren.get("loss", "mse_loss") ) def forward(self, imgs, coords=None): embedding = self.encoder_net(imgs) # (B, embedded_feat) siren_weights, siren_biases = self.hyper_net( self.encoder_activation(embedding) ) # (B, long_flattened_params) if coords is None: return embedding, siren_weights, siren_biases pred = self.siren_net(coords, siren_weights, siren_biases) return embedding, siren_weights, siren_biases, pred def _log_common(self, split, logits, target, loss): self.log(f"{split}_loss", loss, prog_bar=True) def _log_loss(self, split, pred, target): # Makes it easier to directly compare techniques that have a different # loss function loss = F.mse_loss(pred, target) self.log(f"{split}_mse_loss", loss, prog_bar=True) return loss def training_step(self, batch, batch_nb): coords, rgb_vals, imgs = batch batch_size = coords.shape[0] embedding, siren_weights, siren_biases, pred = self(imgs, coords) self._log_loss("train", pred, rgb_vals) self.last_logits = pred loss = 0 siren_loss = self.siren_loss_fn(pred, rgb_vals) loss += siren_loss # Regularization encourages a gaussian prior on embedding from context encoder if self.encoder_cfg.get("loss_weight"): embedding_reg = ( self.encoder_cfg["loss_weight"] * (embedding * embedding).mean() ) loss += embedding_reg # Regularization encourages a lower frequency representation of the image # Not sure i believe that, but its what the paper says. # if self.hyper_cfg.get("loss_weight"): # n_params = sum([w.shape[-1] * w.shape[-2] for w in siren_weights]) # cum_mag = sum([torch.sum(w * w, dim=(-1, -2)) for w in siren_weights]) # hyper_reg = self.hyper_cfg["loss_weight"] * (cum_mag / n_params).mean() # loss += hyper_reg # The variance of each predicted layers should be approximately equal to # initialization for well behaved training and to avoid vanishing # gradients. # First Layer: np.sqrt(6 / num_input) / self.frequency, # This would be similar to: # = sqrt(2/3) / (self.frequency * sqrt(num_input)) # Rest: m.weight.uniform_(-1 / num_input, 1 / num_input) if self.hyper_cfg.get("loss_weight"): hyper_reg = 0 w = siren_weights[0] fan_in = w.shape[-1] # Empirically, the trained network had just under twice this std expected_std_first = torch.tensor(1 / (3 * fan_in)).to(w.device) actual_std_first = torch.std(w) actual_mean_first = torch.mean(w) hyper_loss_std_layer_0 = F.mse_loss(expected_std_first, actual_std_first) hyper_reg += hyper_loss_std_layer_0 hyper_loss_mean_layer_0 = ( actual_mean_first * actual_mean_first ) # Maybe these should be weighted. hyper_reg += hyper_loss_mean_layer_0 self.log("hyper_loss_std_layer_0", hyper_loss_std_layer_0) self.log("hyper_loss_mean_layer_0", hyper_loss_mean_layer_0) for i, w in enumerate(siren_weights[1:]): fan_in = w.shape[-1] # Assumes the 30 w0 frequency # This 2 is just here because impirically i saw that trained weights ha # TODO: maybe multiply this std by 2. Empirically, trained networks had twice the std expected_std = torch.tensor(sqrt(6) / 3 / (30 * sqrt(fan_in))).to( w.device ) actual_std = torch.std(w) actual_mean = torch.mean(w) hyper_reg_loss_std = F.mse_loss(expected_std, actual_std) hyper_reg_loss_mean = ( actual_mean * actual_mean ) # Maybe these should be weighted. self.log(f"hyper_loss_std_layer_{i}", hyper_reg_loss_std) self.log(f"hyper_loss_mean_layer_{i}", hyper_reg_loss_mean) hyper_reg += hyper_reg_loss_std hyper_reg += hyper_reg_loss_mean self.log("hyper_reg", hyper_reg) loss += hyper_reg self._log_common("train", pred, rgb_vals, loss) return siren_loss def validation_step(self, batch, batch_nb): coords, rgb_vals, imgs = batch embedding, siren_weights, siren_biases, pred = self(imgs, coords) loss = self._log_loss("val", pred, rgb_vals) self.log("val_loss", loss) return loss def configure_optimizers(self): optimizers = [] schedulers = [] optimizers.append( pt.optimizers.get_optimizer(getattr(self, "optimizer", "adamw"))( self.parameters(), lr=self.learning_rate, **getattr(self, "optimizer_kwargs", {}), ), ) schedulers.append( { "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( optimizers[0], patience=2 ), "monitor": "val_loss", } ) log.info( f"Using default pugh_torch optimizers {optimizers} and schedulers {schedulers}" ) return optimizers, schedulers def configure_callbacks(self): """Moves trainer callback declaration into the model so the same training script can be shared across experiments. This is not standard pytorch-lightning Returns ------- callbacks : list List of callback objects to initialize the Trainer object with. """ callbacks = [ RasterMontageCallback(rgb_transform="imagenet", logging_batch_interval=200) ] return callbacks def train_dataloader(self): transform = A.Compose( [ A.Resize(256, 256), A.RandomCrop(*self.cfg.dataset["shape"]), A.HorizontalFlip(), A.Normalize( mean=[0.485, 0.456, 0.406], # this is RGB order. std=[0.229, 0.224, 0.225], ), ToTensorV2(), ] ) dataset = ImageNetSample( split="train", transform=transform, num_sample=self.cfg.dataset.num_sample ) loader = DataLoader( dataset, shuffle=True, pin_memory=self.cfg.dataset.pin_memory, num_workers=self.cfg.dataset.num_workers, batch_size=self.cfg.dataset.batch_size, ) return loader def val_dataloader(self): transform = A.Compose( [ A.Resize(256, 256), A.RandomCrop(*self.cfg.dataset["shape"]), A.Normalize( mean=[0.485, 0.456, 0.406], # this is RGB order. std=[0.229, 0.224, 0.225], ), ToTensorV2(), ] ) dataset = ImageNetSample( split="val", transform=transform, num_sample=self.cfg.dataset.num_sample ) n_exemplar = len(dataset) step = n_exemplar // self.cfg.dataset.num_val_subset indices = list(range(0, n_exemplar))[0 : n_exemplar * step : step] dataset = torch.utils.data.Subset(dataset, indices) loader = DataLoader( dataset, shuffle=False, pin_memory=self.cfg.dataset.pin_memory, num_workers=self.cfg.dataset.num_workers, batch_size=self.cfg.dataset.batch_size, ) return loader def rasterize(model, weights=None, biases=None, shape=(224, 224)): """Rasterize an entire image from a trained siren network Parameters ---------- model : nn.Module Uninitialized SIREN network weights : list of torch.Tensor Must have the same number of layers as model. Each layer has a batch dimension. biases : list of torch.Tensor Must have the same number of layers as model. Each layer has a batch dimension. shape : tuple Output (H,W) resolution """ model = model.eval() ny, nx = shape # (X, Y) meshgrid = np.meshgrid(np.arange(0, nx, 1),
np.arange(0, ny, 1)
numpy.arange
"""Test the pandas wrapper class.""" import numpy as np import numpy.testing as nt import pandas as pd import pandas.testing as pt import pytest from scipy import sparse import sklearn.pipeline as pline from sklearn.preprocessing import FunctionTransformer, MinMaxScaler import src.preprocessing as pp @pytest.fixture def data(): data = { 'f1':
np.array([100, 110, 98, 1500, 30])
numpy.array
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright © Spyder Project Contributors # # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) # ----------------------------------------------------------------------------- """ Tests for the array editor. """ # Standard library imports import os import sys try: from unittest.mock import Mock, ANY except ImportError: from mock import Mock, ANY # Python 2 # Third party imports import numpy as np from numpy.testing import assert_array_equal import pytest from qtpy.QtCore import Qt from flaky import flaky # Local imports from spyder.plugins.variableexplorer.widgets.arrayeditor import ArrayEditor, ArrayModel # ============================================================================= # Utility functions # ============================================================================= def launch_arrayeditor(data, title="", xlabels=None, ylabels=None): """Helper routine to launch an arrayeditor and return its result.""" dlg = ArrayEditor() assert dlg.setup_and_check(data, title, xlabels=xlabels, ylabels=ylabels) dlg.show() dlg.accept() # trigger slot connected to OK button return dlg.get_value() def setup_arrayeditor(qbot, data, title="", xlabels=None, ylabels=None): """Setups an arrayeditor.""" dlg = ArrayEditor() dlg.setup_and_check(data, title, xlabels=xlabels, ylabels=ylabels) dlg.show() qbot.addWidget(dlg) return dlg # ============================================================================= # Tests # ============================================================================= def test_object_arrays(qtbot): """Test that object arrays are working properly.""" arr = np.array([u'a', 1, [2]], dtype=object) assert_array_equal(arr, launch_arrayeditor(arr, "object array")) def test_object_arrays_display(qtbot): """ Test that value_to_display is being used to display the values of object arrays. """ arr = np.array([[np.array([1, 2])], 2], dtype=object) dlg = setup_arrayeditor(qtbot, arr) idx = dlg.arraywidget.model.index(0, 0) assert u'[Numpy array]' == dlg.arraywidget.model.data(idx) def test_type_errors(qtbot): """ Verify that we don't get a TypeError for certain structured arrays. Fixes spyder-ide/spyder#5254. """ arr = np.ones(2, dtype=[('X', 'f8', (2,10)), ('S', 'S10')]) dlg = setup_arrayeditor(qtbot, arr) qtbot.keyClick(dlg.arraywidget.view, Qt.Key_Down, modifier=Qt.ShiftModifier) contents = dlg.arraywidget.model.get_value(dlg.arraywidget.model.index(0, 0)) assert_array_equal(contents, np.ones(10)) def test_arrayeditor_format(qtbot): """Changes the format of the array and validates its selected content.""" arr = np.array([1, 2, 3], dtype=np.float32) dlg = setup_arrayeditor(qtbot, arr, "test array float32") qtbot.keyClick(dlg.arraywidget.view, Qt.Key_Down, modifier=Qt.ShiftModifier) qtbot.keyClick(dlg.arraywidget.view, Qt.Key_Down, modifier=Qt.ShiftModifier) contents = dlg.arraywidget.view._sel_to_text(dlg.arraywidget.view.selectedIndexes()) assert contents == "1\n2\n" dlg.arraywidget.view.model().set_format("%.18e") assert dlg.arraywidget.view.model().get_format() == "%.18e" qtbot.keyClick(dlg.arraywidget.view, Qt.Key_Down, modifier=Qt.ShiftModifier) qtbot.keyClick(dlg.arraywidget.view, Qt.Key_Down, modifier=Qt.ShiftModifier) contents = dlg.arraywidget.view._sel_to_text(dlg.arraywidget.view.selectedIndexes()) assert contents == "1.000000000000000000e+00\n2.000000000000000000e+00\n" def test_arrayeditor_with_string_array(qtbot): arr = np.array(["kjrekrjkejr"]) assert arr == launch_arrayeditor(arr, "string array") def test_arrayeditor_with_unicode_array(qtbot): arr = np.array([u"ñññéáíó"]) assert arr == launch_arrayeditor(arr, "unicode array") def test_arrayeditor_with_masked_array(qtbot): arr = np.ma.array([[1, 0], [1, 0]], mask=[[True, False], [False, False]]) assert_array_equal(arr, launch_arrayeditor(arr, "masked array")) def test_arrayeditor_with_record_array(qtbot): arr = np.zeros((2, 2), {'names': ('red', 'green', 'blue'), 'formats': (np.float32, np.float32, np.float32)}) assert_array_equal(arr, launch_arrayeditor(arr, "record array")) @pytest.mark.skipif(not os.name == 'nt', reason="It segfaults sometimes on Linux") def test_arrayeditor_with_record_array_with_titles(qtbot): arr = np.array([(0, 0.0), (0, 0.0), (0, 0.0)], dtype=[(('title 1', 'x'), '|i1'), (('title 2', 'y'), '>f4')]) assert_array_equal(arr, launch_arrayeditor(arr, "record array with titles")) def test_arrayeditor_with_float_array(qtbot): arr = np.random.rand(5, 5) assert_array_equal(arr, launch_arrayeditor(arr, "float array", xlabels=['a', 'b', 'c', 'd', 'e'])) def test_arrayeditor_with_complex_array(qtbot): arr = np.round(np.random.rand(5, 5)*10)+\ np.round(np.random.rand(5, 5)*10)*1j assert_array_equal(arr, launch_arrayeditor(arr, "complex array", xlabels=np.linspace(-12, 12, 5), ylabels=np.linspace(-12, 12, 5))) def test_arrayeditor_with_bool_array(qtbot): arr_in = np.array([True, False, True]) arr_out = launch_arrayeditor(arr_in, "bool array") assert arr_in is arr_out def test_arrayeditor_with_int8_array(qtbot): arr = np.array([1, 2, 3], dtype="int8") assert_array_equal(arr, launch_arrayeditor(arr, "int array")) def test_arrayeditor_with_float16_array(qtbot): arr = np.zeros((5,5), dtype=np.float16) assert_array_equal(arr, launch_arrayeditor(arr, "float16 array")) def test_arrayeditor_with_3d_array(qtbot): arr = np.zeros((3,3,4)) arr[0,0,0]=1 arr[0,0,1]=2 arr[0,0,2]=3 assert_array_equal(arr, launch_arrayeditor(arr, "3D array")) def test_arrayeditor_with_empty_3d_array(qtbot): arr = np.zeros((0, 10, 2)) assert_array_equal(arr, launch_arrayeditor(arr, "3D array")) arr = np.zeros((1, 10, 2)) assert_array_equal(arr, launch_arrayeditor(arr, "3D array")) def test_arrayeditor_edit_1d_array(qtbot): exp_arr = np.array([1, 0, 2, 3, 4]) arr =
np.arange(0, 5)
numpy.arange
from __future__ import print_function, division import configargparse #pip install configargparse import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy import PIL import PIL.Image print(torch.__version__) from TorchClassifier.Datasetutil.Visutil import imshow, vistestresult from TorchClassifier.Datasetutil.Torchdatasetutil import loadTorchdataset from TorchClassifier.myTorchModels.TorchCNNmodels import createTorchCNNmodel # from TFClassifier.Datasetutil.TFdatasetutil import loadTFdataset #loadtfds, loadkerasdataset, loadimagefolderdataset # from TFClassifier.myTFmodels.CNNsimplemodels import createCNNsimplemodel # from TFClassifier.Datasetutil.Visutil import plot25images, plot9imagesfromtfdataset, plot_history # from TFClassifier.myTFmodels.optimizer_factory import build_learning_rate, setupTensorboardWriterforLR model = None device = None # import logger parser = configargparse.ArgParser(description='myTorchClassify') parser.add_argument('--data_name', type=str, default='CIFAR10', help='data name: hymenoptera_data, CIFAR10, flower_photos') parser.add_argument('--data_type', default='torchvisiondataset', choices=['trainvalfolder', 'traintestfolder', 'torchvisiondataset'], help='the type of data') parser.add_argument('--data_path', type=str, default='./../ImageClassificationData', help='path to get data') #/Developer/MyRepo/ImageClassificationData parser.add_argument('--img_height', type=int, default=28, help='resize to img height, 224') parser.add_argument('--img_width', type=int, default=28, help='resize to img width, 224') parser.add_argument('--save_path', type=str, default='./outputs/', help='path to save the model') # network parser.add_argument('--model_name', default='mobilenet', choices=['mlpmodel1', 'lenet', 'resnetmodel1', 'vggmodel1', 'cnnmodel1'], help='the network') parser.add_argument('--arch', default='Pytorch', choices=['Tensorflow', 'Pytorch'], help='Model Name, default: Pytorch.') parser.add_argument('--learningratename', default='warmupexpdecay', choices=['fixedstep', 'fixed', 'warmupexpdecay'], help='learning rate name') parser.add_argument('--optimizer', default='Adam', choices=['SGD', 'Adam'], help='select the optimizer') parser.add_argument('--batchsize', type=int, default=32, help='batch size') parser.add_argument('--epochs', type=int, default=15, help='epochs') parser.add_argument('--GPU', type=bool, default=True, help='use GPU') parser.add_argument('--TPU', type=bool, default=False, help='use TPU') parser.add_argument('--MIXED_PRECISION', type=bool, default=False, help='use MIXED_PRECISION') parser.add_argument('--TAG', default='0915', help='setup the experimental TAG to differentiate different running results') parser.add_argument('--reproducible', type=bool, default=False, help='get reproducible results we can set the random seed for Python, Numpy and PyTorch') args = parser.parse_args() def test_model(model, dataloaders, class_names, criterion, batch_size): numclasses = len(class_names) # track test loss test_loss = 0.0 class_correct = list(0. for i in range(numclasses)) class_total = list(0. for i in range(numclasses)) model.eval() if 'test' in dataloaders.keys(): test_loader=dataloaders['test'] else: print("test dataset not available") return # iterate over test data bathindex = 0 for data, target in test_loader: bathindex = bathindex +1 # move tensors to GPU if CUDA is available # if train_on_gpu: # data, target = data.cuda(), target.cuda() data = data.to(device) target = target.to(device) # forward pass: compute predicted outputs by passing inputs to the model outputs = model(data) if type(outputs) is tuple: #model may output multiple tensors as tuple outputs, _ = outputs # calculate the batch loss loss = criterion(outputs, target) # update test loss test_loss += loss.item()*data.size(0) # convert output probabilities to predicted class _, pred = torch.max(outputs, 1) # compare predictions to true label correct_tensor = pred.eq(target.data.view_as(pred)) train_on_gpu = torch.cuda.is_available() correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy()) # calculate test accuracy for each object class for i in range(batch_size): if i<len(target.data):#the actual batch size of the last batch is smaller than the batch_size label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 # average test loss test_loss = test_loss/len(test_loader.dataset) print('Test Loss: {:.6f}\n'.format(test_loss)) for i in range(numclasses): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % ( class_names[i], 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i])
numpy.sum
# -*- coding: utf-8 -*- import numpy as np import json import torch.utils.data as data import os import torch import h5py import torch.nn.functional as F def load_json(file): with open(file) as json_file: data = json.load(json_file) return data class VideoDataSet(data.Dataset): def __init__(self, opt, subset="train", mode="train"): self.temporal_scale = opt["temporal_scale"] self.input_feat_dim = opt['input_feat_dim'] self.temporal_gap = 1. / self.temporal_scale self.subset = 'val' if ('train' in subset) else 'test' self.mode = mode self.feature_path = opt["feature_path"] self.gap = opt['stitch_gap'] self.short_ratio = opt['short_ratio'] self.video_anno = opt['video_anno'] self.thumos_classes = opt["thumos_classes"] if self.mode == 'train': if 'val' in self.subset: self.video_windows = load_json('./Utils/video_win_val.json') elif 'test' in self.subset: self.video_windows = load_json('./Utils/video_win_test.json') elif self.mode == 'inference': self.video_windows = load_json('./Utils/video_win_infer.json') self._getDatasetDict() self.anchor_xmin = [self.temporal_gap * i for i in range(self.temporal_scale)] self.anchor_xmax = [self.temporal_gap * i for i in range(1, self.temporal_scale + 1)] def _getDatasetDict(self): anno_database = load_json(self.video_anno)['database'] self.video_dict = {} class_list = [] for video_name, video_info in anno_database.items(): video_subset = 'val' if video_info['subset'] == 'train' else 'test' for item in video_info['annotations']: class_list.append(item['label']) item['segment'][0] = float(item['segment'][0]) item['segment'][1] = float(item['segment'][1]) if self.subset in video_subset: self.video_dict[video_name] = video_info self.video_list = [win['v_name'] for win in self.video_windows] if os.path.exists(self.thumos_classes): with open(self.thumos_classes, 'r') as f: self.classes = json.load(f) else: class_list = list(set(class_list)) class_list = sorted(class_list) self.classes = {'Background': 0} for i,cls in enumerate(class_list): self.classes[cls] = i + 1 with open(self.thumos_classes, 'w') as f: f.write(json.dumps(self.classes)) def __getitem__(self, index): if self.mode == "train": video_data, match_score_action, match_score_start, match_score_end, gt_bbox, num_gt, num_frms = self._get_train_data_label(index) return video_data, match_score_action, match_score_start, match_score_end, gt_bbox, num_gt, num_frms else: video_data, num_frms = self._get_train_data_label(index) return index, video_data, num_frms #, match_score_action, gt_iou_map def _get_train_data_label(self, index): # General data video_name = self.video_windows[index]['v_name'] w_start = int(self.video_windows[index]['w_start']) w_end = int(self.video_windows[index]['w_end']) fps_org = self.video_windows[index]['fps'] num_frms_win = w_end - w_start + 1 # Get video feature rgb_features = h5py.File(os.path.join(self.feature_path, 'rgb_' + self.subset + '.h5'), 'r') rgb_data = rgb_features[video_name][:] rgb_data = torch.Tensor(rgb_data) rgb_data = torch.transpose(rgb_data, 0, 1) flow_features = h5py.File(os.path.join(self.feature_path, 'flow_' + self.subset + '.h5'), 'r') flow_data = flow_features[video_name][:] flow_data = torch.Tensor(flow_data) flow_data = torch.transpose(flow_data, 0, 1) if num_frms_win > self.temporal_scale * self.short_ratio: return self._get_train_data_label_org(rgb_data, flow_data, video_name, w_start, w_end, fps_org) else: return self._get_train_data_label_stitch(rgb_data, flow_data, video_name, w_start, w_end, fps_org) def _get_train_data_label_stitch(self, rgb_data, flow_data, video_name, w_start, w_end, fps_org): num_frms1 = w_end - w_start + 1 video_data = torch.zeros(self.input_feat_dim, self.temporal_scale) # Left part: original length rgb_data1 = rgb_data[:, w_start: w_end+1] flow_data1 = flow_data[:, w_start: w_end+1] video_data[:, :num_frms1] = torch.cat((rgb_data1, flow_data1), dim=0) # Right part: rescaled length num_frms2 = self.temporal_scale - num_frms1 - self.gap rgb_data2 = F.interpolate(rgb_data1[None,:,:], size=num_frms2, mode='linear', align_corners=True).squeeze(0) flow_data2 = F.interpolate(flow_data1[None,:,:], size=num_frms2, mode='linear', align_corners=True).squeeze(0) video_data[:, -num_frms2:] = torch.cat((rgb_data2, flow_data2), dim=0) # Get annotations video_info = self.video_dict[video_name] video_labels_org = video_info['annotations'] if self.mode == 'train': video_labels_frm = [] for label in video_labels_org: label_start_frm =label['segment'][0] * fps_org label_end_frm = label['segment'][1] * fps_org if round(label_start_frm) >= w_start and round(label_end_frm) <= w_end: label_frm = {} label_frm['segment'] = [] label_frm['segment'].append(label_start_frm - w_start) label_frm['segment'].append(label_end_frm - w_start) label_frm['label'] = label['label'] video_labels_frm.append(label_frm) # Get gt_iou_map gt_bbox = [] for j in range(len(video_labels_frm)): tmp_info = video_labels_frm[j] tmp_start_f = max(min(num_frms1-1, round(tmp_info['segment'][0] )), 0) tmp_end_f = max(min(num_frms1-1, round(tmp_info['segment'][1] )), 0) tmp_start = tmp_start_f / self.temporal_scale tmp_end = tmp_end_f / self.temporal_scale tmp_class = self.classes[tmp_info['label']] gt_bbox.append([tmp_start, tmp_end, tmp_class]) for j in range(len(video_labels_frm)): tmp_info = video_labels_frm[j] tmp_start_f = max(min(num_frms2-1, round(tmp_info['segment'][0] / num_frms1 * num_frms2)), 0) + num_frms1 + self.gap tmp_end_f = max(min(num_frms2-1, round(tmp_info['segment'][1] / num_frms1 * num_frms2)), 0) + num_frms1 + self.gap tmp_start = tmp_start_f / self.temporal_scale tmp_end = tmp_end_f / self.temporal_scale tmp_class = self.classes[tmp_info['label']] gt_bbox.append([tmp_start, tmp_end, tmp_class]) # Get actionness scores match_score_action = [0] * self.temporal_scale for bbox in gt_bbox: left_frm = max(round(bbox[0] * self.temporal_scale), 0) right_frm = min(round(bbox[1] * self.temporal_scale), self.temporal_scale-1) match_score_action[left_frm:right_frm+1] = [bbox[2]] * (right_frm + 1 - left_frm) match_score_action = torch.Tensor(match_score_action) #################################################################################################### # generate R_s and R_e gt_bbox = np.array(gt_bbox) if gt_bbox.shape[0] == 0: print(gt_bbox.shape) gt_xmins = gt_bbox[:, 0] gt_xmaxs = gt_bbox[:, 1] gt_len_small = 3 * self.temporal_gap gt_start_bboxs = np.stack((gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1) gt_end_bboxs = np.stack((gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1) ##################################################################################################### ########################################################################################################## # calculate the ioa for all timestamp match_score_start = [] for jdx in range(len(self.anchor_xmin)): match_score_start.append(np.max( self._ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1]))) match_score_end = [] for jdx in range(len(self.anchor_xmin)): match_score_end.append(np.max( self._ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[jdx], gt_end_bboxs[:, 0], gt_end_bboxs[:, 1]))) match_score_start = torch.Tensor(match_score_start) match_score_end = torch.Tensor(match_score_end) ############################################################################################################ max_num_box = 50 gt_bbox = torch.tensor(gt_bbox, dtype=torch.float32) gt_bbox_padding = gt_bbox.new(max_num_box, gt_bbox.size(1)).zero_() num_gt = min(gt_bbox.size(0), max_num_box) gt_bbox_padding[:num_gt, :] = gt_bbox[:num_gt] return video_data, match_score_action, match_score_start, match_score_end, gt_bbox_padding, num_gt, num_frms1 else: return video_data, num_frms1 def _get_train_data_label_org(self, rgb_data_org, flow_data_org, video_name, w_start, w_end, fps): video_data = torch.zeros(self.input_feat_dim, self.temporal_scale) rgb_data = rgb_data_org[:, w_start: w_end+1] flow_data = flow_data_org[:, w_start: w_end+1] num_frms = min(rgb_data.shape[-1], self.temporal_scale) video_data[:, :num_frms] = torch.cat((rgb_data[:, :num_frms], flow_data[:,:num_frms]), dim=0) if self.mode == 'train': # Get annotations video_info = self.video_dict[video_name] video_labels = video_info['annotations'] num_frms_org = rgb_data_org.shape[-1] video_labels_frm = [] for label in video_labels: label_start_frm = max(0, round(label['segment'][0] * fps)) label_end_frm = min(round(label['segment'][1] * fps), num_frms_org - 1) if label_start_frm >= w_start and label_end_frm <= w_end: label_frm = {} label_frm['segment'] = [] label_frm['segment'].append(label_start_frm - w_start) label_frm['segment'].append(label_end_frm - w_start) label_frm['label'] = label['label'] video_labels_frm.append(label_frm) # Get gt_iou_map gt_bbox = [] for j in range(len(video_labels_frm)): tmp_info = video_labels_frm[j] tmp_start_f = max(min(num_frms-1, tmp_info['segment'][0]), 0) tmp_end_f = max(min(num_frms-1, tmp_info['segment'][1]), 0) tmp_start = tmp_start_f / self.temporal_scale tmp_end = tmp_end_f / self.temporal_scale tmp_class = self.classes[tmp_info['label']] gt_bbox.append([tmp_start, tmp_end, tmp_class]) # Get actionness scores match_score_action = [0] * self.temporal_scale for bbox in gt_bbox: left_frm = max(round(bbox[0] * self.temporal_scale), 0) right_frm = min(round(bbox[1] * self.temporal_scale), self.temporal_scale-1) match_score_action[left_frm:right_frm+1] = [bbox[2]] * (right_frm + 1 - left_frm) match_score_action = torch.Tensor(match_score_action) #################################################################################################### # generate R_s and R_e gt_bbox = np.array(gt_bbox) if gt_bbox.shape[0] == 0: print(gt_bbox.shape) gt_xmins = gt_bbox[:, 0] gt_xmaxs = gt_bbox[:, 1] gt_len_small = 3 * self.temporal_gap gt_start_bboxs =
np.stack((gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1)
numpy.stack
from typing import Union, Sequence import astro_dynamo.model import astro_dynamo.snap import astro_dynamo.targets import matplotlib.figure import matplotlib.pyplot as plt import numpy as np import torch from matplotlib.axes import SubplotBase from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from mpl_toolkits.axes_grid1.colorbar import colorbar def plot_snap_projections(model: Union[ astro_dynamo.model.DynamicalModel, astro_dynamo.snap.SnapShot], axs: Sequence[SubplotBase] = None, plotmax: float = 10., vmin: float = 1e-5, vmax: float = 1e-2, cmap: Union[ str, matplotlib.colors.Colormap] = plt.cm.get_cmap( 'nipy_spectral')) -> matplotlib.figure.Figure: """Plot the projections of a DynamicalModel or SnapShot into the three axes in axs if supplied, otherwise draws a new figure. Distances will be physical if a model with a physical distance scale is supplied.""" if isinstance(model, astro_dynamo.model.MilkyWayModel): snap, d_scale = model.snap.cpu(), model.d_scale.cpu() elif isinstance(model, astro_dynamo.model.DynamicalModel): snap, d_scale = model.snap, 1.0 elif isinstance(model, astro_dynamo.model.SnapShot): snap, d_scale = model, 1.0 else: raise ("Expected a DynamicalModel or SnapShot to plot") if axs is None: f, axs = plt.subplots(2, 1, sharex='col') else: f = axs.flatten()[0].figure x = snap.x.cpu() * d_scale y = snap.y.cpu() * d_scale z = snap.z.cpu() * d_scale m = snap.masses.detach().cpu() projections = ((x, y), (y, z), (x, z)) projection_labels = (('x', 'y'), ('y', 'z'), ('x', 'z')) for ax, projection, projection_label in zip(axs.flatten(), projections, projection_labels): ax.hexbin(projection[0], projection[1], C=m, bins='log', extent=(-plotmax, plotmax, -plotmax, plotmax), reduce_C_function=np.sum, vmin=vmin, vmax=vmax, cmap=cmap) ax.set_xlabel(projection_label[0]) ax.set_ylabel(projection_label[1]) ax.set_xlim(-plotmax, plotmax) ax.set_ylim(-plotmax, plotmax) return f def plot_disk_kinematics(model: astro_dynamo.model.DynamicalModel, axs: Sequence[ SubplotBase] = None) -> matplotlib.figure.Figure: """Plots the azimuthally averaged kinematics, both mean and sigma in R_cyl, z, phi directions of a model. The model must contain a disk kinematics target as this is what id plotted. If supplied plots into the first 2 axes supplied in axs, otherwise creates a new figure.""" if axs is None: f, axs = plt.subplots(2, 1, sharex='col') else: f = axs[0].figure try: disk_kinematics_obj = next(target for target in model.targets if isinstance(target, astro_dynamo.targets.DiskKinematics)) except IndexError: raise TypeError("Couldnt find a DiskKinematics target in the model.") kin_model = disk_kinematics_obj(model).detach().cpu() r = disk_kinematics_obj.rmid.cpu() for linestyle, kin, kin_err in zip(('-', '-.'), (kin_model,), (None,)): if kin_err is None: axs[0].plot(r, kin[1, :].detach().cpu(), 'r', linestyle=linestyle, label='sig vphi') axs[0].plot(r, kin[3, :].detach().cpu(), 'g', linestyle=linestyle, label='sig vr') axs[0].plot(r, kin[5, :].detach().cpu(), 'b', linestyle=linestyle, label='sig vz') else: axs[0].errorbar(r, kin[1, :].detach().cpu().numpy(), yerr=kin_err[1, :].cpu().numpy(), fmt='o', color='r', ecolor='r') axs[0].errorbar(r, kin[3, :].detach().cpu().numpy(), yerr=kin_err[3, :].cpu().numpy(), fmt='o', color='g', ecolor='g') axs[0].errorbar(r, kin[5, :].detach().cpu().numpy(), yerr=kin_err[5, :].cpu().numpy(), fmt='o', color='b', ecolor='b') for linestyle, kin, kin_err in zip(('-', '-.'), (kin_model,), (None,)): if kin_err is None: axs[1].plot(r, kin[0, :].detach().cpu(), 'r', linestyle=linestyle, label='mean vphi') axs[1].plot(r, kin[2, :].detach().cpu(), 'g', linestyle=linestyle, label='mean vr') axs[1].plot(r, kin[4, :].detach().cpu(), 'b', linestyle=linestyle, label='mean vz') else: axs[1].errorbar(r, kin[0, :].detach().cpu().numpy(), yerr=kin_err[0, :].cpu().numpy(), fmt='o', color='r', ecolor='r') axs[1].errorbar(r, kin[2, :].detach().cpu().numpy(), yerr=kin_err[2, :].cpu().numpy(), fmt='o', color='g', ecolor='g') axs[1].errorbar(r, kin[4, :].detach().cpu().numpy(), yerr=kin_err[4, :].cpu().numpy(), fmt='o', color='b', ecolor='b') axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5)) axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5)) axs[0].set_ylim(0, 0.3 * model.v_scale.cpu()) axs[1].set_ylim(-0.1 * model.v_scale.cpu(), 1.5 * model.v_scale.cpu()) axs[1].set_xlabel('r [kpc]') axs[0].set_ylabel('[km/s]') axs[1].set_ylabel('[km/s]') f.subplots_adjust(hspace=0) f.tight_layout() return f def plot_surface_density_profile(model: astro_dynamo.model.DynamicalModel, ax: SubplotBase = None, target_values: torch.Tensor = None) -> SubplotBase: """Plots the azimuthally averaged surface density of a model. The model must contain a SurfaceDensity target to be plotted. If supplied plots into axis ax, otherwise creates a new figure.""" if ax is None: f, axs = plt.subplots(1, 1) axs[-1, -1].axis('off') try: surface_density_obj = next(target for target in model.targets if type(target) == astro_dynamo.targets.SurfaceDensity) except IndexError: raise TypeError("Couldn't find a SurfaceDensity target in the model.") ax.semilogy(surface_density_obj.rmid.cpu(), surface_density_obj(model).detach().cpu(), label='Model') if target_values is not None: ax.semilogy(surface_density_obj.rmid.cpu(), target_values.detach().cpu(), label='Target') ax.set_xlabel('r') ax.set_ylabel(r'$\Sigma$') ax.set_ylim(1, 1e4) ax.legend() return ax def plot_disk_density_twod(model: astro_dynamo.model.DynamicalModel, axs: Sequence[SubplotBase] = None, target_values: torch.Tensor = None) -> matplotlib.figure.Figure: """Plots the azimuthally averaged surface density of a model. The model must contain a SurfaceDensity target to be plotted. If supplied plots into axis ax, otherwise creates a new figure.""" if axs is None: ncol = 2 if target_values is not None else 1 f, axs = plt.subplots(2, ncol, sharex=True, sharey=True, squeeze=False) else: f = axs[0].figure try: disk_density_obj = next(target for target in model.targets if type(target) == astro_dynamo.targets.DoubleExponentialDisk) except IndexError: raise TypeError( "Couldn't find a DoubleExponentialDisk target in the model.") model_disk_density = disk_density_obj(model).detach() model_disk_density_normed = model_disk_density / model_disk_density.sum( dim=1).unsqueeze(1) data = model_disk_density.t().log10().cpu().numpy() levels = np.max(data) +
np.arange(-10, 1)
numpy.arange
import os import glob import pickle import pcl import torch import torch.utils.data import torch.nn as nn import numpy as np # global configurations: from autolab_core import YamlConfig from dexnet.grasping import GpgGraspSampler from dexnet.grasping import RobotGripper home_dir = os.environ['HOME'] yaml_config = YamlConfig(home_dir + "/Projects/PointNetGPD/dex-net/test/config.yaml") gripper_name = 'robotiq_85' gripper = RobotGripper.load(gripper_name, home_dir + "/Projects/PointNetGPD/dex-net/data/grippers") ags = GpgGraspSampler(gripper, yaml_config) class PointGraspDataset(torch.utils.data.Dataset): def __init__(self, obj_points_num, grasp_points_num, pc_file_used_num, grasp_amount_per_file, thresh_good, thresh_bad, path, tag, with_obj=False, projection=False, project_chann=3, project_size=60): self.obj_points_num = obj_points_num self.grasp_points_num = grasp_points_num self.pc_file_used_num = pc_file_used_num self.grasp_amount_per_file = grasp_amount_per_file self.path = path self.tag = tag self.thresh_good = thresh_good self.thresh_bad = thresh_bad self.with_obj = with_obj self.min_point_limit = 50 # projection related self.projection = projection self.project_chann = project_chann if self.project_chann not in [3, 12]: raise NotImplementedError self.project_size = project_size if self.project_size != 60: raise NotImplementedError self.normal_K = 10 self.voxel_point_num = 50 self.projection_margin = 1 self.transform = pickle.load(open(os.path.join(self.path, 'google2cloud.pkl'), 'rb')) fl_grasp = glob.glob(os.path.join(path, 'ycb_grasp', self.tag, '*.npy')) fl_pc = glob.glob(os.path.join(path, 'ycb_rgbd', '*', 'clouds', '*.npy')) self.d_pc, self.d_grasp = {}, {} for i in fl_pc: k = i.split('/')[-3] if k in self.d_pc.keys(): self.d_pc[k].append(i) else: self.d_pc[k] = [i] for i in fl_grasp: k = i.split('/')[-1].split('.')[0] self.d_grasp[k] = i object1 = set(self.d_grasp.keys()) object2 = set(self.transform.keys()) self.object = list(object1.intersection(object2)) self.amount = len(self.object) * self.grasp_amount_per_file def collect_pc(self, grasp, pc, transform): center = grasp[0:3] axis = grasp[3:6] # binormal width = grasp[6] angle = grasp[7] axis = axis/np.linalg.norm(axis) binormal = axis # cal approach cos_t = np.cos(angle) sin_t = np.sin(angle) R1 = np.c_[[cos_t, 0, sin_t],[0, 1, 0],[-sin_t, 0, cos_t]] axis_y = axis axis_x = np.array([axis_y[1], -axis_y[0], 0]) if np.linalg.norm(axis_x) == 0: axis_x = np.array([1, 0, 0]) axis_x = axis_x / np.linalg.norm(axis_x) axis_y = axis_y / np.linalg.norm(axis_y) axis_z = np.cross(axis_x, axis_y) R2 = np.c_[axis_x, np.c_[axis_y, axis_z]] approach = R2.dot(R1)[:, 0] approach = approach / np.linalg.norm(approach) minor_normal = np.cross(axis, approach) left = center - width*axis/2 right = center + width*axis/2 # bottom = center - width*approach left = (np.dot(transform, np.array([left[0], left[1], left[2], 1])))[:3] right = (np.dot(transform, np.array([right[0], right[1], right[2], 1])))[:3] # bottom = (transform @ np.array([bottom[0], bottom[1], bottom[2], 1]))[:3] center = (np.dot(transform, np.array([center[0], center[1], center[2], 1])))[:3] binormal = (np.dot(transform, np.array([binormal[0], binormal[1], binormal[2], 1])))[:3].reshape(3, 1) approach = (np.dot(transform, np.array([approach[0], approach[1], approach[2], 1])))[:3].reshape(3, 1) minor_normal = (np.dot(transform, np.array([minor_normal[0], minor_normal[1], minor_normal[2], 1])))[:3].reshape(3, 1) matrix = np.hstack([approach, binormal, minor_normal]).T # pc_p2c/left_t/right_t is in local coordinate(with center as origin) # other(include pc) are in pc coordinate pc_p2c = (np.dot(matrix, (pc-center).T)).T left_t = (-width * np.array([0,1,0]) / 2).squeeze() right_t = (width * np.array([0,1,0]) / 2).squeeze() x_limit = width/4 z_limit = width/4 y_limit = width/2 x1 = pc_p2c[:, 0] > -x_limit x2 = pc_p2c[:, 0] < x_limit y1 = pc_p2c[:, 1] > -y_limit y2 = pc_p2c[:, 1] < y_limit z1 = pc_p2c[:, 2] > -z_limit z2 = pc_p2c[:, 2] < z_limit a = np.vstack([x1, x2, y1, y2, z1, z2]) self.in_ind = np.where(np.sum(a, axis=0) == len(a))[0] if len(self.in_ind) < self.min_point_limit: return None if self.projection: return self.project_pc(pc_p2c, width) else: return pc_p2c[self.in_ind] def check_square(self, point, points_g): dirs = np.array([[-1, 1, 1], [1, 1, 1], [-1, -1, 1], [1, -1, 1], [-1, 1, -1], [1, 1, -1], [-1, -1, -1], [1, -1, -1]]) p = dirs * 0.5 + point # here res * 0.5 means get half of a pixel width a1 = p[2][1] < points_g[:, 1] a2 = p[0][1] > points_g[:, 1] a3 = p[0][2] > points_g[:, 2] a4 = p[4][2] < points_g[:, 2] a5 = p[1][0] > points_g[:, 0] a6 = p[0][0] < points_g[:, 0] a = np.vstack([a1, a2, a3, a4, a5, a6]) points_in_area = np.where(np.sum(a, axis=0) == len(a))[0] if len(points_in_area) == 0: has_p = False else: has_p = True return points_in_area def cal_projection(self, point_cloud_voxel, m_width_of_pic, margin, surface_normal, order, gripper_width): occupy_pic = np.zeros([m_width_of_pic, m_width_of_pic, 1]) norm_pic = np.zeros([m_width_of_pic, m_width_of_pic, 3]) norm_pic_num = np.zeros([m_width_of_pic, m_width_of_pic, 1]) max_x = point_cloud_voxel[:, order[0]].max() min_x = point_cloud_voxel[:, order[0]].min() max_y = point_cloud_voxel[:, order[1]].max() min_y = point_cloud_voxel[:, order[1]].min() min_z = point_cloud_voxel[:, order[2]].min() tmp = max((max_x - min_x), (max_y - min_y)) if tmp == 0: print("WARNING : the num of input points seems only have one, no possilbe to do learning on" "such data, please throw it away. -- Hongzhuo") return occupy_pic, norm_pic # Here, we use the gripper width to cal the res: res = gripper_width / (m_width_of_pic-margin) voxel_points_square_norm = [] x_coord_r = ((point_cloud_voxel[:, order[0]]) / res + m_width_of_pic / 2) y_coord_r = ((point_cloud_voxel[:, order[1]]) / res + m_width_of_pic / 2) z_coord_r = ((point_cloud_voxel[:, order[2]]) / res + m_width_of_pic / 2) x_coord_r = np.floor(x_coord_r).astype(int) y_coord_r = np.floor(y_coord_r).astype(int) z_coord_r = np.floor(z_coord_r).astype(int) voxel_index = np.array([x_coord_r, y_coord_r, z_coord_r]).T # all point in grid coordinate_buffer = np.unique(voxel_index, axis=0) # get a list of points without duplication K = len(coordinate_buffer) # [K, 1] store number of points in each voxel grid number_buffer = np.zeros(shape=K, dtype=np.int64) feature_buffer = np.zeros(shape=(K, self.voxel_point_num, 6), dtype=np.float32) index_buffer = {} for i in range(K): index_buffer[tuple(coordinate_buffer[i])] = i # got index of coordinate for voxel, point, normal in zip(voxel_index, point_cloud_voxel, surface_normal): index = index_buffer[tuple(voxel)] number = number_buffer[index] if number < self.voxel_point_num: feature_buffer[index, number, :3] = point feature_buffer[index, number, 3:6] = normal number_buffer[index] += 1 voxel_points_square_norm = np.sum(feature_buffer[..., -3:], axis=1)/number_buffer[:, np.newaxis] voxel_points_square = coordinate_buffer if len(voxel_points_square) == 0: return occupy_pic, norm_pic x_coord_square = voxel_points_square[:, 0] y_coord_square = voxel_points_square[:, 1] norm_pic[x_coord_square, y_coord_square, :] = voxel_points_square_norm occupy_pic[x_coord_square, y_coord_square] = number_buffer[:, np.newaxis] occupy_max = occupy_pic.max() assert(occupy_max > 0) occupy_pic = occupy_pic / occupy_max return occupy_pic, norm_pic def project_pc(self, pc, gripper_width): """ for gpd baseline, only support input_chann == [3, 12] """ pc = pc.astype(np.float32) pc = pcl.PointCloud(pc) norm = pc.make_NormalEstimation() norm.set_KSearch(self.normal_K) normals = norm.compute() surface_normal = normals.to_array() surface_normal = surface_normal[:, 0:3] pc = pc.to_array() grasp_pc = pc[self.in_ind] grasp_pc_norm = surface_normal[self.in_ind] bad_check = (grasp_pc_norm != grasp_pc_norm) if np.sum(bad_check)!=0: bad_ind = np.where(bad_check == True) grasp_pc =
np.delete(grasp_pc, bad_ind[0], axis=0)
numpy.delete
import numpy as np import scipy as sp import scipy.linalg import scipy.signal import matplotlib as mpl import matplotlib.pyplot as plt from AeroDB import * class ZENITH(object): def __init__(self, aerodb, x0=None, rho=None): self.aerodb = aerodb self.x0 = x0 self.rho = rho self.x_l = [self.x0] self.t_l = [0] @property def aerodb(self): return self._aerodb @aerodb.setter def aerodb(self, aerodb): self._aerodb = aerodb @property def x(self): return self._x @x.setter def x(self, x): self._x = x @property def xE(self): R = 6378.15e3 x1, x2, x3 = self.pos xE = np.array([ [R*np.arctan(np.sqrt(x1**2 + x3**2)/(R+x2))*(x1/np.sqrt(x1**2 + x3**2))], [np.sqrt((R+x2)**2 + (x1**2 + x3**2) - R)], [R*np.arctan(np.sqrt(x1**2 + x3**2)/(R+x2))*(x3/np.sqrt(x1**2 + x3**2))] ]) return xE @property def pos(self): return self.x[:3] @property def vel(self): return self.x[3:6] @property def ang(self): return self.x[6:9] @property def angvel(self): return self.x[9:] @property def x0(self): return self._x0 @x0.setter def x0(self, x0): if x0 is None: x0 = np.zeros((12,1)) else: pass try: x0.shape except: raise TypeError("Initial state x0 must be a numpy array.") else: if x0.shape[0] != 1: x0 = x0.reshape((x0.shape[0],1)) else: pass if x0.shape[0] != 12: raise ValueError("Initial state x0 must a full state (12-row) vector.") else: self.x = x0 self._x0 = x0 def set_rho(self, rho): if rho is None: self._rho = lambda h : 1.225 elif callable(rho): self._rho = rho elif isinstance(rho, float): self._rho = lambda h : rho else: raise TypeError("Invalid rho type") def set_I(self, I, t_I): Idot = np.gradient(I, t_I) self._Ifunct = lambda t : np.interp(t, t_I, I) self._Idotfunct = lambda t : np.interp(t, t_I, Idot) def get_I(self, t): return self._Ifunct(t) def get_Idot(self, t): return self._Idotfunct(t) def set_Ip(self, Ip, t_Ip): Ipdot = np.gradient(Ip, t_Ip) self._Ipfunct = lambda t :
np.interp(t, t_Ip, Ip)
numpy.interp
from sklearn.cluster import MeanShift from scipy.optimize import minimize from ase import Atom import numpy as np from random import random def min_dist(pos, host): """minimum distance from position to a host atom :param pos: vector x,y,z position :param host: host atoms object :return: float, minimum distance Args: pos: host: """ dummy_atom = Atom('H', position=pos) dummy_host = host + dummy_atom return(min(dummy_host.get_distances(-1, [i for i in range(len(host))], mic=True))) def avg_dist(pos, host): """average distance from position to all host atoms :param pos: vector x,y,z position :param host: host atoms object :return: float, average distance Args: pos: host: """ dummy_atom = Atom('H', position=pos) dummy_host = host + dummy_atom return(np.average(dummy_host.get_distances(-1, [i for i in range(len(host))], mic=True))) def find_void(pos, host): """finds nearest empty region in host :param pos: vector x,y,z position :param host: host atoms object :return: vector position of center of empty void Args: pos: host: """ guess = pos func = lambda pos: -1*min_dist(pos, host) # 1 param function for scipy.minimize ans = minimize(func, guess) return(ans.x) def sphere_sample(radius, num_pts=None): """generates random positions on the surface of a sphere of certain radius :param radius: radius of sphere surface to sample :param num_pts: number of points to try :return: list of x,y,z positions on surface of sphere Args: radius: num_pts: """ if num_pts == None: num_pts = 500 vect_list = [] for i in range(num_pts): x, y, z = [2*random()-1 for i in range(3)] # select points inside of unit sphere if x**2 + y**2 + z**2 > 1.0: pass else: unit_vec = [x, y, z]/
np.linalg.norm([x,y,z])
numpy.linalg.norm
# -*- coding: utf-8 -*- """ Created on Tue Mar 16 11:13:37 2021 @author: dv516 """ import numpy as np import pickle import pyro pyro.enable_validation(True) # can help with debugging pyro.set_rng_seed(1) from algorithms.PyBobyqa_wrapped.Wrapper_for_pybobyqa import PyBobyqaWrapper from algorithms.Bayesian_opt_Pyro.utilities_full import BayesOpt from algorithms.nesterov_random.nesterov_random import nesterov_random from algorithms.simplex.simplex_method import simplex_method from algorithms.CUATRO.CUATRO import CUATRO from algorithms.Finite_differences.Finite_differences import finite_Diff_Newton from algorithms.Finite_differences.Finite_differences import Adam_optimizer from algorithms.Finite_differences.Finite_differences import BFGS_optimizer from algorithms.SQSnobfit_wrapped.Wrapper_for_SQSnobfit import SQSnobFitWrapper from algorithms.DIRECT_wrapped.Wrapper_for_Direct import DIRECTWrapper from test_functions import quadratic_constrained import matplotlib.pyplot as plt def trust_fig(oracle, bounds): N = 200 lim = 2 x = np.linspace(-lim, lim, N) y = np.linspace(-lim, lim, N) X,Y = np.meshgrid(x, y) Z = oracle.sample_obj(X,Y) constr = oracle.sample_constr(X,Y) levels_list = np.logspace(-2, 1.5, 10) fig = plt.figure(figsize = (6,4)) ax = fig.add_subplot() ax.contour(X,Y,Z*constr, levels = levels_list) ax.plot([bounds[0,0], bounds[0, 1]], [bounds[1,0], bounds[1, 0]], c = 'k') ax.plot([bounds[0,0], bounds[0, 1]], [bounds[1,1], bounds[1, 1]], c = 'k') ax.plot([bounds[0,0], bounds[0, 0]], [bounds[1,0], bounds[1, 1]], c = 'k') ax.plot([bounds[0,1], bounds[0, 1]], [bounds[1,0], bounds[1, 1]], c = 'k') return ax, fig def average_from_list(solutions_list): N = len(solutions_list) f_best_all = np.zeros((N, 100)) for i in range(N): f_best = np.array(solutions_list[i]['f_best_so_far']) x_ind = np.array(solutions_list[i]['samples_at_iteration']) for j in range(100): ind = np.where(x_ind <= j+1) if len(ind[0]) == 0: f_best_all[i, j] = f_best[0] else: f_best_all[i, j] = f_best[ind][-1] f_median = np.median(f_best_all, axis = 0) # f_av = np.average(f_best_all, axis = 0) # f_std = np.std(f_best_all, axis = 0) f_min = np.min(f_best_all, axis = 0) f_max = np.max(f_best_all, axis = 0) return f_best_all, f_median, f_min, f_max class RB: def __init__(self, objective, ineq = []): self.obj = objective ; self.ieq = ineq def sample_obj(self, x, y): return self.obj(x, y) def sample_constr(self, x, y): if self.ieq == []: if (type(x) == float) or (type(x) == int): return 1 else: return np.ones(len(x)) elif (type(x) == float) or (type(x) == int): temporary = [int(g(x, y)) for g in self.ieq] return np.product(np.array(temporary)) else: temporary = [g(x, y).astype(int) for g in self.ieq] return np.product(np.array(temporary), axis = 0) def fix_starting_points(complete_list, x0, init_out, only_starting_point = False): if only_starting_point: for i in range(len(complete_list)): dict_out = complete_list[i] f_arr = dict_out['f_best_so_far'] N_eval = len(f_arr) g_arr = dict_out['g_best_so_far'] dict_out['x_best_so_far'][0] = np.array(x0) dict_out['f_best_so_far'][0] = init_out[0] dict_out['g_best_so_far'][0] = np.array(init_out[1]) complete_list[i] = dict_out else: for i in range(len(complete_list)): dict_out = complete_list[i] f_arr = dict_out['f_best_so_far'] N_eval = len(f_arr) g_arr = dict_out['g_best_so_far'] dict_out['x_best_so_far'][0] = np.array(x0) dict_out['f_best_so_far'][0] = init_out[0] dict_out['g_best_so_far'][0] = np.array(init_out[1]) for j in range(1, N_eval): if (g_arr[j] > 1e-3).any() or (init_out[0] < f_arr[j]): dict_out['x_best_so_far'][j] = np.array(x0) dict_out['f_best_so_far'][j] = init_out[0] dict_out['g_best_so_far'][j] = np.array(init_out[1]) complete_list[i] = dict_out return complete_list def Problem_quadratic(x): f = quadratic_constrained.quadratic_f g = quadratic_constrained.quadratic_g return f(x), [g(x)] bounds = np.array([[-1.5,1.5],[-1.5,1.5]]) # x0 = np.array([1, 1]) x0 = np.array([-0.5, 1.5]) max_f_eval = 100 max_it = 100 initial_output = Problem_quadratic(x0) quadraticTight_pybobyqa = PyBobyqaWrapper().solve(Problem_quadratic, x0, bounds=bounds.T, \ maxfun= max_f_eval, constraints=2, \ seek_global_minimum= True, \ objfun_has_noise=False) # print(x0) N = 10 quadraticTight_Nest_list = [] for i in range(N): rnd_seed = i quadratic_Nest = nesterov_random(Problem_quadratic, x0, bounds, max_iter = 100, \ constraints = 1, rnd_seed = i, alpha = 1e-3, mu = 1e-2, \ max_f_eval = max_f_eval) quadraticTight_Nest_list.append(quadratic_Nest) print('10 Nesterov iterations completed') # print(x0) N = 10 quadraticTight_simplex_list = [] for i in range(N): rnd_seed = i quadratic_simplex = simplex_method(Problem_quadratic, x0, bounds, max_iter = 100, \ constraints = 1, rnd_seed = i, max_f_eval = max_f_eval) quadraticTight_simplex_list.append(quadratic_simplex) print('10 simplex iterations completed') quadraticTight_FiniteDiff = finite_Diff_Newton(Problem_quadratic, x0, bounds = bounds, \ con_weight = 100) quadraticTight_BFGS = BFGS_optimizer(Problem_quadratic, x0, bounds = bounds, \ con_weight = 100) quadraticTight_Adam = Adam_optimizer(Problem_quadratic, x0, method = 'forward', \ bounds = bounds, alpha = 0.4, \ beta1 = 0.2, beta2 = 0.1, \ max_f_eval = 100, con_weight = 100) N_min_s = 15 init_radius = 2 method = 'Discrimination' N = 10 quadraticTight_CUATRO_global_list = [] for i in range(N): rnd_seed = i quadratic_CUATRO_global = CUATRO(Problem_quadratic, x0, init_radius, bounds = bounds, \ N_min_samples = N_min_s, tolerance = 1e-10,\ beta_red = 0.9, rnd = rnd_seed, method = 'global', \ constr_handling = method) quadraticTight_CUATRO_global_list.append(quadratic_CUATRO_global) print('10 CUATRO global iterations completed') N_min_s = 6 init_radius = 0.5 method = 'Fitting' N = 10 quadraticTight_CUATRO_local_list = [] for i in range(N): rnd_seed = i quadratic_CUATRO_local = CUATRO(Problem_quadratic, x0, init_radius, bounds = bounds, \ N_min_samples = N_min_s, tolerance = 1e-10,\ beta_red = 0.9, rnd = rnd_seed, method = 'local', \ constr_handling = method) quadraticTight_CUATRO_local_list.append(quadratic_CUATRO_local) print('10 CUATRO local iterations completed') N = 10 quadraticTight_SQSnobFit_list = [] for i in range(N): quadratic_SQSnobFit = SQSnobFitWrapper().solve(Problem_quadratic, x0, bounds, \ maxfun = max_f_eval, constraints=2) quadraticTight_SQSnobFit_list.append(quadratic_SQSnobFit) print('10 SnobFit iterations completed') N = 10 quadraticTight_DIRECT_list = [] quadratic_DIRECT_f = lambda x, grad: Problem_quadratic(x) for i in range(N): quadratic_DIRECT = DIRECTWrapper().solve(quadratic_DIRECT_f, x0, bounds, \ maxfun = max_f_eval, constraints=2) quadraticTight_DIRECT_list.append(quadratic_DIRECT) print('10 DIRECT iterations completed') # with open('BayesQuadratic_list.pickle', 'rb') as handle: # quadratic_Bayes_list = pickle.load(handle) # quadratic_Bayes_list = fix_starting_points(quadratic_Bayes_list, x0, initial_output) quadraticTight_DIRECT_list = fix_starting_points(quadraticTight_DIRECT_list, x0, initial_output) quadraticTight_simplex_list = fix_starting_points(quadraticTight_simplex_list, x0, initial_output) quadraticTight_pybobyqa['x_best_so_far'][0] = np.array(x0) quadraticTight_pybobyqa['f_best_so_far'][0] = initial_output[0] quadraticTight_pybobyqa['g_best_so_far'][0] = np.array(initial_output[1]) x_best_pyBbyqa = np.array(quadraticTight_pybobyqa['x_best_so_far']) f_best_pyBbyqa = np.array(quadraticTight_pybobyqa['f_best_so_far']) # x_ind_pyBbyqa = np.array(RB_pybobyqa['samples_at_iteration']) # nbr_feval_pyBbyqa = len(RB_pybobyqa['f_store']) x_best_finDiff = np.array(quadraticTight_FiniteDiff['x_best_so_far']) f_best_finDiff = np.array(quadraticTight_FiniteDiff['f_best_so_far']) x_ind_findDiff = np.array(quadraticTight_FiniteDiff['samples_at_iteration']) x_best_BFGS = np.array(quadraticTight_BFGS['x_best_so_far']) f_best_BFGS = np.array(quadraticTight_BFGS['f_best_so_far']) x_ind_BFGS = np.array(quadraticTight_BFGS['samples_at_iteration']) x_best_Adam = np.array(quadraticTight_Adam['x_best_so_far']) f_best_Adam = np.array(quadraticTight_Adam['f_best_so_far']) x_ind_Adam = np.array(quadraticTight_Adam['samples_at_iteration']) plt.rcParams["font.family"] = "Times New Roman" ft = int(15) font = {'size': ft} plt.rc('font', **font) params = {'legend.fontsize': 12.5, 'legend.handlelength': 2} plt.rcParams.update(params) fig1 = plt.figure() ax1 = fig1.add_subplot() ax1.step(np.arange(len(f_best_pyBbyqa)), f_best_pyBbyqa, where = 'post', \ label = 'PyBobyqa') ax1.step(x_ind_findDiff, f_best_finDiff, where = 'post', \ label = 'Newton Fin. Diff.') ax1.step(x_ind_BFGS, f_best_BFGS, where = 'post', \ label = 'BFGS') ax1.step(x_ind_Adam, f_best_Adam, where = 'post', \ label = 'Adam') ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.legend() ax1.set_yscale('log') fig1.savefig('Quadratic_plots_Tight/QuadraticTight_Deterministic_Convergence_plot.svg', format = "svg") quadratic_f = lambda x, y: x**2 + 10*y**2 + x*y quadratic_g = lambda x, y: 1 - x - y <= 0 oracle = RB(quadratic_f, ineq = [quadratic_g]) ax2, fig2 = trust_fig(oracle, bounds) ax2.plot(x_best_pyBbyqa[:,0], x_best_pyBbyqa[:,1], '--x', \ label = 'PyBobyqa') ax2.plot(x_best_finDiff[:,0], x_best_finDiff[:,1], '--x', \ label = 'Newton Fin. Diff.') ax2.plot(x_best_BFGS[:,0], x_best_BFGS[:,1], '--x', \ label = 'BFGS') ax2.plot(x_best_Adam[:,0], x_best_Adam[:,1], '--x', \ label = 'Adam') ax2.set_xlabel('$x_1$') ax2.set_ylabel('$x_2$') ax2.legend() ax2.set_xlim(bounds[0]) ax2.set_ylim(bounds[1]) fig2.savefig('Quadratic_plots_Tight/QuadraticTight_Deterministic_2Dspace_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() ax2, fig2 = trust_fig(oracle, bounds) for i in range(len(quadraticTight_CUATRO_global_list)): x_best = np.array(quadraticTight_CUATRO_global_list[i]['x_best_so_far']) f_best = np.array(quadraticTight_CUATRO_global_list[i]['f_best_so_far']) x_ind =
np.array(quadraticTight_CUATRO_global_list[i]['samples_at_iteration'])
numpy.array
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # REP assert len(A._ID_dict['non-collapse']) == len(A._ID_dict['repairable']) assert len(A._ID_dict['irreparable']) == 0 # cost DV_COST = A._DV_dict['rec_cost'] # DS1 C_CDF = DV_COST.iloc[:, 0] C_CDF = np.around(C_CDF / 10., decimals=0) * 10. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 2500], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 C_CDF = DV_COST.iloc[:, 1] C_CDF = np.around(C_CDF / 100., decimals=0) * 100. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 25000], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 C_CDF = DV_COST.iloc[:, 2] C_CDF = np.around(C_CDF / 1000., decimals=0) * 1000. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 250000], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # time DV_TIME = A._DV_dict['rec_time'] # DS1 T_CDF = DV_TIME.iloc[:, 0] T_CDF = np.around(T_CDF, decimals=1) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 2.5], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 T_CDF = DV_TIME.iloc[:, 1] T_CDF = np.around(T_CDF, decimals=0) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 25], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 T_CDF = DV_TIME.iloc[:, 2] T_CDF = np.around(T_CDF / 10., decimals=0) * 10. vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 250], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert_allclose(S[('event time', 'month')], A._TIME['month'] + 1) assert_allclose(S[('event time', 'weekday?')], A._TIME['weekday?']) assert_allclose(S[('event time', 'hour')], A._TIME['hour']) assert_allclose(S[('inhabitants', '')], A._POP.iloc[:, 0]) assert SD.loc[('collapses', 'collapsed'), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('collapses', 'mode'), 'mean'] == 0. assert SD.loc[('collapses', 'mode'), 'count'] == pytest.approx(5000, rel=0.05) assert SD.loc[('red tagged', ''), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('red tagged', ''), 'count'] == pytest.approx(5000, rel=0.05) for col in ['irreparable', 'cost impractical', 'time impractical']: assert SD.loc[('reconstruction', col), 'mean'] == 0. assert SD.loc[('reconstruction', col), 'count'] == pytest.approx(5000, rel=0.05) RC = deepcopy(S.loc[:, ('reconstruction', 'cost')]) RC_CDF = np.around(RC / 1000., decimals=0) * 1000. vals, counts = np.unique(RC_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.]) * 1000.) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) RT = deepcopy(S.loc[:, ('reconstruction', 'time-parallel')]) RT_CDF = np.around(RT, decimals=0) vals, counts = np.unique(RT_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.])) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) assert_allclose(S.loc[:, ('reconstruction', 'time-parallel')], S.loc[:, ('reconstruction', 'time-sequential')]) CAS = deepcopy(S.loc[:, ('injuries', 'sev1')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.075, 0.15, 0.25, 0.3, 0.5, 1.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2, 2.5, 7, 5]) / 56., atol=0.01, rtol=0.1) CAS = deepcopy(S.loc[:, ('injuries', 'sev2')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.025, 0.05, 0.1, 2.25, 4.5, 9.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2.5, 2, 7, 5]) / 56., atol=0.01, rtol=0.1) def test_FEMA_P58_Assessment_EDP_uncertainty_basic(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_2.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_2.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T assert_allclose(thetas, [9.80665, 12.59198, 0.074081, 0.044932], rtol=0.02) assert_allclose(betas, [0.25, 0.25, 0.3, 0.4], rtol=0.02) rho = RV_EDP[0].RV_set.Rho() rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] assert_allclose(rho, rho_target, atol=0.05) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer( [0.3, 0.4], [0.3, 0.4]), upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[ 0] DMG_2_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[ 0] DMG_1_PFA = mvn_od(np.log([0.074081, 9.80665]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] DMG_2_PFA = mvn_od(np.log([0.074081, 12.59198]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert DMG_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert DMG_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert DMG_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 and 1022 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2011 and 2012 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 9.80665, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2021 and 2022 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 9.80665]), upper=np.log([0.1, 9.80665, np.inf]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert RED_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert RED_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert RED_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log([0.074081, 0.044932, 9.80665, 12.59198]), np.array( [[1.0, 0.7, 0.3, 0.3], [0.7, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.6], [0.3, 0.3, 0.6, 1.0]]) * np.outer( [0.3, 0.4, 0.25, 0.25], [0.3, 0.4, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [0.05488, 0.05488, 9.80665, 9.80665]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. def test_FEMA_P58_Assessment_EDP_uncertainty_detection_limit(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test differs from the basic case in having unreliable EDP values above a certain limit - a typical feature of interstory drifts in dynamic simulations. Such cases should not be a problem if the limits can be estimated and they are specified as detection limits in input file. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_3.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_3.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_failed_analyses(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. Here we use EDP results with unique values assigned to failed analyses. In particular, PID=1.0 and PFA=100.0 are used when an analysis fails. These values shall be handled by detection limits of 10 and 100 for PID and PFA, respectively. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_4.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_4.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_3D(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. In this test we look at the propagation of EDP values provided for two different directions. (3D refers to the numerical model used for response estimation.) """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_5.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_5.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 8.65433, 12.59198, 11.11239, 0.074081, 0.063763, 0.044932, 0.036788] EDP_beta_target = [0.25, 0.25, 0.25, 0.25, 0.3, 0.3, 0.4, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = np.array([ [1.0, 0.8, 0.6, 0.5, 0.3, 0.3, 0.3, 0.3], [0.8, 1.0, 0.5, 0.6, 0.3, 0.3, 0.3, 0.3], [0.6, 0.5, 1.0, 0.8, 0.3, 0.3, 0.3, 0.3], [0.5, 0.6, 0.8, 1.0, 0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3, 1.0, 0.8, 0.7, 0.6], [0.3, 0.3, 0.3, 0.3, 0.8, 1.0, 0.6, 0.7], [0.3, 0.3, 0.3, 0.3, 0.7, 0.6, 1.0, 0.8], [0.3, 0.3, 0.3, 0.3, 0.6, 0.7, 0.8, 1.0]]) large_rho_ids = np.where(EDP_rho_target >= 0.5) small_rho_ids = np.where(EDP_rho_target < 0.5) assert_allclose(EDP_rho_test[large_rho_ids], EDP_rho_target[large_rho_ids], atol=0.1) assert_allclose(EDP_rho_test[small_rho_ids], EDP_rho_target[small_rho_ids], atol=0.2) EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation theta_PID = np.log(EDP_theta_target[4:]) COV_PID = EDP_COV_test[4:, 4:] # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(theta_PID, COV_PID, upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1, abs=0.05) # DMG realization_count = float(A._AIM_in['general']['realizations']) DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / realization_count for i in range(8)] DMG_1_1_PID = mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_1_2_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_2_1_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_2_2_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_1_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_1_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_2_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_2_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_ref = [DMG_1_1_PID, DMG_1_2_PID, DMG_2_1_PID, DMG_2_2_PID, DMG_1_1_PFA, DMG_1_2_PFA, DMG_2_1_PFA, DMG_2_2_PFA] assert_allclose(DMG_check, DMG_ref, rtol=0.10, atol=0.01) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 249., 624., 1251., 1875.] T_target = [0., 0.249, 0.624, 1.251, 1.875] # PG 1011 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.05488, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.05488, 0.05488, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 0].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 0].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1012 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 0.05488]), upper=np.log([0.05488, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 1e-6]), upper=np.log([0.05488, 0.1, 0.05488, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 1].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 1].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 0.05488]), upper=np.log([0.05488, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 1e-6]), upper=np.log([0.05488, 0.05488, 0.1, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 2].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 2].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count #print('------------------------') #print('P_target') #print(P_target) #print('------------------------') assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1022 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 0.05488]), upper=np.log([0.05488, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.05488, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 0.05488]), upper=np.log([0.05488, 0.1, 0.05488, 0.1]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 0.05488]), upper=np.log([0.05488, 0.05488, 0.05488, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 3].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 5)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 3].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 5)] P_test = P_test[np.where(P_test > 5)] P_test = P_test / realization_count assert_allclose(P_target[:-1], P_test[:4], atol=0.05) assert_allclose(C_target[:-1], C_test[:4], rtol=0.001) assert_allclose(T_target[:-1], T_test[:4], rtol=0.001) # PG 2011 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 4].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 4].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 5].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 5].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target[:4], P_test[:4], atol=0.05) assert_allclose(C_target[:4], C_test[:4], rtol=0.001) assert_allclose(T_target[:4], T_test[:4], rtol=0.001) # PG 2021 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 6].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 6].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 7].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 7].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / realization_count).values assert_allclose(RED_check, DMG_ref, atol=0.02, rtol=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, upper=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 0.05488, 0.05488, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / realization_count assert P_no_RED_target == pytest.approx(P_no_RED_test, abs=0.03) def test_FEMA_P58_Assessment_EDP_uncertainty_single_sample(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. In this test we provide only one structural response result and see if it is properly handled as a deterministic value or a random EDP using the additional sources of uncertainty. """ print() base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_6.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_6.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = np.array( [7.634901, 6.85613, 11.685934, 10.565554, 0.061364, 0.048515, 0.033256, 0.020352]) EDP_beta_target = EDP_theta_target * 1e-6 assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) assert RV_EDP[0].RV_set == None # ------------------------------------------------- perform the calculation A.define_loss_model() A.calculate_damage() A.calculate_losses() A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. assert P_no_RED_test == 0.0 # ------------------------------------------------------------------------- # now do the same analysis, but consider additional uncertainty # ------------------------------------------------------------------------- A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) AU = A._AIM_in['general']['added_uncertainty'] AU['beta_m'] = 0.3 AU['beta_gm'] = 0.4 A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_beta_target = np.sqrt((EDP_theta_target * 1e-6)**2. + np.ones(8)*(0.3**2. + 0.4**2.)) assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) assert RV_EDP[0].RV_set == None EDP_rho_target = np.zeros((8, 8)) np.fill_diagonal(EDP_rho_target, 1.0) EDP_COV_test = EDP_rho_target * np.outer(EDP_beta_test, EDP_beta_test) # ------------------------------------------------- perform the calculation A.define_loss_model() A.calculate_damage() A.calculate_losses() A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, upper=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 0.05488, 0.05488, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. assert P_no_RED_target == pytest.approx(P_no_RED_test, abs=0.01) def test_FEMA_P58_Assessment_EDP_uncertainty_zero_variance(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test simulates a scenario when one of the EDPs is identical in all of the available samples. This results in zero variance in that dimension and the purpose of the test is to ensure that such cases are handled appropriately. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_7.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_7.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas assert EDP_theta_test[4] == pytest.approx(0.061364, rel=0.05) assert EDP_beta_test[4] < 0.061364 * 1e-3 rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = np.zeros((8, 8)) np.fill_diagonal(EDP_rho_target, 1.0) assert_allclose(EDP_rho_test[4], EDP_rho_target[4], atol=1e-6) # ------------------------------------------------- perform the calculation A.define_loss_model() A.calculate_damage() A.calculate_losses() A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. assert P_no_RED_test == 0.0 def test_FEMA_P58_Assessment_QNT_uncertainty_independent(): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in component quantities. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test assumes that component quantities are independent. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_8.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_8.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # QNT RV_QNT = list(A._QNT_dict.values()) QNT_theta_test, QNT_beta_test = np.array([rv.theta for rv in RV_QNT]).T QNT_theta_target = np.ones(8) * 25. QNT_beta_target = [25.0] * 4 + [0.4] * 4 assert_allclose(QNT_theta_test, QNT_theta_target, rtol=0.001) assert_allclose(QNT_beta_test, QNT_beta_target, rtol=0.001) for i in range(4): assert RV_QNT[i].distribution == 'normal' for i in range(4, 8): assert RV_QNT[i].distribution == 'lognormal' QNT_rho_target = [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], ] QNT_rho_test = RV_QNT[0].RV_set.Rho() assert_allclose(QNT_rho_test, QNT_rho_target, atol=0.001) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG DMG_check = A._DMG.describe().T mu_test = DMG_check['mean'] sig_test = DMG_check['std'] rho_test = A._DMG.corr() mu_target_1 = 25.0 + 25.0 * norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) sig_target_1 = np.sqrt(25.0 ** 2.0 * ( 1 - norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) - ( norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0))) ** 2.0)) mu_target_2 = np.exp(np.log(25.0) + 0.4 ** 2. / 2.) sig_target_2 = np.sqrt( (np.exp(0.4 ** 2.0) - 1.0) * np.exp(2 * np.log(25.0) + 0.4 ** 2.0)) assert_allclose(mu_test[:4], mu_target_1, rtol=0.05) assert_allclose(mu_test[4:], mu_target_2, rtol=0.05) assert_allclose(sig_test[:4], sig_target_1, rtol=0.05) assert_allclose(sig_test[4:], sig_target_2, rtol=0.05) assert_allclose(rho_test, QNT_rho_target, atol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation DV_COST = A._DV_dict['rec_cost'] / A._DMG rho_DV_target = [ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ] assert_allclose(DV_COST.corr(), rho_DV_target, atol=0.05) # Uncertainty in decision variables is controlled by the correlation # between damages RND = [tnorm.rvs(-1., np.inf, loc=25, scale=25, size=10000) for i in range(4)] RND = np.sum(RND, axis=0) P_target_PID = np.sum(RND > 90.) / 10000. P_test_PID = np.sum(DV_COST.iloc[:, 0] < 10.01) / 10000. assert P_target_PID == pytest.approx(P_test_PID, rel=0.02) RND = [np.exp(norm.rvs(loc=np.log(25.), scale=0.4, size=10000)) for i in range(4)] RND = np.sum(RND, axis=0) P_target_PFA = np.sum(RND > 90.) / 10000. P_test_PFA = np.sum(DV_COST.iloc[:, 4] < 10.01) / 10000. assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.02) # the same checks can be performed for reconstruction time DV_TIME = A._DV_dict['rec_time'] / A._DMG assert_allclose(DV_TIME.corr(), rho_DV_target, atol=0.05) P_test_PID = np.sum(DV_TIME.iloc[:, 0] < 0.0101) / 10000. assert P_target_PID == pytest.approx(P_test_PID, rel=0.02) P_test_PFA = np.sum(DV_TIME.iloc[:, 4] < 0.0101) / 10000. assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.02) # injuries... DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = (DV_INJ_dict[0] / A._DMG).describe() DV_INJ1 = (DV_INJ_dict[1] / A._DMG).describe() assert_allclose(DV_INJ0.loc['mean', :][:4], np.ones(4) * 0.025, rtol=0.001) assert_allclose(DV_INJ0.loc['mean', :][4:], np.ones(4) * 0.1, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][:4], np.ones(4) * 0.005, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][4:], np.ones(4) * 0.02, rtol=0.001) assert_allclose(DV_INJ0.loc['std', :], np.zeros(8), atol=1e-4) assert_allclose(DV_INJ1.loc['std', :], np.zeros(8), atol=1e-4) # and for red tag... # Since every component is damaged in every realization, the red tag # results should all be 1.0 assert_allclose(A._DV_dict['red_tag'], np.ones((10000, 8))) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert SD.loc[('inhabitants', ''), 'mean'] == 20.0 assert SD.loc[('inhabitants', ''), 'std'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'mean'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'std'] == 0.0 assert SD.loc[('red tagged', ''), 'mean'] == 1.0 assert SD.loc[('red tagged', ''), 'std'] == 0.0 assert np.corrcoef(S.loc[:, ('reconstruction', 'cost')], S.loc[:, ('reconstruction', 'time-sequential')])[ 0, 1] == pytest.approx(1.0) assert_allclose(A._DV_dict['rec_cost'].sum(axis=1), S.loc[:, ('reconstruction', 'cost')]) assert_allclose(A._DV_dict['rec_time'].sum(axis=1), S.loc[:, ('reconstruction', 'time-sequential')]) assert_allclose(A._DV_dict['rec_time'].max(axis=1), S.loc[:, ('reconstruction', 'time-parallel')]) assert_allclose(A._DV_dict['injuries'][0].sum(axis=1), S.loc[:, ('injuries', 'sev1')]) assert_allclose(A._DV_dict['injuries'][1].sum(axis=1), S.loc[:, ('injuries', 'sev2')]) def test_FEMA_P58_Assessment_QNT_uncertainty_dependencies(): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in component quantities. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test checks if dependencies between component quantities are handled appropriately. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_8.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_8.out" for dep in ['FG', 'PG', 'DIR', 'LOC']: A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A._AIM_in['dependencies']['quantities'] = dep A.define_random_variables() # ---------------------------------------------- check random variables # QNT RV_QNT = list(A._QNT_dict.values()) QNT_theta_test, QNT_beta_test = np.array([rv.theta for rv in RV_QNT]).T QNT_theta_target = np.ones(8) * 25. QNT_beta_target = [25.0] * 4 + [0.4] * 4 assert_allclose(QNT_theta_test, QNT_theta_target, rtol=0.001) assert_allclose(QNT_beta_test, QNT_beta_target, rtol=0.001) for i in range(4): assert RV_QNT[i].distribution == 'normal' for i in range(4, 8): assert RV_QNT[i].distribution == 'lognormal' if dep == 'FG': QNT_rho_target = np.array([ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], ]) elif dep == 'PG': QNT_rho_target = np.array([ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ]) elif dep == 'DIR': QNT_rho_target = np.array([ [1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], ]) elif dep == 'LOC': QNT_rho_target = np.array([ [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], ]) QNT_rho_test = RV_QNT[0].RV_set.Rho() assert_allclose(QNT_rho_test, QNT_rho_target, atol=0.001) # --------------------------------------------------------------------- A.define_loss_model() A.calculate_damage() # -------------------------------------------- check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG # Because the correlations are enforced after truncation, the marginals # shall be unaffected by the correlation structure. Hence, the # distribution of damaged quantities within a PG shall be identical in # all dep cases. # The specified dependencies are apparent in the correlation between # damaged quantities in various PGs. DMG_check = A._DMG.describe().T mu_test = DMG_check['mean'] sig_test = DMG_check['std'] rho_test = A._DMG.corr() mu_target_1 = 25.0 + 25.0 * norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) sig_target_1 = np.sqrt(25.0 ** 2.0 * ( 1 - norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) - ( norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0))) ** 2.0)) mu_target_2 = np.exp(np.log(25.0) + 0.4 ** 2. / 2.) sig_target_2 = np.sqrt( (np.exp(0.4 ** 2.0) - 1.0) * np.exp(2 * np.log(25.0) + 0.4 ** 2.0)) assert_allclose(mu_test[:4], mu_target_1, rtol=0.05) assert_allclose(mu_test[4:], mu_target_2, rtol=0.05) assert_allclose(sig_test[:4], sig_target_1, rtol=0.05) assert_allclose(sig_test[4:], sig_target_2, rtol=0.05) assert_allclose(rho_test, QNT_rho_target, atol=0.05) # --------------------------------------------------------------------- A.calculate_losses() # ---------------------------------------------- check loss calculation DV_COST = A._DV_dict['rec_cost'] / A._DMG # After the DVs are normalized by the damaged quantities, the resulting # samples show the correlations between the DV_measure (such as # reconstruction cost) / 1 unit of damaged component. Because this # consequences are perfectly correlated among the components of a # fragility group by definition, the quadrants on the main diagonal # will follow the matrix presented below. If there are additional # correlations defined between component quantities in different # fragility groups (i.e. the off-diagonal quadrants of the rho matrix), # those will be preserved in the consequences. Therefore, the # off-diagonal quadrants need to be updated with those from QNT_rho_target # to get an appropriate rho_DV_target. rho_DV_target = np.array([ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ]) rho_DV_target[:4, 4:] = QNT_rho_target[:4, 4:] rho_DV_target[4:, :4] = QNT_rho_target[:4, 4:] assert_allclose(DV_COST.corr(), rho_DV_target, atol=0.05) # uncertainty in decision variables is controlled by the correlation # between damages P_test_PID = np.sum(DV_COST.iloc[:, 0] < 10.01) / 10000. P_test_PFA = np.sum(DV_COST.iloc[:, 4] < 10.01) / 10000. # the first component quantities follow a truncated multivariate normal # distribution mu_target_PID = mu_target_1 * 4. sig_target_PID = np.sqrt( sig_target_1 ** 2. * np.sum(QNT_rho_target[:4, :4])) mu_target_PID_b = mu_target_PID sig_target_PID_b = sig_target_PID alpha = 100. i = 0 while (np.log( np.abs(alpha / (mu_target_PID_b / sig_target_PID_b))) > 0.001) and ( i < 10): alpha = -mu_target_PID_b / sig_target_PID_b mu_target_PID_b = mu_target_PID - sig_target_PID_b * norm.pdf( alpha) / (1.0 - norm.cdf(alpha)) sig_target_PID_b = sig_target_PID / np.sqrt( (1.0 + alpha * norm.pdf(alpha) / (1.0 - norm.cdf(alpha)))) i += 1 xi = (90 - mu_target_PID_b) / sig_target_PID_b P_target_PID = 1.0 - (norm.cdf(xi) - norm.cdf(alpha)) / ( 1.0 - norm.cdf(alpha)) assert P_target_PID == pytest.approx(P_test_PID, rel=0.05) # the second component quantities follow a multivariate lognormal # distribution mu_target_PFA = mu_target_2 * 4. sig_target_PFA = np.sqrt( sig_target_2 ** 2. * np.sum(QNT_rho_target[4:, 4:])) sig_target_PFA_b = np.sqrt( np.log(sig_target_PFA ** 2.0 / mu_target_PFA ** 2.0 + 1.0)) mu_target_PFA_b = np.log(mu_target_PFA) - sig_target_PFA_b ** 2.0 / 2. xi = np.log(90) P_target_PFA = 1.0 - norm.cdf(xi, loc=mu_target_PFA_b, scale=sig_target_PFA_b) assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.05) # the same checks can be performed for reconstruction time DV_TIME = A._DV_dict['rec_time'] / A._DMG assert_allclose(DV_TIME.corr(), rho_DV_target, atol=0.05) P_test_PID = np.sum(DV_TIME.iloc[:, 0] < 0.0101) / 10000. assert P_target_PID == pytest.approx(P_test_PID, rel=0.05) P_test_PFA = np.sum(DV_TIME.iloc[:, 4] < 0.0101) / 10000. assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.05) # injuries... # Every component is damaged in every realization in this test. Once # normalized by the quantity of components, the number of injuries # shall be identical and unaffected by the correlation between # component quantities. DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = (DV_INJ_dict[0] / A._DMG).describe() DV_INJ1 = (DV_INJ_dict[1] / A._DMG).describe() assert_allclose(DV_INJ0.loc['mean', :][:4], np.ones(4) * 0.025, rtol=0.001) assert_allclose(DV_INJ0.loc['mean', :][4:], np.ones(4) * 0.1, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][:4], np.ones(4) * 0.005, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][4:], np.ones(4) * 0.02, rtol=0.001) assert_allclose(DV_INJ0.loc['std', :], np.zeros(8), atol=1e-4) assert_allclose(DV_INJ1.loc['std', :], np.zeros(8), atol=1e-4) # and for red tag... # since every component is damaged in every realization, the red tag # results should all be 1.0 assert_allclose(A._DV_dict['red_tag'], np.ones((10000, 8))) # --------------------------------------------------------------------- A.aggregate_results() # -------------------------------------------- check result aggregation S = A._SUMMARY SD = S.describe().T assert SD.loc[('inhabitants', ''), 'mean'] == 20.0 assert SD.loc[('inhabitants', ''), 'std'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'mean'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'std'] == 0.0 assert SD.loc[('red tagged', ''), 'mean'] == 1.0 assert SD.loc[('red tagged', ''), 'std'] == 0.0 assert np.corrcoef(S.loc[:, ('reconstruction', 'cost')], S.loc[:, ('reconstruction', 'time-sequential')])[ 0, 1] == pytest.approx(1.0) assert_allclose(A._DV_dict['rec_cost'].sum(axis=1), S.loc[:, ('reconstruction', 'cost')]) assert_allclose(A._DV_dict['rec_time'].sum(axis=1), S.loc[:, ('reconstruction', 'time-sequential')]) assert_allclose(A._DV_dict['rec_time'].max(axis=1), S.loc[:, ('reconstruction', 'time-parallel')]) assert_allclose(A._DV_dict['injuries'][0].sum(axis=1), S.loc[:, ('injuries', 'sev1')]) assert_allclose(A._DV_dict['injuries'][1].sum(axis=1), S.loc[:, ('injuries', 'sev2')]) def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies(dep='IND'): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in component fragilities. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ print() idx = pd.IndexSlice base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_9.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_9.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A._AIM_in['dependencies']['fragilities'] = dep A.define_random_variables() # ---------------------------------------------- check random variables RV_FF = list(A._FF_dict.values()) fr_names = np.unique([rv.name[3:12] for rv in RV_FF]) fr_keys = {} for fr_name in fr_names: fr_list = [rv.name for rv in RV_FF if fr_name in rv.name] fr_keys.update({fr_name: fr_list}) # fr_keys = [] # for key in A._RV_dict.keys(): # if 'FR' in key: # fr_keys.append(key) dimtag_target = [4 * 2 * 3, 20 * 2 * 3 * 3, 20 * 2 * 3 * 3, 20 * 2 * 3 * 3] theta_target = [[0.048, 0.096], [0.048, 0.072, 0.096], [2.9419, 5.8840, 11.7680], [2.9419, 5.8840, 11.7680]] sig_target = [[0.5, 0.25], [1.0, 0.5, 0.25], [1.0, 0.5, 0.25], [1.0, 0.5, 0.25]] if dep == 'IND': rho_target = np.zeros((24, 24)) np.fill_diagonal(rho_target, 1.0) rho_sum = 360 elif dep == 'PG': rho_target = np.ones((24, 24)) rho_sum = 360 ** 2. elif dep == 'DIR': rho_target = [ [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.]] rho_sum = (20 * 2 * 3) ** 2. * 3 elif dep == 'LOC': rho_target = [ [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.]] rho_sum = (20 * 3) ** 2. * (2 * 9) elif dep in ['ATC', 'CSG']: rho_target = [ [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]] rho_sum = (20 * 3) ** 2. * (2 * 3) elif dep == 'DS': rho_target = [ [1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]] rho_sum = 3 ** 2 * (20 * 2 * 3) for k, key in enumerate(sorted(fr_keys.keys())): RV_FF_i = [A._FF_dict[rv_i] for rv_i in fr_keys[key]] assert len(RV_FF_i) == dimtag_target[k] FF_theta_test, FF_beta_test = np.array([rv.theta for rv in RV_FF_i]).T if k == 0: FF_theta_test = pd.DataFrame( np.reshape(FF_theta_test, (12, 2))).describe() FF_beta_test = pd.DataFrame( np.reshape(FF_beta_test, (12, 2))).describe() else: FF_theta_test = pd.DataFrame( np.reshape(FF_theta_test, (120, 3))).describe() FF_beta_test = pd.DataFrame( np.reshape(FF_beta_test, (120, 3))).describe() assert_allclose(FF_theta_test.loc['mean', :].values, theta_target[k], rtol=1e-4) assert_allclose(FF_theta_test.loc['std', :].values, np.zeros(np.array(theta_target[k]).shape), atol=1e-10) assert_allclose(FF_beta_test.loc['mean', :].values, sig_target[k], rtol=1e-4) assert_allclose(FF_beta_test.loc['std', :].values, np.zeros(np.array(sig_target[k]).shape), atol=1e-10) rho_test = RV_FF_i[0].RV_set.Rho(fr_keys[fr_names[k]]) if k == 0: # we perform the detailed verification of rho for the first case # only (because the others are 360x360 matrices) assert_allclose(rho_test, rho_target) else: # for the other cases we check the number of ones in the matrix assert np.sum(rho_test) == rho_sum # RV_FR = deepcopy(A._RV_dict[key]) # assert len(RV_FR._dimension_tags) == dimtag_target[k] # # COV_test = RV_FR.COV # sig_test = np.sqrt(np.diagonal(COV_test)) # rho_test = COV_test / np.outer(sig_test, sig_test) # # if k == 0: # theta_test = pd.DataFrame( # np.reshape(RV_FR.theta, (12, 2))).describe() # sig_test = pd.DataFrame( # np.reshape(sig_test, (12, 2))).describe() # else: # theta_test = pd.DataFrame( # np.reshape(RV_FR.theta, (120, 3))).describe() # sig_test = pd.DataFrame( # np.reshape(sig_test, (120, 3))).describe() # # assert_allclose(theta_test.loc['mean', :].values, theta_target[k], # rtol=1e-4) # assert_allclose(theta_test.loc['std', :].values, # np.zeros(np.array(theta_target[k]).shape), # atol=1e-10) # # assert_allclose(sig_test.loc['mean', :].values, sig_target[k], # rtol=1e-4) # assert_allclose(sig_test.loc['std', :].values, # np.zeros(np.array(sig_target[k]).shape), atol=1e-10) # # if k == 0: # # we perform the detailed verification of rho for the first case # # only (because the others are 360x360 matrices) # assert_allclose(rho_test, rho_target) # # else: # # for the other cases we check the number of ones in the matrix # assert np.sum(rho_test) == rho_sum # --------------------------------------------------------------------- A.define_loss_model() A.calculate_damage() # -------------------------------------------- check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG DMG_check = A._DMG # start with checking the damage correlations for k in range(4): DMG_corr = DMG_check.loc[:, idx[k + 1, :, :]].corr() if k == 0: DMG_corr = DMG_corr.iloc[:8, :8] if dep in ['IND', 'ATC', 'CSG', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 1.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 1.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 1.0], [ 1.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 1.0], ]) if k == 1: DMG_corr = DMG_corr.iloc[:12, :12] if dep in ['IND', 'ATC', 'CSG', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0], ]) if k == 2: DMG_corr = DMG_corr.iloc[:20, :20] if dep in ['IND', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep in ['ATC', 'CSG']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) if k == 3: DMG_corr = DMG_corr.iloc[:20, :20] if dep in ['IND', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.0, 1.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 1.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 1.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 1.0, 0.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1], [-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1], [-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.7, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep in ['ATC', 'CSG']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) for i in range(len(DMG_corr.index)): for j in range(len(DMG_corr.columns)): ref_i = DMG_corr_ref[i, j] if ref_i != 0.0: if ref_i > 0.0: assert DMG_corr.iloc[i, j] > 0.97 * ref_i else: assert DMG_corr.iloc[i, j] < 0.0 else: assert DMG_corr.iloc[i, j] == pytest.approx(ref_i, abs=0.15) # then check the distribution of damage within each performance group EDP_list = np.array( [[[0.080000, 0.080000], [0.080000, 0.080000], [0.040000, 0.040000]], [[7.845320, 7.845320], [7.845320, 7.845320], [2.942000, 2.942000]]]) fr_keys = [] for key in A._RV_dict.keys(): if 'FR' in key: fr_keys.append(key) for k, key in enumerate(sorted(fr_keys)): # print(key) RV_FR = A._RV_dict[key] # only third of the data is unique because of the 3 stories rel_len = int(len(RV_FR._dimension_tags) / 3) COV_test = RV_FR.COV[:rel_len, :rel_len] theta_test = RV_FR.theta[:rel_len] lims = np.unique(theta_test) ndims = len(lims) if k in [2, 3]: ndims += 2 if (dep in ['DS', 'IND']) or k > 1: DMG_vals = [[[0., 5., 7.5, 12.5, 17.5, 20., 25.], [0., 25.]], [[0., 1.5, 3., 4.5, 6., 7.5, 9., 10.5, 12., 13.5, 15., 16.5, 18., 19.5, 21., 22.5, 24., 25.5, 27., 28.5, 30.0], [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.]]] else: DMG_vals = [[[0., 25.], [0., 25.]], [[0., 30.], [0., 20.]]] DMG_vals = np.array(DMG_vals) for story in [0, 1, 2]: for dir_ in [0, 1]: # print(story, dir_) idx = pd.IndexSlice DMG_check_FG = DMG_check.loc[:, idx[k + 1, :, :]] DMG_check_PG = DMG_check_FG.iloc[:, story * 2 * ndims + dir_ * ndims:story * 2 * ndims + ( dir_ + 1) * ndims] DMG_val_test = np.unique( np.around(DMG_check_PG.values * 10., decimals=0) / 10., return_counts=True) DMG_val_test = DMG_val_test[0][DMG_val_test[1] > 10] # only check at most the first 10 elements, because the # higher values have extremely low likelihood ddim = min(len(DMG_val_test), 10) DMG_val_ref = DMG_vals[np.sign(k), dir_] for v in DMG_val_test: assert v in DMG_val_ref # additional tests for mutually exclusive DS2 in FG3 if (k == 2) and (dep not in ['DS', 'IND']): DMG_tot = [[0., 30.], [0., 20.]][dir_] DMG_DS2_test = DMG_check_PG.iloc[:, [1, 2, 3]].sum( axis=1) # the proportion of each DS in DS2 shall follow the # pre-assigned weights ME_test = \ DMG_check_PG.iloc[DMG_DS2_test.values > 0].iloc[:, [1, 2, 3]].describe().T['mean'].values / DMG_tot[-1] assert_allclose(ME_test, [0.5, 0.3, 0.2], atol=0.01) # the sum of DMG with correlated CSGs shall be either 0. # or the total quantity DMG_DS2_test = np.unique( np.around(DMG_DS2_test * 10., decimals=0) / 10., return_counts=True) DMG_DS2_test = DMG_DS2_test[0][DMG_DS2_test[1] > 10] assert_allclose(DMG_DS2_test, DMG_tot, atol=0.01) # additional tests for simultaneous DS2 in FG4 if (k == 3) and (dep not in ['DS', 'IND']): DMG_tot = [30.0, 20.0][dir_] DMG_DS2_test = DMG_check_PG.iloc[:, [1, 2, 3]].sum( axis=1) # the proportion of each DS in DS2 shall follow the # pre-assigned weights considering replacement SIM_test = \ DMG_check_PG.iloc[DMG_DS2_test.values > 0].iloc[:, [1, 2, 3]].describe().T['mean'].values / DMG_tot P_rep = 0.5 * 0.7 * 0.8 SIM_ref = np.array([0.5, 0.3, 0.2]) * ( 1.0 + P_rep / (1.0 - P_rep)) assert_allclose(SIM_test, SIM_ref, atol=0.02) # the sum of DMG with correlated CSGs shall be either # 0. or more than the total quantity DMG_DS2_test = DMG_DS2_test.iloc[ DMG_DS2_test.values > 0] # Even with perfect correlation, the generated random # samples will not be identical. Hence, one of the 20 # CSGs in FG4, very rarely will belong to a different # DS than the rest. To avoid false negatives, we test # the third smallest value. assert DMG_DS2_test.sort_values().iloc[ 2] >= DMG_tot * 0.99 assert np.max(DMG_DS2_test.values) > DMG_tot # the first component has 3-1 CSGs in dir 1 and 2, # respectively if k == 0: dir_len = int(rel_len * 3 / 4) # the other components have 20-20 CSGs in dir 1 and 2, # respectively else: dir_len = int(rel_len / 2) if dir_ == 0: theta_t = theta_test[:dir_len] COV_t = COV_test[:dir_len, :dir_len] else: theta_t = theta_test[dir_len:] COV_t = COV_test[dir_len:, dir_len:] lim_ds1 = np.where(theta_t == lims[0])[0] lim_ds2 = np.where(theta_t == lims[1])[0] if k > 0: lim_ds3 = np.where(theta_t == lims[2])[0] ndim = len(theta_t) EDP = EDP_list[int(k > 1), story, dir_]*1.2 DS_ref_all = [] DS_ref_any = [] DS_test_all = [] DS_test_any = [] # DS0 DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=np.log(np.ones(ndim) * EDP), upper=np.ones(ndim) * np.inf)[0]) if k == 0: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0.], axis=0)) / 10000.) elif k == 1: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0.], axis=0)) / 10000.) else: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0., DMG_check_PG.iloc[:, 3] == 0., DMG_check_PG.iloc[:, 4] == 0.], axis=0)) / 10000.) # DS1 lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf lower_lim[lim_ds2] = np.log(EDP) upper_lim[lim_ds1] = np.log(EDP) if k > 0: lower_lim[lim_ds3] = np.log(EDP) DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[ 0]) lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf lower_lim[lim_ds2[0]] = np.log(EDP) upper_lim[lim_ds1[0]] = np.log(EDP) if k > 0: lower_lim[lim_ds3[0]] = np.log(EDP) P_any = mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0] if (dep in ['DS', 'IND']): P_any = 1.0 - (1.0 - P_any) ** len(lim_ds1) DS_ref_any.append(P_any) if k == 0: DS_test_all.append(np.sum(np.all( [DMG_check_PG.iloc[:, 0] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 1] == 0.], axis=0)) / 10000.) elif k == 1: DS_test_all.append(np.sum(np.all( [DMG_check_PG.iloc[:, 0] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0.], axis=0)) / 10000.) else: DS_test_all.append(np.sum(np.all( [DMG_check_PG.iloc[:, 0] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0., DMG_check_PG.iloc[:, 3] == 0., DMG_check_PG.iloc[:, 4] == 0.], axis=0)) / 10000.) DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 0] > 0.], axis=0)) / 10000.) # DS2 lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds2] = np.log(EDP) if k > 0: lower_lim[lim_ds3] = np.log(EDP) if k < 3: DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0]) else: DS_ref_all.append(0.0) lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds2[0]] = np.log(EDP) if k > 0: lower_lim[lim_ds3[0]] = np.log(EDP) P_any = mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0] if (dep in ['DS', 'IND']): P_any = 1.0 - (1.0 - P_any) ** len(lim_ds1) DS_ref_any.append(P_any) if k == 0: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] > DMG_val_ref[-1] - 0.1], axis=0)) / 10000.) elif k == 1: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 2] == 0.], axis=0)) / 10000.) elif k == 2: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, [1, 2, 3]].sum( axis=1) > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 4] == 0.], axis=0)) / 10000.) elif k == 3: # skip this case DS_test_all.append(0.0) if k < 2: DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 1] > 0.], axis=0)) / 10000.) else: DS_test_any.append(np.sum(np.all( [DMG_check_PG.iloc[:, [1, 2, 3]].sum(axis=1) > 0.], axis=0)) / 10000.) # DS3 if k > 0: lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds3] = np.log(EDP) DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0]) lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds3[0]] = np.log(EDP) P_any = mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0] if (dep in ['DS', 'IND']): P_any = 1.0 - (1.0 - P_any) ** len(lim_ds1) DS_ref_any.append(P_any) if k == 1: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] > DMG_val_ref[-1] - 0.1], axis=0)) / 10000.) else: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0., DMG_check_PG.iloc[:, 3] == 0., DMG_check_PG.iloc[:, 4] > DMG_val_ref[-1] - 0.1], axis=0)) / 10000.) if k == 1: DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 2] > 0.], axis=0)) / 10000.) else: DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 4] > 0.], axis=0)) / 10000.) assert_allclose(DS_ref_all, DS_test_all, atol=0.02) assert_allclose(DS_ref_any, DS_test_any, atol=0.02) # --------------------------------------------------------------------- A.calculate_losses() # ---------------------------------------------- check loss calculation # No additional uncertainty is introduced when it comes to losses in # this test. The decision variables and the damaged quantities shall # follow the same distribution and have the same correlation structure. # The damaged quantities have already been verified, so now we use them # as reference values for testing the decision variables. # COST and TIME and INJ DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = DV_INJ_dict[0] DV_INJ1 = DV_INJ_dict[1] DMG_check = A._DMG for k in range(4): # Start with checking the correlations... dmg = DMG_check.loc[:, (DMG_check != 0.0).any(axis=0)] dmg_corr = dmg.loc[:, idx[k + 1, :, :]].corr() for dv in [DV_COST, DV_TIME, DV_INJ0, DV_INJ1]: dv = dv.loc[:, (dv != 0.0).any(axis=0)] dv_corr = dv.loc[:, idx[k + 1, :, :]].corr() assert_allclose(dmg_corr.values, dv_corr.values, atol=0.001) # then check the distribution. # After normalizing with the damaged quantities all decision # variables in a given DS shall have the same value. dv = ((dv / dmg).describe().T).fillna(0.0) assert_allclose(dv['std'], np.zeros(len(dv.index)), atol=1.0) # red tags require special checks for f, fg_id in enumerate(sorted(A._FG_dict.keys())): dims = [2, 3, 5, 5][f] # take the total quantity of each performance group FG = A._FG_dict[fg_id] qnt = [] for PG in FG._performance_groups: if isinstance(PG._quantity, RandomVariable): qnt.append((PG._quantity.samples[:dims]).flatten()) else: qnt.append(np.ones(dims) * PG._quantity) qnt = np.array(qnt).flatten() # flag the samples where the damage exceeds the pre-defined limit # for red tagging dmg = DMG_check.loc[:, idx[FG._ID, :, :]] red_ref = dmg > 0.489 * qnt # collect the red tag results from the analysis red_test = A._DV_dict['red_tag'].loc[:, idx[FG._ID, :, :]] # compare red_diff = (red_ref - red_test).describe().T assert_allclose(red_diff['mean'].values, 0.) assert_allclose(red_diff['std'].values, 0.) # --------------------------------------------------------------------- A.aggregate_results() # -------------------------------------------- check result aggregation # Aggregate results are checked in detail by other tests. # Here we only focus on some simple checks to make sure the results # make sense. S = A._SUMMARY SD = S.describe().T assert SD.loc[('inhabitants', ''), 'mean'] == 10.0 assert SD.loc[('inhabitants', ''), 'std'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'mean'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'std'] == 0.0 assert_allclose(A._DV_dict['rec_cost'].sum(axis=1), S.loc[:, ('reconstruction', 'cost')]) assert_allclose(A._DV_dict['rec_time'].sum(axis=1), S.loc[:, ('reconstruction', 'time-sequential')]) assert_allclose(A._DV_dict['rec_time'].max(axis=1), S.loc[:, ('reconstruction', 'time-parallel')]) assert_allclose(A._DV_dict['injuries'][0].sum(axis=1), S.loc[:, ('injuries', 'sev1')]) assert_allclose(A._DV_dict['injuries'][1].sum(axis=1), S.loc[:, ('injuries', 'sev2')]) def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_PG(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('PG') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_DIR(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('DIR') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_LOC(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('LOC') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_ATC(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('ATC') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_CSG(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('CSG') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_DS(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('DS') def test_FEMA_P58_Assessment_DV_uncertainty_dependencies(): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in consequence functions and decision variables. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_10.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_10.out" dep_list = ['IND', 'FG', 'PG', 'DIR', 'LOC', 'DS'] for d in range(7): if d > 0: dep_COST = dep_list[[0, 1, 2, 3, 4, 5][d - 1]] dep_TIME = dep_list[[1, 2, 3, 4, 5, 0][d - 1]] dep_RED = dep_list[[2, 3, 4, 5, 0, 1][d - 1]] dep_INJ = dep_list[[3, 4, 5, 0, 1, 2][d - 1]] else: dep_COST = np.random.choice(dep_list) dep_TIME = np.random.choice(dep_list) dep_RED = np.random.choice(dep_list) dep_INJ =
np.random.choice(dep_list)
numpy.random.choice
import tkinter as tk from tkinter import ttk import numpy as np from utils import * import time class AI_algorithms: def __init__(self, root): root.title("AI algorithms") root.geometry("500x520") root.resizable(width=False, height=False) self.title_var = tk.StringVar(root) self.title_var.set("Search Simulation") title_app = tk.Label(root, textvariable=self.title_var, font=("Tahoma", 25, 'bold')) title_app.pack(side=tk.TOP, fill=tk.X) self.create_canvas(420, 420) self.add_labels() self.btn_frame = ttk.Frame(root) self.add_buttons() self.btn_frame.pack() self.start = (3, 12) self.goal = (20, 20) self.reset_arr() self.print_canvas() def add_labels(self): self.cost_var = tk.IntVar(root) self.cost_var.set(0) self.expanded_count = tk.IntVar(root) self.expanded_count.set(0) cost_lbl = tk.Label(root, text="Path Cost : ", font=("Tahoma", 10)) cost_label = tk.Label(root, textvariable=self.cost_var, font=("Tahoma", 10)) cost_lbl.pack(side=tk.LEFT, fill=tk.X) cost_label.pack(side=tk.LEFT, fill=tk.X) cexp_lbl = tk.Label(root, text="Nodes Expanded : ", font=("Tahoma", 10)) cexp_label = tk.Label(root, textvariable=self.expanded_count, font=("Tahoma", 10)) cexp_label.pack(side=tk.RIGHT, fill=tk.X) cexp_lbl.pack(side=tk.RIGHT, fill=tk.X) def fill_canvas(self, event=None): print("Fill button clicked! The value of The dropdown is : ", self.var_alg.get()) self.clear_canvas() if self.var_alg.get() == 'DFS': path = self.depthFirstSearch() elif self.var_alg.get() == 'BFS': path = self.breadthFirstSearch() elif self.var_alg.get() == 'UCS': path = self.uniformCostSearch() else: path = self.aStarSearch() self.print_canvas(path) def clear_canvas(self, event=None): self.drawing_area.create_rectangle(0, 0, self.c_width, self.c_height, fill="white") self.reset_arr() self.print_canvas() self.cost_var.set(0) self.expanded_count.set(0) print("Cleared") def create_canvas(self, width, height): self.c_width = width self.c_height = height self.drawing_area = tk.Canvas(root, width=self.c_width, height=self.c_height, bg="white") self.drawing_area.pack() def add_buttons(self): self.b_fill = ttk.Button(self.btn_frame, text="Search Goal", command=self.fill_canvas) self.b_clear = ttk.Button(self.btn_frame, text="Clear", command=self.clear_canvas) self.var_alg = tk.StringVar(root) self.var_alg.set("DFS") self.options_menu = ttk.OptionMenu(self.btn_frame, self.var_alg, "DFS", "DFS", "BFS", "UCS", "A*") self.b_fill.pack(side=tk.LEFT) self.b_clear.pack(side=tk.LEFT) self.options_menu.pack(side=tk.LEFT) def reset_arr(self): self.arr = np.copy(search_space) self.arr[self.start[0], self.start[1]] = 0 self.arr[self.goal[0], self.goal[1]] = 0 def print_canvas(self, path=[]): start_x = 20 * self.start[1] start_y = 20 * self.start[0] end_x = 20 * (self.start[1] + 1) end_y = 20 * (self.start[0] + 1) self.drawing_area.create_rectangle(start_x, start_y, end_x, end_y, fill="blue") start_x = 20 * self.goal[1] start_y = 20 * self.goal[0] end_x = 20 * (self.goal[1] + 1) end_y = 20 * (self.goal[0] + 1) self.drawing_area.create_rectangle(start_x, start_y, end_x, end_y, fill="green") if path == []: rows, cols = self.arr.shape colors_arr = ["#000000", "#002730", "#013e4c", "#01657c", "#00a1c6"] for i in range(rows): for j in range(cols): if (i, j) != self.start and (i, j) != self.goal: ind = int(self.arr[i][j]) start_x = 20 * j start_y = 20 * i end_x = 20 * (j + 1) end_y = 20 * (i + 1) self.drawing_area.create_rectangle(start_x, start_y, end_x, end_y, fill=colors_arr[ind]) for i, j in path: start_x = 20 * j + 5 start_y = 20 * i + 5 end_x = 20 * (j + 1) - 5 end_y = 20 * (i + 1) - 5 self.drawing_area.create_oval(start_x, start_y, end_x, end_y, fill="red") ##Algorithms def getStartState(self): return self.start def isGoalState(self, state): if state == self.goal: return True else: return False def getSuccessors(self, state): r, c = state suc = [] #left if c > 0: cl = c - 1 s_left = (r, cl) suc.append((s_left, [s_left], int(self.arr[r][cl]) + 1)) #right if c < 20: cr = c + 1 s_right = (r, cr) suc.append((s_right, [s_right], int(self.arr[r][cr]) + 1)) #top if r > 0: rt = r - 1 s_top = (rt, c) suc.append((s_top, [s_top], int(self.arr[rt][c]) + 1)) #bottom if r < 20: rb = r + 1 s_bot = (rb, c) suc.append((s_bot, [s_bot], int(self.arr[rb][c]) + 1)) return suc def update_visited(self, state): i, j = state start_x = 20 * j + 5 start_y = 20 * i + 5 end_x = 20 * (j + 1) - 5 end_y = 20 * (i + 1) - 5 self.drawing_area.create_oval(start_x, start_y, end_x, end_y, fill="gray") self.drawing_area.update() time.sleep(0.01) def mark_visited(self, state): r, c = state self.arr[r, c] = -1 self.update_visited(state) def depthFirstSearch(self): fringe = Stack() start = self.getStartState() fringe.push((start, [], 0)) visited = set([]) while (fringe.isEmpty() == False): state, path, cost = fringe.pop() if state not in visited: visited.add(state) if self.isGoalState(state): print(state, "Found GOAL") print(path) print(cost) self.expanded_count.set(len(visited)) self.cost_var.set(cost) return path else: for suc in self.getSuccessors(state): suc_state, suc_dir, suc_cost = suc fringe.push((suc_state, path + suc_dir, cost + suc_cost)) self.mark_visited(state) return [] def breadthFirstSearch(self): fringe = Queue() start = self.getStartState() fringe.push((start, [], 0)) visited = set([]) while (fringe.isEmpty() == False): state, path, cost = fringe.pop() if state not in visited: visited.add(state) if self.isGoalState(state): print(state, "Found GOAL") print(path) print(cost) self.expanded_count.set(len(visited)) self.cost_var.set(cost) return path else: for suc in self.getSuccessors(state): suc_state, suc_dir, suc_cost = suc fringe.push((suc_state, path + suc_dir, cost + suc_cost)) self.mark_visited(state) return [] def uniformCostSearch(self): print("Starting UCS") fringe = PriorityQueue() start = self.getStartState() fringe.push((start, [], 0), 0) visited = set([]) while(fringe.isEmpty() == False): state, path, cost = fringe.pop() if state not in visited: visited.add(state) if self.isGoalState(state): print(state, "Found GOAL") print(path) print(cost) self.expanded_count.set(len(visited)) self.cost_var.set(cost) return path else: for suc in self.getSuccessors(state): suc_state, suc_dir, suc_cost = suc fringe.push((suc_state, path + suc_dir, cost + suc_cost), cost + suc_cost) self.mark_visited(state) return [] def manhattanDist(self, state): dis =
np.abs(state[0] - self.goal[0])
numpy.abs
""" Metrics calculation utilities. Code of `detection_f1`, `object_dice` and `object_hausdorff` are adapted from https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/evaluation/evaluation_metrics_v6.zip. """ import functools import torch import numpy as np from scipy import stats from scipy.spatial.distance import directed_hausdorff from skimage.measure import label def convert_to_numpy(func): """Decorator for converting each argument to numpy array.""" @functools.wraps(func) def wrapper(*args): args = [ arg.detach().cpu().numpy() if torch.is_tensor(arg) else np.array(arg) for arg in args ] return func(*args) return wrapper def accuracy(P, G): """Classification accuracy. Arguments: P: prediction with size (B, H, W) G: ground truth tensor with the same size as P Returns: accuracy: classification accuracy """ if torch.is_tensor(P) and torch.is_tensor(G): return (P == G).float().mean().item() return (np.array(P) == np.array(G)).mean() @convert_to_numpy def detection_f1(S, G, overlap_threshold=0.5, epsilon=1e-7): """F1-score for object detection. The ground truth for each segmented object is the object in the manual annotation that has maximum overlap with that segmented object. A segmented glandular object that intersects with at least 50% of its ground truth will be considered as true positive, otherwise it will be considered as false positive. A ground truth glandular object that has no corresponding segmented object or has less than 50% of its area overlapped by its corresponding segmented object will be considered as false negative. See more on https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/evaluation/. Arguments: S: segmentation mask with shape (H, W) G: ground truth mask with the same shape as S overlap_threshold: overlap threshold for counting true positives epsilon: numerical stability term Returns: f1: detection F1 score """ S, G = label(S), label(G) num_S, num_G = S.max(), G.max() if num_S == 0 and num_G == 0: return 1 elif num_S == 0 or num_G == 0: return 0 # matrix for identifying corresponding ground truth object in G # for each segmented object in S (the 1st col contains labels of # segmented objects, the 2nd col contains corresponding ground truth # objects and the 3rd col is the true positive flags) tp_table = np.zeros((num_S, 3)) tp_table[:, 0] = np.arange(1, num_S + 1) for seg_idx in range(num_S): intersect = G[S == tp_table[seg_idx, 0]] intersect = intersect[intersect > 0] if intersect.size > 0: tp_table[seg_idx, 1] = stats.mode(intersect)[0] for seg_idx in range(num_S): if tp_table[seg_idx, 1] != 0: seg_obj = S == tp_table[seg_idx, 0] gt_obj = G == tp_table[seg_idx, 1] overlap = seg_obj & gt_obj if overlap.sum() / gt_obj.sum() > overlap_threshold: tp_table[seg_idx, 2] = 1 TP =
np.sum(tp_table[:, 2] == 1)
numpy.sum
import sys, os import numpy as np from numpy.linalg import norm from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg import pyqtgraph.opengl as gl import networkx as nx from networkx.drawing.nx_agraph import write_dot, graphviz_layout import logging import traceback import timeit import time import math from ast import literal_eval as make_tuple import platform import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D, proj3d import glob import pickle import myFunctions as mf import copy from operator import itemgetter from os.path import join import inspect from scipy.optimize import fsolve, fmin_tnc, least_squares, differential_evolution, minimize, fmin_l_bfgs_b, basinhopping import myFunctions as mf from scipy import stats class FluidNetwork(object): """ Unified framework for doing the fluid simulation. At this stage, the graph used has already been reduced, i.e., each edge represens a segment in `segmentList` and each node represents a bifurcation. Previously, each segment may be consisted of one or more edges. To reduce the previous graph, use the function `reduceGraph`. Also, for the sake of consistency, the original `segmentInfoDict` has been renamed to `edgeInfoDict`, `segmentList` to `edgeList`, but `nodeInfoDict` remains the same. Besides, the nodes and edges are now indexed by integers starting from zero for simplicity. Use the function `convertGraph` to do the conversion. So the `fundemental staff` that you need to have are: `edgeList`, `edgeInfoDict`, `nodeInfoDict`, `G`. These are necessary to all of the subsquent analysis. To perform a blood flow simulation, you need to do the following steps: 1. Get the graph and the `fundemental staff` by either creating one or loading an existing one. 2. Set c and k (used in H-W equation) for each edge by `setNetwork`. 3. Set the terminating pressures by `setTerminatingPressure`. 4. Generate H-W equations for each edge and flow conservation equations for each node by `setupFluidEquations`. 5. Solve the equations by optimization and use `computerNetworkDetail` as objective function. The fluid simulation tries to solve the network by finding a set of pressures for each node and a set of flow rates for each edges such that H-W equations and flow conservation equations are satisfied with the given set of terminating pressures. For a binary tree structure without merges, a solution is guaranteed to exist no matter what the terminating pressures look like. However, for the network with merges (e.g., the GBM network with CoW), it is possible that a solution does not exist for the given set of terminating pressures. Therefore, for these cases, we need to check the optimization result and check whether the error in each equations are within a acceptable range. Note that not all the functions in this class should be used. Some are just for experimental purposes! """ def __init__(self): self.directory = os.path.abspath(os.path.dirname(__file__)) self.edgeList = [] self.edgeIndexList = [] self.G = nx.Graph() self.rootNode = 0 self.edgeInfoDict = {} self.nodeInfoDict = {} self.nodeIndex = 0 self.edgeIndex = 0 self.spacing = 0.00040 # meter/voxel self.eqnInfoDictList = [] self.velocityPressure = [] self.velocityPressureGroundTruth = [] self.distributeFlowEqnDict = {} self.nodeInfoDictBefore = {} self.nodeInfoDictAfter = {} self.edgeInfoDictBefore = {} self.edgeInfoDictAfter = {} def generateNetwork(self, maxDepth=10, allowMerge=False): """ Generate a binary tree with random edge and node properties. Parameters ---------- maxDepth : int, optional Maximum depth of the graph (depth start from zero). allowMerge : bool, optional If True, there will be 30% change that two edges at the same depth will merge together. """ G = nx.Graph() nodeDepth, edgeDepth = 0, 0 G.add_node(0, depth=nodeDepth, depthLevel=nodeDepth, nodeIndex=self.nodeIndex, isEntryNode=True) # first node self.nodeIndex += 1 while nodeDepth <= maxDepth - 1: nodesAtCurrentDepth = [node for node in G.nodes() if G.node[node]['depth'] == nodeDepth] if len(nodesAtCurrentDepth) > 2: # Determine if merge would happen if allowMerge: mergeAtCurrentDepth = (np.random.rand() <= 0.3) # 30% probability TODO: this should be controlled by function arguments else: mergeAtCurrentDepth = False # Merge nodes if allowed if mergeAtCurrentDepth: numOfMerges = 1 # TODO: this should be controlled by function arguments nodesToMerge = np.random.choice(nodesAtCurrentDepth, 2, replace=False) newNode = self.nodeIndex newEdgeIndex1, newEdgeIndex2 = self.edgeIndex, self.edgeIndex + 1 # TODO: allow >2 edge merge? G.add_edge(nodesToMerge[0], newNode, depth=edgeDepth, segmentLevel=edgeDepth, edgeIndex=self.edgeIndex, segmentIndex=self.edgeIndex) G.add_edge(nodesToMerge[1], newNode, depth=edgeDepth, segmentLevel=edgeDepth, edgeIndex=self.edgeIndex + 1, segmentIndex=self.edgeIndex + 1) G.node[newNode]['depth'] = nodeDepth + 1 G.node[newNode]['depthLevel'] = nodeDepth + 1 G.node[newNode]['nodeIndex'] = self.nodeIndex G.node[newNode]['isEntryNode'] = False self.nodeIndex += 1 self.edgeIndex += 2 for currentNode in nodesAtCurrentDepth: numOfChildEdges = len([node for node in G[currentNode].keys() if G.node[node]['depth'] > nodeDepth]) numOfNewEdges = 2 - numOfChildEdges # TODO: allow for more child edges? for ii in range(numOfNewEdges): newNode = self.nodeIndex G.add_edge(currentNode, newNode, depth=edgeDepth, segmentLevel=edgeDepth, edgeIndex=self.edgeIndex, segmentIndex=self.edgeIndex) G.node[newNode]['depth'] = nodeDepth + 1 G.node[newNode]['depthLevel'] = nodeDepth + 1 G.node[newNode]['nodeIndex'] = self.nodeIndex G.node[newNode]['isEntryNode'] = False self.nodeIndex += 1 self.edgeIndex += 1 nodeDepth += 1 edgeDepth += 1 # Gather data edgeList = [0] * self.edgeIndex for edge in G.edges(): edgeIndex = G[edge[0]][edge[1]]['edgeIndex'] edgeList[edgeIndex] = edge nodeIndexList = [G.node[node]['nodeIndex'] for node in G.nodes()] edgeIndexList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in edgeList] nodeInfoDict, edgeInfoDict = {}, {} for node in G.nodes(): nodeInfoDict[node] = G.node[node] nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset nodeInfoDict[node]['coord'] = [] for edge in G.edges(): edgeIndex = G[edge[0]][edge[1]]['edgeIndex'] edgeInfoDict[edgeIndex] = G[edge[0]][edge[1]] edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset # Save self.G = G self.edgeList = edgeList self.nodeIndexList = nodeIndexList self.edgeIndexList = edgeIndexList self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict def loadNetwork(self, version=2, year=2013): """ Load old version of data files (that needs to be converted). """ directory = self.directory if version == 1: filename = 'basicFilesForStructureWithCoW(year={}).pkl'.format(year) elif version == 2: filename = 'basicFilesForStructureWithCoW2(year={}).pkl'.format(year) elif version == 3: filename = 'basicFilesForStructureWithCoW3(year={}).pkl'.format(year) elif version == 4: filename = 'basicFilesForStructureWithCoW4(year={}).pkl'.format(year) with open(join(directory, filename), 'rb') as f: resultDict = pickle.load(f) with open(join(directory, 'partitionInfo.pkl'), 'rb') as f: partitionInfo = pickle.load(f) with open(join(directory, 'chosenVoxelsForPartition.pkl'), 'rb') as f: chosenVoxels = pickle.load(f) ADANFolder = os.path.abspath(join(directory, '../../../../')) with open(join(ADANFolder, 'ADAN-Web/resultADANDict.pkl'), 'rb') as f: resultADANDict = pickle.load(f) resultDict['resultADANDict'] = resultADANDict resultDict['partitionInfo'] = partitionInfo resultDict['chosenVoxels'] = chosenVoxels self.loadedNetwork = resultDict def reduceGraph(self, G, segmentList, segmentIndexList): """ Reduce the graph such that the node is either terminating or bifurcating point. Parameters ---------- G : NetworkX graph The graph representation of the network. segmentList : list A list of segments in which each segment is a simple branch. segmentIndexList : list A list of segment indices referring to the segments actually be used in `segmentList`. Returns ------- DG : NetworkX graph The reduced graph (each edge refers to a segment). """ DG = nx.DiGraph() for segmentIndex in segmentIndexList: segment = segmentList[segmentIndex] head, tail, secondNode = segment[0], segment[-1], segment[1] headLevel, tailLevel = G.node[head]['depthLevel'], G.node[tail]['depthLevel'] if headLevel > tailLevel: head, tail, secondNode = tail, head, segment[-2] headLevel, tailLevel = tailLevel, headLevel DG.add_path([head, tail]) for key, value in G[head][secondNode].items(): DG[head][tail][key] = value for key, value in G.node[head].items(): DG.node[head][key] = value for key, value in G.node[tail].items(): DG.node[tail][key] = value return DG def convertNetowrk(self): """ Convert the old version of data files into the new version used here. """ resultDict = self.loadedNetwork GOld, segmentList, partitionInfo, chosenVoxels, segmentInfoDictOld, nodeInfoDictOld, resultADANDict = itemgetter('G', 'segmentList', 'partitionInfo', 'chosenVoxels', 'segmentInfoDict', 'nodeInfoDict', 'resultADANDict')(resultDict) segmentIndexList = list(segmentInfoDictOld.keys()) heartLoc = (255, 251, 26) # change as needed DG = self.reduceGraph(GOld, segmentList, segmentIndexList) G = nx.Graph() nodeInfoDict, edgeInfoDict = {}, {} nodeIndex, edgeIndex = 0, 0 maxNodeDepth = np.max([DG.node[node]['depthLevel'] for node in DG.nodes()]) for currentDepth in range(maxNodeDepth + 1): nodesAtCurrentDepth = [node for node in DG.nodes() if DG.node[node]['depthLevel'] == currentDepth] for node in nodesAtCurrentDepth: G.add_node(nodeIndex, depth=DG.node[node]['depthLevel'], nodeIndex=nodeIndex, coord=node) DG.node[node]['nodeIndexHere'] = nodeIndex if node == heartLoc: G.node[nodeIndex]['isEntryNode'] = True rootNode = nodeIndex else: G.node[nodeIndex]['isEntryNode'] = False nodeIndex += 1 for edge in DG.edges(): depth = np.min([DG.node[edge[0]]['depthLevel'], DG.node[edge[1]]['depthLevel']]) DG[edge[0]][edge[1]]['depth'] = depth maxEdgeDepth = np.max([DG[edge[0]][edge[1]]['depth'] for edge in DG.edges()]) for currentDepth in range(maxEdgeDepth + 1): edgesAtCurrentDepth = [edge for edge in DG.edges() if DG[edge[0]][edge[1]]['depth'] == currentDepth] for edge in edgesAtCurrentDepth: G.add_edge(DG.node[edge[0]]['nodeIndexHere'], DG.node[edge[1]]['nodeIndexHere'], depth=currentDepth, edgeIndex=edgeIndex) edgeIndex += 1 currentNodeIndex = nodeIndex currentEdgeIndex = edgeIndex edgeList = [[]] * edgeIndex for edge in G.edges(): edgeIndex = G[edge[0]][edge[1]]['edgeIndex'] edgeList[edgeIndex] = edge nodeIndexList = [G.node[node]['nodeIndex'] for node in G.nodes()] edgeIndexList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in edgeList] for node in DG.nodes(): nodeIndexHere = DG.node[node]['nodeIndexHere'] nodeInfoDict[nodeIndexHere] = DG.node[node] nodeInfoDict[nodeIndexHere]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset nodeInfoDict[nodeIndexHere]['coord'] = [] for edge in DG.edges(): edgeIndex = G[DG.node[edge[0]]['nodeIndexHere']][DG.node[edge[1]]['nodeIndexHere']]['edgeIndex'] segmentIndex = DG[edge[0]][edge[1]]['segmentIndex'] edgeInfoDict[edgeIndex] = DG[edge[0]][edge[1]] edgeInfoDict[edgeIndex]['length'] = DG[edge[0]][edge[1]]['pathLength'] # backward compatibility edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset # Sync between G and nodeInfoDict for node in G.nodes(): for key, value in G.node[node].items(): nodeInfoDict[node][key] = value # Save self.G = G self.edgeIndex = currentEdgeIndex self.nodeIndex = currentNodeIndex self.edgeList = edgeList self.nodeIndexList = nodeIndexList self.edgeIndexList = edgeIndexList self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict self.rootNode = rootNode def adjustNetwork(self): """ If the network changes, recheck the correspondence between branch name and edgeIndex! """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing # LICA(Pre) edgeInfoDict[0]['meanRadius'] = 3.3 / (spacing * 1000) # mm->voxel edgeInfoDict[0]['length'] = 1.5 / (spacing * 1000) # mm->voxel # LICA(Post) edgeInfoDict[3]['meanRadius'] = 3.3 / (spacing * 1000) # mm->voxel edgeInfoDict[3]['length'] = 1.5 / (spacing * 1000) # mm->voxel # RICA(Pre) edgeInfoDict[2]['meanRadius'] = 3.3 / (spacing * 1000) # mm->voxel edgeInfoDict[2]['length'] = 1.5 / (spacing * 1000) # mm->voxel # RICA(Post) edgeInfoDict[7]['meanRadius'] = 3.3 / (spacing * 1000) # mm->voxel edgeInfoDict[7]['length'] = 1.5 / (spacing * 1000) # mm->voxel # VA # edgeInfoDict[1]['meanRadius'] = 2.0 / (spacing * 1000) # mm->voxel edgeInfoDict[1]['length'] = 28 / (spacing * 1000) # mm->voxel # RPCAComm edgeInfoDict[4]['length'] = 16 / (spacing * 1000) # mm->voxel # RMCA(first segment) # edgeInfoDict[12]['length'] = 8 / (spacing * 1000) # mm->voxel # Save self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict def setNetwork(self, option=1, extraInfo=None): """ Set c and k (and possibly radius and length) for each branch """ directory = self.directory G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing # Use BraVa data to set the radius and ADAN result to set the c and k if option == 1: minSetLength, maxSetLength = 1, 70 # mm # Params used to fit radius to edgeLevel using the BraVa data. radius (mm) = a * np.exp(-b * edgeLevel) + c fitResultDict = {'LMCA': {'param': [0.5569, 0.4199, 0.469]}, 'RMCA': {'param': [0.6636, 0.3115, 0.3666]}, 'LPCA': {'param': [0.6571, 0.3252, 0.2949]}, 'RPCA': {'param': [0.7103, 0.5587, 0.3815]}, 'ACA': {'param': [0.3604, 1.0538, 0.4714]}} # new names # fitResultDict = {'LCA': {'param': [0.5569, 0.4199, 0.469]}, 'RCA': {'param': [0.6636, 0.3115, 0.3666]}, 'LACA': {'param': [0.6571, 0.3252, 0.2949]}, 'RACA': {'param': [0.7103, 0.5587, 0.3815]}, 'PCA': {'param': [0.3604, 1.0538, 0.4714]}} # old names a, b, c = fitResultDict['LMCA']['param'] for edgeIndex in edgeIndexList: edgeLevel = edgeInfoDict[edgeIndex]['depth'] radius = (a * np.exp(-b * edgeLevel) + c) / (spacing * 1000) # voxel edgeInfoDict[edgeIndex]['meanRadius'] = radius # voxel length = (np.random.rand() * (maxSetLength - minSetLength) + minSetLength) / (spacing * 1000) # voxel edgeInfoDict[edgeIndex]['pathLength'] = length # for backward compatibility edgeInfoDict[edgeIndex]['length'] = length # voxel ADANFolder = os.path.abspath(join(directory, '../../../../')) with open(join(ADANFolder, 'ADAN-Web/resultADANDict.pkl'), 'rb') as f: resultADANDict = pickle.load(f) print('resultADANDict.pkl loaded from {}'.format(ADANFolder)) slopeCRadius, interceptCRadius = resultADANDict['slopeCRadius'], resultADANDict['interceptCRadius'] radiusThresholds, CKCandidates, numOfCCategory = resultADANDict['radiusThresholds'], resultADANDict['CKCandidates'], resultADANDict['numOfCCategory'] minRadius, maxRadius = np.min(radiusThresholds), np.max(radiusThresholds) # meter slopePressureRadius, interceptPressureRadius = resultADANDict['slopePressureRadius'], resultADANDict['interceptPressureRadius'] for edgeIndex in edgeIndexList: edge = edgeList[edgeIndex] radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing if radius > minRadius and radius < maxRadius: binIndex = np.digitize([radius], radiusThresholds)[0] - 1 c, k = CKCandidates[binIndex], CKCandidates[-1] # assuming c is different for each branch and k is the same edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] = c, k else: c = np.poly1d([slopeCRadius, interceptCRadius])(radius) # extrapolate k = CKCandidates[-1] # assuming c is different for each branch and k is the same c = c if c > 0 else 0.1 edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] = c, k # Only set c and k using ADAN result elif option == 2: ADANFolder = os.path.abspath(join(directory, '../../../../')) with open(join(ADANFolder, 'ADAN-Web/resultADANDict.pkl'), 'rb') as f: resultADANDict = pickle.load(f) print('resultADANDict.pkl loaded from {}'.format(ADANFolder)) if extraInfo is not None: excludedEdgeIndex = itemgetter('excludedEdgeIndex')(extraInfo) slopeCRadius, interceptCRadius = resultADANDict['slopeCRadius'], resultADANDict['interceptCRadius'] # print('slopeCRadius={}, interceptCRadius={}'.format(slopeCRadius, interceptCRadius)) radiusThresholds, CKCandidates, numOfCCategory = resultADANDict['radiusThresholds'], resultADANDict['CKCandidates'], resultADANDict['numOfCCategory'] minRadius, maxRadius = np.min(radiusThresholds), np.max(radiusThresholds) # meter slopePressureRadius, interceptPressureRadius = resultADANDict['slopePressureRadius'], resultADANDict['interceptPressureRadius'] # if extraInfo is not None: # edgeIndexListToUse = [edgeIndex for edgeIndex in edgeIndexList if edgeIndex not in excludedEdgeIndex] # else: # edgeIndexListToUse = edgeIndexList edgeIndexListToUse = edgeIndexList for edgeIndex in edgeIndexListToUse: edge = edgeList[edgeIndex] radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing if radius > minRadius and radius < maxRadius: binIndex = np.digitize([radius], radiusThresholds)[0] - 1 c, k = CKCandidates[binIndex], CKCandidates[-1] # assuming c is different for each branch and k is the same c = np.poly1d([slopeCRadius, interceptCRadius])(radius) # extrapolate edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] = c, k else: c = np.poly1d([slopeCRadius, interceptCRadius])(radius) # extrapolate k = CKCandidates[-1] # assuming c is different for each branch and k is the same # c = c if c > 0 else 0.1 if radius * 1000 >= 1.5 and radius * 1000 <= 2.5: c = 1 else: if c < 0: c = 0.1 edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] = c, k # Save self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict def showFlowInfo(self): """ Print out flow rates for selected edges and pressure for selected nodes. """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing for edgeIndex in range(16): flow = edgeInfoDict[edgeIndex]['simulationData']['flow'] radius, length, c, k = itemgetter('meanRadius', 'length', 'c', 'k')(edgeInfoDict[edgeIndex]) if flow is not None: flow *= 10**6 # convert to cm^3/s else: flow = -1 # radius *= (spacing * 100) # convert to cm length *= (spacing * 100) # convert to cm print('Edge {}: flow={:.3f} cm^3/s, radius={:.4f} cm, length={:.4f} cm, c={:.4f}, k={:.4f}'.format(edgeIndex, flow, radius, length, c, k)) print('\n') for node in range(16): flow, pressure = itemgetter('flow', 'pressure')(nodeInfoDict[node]['simulationData']) if flow is not None: flow *= 10**6 # convert to cm^3/s else: flow = -1 if pressure is not None: pressure /= (13560*9.8/1000) # convert to mmHg else: pressure = -1 print('Node {}: flow={:.3f} cm^3/s, pressure={:.3f} mmHg'.format(node, flow, pressure)) def getFlowInfoFromDeltaPressure(self, edgeIndex, deltaPressure): """ Calculate the required flow/velocity in order to achieve the given pressure drop for the specific edge. Parameters ---------- edgeIndex : int The index of the edge. deltaPressure : float The desired pressure drop with a unit of Pascal. Returns ------- flow : float The required flow rate to achieve the desired pressure drop with a unit of cm^3/s. velocity : float The velocity in that edge corresponding to the required flow rate. """ edgeInfoDict = self.edgeInfoDict spacing = self.spacing radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing # meter length = edgeInfoDict[edgeIndex]['length'] * spacing # meter c, k = itemgetter('c', 'k')(edgeInfoDict[edgeIndex]) flow = np.power(deltaPressure * c**k * (2*radius)**4.8704 / 10.67 / length, 1/k) # m^3/s velocity = flow / (np.pi * radius**2) # m/s return flow, velocity def getDeltaPressureFromFlow(self, edgeIndex, flow): """ Calculate the required pressure drop in order to achieve the given flow for the specific edge. Parameters ---------- edgeIndex : int The index of the edge. flow : float The desired flow rate of the edge with a unit of cm^3/s. Returns ------- deltaPressure : float The required pressure drop in the edge to achieve the desired flow rate with a unit of Pascal. """ edgeInfoDict = self.edgeInfoDict spacing = self.spacing radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing # meter length = edgeInfoDict[edgeIndex]['length'] * spacing # meter c, k = itemgetter('c', 'k')(edgeInfoDict[edgeIndex]) deltaPressure = 10.67 * flow**k * length / c**k / (2*radius)**4.8704 return deltaPressure def createGroundTruth(self, seed=None, option=1): """ Manually set the velocity and pressure for all edges/nodes in order to check whether the solver is correct. Option 1: each child branch randomly takes ~1/N (with some random fluctuation) of the parent flow. Option 2: flow is split proportional to the cross sectional area of the child branches. """ directory = self.directory G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing success = False # Set argsIndex (index of pressure/velocity unknowns in the fluid simulation) argsIndex = 0 for edgeIndex in edgeIndexList: edgeInfoDict[edgeIndex]['argsIndex'] = argsIndex argsIndex += 1 for node in G.nodes(): nodeInfoDict[node]['isBifurcatingNode'] = False nodeList = [node for node in G.nodes() if node != 0 and G.degree(node) != 1] for node in nodeList: nodeInfoDict[node]['argsIndex'] = argsIndex nodeInfoDict[node]['isBifurcatingNode'] = True argsIndex += 1 minSetVelocity, maxSetVelocity = 0.01, 3 # m/s inletPressure = 13560 * 9.8 * 0.12 # Pascal inletVelocity = 1.5 # m/s inletFlow = 754/60/10**6 # m^3/s minSplitAmout, maxSplitAmout = 0.4, 0.6 maxDepth = np.max([info['depth'] for node, info in nodeInfoDict.items()]) for currentDepth in range(maxDepth): ## first deal with the nodes whose child edge merges nodesAtNextDepth = [node for node in G.nodes() if nodeInfoDict[node]['depth'] == currentDepth + 1] for nodeAtNextDepth in nodesAtNextDepth: parentNodes = [node for node in G[nodeAtNextDepth].keys() if nodeInfoDict[node]['depth'] == currentDepth] # parentNodes = [node for node in G[nodeAtNextDepth].keys() if nodeInfoDict[node]['depth'] < nodeInfoDict[nodeAtNextDepth]['depth']] if len(parentNodes) > 1: # print('Node {} merge into {}'.format(parentNodes, nodeAtNextDepth)) flowAtParentNodes = [nodeInfoDict[node]['simulationData']['flow'] for node in parentNodes] # m^3/s degreeAtParentNodes = [G.degree(node) for node in parentNodes] pressureAtParentNodes = [nodeInfoDict[node]['simulationData']['pressure'] for node in parentNodes] parentEdgeIndexList = [G[nodeAtNextDepth][node]['edgeIndex'] for node in parentNodes] parentEdgeDeltaPressureList = [self.getDeltaPressureFromFlow(edgeIndex, flow) for edgeIndex, flow in zip(parentEdgeIndexList, flowAtParentNodes)] nodeMinPressureList = [headPressure - deltaPressure for headPressure, deltaPressure in zip(pressureAtParentNodes, parentEdgeDeltaPressureList)] if degreeAtParentNodes[0] == 2 and degreeAtParentNodes[1] > 2: loc1, loc2 = 0, 1 isEdge1StraightPipe, isEdge2StraightPipe = True, False elif degreeAtParentNodes[0] > 2 and degreeAtParentNodes[1] == 2: loc1, loc2 = 1, 0 isEdge1StraightPipe, isEdge2StraightPipe = True, False elif degreeAtParentNodes[0] == 2 and degreeAtParentNodes[1] == 2: loc1, loc2 = 0, 1 isEdge1StraightPipe, isEdge2StraightPipe = True, True if nodeMinPressureList[0] != nodeMinPressureList[1]: success = False print('Error! Two straight edges cannot achieve the same end pressure') return success print('Warning! Two straight edges merge into one node') else: if nodeMinPressureList[0] > nodeMinPressureList[1]: loc1, loc2 = 0, 1 else: loc1, loc2 = 1, 0 isEdge1StraightPipe, isEdge2StraightPipe = False, False edgeIndex1, edgeIndex2 = parentEdgeIndexList[loc1], parentEdgeIndexList[loc2] parentNode1, parentNode2 = parentNodes[loc1], parentNodes[loc2] parentPressure1, parentPressure2 = pressureAtParentNodes[loc1], pressureAtParentNodes[loc2] parentFlow1, parentFlow2 = flowAtParentNodes[loc1], flowAtParentNodes[loc2] radius1, radius2 = edgeInfoDict[edgeIndex1]['meanRadius'] * spacing, edgeInfoDict[edgeIndex2]['meanRadius'] * spacing length1, length2 = edgeInfoDict[edgeIndex1]['length'] * spacing, edgeInfoDict[edgeIndex2]['length'] * spacing c1, c2 = edgeInfoDict[edgeIndex1]['c'], edgeInfoDict[edgeIndex2]['c'] k1, k2 = edgeInfoDict[edgeIndex1]['k'], edgeInfoDict[edgeIndex2]['k'] flowCounter = 0 # for the first edge maxPossibleFlow = parentFlow1 minDeltaPressure = np.max([0, pressureAtParentNodes[loc1] - pressureAtParentNodes[loc2]]) minPossibleFlow, _ = self.getFlowInfoFromDeltaPressure(parentEdgeIndexList[loc1], minDeltaPressure) if minPossibleFlow > maxPossibleFlow: success = False print('Error while merging node {} to node {}, minPossibleFlow ({}) is larger than maxPossibleFlow ({})'.format(parentNodes, nodeAtNextDepth, minPossibleFlow, maxPossibleFlow)) return success if isEdge1StraightPipe: flow1 = parentFlow1 if flow1 >= minPossibleFlow and flow1 <= maxPossibleFlow: pass else: print('Edge {} wants to use all flow={} from node {}, but possible range is [{}, {}]'.format(edgeIndex1, flow1, parentNode1, minPossibleFlow, maxPossibleFlow)) else: # flow1 = np.random.rand() * (maxPossibleFlow - minPossibleFlow) + minPossibleFlow flow1 = (maxPossibleFlow + minPossibleFlow) / 2 ## Manual manipulation !!! ## if nodeAtNextDepth == 10: if edgeIndex1 == 9: flow1 = maxPossibleFlow * 0.15 # used to be 0.3 print('Edge {} gets flow={} cm^3/s'.format(edgeIndex1, flow1*10**6)) elif edgeIndex1 == 11: flow1 = maxPossibleFlow * 0.15 # used to be 0.3 print('Edge {} gets flow={} cm^3/s'.format(edgeIndex1, flow1*10**6)) # radius8, radius9 = edgeInfoDict[8]['meanRadius'], edgeInfoDict[9]['meanRadius'] # flow9 = maxPossibleFlow * radius9**2 / (radius8**2 + radius9**2) # print('Edge {} get flow={}'.format(edgeIndex1, flow1)) velocity1 = flow1 / (np.pi * radius1**2) # m/s edgeInfoDict[edgeIndex1]['simulationData']['velocity'] = velocity1 edgeInfoDict[edgeIndex1]['simulationData']['flow'] = flow1 deltaPressure1 = 10.67 * flow1**k1 * length1 / c1**k1 / (2*radius1)**4.8704 tailPressure = parentPressure1 - deltaPressure1 # pressure at the merging node nodeInfoDict[nodeAtNextDepth]['simulationData']['pressure'] = tailPressure flowCounter += flow1 # the other edge deltaPressure2 = parentPressure2 - tailPressure flow2 = np.power(deltaPressure2 / 10.67 / length2 * c2**k2 * (2*radius2)**4.8704, 1/k2) velocity2 = flow2 / (np.pi * radius2**2) # m/s edgeInfoDict[edgeIndex2]['simulationData']['velocity'] = velocity2 edgeInfoDict[edgeIndex2]['simulationData']['flow'] = flow2 flowCounter += flow2 nodeInfoDict[nodeAtNextDepth]['simulationData']['flow'] = flowCounter if flow2 > parentFlow2: print('Node {}: the flow ({}) in other edge is larger than provided ({})'.format(nodeAtNextDepth, flow2, parentFlow2)) print('edgeIndex1={}, edgeIndex2={}, flow1={}, flow2={}'.format(edgeIndex1, edgeIndex2, flow1, flow2)) print(nodeInfoDict[1]['simulationData']['pressure']/13560/9.8*1000, nodeInfoDict[3]['simulationData']['pressure']/13560/9.8*1000, nodeInfoDict[2]['simulationData']['pressure']/13560/9.8*1000) ## Now deal with remaining nodes nodesAtCurrentDepth = [node for node in G.nodes() if nodeInfoDict[node]['depth'] == currentDepth] for currentNode in nodesAtCurrentDepth: if currentDepth == 0: nodeInfoDict[currentNode]['simulationData']['pressure'] = inletPressure nodeInfoDict[currentNode]['simulationData']['flow'] = inletFlow flowIn = inletFlow pressureIn = inletPressure # print('inletPressure={} mmHg, inletFlow={} cm^3/s, currentDepth={}'.format(inletPressure/13560/9.8*1000, inletFlow*10**6, currentDepth)) else: flowIn = nodeInfoDict[currentNode]['simulationData']['flow'] if flowIn is None: print('Node {} has flow=None, nodesAtCurrentDepth={}'.format(currentNode, nodesAtCurrentDepth)) pressureIn = nodeInfoDict[currentNode]['simulationData']['pressure'] edgeIndexAtNextDepth = [G[currentNode][neighborNode]['edgeIndex'] for neighborNode in G[currentNode].keys() if nodeInfoDict[neighborNode]['depth'] > currentDepth] edgeIndexToProcess = [edgeIndex for edgeIndex in edgeIndexAtNextDepth if edgeInfoDict[edgeIndex]['simulationData']['flow'] is None] edgeIndexCompleted = [edgeIndex for edgeIndex in edgeIndexAtNextDepth if edgeInfoDict[edgeIndex]['simulationData']['flow'] is not None] edgeCounter = len(edgeIndexToProcess) flowAvailable = nodeInfoDict[currentNode]['simulationData']['flow'] for edgeIndex in edgeIndexCompleted: flowAvailable -= edgeInfoDict[edgeIndex]['simulationData']['flow'] if flowAvailable < 0 - np.finfo(float).eps: flowIn = nodeInfoDict[currentNode]['simulationData']['flow'] flowUsed = ['Edge {}: {}'.format(edgeIndex, edgeInfoDict[edgeIndex]['simulationData']['flow']) for edgeIndex in edgeIndexCompleted] print('Error! Node {}: flowIn={}, flowUsed={}, flowAvailable={}'.format(currentNode, flowIn, flowUsed, flowAvailable)) flowAmount = [] # Random split the flow (within a range) if option == 1: while edgeCounter >= 1: if edgeCounter > 1: basePercentage = 100 / edgeCounter fluctuationPercentage = basePercentage / 3.0 actualPercentage = basePercentage - fluctuationPercentage/2 + np.random.rand() * fluctuationPercentage # actualPercentage = (np.random.rand() * 0.8 + 0.1) * 100 flow = flowAvailable * actualPercentage / 100 if flow < 0: print('Node {}: flow < 0, actualPercentage={}, flowAvailable={}'.format(currentNode, actualPercentage, flowAvailable)) flowAmount.append(flow) flowAvailable -= flow if flowAvailable < 0: print('Node {}: flowAvailable < 0, actualPercentage={}'.format(currentNode, actualPercentage)) else: flowAmount.append(flowAvailable) edgeCounter -= 1 elif option == 2: radiusList = [edgeInfoDict[edgeIndex]['meanRadius'] for edgeIndex in edgeIndexToProcess] radiusSqList = [radius**2 for radius in radiusList] sumOfRadiusSq = np.sum(radiusSqList) flowAmount = [flowAvailable * radiusSq / sumOfRadiusSq for radiusSq in radiusSqList] ## Manual manipulation !!! ### if currentNode == 0 and G.degree(currentNode) == 3: edgeIndexToProcess = [0, 2, 1] # LICA/RICA/VA inletFlow = nodeInfoDict[currentNode]['simulationData']['flow'] flowAmount = [inletFlow*0.4, inletFlow*0.4, inletFlow*0.2] # elif currentNode == 8: # edgeIndexToProcess = [16, 17] # # inletFlow = nodeInfoDict[currentNode]['simulationData']['flow'] # flowAmount = [inletFlow*0.7, inletFlow*0.3] # elif currentNode == 9: # edgeIndexToProcess = [18, 19] # # inletFlow = nodeInfoDict[currentNode]['simulationData']['flow'] # flowAmount = [inletFlow*0.7, inletFlow*0.3] for edgeIndex, flow in zip(edgeIndexToProcess, flowAmount): edge = edgeList[edgeIndex] radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing # meter velocity = flow / (np.pi * radius**2) # m/s edgeHead, edgeTail = edge[0], edge[1] if nodeInfoDict[edgeHead]['depth'] > nodeInfoDict[edgeTail]['depth']: edgeHead, edgeTail = edgeTail, edgeHead pressureHead = nodeInfoDict[edgeHead]['simulationData']['pressure'] c, k = edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] length = edgeInfoDict[edgeIndex]['length'] * spacing # meter deltaPressure = 10.67 * (velocity * np.pi * radius**2)**k * length / c**k / (2 * radius)**4.8704 # Pascal if np.isnan(deltaPressure): print('velocity={}, flow={}'.format(velocity, flow)) pressureTail = pressureHead - deltaPressure # Pascal nodeInfoDict[edgeTail]['simulationData']['pressure'] = pressureTail nodeInfoDict[edgeTail]['simulationData']['flow'] = flow # print('Node {} (head={}, edgeIndex={}), flow={}'.format(edgeTail, edgeHead, edgeIndex, flow)) edgeInfoDict[edgeIndex]['simulationData']['velocity'] = velocity edgeInfoDict[edgeIndex]['simulationData']['flow'] = flow # print('Pressure at {} = {} mmHg, currentDepth={}'.format(edgeTail, pressureTail/13560/9.8*1000, currentDepth)) # if edgeIndex ==5 or edgeIndex == 6: # print('Node {}, edgeIndex={}, flow={} cm^3/s, deltaPressure={} mmHg'.format(currentNode, edgeIndex, flow*10**6, deltaPressure/13560/9.8*1000)) velocityPressure = [0] * argsIndex for node in G.nodes(): if 'argsIndex' in nodeInfoDict[node]: argsIndex = nodeInfoDict[node]['argsIndex'] pressure = nodeInfoDict[node]['simulationData']['pressure'] velocityPressure[argsIndex] = pressure for edgeIndex in edgeIndexList: if 'argsIndex' in edgeInfoDict[edgeIndex]: argsIndex = edgeInfoDict[edgeIndex]['argsIndex'] velocity = edgeInfoDict[edgeIndex]['simulationData']['velocity'] velocityPressure[argsIndex] = velocity # Save self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict self.velocityPressure = velocityPressure # Ground truth solution self.velocityPressureGroundTruth = velocityPressure # Ground truth solution success = True return success def getVelocityPressure(self): """ Extract velocity and pressure from edgeInfoDict and nodeInfoDict. Returns ------- velocityPressure : list A list of velocities and pressures in the form of [v0, v1,..., vN, p0, p1,..., pN]. """ nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) velocityPressure = np.hstack((np.full((numOfEdges,), 0.0), np.full((numOfNodes,), 0.0))) # make sure dtype is float for node, info in nodeInfoDict.items(): if 'argsIndex' in info: argsIndex = info['argsIndex'] pressure = info['simulationData']['pressure'] velocityPressure[argsIndex] = pressure for edgeIndex, info in edgeInfoDict.items(): if 'argsIndex' in info: argsIndex = info['argsIndex'] velocity = info['simulationData']['velocity'] velocityPressure[argsIndex] = velocity return velocityPressure def getVolumePerPartition(self): """ Calculate the total volume of each compartment. Returns volumePerPartition : dict A dictionary with compartments names as keys and volumes (with a unit of mm^3) as corresponding values. """ partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} edgeInfoDict = self.edgeInfoDict spacing = self.spacing volumePerPartition = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) totalVolume = 0 for edgeIndex in visitedEdges: radius, length= itemgetter('meanRadius', 'length')(edgeInfoDict[edgeIndex]) radius = radius * spacing * 1000 # mm length = length * spacing * 1000 # mm edgeVolume = np.pi * radius**2 * length # mm^3 totalVolume += edgeVolume volumePerPartition[partitionName] = totalVolume return volumePerPartition def showTerminatingPressureAndPathLength(self): """ Check terminating pressure vs path length relationship. """ directory = self.directory G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing maxDepth = np.max([info['depth'] for node, info in nodeInfoDict.items()]) terminatingNodes = [node for node in G.nodes() if nodeInfoDict[node]['depth'] == maxDepth] terminatingPressure = [nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000 for node in terminatingNodes] # mmHg termiantingPathLength = [] for node in terminatingNodes: path = nx.shortest_path(G, self.rootNode, node) pathEdgeIndex = [G[path[ii]][path[ii+1]]['edgeIndex'] for ii in range(len(path) - 1)] pathLength = np.sum([edgeInfoDict[edgeIndex]['length'] * spacing for edgeIndex in pathEdgeIndex]) # meter termiantingPathLength.append(pathLength) fig = plt.figure(1, figsize=(15, 8)) plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) plt.plot(termiantingPathLength, terminatingPressure, 'bo') plt.xlabel('Path length (m)') plt.ylabel('Terminating pressure (mmHg)') plt.show() def setupFluidEquations(self, boundaryCondition=None): """ Programmatically stores the info to generate the conservation equations used for fluid simulation (each dict represents an equation). There are two kinds of equations: H-W equation for each edge and flow conservation equation for each node and optionally boundary conditions. For the H-W equation, the information is stored in a dictionay as: {'type': 'pressure', 'radius': radius, 'length': length, 'velocityIndex': velocityIndex, 'c': c, 'k': k, 'edgeIndex': edgeIndex} For the flow conservation equation, the information is stored as: {'type': 'flow', 'velocityInIndexList': velocityInIndexList, 'radiusInList': radiusInList, 'velocityOutIndexList': velocityOutIndexList, 'radiusOutList': radiusOutList, 'coord': nodeInfoDict[node]['coord'], 'nodeIndex': nodeInfoDict[node]['nodeIndex'], 'neighborsInEdgeIndex': neighborsIndexIn, 'neighborsOutEdgeIndex': neighborsIndexOut} For the boundary conditions (inlet or outlet velocity), the information is stored as: {'type': 'boundary', 'velocityIndex': velocityIndex, 'velocityIn': velocityIn} All of the units are SI units. The dictonaries that hold these equations are then stored in the `eqnInfoDictList`. """ directory = self.directory G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing eqnInfoDictList = [] numOfFlowEqns, numOfPressureEqns, numOfBoundaryConditionEqns = 0, 0, 0 for node in G.nodes(): if nodeInfoDict[node]['isBifurcatingNode']: neighborsIndexIn = [G[node][neighborIn]['edgeIndex'] for neighborIn in G.neighbors(node) if 'depth' in G.node[neighborIn] and G.node[neighborIn]['depth'] < G.node[node]['depth']] neighborsIndexOut = [G[node][neighborOut]['edgeIndex'] for neighborOut in G.neighbors(node) if 'depth' in G.node[neighborOut] and G.node[neighborOut]['depth'] > G.node[node]['depth']] radiusInList = [edgeInfoDict[neighborIndexIn]['meanRadius'] * spacing for neighborIndexIn in neighborsIndexIn] radiusOutList = [edgeInfoDict[neighborIndexOut]['meanRadius'] * spacing for neighborIndexOut in neighborsIndexOut] velocityInIndexList = [edgeInfoDict[neighborIndexIn]['argsIndex'] for neighborIndexIn in neighborsIndexIn] velocityOutIndexList = [edgeInfoDict[neighborIndexOut]['argsIndex'] for neighborIndexOut in neighborsIndexOut] if len(radiusInList) != 0 and len(radiusOutList) != 0: # Exclude the nodes at inlet and outlet eqnInfoDict = {'type': 'flow', 'velocityInIndexList': velocityInIndexList, 'radiusInList': radiusInList, 'velocityOutIndexList': velocityOutIndexList, 'radiusOutList': radiusOutList, 'coord': nodeInfoDict[node]['coord'], 'nodeIndex': nodeInfoDict[node]['nodeIndex'], 'neighborsInEdgeIndex': neighborsIndexIn, 'neighborsOutEdgeIndex': neighborsIndexOut} eqnInfoDictList.append(eqnInfoDict) numOfFlowEqns += 1 else: print('node={}, len(radiusInList)={}, len(radiusOutList)={}'.format(node, len(radiusInList), len(radiusOutList))) for edgeIndex in edgeIndexList: edge = edgeList[edgeIndex] radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing length = edgeInfoDict[edgeIndex]['length'] * spacing velocityIndex = edgeInfoDict[edgeIndex]['argsIndex'] c, k = edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] eqnInfoDict = {'type': 'pressure', 'radius': radius, 'length': length, 'velocityIndex': velocityIndex, 'c': c, 'k': k, 'edgeIndex': edgeIndex} if nodeInfoDict[edge[0]]['depth'] < nodeInfoDict[edge[-1]]['depth']: headNode, tailNode = edge[0], edge[-1] else: headNode, tailNode = edge[-1], edge[0] # head pressure if nodeInfoDict[headNode]['isEntryNode'] is True or G.degree(headNode) == 1: headPressure = nodeInfoDict[headNode]['simulationData']['pressure'] eqnInfoDict['headPressureInfo'] = {'pressure': headPressure} else: headPressureIndex = nodeInfoDict[headNode]['argsIndex'] headNodeIndex = nodeInfoDict[headNode]['nodeIndex'] eqnInfoDict['headPressureInfo'] = {'pressureIndex': headPressureIndex, 'nodeIndex': headNodeIndex} # tail pressure if nodeInfoDict[tailNode]['isEntryNode'] is True or G.degree(tailNode) == 1: tailPressure = nodeInfoDict[tailNode]['simulationData']['pressure'] eqnInfoDict['tailPressureInfo'] = {'pressure': tailPressure} # print('Tail node {} has pressure={} mmHg'.format(tailNode, tailPressure/13560/9.8*1000)) else: tailPressureIndex = nodeInfoDict[tailNode]['argsIndex'] tailNodeIndex = nodeInfoDict[tailNode]['nodeIndex'] eqnInfoDict['tailPressureInfo'] = {'pressureIndex': tailPressureIndex, 'nodeIndex': tailNodeIndex} eqnInfoDictList.append(eqnInfoDict) numOfPressureEqns += 1 if boundaryCondition is not None and len(boundaryCondition) != 0 and 'pressureIn' not in boundaryCondition: for boundaryNode, info in boundaryCondition.items(): edgeIndex = info['edgeIndex'] velocityIn = info['velocityIn'] edge = edgeList[edgeIndex] velocityIndex = edgeInfoDict[edgeIndex]['argsIndex'] eqnInfoDict = {'type': 'boundary', 'velocityIndex': velocityIndex, 'velocityIn': velocityIn} eqnInfoDictList.append(eqnInfoDict) numOfBoundaryConditionEqns += 1 print('There are {} flow eqns, {} pressure eqns and {} boundary condition eqns'.format(numOfFlowEqns, numOfPressureEqns, numOfBoundaryConditionEqns)) self.eqnInfoDictList = eqnInfoDictList def setupFluidEquationsMatLab(self, boundaryCondition=None): """ Programmatically stores the info to generate the conservation equations used for fluid simulation (each dict represents an equation). Note that the Python-MatLab bridge only accepts generic python types, and thus all numpy types need to be converted. """ directory = self.directory G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing eqnInfoDictList = [] numOfFlowEqns, numOfPressureEqns, numOfBoundaryConditionEqns = 0, 0, 0 for node in G.nodes(): if nodeInfoDict[node]['isBifurcatingNode']: neighborsIndexIn = [G[node][neighborIn]['edgeIndex'] for neighborIn in G.neighbors(node) if 'depth' in G.node[neighborIn] and G.node[neighborIn]['depth'] < G.node[node]['depth']] neighborsIndexOut = [G[node][neighborOut]['edgeIndex'] for neighborOut in G.neighbors(node) if 'depth' in G.node[neighborOut] and G.node[neighborOut]['depth'] > G.node[node]['depth']] radiusInList = [float(edgeInfoDict[neighborIndexIn]['meanRadius'] * spacing) for neighborIndexIn in neighborsIndexIn] radiusOutList = [float(edgeInfoDict[neighborIndexOut]['meanRadius'] * spacing) for neighborIndexOut in neighborsIndexOut] velocityInIndexList = [int(edgeInfoDict[neighborIndexIn]['argsIndex']) for neighborIndexIn in neighborsIndexIn] velocityOutIndexList = [int(edgeInfoDict[neighborIndexOut]['argsIndex']) for neighborIndexOut in neighborsIndexOut] if len(radiusInList) != 0 and len(radiusOutList) != 0: # Exclude the nodes at inlet and outlet eqnInfoDict = {'type': 'flow', 'velocityInIndexList': velocityInIndexList, 'radiusInList': radiusInList, 'velocityOutIndexList': velocityOutIndexList, 'radiusOutList': radiusOutList, 'coord': nodeInfoDict[node]['coord'], 'nodeIndex': int(nodeInfoDict[node]['nodeIndex']), 'neighborsInEdgeIndex': neighborsIndexIn, 'neighborsOutEdgeIndex': neighborsIndexOut} eqnInfoDictList.append(eqnInfoDict) numOfFlowEqns += 1 else: print('node={}, len(radiusInList)={}, len(radiusOutList)={}'.format(node, len(radiusInList), len(radiusOutList))) for edgeIndex in edgeIndexList: edge = edgeList[edgeIndex] radius = float(edgeInfoDict[edgeIndex]['meanRadius'] * spacing) length = float(edgeInfoDict[edgeIndex]['length'] * spacing) velocityIndex = int(edgeInfoDict[edgeIndex]['argsIndex']) c, k = float(edgeInfoDict[edgeIndex]['c']), float(edgeInfoDict[edgeIndex]['k']) eqnInfoDict = {'type': 'pressure', 'radius': radius, 'length': length, 'velocityIndex': velocityIndex, 'c': c, 'k': k, 'edgeIndex': int(edgeIndex)} if nodeInfoDict[edge[0]]['depth'] < nodeInfoDict[edge[-1]]['depth']: headNode, tailNode = edge[0], edge[-1] else: headNode, tailNode = edge[-1], edge[0] # head pressure if nodeInfoDict[headNode]['isEntryNode'] is True or G.degree(headNode) == 1: headPressure = float(nodeInfoDict[headNode]['simulationData']['pressure']) eqnInfoDict['headPressureInfo'] = {'pressure': headPressure} else: headPressureIndex = int(nodeInfoDict[headNode]['argsIndex']) headNodeIndex = int(nodeInfoDict[headNode]['nodeIndex']) eqnInfoDict['headPressureInfo'] = {'pressureIndex': headPressureIndex, 'nodeIndex': headNodeIndex} # tail pressure if nodeInfoDict[tailNode]['isEntryNode'] is True or G.degree(tailNode) == 1: tailPressure = float(nodeInfoDict[tailNode]['simulationData']['pressure']) eqnInfoDict['tailPressureInfo'] = {'pressure': tailPressure} else: tailPressureIndex = int(nodeInfoDict[tailNode]['argsIndex']) tailNodeIndex = int(nodeInfoDict[tailNode]['nodeIndex']) eqnInfoDict['tailPressureInfo'] = {'pressureIndex': tailPressureIndex, 'nodeIndex': tailNodeIndex} eqnInfoDictList.append(eqnInfoDict) numOfPressureEqns += 1 if boundaryCondition is not None and len(boundaryCondition) != 0 and 'pressureIn' not in boundaryCondition: for boundaryNode, info in boundaryCondition.items(): edgeIndex = int(info['edgeIndex']) velocityIn = float(info['velocityIn']) edge = edgeList[edgeIndex] velocityIndex = int(edgeInfoDict[edgeIndex]['argsIndex']) eqnInfoDict = {'type': 'boundary', 'velocityIndex': velocityIndex, 'velocityIn': velocityIn} eqnInfoDictList.append(eqnInfoDict) numOfBoundaryConditionEqns += 1 print('There are {} flow eqns, {} pressure eqns and {} boundary condition eqns'.format(numOfFlowEqns, numOfPressureEqns, numOfBoundaryConditionEqns)) self.eqnInfoDictList = eqnInfoDictList def setupEquationsForDistributeFlow(self): """ Setup equations for distributeFlowTest(). This function is unfinished. TODO The resulting file is distributeFlowEqnDict and it contains three fields: -- 'connectInfoDictList' -- It is a list of dicts and each dict represents an edge and it contains: -- 'connection' -- In the form of [headNode, edgeIndex, tailNode] -- 'edgeInfo' -- Contains subfields 'c'/'k'/'radius'/'length' -- 'mergeInfoDict' -- Each merging node is a key and the corresponding value is empty (for now) -- 'desiredTerminatingPressures' -- Each terminating node is a key and the corresponding value is the desired terminating pressure for that node """ G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList edgeList = self.edgeList spacing = self.spacing distributeFlowEqnDict = {'connectInfoDictList': [], 'mergeInfoDict': {}, 'desiredTerminatingPressures': {}} edgeDepthArray = np.array([edgeInfoDict[edgeIndex]['depth'] for edgeIndex in edgeIndexList]) edgeIndexListSorted = np.array(edgeIndexList)[edgeDepthArray.argsort()].tolist() for edgeIndex in edgeIndexListSorted: edge = edgeList[edgeIndex] headNode, tailNode = edge if nodeInfoDict[headNode]['depth'] > nodeInfoDict[tailNode]['depth']: headNode, tailNode = tailNode, headNode radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing length = edgeInfoDict[edgeIndex]['length'] * spacing c, k = edgeInfoDict[edgeIndex]['c'], edgeInfoDict[edgeIndex]['k'] distributeFlowEqnDict['connectInfoDictList'].append({'connection': [headNode, edgeIndex, tailNode], 'edgeInfo': {'radius': radius, 'length': length, 'c': c, 'k': k}}) for currentNode in G.nodes(): parentNodes = [node for node in G[currentNode].keys() if nodeInfoDict[node]['depth'] < nodeInfoDict[currentNode]['depth']] if len(parentNodes) > 1: distributeFlowEqnDict['mergeInfoDict'][currentNode] = {} for node in G.nodes(): if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0: distributeFlowEqnDict['desiredTerminatingPressures'][node] = 13560*9.8*0.12 # Pascal print(edgeIndexListSorted) print(distributeFlowEqnDict['mergeInfoDict']) # Save # self.distributeFlowEqnDict = distributeFlowEqnDict def validateFluidEquations(self, velocityPressure=None, boundaryCondition=None): """ Validate if all of the equations generated by `setupFluidEquations` are satisfied. This function will output errors for each of the equations and corresponding details. Note that the error for each equations is amplified in the same way as in the function `computeNetworkDetail`. Parameters ---------- velocityPressure : list A list of velocities and pressures in the form of [v0, v1,..., vN, p0, p1,..., pN]. """ directory = self.directory G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing eqnInfoDictList = self.eqnInfoDictList if velocityPressure is None: velocityPressure = self.velocityPressure counter = 0 pressureErrorList, flowErrorList = [], [] pressureErrorTrueList, flowErrorTrueList = [], [] for eqnInfoDict in eqnInfoDictList: eqnType = eqnInfoDict['type'] if eqnType == 'pressure': radius, length, velocityIndex, edgeIndex = itemgetter('radius', 'length', 'velocityIndex', 'edgeIndex')(eqnInfoDict) velocity = np.abs(velocityPressure[velocityIndex]) c, k = eqnInfoDict['c'], eqnInfoDict['k'] if 'pressure' in eqnInfoDict['headPressureInfo']: headPressure = eqnInfoDict['headPressureInfo']['pressure'] elif 'pressureIndex' in eqnInfoDict['headPressureInfo']: pressureIndex = eqnInfoDict['headPressureInfo']['pressureIndex'] headPressure = velocityPressure[pressureIndex] headPressureInmmHg = headPressure / 13560 / 9.8 * 1000 if 'pressure' in eqnInfoDict['tailPressureInfo']: tailPressure = eqnInfoDict['tailPressureInfo']['pressure'] elif 'pressureIndex' in eqnInfoDict['tailPressureInfo']: pressureIndex = eqnInfoDict['tailPressureInfo']['pressureIndex'] tailPressure = velocityPressure[pressureIndex] tailPressureInmmHg = tailPressure / 13560 / 9.8 * 1000 deltaPressureByNode = np.abs(headPressure - tailPressure) deltaPressureByHW = 10.67 * (velocity * np.pi * radius**2)**k * length / c**k / (2 * radius)**4.8704 error = np.abs(deltaPressureByNode - deltaPressureByHW) deltaPressureByHWInmmHg = deltaPressureByHW / 13560 / 9.8 * 1000 errorInmmHg = error / 13560 / 9.8 * 1000 pressureErrorList.append(errorInmmHg * 500) pressureErrorTrueList.append(errorInmmHg) print('error={:.4f} mmHg, headP={:.2f} mmHg, tailP={:.2f} mmHg, headP>tailP={}, deltaPByHW={:.2f} mmHg, velocity={:.3f} cm/s, radius={:.4f} cm, length={:.4f} cm, edgeIndex={}'.format(errorInmmHg, headPressureInmmHg, tailPressureInmmHg, headPressure>tailPressure, deltaPressureByHWInmmHg, velocity*100, radius*100, length*100, edgeIndex)) if headPressure <= tailPressure: counter += 1 elif eqnType == 'flow': velocityInIndexList, radiusInList = eqnInfoDict['velocityInIndexList'], eqnInfoDict['radiusInList'] velocityOutIndexList, radiusOutList = eqnInfoDict['velocityOutIndexList'], eqnInfoDict['radiusOutList'] neighborsInEdgeIndex, neighborsOutEdgeIndex = itemgetter('neighborsInEdgeIndex', 'neighborsOutEdgeIndex')(eqnInfoDict) velocityInList = [np.abs(velocityPressure[velocityIndex]) for velocityIndex in velocityInIndexList] velocityOutList = [np.abs(velocityPressure[velocityIndex]) for velocityIndex in velocityOutIndexList] flowIn = np.sum([velocity * np.pi * radius**2 for velocity, radius in zip(velocityInList, radiusInList)]) flowOut = np.sum([velocity * np.pi * radius**2 for velocity, radius in zip(velocityOutList, radiusOutList)]) error = np.abs(flowIn -flowOut) inVel = [np.round(100*vel, 4) for vel in velocityInList] inR = [np.round(100*r, 4) for r in radiusInList] inFlow = np.round(flowIn*10**6, 4) outVel = [np.round(100*vel, 4) for vel in velocityOutList] outR = [np.round(100*r, 4) for r in radiusOutList] outFlow = np.round(flowOut*10**6, 4) errorT = np.round(error*10**6, 4) coord = eqnInfoDict['coord'] flowErrorList.append(error * 10**6 * 20000) flowErrorTrueList.append(error * 10**6) print('error={} cm^3/s, inVel={} cm/s, inR={} cm, inFlow={} cm^3/s, outVel={} cm/s, outR={} cm, outFlow={} cm^3/s, coord={}'.format(errorT, inVel, inR, inFlow, outVel, outR, outFlow, coord)) elif eqnType == 'boundary': velocityIndex, velocityIn = eqnInfoDict['velocityIndex'], eqnInfoDict['velocityIn'] velocityActual = np.abs(velocityPressure[velocityIndex]) error = np.abs(velocityActual - velocityIn) print('error={}, desired inlet velocity={} cm/s, actual velocity={} cm/s'.format(error, velocityIn*100, velocityActual*100)) totalErrorList = pressureErrorList + flowErrorList totalError = norm(totalErrorList) print('There are {} flow eqns where headPressure<=tailPressure'.format(counter)) print('Pressure error: mean+-std={}+-{} mmHg, min={} mmHg, max={} mmHg'.format(np.mean(pressureErrorTrueList), np.std(pressureErrorTrueList), np.amin(pressureErrorTrueList), np.max(pressureErrorTrueList))) print('Flow error: mean+-std={}+-{} cm^3/s, min={} cm^3/s, max={} cm^3/s'.format(np.mean(flowErrorTrueList), np.std(flowErrorTrueList), np.amin(flowErrorTrueList), np.max(flowErrorTrueList))) print('Combined error (magnified): {}'.format(totalError)) def BFS(self, startNodes, boundaryNodes): """ Start from given node(s), visit other nodes at larger depth in a BFS fashion. Parameters ---------- startNodes : list A list of nodes to start with. boundaryNodes : list A list of nodes used as the boundary. Returns ------- resultDict : dict A dictionary containing the indices of visited edges and nodes. """ G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict visitedNodes, visitedEdges = [], [] for startNode in startNodes: nodesAtCurrentDepth = [startNode] while len(nodesAtCurrentDepth) != 0: nodesAtNextDepth = [] for currentNode in nodesAtCurrentDepth: visitedNodes.append(currentNode) newNodes = [node for node in G[currentNode].keys() if nodeInfoDict[currentNode]['depth'] < nodeInfoDict[node]['depth'] and node not in boundaryNodes and node not in visitedNodes] newEdges = [G[currentNode][newNode]['edgeIndex'] for newNode in newNodes] nodesAtNextDepth += newNodes visitedEdges += newEdges nodesAtCurrentDepth = nodesAtNextDepth resultDict = {'visitedNodes': visitedNodes, 'visitedEdges': visitedEdges} return resultDict def calculateVariableBounds(self): """ Calculate the pressure bound for each node and velocity bound for each branch (because pressure at child nodes cannot be higher than that of the parent node). """ G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict maxDepth = np.max([info['depth'] for node, info in nodeInfoDict.items()]) for currentDepth in range(maxDepth-1, 0, -1): nodesAtCurrentDepth = [node for node in G.nodes() if nodeInfoDict[node]['depth'] == currentDepth and G.degree(node) != 1] for nodeAtCurrentDepth in nodesAtCurrentDepth: childNodes = [node for node in G[nodeAtCurrentDepth].keys() if nodeInfoDict[node]['depth'] > currentDepth] minPressureAtChildNodes = [nodeInfoDict[node]['simulationData']['minPressure'] if 'argsIndex' in nodeInfoDict[node] else nodeInfoDict[node]['simulationData']['pressure'] for node in childNodes] nodeInfoDict[nodeAtCurrentDepth]['simulationData']['minPressure'] = np.amax(minPressureAtChildNodes) # print('minPressure for node {} is set'.format(nodeAtCurrentDepth)) # Save # self.nodeInfoDict = nodeInfoDict def perturbNetwork(self, option=1, extraInfo=None): """ Perturb the network in various ways Option=1: randomly choose {numOfEdgesToPerturb} branches and decrease the radius by {reducePercentage} Option=2: use the radius from year={perturbedYear} Option=3: radius of the edges in {partitionToPerturb} are decreased by {reducePercentage} """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing if option == 1: if extraInfo is None: numOfEdgesToPerturb = 5 reducePercentage = 30 else: numOfEdgesToPerturb, reducePercentage = itemgetter('numOfEdgesToPerturb', 'reducePercentage')(extraInfo) edgeIndexToPerturb = np.random.choice(edgeIndexList, numOfEdgesToPerturb) for edgeIndex in edgeIndexToPerturb: edgeInfoDict[edgeIndex]['meanRadius'] *= (1 - reducePercentage / 100) elif option == 2: perturbedYear, excludedEdgeIndex = itemgetter('perturbedYear', 'excludedEdgeIndex')(extraInfo) self.loadNetwork(version=4, year=perturbedYear) resultDict = self.loadedNetwork GOld, segmentList, partitionInfo, chosenVoxels, segmentInfoDictOld, nodeInfoDictOld, resultADANDict = itemgetter('G', 'segmentList', 'partitionInfo', 'chosenVoxels', 'segmentInfoDict', 'nodeInfoDict', 'resultADANDict')(resultDict) for edgeIndex in edgeIndexList: if edgeIndex not in excludedEdgeIndex: segmentIndex = edgeInfoDict[edgeIndex]['segmentIndex'] # segmentIndex is the index of the edges in the old files perturbedRadius = segmentInfoDictOld[segmentIndex]['meanRadius'] edgeInfoDict[edgeIndex]['meanRadius'] = perturbedRadius elif option == 3: partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} partitionToPerturb, reducePercentage = itemgetter('partitionToPerturb', 'reducePercentage')(extraInfo) for partitionName, info in partitionInfo.items(): if partitionName in partitionToPerturb: startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) for edgeIndex in visitedEdges: edgeInfoDict[edgeIndex]['meanRadius'] *= (1 - reducePercentage / 100) # Save self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict def perturbTerminatingPressure(self, option=1, extraInfo=None): """ Perturb the terminating pressure in various ways Option=1: pressureDecreasePerPartition = {'LMCA': 0.3, 'RMCA': -0.01, 'ACA': 0.05, 'LPCA': -0.02, 'RPCA': 0.02} Option=2: No change Option=3: All left compartments -30%, no change to all other compartments Option=4: pressureDropChangePerPartition = {'LMCA': 0.14, 'RMCA': -0.45, 'ACA': -0.26, 'LPCA': 0.095, 'RPCA': -0.44} Option=5: pressureDropChangePerPartition obtained from extraInfo """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}} if option == 1: pressureDecreasePerPartition = {'LMCA': 0.3, 'RMCA': -0.01, 'ACA': 0.05, 'LPCA': -0.02, 'RPCA': 0.02} elif option == 2: pressureDecreasePerPartition = {'LMCA': 0, 'RMCA': 0, 'ACA': 0, 'LPCA': 0, 'RPCA': 0} elif option == 3: pressureDecreasePerPartition = {'LMCA': -0.3, 'RMCA': 0, 'ACA': 0, 'LPCA': -0.3, 'RPCA': 0} elif option == 4: pressureDropChangePerPartition = {'LMCA': 0.14, 'RMCA': -0.45, 'ACA': -0.26, 'LPCA': 0.095, 'RPCA': 0.44} elif option == 5: pressureDropChangePerPartition = extraInfo['pressureDropChangePerPartition'] rootPressure = 13560*9.8*0.12 # Pa for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] # terminatingPressuresInThisPartition = [] for terminatingNode in terminatingNodesInThisPartition: if option in [1,2,3]: decreaseAmount = pressureDecreasePerPartition[partitionName] nodeInfoDict[terminatingNode]['simulationData']['pressure'] *= (1-decreaseAmount) elif option in [4, 5]: changeAmount = pressureDropChangePerPartition[partitionName] oldPressure = nodeInfoDict[terminatingNode]['simulationData']['pressure'] newPressure = rootPressure - (rootPressure - oldPressure) * (1+changeAmount) nodeInfoDict[terminatingNode]['simulationData']['pressure'] = newPressure # terminatingPressuresInThisPartition.append(np.round(nodeInfoDict[terminatingNode]['simulationData']['pressure']/13560/9.8*1000, 2)) # mmHg # terminatingPressuresInThisPartition = list(sorted(terminatingPressuresInThisPartition)) # print('Terminating pressures in {} are {} mmHg'.format(partitionName, terminatingPressuresInThisPartition)) self.nodeInfoDict = nodeInfoDict def printTerminatingPressurePerPartition(self, partitionInfo=None): """ Print out terminating pressures in each compartment. """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing if partitionInfo is None: partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}} for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingPressuresInThisPartition = [] for terminatingNode in terminatingNodesInThisPartition: terminatingPressuresInThisPartition.append(np.round(nodeInfoDict[terminatingNode]['simulationData']['pressure']/13560/9.8*1000, 2)) # mmHg terminatingPressuresInThisPartition = list(sorted(terminatingPressuresInThisPartition)) print('Terminating pressures in {} are {} mmHg'.format(partitionName, terminatingPressuresInThisPartition)) def setTerminatingPressure(self, option=1, extraInfo=None): """ Set the terminating pressure based on the terminating pressure vs path length relationship found in ADAN. Note: make sure to use the right slope!!! Option=1: all partitions use the slope from ADAN dataset Option=2: use custom slope for each partition """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing directory = self.directory ADANFolder = os.path.abspath(join(directory, '../../../../')) with open(join(ADANFolder, 'ADAN-Web/resultADANDict.pkl'), 'rb') as f: resultADANDict = pickle.load(f) print('resultADANDict.pkl loaded from {}'.format(ADANFolder)) partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10], 'pressureIn': 13560*9.8*0.115}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10], 'pressureIn': 13560*9.8*0.115}, 'LPCA': {'startNodes': [6], 'boundaryNodes': [], 'pressureIn': 13560*9.8*0.115}, 'RPCA': {'startNodes': [7], 'boundaryNodes': [], 'pressureIn': 13560*9.8*0.115}, 'ACA': {'startNodes': [10], 'boundaryNodes': [], 'pressureIn': 13560*9.8*0.115}} # Use the slope and intercept from the ADAN dataset if option == 1: slopePressurePathLength, interceptPressurePathLength = itemgetter('slopePressurePathLength', 'interceptPressurePathLength')(resultADANDict) print('slope={}, intercept={}'.format(slopePressurePathLength, interceptPressurePathLength)) fitResultPerPartition = {'LMCA': [slopePressurePathLength, interceptPressurePathLength], 'RMCA': [slopePressurePathLength, interceptPressurePathLength], 'LPCA': [slopePressurePathLength, interceptPressurePathLength], 'RPCA': [slopePressurePathLength, interceptPressurePathLength], 'ACA': [slopePressurePathLength, interceptPressurePathLength]} # Use the slope and intercept fitted from a ground truth solution elif option == 2: fitResultPerPartition = extraInfo['fitResultPerPartition'] elif option == 3: pass for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes, pressureIn = itemgetter('startNodes', 'boundaryNodes', 'pressureIn')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingPressuresInThisPartition = [] slopePressurePathLength, interceptPressurePathLength = fitResultPerPartition[partitionName] for terminatingNode in terminatingNodesInThisPartition: path = nx.shortest_path(G, startNodes[0], terminatingNode) pathEdgeIndexList = [G[path[ii]][path[ii + 1]]['edgeIndex'] for ii in range(len(path) - 1)] uniquePathEdgeIndexList = np.unique(pathEdgeIndexList) assert len(uniquePathEdgeIndexList) != 0 pathLength = np.sum([edgeInfoDict[edgeIndex]['length'] * spacing for edgeIndex in uniquePathEdgeIndexList]) # meter pressure = pressureIn + pathLength * slopePressurePathLength * 0.8 nodeInfoDict[terminatingNode]['simulationData']['pressure'] = pressure terminatingPressuresInThisPartition.append(np.round(pressure/13560/9.8*1000, 2)) # mmHg terminatingPressuresInThisPartition = list(sorted(terminatingPressuresInThisPartition)) print('Terminating pressures in {} are {} mmHg'.format(partitionName, terminatingPressuresInThisPartition)) self.nodeInfoDict = nodeInfoDict def fitTerminatingPressureToPathLength(self, showFittingResult=False, figIndex=1, isLastFigure=False): """ Extract the terminating pressures from the existing fluid solution and fit them to path length per compartment. Check the manual correction for LMCA! """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing directory = self.directory partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10], 'color': 'r'}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10], 'color': 'g'}, 'LPCA': {'startNodes': [6], 'boundaryNodes': [], 'color': 'b'}, 'RPCA': {'startNodes': [7], 'boundaryNodes': [], 'color': 'y'}, 'ACA': {'startNodes': [10], 'boundaryNodes': [], 'color': 'c'}} fitResultPerPartition = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} terminatingPressurePerPartition = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} pathLengthPerPartition = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingPressuresInThisPartition = [nodeInfoDict[node]['simulationData']['pressure'] for node in terminatingNodesInThisPartition] # Pascal pathLengthInThisPartition = [] for terminatingNode in terminatingNodesInThisPartition: path = nx.shortest_path(G, startNodes[0], terminatingNode) pathEdgeIndexList = [G[path[ii]][path[ii + 1]]['edgeIndex'] for ii in range(len(path) - 1)] uniquePathEdgeIndexList = np.unique(pathEdgeIndexList) assert len(uniquePathEdgeIndexList) != 0 pathLength = np.sum([edgeInfoDict[edgeIndex]['length'] * spacing for edgeIndex in uniquePathEdgeIndexList]) # meter pathLengthInThisPartition.append(pathLength) # Check this manual correction! # if partitionName == 'LMCA': # terminatingPressuresInThisPartition = [val for val in terminatingPressuresInThisPartition if val <= 13560*9.8*0.1] # pathLengthInThisPartition = [val1 for val1, val2 in zip(pathLengthInThisPartition, terminatingPressuresInThisPartition) if val2 <= 13560*9.8*0.1] terminatingPressurePerPartition[partitionName] = terminatingPressuresInThisPartition pathLengthPerPartition[partitionName] = pathLengthInThisPartition # slopeTerminatingPressureVSPathLength, interceptTerminatingPressureVSPathLength = np.polyfit(pathLengthInThisPartition, terminatingPressuresInThisPartition, 1) slopePressurePathLength, interceptPressurePathLength, rSqPressurePathLength, pPressurePathLength, stdErrorPressurePathLength = stats.linregress(pathLengthInThisPartition, terminatingPressuresInThisPartition) print('{}: slopePressurePathLength={} Pa/m, interceptPressurePathLength={} Pa, rSquared={}, pValue={}'.format(partitionName, slopePressurePathLength, interceptPressurePathLength, rSqPressurePathLength, pPressurePathLength)) fitResultPerPartition[partitionName] = [slopePressurePathLength, interceptPressurePathLength] if showFittingResult: fig = plt.figure(figIndex, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) ax = fig.add_subplot(1,5,1) for partitionName, info in partitionInfo.items(): terminatingPressuresInThisPartition = terminatingPressurePerPartition[partitionName] pathLengthInThisPartition = pathLengthPerPartition[partitionName] xValues = [val * 1000 for val in pathLengthInThisPartition] # mm yValues = [val / 13560 / 9.8 * 1000 for val in terminatingPressuresInThisPartition] # mmHg color = info['color'] ax.scatter(xValues, yValues, c=color, label=partitionName) ax.set_xlabel('Path length (mm)') ax.set_ylabel('Terminating pressure (mmHg)') ax.legend(prop={'size': 6}) if isLastFigure: plt.show() return fitResultPerPartition def updateNetworkWithSimulationResult(self, velocityPressure): """ Update the flow rate and pressure in `edgeInfoDict` and `nodeInfoDict` with the given `velocityPressure`. """ G = self.G edgeIndexList = self.edgeIndexList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing for node in G.nodes(): if 'argsIndex' in nodeInfoDict[node]: argsIndex = nodeInfoDict[node]['argsIndex'] nodeInfoDict[node]['simulationData']['pressure'] = velocityPressure[argsIndex] for edgeIndex in edgeIndexList: if 'argsIndex' in edgeInfoDict[edgeIndex]: argsIndex = edgeInfoDict[edgeIndex]['argsIndex'] radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing # meter velocity = velocityPressure[argsIndex] # m/s flow = velocity * np.pi * radius**2 edgeInfoDict[edgeIndex]['simulationData']['velocity'] = velocity edgeInfoDict[edgeIndex]['simulationData']['flow'] = flow # Save self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict def loadFluidResult(self, loadFileName, return_ResultDict=False): """ Load the saved fluid simulation result. For use with GBMTest() """ directory = self.directory loadFolderPath = join(directory, 'fluidSimulationResult') # loadFileName = 'fluidSimulationResult(referenceYear={}, perturbedYear={}).pkl'.format(resultDict['referenceYear']['year'], resultDict['perturbedYear']['year']) with open(join(loadFolderPath, loadFileName), 'rb') as f: resultDict = pickle.load(f) print('{} loaded from {}'.format(loadFileName, loadFolderPath)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList nodeInfoDictPerturbed, edgeInfoDictPerturbed = itemgetter('nodeInfoDict', 'edgeInfoDict')(resultDict['perturbedYear']) numOfNodes = len([node for node in nodeInfoDictPerturbed if 'argsIndex' in nodeInfoDictPerturbed[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDictPerturbed[edgeIndex]]) velocityPressurePerturbed = [0] * (numOfNodes + numOfEdges) for node in G.nodes(): info = nodeInfoDictPerturbed[node] if 'argsIndex' in info: argsIndex = info['argsIndex'] pressure = info['simulationData']['pressure'] velocityPressurePerturbed[argsIndex] = pressure for edgeIndex in edgeIndexList: info = edgeInfoDictPerturbed[edgeIndex] if 'argsIndex' in info: argsIndex = info['argsIndex'] velocity = info['simulationData']['velocity'] velocityPressurePerturbed[argsIndex] = velocity if return_ResultDict is False: return nodeInfoDictPerturbed, edgeInfoDictPerturbed, velocityPressurePerturbed else: return nodeInfoDictPerturbed, edgeInfoDictPerturbed, velocityPressurePerturbed, resultDict def loadFluidResult2(self, loadFileName): """ Load the saved fluid simulation result. For use with computeNetworkTest() """ directory = self.directory loadFolderPath = join(directory, 'fluidSimulationResultRandomNetwork') # loadFileName = 'fluidSimulationResult(referenceYear={}, perturbedYear={}).pkl'.format(resultDict['referenceYear']['year'], resultDict['perturbedYear']['year']) with open(join(loadFolderPath, loadFileName), 'rb') as f: resultDict = pickle.load(f) print('{} loaded from {}'.format(loadFileName, loadFolderPath)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList nodeInfoDictPerturbed, edgeInfoDictPerturbed = itemgetter('nodeInfoDict', 'edgeInfoDict')(resultDict['perturbedYear']) numOfNodes = len([node for node in nodeInfoDictPerturbed if 'argsIndex' in nodeInfoDictPerturbed[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDictPerturbed[edgeIndex]]) velocityPressurePerturbed = [0] * (numOfNodes + numOfEdges) for node in G.nodes(): info = nodeInfoDictPerturbed[node] if 'argsIndex' in info: argsIndex = info['argsIndex'] pressure = info['simulationData']['pressure'] velocityPressurePerturbed[argsIndex] = pressure for edgeIndex in edgeIndexList: info = edgeInfoDictPerturbed[edgeIndex] if 'argsIndex' in info: argsIndex = info['argsIndex'] velocity = info['simulationData']['velocity'] velocityPressurePerturbed[argsIndex] = velocity return nodeInfoDictPerturbed, edgeInfoDictPerturbed, velocityPressurePerturbed def GBMTest(self, saveResult=False): """ Create a GBM network with radius following the BraVa distribution, generate a ground truth solution, then perturb the network in a particular way while keeping the terminating pressures unchanged, then try to solve the network. """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name resultDict = {'referenceYear': {}, 'perturbedYear': {}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,12]} # self.perturbNetwork(option=2, extraInfo=extraInfo) # self.setNetwork(option=2) success = self.createGroundTruth() self.showFlowInfo() if not success: return G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing edgeNameDict = {0: 'LICA', 3: 'LICA', 2: 'RICA', 7: 'RICA', 1: 'VA', 4: 'RPCA\nComm', 8: 'LMCA', 9: 'LM', 11: 'RM', 10: 'RMCA', 5: 'LPCA', 6: 'RPCA', 20: 'ACA'} # nodeLabelDict = {node: G.node[node]['nodeIndex'] for node in G.nodes()} # nodeIndex # nodeLabelDict = {node: G.node[node]['depth'] for node in G.nodes()} # nodeDepth nodeLabelDict = {} # None # nodeValueList = [G.node[node]['nodeIndex'] for node in G.nodes()] # nodeIndex # nodeValueList = [G.node[node]['depth'] for node in G.nodes()] # nodeDepth nodeValueList = [0 for node in G.nodes()] # None # edgeLabelDict = {edge: G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()} # edgeIndex # edgeLabelDict = {edge: G[edge[0]][edge[1]]['depth'] for edge in G.edges()} # edgeDepth # edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['meanRadius']*spacing*1000, 2) for edge in G.edges()} # edge radius edgeLabelDict = {edge: edgeNameDict[G[edge[0]][edge[1]]['edgeIndex']] if G[edge[0]][edge[1]]['edgeIndex'] in edgeNameDict else '' for edge in G.edges()} # edge name # edgeValueList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()] # edgeIndex # edgeValueList = [G[edge[0]][edge[1]]['depth'] for edge in G.edges()] # edgeDepth # edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['meanRadius']*spacing*1000, 2) for edge in G.edges()] # edgeIndex edgeValueList = [0 for edge in G.edges()] # None infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': [], 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': [], 'figTitle': 'Major branch name'} self.plotNetwork(infoDict, figIndex=2, isLastFigure=True) return # print(G.edges(data=True)) # nodeLabelDict = {node: G.node[node]['depth'] for node in G.nodes()} # nodeLevel # nodeLabelDict = {node: G.node[node]['nodeIndex'] for node in G.nodes()} # nodeIndex nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [G.node[node]['depth'] for node in G.nodes()] # nodeLevel # nodeValueList = [G.node[node]['nodeIndex'] for node in G.nodes()] # nodeIndex nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: G[edge[0]][edge[1]]['depth'] for edge in G.edges()} # edgeLevel # edgeLabelDict = {edge: G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()} # edgeIndex edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [G[edge[0]][edge[1]]['depth'] for edge in G.edges()] # edgeLevel # edgeValueList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()] # edgeIndex # edgeValueList = [edgeInfoDict[edgeIndex]['meanRadius'] for edgeIndex in edgeIndexList] # meanRadius edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node depth', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge depth', 'figTitle': 'GBM Reference'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) resultDict['referenceYear'] = {'year': 'BraVa', 'nodeInfoDict': nodeInfoDict, 'edgeInfoDict': edgeInfoDict, 'G': G} ## Solve the system with perturbed network properties edgeIndexList = self.edgeIndexList # Manually perturb the network # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,12]} # self.perturbNetwork(option=2, extraInfo=extraInfo) # self.setNetwork(option=2) # self.showFlowInfo() # computeNetworkDetailExtraInfo = None # Load previous optimization result # loadFileName = 'fluidSimulationResult3(referenceYear=BraVa, perturbedYear=2013).pkl' nodeInfoDictPerturbed, edgeInfoDictPerturbed, velocityPressurePerturbed = self.loadFluidResult(loadFileName) velocityPressureInit = velocityPressurePerturbed self.nodeInfoDict = nodeInfoDictPerturbed self.edgeInfoDict = edgeInfoDictPerturbed computeNetworkDetailExtraInfo = {'excludedEdgeIndex': [0,1,2,3,4,5,6,7,10,11,12,13]} numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node self.calculateVariableBounds() for node in G.nodes(): if 'argsIndex' in nodeInfoDict[node]: argsIndex = self.nodeInfoDict[node]['argsIndex'] minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] boundsVelocityPressure[argsIndex][0] = minPressure boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # least square optimization # # self.setupFluidEquations() # eqnInfoDictList = self.eqnInfoDictList # optResult = least_squares(computeNetworkDetail, velocityPressureInit, args=(eqnInfoDictList, fluidMethod), bounds=boundsVelocityPressure, ftol=1e-9, xtol=1e-9) # velocityPressure = np.abs(optResult.x) # cost = optResult.cost # message = optResult.message # differential evolution, bounds in (min, max) pair form # # self.setupFluidEquations() # eqnInfoDictList = self.eqnInfoDictList # errorNorm = 2 # optResult = differential_evolution(computeNetworkDetail, args=(eqnInfoDictList, fluidMethod, errorNorm), bounds=boundsVelocityPressure, maxiter=2000, polish=True, disp=True) # velocityPressure = np.abs(optResult.x) # cost = optResult.fun # message = optResult.message # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=100, stepsize=50, interval=5, niter_success=10, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) velocityPressureGroundTruth = self.velocityPressureGroundTruth self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) print(list(zip(velocityPressureGroundTruth, velocityPressure))) self.updateNetworkWithSimulationResult(velocityPressure) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'GBM {}'.format(extraInfo['perturbedYear'])} self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) resultDict['perturbedYear'] = {'year': 2013, 'nodeInfoDict': nodeInfoDict, 'edgeInfoDict': edgeInfoDict, 'G': G} if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResult(referenceYear={}, perturbedYear={}).pkl'.format(resultDict['referenceYear']['year'], resultDict['perturbedYear']['year']) with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) def GBMTest2(self, perturbTerminatingPressureOption=1, saveResult=False): """ Perturb the terminating pressure in a specific way and check if the new system could be solved. """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name resultDict = {'referenceYear': {}, 'perturbedYear': {}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) success = self.createGroundTruth(option=2) self.printTerminatingPressurePerPartition() # self.showFlowInfo() if not success: return G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing # nodeLabelDict = {node: G.node[node]['depth'] for node in G.nodes()} # nodeLevel # nodeLabelDict = {node: G.node[node]['nodeIndex'] for node in G.nodes()} # nodeIndex nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [G.node[node]['depth'] for node in G.nodes()] # nodeLevel # nodeValueList = [G.node[node]['nodeIndex'] for node in G.nodes()] # nodeIndex nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: G[edge[0]][edge[1]]['depth'] for edge in G.edges()} # edgeLevel # edgeLabelDict = {edge: G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()} # edgeIndex edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [G[edge[0]][edge[1]]['depth'] for edge in G.edges()] # edgeLevel # edgeValueList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()] # edgeIndex # edgeValueList = [edgeInfoDict[edgeIndex]['meanRadius'] for edgeIndex in edgeIndexList] # meanRadius edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node depth', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge depth', 'figTitle': 'GBM Reference'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) resultDict['referenceYear'] = {'year': 'BraVa', 'nodeInfoDict': copy.deepcopy(nodeInfoDict), 'edgeInfoDict': copy.deepcopy(edgeInfoDict), 'G': copy.deepcopy(G)} ## Solve the system with perturbed network properties edgeIndexList = self.edgeIndexList # Manually perturb the network # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} # perturbTerminatingPressureOption=2 # perturbTerminatingPressureOption = 1 self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) self.perturbTerminatingPressure(option=perturbTerminatingPressureOption) self.printTerminatingPressurePerPartition() # self.showFlowInfo() # computeNetworkDetailExtraInfo = None computeNetworkDetailExtraInfo = None numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node # self.calculateVariableBounds() # for node in G.nodes(): # if 'argsIndex' in nodeInfoDict[node]: # argsIndex = self.nodeInfoDict[node]['argsIndex'] # minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] # boundsVelocityPressure[argsIndex][0] = minPressure # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=1000, stepsize=500, interval=5, niter_success=15, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) velocityPressureGroundTruth = self.velocityPressureGroundTruth self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) print(list(zip(velocityPressureGroundTruth, velocityPressure))) self.updateNetworkWithSimulationResult(velocityPressure) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) # GBM_BraVa_Reference flow_perturbTerminatingPressureOption=4_GBMTest2 # GBM_2013_Solved flow_perturbTerminatingPressureOption=4_GBMTest2 G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'GBM {}, TPOption={}'.format(extraInfo['perturbedYear'], perturbTerminatingPressureOption)} # TP->terminating pressure self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) resultDict['perturbedYear'] = {'year': 2013, 'nodeInfoDict': copy.deepcopy(nodeInfoDict), 'edgeInfoDict': copy.deepcopy(edgeInfoDict), 'G': copy.deepcopy(G), 'velocityPressure': copy.deepcopy(velocityPressure)} if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResultGBMTest2(referenceYear={}, perturbedYear={}, perturbTerminatingPressureOption={}).pkl'.format(resultDict['referenceYear']['year'], resultDict['perturbedYear']['year'], perturbTerminatingPressureOption) with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) def GBMTest3(self, perturbTerminatingPressureOption=1, saveResult=False): """ Test the solver flowResult_referenceYear(BraVa)_groundTruthOption=1_GBMTest3 flowResult_solvedYear(BraVa)_groundTruthOption=1_GBMTest3 flowResult_referenceYear(BraVa)_groundTruthOption=2_GBMTest3 flowResult_solvedYear(BraVa)_groundTruthOption=2_GBMTest3 """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name resultDict = {'referenceYear': {}, 'perturbedYear': {}, 'solvedYear': {}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) success = self.createGroundTruth(option=2) # self.showFlowInfo() if not success: return G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing # nodeLabelDict = {node: G.node[node]['depth'] for node in G.nodes()} # nodeLevel # nodeLabelDict = {node: G.node[node]['nodeIndex'] for node in G.nodes()} # nodeIndex nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [G.node[node]['depth'] for node in G.nodes()] # nodeLevel # nodeValueList = [G.node[node]['nodeIndex'] for node in G.nodes()] # nodeIndex nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: G[edge[0]][edge[1]]['depth'] for edge in G.edges()} # edgeLevel # edgeLabelDict = {edge: G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()} # edgeIndex edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [G[edge[0]][edge[1]]['depth'] for edge in G.edges()] # edgeLevel # edgeValueList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()] # edgeIndex # edgeValueList = [edgeInfoDict[edgeIndex]['meanRadius'] for edgeIndex in edgeIndexList] # meanRadius edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node depth', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge depth', 'figTitle': 'GBM Reference'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) resultDict['referenceYear'] = {'year': 'BraVa', 'nodeInfoDict': copy.deepcopy(nodeInfoDict), 'edgeInfoDict': copy.deepcopy(edgeInfoDict), 'G': copy.deepcopy(G)} ## Solve the system with perturbed network properties edgeIndexList = self.edgeIndexList # Manually perturb the network # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} # perturbTerminatingPressureOption = 1 # self.perturbNetwork(option=2, extraInfo=extraInfo) # self.setNetwork(option=2) # self.perturbTerminatingPressure(option=perturbTerminatingPressureOption) # self.showFlowInfo() # computeNetworkDetailExtraInfo = None # computeNetworkDetailExtraInfo = {'excludedEdgeIndex': [0,1,2,3,4,5,6,7,10,11,12,13]} computeNetworkDetailExtraInfo = None numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) # velocityPressureInit = self.getVelocityPressure() # Get velocityPressure from ground truth solution velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node # self.calculateVariableBounds() # for node in G.nodes(): # if 'argsIndex' in nodeInfoDict[node]: # argsIndex = self.nodeInfoDict[node]['argsIndex'] # minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] # boundsVelocityPressure[argsIndex][0] = minPressure # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # computeNetworkDetail(velocityPressureInit, eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo) # self.validateFluidEquations(velocityPressure=velocityPressureInit) # print(list(zip(self.velocityPressureGroundTruth, velocityPressureInit))) # return # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=1000, stepsize=500, interval=5, niter_success=10, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) velocityPressureGroundTruth = self.velocityPressureGroundTruth self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) print(list(zip(velocityPressureGroundTruth, velocityPressure))) self.updateNetworkWithSimulationResult(velocityPressure) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'GBM Solved'} self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) resultDict['solvedYear'] = {'year': 'BraVa', 'nodeInfoDict': copy.deepcopy(nodeInfoDict), 'edgeInfoDict': copy.deepcopy(edgeInfoDict), 'G': copy.deepcopy(G), 'velocityPressure': copy.deepcopy(velocityPressure)} if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResultGBMTest3(referenceYear={}, solvedYear={}, groundTruthOption=2).pkl'.format(resultDict['referenceYear']['year'], resultDict['solvedYear']['year']) with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) def GBMTest4(self, perturbNetworkOption=1, saveResult=False): """ Perturb the radius in a specific way, set the TP using path length relationship and solve the network Option=1: all LMCA edge radius decrease by 10% """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name resultDict = {'referenceYear': {}, 'perturbedYear': {}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() extraInfo = {'partitionToPerturb': ['LMCA'], 'reducePercentage': 10} self.perturbNetwork(option=perturbNetworkOption, extraInfo=extraInfo) self.setNetwork(option=2) self.createGroundTruth(option=2) self.setTerminatingPressure(option=1, extraInfo=None) computeNetworkDetailExtraInfo = None nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node # self.calculateVariableBounds() # for node in G.nodes(): # if 'argsIndex' in nodeInfoDict[node]: # argsIndex = self.nodeInfoDict[node]['argsIndex'] # minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] # boundsVelocityPressure[argsIndex][0] = minPressure # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=1000, stepsize=500, interval=5, niter_success=15, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) self.updateNetworkWithSimulationResult(velocityPressure) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'GBM BraVa, perturbNetworkOption={}'.format(perturbNetworkOption)} self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) resultDict['solvedYear'] = {'year': 'BraVa', 'nodeInfoDict': copy.deepcopy(nodeInfoDict), 'edgeInfoDict': copy.deepcopy(edgeInfoDict), 'G': copy.deepcopy(G), 'velocityPressure': copy.deepcopy(velocityPressure)} if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResultGBMTest4(solvedYear=BraVa, perturbNetworkOption={}).pkl'.format(perturbNetworkOption) with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) def GBMTest5(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, change the terminating pressure based on the volume change of the compartment. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) Saved Result: fluidSimulationResult_GBMTest5_Timestep={}_v1.pkl: everything normal """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) # just to get nodeIndex and edgeIndex and isBifurcatingNode volumePerPartitionGroundTruth = self.getVolumePerPartition() print('Ground truth:') self.printTerminatingPressurePerPartition() edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict maxTimeStep = numOfTimeSteps # fitResultPerPartition = self.fitTerminatingPressureToPathLength(showFittingResult=True, figIndex=2, isLastFigure=True) fitResultPerPartition = self.fitTerminatingPressureToPathLength() # Start from T1 because T0 is used as a reference case (but still solve T0 just to make a record) for currentTimeStep in range(4, 5): print('##### currentTimeStep={} #####'.format(currentTimeStep)) radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] self.updateEdgeRadius(radiusList) volumePerPartition = self.getVolumePerPartition() pressureDropChangePerPartition = {} for partitionName, volume in volumePerPartition.items(): volumeGroundTruth = volumePerPartitionGroundTruth[partitionName] volumeChange = (volume - volumeGroundTruth) / volumeGroundTruth pressureDropChangePerPartition[partitionName] = -volumeChange extraInfo = {'pressureDropChangePerPartition': pressureDropChangePerPartition} self.perturbTerminatingPressure(option=5, extraInfo=extraInfo) self.printTerminatingPressurePerPartition() computeNetworkDetailExtraInfo = None numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node # self.calculateVariableBounds() # for node in G.nodes(): # if 'argsIndex' in nodeInfoDict[node]: # argsIndex = self.nodeInfoDict[node]['argsIndex'] # minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] # boundsVelocityPressure[argsIndex][0] = minPressure # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=1000, stepsize=500, interval=5, niter_success=15, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResult_GBMTest5_Timestep={}_v1.pkl'.format(currentTimeStep) resultDict = {'G': copy.deepcopy(self.G), 'nodeInfoDict': copy.deepcopy(self.nodeInfoDict), 'edgeInfoDict': copy.deepcopy(self.edgeInfoDict), 'velocityPressure': copy.deepcopy(velocityPressure)} with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset def GBMTest5b(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, TODO !!! numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) Saved Result: fluidSimulationResultTest6_Timestep={}_v1.pkl: everything normal """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) # just to get nodeIndex and edgeIndex and isBifurcatingNode volumePerPartitionGroundTruth = self.getVolumePerPartition() print('Ground truth:') self.printTerminatingPressurePerPartition() edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict maxTimeStep = numOfTimeSteps # fitResultPerPartition = self.fitTerminatingPressureToPathLength(showFittingResult=True, figIndex=2, isLastFigure=True) fitResultPerPartition = self.fitTerminatingPressureToPathLength() # Start from T1 because T0 is used as a reference case (but still solve T0 just to make a record) for currentTimeStep in range(0, 5): print('##### currentTimeStep={} #####'.format(currentTimeStep)) radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] self.updateEdgeRadius(radiusList) volumePerPartition = self.getVolumePerPartition() pressureDropChangePerPartition = {} for partitionName, volume in volumePerPartition.items(): volumeGroundTruth = volumePerPartitionGroundTruth[partitionName] volumeChange = (volume - volumeGroundTruth) / volumeGroundTruth pressureDropChangePerPartition[partitionName] = -volumeChange print(pressureDropChangePerPartition) def GBMTest6(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Exactly the same as GBMTest5, tweaked the solver setting a little, trying to see if results can be improved. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) Saved Result: fluidSimulationResult_GBMTest6_Timestep={}_v1.pkl: everything normal """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) # just to get nodeIndex and edgeIndex and isBifurcatingNode volumePerPartitionGroundTruth = self.getVolumePerPartition() print('Ground truth:') self.printTerminatingPressurePerPartition() edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict maxTimeStep = numOfTimeSteps # fitResultPerPartition = self.fitTerminatingPressureToPathLength(showFittingResult=True, figIndex=2, isLastFigure=True) fitResultPerPartition = self.fitTerminatingPressureToPathLength() # Start from T1 because T0 is used as a reference case (but still solve T0 just to make a record) for currentTimeStep in range(0, 5): print('##### currentTimeStep={} #####'.format(currentTimeStep)) radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] self.updateEdgeRadius(radiusList) volumePerPartition = self.getVolumePerPartition() pressureDropChangePerPartition = {} for partitionName, volume in volumePerPartition.items(): volumeGroundTruth = volumePerPartitionGroundTruth[partitionName] volumeChange = (volume - volumeGroundTruth) / volumeGroundTruth pressureDropChangePerPartition[partitionName] = -volumeChange extraInfo = {'pressureDropChangePerPartition': pressureDropChangePerPartition} self.perturbTerminatingPressure(option=5, extraInfo=extraInfo) self.printTerminatingPressurePerPartition() computeNetworkDetailExtraInfo = None numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node # self.calculateVariableBounds() # for node in G.nodes(): # if 'argsIndex' in nodeInfoDict[node]: # argsIndex = self.nodeInfoDict[node]['argsIndex'] # minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] # boundsVelocityPressure[argsIndex][0] = minPressure # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=2000, stepsize=1000, interval=5, niter_success=16, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResult_GBMTest6_Timestep={}_v1.pkl'.format(currentTimeStep) resultDict = {'G': copy.deepcopy(self.G), 'nodeInfoDict': copy.deepcopy(self.nodeInfoDict), 'edgeInfoDict': copy.deepcopy(self.edgeInfoDict), 'velocityPressure': copy.deepcopy(velocityPressure)} with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) def computeNetworkTest(self, saveResult=False): """ Check whether the solve can correctly solve a system by creating a ground truth model first and comparing the simulation result with it """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name directory = self.directory resultDict = {'reference': {}, 'perturbed': {}} self.generateNetwork(maxDepth=5, allowMerge=False) self.setNetwork(option=1) success = False self.createGroundTruth() G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'Ground truth'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) # self.showTerminatingPressureAndPathLength() resultDict['reference'] = {'G': G, 'nodeInfoDict': nodeInfoDict, 'edgeInfoDict': edgeInfoDict} G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that in generateNetwork()! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node self.calculateVariableBounds() for node in G.nodes(): if 'argsIndex' in nodeInfoDict[node]: argsIndex = nodeInfoDict[node]['argsIndex'] minPressure = nodeInfoDict[node]['simulationData']['minPressure'] boundsVelocityPressure[argsIndex][0] = minPressure boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' ## intensionally perturb the inlet/terminating pressure away from ground truth to see how solver reacts # self.nodeInfoDict[0]['simulationData']['pressure'] = 13560*9.8*0.12*(1-np.random.rand()*0.1) # perturb inlet pressure ## perturb terminating pressure perturbPercent = 0.1 for node in G.nodes(): if G.degree(node) == 1: self.nodeInfoDict[node]['simulationData']['pressure'] *= (np.random.rand() * perturbPercent + 1 - perturbPercent / 2) ## Perturb radius # extraInfo = {'numOfEdgesToPerturb': 10, 'reducePercentage': 30} # self.perturbNetwork(option=1, extraInfo=extraInfo) # least square optimization # # self.setupFluidEquations() # eqnInfoDictList = self.eqnInfoDictList # optResult = least_squares(computeNetworkDetail, velocityPressureInit, args=(eqnInfoDictList, fluidMethod), bounds=boundsVelocityPressure, ftol=1e-9, xtol=1e-9) # velocityPressure = np.abs(optResult.x) # cost = optResult.cost # message = optResult.message # minimize (L-BFGS-B), bounds in (min, max) pair form # # self.setupFluidEquations() # eqnInfoDictList = self.eqnInfoDictList # errorNorm = 2 # options = {'maxiter': 25000, 'maxfun': 25000} # optResult = minimize(computeNetworkDetail, velocityPressureInit, args=(eqnInfoDictList, fluidMethod, errorNorm), bounds=boundsVelocityPressure, method='L-BFGS-B', options=options) # velocityPressure = np.abs(optResult.x) # cost = optResult.fun # message = optResult.message # minimize (BFGS), bounds in (min, max) pair form # # self.setupFluidEquations() # eqnInfoDictList = self.eqnInfoDictList # errorNorm = 2 # options = {'norm': 2, 'maxiter': 30000} # optResult = minimize(computeNetworkDetail, velocityPressureInit, args=(eqnInfoDictList, fluidMethod, errorNorm), method='BFGS', options=options) # velocityPressure = np.abs(optResult.x) # cost = optResult.fun # message = optResult.message # basinhopping # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 0 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'options': {'norm': np.inf, 'maxiter': 30000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 30000, 'maxfun': 30000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=300, T=5, stepsize=5, interval=5, niter_success=20, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message # differential evolution, bounds in (min, max) pair form # # self.setupFluidEquations() # eqnInfoDictList = self.eqnInfoDictList # errorNorm = 2 # optResult = differential_evolution(computeNetworkDetail, args=(eqnInfoDictList, fluidMethod, errorNorm), bounds=boundsVelocityPressure, maxiter=2000, polish=True, disp=True) # velocityPressure = np.abs(optResult.x) # cost = optResult.fun # message = optResult.message # Matlab fsolve # # self.setupFluidEquationsMatLab() # eqnInfoDictList = self.eqnInfoDictList # import matlab.engine, io # # eng = matlab.engine.start_matlab() # eng = matlab.engine.connect_matlab() # eng.addpath('/Users/zhuj10/Dropbox/NIH/Data/Ron Data/1358-Subject18016/fluidSimulationWithCoW') # print(matlab.engine.find_matlab()) # out = io.StringIO() # err = io.StringIO() # solver = 'fsolve' # solver = 'lsqnonlin' # # solver = 'Validate' # # velocityPressureGroundTruth = self.velocityPressureGroundTruth # # velocityPressureInit = [float(p) for p in velocityPressureTrue] # velocityPressureInit = [float(p) for p in velocityPressureInit] # optResult = eng.performFluidSimulation4ForMatLab(eqnInfoDictList, solver, velocityPressureInit, stdout=out, stderr=err) # # optResult = eng.testMatLab1(eqnInfoDictList, solver, velocityPressureInit, stdout=out, stderr=err) # # print(optResult) # print(out.getvalue()) # print(err.getvalue()) # cost = optResult['error'] # message = optResult['message'] # velocityPressure = optResult['optParam'][0] ## print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) velocityPressureGroundTruth = self.velocityPressureGroundTruth self.velocityPressure = velocityPressure # self.validateFluidEquations(velocityPressure=velocityPressure) self.validateFluidEquations(velocityPressure=velocityPressure) print(list(zip(velocityPressureGroundTruth, velocityPressure))) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) self.updateNetworkWithSimulationResult(velocityPressure) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'Simulated'} self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) resultDict['perturbed'] = {'G': G, 'nodeInfoDict': nodeInfoDict, 'edgeInfoDict': edgeInfoDict} if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResultRandomNetwork') saveFileName = 'fluidSimulationResult.pkl' with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) def argsBoundTest(self): """ Test the function `calculateVariableBounds` """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name directory = self.directory # Artificial network # self.generateNetwork(maxDepth=5, allowMerge=False) # self.setNetwork(option=1) # GBM network self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth() self.calculateVariableBounds() G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict for node in G.nodes(): if 'argsIndex' not in nodeInfoDict[node]: pass else: if 'minPressure' not in nodeInfoDict[node]['simulationData']: print('Node {} does not have minPressure'.format(node)) nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'Ground truth'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) if 'argsIndex' not in nodeInfoDict[node] else np.round(nodeInfoDict[node]['simulationData']['minPressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) if 'argsIndex' not in nodeInfoDict[node] else np.round(nodeInfoDict[node]['simulationData']['minPressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'Ground truth'} self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) def distributeFlowTest(self): """ Find a way (by optimization) to distribute the flow in the entire network such that the resulting terminating pressures match the desired values (does not need to be exactly the same but just to minimize the difference between them). Unfinished! """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name resultDict = {'referenceYear': {}, 'perturbedYear': {}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.showFlowInfo() success = self.createGroundTruth() if not success: return G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict # nodeLabelDict = {node: G.node[node]['depth'] for node in G.nodes()} # nodeLevel # nodeLabelDict = {node: G.node[node]['nodeIndex'] for node in G.nodes()} # nodeIndex nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [G.node[node]['depth'] for node in G.nodes()] # nodeLevel # nodeValueList = [G.node[node]['nodeIndex'] for node in G.nodes()] # nodeIndex nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: G[edge[0]][edge[1]]['depth'] for edge in G.edges()} # edgeLevel # edgeLabelDict = {edge: G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()} # edgeIndex edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [G[edge[0]][edge[1]]['depth'] for edge in G.edges()] # edgeLevel # edgeValueList = [G[edge[0]][edge[1]]['edgeIndex'] for edge in G.edges()] # edgeIndex # edgeValueList = [edgeInfoDict[edgeIndex]['meanRadius'] for edgeIndex in edgeIndexList] # meanRadius edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node depth', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge depth', 'figTitle': 'GBM Reference'} # self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) # resultDict['referenceYear'] = {'year': 'BraVa', 'nodeInfoDict': nodeInfoDict, 'edgeInfoDict': edgeInfoDict} ## self.setupEquationsForDistributeFlow() def computeNetwork(self): pass def validateNetwork(self): pass def plotNetwork(self, infoDict: dict, figIndex: int=1, isLastFigure: bool=True, hideColorbar: bool=False): """ Plot the graph G in a tree structure. The color of the nodes and edges reflects corresponding values. Parameters ---------- G : NetworkX graph The graph to be plot. infoDict : dict A dictionary containing necessary information for plotting. figIndex : int, optional The figure index. isLastFigure : bool, optional If True, `plt.show()` will be executed. hideColorbar : bool, optional If True, the colorbars will be hidden. """ G = self.G ## Unpack infoDict ## nodeLabelDict, nodeValueList = itemgetter('nodeLabelDict', 'nodeValueList')(infoDict) edgeLabelDict, edgeValueList = itemgetter('edgeLabelDict', 'edgeValueList')(infoDict) figTitle, nodeColorbarLabel, edgeColorbarLabel = itemgetter('figTitle', 'nodeColorbarLabel', 'edgeColorbarLabel')(infoDict) ## Calculate extra info ## if 'vmin' not in infoDict or 'vmax' not in infoDict: vmin, vmax = np.amin(nodeValueList), np.amax(nodeValueList) else: vmin, vmax = itemgetter('vmin', 'vmax')(infoDict) if 'edge_vmin' not in infoDict or 'edge_vmax' not in infoDict: edge_vmin, edge_vmax = np.amin(edgeValueList), np.amax(edgeValueList) else: edge_vmin, edge_vmax = itemgetter('edge_vmin', 'edge_vmax')(infoDict) ## Plot ## fig = plt.figure(figIndex, figsize=(15, 8)) plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) pos = graphviz_layout(G, prog='dot') ax = fig.add_axes([0.05, 0.05, 0.7, 0.9]) ax.set_title(figTitle) ax.set_axis_off() nodes = nx.draw_networkx_nodes(G, pos, node_size=250, node_color=nodeValueList, cmap=plt.cm.get_cmap('jet'), vmin=vmin, vmax=vmax) edges = nx.draw_networkx_edges(G, pos, arrowstyle='-', arrowsize=10, edge_color=edgeValueList, edge_cmap=plt.cm.jet, edge_vmin=edge_vmin, edge_vmax=edge_vmax, width=2) if len(nodeLabelDict) != 0: nx.draw_networkx_labels(G, pos, labels=nodeLabelDict, font_size=8) if len(edgeLabelDict) != 0: nx.draw_networkx_edge_labels(G, pos, edge_labels=edgeLabelDict, font_size=8) # node colorbar if len(nodeColorbarLabel) != 0 and not hideColorbar: # plt.colorbar(nodes, cmap=plt.cm.jet, label=nodeColorbarLabel) ax1 = fig.add_axes([0.8, 0.05, 0.03, 0.9]) norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=mpl.cm.jet, norm=norm, orientation='vertical') cb1.set_label(nodeColorbarLabel, size=10) cb1.ax.tick_params(labelsize=10) # edge colorbar if len(edgeColorbarLabel) != 0 and not hideColorbar: ax2 = fig.add_axes([0.9, 0.05, 0.03, 0.9]) norm = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax) cb2 = mpl.colorbar.ColorbarBase(ax2, cmap=mpl.cm.jet, norm=norm, orientation='vertical') cb2.set_label(edgeColorbarLabel, size=10) cb2.ax.tick_params(labelsize=10) if isLastFigure: plt.show() def getNetwork(self): return self.G def compareNetworkPropertyTest(self): """ Compare the edge properties before and after perturbing the network. GBM_Radius ratio vs Graph level_Compartment(5)_Single row GBM_Radius ratio vs Graph level_Graph plot """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.nodeInfoDictBefore = copy.deepcopy(self.nodeInfoDict) self.edgeInfoDictBefore = copy.deepcopy(self.edgeInfoDict) ## Solve the system with perturbed network properties edgeIndexList = self.edgeIndexList # Manually perturb the network # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) self.nodeInfoDictAfter = copy.deepcopy(self.nodeInfoDict) self.edgeInfoDictAfter = copy.deepcopy(self.edgeInfoDict) edgeIndexList = sorted(list(self.edgeInfoDict.keys())) spacing = self.spacing print('Edge difference before and after:') for edgeIndex in edgeIndexList: radius, length, c, k = itemgetter('meanRadius', 'length', 'c', 'k')(self.edgeInfoDictBefore[edgeIndex]) radiusBefore = np.round(radius * spacing * 1000, 3) # mm lengthBefore = np.round(length * spacing * 100, 3) # cm cBefore, kBefore = np.round(c, 3), np.round(k, 3) radius, length, c, k = itemgetter('meanRadius', 'length', 'c', 'k')(self.edgeInfoDictAfter[edgeIndex]) radiusAfter = np.round(radius * spacing * 1000, 3) # mm lengthAfter = np.round(length * spacing * 100, 3) # cm cAfter, kAfter = np.round(c, 3), np.round(k, 3) print('edgeIndex={}, radius={}/{} mm, length={}/{} cm, c={}/{}, k={}/{}'.format(edgeIndex, radiusBefore, radiusAfter, lengthBefore, lengthAfter, cBefore, cAfter, kBefore, kAfter)) G = self.G for edge in G.edges(): edgeIndex = G[edge[0]][edge[1]]['edgeIndex'] radiusRatio = np.round(self.edgeInfoDictAfter[edgeIndex]['meanRadius'] / self.edgeInfoDictBefore[edgeIndex]['meanRadius'], 2) self.edgeInfoDictAfter[edgeIndex]['radiusRatio'] = radiusRatio self.edgeInfoDictBefore[edgeIndex]['radiusRatio'] = radiusRatio self.edgeInfoDict[edgeIndex]['radiusRatio'] = radiusRatio elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: nodeInfoDict[node]['nodeIndex'] for node in G.nodes()} nodeValueList = [nodeInfoDict[node]['nodeIndex'] for node in G.nodes()] edgeLabelDict = {edge: self.edgeInfoDictAfter[G[edge[0]][edge[1]]['edgeIndex']]['radiusRatio'] for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [self.edgeInfoDictAfter[G[edge[0]][edge[1]]['edgeIndex']]['radiusRatio'] for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'Ground truth'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) partitionInfo = {'LMCA': {'startNodes': [5], 'boundaryNodes': [13]}, 'RMCA': {'startNodes': [6], 'boundaryNodes': [13]}, 'LPCA': {'startNodes': [4], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [13], 'boundaryNodes': []}} partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} # fig = plt.figure(2, figsize=(15, 8)) # plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) fig = plt.figure(11, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) subplotIndex = 1 nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) print('{}:\nvisitedNodes={}\nvisitedEdges={}'.format(partitionName, visitedNodes, visitedEdges)) ax = fig.add_subplot(1,5,subplotIndex) dictUsed = edgeInfoDict attribute1, attribute2, attribute3 = 'segmentLevel', 'meanRadius', 'partitionName' attribute1List = [edgeInfoDict[edgeIndex]['depth'] for edgeIndex in visitedEdges] # attribute2List = [edgeInfoDict[edgeIndex]['meanRadius']*spacing*1000 for edgeIndex in visitedEdges] attribute2List = [edgeInfoDict[edgeIndex]['radiusRatio'] for edgeIndex in visitedEdges] # attribute1List = [info[attribute1] for _, info in dictUsed.items() if attribute1 in info and attribute2 in info and attribute3 in info and info[attribute3] in partitionNames] # attribute2List = [info[attribute2]*spacing*1000 for _, info in dictUsed.items() if attribute1 in info and attribute2 in info and attribute3 in info and info[attribute3] in partitionNames] # mm # ax.plot(attribute1List, attribute2List, 'bo') positions = np.sort(np.unique(attribute1List)) values = [] attribute1Array, attribute2Array = np.array(attribute1List), np.array(attribute2List) for segmentLevel in positions: locs = np.nonzero(attribute1Array == segmentLevel)[0] values.append((attribute2Array[locs]).tolist()) mf.boxPlotWithWhiskers(values, ax, positions=positions, whis='range', xlabel='Graph level', ylabel='Radius (mm)') ax.set_xlabel('Graph level') ax.set_ylabel('Radius ratio') ax.set_title(partitionName) subplotIndex += 1 plt.show() def updateEdgeRadius(self, edgeRadiusList): """ Update the edge radius with the supplied list. The i-th element in edgeRadiusList is the radius (in voxel) of the i-th edge. Parameters ---------- edgeRadiusList : list A list of new edge radius. """ edgeInfoDict = self.edgeInfoDict for edgeIndex, radius in enumerate(edgeRadiusList): edgeInfoDict[edgeIndex]['meanRadius'] = radius self.edgeInfoDict = edgeInfoDict self.setNetwork(option=2) def applyFlowToNetwork(self, edgeFlowList): """ Apply the flow from edgeFlowList to the corresponding edges and recalculates all the pressures. The i-th element in edgeFlowList is the flow (in m^3/s) of the i-th edge. Parameters ---------- edgeFlowList : list A list of flow rates to be applied to each edges. """ nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList edgeList = self.edgeList spacing = self.spacing for edgeIndex, flow in enumerate(edgeFlowList): edgeInfoDict[edgeIndex]['simulationData']['flow'] = flow radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing # meter velocity = flow / (np.pi * radius**2) # m/s edgeInfoDict[edgeIndex]['simulationData']['velocity'] = velocity edgeDepthArray = np.array([edgeInfoDict[edgeIndex]['depth'] for edgeIndex in edgeIndexList]) edgeIndexListSorted = np.array(edgeIndexList)[edgeDepthArray.argsort()].tolist() for edgeIndex in edgeIndexListSorted: edge = edgeList[edgeIndex] edgeHead, edgeTail = edge if nodeInfoDict[edgeHead]['depth'] > nodeInfoDict[edgeTail]['depth']: edgeHead, edgeTail = edgeTail, edgeHead pressureHead = nodeInfoDict[edgeHead]['simulationData']['pressure'] radius = edgeInfoDict[edgeIndex]['meanRadius'] * spacing # meter length = edgeInfoDict[edgeIndex]['length'] * spacing # meter c, k = itemgetter('c', 'k')(edgeInfoDict[edgeIndex]) flow = edgeFlowList[edgeIndex] deltaPressure = 10.67 * flow**k * length / c**k / (2*radius)**4.8704 if pressureHead is None: print('Error! EdgeIndex={} has pressure = None'.format(edgeIndex)) pressureTail = pressureHead - deltaPressure nodeInfoDict[edgeTail]['simulationData']['pressure'] = pressureTail self.nodeInfoDict = nodeInfoDict self.edgeInfoDict = edgeInfoDict def showVolumePerPartition(self, numOfTimeSteps=4, interpolationOption=1, figIndex=1, isLastFigure=True): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, and check how the volume of each partition changes among different time steps. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) edgeIndexList = self.edgeIndexList edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() volumeTimeStepListPerPartition = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': [], 'Left': [], 'Right': []} for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) for currentTimeStep in range(0, numOfTimeSteps): radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] self.updateEdgeRadius(radiusList) volumePerPartition = self.getVolumePerPartition() for partitionName, volume in volumePerPartition.items(): volumeTimeStepListPerPartition[partitionName].append(volume) volumeTimeStepListPerPartition['Left'] = (np.array(volumeTimeStepListPerPartition['LMCA']) + np.array(volumeTimeStepListPerPartition['LPCA'])).tolist() volumeTimeStepListPerPartition['Right'] = (np.array(volumeTimeStepListPerPartition['RMCA']) + np.array(volumeTimeStepListPerPartition['RPCA'])).tolist() print('volumeTimeStepListPerPartition={}'.format(volumeTimeStepListPerPartition)) fig = plt.figure(figIndex, figsize=(7, 3)) plt.subplots_adjust(left=0.1, right=0.9, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) ax = fig.add_subplot(1,1,1) for partitionName, volumeList in volumeTimeStepListPerPartition.items(): xValues = list(range(numOfTimeSteps)) yValues = volumeList ax.plot(xValues, yValues, 'o-', label=partitionName) ax.set_xlabel('Time step') ax.set_xticks(xValues) ax.set_xticklabels(['T{}'.format(ii) for ii in xValues]) ax.set_ylabel(r'Volume ($\mathrm{mm}^3/s$)') # ax.legend() ax.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=7, prop={'size': 8}) if isLastFigure: plt.show() def test1(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, split the flow according to the cross-sectional area (option 2 in createGroundTruth()) and see how the terminating pressures change. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) aa = [self.edgeInfoDict[edgeIndex]['meanRadius'] for edgeIndex in self.edgeIndexList] # print(aa) # success = self.createGroundTruth(option=2) edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() cTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) allNodes = list(range(np.max(list(self.nodeInfoDict.keys())) + 1)) terminatingNodes = [node for node in G.nodes() if G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) nodePressuresTimeStepArray = np.zeros((len(allNodes), numOfTimeSteps)) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) for currentTimeStep in range(0, numOfTimeSteps): # print(currentTimeStep) radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] # print(radiusList) self.updateEdgeRadius(radiusList) success = self.createGroundTruth(option=2) if not success: print('Time step={} failed'.format(currentTimeStep)) terminatingPressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in terminatingNodes] terminatingPressuresTimeStepArray[:, currentTimeStep] = terminatingPressures nodePressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in allNodes] nodePressuresTimeStepArray[:, currentTimeStep] = nodePressures cValues = [self.edgeInfoDict[edgeIndex]['c'] for edgeIndex in edgeIndexList] cTimeStepArray[edgeIndexList, currentTimeStep] = cValues # G = self.G # nodeInfoDict = self.nodeInfoDict # edgeInfoDict = self.edgeInfoDict # nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s # infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', # 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', # 'figTitle': 'Ground truth'} # self.plotNetwork(infoDict, figIndex=1, isLastFigure=True) # Clear the simulation result # for node in G.nodes(): self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset for edgeIndex in edgeIndexList: self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset print(terminatingPressuresTimeStepArray) partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}} fig = plt.figure(1, figsize=(15, 8)) plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) subplotIndex = 1 colorList = ['r','g','b'] # terminatingNodes = {'LMCA': [], 'RMCA': [], 'ACA': [], 'LPCA': [], 'RPCA': []} G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] # terminatingNodes[partitionName] = terminatingNodesInThisPartition ax = fig.add_subplot(2,4,subplotIndex, projection='3d') for ii, node in enumerate(terminatingNodesInThisPartition): rowNum = terminatingNodes.index(node) pressures = terminatingPressuresTimeStepArray[rowNum, :] xValues = [node] * numOfTimeSteps yValues = list(range(numOfTimeSteps)) zValues = list(pressures) ax.plot(xValues, yValues, zValues, 'bo-') ax.set_xlabel('Node index') ax.set_ylabel('Time step') ax.set_zlabel('Terminating pressure (mmHg)') ax.set_title(partitionName) subplotIndex += 1 edgeRadiusTimeStepArray = np.array(edgeRadiusTimeStepList) spacing = self.spacing for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] if partitionName != 'LPCA' and partitionName != 'LMCA' and partitionName != 'ACA': continue print('{}:'.format(partitionName)) for terminatingNode in terminatingNodesInThisPartition: path = nx.shortest_path(G, startNodes[0], terminatingNode) edgeIndexAlongPath = [G[path[ii]][path[ii+1]]['edgeIndex'] for ii in range(len(path) - 1)] for currentTimeStep in range(numOfTimeSteps): pressuresAlongPath = np.round(nodePressuresTimeStepArray[path, currentTimeStep], 2) # mmHg edgeRadiusAlongPath = np.round(edgeRadiusTimeStepArray[edgeIndexAlongPath, currentTimeStep]*spacing*1000, 2) # mm cAlongPath = np.round(cTimeStepArray[edgeIndexAlongPath, currentTimeStep], 3) print('Terminating node {} (time step={}): pressures along path are {} mmHg, radius along path are {} mm, c={}'.format(terminatingNode, currentTimeStep, pressuresAlongPath, edgeRadiusAlongPath, cAlongPath)) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) plt.show() def test2(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, apply the same flow/different flow and check the differences in terminating pressures """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) edgeIndexList = self.edgeIndexList edgeFlowList = [0] * len(edgeIndexList) for edgeIndex in edgeIndexList: edgeFlowList[edgeIndex] = self.edgeInfoDict[edgeIndex]['simulationData']['flow'] G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'BraVa'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) self.plotTerminatingPressures(figIndex=2, isLastFigure=False) extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) self.applyFlowToNetwork(edgeFlowList) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'GBM 2013'} self.plotNetwork(infoDict, figIndex=3, isLastFigure=False) self.plotTerminatingPressures(figIndex=4, isLastFigure=True) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) def test3(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, use the same flow pattern as the BraVa for other time points and see how the terminating pressures change. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) edgeIndexList = self.edgeIndexList edgeFlowList = [0] * len(edgeIndexList) for edgeIndex in edgeIndexList: edgeFlowList[edgeIndex] = self.edgeInfoDict[edgeIndex]['simulationData']['flow'] edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() cTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) flowTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) allNodes = list(range(np.max(list(self.nodeInfoDict.keys())) + 1)) terminatingNodes = [node for node in G.nodes() if G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) nodePressuresTimeStepArray = np.zeros((len(allNodes), numOfTimeSteps)) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) for currentTimeStep in range(0, numOfTimeSteps): # print(currentTimeStep) radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] # print(radiusList) self.updateEdgeRadius(radiusList) self.applyFlowToNetwork(edgeFlowList) terminatingPressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in terminatingNodes] terminatingPressuresTimeStepArray[:, currentTimeStep] = terminatingPressures nodePressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in allNodes] nodePressuresTimeStepArray[:, currentTimeStep] = nodePressures cValues = [self.edgeInfoDict[edgeIndex]['c'] for edgeIndex in edgeIndexList] cTimeStepArray[edgeIndexList, currentTimeStep] = cValues flowValues = [self.edgeInfoDict[edgeIndex]['simulationData']['flow'] for edgeIndex in edgeIndexList] # m^3/s flowTimeStepArray[edgeIndexList, currentTimeStep] = flowValues # G = self.G # nodeInfoDict = self.nodeInfoDict # edgeInfoDict = self.edgeInfoDict # nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s # infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', # 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', # 'figTitle': 'Ground truth'} # self.plotNetwork(infoDict, figIndex=1, isLastFigure=True) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset # print(terminatingPressuresTimeStepArray) self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=1, figIndex=11, isLastFigure=False) self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=2, figIndex=21, isLastFigure=False) # self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=3, figIndex=31, isLastFigure=False) self.plotTerminatingPressureVSPathLength(terminatingNodes, terminatingPressuresTimeStepArray, option=1, figIndex=31, isLastFigure=False) self.plotFlow(flowTimeStepArray, option=1, figIndex=41, isLastFigure=False) self.plotRootPressuresCompartment(nodePressuresTimeStepArray, option=1, figIndex=51, isLastFigure=False) self.plotFlowProportion(flowTimeStepArray, figIndex=61, isLastFigure=True) # Flow proportion_Same flow_All CoW branches fixed_test3 # Flow proportion_Same flow_LICA RICA VA fixed_test3 # partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, # 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} # G = self.G # nodeInfoDict = self.nodeInfoDict # edgeInfoDict = self.edgeInfoDict # edgeRadiusTimeStepArray = np.array(edgeRadiusTimeStepList) # spacing = self.spacing # for partitionName, info in partitionInfo.items(): # startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) # resultDict = self.BFS(startNodes, boundaryNodes) # visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) # terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] # if partitionName != 'RMCA' and partitionName != 'LMCA' and partitionName != 'LPCA': # continue # print('{}:'.format(partitionName)) # for terminatingNode in terminatingNodesInThisPartition: # path = nx.shortest_path(G, startNodes[0], terminatingNode) # edgeIndexAlongPath = [G[path[ii]][path[ii+1]]['edgeIndex'] for ii in range(len(path) - 1)] # for currentTimeStep in range(numOfTimeSteps): # pressuresAlongPath = np.round(nodePressuresTimeStepArray[path, currentTimeStep], 2) # mmHg # edgeRadiusAlongPath = np.round(edgeRadiusTimeStepArray[edgeIndexAlongPath, currentTimeStep]*spacing*1000, 2) # mm # cAlongPath = np.round(cTimeStepArray[edgeIndexAlongPath, currentTimeStep], 3) # print('Terminating node {} (time step={}): pressures along path are {} mmHg, radius along path are {} mm, c={}'.format(terminatingNode, currentTimeStep, pressuresAlongPath, edgeRadiusAlongPath, cAlongPath)) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) # plt.show() def test4(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, and check the differences in terminating pressures """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) edgeIndexList = self.edgeIndexList edgeFlowList = [0] * len(edgeIndexList) for edgeIndex in edgeIndexList: edgeFlowList[edgeIndex] = self.edgeInfoDict[edgeIndex]['simulationData']['flow'] edgeRadiusTimeStepArray = np.zeros((len(edgeIndexList), 2)) edgeInfoDict = self.edgeInfoDict spacing = self.spacing for edgeIndex in edgeIndexList: edgeRadiusTimeStepArray[edgeIndex, 0] = self.edgeInfoDict[edgeIndex]['meanRadius'] * spacing * 1000 G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'BraVa'} self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) # self.plotTerminatingPressures(figIndex=2, isLastFigure=False) # Clear the simulation result # for node in G.nodes(): self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset for edgeIndex in edgeIndexList: self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: edgeRadiusTimeStepArray[edgeIndex, 1] = self.edgeInfoDict[edgeIndex]['meanRadius'] * spacing * 1000 for ii, row in enumerate(edgeRadiusTimeStepArray): radiusBefore, radiusAfter = np.round(row, 3).tolist() print('Edge {}: radius before/after = {}/{} mm'.format(ii, radiusBefore, radiusAfter)) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', 'figTitle': 'GBM 2013'} self.plotNetwork(infoDict, figIndex=3, isLastFigure=True) # self.plotTerminatingPressures(figIndex=4, isLastFigure=True) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) def test5(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, and see how the terminating pressures change. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) edgeIndexList = self.edgeIndexList edgeFlowList = [0] * len(edgeIndexList) for edgeIndex in edgeIndexList: edgeFlowList[edgeIndex] = self.edgeInfoDict[edgeIndex]['simulationData']['flow'] edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() cTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) allNodes = list(range(np.max(list(self.nodeInfoDict.keys())) + 1)) terminatingNodes = [node for node in G.nodes() if G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) nodePressuresTimeStepArray = np.zeros((len(allNodes), numOfTimeSteps)) flowTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) # Clear the simulation result # for node in G.nodes(): self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset for edgeIndex in edgeIndexList: self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset for currentTimeStep in range(0, numOfTimeSteps): radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] self.updateEdgeRadius(radiusList) self.createGroundTruth(option=2) terminatingPressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in terminatingNodes] terminatingPressuresTimeStepArray[:, currentTimeStep] = terminatingPressures nodePressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in allNodes] nodePressuresTimeStepArray[:, currentTimeStep] = nodePressures cValues = [self.edgeInfoDict[edgeIndex]['c'] for edgeIndex in edgeIndexList] cTimeStepArray[edgeIndexList, currentTimeStep] = cValues flowValues = [self.edgeInfoDict[edgeIndex]['simulationData']['flow'] for edgeIndex in edgeIndexList] # m^3/s flowTimeStepArray[edgeIndexList, currentTimeStep] = flowValues # Clear the simulation result # for node in G.nodes(): self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset for edgeIndex in edgeIndexList: self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset # print(terminatingPressuresTimeStepArray) self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=1, figIndex=11, isLastFigure=False) self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=2, figIndex=21, isLastFigure=False) # self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=3, figIndex=31, isLastFigure=False) self.plotFlow(flowTimeStepArray, option=1, figIndex=41, isLastFigure=False) self.plotRootPressuresCompartment(nodePressuresTimeStepArray, option=1, figIndex=51, isLastFigure=False) self.plotFlowProportion(flowTimeStepArray, figIndex=61, isLastFigure=True) # Flow proportion_Split flow with radius_All CoW branches fixed_test3 # Flow proportion_Split flow with radius_LICA RICA VA fixed_test3 print(edgeRadiusTimeStepList[8:12]) print(flowTimeStepArray[[4,8,9,10,11],:]) # edgeRadiusTimeStepArray = np.array(edgeRadiusTimeStepList) # spacing = self.spacing # for partitionName, info in partitionInfo.items(): # startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) # resultDict = self.BFS(startNodes, boundaryNodes) # visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) # terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] # if partitionName != 'LPCA' and partitionName != 'LMCA' and partitionName != 'ACA': # continue # print('{}:'.format(partitionName)) # for terminatingNode in terminatingNodesInThisPartition: # path = nx.shortest_path(G, startNodes[0], terminatingNode) # edgeIndexAlongPath = [G[path[ii]][path[ii+1]]['edgeIndex'] for ii in range(len(path) - 1)] # for currentTimeStep in range(numOfTimeSteps): # pressuresAlongPath = np.round(nodePressuresTimeStepArray[path, currentTimeStep], 2) # mmHg # edgeRadiusAlongPath = np.round(edgeRadiusTimeStepArray[edgeIndexAlongPath, currentTimeStep]*spacing*1000, 2) # mm # cAlongPath = np.round(cTimeStepArray[edgeIndexAlongPath, currentTimeStep], 3) # print('Terminating node {} (time step={}): pressures along path are {} mmHg, radius along path are {} mm, c={}'.format(terminatingNode, currentTimeStep, pressuresAlongPath, edgeRadiusAlongPath, cAlongPath)) # elapsed = timeit.default_timer() - start_time # print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) plt.show() def test6(self, numOfTimeSteps=4, interpolationOption=1, saveResult=False): """ Using the GBM network and the radius info from BraVa and 2013, interpolate the radius (in different ways) for the time point in between, set the terminating pressures using the terminating pressure vs path length relationship found with ADAN dataset, and solve the network. The purpose is to see when the network fails to produce a solution (i.e., optimization error becomes too large to be acceptable), and for those time steps that do not have a solution, perturb the terminating pressures with minimum effort (another optimization) so that there exists a solution. numOfTimeSteps has to be >= 2 (including the two end time steps) interpolationOption=1 interpolates the radius linearly, interpolationOption=2 uses a logistic curve (bent upwards), interpolationOption=3 uses a logistic curve (bent downwards) Note: check what slope is being used in setTerminatingPressures()! Saved Result: fluidSimulationResultTest6_Timestep={}_v1.pkl: everything normal fluidSimulationResultTest6_Timestep={}_v2.pkl: slope of terminating pressure vs path length reduced by 30% fluidSimulationResultTest6_Timestep={}_v3.pkl: slope of terminating pressure vs path length reduced by 40% fluidSimulationResultTest6_Timestep={}_v4.pkl: slope of terminating pressure vs path length reduced by 20% fluidSimulationResultTest6_Timestep={}_v5.pkl: slope of terminating pressure vs path length comes from fitting the ground truth solution (option=2) """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) # just to get nodeIndex and edgeIndex and isBifurcatingNode # G = self.G # nodeInfoDict = self.nodeInfoDict # edgeInfoDict = self.edgeInfoDict # nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg # nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg # edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s # edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s # infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Node', # 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': 'Edge', # 'figTitle': 'Ground truth'} # self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) edgeIndexList = self.edgeIndexList G = self.G edgeRadiusTimeStepList = np.zeros((len(edgeIndexList), numOfTimeSteps)).tolist() # cTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) # allNodes = list(range(np.max(list(self.nodeInfoDict.keys())) + 1)) # terminatingNodes = [node for node in G.nodes() if G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] # terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) # nodePressuresTimeStepArray = np.zeros((len(allNodes), numOfTimeSteps)) # flowTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][0] = radius # Change the radius # # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,9,11,5,6]} extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # success = self.createGroundTruth(option=2) for edgeIndex in edgeIndexList: radius = self.edgeInfoDict[edgeIndex]['meanRadius'] edgeRadiusTimeStepList[edgeIndex][-1] = radius # Interpolate the radius for other time steps # if interpolationOption == 1: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) / (numOfTimeSteps - 1) * ii + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius elif interpolationOption == 2: for edgeIndex in edgeIndexList: radiusHead, radiusTail = edgeRadiusTimeStepList[edgeIndex][0], edgeRadiusTimeStepList[edgeIndex][-1] for ii in range(1, numOfTimeSteps-1): radius = (radiusTail - radiusHead) * np.tanh(ii / (numOfTimeSteps-1) * 2) + radiusHead edgeRadiusTimeStepList[edgeIndex][ii] = radius # print(edgeRadiusTimeStepList) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict maxTimeStep = 1 # numOfTimeSteps # fitResultPerPartition = self.fitTerminatingPressureToPathLength(showFittingResult=True, figIndex=2, isLastFigure=True) fitResultPerPartition = self.fitTerminatingPressureToPathLength() for currentTimeStep in range(0, maxTimeStep): print('##### currentTimeStep={} #####'.format(currentTimeStep)) radiusList = [edgeRadiusTimeStepList[edgeIndex][currentTimeStep] for edgeIndex in edgeIndexList] self.updateEdgeRadius(radiusList) # self.createGroundTruth(option=2) extraInfo = None extraInfo = {'fitResultPerPartition': fitResultPerPartition} self.setTerminatingPressure(option=2, extraInfo=extraInfo) computeNetworkDetailExtraInfo = None numOfNodes = len([node for node in nodeInfoDict if 'argsIndex' in nodeInfoDict[node]]) numOfEdges = len([edgeIndex for edgeIndex in edgeIndexList if 'argsIndex' in edgeInfoDict[edgeIndex]]) pressureIn = 13560 * 9.8 * 0.12 # Pascal # check if this number is consistent with that was used in the reference case! velocityPressureInit = np.hstack((np.full((numOfEdges,), 0.4), np.linspace(pressureIn*0.8, pressureIn*0.5, numOfNodes))) velocityPressureInit = [float(p) for p in velocityPressureInit] # bounds in the form of ((min, min...), (max, max...)) # # boundsVelocityPressure = [[], []] # first sublist contains lower bound and the second sublist contains upper bound # boundsVelocityPressure[0] = [0] * numOfEdges + [13560*9.8*0.00] * numOfNodes # min velocity = 0 m/s, min pressure = 0 mmHg # boundsVelocityPressure[1] = [5] * numOfEdges + [13560*9.8*0.12] * numOfNodes # max velocity = 5 m/s, max pressure = 120 mmHg # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) # bounds in the form of ((min, max), (min, max)...) # boundsVelocityPressure = [[0, 5]] * numOfEdges + [[13560*9.8*0.00, 13560*9.8*0.12]] * numOfNodes # Improve the lower bound of pressures at each node # self.calculateVariableBounds() # for node in G.nodes(): # if 'argsIndex' in nodeInfoDict[node]: # argsIndex = self.nodeInfoDict[node]['argsIndex'] # minPressure = self.nodeInfoDict[node]['simulationData']['minPressure'] # boundsVelocityPressure[argsIndex][0] = minPressure # boundsVelocityPressure = tuple(map(tuple, boundsVelocityPressure)) fluidMethod = 'HW' # basinhopping, bounds in (min, max) pair form # self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList errorNorm = 2 minimizer_kwargs = {'method': 'BFGS', 'args': (eqnInfoDictList, fluidMethod, errorNorm, computeNetworkDetailExtraInfo), 'options': {'norm': np.inf, 'maxiter': 40000}} # minimizer_kwargs = {'method': 'L-BFGS-B', 'args': (eqnInfoDictList, fluidMethod, errorNorm), 'bounds': boundsVelocityPressure, 'options': {'maxiter': 40000, 'maxfun': 40000}} optResult = basinhopping(computeNetworkDetail, velocityPressureInit, minimizer_kwargs=minimizer_kwargs, niter=100, T=1000, stepsize=500, interval=5, niter_success=15, disp=True) velocityPressure = np.abs(optResult.x) cost = optResult.fun message = optResult.message print('cost={}, message={}'.format(cost, message)) pressures = velocityPressure[numOfEdges:] print('Minimum pressure is {} mmHg and maximum pressure is {} mmHg'.format((np.amin(pressures))/13560/9.8*1000, (np.amax(pressures))/13560/9.8*1000)) velocities = velocityPressure[:numOfEdges] print('Minimum velocity is {} m/s and maximum velocity is {} m/s'.format(np.amin(velocities), np.amax(velocities))) self.velocityPressure = velocityPressure self.validateFluidEquations(velocityPressure=velocityPressure) if saveResult: directory = self.directory saveFolderPath = join(directory, 'fluidSimulationResult') saveFileName = 'fluidSimulationResultTest6_Timestep={}_v5.pkl'.format(currentTimeStep) resultDict = {'G': copy.deepcopy(self.G), 'nodeInfoDict': copy.deepcopy(self.nodeInfoDict), 'edgeInfoDict': copy.deepcopy(self.edgeInfoDict), 'velocityPressure': copy.deepcopy(velocityPressure)} with open(join(saveFolderPath, saveFileName), 'wb') as f: pickle.dump(resultDict, f, 2) print('{} saved to {}'.format(saveFileName, saveFolderPath)) # Clear the simulation result # # for node in G.nodes(): # self.nodeInfoDict[node]['simulationData'] = {'pressure': None, 'flow': None} # placeholders, None means unset # for edgeIndex in edgeIndexList: # self.edgeInfoDict[edgeIndex]['simulationData'] = {'velocity': None, 'flow': None} # placeholders, None means unset def showResult_GBMTest5(self, numOfTimeSteps=5): """ Plot the result obtained from `GBMTest5`. """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) terminatingNodes = [node for node in self.G.nodes() if self.G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) directory = self.directory edgeIndexList = self.edgeIndexList resultFolderPath = join(directory, 'fluidSimulationResult') numOfTimeSteps = 5 incomingEdgesFlowTimeStepArray = np.zeros((3, numOfTimeSteps)) flowTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) terminatingNodes = [node for node in self.G.nodes() if self.G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) for currentTimeStep in range(numOfTimeSteps): print('##### currentTimeStep={} #####'.format(currentTimeStep)) resultFileName = 'fluidSimulationResult_GBMTest5_Timestep={}_v1.pkl'.format(currentTimeStep) with open(join(resultFolderPath, resultFileName), 'rb') as f: resultDict = pickle.load(f) print('{} loaded from {}.'.format(resultFileName, resultFolderPath)) if 'velocityPressure' not in resultDict: if 'perturbedYear' in resultDict: G, nodeInfoDict, edgeInfoDict = itemgetter('G', 'nodeInfoDict', 'edgeInfoDict')(resultDict['perturbedYear']) velocityPressure = resultDict['perturbedYear']['velocityPressure'] #self.getVelocityPressure() with open(join(resultFolderPath, resultFileName), 'wb') as f: resultDictNew = {'G': copy.deepcopy(G), 'nodeInfoDict': copy.deepcopy(nodeInfoDict), 'edgeInfoDict': copy.deepcopy(edgeInfoDict), 'velocityPressure': copy.deepcopy(velocityPressure)} pickle.dump(resultDictNew, f, 2) print('{} saved to {}.'.format(resultFileName, resultFolderPath)) else: G, nodeInfoDict, edgeInfoDict = itemgetter('G', 'nodeInfoDict', 'edgeInfoDict')(resultDict) velocityPressure = resultDict['velocityPressure'] self.G = copy.deepcopy(G) self.nodeInfoDict = copy.deepcopy(nodeInfoDict) self.edgeInfoDict = copy.deepcopy(edgeInfoDict) self.setupFluidEquations() eqnInfoDictList = self.eqnInfoDictList self.validateFluidEquations(velocityPressure=velocityPressure) self.updateNetworkWithSimulationResult(velocityPressure=velocityPressure) nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Pressure (mmHg)', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': r'Flow ($\mathrm{cm}^3/s$)', 'figTitle': 'GBM_Time step={}'.format(currentTimeStep)} if currentTimeStep == numOfTimeSteps - 1: isLastFigure = True else: isLastFigure = False self.plotNetwork(infoDict, figIndex=currentTimeStep+1, isLastFigure=False) # Collect some results for edgeIndex in [0,1,2]: incomingEdgesFlowTimeStepArray[edgeIndex, currentTimeStep] = edgeInfoDict[edgeIndex]['simulationData']['flow'] for edgeIndex in edgeIndexList: flowTimeStepArray[edgeIndex, currentTimeStep] = edgeInfoDict[edgeIndex]['simulationData']['flow'] terminatingPressures = [self.nodeInfoDict[node]['simulationData']['pressure'] /13560/9.8*1000 for node in terminatingNodes] terminatingPressuresTimeStepArray[:, currentTimeStep] = terminatingPressures # Flow proportions_GBMTest5 # self.plotFlowProportion(flowTimeStepArray, figIndex=21, isLastFigure=False) # Mean terminating pressure vs Time step_GBMTest5 and Terminating pressure vs Time step_Compartment_GBMTest5 self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=1, figIndex=31, isLastFigure=False) self.plotTerminatingPressures2(terminatingNodes, terminatingPressuresTimeStepArray, option=2, figIndex=41, isLastFigure=True) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) # plt.show() def showResult2_GBMTest5(self, numOfTimeSteps=5): """ Show graph plot of pressures and flows from `GBMTest5` between two time steps and share one legend. """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) terminatingNodes = [node for node in self.G.nodes() if self.G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) directory = self.directory edgeIndexList = self.edgeIndexList resultFolderPath = join(directory, 'fluidSimulationResult') numOfTimeSteps = 5 incomingEdgesFlowTimeStepArray = np.zeros((3, numOfTimeSteps)) flowTimeStepArray = np.zeros((len(edgeIndexList), numOfTimeSteps)) terminatingNodes = [node for node in self.G.nodes() if self.G.degree(node) == 1 and self.nodeInfoDict[node]['depth'] != 0] terminatingPressuresTimeStepArray = np.zeros((len(terminatingNodes), numOfTimeSteps)) infoDictList = [] nodeValueListTotal, edgeValueListTotal = [], [] timeStepsToUse = [0, 4] for currentTimeStep in timeStepsToUse: print('##### currentTimeStep={} #####'.format(currentTimeStep)) resultFileName = 'fluidSimulationResult_GBMTest5_Timestep={}_v1.pkl'.format(currentTimeStep) with open(join(resultFolderPath, resultFileName), 'rb') as f: resultDict = pickle.load(f) print('{} loaded from {}.'.format(resultFileName, resultFolderPath)) G, nodeInfoDict, edgeInfoDict = itemgetter('G', 'nodeInfoDict', 'edgeInfoDict')(resultDict) velocityPressure = resultDict['velocityPressure'] self.G = copy.deepcopy(G) self.nodeInfoDict = copy.deepcopy(nodeInfoDict) self.edgeInfoDict = copy.deepcopy(edgeInfoDict) self.updateNetworkWithSimulationResult(velocityPressure=velocityPressure) nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Pressure (mmHg)', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': r'Flow ($\mathrm{cm}^3/s$)', 'figTitle': 'GBM_Time step={}'.format(currentTimeStep)} # self.plotNetwork(infoDict, figIndex=currentTimeStep+1, isLastFigure=False) infoDictList.append(infoDict) nodeValueListTotal += nodeValueList edgeValueListTotal += edgeValueList vmin, vmax = np.amin(nodeValueListTotal), np.amax(nodeValueListTotal) edge_vmin, edge_vmax = np.amin(edgeValueListTotal), np.amax(edgeValueListTotal) figIndex = 1 # fluidSimulationResult_Time step=0_Compare between two time steps_Same Legend_GBMTest5 # fluidSimulationResult_Time step=4_Compare between two time steps_Same Legend_GBMTest5 # fluidSimulationResult_Legend_Time step=0,4_GBMTest5 for infoDict in infoDictList: infoDict['vmin'] = vmin infoDict['vmax'] = vmax infoDict['edge_vmin'] = edge_vmin infoDict['edge_vmax'] = edge_vmax self.plotNetwork(infoDict, figIndex=figIndex, isLastFigure=False, hideColorbar=True) figIndex += 1 extraInfo = {'nodeLabel': 'Pressure (mmHg)', 'nodeLabelSize': 18, 'nodeTickSize': 18, 'edgeLabel': r'Flow rate ($\mathrm{cm}^3/s$)', 'edgeLabelSize': 18, 'edgeTickSize': 18, 'vmin': vmin, 'vmax': vmax, 'edge_vmin': edge_vmin, 'edge_vmax': edge_vmax} self.graphPlotStandaloneLegend(figIndex=10, isLastFigure=True, extraInfo=extraInfo) elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) def graphPlotStandaloneLegend(self, figIndex=1, isLastFigure=True, orientation='horizontal', extraInfo=None): """ Standalone legend for the graph plot. """ fig = plt.figure(figIndex, figsize=(12, 8)) plt.subplots_adjust(left=0.15, right=0.85, top=0.94, bottom=0.06, wspace=0.3, hspace=0.9) if orientation == 'horizontal': ax1 = fig.add_axes([0.15, 0.9, 0.7, 0.04]) ax2 = fig.add_axes([0.15, 0.75, 0.7, 0.04]) elif orientation == 'vertical': ax1 = fig.add_axes([0.05, 0.05, 0.04, 0.9]) ax2 = fig.add_axes([0.2, 0.05, 0.04, 0.9]) vmin, vmax, edge_vmin, edge_vmax = itemgetter('vmin', 'vmax', 'edge_vmin', 'edge_vmax')(extraInfo) nodeColorNorm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=mpl.cm.jet, norm=nodeColorNorm, orientation=orientation) nodeLabel, nodeLabelSize, nodeTickSize = itemgetter('nodeLabel', 'nodeLabelSize', 'nodeTickSize')(extraInfo) cb1.set_label(nodeLabel, size=nodeLabelSize) cb1.ax.tick_params(labelsize=nodeTickSize) edgeColorNorm = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax) cb2 = mpl.colorbar.ColorbarBase(ax2, cmap=mpl.cm.jet, norm=edgeColorNorm, orientation=orientation) edgeLabel, edgeLabelSize, edgeTickSize = itemgetter('edgeLabel', 'edgeLabelSize', 'edgeTickSize')(extraInfo) cb2.set_label(edgeLabel, size=edgeLabelSize) cb2.ax.tick_params(labelsize=edgeTickSize) if isLastFigure: plt.show() def plotTerminatingPressures(self, figIndex=1, isLastFigure=True): """ Plot distribution of terminating pressures per compartment. """ G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} terminatingNodes = {'LMCA': [], 'RMCA': [], 'ACA': [], 'LPCA': [], 'RPCA': []} for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingNodes[partitionName] = terminatingNodesInThisPartition # fig = plt.figure(figIndex, figsize=(15, 8)) # plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) fig = plt.figure(figIndex, figsize=(15, 3)) # 1*5 figure plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) subplotIndex = 1 for partitionName, info in partitionInfo.items(): terminatingPressuresInThisPartition = [nodeInfoDict[node]['simulationData']['pressure']/13560/9.8*1000 for node in terminatingNodes[partitionName]] ax = fig.add_subplot(1,5,subplotIndex) ax.hist(terminatingPressuresInThisPartition, bins=10) ax.set_xlabel('Terminating pressure (mmHg)') ax.set_ylabel('Count') ax.set_title(partitionName) subplotIndex += 1 if isLastFigure: plt.show() def plotTerminatingPressures2(self, terminatingNodes, terminatingPressuresTimeStepArray, option=1, figIndex=1, isLastFigure=True): """ """ partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} numOfTimeSteps = terminatingPressuresTimeStepArray.shape[1] # Line plot of terminating pressures (one line=one terminating node) per compartment if option == 1: # fig = plt.figure(1, figsize=(15, 8)) # plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) fig = plt.figure(figIndex, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) fig2 = plt.figure(figIndex+1, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) subplotIndex = 1 G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict meanTerminatingPressuresPerPartitionArray = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] meanTerminatingPressuresList = [] ax = fig.add_subplot(1,5,subplotIndex) ax2 = fig2.add_subplot(1,5,1) # Terminating pressures vs Time steps(5)_Same flow_All CoW branches fixed_Compartment(5)_Single row # Terminating pressures vs Time steps(5)_Same flow_LICA RICA VA fixed_Compartment(5)_Single row # Terminating pressures vs Time steps(5)_Split flow with radius_All CoW branches fixed_Compartment(5)_Single row # Terminating pressures vs Time steps(5)_Split flow with radius_LICA RICA VA fixed_Compartment(5)_Single row for ii, node in enumerate(terminatingNodesInThisPartition): rowNum = terminatingNodes.index(node) pressures = terminatingPressuresTimeStepArray[rowNum, :] xValues = list(range(numOfTimeSteps)) yValues = list(pressures) ax.plot(xValues, yValues, 'o-') ax.set_xlabel('Time step') ax.set_xticks(xValues) ax.set_xticklabels(['T{}'.format(ii) for ii in xValues]) if subplotIndex == 1: ax.set_ylabel('Terminating pressure (mmHg)') ax.set_title(partitionName) meanTerminatingPressuresList.append(pressures) # Mean terminating pressures vs Time steps(5)_Same flow_All CoW branches fixed_Compartment(5)_Single row # Mean terminating pressures vs Time steps(5)_Same flow_LICA RICA VA fixed_Compartment(5)_Single row # Mean terminating pressures vs Time steps(5)_Split flow with radius_All CoW branches fixed_Compartment(5)_Single row # Mean terminating pressures vs Time steps(5)_Split flow with radius_LICA RICA VA fixed_Compartment(5)_Single row # ax2 = fig2.add_subplot(1,5,subplotIndex) meanTerminatingPressuresArray = np.array(meanTerminatingPressuresList) xValues = list(range(numOfTimeSteps)) yValues = np.mean(meanTerminatingPressuresArray, axis=0) meanTerminatingPressuresPerPartitionArray[partitionName] = yValues ax2.plot(xValues, yValues, 'o-', label=partitionName) ax2.set_xlabel('Time step') ax2.set_xticks(xValues) ax2.set_xticklabels(['T{}'.format(ii) for ii in xValues]) # if subplotIndex == 1: ax2.set_ylabel('Mean terimating pressure (mmHg)') # ax2.set_title(partitionName) subplotIndex += 1 ax2.legend(prop={'size': 6}) ax3 = fig2.add_subplot(1,5,2) xValues = list(range(numOfTimeSteps)) yValuesLeft = (meanTerminatingPressuresPerPartitionArray['LMCA'] + meanTerminatingPressuresPerPartitionArray['LPCA']) / 2 yValuesRight = (meanTerminatingPressuresPerPartitionArray['RMCA'] + meanTerminatingPressuresPerPartitionArray['RPCA']) / 2 ax3.plot(xValues, yValuesLeft, 'o-', label='Left') ax3.plot(xValues, yValuesRight, 'o-', label='Right') ax3.set_xlabel('Time step') ax3.set_xticks(xValues) ax3.set_xticklabels(['T{}'.format(ii) for ii in xValues]) ax3.legend() # Each plot represents a time step and shows TP distribution of different compartments (one color for each) # Terminating pressures distribution per time step_Same flow_All CoW branches fixed_Compartment(5) # Terminating pressures distribution per time step_Same flow_LICA RICA VA fixed_Compartment(5) # Terminating pressures distribution per time step_Split flow with radius_All CoW branches fixed_Compartment(5) # Terminating pressures distribution per time step_Split flow with radius_LICA RICA VA fixed_Compartment(5) elif option == 2: # Terminating pressure vs Time step vs Compartment(5)_3D Histogram_Same flow_All CoW branches fixed # Terminating pressure vs Time step vs Compartment(5)_3D Histogram_Same flow_LICA RICA VA fixed # Terminating pressure vs Time step vs Compartment(5)_3D Histogram_Split flow with radius_All CoW branches fixed # Terminating pressure vs Time step vs Compartment(5)_3D Histogram_Split flow with radius_LICA RICA VA fixed fig = plt.figure(figIndex, figsize=(8, 5)) plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.5) subplotIndex = 1 G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nbins = 10 colorList = ['r', 'g', 'b', 'y', 'c', 'm'] colorDict = {'LMCA': 'r', 'RMCA': 'g', 'LPCA': 'b', 'RPCA': 'y', 'ACA': 'c'} ax = fig.add_subplot(1,1,subplotIndex, projection='3d') for currentTimeStep in range(numOfTimeSteps): data = [] counter = 0 for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingPressuresInThisPartition = [terminatingPressuresTimeStepArray[terminatingNodes.index(node), currentTimeStep] for node in terminatingNodesInThisPartition] data.append(terminatingPressuresInThisPartition) # Bar plot (still is histogram) hist, bins = np.histogram(terminatingPressuresInThisPartition, bins=nbins) xs = (bins[:-1] + bins[1:])/2 color = colorDict[partitionName] # if partitionName != 'LMCA': # continue ax.bar(xs, hist, zs=currentTimeStep*10, zdir='y', color=color, ec=color, alpha=0.8) # ax.bar3d(xs, counter*10, 0, 1, 0.1, hist, color=color, alpha=0.8) ax.set_xlabel('Terminating pressure (mmHg)') ax.set_ylabel('Time step') ax.set_yticks([ii*10 for ii in range(numOfTimeSteps)]) ax.set_yticklabels(['T{}'.format(ii) for ii in range(numOfTimeSteps)]) ax.set_zlabel('Count') counter += 1 subplotIndex += 1 f = lambda x,y,z: proj3d.proj_transform(x,y,z, ax.get_proj())[:2] # ax.legend(list(partitionInfo.keys()), loc="upper right", bbox_to_anchor=f(30,45,10), bbox_transform=ax.transData) # for test3 # ax.legend(list(partitionInfo.keys()), loc="upper right", bbox_to_anchor=f(50,45,6), bbox_transform=ax.transData) # for test5 ax.legend(list(partitionInfo.keys()), loc="upper right", bbox_to_anchor=f(65,45,4), bbox_transform=ax.transData) # for showResult_GBMTest5 # ax.legend(list(partitionInfo.keys())) # Each plot represents a compartment and shows distribution of different time steps (one color for each) # Terminating pressures distribution per compartment(5)_Same flow_All CoW branches fixed # Terminating pressures distribution per compartment(5)_Same flow_LICA RICA VA fixed # Terminating pressures distribution per compartment(5)_Split flow with radius_All CoW branches fixed # Terminating pressures distribution per compartment(5)_Split flow with radius_LICA RICA VA fixed elif option == 3: fig = plt.figure(figIndex, figsize=(9, 8)) plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.5) subplotIndex = 1 G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nbins = 10 colorList = ['r', 'g', 'b', 'y', 'c', 'm'] colorDict = {'LMCA': 'r', 'RMCA': 'g', 'LPCA': 'b', 'RPCA': 'y', 'ACA': 'c'} ax = fig.add_subplot(1,1,subplotIndex, projection='3d') partitionCounter = 0 for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] data = [] for currentTimeStep in range(numOfTimeSteps): terminatingPressuresAtThisTimeStep = [terminatingPressuresTimeStepArray[terminatingNodes.index(node), currentTimeStep] for node in terminatingNodesInThisPartition] data.append(terminatingPressuresAtThisTimeStep) # Bar plot (still is histogram) hist, bins = np.histogram(terminatingPressuresAtThisTimeStep, bins=nbins) xs = (bins[:-1] + bins[1:])/2 color = colorList[currentTimeStep] # if partitionName != 'LMCA': # continue ax.bar(xs, hist, zs=partitionCounter*10, zdir='y', color=color, ec=color, alpha=0.8) ax.set_xlabel('Terminating Pressure (mmHg)') ax.set_ylabel('Compartment') ax.set_zlabel('Count') partitionCounter += 1 subplotIndex += 1 if isLastFigure: plt.show() def plotFlow(self, flowTimeStepArray, option=1, figIndex=1, isLastFigure=True): """ Plot the flow to each of the compartments. """ partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}} timestepList = [] numOfTimeSteps = flowTimeStepArray.shape[1] fig = plt.figure(figIndex, figsize=(8, 3)) plt.subplots_adjust(left=0.10, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) # Total flow vs Time steps(5)_Split flow with radius_All CoW branches fixed_Compartment(5)_Single row # Total flow vs Time steps(5)_Split flow with radius_LICA RICA VA fixed_Compartment(5)_Single row subplotIndex = 1 ax = fig.add_subplot(1,1,subplotIndex) ax.set_xlabel('Time step') # ax.set_ylabel(r'Flow ($\mathrm{cm}^3 /s$)') ax.set_ylabel('Percentage of flow change (%)') for partitionName in ['LMCA', 'RMCA', 'LPCA', 'RPCA', 'ACA', 'Left', 'Right']: if partitionName == 'LMCA': flowValues = flowTimeStepArray[8, :] / flowTimeStepArray[8, 0] * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) print('LMCA flow: {}'.format(flowValues)) elif partitionName == 'RMCA': flowValues = flowTimeStepArray[10, :] / flowTimeStepArray[10, 0] * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) elif partitionName == 'LPCA': flowValues = flowTimeStepArray[5, :] / flowTimeStepArray[5, 0] * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) print('LPCA flow: {}'.format(flowValues)) elif partitionName == 'RPCA': flowValues = flowTimeStepArray[6, :] / flowTimeStepArray[6, 0] * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) print('RPCA flow: {}'.format(flowValues)) elif partitionName == 'ACA': flowValues = flowTimeStepArray[20, :] / flowTimeStepArray[20, 0] * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) elif partitionName == 'Left': flowValues = (flowTimeStepArray[8, :] + flowTimeStepArray[5, :]) / (flowTimeStepArray[8, 0] + flowTimeStepArray[5, 0]) * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) elif partitionName == 'Right': flowValues = (flowTimeStepArray[10, :] + flowTimeStepArray[6, :]) / (flowTimeStepArray[10, 0] + flowTimeStepArray[6, 0]) * 100 - 100 timeStepValues = list(range(numOfTimeSteps)) # ax = fig.add_subplot(1,1,subplotIndex) ax.plot(timeStepValues, flowValues, 'o-', label=partitionName) print('{}: {}% change in flow at 2013'.format(partitionName, np.round(flowValues[-1], 2))) ax.set_xticks(list(range(numOfTimeSteps))) ax.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=7) if isLastFigure: plt.show() def plotRootPressuresCompartment(self, nodePressuresTimeStepArray, option=1, figIndex=1, isLastFigure=True): """ Plot the root pressures of each compartment over time. Root pressure per compartment_Split flow with radius_All CoW branches fixed Root pressure per compartment_Split flow with radius_LICA RICA VA fixed Root pressure per compartment_Same flow_LICA RICA VA fixed """ partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} numOfTimeSteps = nodePressuresTimeStepArray.shape[1] fig = plt.figure(figIndex, figsize=(6, 3)) plt.subplots_adjust(left=0.10, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) subplotIndex = 1 ax = fig.add_subplot(1,1,subplotIndex) ax.set_xlabel('Time step') ax.set_ylabel('Root pressure (mmHg)') for partitionName in ['LMCA', 'RMCA', 'LPCA', 'RPCA', 'ACA']: rootNode = partitionInfo[partitionName]['startNodes'][0] rootPressures = nodePressuresTimeStepArray[rootNode, :] timeStepValues = list(range(numOfTimeSteps)) print(rootPressures) ax.plot(timeStepValues, rootPressures, 'o-', label=partitionName) ax.set_xticks(list(range(numOfTimeSteps))) ax.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=5) if isLastFigure: plt.show() def plotTerminatingPressureVSPathLength(self, terminatingNodes, terminatingPressuresTimeStepArray, option=1, figIndex=1, isLastFigure=True): """ Scatter plot of terminating pressure vs path length. """ G = self.G edgeList = self.edgeList nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict edgeIndexList = self.edgeIndexList spacing = self.spacing directory = self.directory partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10], 'color': 'r'}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10], 'color': 'g'}, 'LPCA': {'startNodes': [6], 'boundaryNodes': [], 'color': 'b'}, 'RPCA': {'startNodes': [7], 'boundaryNodes': [], 'color': 'y'}, 'ACA': {'startNodes': [10], 'boundaryNodes': [], 'color': 'c'}} if option == 1: pass elif option == 2: pass elif option == 3: pass terminatingPressureVSPathLength = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} terminatingNodesPerPartition = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingNodesPerPartition[partitionName] = terminatingNodesInThisPartition terminatingPressuresInThisPartition = [] for terminatingNode in terminatingNodesInThisPartition: path = nx.shortest_path(G, startNodes[0], terminatingNode) pathEdgeIndexList = [G[path[ii]][path[ii + 1]]['edgeIndex'] for ii in range(len(path) - 1)] uniquePathEdgeIndexList = np.unique(pathEdgeIndexList) assert len(uniquePathEdgeIndexList) != 0 pathLength = np.sum([edgeInfoDict[edgeIndex]['length'] * spacing * 1000 for edgeIndex in uniquePathEdgeIndexList]) # millimeter pressure = nodeInfoDict[terminatingNode]['simulationData']['pressure'] / 13560 / 9.8 * 1000 # mmHg terminatingPressureVSPathLength[partitionName].append([pathLength, pressure]) nodeInfoDict[terminatingNode]['pathLength'] = pathLength nodeInfoDict[terminatingNode]['partitionName'] = partitionName terminatingNodesPathLengthList = [nodeInfoDict[node]['pathLength'] for node in terminatingNodes] fig = plt.figure(figIndex, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) numOfTimeSteps = np.shape(terminatingPressuresTimeStepArray)[1] for currentTimeStep in range(0, numOfTimeSteps): ax = fig.add_subplot(1,5,currentTimeStep+1) for partitionName, info in partitionInfo.items(): terminatingNodesInThisPartition = terminatingNodesPerPartition[partitionName] pathLengthList = [nodeInfoDict[node]['pathLength'] for node in terminatingNodesInThisPartition] pressureList = [terminatingPressuresTimeStepArray[terminatingNodes.index(node), currentTimeStep] for node in terminatingNodesInThisPartition] color = info['color'] ax.scatter(pathLengthList, pressureList, c=color, label=partitionName) ax.legend(prop={'size': 6}) ax.set_xlabel('Path length (mm)') ax.set_ylabel('Terminating pressure (mmHg)') ax.set_title('Timestep={}'.format(currentTimeStep)) if isLastFigure: plt.show() def plotFlowProportion(self, flowTimeStepArray, figIndex=1, isLastFigure=True): """ """ numOfTimeSteps = flowTimeStepArray.shape[1] # Flow proportions_GBMTest5 fig = plt.figure(figIndex, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) # incomingFlowInfo_GBMTest5 ax = fig.add_subplot(1,5,1) edgeNameList = ['LICA', 'VA', 'RICA'] # corresponds to edgeIndex=0/1/2 for edgeIndex in [0,1,2]: xValues = list(range(numOfTimeSteps)) yValues = flowTimeStepArray[edgeIndex, :] / np.sum(flowTimeStepArray[:3, :], axis=0) ax.plot(xValues, yValues, 'o-', label=edgeNameList[edgeIndex]) ax.set_xlabel('Time step') ax.set_xticks(xValues) ax.set_xticklabels(['T{}'.format(ii) for ii in xValues]) ax.set_ylabel('Flow proportion') ax.legend() ax = fig.add_subplot(1,5,2) partitionProportionTimeStepDict = {'LMCA': [], 'RMCA': [], 'LPCA': [], 'RPCA': [], 'ACA': []} partitionProportionTimeStepDict['LMCA'] = flowTimeStepArray[8, :] / flowTimeStepArray[3, :] partitionProportionTimeStepDict['RMCA'] = flowTimeStepArray[10, :] / (flowTimeStepArray[4, :] + flowTimeStepArray[7, :]) partitionProportionTimeStepDict['LPCA'] = flowTimeStepArray[5, :] / flowTimeStepArray[1, :] partitionProportionTimeStepDict['RPCA'] = flowTimeStepArray[6, :] / flowTimeStepArray[1, :] partitionProportionTimeStepDict['ACA'] = flowTimeStepArray[20, :] / (flowTimeStepArray[9, :] + flowTimeStepArray[11, :]) for partitionName, proportionList in partitionProportionTimeStepDict.items(): xValues = list(range(numOfTimeSteps)) yValues = proportionList ax.plot(xValues, yValues, 'o-', label=partitionName) ax.set_xlabel('Time step') ax.set_xticks(xValues) ax.set_xticklabels(['T{}'.format(ii) for ii in xValues]) ax.set_ylabel(r'Compartment flow proportion') ax.legend(prop={'size': 6}) # ax.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=5, prop={'size': 6}) ax = fig.add_subplot(1,5,3) xValues = list(range(numOfTimeSteps)) yValues = np.sum(flowTimeStepArray[:3, :], axis=0) * 10**6 ax.plot(xValues, yValues, 'o-') ax.set_xlabel('Time step') ax.set_xticks(xValues) ax.set_xticklabels(['T{}'.format(ii) for ii in xValues]) ax.set_ylabel(r'Total flow rate ($\mathrm{cm}^3/s$)') ax = fig.add_subplot(1,5,4) xValues = list(range(numOfTimeSteps)) edgeNameDict = {0: 'LICA', 1: 'VA', 2: 'RICA', 4: 'RPCA Comm', 9: 'LM', 11: 'RM', 8: 'LMCA', 20: 'ACA', 10: 'RMCA', 5: 'LPCA', 6: 'RPCA'} from matplotlib.cm import get_cmap name = "tab20" cmap = get_cmap(name) # type: matplotlib.colors.ListedColormap colors = cmap.colors # type: list ax.set_prop_cycle(color=colors) for edgeIndex, edgeName in edgeNameDict.items(): yValues = flowTimeStepArray[edgeIndex, :] * 10**6 ax.plot(xValues, yValues, 'o-', label=edgeName) ax.set_xlabel('Time step') ax.set_xticks(xValues) ax.set_xticklabels(['T{}'.format(ii) for ii in xValues]) ax.set_ylabel(r'Flow rate ($\mathrm{cm}^3/s$)') # ax.legend(prop={'size': 6}) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # ax.legend(bbox_to_anchor=(1.01, 1), loc='upper left') if isLastFigure: plt.show() def BFSTest(self): """ Test BFS function, and plot radius vs graph level for each compartment GBM_BraVa distribution_Radius vs Graph level_Compartment(5)_Full range_Single row """ partitionInfo = {'LMCA': {'startNodes': [5], 'boundaryNodes': [13]}, 'RMCA': {'startNodes': [6], 'boundaryNodes': [13]}, 'LPCA': {'startNodes': [4], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [13], 'boundaryNodes': []}} partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) # edgeIndexList = self.edgeIndexList # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,4,7,12]} # self.perturbNetwork(option=2, extraInfo=extraInfo) # self.setNetwork(option=2) # fig = plt.figure(1, figsize=(15, 8)) # plt.subplots_adjust(left=0.06, right=0.94, top=0.94, bottom=0.06, wspace=0.3, hspace=0.3) fig = plt.figure(11, figsize=(15, 3)) plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) subplotIndex = 1 nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict spacing = self.spacing for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) print('{}:\nvisitedNodes={}\nvisitedEdges={}'.format(partitionName, visitedNodes, visitedEdges)) ax = fig.add_subplot(1,5,subplotIndex) dictUsed = edgeInfoDict attribute1, attribute2, attribute3 = 'segmentLevel', 'meanRadius', 'partitionName' attribute1List = [edgeInfoDict[edgeIndex]['depth'] for edgeIndex in visitedEdges] attribute2List = [edgeInfoDict[edgeIndex]['meanRadius']*spacing*1000 for edgeIndex in visitedEdges] # attribute1List = [info[attribute1] for _, info in dictUsed.items() if attribute1 in info and attribute2 in info and attribute3 in info and info[attribute3] in partitionNames] # attribute2List = [info[attribute2]*spacing*1000 for _, info in dictUsed.items() if attribute1 in info and attribute2 in info and attribute3 in info and info[attribute3] in partitionNames] # mm # ax.plot(attribute1List, attribute2List, 'bo') positions = np.sort(np.unique(attribute1List)) values = [] attribute1Array, attribute2Array = np.array(attribute1List), np.array(attribute2List) for segmentLevel in positions: locs = np.nonzero(attribute1Array == segmentLevel)[0] values.append((attribute2Array[locs]).tolist()) mf.boxPlotWithWhiskers(values, ax, positions=positions, whis='range', xlabel='Graph level', ylabel='Radius (mm)') ax.set_xlabel('Graph level') ax.set_ylabel('Radius (mm)') ax.set_title(partitionName) subplotIndex += 1 # if partitionName == 'LPCA': # print(sorted(attribute2List)) plt.show() def examineFluidResult(self): """ Examine the result obtained by solving the network. """ start_time = timeit.default_timer() functionName = inspect.currentframe().f_code.co_name resultDict = {'referenceYear': {}, 'perturbedYear': {}} self.loadNetwork(version=4, year='BraVa') self.convertNetowrk() self.adjustNetwork() self.setNetwork(option=2) self.createGroundTruth(option=2) loadFileName = 'fluidSimulationResultGBMTest2(referenceYear=BraVa, perturbedYear=2013, perturbTerminatingPressureOption=1).pkl' _, _, _, resultDict = self.loadFluidResult(loadFileName, return_ResultDict=True) self.nodeInfoDict = resultDict['referenceYear']['nodeInfoDict'] self.edgeInfoDict = resultDict['referenceYear']['edgeInfoDict'] partitionInfo = {'LMCA': {'startNodes': [4], 'boundaryNodes': [10]}, 'RMCA': {'startNodes': [5], 'boundaryNodes': [10]}, 'LPCA': {'startNodes': [6], 'boundaryNodes': []}, 'RPCA': {'startNodes': [7], 'boundaryNodes': []}, 'ACA': {'startNodes': [10], 'boundaryNodes': []}} terminatingNodes = {'LMCA': [], 'RMCA': [], 'ACA': [], 'LPCA': [], 'RPCA': []} terminatingPressures = {'LMCA': [], 'RMCA': [], 'ACA': [], 'LPCA': [], 'RPCA': []} G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict for partitionName, info in partitionInfo.items(): startNodes, boundaryNodes = itemgetter('startNodes', 'boundaryNodes')(info) resultDict = self.BFS(startNodes, boundaryNodes) visitedNodes, visitedEdges = itemgetter('visitedNodes', 'visitedEdges')(resultDict) terminatingNodesInThisPartition = [node for node in visitedNodes if G.degree(node) == 1 and nodeInfoDict[node]['depth'] != 0] terminatingNodes[partitionName] = terminatingNodesInThisPartition terminatingPressuresInThisPartition = [nodeInfoDict[node]['simulationData']['pressure']/13560/9.8*1000 for node in terminatingNodesInThisPartition] terminatingPressures[partitionName].append(terminatingPressuresInThisPartition) # GBM reference flow_BraVa time step_Ground truth option=2 G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Pressure (mmHg)', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': r'Flow rate ($\mathrm{cm}^3/s$)', 'figTitle': 'GBM Reference (BraVa)'} # TP->terminating pressure self.plotNetwork(infoDict, figIndex=1, isLastFigure=False) # Manually perturb the network # extraInfo = {'perturbedYear': 2013, 'excludedEdgeIndex': [0,1,2,3,7]} self.perturbNetwork(option=2, extraInfo=extraInfo) self.setNetwork(option=2) # Load result loadFileName = 'fluidSimulationResultGBMTest2(referenceYear=BraVa, perturbedYear=2013, perturbTerminatingPressureOption=1).pkl' nodeInfoDictPerturbed, edgeInfoDictPerturbed, velocityPressurePerturbed = self.loadFluidResult(loadFileName) self.nodeInfoDict = nodeInfoDictPerturbed self.edgeInfoDict = edgeInfoDictPerturbed self.setupFluidEquations() self.validateFluidEquations(velocityPressure=velocityPressurePerturbed) for partitionName, info in partitionInfo.items(): terminatingNodesInThisPartition = terminatingNodes[partitionName] terminatingPressuresInThisPartition = [self.nodeInfoDict[node]['simulationData']['pressure']/13560/9.8*1000 for node in terminatingNodesInThisPartition] terminatingPressures[partitionName].append(terminatingPressuresInThisPartition) # GBM fluid solution_GBMTest2(referenceYear=BraVa, perturbedYear=2013, perturbTerminatingPressureOption=1) G = self.G nodeInfoDict = self.nodeInfoDict edgeInfoDict = self.edgeInfoDict nodeLabelDict = {node: np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()} # ground truth pressure in mmHg nodeValueList = [np.round(nodeInfoDict[node]['simulationData']['pressure'] / 13560 / 9.8 * 1000, 1) for node in G.nodes()] # ground truth pressure in mmHg edgeLabelDict = {edge: np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()} # ground truth flow in cm^3/s edgeValueList = [np.round(edgeInfoDict[G[edge[0]][edge[1]]['edgeIndex']]['simulationData']['flow']*10**6, 2) for edge in G.edges()] # ground truth flow in cm^3/s infoDict = {'nodeLabelDict': nodeLabelDict, 'nodeValueList': nodeValueList, 'nodeColorbarLabel': 'Pressure (mmHg)', 'edgeLabelDict': edgeLabelDict, 'edgeValueList': edgeValueList, 'edgeColorbarLabel': r'Flow rate ($\mathrm{cm}^3/s$)', 'figTitle': 'GBM {}'.format(extraInfo['perturbedYear'])} # TP->terminating pressure self.plotNetwork(infoDict, figIndex=3, isLastFigure=False) # GBM terminating pressure distribution per compartment(referenceYear=BraVa, perturbedYear=2013, perturbTerminatingPressureOption=1) self.plotTerminatingPressures(figIndex=11, isLastFigure=True) # fig = plt.figure(20, figsize=(15, 3)) # 1*5 figure # plt.subplots_adjust(left=0.05, right=0.96, top=0.90, bottom=0.15, wspace=0.3, hspace=0.4) # subplotIndex = 1 # for partitionName, info in partitionInfo.items(): # pressures = terminatingPressures[partitionName] # ax = fig.add_subplot(1,5,subplotIndex) # ax.hist(pressures, bins=10) # ax.set_xlabel('Terminating pressure (mmHg)') # ax.set_ylabel('Count') # ax.set_title(partitionName) # ax.legend(['BraVa', '2013']) # subplotIndex += 1 elapsed = timeit.default_timer() - start_time print('Elapsed time for function {}: {} sec'.format(functionName, elapsed)) # plt.show() def computeNetworkDetail(args, eqnInfoDictList, method='HW', errorNorm=0, extraInfo=None): """ Given a network, the inlet pressure and all the terminating pressure, find the velocity/pressure of the remaining branches/nodes. """ rouBlood = 1050 # kg/m^3 rouMercury = 13560 # kg/m^3 g = 9.8 # m/s^2 rougBlood = rouBlood * g # f in D-W equation = 64/Re = 64/(vD/nu) = 64*nu/(v*D) where nu is kinematic viscosity, D is diameter # nu for blood is 2.6e-6 m^2/s eqnList, eqnFlowList, eqnPressureList, eqnBoundaryList = [], [], [], [] for eqnInfoDict in eqnInfoDictList: eqnType = eqnInfoDict['type'] if eqnType == 'flow': velocityInIndexList, radiusInList = eqnInfoDict['velocityInIndexList'], eqnInfoDict['radiusInList'] velocityOutIndexList, radiusOutList = eqnInfoDict['velocityOutIndexList'], eqnInfoDict['radiusOutList'] velocityInList = [args[velocityIndex] for velocityIndex in velocityInIndexList] velocityOutList = [args[velocityIndex] for velocityIndex in velocityOutIndexList] QIn = np.sum([np.abs(velocity) * np.pi * radius**2 for velocity, radius in zip(velocityInList, radiusInList)]) QOut = np.sum([np.abs(velocity) * np.pi * radius**2 for velocity, radius in zip(velocityOutList, radiusOutList)]) eqn = np.abs(QIn - QOut) eqnFlowList.append(eqn) elif eqnType == 'pressure': radius, length, velocityIndex, c, k, edgeIndex = itemgetter('radius', 'length', 'velocityIndex', 'c', 'k', 'edgeIndex')(eqnInfoDict) velocity = np.abs(args[velocityIndex]) if 'pressure' in eqnInfoDict['headPressureInfo']: headPressure = eqnInfoDict['headPressureInfo']['pressure'] elif 'pressureIndex' in eqnInfoDict['headPressureInfo']: pressureIndex = eqnInfoDict['headPressureInfo']['pressureIndex'] headPressure = args[pressureIndex] if 'pressure' in eqnInfoDict['tailPressureInfo']: tailPressure = eqnInfoDict['tailPressureInfo']['pressure'] elif 'pressureIndex' in eqnInfoDict['tailPressureInfo']: pressureIndex = eqnInfoDict['tailPressureInfo']['pressureIndex'] tailPressure = args[pressureIndex] if method == 'HW': deltaPressureByNode = headPressure - tailPressure deltaPressureByHW = 10.67 * (velocity * np.pi * radius**2)**k * length / c**k / (2 * radius)**4.8704 if
np.isnan(deltaPressureByHW)
numpy.isnan
# RAiSERHD module # <NAME>, 23 Feb 2022 # import packages import h5py import numpy as np import pandas as pd import time as ti import os, warnings from astropy import constants as const from astropy import units as u from astropy.convolution import convolve, Gaussian2DKernel from astropy.cosmology import FlatLambdaCDM from astropy.io import fits from astropy import wcs from copy import copy from matplotlib import pyplot as plt from matplotlib import cm, rc from matplotlib.colors import LogNorm from matplotlib.ticker import FormatStrFormatter, NullFormatter, LogLocator from numba import jit from scipy.optimize import least_squares from scipy.special import gamma, zeta ## Define global variables that can be adjusted to customise model output # basic constants year = 365.2422*24*3600 # average year in seconds maverage = (0.6*const.m_p.value) # kg average particle mass hubble = 0.7 # dimensionless Hubble parameter OmegaM = 0.27 # fraction of matter in the flat universe OmegaD = 0.73 # fraction of dark energy in the flat universe freq_cmb = 5.879e10 # frequency of cosmic microwave background at z = 0 temp_cmb = 2.725 # temperature of cosmic microwave background at z = 0 c_speed = const.c.value # speed of light e_charge = const.e.value # electron charge k_B = const.k_B.value # Boltzmann constant m_e = const.m_e.value # electron mass mu0 = const.mu0.value # vacuum permeability sigma_T = const.sigma_T.value # electron scattering cross-section # model parameters that can be optimised for efficiency nangles = 16 # number of angles to calculate expansion rate along (must be greater than 1) betaRegions = 64 # set maximum number of beta regions limTime = (year) # the FR-II limit must be used before this time stepRatio = 1.01 # ratio to increase time/radius crit_age = 0.95 # fraction of source age for lower end of power law approximations lambda_min = 1e-256 # minimum value of Lambda for computational efficiency # shocked gas and lobe parameters chi = 2*np.pi/3.0 # lobe geometry parameter shockAxisRatio = 0.5875 # exponent relating the cocoon axis ratio to the shocked gas axis ratio shockRadius = 1.072 # fraction of the radius the shocked gas is greater than the lobe gammaX = (5./3) # lorentz factor of external gas gammaJ = (4./3) # lorentz factor of jet plasma # set electron energy distribution constants Lorentzmin = 780. # minimum Lorentz factor of injected electrons AT HOTSPOT for Cygnus A Lorentzmax = 1e6 # effectively infinity # density and temperature profiles rCutoff = 0.01 # minimum radius to match profiles as a fraction of r200 betaMax = 2 # set critical value above which the cocoon expands balistically # average and standard deviation of Vikhlinin model parameters alphaAvg = 1.64 # corrected for removal of second core term alphaStdev = 0.30 betaPrimeAvg = 0.56 betaPrimeStdev = 0.10 gammaPrimeAvg = 3 gammaPrimeStdev = 0 epsilonAvg = 3.23 epsilonStdev = 0 # 1.93; this parameter has little effect on profile rCoreAvg = 0.087 # this is ratio of rc to r200 rCoreStdev = 0.028 rSlopeAvg = 0.73 # this is ratio of rs to r200 rSlopeStdev = 0 # 0.39; this parameter has little effect on profile # temperature parameters TmgConst = (-2.099) TmgSlope = 0.6678 TmgError = 0.0727 # new temperature parameters assuming heating from AGN during expansion TmgAvg = 7.00 TmgStdev = 0.28 # approximate halo to gas fraction conversion # for halo masses between 10^12 and 10^15 and redshifts 0 < z < 5 halogasfracCONST1z0 = (-0.881768418) halogasfracCONST1z1 = (-0.02832004) halogasfracCONST2z0 = (-0.921393448) halogasfracCONST2z1 = 0.00064515 halogasfracSLOPE = 0.053302276 # uncertainties, in dex dhalogasfracz0 = 0.05172769 dhalogasfracz1 = (-0.00177947) # correction to SAGE densities SAGEdensitycorr = (-0.1) ## Define functions for run-time user output def __join(*values): return ";".join(str(v) for v in values) def __color_text(s, c, base=30): template = '\x1b[{0}m{1}\x1b[0m' t = __join(base+8, 2, __join(*c)) return template.format(t, s) class Colors: DogderBlue = (30, 144, 255) Green = (0,200,0) Orange = (255, 165, 0) ## Define main function to run RAiSE HD def RAiSE_run(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5, equipartition=-1.5, spectral_index=0.7, gammaCValue=5./3, lorentz_min=Lorentzmin, brightness=True, angle=0., resolution='standard', seed=None, aj_star=0.231, jet_angle=0.686, axis_exponent=0.343, fill_factor=0.549): # record start time of code start_time = ti.time() # function to test type of inputs and convert type where appropriate if nangles <= 1: raise Exception('Private variable nangles must be greater than 1.') frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons = __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz) # download and pre-process particles from hydrodynamical simulation if not resolution == None: print(__color_text('Reading particle data from file.', Colors.Green)) time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio = __PLUTO_particles('RAiSE_particles.hdf5') # set seed for quasi-random profiles if not seed == None: __set_seed(seed) # create folder for output files if not present if not os.path.exists('LDtracks'): os.mkdir('LDtracks') if not resolution == None: print(__color_text('Running RAiSE dynamics and emissivity.', Colors.Green)) else: print(__color_text('Running RAiSE dynamics.', Colors.Green)) for i in range(0, len(redshift)): for j in range(0, len(axis_ratio)): for k in range(0, len(jet_power)): for l in range(0, nenvirons): for m in range(0, len(active_age)): for n in range(0, len(equipartition)): for o in range(0, len(jet_lorentz)): # set correct data types for halo mass and core density if isinstance(halo_mass, (list, np.ndarray)): new_halo_mass = halo_mass[l] else: new_halo_mass = halo_mass if isinstance(rho0Value, (list, np.ndarray)): new_rho0Value = rho0Value[l] new_temperature = temperature[l] new_betas = betas[l] new_regions = regions[l] else: new_rho0Value = rho0Value new_temperature = temperature new_betas = betas new_regions = regions # calculate dynamical evolution of lobe and shocked shell using RAiSE dynamics lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda = __RAiSE_environment(redshift[i], axis_ratio[j], jet_power[k], source_age, halo_mass=new_halo_mass, rand_profile=rand_profile, rho0Value=new_rho0Value, regions=new_regions, betas=new_betas, temperature=new_temperature, active_age=active_age[m], jet_lorentz=jet_lorentz[o], gammaCValue=gammaCValue, aj_star=aj_star, jet_angle=jet_angle, axis_exponent=axis_exponent, fill_factor=fill_factor) # calculate synchrotron emission from lobe using particles and RAiSE model if not resolution == None: location, luminosity, magnetic_field = __RAiSE_emissivity(frequency, redshift[i], time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, source_age, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, active_age[m], equipartition[n], spectral_index, gammaCValue=gammaCValue, lorentz_min=lorentz_min, resolution=resolution) # create pandas dataframe for integrated emission df = pd.DataFrame() df['Time (yrs)'] = 10**np.asarray(source_age).astype(np.float_) df['Size (kpc)'] = 2*lobe_lengths[0,:]/const.kpc.value df['Pressure (Pa)'] = shock_pressures[0,:] df['Axis Ratio'] = lobe_lengths[0,:]/lobe_lengths[-1,:] if not resolution == None: for q in range(0, len(frequency)): if frequency[q] > 0: df['B{:.2f} (T)'.format(frequency[q])] = magnetic_field[:,q] df['L{:.2f} (W/Hz)'.format(frequency[q])] = np.nansum(luminosity[:,:,q], axis=1) # write data to file if isinstance(rho0Value, (list, np.ndarray)): df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i]), index=False) elif isinstance(halo_mass, (list, np.ndarray)): df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i]), index=False) else: raise Exception('Either the halo mass or full density profile must be provided as model inputs.') # calculate brightness per pixel across the source if brightness == True and not resolution == None: x_values, y_values, brightness_list = __RAiSE_brightness_map(frequency, redshift[i], source_age, lobe_lengths, location, luminosity, angle, resolution=resolution) for p in range(0, len(source_age)): for q in range(0, len(frequency)): # create pandas dataframe for spatially resolved emission if isinstance(x_values[p][q], (list, np.ndarray)): df = pd.DataFrame(index=x_values[p][q]/const.kpc.value, columns=y_values[p][q]/const.kpc.value, data=brightness_list[p][q]) # write surface brightness map to file if isinstance(rho0Value, (list, np.ndarray)): if frequency[q] > 0: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), header=True, index=True) else: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], source_age[p], resolution), header=True, index=True) elif isinstance(halo_mass, (list, np.ndarray)): if frequency[q] > 0: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), header=True, index=True) else: df.to_csv('LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], source_age[p], resolution), header=True, index=True) else: raise Exception('Either the halo mass or full density profile must be provided as model inputs.') else: if isinstance(rho0Value, (list, np.ndarray)): warnings.warn('The following file was not created as no emission is present: LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), np.abs(np.log10(rho0Value[l])), jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), category=UserWarning) elif isinstance(halo_mass, (list, np.ndarray)): warnings.warn('The following file was not created as no emission is present: LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}_{:s}.csv'.format(axis_ratio[j], np.abs(equipartition[n]), halo_mass[l], jet_power[k], 2*np.abs(spectral_index) + 1, active_age[m], jet_lorentz[o], redshift[i], frequency[q], source_age[p], resolution), category=UserWarning) else: raise Exception('Either the halo mass or full density profile must be provided as model inputs.') # print total run time to screen print(__color_text('RAiSE completed running after {:.2f} seconds.'.format(ti.time() - start_time), Colors.Green)) # Define function to test type of inputs and convert type where appropriate def __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz): # convert redshift, axis ratio and jet power to correct data types if not isinstance(frequency, (list, np.ndarray)): frequency = [frequency] for i in range(0, len(frequency)): if not isinstance(frequency[i], (int, float)): raise Exception('Frequency must be provided as a float or list/array of floats in units of log10 Hertz.') else: if frequency[i] <= 0: frequency[i] = -1. warnings.warn('Pressure map will be produced instead of surface brightness image.', category=UserWarning) elif not (5 < frequency[i] and frequency[i] < 20): raise Exception('Frequency must be provided as a float or list/array of floats in units of log10 Hertz.') if not isinstance(redshift, (list, np.ndarray)): redshift = [redshift] for i in range(0, len(redshift)): if not isinstance(redshift[i], (int, float)) or not (0 < redshift[i] and redshift[i] < 20): raise Exception('Redshift must be provided as a float or list/array of floats.') if not isinstance(axis_ratio, (list, np.ndarray)): axis_ratio = [axis_ratio] for i in range(0, len(axis_ratio)): if not isinstance(axis_ratio[i], (int, float)) or not (1 <= axis_ratio[i] and axis_ratio[i] < 20): raise Exception('Axis ratio must be provided as a float or list/array of floats and be greater than 1.') if not isinstance(jet_power, (list, np.ndarray)): jet_power = [jet_power] for i in range(0, len(jet_power)): if not isinstance(jet_power[i], (int, float)) or not (33 < jet_power[i] and jet_power[i] < 46): raise Exception('Jet power must be provided as a float or list/array of floats in units of log10 Watts.') if not isinstance(source_age, (list, np.ndarray)): source_age = [source_age] for i in range(0, len(source_age)): if not isinstance(source_age[i], (int, float)) or not (0 <= source_age[i] and source_age[i] <= 10.14): raise Exception('Source age must be provided as a float or list/array of floats in units of log10 years.') else: source_age[i] = float(source_age[i]) if not isinstance(active_age, (list, np.ndarray)): active_age = [active_age] for i in range(0, len(active_age)): if not isinstance(active_age[i], (int, float)) or not (0 <= active_age[i] and active_age[i] <= 10.14): raise Exception('Active age must be provided as a float or list/array of floats in units of log10 years.') if not isinstance(equipartition, (list, np.ndarray)): equipartition = [equipartition] for i in range(0, len(equipartition)): if not isinstance(equipartition[i], (int, float)) or not (-6 < equipartition[i] and equipartition[i] < 6): raise Exception('Equipartition factor must be provided as a float or list/array of floats in units of log10.') if not isinstance(jet_lorentz, (list, np.ndarray)): jet_lorentz = [jet_lorentz] for i in range(0, len(jet_lorentz)): if not isinstance(jet_lorentz[i], (int, float)) or not (-100 <= jet_lorentz[i] and jet_lorentz[i] < 20): raise Exception('Jet bulk lorentz factor factor must be provided as a float or list/array of floats.') elif (-100 <= jet_lorentz[i] and jet_lorentz[i] <= 1): jet_lorentz[i] = 0 warnings.warn('Jet phase will not be included in this simulation.', category=UserWarning) # convert environment to correct data types if not isinstance(halo_mass, (list, np.ndarray)) and not halo_mass == None: halo_mass = [halo_mass] nenvirons_halo = len(halo_mass) elif not halo_mass == None: nenvirons_halo = len(halo_mass) if isinstance(halo_mass, (list, np.ndarray)): for i in range(0, len(halo_mass)): if not isinstance(halo_mass[i], (int, float)) or not (9 < halo_mass[i] and halo_mass[i] < 17): raise Exception('Dark matter halo mass must be provided as a float or list/array of floats in units of log10 stellar mass.') if not isinstance(rho0Value, (list, np.ndarray)) and not rho0Value == None: rho0Value = [rho0Value] nenvirons_rho = len(rho0Value) elif not rho0Value == None: nenvirons_rho = len(rho0Value) if isinstance(rho0Value, (list, np.ndarray)): if not isinstance(temperature, (list, np.ndarray)) and not temperature == None: temperature = [temperature]*nenvirons_rho elif temperature == None or not len(temperature) == nenvirons_rho: rho0Value = None # full density profile not provided if isinstance(betas, (list, np.ndarray)) and not isinstance(betas[0], (list, np.ndarray)): betas = [betas]*nenvirons_rho elif not isinstance(betas, (list, np.ndarray)) and not betas == None: betas = [[betas]]*nenvirons_rho elif betas == None or not len(betas) == nenvirons_rho: rho0Value = None # full density profile not provided if isinstance(regions, (list, np.ndarray)) and not isinstance(regions[0], (list, np.ndarray)): regions = [regions]*nenvirons_rho elif not isinstance(regions, (list, np.ndarray)) and not betas == None: regions = [[regions]]*nenvirons_rho elif regions == None or not len(regions) == nenvirons_rho: rho0Value = None # full density profile not provided if isinstance(rho0Value, (list, np.ndarray)): nenvirons = nenvirons_rho for i in range(0, len(rho0Value)): if not isinstance(rho0Value[i], (int, float)) or not (1e-30 < rho0Value[i] and rho0Value[i] < 1e-15): raise Exception('Core gas density must be provided as a float or list/array of floats in units of kg/m^3.') for i in range(0, len(temperature)): if not isinstance(temperature[i], (int, float)) or not (0 < temperature[i] and temperature[i] < 1e12): raise Exception('Gas temperature must be provided as a float or list/array of floats in units of Kelvin.') else: nenvirons = nenvirons_halo return frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons # Define random seed function @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __set_seed(value): np.random.seed(value) ## Define functions for analytic modelling of the environment # function to calculate properties of the environment and call RAiSE_evolution def __RAiSE_environment(redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5., gammaCValue=5./3, aj_star=0.231, jet_angle=0.686, axis_exponent=0.343, fill_factor=0.549): # check minimal inputs if halo_mass == None and (not isinstance(betas, (list, np.ndarray)) or not isinstance(regions, (list, np.ndarray))): raise Exception('Either the halo mass or full density profile must be provided as model inputs.') # calculate gas mass and virial radius of halo unless density and temperature profile fully specified gasfraction = 0 if not halo_mass == None: rVir = (10**halo_mass*const.M_sun.value/(100./const.G.value*(100.*hubble*np.sqrt(OmegaM*(1 + redshift)**3 + OmegaD)/const.kpc.value)**2))**(1./3) if rand_profile == False: gasfraction = __HalogasfracFunction(halo_mass, redshift) else: gasfraction = __rand_norm(__HalogasfracFunction(halo_mass, redshift), __dHalogasfracFunction(halo_mass, redshift)) gasMass = 10**(halo_mass + gasfraction)*const.M_sun.value # approximate the gas density profile of Vikhlinin 2006 by multiple density profiles with a simple beta dependence if not isinstance(betas, (list, np.ndarray)) or not isinstance(regions, (list, np.ndarray)): # set maximum number of regions nregions = betaRegions nregions, new_betas, new_regions = __DensityProfiler(rVir, nregions, rand_profile) elif len(betas) == len(regions): # set maximum number of regions nregions = len(betas) new_betas = np.asarray(betas.copy()) new_regions = np.asarray(regions.copy()) else: raise Exception('Variables betas and regions must be arrays of the same length.') # calculate the average temperature of the external medium if temperature == None: if not halo_mass == None: if rand_profile == False: tempFlat = 10**TmgAvg tempCluster = 10**(TmgConst + TmgSlope*halo_mass) else: tempFlat = 10**(__rand_norm(TmgAvg, TmgStdev)) tempCluster = 10**(__rand_norm(TmgConst + TmgSlope*halo_mass, TmgError)) temperature = max(tempFlat, tempCluster) # take the highest temperature out of the flat profile and cluster model else: raise Exception('Either the halo mass or temperature must be provided as model inputs.') # determine initial value of density parameter given gas mass and density profile if not rho0Value == None: # determine density parameter in the core k0Value = rho0Value*new_regions[0]**new_betas[0] # extend first beta region to a radius of zero new_regions[0] = 0 elif not halo_mass == None: # extend first beta region to a radius of zero new_regions[0] = 0 # find relative values (i.e. to 1) of density parameter in each beta region kValues = __DensityParameter(nregions, 1.0, new_betas, new_regions) # determine density parameter in the core k0Value = __k0ValueFinder(rVir, gasMass, nregions, new_betas, new_regions, kValues) else: raise Exception('Either the halo mass or core density must be provided as model inputs.') # find values of density parameter in each beta region kValues = __DensityParameter(nregions, k0Value, new_betas, new_regions) # call RadioSourceEvolution function to calculate Dt tracks return __RAiSE_evolution(redshift, axis_ratio, jet_power, source_age, active_age, gammaCValue, nregions, new_betas, new_regions, kValues, temperature, jet_lorentz, aj_star, jet_angle, axis_exponent, fill_factor) # approximate the gas density profile of Vikhlinin 2006 by multiple density profiles with a simple beta dependence @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __DensityProfiler(rVir, nregions, rand_profile): # instantiate variables betas, regions = np.zeros(nregions), np.zeros(nregions) # set values of Vikhlinin model parameters if rand_profile == False: alpha = alphaAvg betaPrime = betaPrimeAvg gammaPrime = gammaPrimeAvg # this value has no uncertainty epsilon = epsilonAvg rCore = rCoreAvg rSlope = rSlopeAvg else: alpha = __rand_norm(alphaAvg, alphaStdev) betaPrime = __rand_norm(betaPrimeAvg, betaPrimeStdev) gammaPrime = __rand_norm(gammaPrimeAvg, gammaPrimeStdev) # this value has no uncertainty epsilon = __rand_norm(epsilonAvg, epsilonStdev) rCore = __rand_norm(rCoreAvg, rCoreStdev) rSlope = __rand_norm(rSlopeAvg, rSlopeStdev) # set minimum and maximum radius for density profile to be matched rmin = rCutoff*rVir rmax = rVir # use logarithmic radius scale r = rmin ratio = (rmax/rmin)**(1./(nregions)) - 1 for count in range(0, nregions): # set radius at low end of region rlow = r # calculate relative density at rlow, i.e. ignoring rho_0 factor rhoLow = np.sqrt((rlow/(rCore*rVir))**(-alpha)/((1 + rlow**2/(rCore*rVir)**2)**(3*betaPrime - alpha/2.)*(1 + rlow**gammaPrime/(rSlope*rVir)**gammaPrime)**(epsilon/gammaPrime))) # increment radius dr = r*ratio r = r + dr # set radius at high end of region rhigh = r # calculate relative density at rlow, i.e. ignoring rho_0 factor rhoHigh = np.sqrt((rhigh/(rCore*rVir))**(-alpha)/((1 + rhigh**2/(rCore*rVir)**2)**(3*betaPrime - alpha/2.)*(1 + rhigh**gammaPrime/(rSlope*rVir)**gammaPrime)**(epsilon/gammaPrime))) # set value of innermost radius of each beta region if count == 0: # extend first beta region to a radius of zero regions[count] = 0 else: regions[count] = rlow # calculate exponent beta for each region to match density profile, ensuring beta is less than 2 if (-np.log(rhoLow/rhoHigh)/np.log(rlow/rhigh) < betaMax): betas[count] = -np.log(rhoLow/rhoHigh)/np.log(rlow/rhigh) else: # ensure beta is less than (or equal to) 2 betas[count] = betaMax # set this count to be the number of distinct regions nregions = count + 1 break return nregions, betas, regions # find values of density parameter in each beta region @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __DensityParameter(nregions, k0Value, betas, regions): # instantiate variables kValues = np.zeros(nregions) # calculate density parameters in each region for count in range(0, nregions): # match tracks between regions `a' and `b' if count > 0: # find replicating core density in region `b' required to match pressures and times kValues[count] = kValues[count - 1]*regions[count]**(betas[count] - betas[count - 1]) # if first region, set initial value of replicating core density as actual core density else: kValues[count] = k0Value return kValues # determine value of the density parameter at the core given gas mass and density profile @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __k0ValueFinder(rVir, gasMass, nregions, betas, regions, kValues): # set volume to zero initially volume = 0 # calculate weighted volume integral using by analytically integraing the volume in each beta region for count in range(0, nregions): # set lower bound of analytic integral rlow = regions[count] # set upper bound of analytic integral if (count + 1 == nregions): rhigh = rVir else: rhigh = regions[count + 1] # increment total weighted volume by weigthed volume of this region volume = volume + 4*np.pi*(kValues[count]/kValues[0])/(3 - betas[count])*(rhigh**(3 - betas[count]) - rlow**(3 - betas[count])) # calculate density parameter at the core from stellar mass and weighted volume k0Value = gasMass/volume return k0Value # random normal with values truncated to avoid sign changes @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __rand_norm(mean, stdev): rand_number = np.random.normal(mean, stdev) while (mean*rand_number < 0 or np.abs(rand_number - mean) > 2*stdev): rand_number = np.random.normal(mean, stdev) return rand_number # gas fraction-halo mass relationship @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __HalogasfracFunction(halo_mass, redshift): return max(halogasfracCONST1z0 + halogasfracCONST1z1*redshift, halogasfracCONST2z0 + halogasfracCONST2z1*redshift) + halogasfracSLOPE*(halo_mass - 14) + SAGEdensitycorr # in log space # gas fraction-halo mass relationship error @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __dHalogasfracFunction(halo_mass, redshift): return dhalogasfracz0 + dhalogasfracz1*redshift # in log space ## Define functions required for RAiSE dynamical evolution # function to calculate dynamical evolution of lobe and shocked shell def __RAiSE_evolution(redshift, axis_ratio, jet_power, source_age, active_age, gammaCValue, nregions, betas, regions, kValues, temperature, jet_lorentz, aj_star=0.231, jet_angle=0.686, axis_exponent=0.343, fill_factor=0.549): # convert jet power and source age to correct units QavgValue = 10**jet_power/2. # set the power of *each* jet; convert from log space if isinstance(source_age, (list, np.ndarray)): tFinal = np.zeros_like(source_age) for i in range(0, len(source_age)): tFinal[i] = 10**source_age[i]*year # convert from log space years to seconds else: tFinal = np.array([10**source_age*year]) tActive = 10**active_age*year # calculate angle of current radial line angles = np.arange(0, nangles, 1).astype(np.int_) dtheta = (np.pi/2)/nangles theta = dtheta*(angles + 0.5) # calculate opening angle of jet open_angle = (jet_angle*np.pi/180)/(axis_ratio/2.83) # evaluate the translation coefficients eta_c and eta_s eta_c = 1./np.sqrt(axis_ratio**2*(np.sin(theta))**2 + (np.cos(theta))**2) eta_s = 1./np.sqrt(axis_ratio**(2*shockAxisRatio)*(np.sin(theta))**2 + (np.cos(theta))**2) # evaluate the translation coefficient zeta_s/eta_s at t -> infinity zetaeta = np.sqrt(axis_ratio**(2*shockAxisRatio)*(np.sin(theta))**2 + (np.cos(theta))**2)/np.sqrt(axis_ratio**(4*shockAxisRatio)*(np.sin(theta))**2 + (np.cos(theta))**2) eta_c[0], eta_s[0], zetaeta[0] = 1., 1., 1, # calculate the differential volume element coefficient chi dchi = 4*np.pi/3.*np.sin(theta)*np.sin(dtheta/2.) # solve RAiSE dynamics iteratively to find thermal component of lobe pressure if jet_lorentz > 1: # run code in strong-shock limit to calibrate initial velocity x_time = 10**10.14*year _, _, _, _, _, _, _, critical_point_1 = __RAiSE_runge_kutta(QavgValue, np.array([x_time]), x_time, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue, critical_velocity=c_speed, strong_shock=True) # run code for full RAiSE HD dynamical model lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, critical_point_3 = __RAiSE_runge_kutta(QavgValue, tFinal, tActive, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue, critical_velocity=c_speed*critical_point_1[2]/critical_point_1[3]) else: # run code for RAiSE X dynamical model lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, _ = __RAiSE_runge_kutta(QavgValue, tFinal, tActive, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue) return lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda # function to apply Runge-Kutta method and extract values at requested time steps @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_runge_kutta(QavgValue, source_age, active_age, axis_ratio, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, eta_c, eta_s, zetaeta, dchi, nregions, betas, regions, kValues, temperature, gammaCValue, critical_velocity=0., strong_shock=False): # instantiate variables X, P = np.zeros((nangles, 5)), np.zeros((nangles, 4)) critical_point = np.zeros(4) regionPointer = np.zeros(nangles).astype(np.int_) lobe_minor, lambda_crit, alphaP_denv, alpha_lambda = np.zeros(len(source_age)), np.zeros(len(source_age)), np.zeros(len(source_age)), np.zeros(len(source_age)) lobe_lengths, shock_lengths, shock_pressures = np.zeros((nangles, len(source_age))), np.zeros((nangles, len(source_age))), np.zeros((nangles, len(source_age))) # calculate injection ages to derive time-average power-law indices for external pressure and filling factor inject_age = np.zeros(2*len(source_age)) inject_axis_ratios, inject_pressures, inject_lambdas = np.zeros(2*len(source_age)), np.zeros(2*len(source_age)), np.zeros(2*len(source_age)) for timePointer in range(0, len(source_age)): inject_age[2*timePointer:2*(timePointer + 1)] = np.asarray([crit_age*source_age[timePointer], source_age[timePointer]]) inject_index = np.argsort(inject_age) # sort ages in ascending order # calculate the spatially-averaged jet velocity and Lorentz factor if jet_lorentz > 1: bulk_lorentz = np.sqrt(jet_lorentz**2*aj_star**4 - aj_star**4 + 1) bulk_velocity = np.sqrt((jet_lorentz**2*aj_star**4 - aj_star**4)/(jet_lorentz**2*aj_star**4 - aj_star**4 + 1))*c_speed else: bulk_lorentz, bulk_velocity = -1, -1 i = 0 for timePointer in range(0, len(source_age)): # set initial conditions for each volume element if timePointer == 0: # calculate initial time and radius for ODE FR2time = limTime if jet_lorentz > 1: FR2radius = bulk_velocity*limTime FR2velocity = bulk_velocity # eta_R is very large else: FR2radius = np.sqrt(1 - 1./100**2)*c_speed*limTime FR2velocity = np.sqrt(1 - 1./100**2)*c_speed # test if this radius is above start of second region boundary if (regions[1] < FR2radius): FR2radius = regions[1] if jet_lorentz > 1: FR2time = regions[1]/bulk_velocity FR2velocity = bulk_velocity else: FR2time = regions[1]/(np.sqrt(1 - 1./100**2)*c_speed) FR2velocity = np.sqrt(1 - 1./100**2)*c_speed # calculate the initial jet/shock shell radius and velocity for each angle theta X[angles,0] = FR2time X[angles,1] = FR2radius*eta_s X[angles,2] = FR2velocity*eta_s if jet_lorentz > 1: X[0,3], X[angles[1:],3] = bulk_lorentz, 1./np.sqrt(1 - (FR2velocity*eta_s[angles[1:]]/c_speed)**2) else: X[0,3], X[angles[1:],3] = 100, 100*eta_s[angles[1:]] X[angles,4] = -1 # null value # set region pointer to first (non-zero) region if smaller than FR2 radius index = regions[1] < X[angles,1] regionPointer[index] = 1 regionPointer[np.logical_not(index)] = 0 # calculate fraction of jet power injected into each volume element injectFrac = dchi*eta_s**(3 - betas[regionPointer[0]])*zetaeta**2 injectFrac = injectFrac/np.sum(injectFrac) # sum should be equal to unity # solve ODE to find radius and pressue at each time step while (X[0,0] < source_age[timePointer]): while (X[0,0] < inject_age[inject_index[i]]): # calculate the appropriate density profile for each angle theta for anglePointer in range(0, nangles): while (regionPointer[anglePointer] + 1 < nregions and X[anglePointer,1] > regions[regionPointer[anglePointer] + 1]): regionPointer[anglePointer] = regionPointer[anglePointer] + 1 # check if next step passes time point of interest if (X[0,0]*stepRatio > inject_age[inject_index[i]]): step = inject_age[inject_index[i]] - X[0,0] else: step = X[0,0]*(stepRatio - 1) # update estimates of time, radius and velocity __rk4sys(step, X, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) X[:,3] = np.maximum(1, X[:,3]) # find location of jet--lobe transition critical_point[0], critical_point[1], critical_point[2], critical_point[3] = X[0,0], X[0,1], X[0,2]*X[0,3], X[0,4] # record axis ratio, external pressure and filling factor and injection times if P[-1,0] > 0: inject_axis_ratios[inject_index[i]] = 1./(P[0,0]/P[-1,0])**2 # inverted to match alpha_lambda definition else: inject_axis_ratios[inject_index[i]] = 1 inject_pressures[inject_index[i]] = P[0,2] inject_lambdas[inject_index[i]] = P[0,3] # update injection age if not a requested source age if inject_age[inject_index[i]] < source_age[timePointer]: i = i + 1 # calculate the lobe and shocked shell length, shock pressure and total pressure as a function of angle lobe_lengths[angles,timePointer] = P[angles,0] shock_lengths[angles,timePointer] = X[angles,1] shock_pressures[angles,timePointer] = P[angles,1] lambda_crit[timePointer] = P[0,3] # calculate lobe minor axis (associated with dimensions of shocked shell) at this time step lobe_minor[timePointer] = X[-1,1]*eta_c[-1]/(shockRadius*eta_s[-1]) # calculate the slope of external pressure profile at this time step if inject_pressures[inject_index[2*timePointer]] <= 0: alphaP_denv[timePointer] = 0 else: alphaP_denv[timePointer] = np.log(inject_pressures[2*timePointer + 1]/inject_pressures[2*timePointer])/np.log(inject_age[2*timePointer + 1]/inject_age[2*timePointer]) if inject_lambdas[2*timePointer] <= 0: alpha_lambda[timePointer] = 1e9 # no emission from this injection time else: alpha_lambda[timePointer] = np.log(inject_lambdas[2*timePointer + 1]/inject_lambdas[2*timePointer])/np.log(inject_age[2*timePointer + 1]/inject_age[2*timePointer]) + np.log(inject_axis_ratios[2*timePointer + 1]/inject_axis_ratios[2*timePointer])/np.log(inject_age[2*timePointer + 1]/inject_age[2*timePointer]) # filling factor and changing volume/axis ratio return lobe_lengths, lobe_minor, shock_lengths, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, critical_point # Runge-Kutta method to solve ODE in dynamical model @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __rk4sys(step, X, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock): # instantiate variables Y, K1, K2, K3, K4 = np.zeros((len(angles), 5)), np.zeros((len(angles), 5)), np.zeros((len(angles), 5)), np.zeros((len(angles), 5)), np.zeros((len(angles), 5)) # fouth order Runge-Kutta method __xpsys(X, K1, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) Y[:,:] = X[:,:] + 0.5*step*K1[:,:] __xpsys(Y, K2, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) Y[:,:] = X[:,:] + 0.5*step*K2[:,:] __xpsys(Y, K3, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) Y[:,:] = X[:,:] + 0.5*step*K3[:,:] __xpsys(Y, K4, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock) X[:,:] = X[:,:] + (step/6.)*(K1[:,:] + 2*K2[:,:] + 2*K3[:,:] + K4[:,:]) # coupled second order differential equations for lobe evolution @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __xpsys(X, f, P, QavgValue, active_age, aj_star, axis_exponent, fill_factor, jet_lorentz, open_angle, angles, injectFrac, eta_c, eta_s, zetaeta, dchi, regionPointer, betas, kValues, temperature, gammaCValue, critical_velocity, strong_shock): # Differential equations for X[0,1,2,3,4] = (time, radius, velocity, lorentz_factor, thermal_velocity) # Additional variable for P[0,1,2,3] = (lobe_length, lobe_pressure, external_pressure, lambda_crit) f[angles,0] = 1. f[angles,1] = X[angles,2] # test if the AGN is active at this time-step if (X[0,0] <= active_age): active_jet = 1 else: active_jet = 0 # calculate the spatially-averaged jet velocity and Lorentz factor if jet_lorentz > 1: bulk_lorentz = np.sqrt(jet_lorentz**2*aj_star**4 - aj_star**4 + 1) bulk_velocity = np.sqrt((jet_lorentz**2*aj_star**4 - aj_star**4)/(jet_lorentz**2*aj_star**4 - aj_star**4 + 1))*c_speed else: bulk_lorentz, bulk_velocity = -1, -1 # TWO-PHASE FLUID if jet_lorentz > 1: # calculate the lobe formation scale eta_R = QavgValue*bulk_lorentz**2/(2*np.pi*kValues[regionPointer[0]]*(bulk_lorentz*bulk_velocity)*(bulk_lorentz - 1)*c_speed**2*(1 - np.cos(open_angle))*X[0,1]**(2 - betas[regionPointer[0]])) # calculate lambda_crit #if (eta_R/bulk_lorentz**2) > 1: # lambda_crit = 0 #else: # lambda_crit = 1 lambda_crit = np.exp(-(eta_R/bulk_lorentz**2)/(2*np.log(2))) P[0,3] = lambda_crit else: P[0,3] = 1 # ACCELERATION # update fraction of jet power injected into each volume element injectFrac_new = dchi*eta_s**(3 - betas[regionPointer[0]])*zetaeta**2 injectFrac_new = injectFrac/np.sum(injectFrac) # sum should be equal to unity if jet_lorentz > 1: injectFrac[angles] = (1 - lambda_crit)*injectFrac_new + lambda_crit*injectFrac # keep static at late times else: injectFrac[angles] = injectFrac_new[angles] # acceleration of jet-head if jet_lorentz > 1: jet_acceleration = (betas[regionPointer[0]] - 2)*bulk_velocity*X[0,2]/(2*X[0,1]*(1 + eta_R**(-1./2))**2*eta_R**(1./2)) # acceleration of lobe (supersonic/subsonic) if jet_lorentz > 1 and strong_shock == True: f[angles,2] = np.minimum((gammaCValue - 1)*injectFrac[angles]*(QavgValue*active_jet)*X[angles,1]**(betas[regionPointer[angles]] - 3)/(X[angles,2]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)*dchi[angles]*(X[angles,3]*zetaeta[angles])**2*kValues[regionPointer[angles]]) + (betas[regionPointer[angles]] - 3*gammaCValue)*(X[angles,2])**2/(2*X[angles,1]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)), (betas[regionPointer[angles]] - 2)/(5 - betas[regionPointer[angles]]) * X[angles,2]*X[angles,3]/(X[0,0] + year)) # ensure model doesn't run slower than limit due to numerics elif jet_lorentz > 1: f[angles,2] = (gammaCValue - 1)*injectFrac[angles]*(QavgValue*active_jet)*X[angles,1]**(betas[regionPointer[angles]] - 3)/(X[angles,2]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)*dchi[angles]*(X[angles,3]*zetaeta[angles])**2*kValues[regionPointer[angles]]) + (betas[regionPointer[angles]] - 3*gammaCValue)*(X[angles,2])**2/(2*X[angles,1]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)) - (3*gammaCValue - betas[regionPointer[angles]])*(k_B*temperature/maverage)/(2*X[angles,1]*(1 + (X[angles,3]*X[angles,2]/c_speed)**2)*(X[angles,3]*zetaeta[angles])**2) else: sub_angles = (X[angles,2]*X[angles,3]*zetaeta)**2/(gammaX*(k_B*temperature/maverage)) <= 1 super_angles = np.logical_not(sub_angles) f[super_angles,2] = (gammaX + 1)*(gammaCValue - 1)*injectFrac[super_angles]*(QavgValue*active_jet)*X[super_angles,1]**(betas[regionPointer[super_angles]] - 3)/(2*X[super_angles,2]*(1 + (X[super_angles,3]*X[super_angles,2]/c_speed)**2)*dchi[super_angles]*(X[super_angles,3]*zetaeta[super_angles])**2*kValues[regionPointer[super_angles]]) + (betas[regionPointer[super_angles]] - 3*gammaCValue)*(X[super_angles,2])**2/(2*X[super_angles,1]*(1 + (X[super_angles,3]*X[super_angles,2]/c_speed)**2)) + (gammaX - 1)*(3*gammaCValue - betas[regionPointer[super_angles]])*(k_B*temperature/maverage)/(4*X[super_angles,1]*(1 + (X[super_angles,3]*X[super_angles,2]/c_speed)**2)*(X[super_angles,3]*zetaeta[super_angles])**2) f[sub_angles,2] = (betas[regionPointer[sub_angles]] - 2)*(X[sub_angles,2])**2/X[sub_angles,1] # combine acceleration from jet-head and lobe as two-phase fluid if jet_lorentz > 1: if (lambda_crit < lambda_min or X[0,0] < 10*limTime): # improve stability f[0,2], f[angles[1:],2] = jet_acceleration, jet_acceleration*eta_s[angles[1:]] X[angles[1:],2] = X[0,2]*eta_s[angles[1:]] else: f[0,2], f[angles[1:],2] = (1 - lambda_crit)*jet_acceleration + lambda_crit*f[0,2], (1 - lambda_crit)*jet_acceleration*eta_s[angles[1:]] + lambda_crit*f[angles[1:],2] # calculate Lorentz factor of two-phase fluid f[angles,3] = X[angles,3]**3*X[angles,2]*f[angles,2]/c_speed**2 # PRESSURES # external pressure at each volume element P[angles,2] = kValues[regionPointer[angles]]*(k_B*temperature/maverage)*X[angles,1]**(-betas[regionPointer[angles]]) # set velocity associated with thermal component of lobe perssure if jet_lorentz > 1 and critical_velocity > 0: if (lambda_crit < lambda_min or X[0,0] < 10*limTime): # improve stability f[0,4], f[angles[1:],4] = jet_acceleration, jet_acceleration*eta_s[angles[1:]] X[angles[1:],4] = X[0,4]*eta_s[angles[1:]] else: f[angles,4] = (betas[regionPointer[angles]] - 2)/(5 - betas[regionPointer[angles]]) * X[angles,4]/(X[0,0] + year) else: X[angles,4], f[angles,4] = X[angles,2]*X[angles,3], f[angles,2] # jet/lobe pressure at each volume element volume = X[angles,1]**3*dchi[angles] if jet_lorentz > 1: # calculate lobe pressure P[angles,1] = zetaeta[angles]**2*kValues[regionPointer[angles]]*X[angles,1]**(-betas[regionPointer[angles]])*(np.minimum(X[angles,2], X[angles,4]))**2 + kValues[regionPointer[angles]]*(k_B*temperature/maverage)*X[angles,1]**(-betas[regionPointer[angles]]) # calculate average pressure across jet/lobe pressure = np.sum(P[angles,1]*volume)/np.sum(volume) # set average pressure in all of lobe other than hotspot P[angles[1:],1] = pressure else: # calculate lobe pressure P[super_angles,1] = 2./(gammaX + 1)*zetaeta[super_angles]**2*kValues[regionPointer[super_angles]]*X[super_angles,1]**(-betas[regionPointer[super_angles]])*(X[super_angles,2]*X[super_angles,3])**2 - (gammaX - 1)/(gammaX + 1)*kValues[regionPointer[super_angles]]*(k_B*temperature/maverage)*X[super_angles,1]**(-betas[regionPointer[super_angles]]) P[sub_angles,1] = P[sub_angles,2] # calculate average pressure across jet/lobe pressure = np.sum(P[angles,1]*volume)/np.sum(volume) # set average pressure in all of lobe other than hotspot P[angles[1:],1] = pressure # AXIS RATIO if jet_lorentz > 1: # calculate total mass of particles from the jet particle_mass = QavgValue*np.minimum(active_age, X[0,0])/((bulk_lorentz - 1)*c_speed**2) # calculate volume occupied by particles expanding at sound speed and maximum fillable volume within shocked shell jet_sound = c_speed*np.sqrt(gammaJ - 1) particle_volume = particle_mass/(gammaJ*pressure/jet_sound**2) # mass / density shell_volume = np.sum(volume*eta_c/(shockRadius*eta_s)) # calculate (optimal) lobe volume as weighted sum of particle volume and maximum fillable volume (i.e. enable sound speed to reduce as lobe approaches size of shocked shell) lobe_volume = 1./(1./(particle_volume/fill_factor)**axis_exponent + 1./(shell_volume)**axis_exponent)**(1./axis_exponent) # find axis ratio for an ellipsoidal lobe if lobe_volume > 0 and lambda_crit >= lambda_min: lobe_axis_ratio = np.minimum(np.sqrt(2*np.pi*(X[0,1]/shockRadius)**3/(3*lobe_volume)), 1/np.tan(open_angle)) else: lobe_axis_ratio = 1/np.tan(open_angle) # update lobe length along let axis and axis ratio of shocked shell P[0,0] = X[0,1]/shockRadius # calculate geometry of each angular volume element dtheta = (np.pi/2)/len(angles) theta = dtheta*(angles + 0.5) lobe_eta_c = 1./np.sqrt(lobe_axis_ratio**2*(np.sin(theta))**2 + (np.cos(theta))**2) # set length of lobe along each angular volume element P[angles[1:],0] = np.minimum(lobe_eta_c[angles[1:]]*P[0,0], X[angles[1:],1]*eta_c[angles[1:]]/(shockRadius*eta_s[angles[1:]])) # second condition should rarely be met else: # set length of lobe along each angular volume element P[0,0], P[angles[1:],0] = X[0,1]/shockRadius, X[angles[1:],1]*eta_c[angles[1:]]/(shockRadius*eta_s[angles[1:]]) ## Define functions to download and preprocess particles from hydrodynamical simulations def __PLUTO_particles(particle_data_path): # unpack particle data from hydrodynamical simulations particle_dict = h5py.File(os.path.join(os.path.dirname(os.path.realpath(__file__)), particle_data_path), 'r') # store variables at desired resolution time = particle_dict['time'][:].astype(np.float32) shock_time = particle_dict['tinject'][:,:].astype(np.float32) major = particle_dict['major'][:].astype(np.float32) minor = particle_dict['minor'][:].astype(np.float32) x1 = particle_dict['x1'][:,:].astype(np.float32) x2 = particle_dict['x2'][:,:].astype(np.float32) x3 = particle_dict['x3'][:,:].astype(np.float32) tracer = particle_dict['tracer'][:,:].astype(np.float32) vx3 = particle_dict['vx3'][:,:].astype(np.float32) volume = particle_dict['volume'][:,:].astype(np.float32) pressure = particle_dict['pressure'][:,:].astype(np.float32) press_minor = particle_dict['pressminor'][:].astype(np.float32) alphaP_hyd = particle_dict['alphaP'][:,:].astype(np.float32) alphaP_henv = particle_dict['alphaPenv'][:,:].astype(np.float32) hotspot_ratio = particle_dict['hotspotratio'][:].astype(np.float32) return time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio ## Define functions to add emissivity from particles in hydrodynamical simulations on top of dynamics # function to manage orientation and distribution of particles from simulation output def __RAiSE_emissivity(frequency, redshift, time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, source_age, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, active_age, equipartition, spectral_index, gammaCValue=5./3, lorentz_min=Lorentzmin, resolution='standard'): # determine spatial resolution of particles; i.e. overdensity of particles to include in calculations if resolution == 'best': nsamples = 2048 elif resolution == 'high': nsamples = 512 elif resolution == 'standard': nsamples = 128 elif resolution == 'poor': nsamples = 32 else: raise Exception('Unrecognised keyword for particle resolution. The accepted keywords are: best, high, standard and poor.') # randomly generate viewing time in the simulated source age timePointer = np.arange(0, nsamples).astype(np.int_)%len(time) # convert frequency, equipartition factor and spectral index to correct units if isinstance(frequency, (list, np.ndarray)): rest_frequency = np.zeros_like(frequency) inverse_compton = np.zeros_like(frequency).astype(np.int_) for freqPointer in range(0, len(frequency)): rest_frequency[freqPointer] = 10**frequency[freqPointer]*(1 + redshift) if rest_frequency[freqPointer] > 1e12: # assume frequencies greater than 1000 GHz are inverse-Compton inverse_compton[freqPointer] = 1 else: rest_frequency = [10**frequency*(1 + redshift)] if rest_frequency[freqPointer] > 1e12: # assume frequencies greater than 1000 GHz are inverse-Compton inverse_compton = [1] if isinstance(source_age, (list, np.ndarray)): tFinal = np.zeros_like(source_age) for i in range(0, len(source_age)): tFinal[i] = 10**source_age[i]*year # convert from log space years to seconds else: tFinal = [10**source_age*year] tActive = 10**active_age*year equi_factor = 10**float(-np.abs(equipartition)) # ensure sign is correct s_index = 2*float(np.abs(spectral_index)) + 1 # ensure sign is correct # derive redshift dependent ancillary variables used by every analytic model Ks = __RAiSE_Ks(s_index, gammaCValue, lorentz_min) blackbody = __RAiSE_blackbody(s_index) return __RAiSE_particles(timePointer, rest_frequency, inverse_compton, redshift, time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, tFinal, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, tActive, equi_factor, s_index, gammaCValue, lorentz_min, Ks, blackbody) # function to calculate emissivity from each particle using RAiSE model @jit(nopython=True, parallel=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_particles(timePointer, rest_frequency, inverse_compton, redshift, time, shock_time, major, minor, x1, x2, x3, tracer, vx3, volume, pressure, press_minor, alphaP_hyd, alphaP_henv, hotspot_ratio, tFinal, lobe_lengths, lobe_minor, shock_pressures, lambda_crit, alphaP_denv, alpha_lambda, tActive, equi_factor, s_index, gammaCValue, lorentz_min, Ks, blackbody): # instantiate variables luminosity = np.zeros((len(tFinal), len(timePointer)*len(pressure[:,0]), len(rest_frequency))) magnetic_field = np.zeros((len(tFinal), len(rest_frequency))) magnetic_particle, magnetic_weighting = np.zeros((len(tFinal), len(timePointer), len(rest_frequency))), np.zeros((len(tFinal), len(timePointer), len(rest_frequency))) location = np.zeros((len(tFinal), len(timePointer)*len(pressure[:,0]), 3)) # derive emissivity at each time step for i in range(0, len(tFinal)): # derive emissivity for random variations in particle distribution for j in range(0, len(timePointer)): # SHOCK ACCELERATION TIMES new_shock_time = shock_time[:,timePointer[j]]*(tFinal[i]/time[timePointer[j]])*np.minimum(1., (tActive/tFinal[i])) # scale the last acceleration time to active age if source is a remnant # PRESSURES new_pressure = pressure[:,timePointer[j]]*(shock_pressures[-1,i]/press_minor[timePointer[j]]) # correction factor to match Model A # correct the hotspot/lobe pressure ratio based on the dynamical model new_pressure = new_pressure*((shock_pressures[0,i]/shock_pressures[-1,i])/hotspot_ratio[timePointer[j]] - 1)*(np.abs(x3[:,timePointer[j]])/major[timePointer[j]]) + new_pressure # increase log-space pressure linearly along lobe # correct the evolutionary histories of the particles based on the dynamical model alphaP_dyn = np.maximum(-2, np.minimum(0, alphaP_denv[i] + alphaP_hyd[:,timePointer[j]] - alphaP_henv[:,timePointer[j]])) # VOLUMES volume_fraction = volume[:,timePointer[j]]/(4*np.pi/3.*major[timePointer[j]]*minor[timePointer[j]]**2) #volume_sum = np.nansum(volume_fraction[~np.isinf(volume_fraction)]) # cap the largest volumes at the 95th percentile to outliers in surface brightness map; minimal effect on total luminosity volume_fraction[volume_fraction > np.nanpercentile(volume_fraction, 95)] = np.nanpercentile(volume_fraction, 95) new_volume = volume_fraction*(4*np.pi/3.*lobe_lengths[0,i]*lobe_minor[i]**2)*tracer[:,timePointer[j]] #/volume_sum # RELATIVISTIC BEAMING doppler_factor = np.sqrt(np.maximum(1e-6, 1 - vx3[:,timePointer[j]]**2))**(3 - (s_index - 1)/2.) # Doppler boosting of particles in jet; 1e-6 ensures some very low level emission doppler_factor[np.logical_and(np.abs(x3[:,timePointer[j]])/major[timePointer[j]] < 0.1, np.logical_and(np.abs(x1[:,timePointer[j]])/major[timePointer[j]] < 0.01, np.abs(x2[:,timePointer[j]])/major[timePointer[j]] < 0.01))] = 0 # completely remove very bright particles clumped at start of jet # LOBE PARTICLES # find angle and radius of each particle from core new_angles = np.arctan((np.sqrt(x1[:,timePointer[j]]**2 + x2[:,timePointer[j]]**2)*lobe_minor[i]/minor[timePointer[j]])/(x3[:,timePointer[j]]*lobe_lengths[0,i]/major[timePointer[j]])) # rescale axes to correct axis ratio new_radii = np.sqrt((x1[:,timePointer[j]]**2 + x2[:,timePointer[j]]**2)*(lobe_minor[i]/minor[timePointer[j]])**2 + (x3[:,timePointer[j]]*lobe_lengths[0,i]/major[timePointer[j]])**2)/lobe_lengths[0,i] # find particles within lobe region; particles outside this region will not emit. Particle map is set to axis ratio based on shocked shell to maintain geometry of jet new_eta_c = 1./np.sqrt((lobe_lengths[0,i]/lobe_lengths[-1,i])**2*(np.sin(new_angles))**2 + (np.cos(new_angles))**2) lobe_particles = np.zeros_like(x1[:,timePointer[j]]) lobe_particles[np.abs(vx3[:,timePointer[j]]) > 1./np.sqrt(3)] = 1 # assume sound speed is critical value for relativisitic particles lobe_particles[new_radii < new_eta_c] = 1. # TWO PHASE FLUID # fraction of jet particles that have reached location in lobe two_phase_weighting = np.maximum(0, np.minimum(1, lambda_crit[i]*(new_shock_time/np.minimum(tActive, tFinal[i]))**np.maximum(0, alpha_lambda[i]))) if tActive/tFinal[i] >= 1: # keep jet particles visible at all times two_phase_weighting = np.maximum(two_phase_weighting, np.minimum(1, np.abs(vx3[:,timePointer[j]]*np.sqrt(3)))) # assume sound speed is critical value for relativisitic particles else: # suppress emission from jet particle two_phase_weighting = np.minimum(two_phase_weighting, 1 - np.minimum(1, np.abs(vx3[:,timePointer[j]]*np.sqrt(3)))) # PARTICLE EMISSIVITY for k in range(0, len(rest_frequency)): if rest_frequency[k] > 100: # calculate losses due to adiabatic expansion, and synchrotron/iC radiation lorentz_ratio, pressure_ratio = __RAiSE_loss_mechanisms(rest_frequency[k], inverse_compton[k], redshift, tFinal[i], new_shock_time, new_pressure, alphaP_dyn, equi_factor, gammaCValue) # calculate luminosity associated with each particle temp_luminosity = None if inverse_compton[k] == 1: # inverse-Compton sync_frequency = (3*e_charge*rest_frequency[k]*np.sqrt(2*mu0*( equi_factor*new_pressure/((gammaCValue - 1)*(equi_factor + 1)) ))/(2*np.pi*m_e*(freq_cmb*temp_cmb*(1 + redshift)))) # assuming emission at CMB frequency only temp_luminosity = Ks/blackbody*sync_frequency**((1 - s_index)/2.)*(sync_frequency/rest_frequency[k])*(gammaCValue - 1)*__RAiSE_uC(redshift) * (equi_factor**((s_index + 1)/4. - 1 )/(equi_factor + 1)**((s_index + 5)/4. - 1 ))*new_volume*new_pressure**((s_index + 1 )/4.)*pressure_ratio**(1 - 4./(3*gammaCValue))*lorentz_ratio**(2 - s_index)/len(timePointer) * doppler_factor*lobe_particles*two_phase_weighting else: # synchrotron temp_luminosity = Ks*rest_frequency[k]**((1 - s_index)/2.)*(equi_factor**((s_index + 1)/4.)/(equi_factor + 1)**((s_index + 5)/4.))*new_volume*new_pressure**((s_index + 5)/4.)*pressure_ratio**(1 - 4./(3*gammaCValue))*lorentz_ratio**(2 - s_index)/len(timePointer) * doppler_factor*lobe_particles*two_phase_weighting # remove any infs index = np.isinf(temp_luminosity) temp_luminosity[index] = np.nan luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k] = temp_luminosity # calculate luminosity weighted magnetic field strength magnetic_particle[i,j,k] = np.nansum(np.sqrt(2*mu0*new_pressure*equi_factor/(gammaCValue - 1)*(equi_factor + 1))*luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k]) magnetic_weighting[i,j,k] = np.nansum(luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k]) # PARTICLE PRESSURE else: luminosity[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),k] = new_pressure*lobe_particles # CARTESIAN LOCATIONS location[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),0] = x1[:,timePointer[j]]*lobe_minor[i]/minor[timePointer[j]] *np.sign(timePointer[j]%8 - 3.5) location[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),1] = x2[:,timePointer[j]]*lobe_minor[i]/minor[timePointer[j]] *np.sign(timePointer[j]%4 - 1.5) location[i,j*len(pressure[:,0]):(j+1)*len(pressure[:,0]),2] = x3[:,timePointer[j]]*lobe_lengths[0,i]/major[timePointer[j]] *np.sign(timePointer[j]%2 - 0.5) # calculate luminosity weighted magnetic field strength for time step for k in range(0, len(rest_frequency)): if np.nansum(magnetic_weighting[i,:,k]) == 0: magnetic_field[i,k] = 0 else: magnetic_field[i,k] = np.nansum(magnetic_particle[i,:,k])/np.nansum(magnetic_weighting[i,:,k]) return location, luminosity, magnetic_field # find ratio of the lorentz factor and the pressure at the time of acceleration to that at the time of emission @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_loss_mechanisms(rest_frequency, inverse_compton, redshift, time, shock_time, pressure, alphaP, equipartition, gammaCValue=5./3): # calculate lorentz factor at time of emission if inverse_compton == 1: # inverse-Compton lorentz_factor = np.sqrt(rest_frequency/(freq_cmb*temp_cmb*(1 + redshift)))*np.ones(len(pressure)) # assuming emission at CMB frequency only else: # synchrotron lorentz_factor = np.sqrt(2*np.pi*m_e*rest_frequency/(3*e_charge*np.sqrt(2*mu0*pressure/(gammaCValue - 1)*(equipartition/(equipartition + 1))))) # assuming emission at Larmor frequency only # calculate pressure and volume at time of acceleration pressure_inject = pressure*(shock_time/time)**alphaP # calculate RAiSE constant a2 a2 = __RAiSE_a2(redshift, time, shock_time, pressure, pressure_inject, equipartition, alphaP, gammaCValue) # calculate lorentz factor at time of acceleration, and remove invalid points lorentz_inject = lorentz_factor*shock_time**(alphaP/(3*gammaCValue))/(time**(alphaP/(3*gammaCValue)) - a2*lorentz_factor) # second time is i becasue is time_high lorentz_inject[lorentz_inject < 1] = np.nan return lorentz_inject/lorentz_factor, pressure_inject/pressure # find RAiSE constant a2 for synchrotron and iC radiative losses @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_a2(redshift, time, shock_time, pressure, pressure_inject, equipartition, alphaP, gammaCValue=5./3): return 4*sigma_T/(3*m_e*c_speed)*(pressure_inject/(gammaCValue - 1)*(equipartition/(equipartition + 1))/(1 + alphaP*(1 + 1./(3*gammaCValue)))*shock_time**(-alphaP)*(time**(1 + alphaP*(1 + 1./(3*gammaCValue))) - shock_time**(1 + alphaP*(1 + 1./(3*gammaCValue)))) + __RAiSE_uC(redshift)/(1 + alphaP/(3*gammaCValue))*(time**(1 + alphaP/(3*gammaCValue)) - shock_time**(1 + alphaP/(3*gammaCValue)))) # array is shorter by one element # find CMB radiation energy density @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_uC(redshift): uC0 = 0.25*1e6*e_charge # J m-3 CMB energy density at z = 0 (Longair, 1981) return uC0*(redshift + 1)**4 # assuming uC prop to (z + 1)^4 as in KDA97 # find RAiSE constant K(s) for the absolute scaling of the emissivity def __RAiSE_Ks(s_index, gammaCValue=5./3, lorentz_min=Lorentzmin): kappa = (gamma(s_index/4. + 19./12)*gamma(s_index/4. - 1./12)*gamma(s_index/4. + 5./4)/gamma(s_index/4. + 7./4)) return kappa/(m_e**((s_index + 3)/2.)*c_speed*(s_index + 1))*(e_charge**2*mu0/(2*(gammaCValue - 1)))**((s_index + 5)/4.)*(3./np.pi)**(s_index/2.)/((lorentz_min**(2 - s_index) - Lorentzmax**(2 - s_index))/(s_index - 2) - (lorentz_min**(1 - s_index) - Lorentzmax**(1 - s_index))/(s_index - 1)) # find RAiSE blackbody constant to convert cosmic microwave background emission from single frequency to blackbody spectrum def __RAiSE_blackbody(s_index): return np.pi**4/(15*gamma((s_index + 5)/2.)*zeta((s_index + 5)/2.)) ## Define functions to produce surface brightness maps of radio lobes # define function to manage the discretisation of particles down to pixels def __RAiSE_brightness_map(frequency, redshift, source_age, lobe_lengths, location, luminosity, angle, resolution='standard'): # determine spatial resolution of particles; i.e. overdensity of particles to include in calculations if resolution == 'best': npixels = 2048/4 elif resolution == 'high': npixels = 512/2 elif resolution == 'standard': npixels = 128/1 elif resolution == 'poor': npixels = 32*2 else: raise Exception('Unrecognised keyword for particle resolution. The accepted keywords are: best, high, standard and poor.') # convert frequency, equipartition factor and spectral index to correct units if isinstance(frequency, (list, np.ndarray)): rest_frequency = np.zeros_like(frequency) for freqPointer in range(0, len(frequency)): rest_frequency[freqPointer] = 10**frequency[freqPointer]*(1 + redshift) else: rest_frequency = [10**frequency*(1 + redshift)] if isinstance(source_age, (list, np.ndarray)): tFinal = np.zeros_like(source_age) for i in range(0, len(source_age)): tFinal[i] = 10**source_age[i]*year # convert from log space years to seconds else: tFinal = [10**source_age*year] return __RAiSE_pixels(rest_frequency, redshift, tFinal, lobe_lengths, location, luminosity, angle, npixels) # define function to discretise particles down to pixels @jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit def __RAiSE_pixels(rest_frequency, redshift, tFinal, lobe_lengths, location, luminosity, angle, npixels): # instantiate variables to store brightness map variables x_list = [] y_list = [] brightness_list = [] for i in range(0, len(tFinal)): x_col = [] y_col = [] brightness_col = [] sim_x, sim_y, sim_z = location[i,:,0], location[i,:,1], location[i,:,2] # x, y, z (i.e. 0, 1, 2) in simulations for j in range(0, len(rest_frequency)): # separate location array into components index = np.logical_and(np.logical_and(np.logical_not(np.isnan(luminosity[i,:,j])), np.logical_not(np.isinf(luminosity[i,:,j]))), np.logical_not(np.isnan(sim_x))) location_x = np.sin(angle*np.pi/180.)*sim_y[index] + np.cos(angle*np.pi/180.)*sim_z[index] location_y = sim_x[index] new_luminosity = luminosity[i,:,j] new_luminosity = new_luminosity[index] if len(location_x) > 0: # discretise particles location_x = np.floor(location_x/lobe_lengths[0,i]*(npixels//2)).astype(np.int_) location_y = np.floor(location_y/lobe_lengths[0,i]*(npixels//2)).astype(np.int_) min_x, min_y = np.min(location_x), np.min(location_y) location_x = location_x - min_x location_y = location_y - min_y # instantiate variables to store discrete particles x_values = np.arange(np.min(location_x), np.max(location_x) + 0.1, 1).astype(np.int_) y_values = np.arange(np.min(location_y), np.max(location_y) + 0.1, 1).astype(np.int_) brightness = np.zeros((len(x_values), len(y_values))) # add luminosity from each particle to correct pixel for k in range(0, len(new_luminosity)): if rest_frequency[j] > 100: brightness[location_x[k],location_y[k]] = brightness[location_x[k],location_y[k]] + new_luminosity[k] else: brightness[location_x[k],location_y[k]] = max(brightness[location_x[k],location_y[k]], new_luminosity[k]) # add x and y pixel values, and brightnesses to arrays x_col.append((x_values + min_x + 0.5)*lobe_lengths[0,i]/(npixels//2)) # add 0.5 to get pixel centres and scale back to physical dimensions y_col.append((y_values + min_y + 0.5)*lobe_lengths[0,i]/(npixels//2)) brightness_col.append(brightness) else: x_col.append(None) y_col.append(None) brightness_col.append(None) x_list.append(x_col) y_list.append(y_col) brightness_list.append(brightness_col) return x_list, y_list, brightness_list # Define functions to plot emissivity maps throughout source evolutionary history def RAiSE_evolution_maps(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5., equipartition=-1.5, spectral_index=0.7, gammaCValue=5./3, lorentz_min=Lorentzmin, seed=None, rerun=False, cmap='RdPu'): # function to test type of inputs and convert type where appropriate frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons = __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz) # set up plot fig, axs = plt.subplots(len(source_age), 1, figsize=(12, 1 + (10/axis_ratio[0] + 0.8)*len(source_age))) if len(source_age) <= 1: # handle case of single image axs = [axs] fig.subplots_adjust(hspace=0) #cmap = cm.get_cmap('binary') colour_scheme = cm.get_cmap(cmap) rc('text', usetex=True) rc('font', size=14) rc('legend', fontsize=14) rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) for i in range(0, len(source_age)): if isinstance(rho0Value, (list, np.ndarray)): if frequency[0] > 0: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), np.abs(np.log10(rho0Value[0])), jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], frequency[0], source_age[i]) else: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), np.abs(np.log10(rho0Value[0])), jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], source_age[i]) elif isinstance(halo_mass, (list, np.ndarray)): if frequency[0] > 0: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}_nu={:.2f}_t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), halo_mass[0], jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], frequency[0], source_age[i]) else: filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_H={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}__t={:.2f}'.format(axis_ratio[0], np.abs(equipartition[0]), halo_mass[0], jet_power[0], 2*np.abs(spectral_index) + 1, active_age[0], jet_lorentz[0], redshift[0], source_age[i]) # read-in data from file (must be RAiSE output of correct format) if rerun == False: try: dataframe = pd.read_csv(filename+'_best.csv', index_col=0) except: # run RAiSE HD for set of parameters at requested resolution RAiSE_run(frequency[0], redshift[0], axis_ratio[0], jet_power[0], source_age[i], halo_mass=halo_mass, rand_profile=rand_profile, betas=betas, regions=regions, rho0Value=rho0Value, temperature=temperature, active_age=active_age[0], jet_lorentz=jet_lorentz[0], equipartition=equipartition[0], spectral_index=spectral_index, gammaCValue=gammaCValue, lorentz_min=Lorentzmin, brightness=True, resolution='best', seed=seed) dataframe = pd.read_csv(filename+'_best.csv', index_col=0) else: # run RAiSE HD for set of parameters at requested resolution RAiSE_run(frequency[0], redshift[0], axis_ratio[0], jet_power[0], source_age[i], halo_mass=halo_mass, rand_profile=rand_profile, betas=betas, regions=regions, rho0Value=rho0Value, temperature=temperature, active_age=active_age[0], jet_lorentz=jet_lorentz[0], equipartition=equipartition[0], spectral_index=spectral_index, gammaCValue=gammaCValue, lorentz_min=Lorentzmin, brightness=True, resolution='best', seed=seed) dataframe = pd.read_csv(filename+'_best.csv', index_col=0) # assign dataframe contents to variables x, y = (dataframe.index).astype(np.float_), (dataframe.columns).astype(np.float_) #x, y = x/np.max(x), y/np.max(x) Y, X = np.meshgrid(y, x) Z = dataframe.values if frequency[0] > 0: Z = Z/np.nanmax(Z) else: Z = Z*1e12 Z[Z <= 0] = np.nan if frequency[0] > 0: h = axs[i].pcolormesh(X, Y, Z, shading='nearest', cmap=colour_scheme, vmin=0, vmax=1) else: h = axs[i].pcolormesh(X, Y, Z, shading='nearest', cmap=colour_scheme, vmin=np.nanmin(Z[0:len(x)//3,:]), vmax=np.nanmax(Z[0:len(x)//3,:])) axs[i].set_aspect('equal') axs[i].set_xlim([-1.05*np.max(x), 1.05*np.max(x)]) axs[i].set_ylim([-1.05*np.max(x)/axis_ratio, 1.05*np.max(x)/axis_ratio]) axs[i].xaxis.set_major_formatter(FormatStrFormatter('%g')) axs[i].yaxis.set_major_formatter(FormatStrFormatter('%g')) axs[i].plot(np.NaN, np.NaN, '-', color='none', label=str('{:g}'.format(float('{:.2g}'.format(10**source_age[i]/1e6))))+' Myr') axs[i].legend(frameon=False) # add a big axes for labels, hide frame fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axes plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) plt.grid(False) axs[-1].set_xlabel(r'Jet axis (kpc)', fontsize=14.5, labelpad=10) plt.ylabel(r'Transverse axis (kpc)', fontsize=14.5, labelpad=15) if frequency[0] <= 0: if len(axs) == 1: cax = fig.add_axes([axs[0].get_position().x1+0.01,axs[0].get_position().y0,0.02,axs[0].get_position().height]) c = plt.colorbar(h, cax=cax, pad=0.025) else: cax = fig.add_axes([axs.ravel().tolist().get_position().x1+0.01,axs.ravel().tolist().get_position().y0,0.02,axs.ravel().tolist().get_position().height]) # haven't tested this yet c = plt.colorbar(h, cax=cax, pad=0.015) c.set_label(r'Pressure (pPa)', labelpad=12.5) # show plot and return handle to plot plt.show() return fig # Define function to plot Dt and LD tracks def RAiSE_evolution_tracks(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass=None, rand_profile=False, betas=None, regions=None, rho0Value=None, temperature=None, active_age=10.14, jet_lorentz=5., equipartition=-1.5, spectral_index=0.7, gammaCValue=5./3, lorentz_min=Lorentzmin, resolution='standard', seed=None, rerun=False, labels=None, colors=None, linestyles=None): # function to test type of inputs and convert type where appropriate frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz, nenvirons = __test_inputs(frequency, redshift, axis_ratio, jet_power, source_age, halo_mass, betas, regions, rho0Value, temperature, active_age, equipartition, jet_lorentz) if len(source_age) <= 1: raise Exception('Evolutionary tracks require more than one source age; provide a list/array of ages.') if len(frequency) > 1: warnings.warn('First frequency in list/array will be plotted for every set of parameters.', category=UserWarning) if not isinstance(colors, (list, np.ndarray)) and not colors == None: colors = [colors] elif colors == None: colors = ['crimson', 'darkorange', 'darkorchid', 'mediumblue'] if not isinstance(linestyles, (list, np.ndarray)) and not linestyles == None: linestyles = [linestyles] elif linestyles == None: linestyles = ['-'] # set up plot if resolution == None: fig, axs = plt.subplots(2, 1, figsize=(6, 10), sharex=True) else: fig, axs = plt.subplots(3, 1, figsize=(6, 14), sharex=True) fig2, axs2 = plt.subplots(1, 1, figsize=(6, 6)) fig.subplots_adjust(hspace=0) rc('text', usetex=True) rc('font', size=14) rc('legend', fontsize=14) rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) if resolution == None: axs[1].set_xlabel(r'Source age (Myr)') else: axs[2].set_xlabel(r'Source age (Myr)') axs[2].set_ylabel(r'Lobe luminosity (W/Hz)') axs2.set_xlabel(r'Lobe length (kpc)') axs2.set_ylabel(r'Lobe luminosity (W/Hz)') axs[0].set_ylabel(r'Lobe length (kpc)') axs[1].set_ylabel(r'Pressure (Pa)') # calculate number of plots nplots = np.max(np.array([len(redshift), len(axis_ratio), len(jet_power), nenvirons, len(active_age), len(equipartition), len(jet_lorentz)])) time, size, pressure, luminosity, y_min, y_max = [], [], [], [], [], [] for i in range(0, nplots): if isinstance(rho0Value, (list, np.ndarray)): filename = 'LDtracks/LD_A={:.2f}_eq={:.2f}_p={:.2f}_Q={:.2f}_s={:.2f}_T={:.2f}_y={:.2f}_z={:.2f}'.format(axis_ratio[min(len(axis_ratio) - 1, i)], np.abs(equipartition[min(len(equipartition) - 1, i)]), np.abs(np.log10(rho0Value[min(len(rho0Value) - 1, i)])), jet_power[min(len(jet_power) - 1, i)], 2*
np.abs(spectral_index)
numpy.abs
import os from glob import glob import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.rcParams.update({'font.size': 5}) plt.rcParams.update({'lines.linewidth':0.35}) plt.rcParams.update({'axes.linewidth':0.35}) plt.rcParams.update({'lines.markersize':2.5}) plt.rcParams.update({'axes.labelpad':1.5}) fig = plt.figure(figsize=(7.2,6)) grid = plt.GridSpec(18, 10, wspace=4, hspace=15) ax = fig.add_subplot(grid[:9, :5]) ax.text(0.025, 0.966, 'a', transform=ax.transAxes, fontsize=8, fontweight='bold', va='top', ha='left') var_dir = '/home/atom/ongoing/work_worldwide/variance' region_list = os.listdir(var_dir) region_nmad = [] region_nsamp = [] for region in region_list: list_fn_csv = [os.path.join(var_dir,region,f) for f in os.listdir(os.path.join(var_dir,region))] list_nmad = [] list_nsamp = [] for fn_csv in list_fn_csv: df = pd.read_csv(fn_csv) list_nmad.append(df.nmad.values) list_nsamp.append(df.nsamp.values) nmad_all = np.stack(list_nmad,axis=1) nsamp_all = np.stack(list_nsamp,axis=1) nan_mask = np.all(np.logical_or(np.isnan(nmad_all),nmad_all==0),axis=1) nmad_final = np.nansum(nmad_all * nsamp_all,axis=1) / np.nansum(nsamp_all,axis=1) nsamp_final = np.nansum(nsamp_all,axis=1) nmad_final[nan_mask] = np.nan nsamp_final[nan_mask] = 0 region_nmad.append(nmad_final) region_nsamp.append(nsamp_final) # ax.figure(figsize=(16,9)) slope = df.bin_slope.values corr = df.bin_corr.values bin_slope = sorted(list(set(list(slope)))) bin_corr = sorted(list(set(list(corr)))) nb_slope = len(bin_slope) nb_corr = len(bin_corr) color_list = ['tab:orange','tab:blue','tab:olive','tab:cyan','tab:red','tab:purple','tab:brown','tab:pink','tab:gray','tab:olive'] ls_list = ['solid','dashed','dotted'] # model_var = np.sqrt(3**2 + (20 * np.tan(np.array(5) * np.pi / 180))**2) + (((100-np.array(bin_corr))/100)*20)**1.25 # # for i in range(len(region_nmad)): # i = 0 # for j in range(nb_slope-2): # # nmad = region_nmad[i] # # ax.plot(corr[1:nb_corr],nmad[j*nb_corr+1:j*nb_corr+nb_corr],label='Slope category: '+str(bin_slope[j]-5)+'-'+str(bin_slope[j]+5)+' degrees',color=color_list[j],linestyle=ls_list[i]) # # # # ax.plot(bin_corr,model_var,label='model',linewidth=2) # # ax.xlabel('Correlation (percent)') # ax.ylabel('Stable terrain NMAD (m)') # ax.ylim([0,50]) # ax.legend() # x_slope = np.arange(5,45,0.1) model_var = np.sqrt(3**2 + (40 * np.tan(np.array(x_slope) * np.pi / 180))**2.5 + (((100-np.array(50))/100)*20)**2) i=0 # for i in range(len(region_nmad)-1): u=0 for j in np.arange(1,nb_corr,2): nmad = region_nmad[i] # ax.plot(bin_slope,nmad[np.arange(j,len(slope),nb_corr)],label='region: '+region_list[i]+', corr: '+str(bin_corr[j]),color=color_list[j],linestyle=ls_list[i]) ax.plot(bin_slope[:-2],nmad[np.arange(j,len(slope)-2*nb_corr,nb_corr)]**2,label='Empirical variance: $q$='+str(int(bin_corr[j]-5))+'-'+str(int(bin_corr[j]+5))+' %',color=color_list[u],linestyle=ls_list[i],marker='o',lw=0.5) u+=1 model_var = np.sqrt(3**2 + ((20+(((100-np.array(100))/100)*20)) * np.tan(np.array(x_slope) * np.pi / 180))**2 + (((100-np.array(95))/100)*15)**2.5) ax.plot(x_slope,model_var**2,label='Modelled: center of above\ncategories',linestyle='dashed',color='black',lw=0.5) model_var = np.sqrt(3**2 + ((20+(((100-np.array(80))/100)*20)) * np.tan(
np.array(x_slope)
numpy.array
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.collections import LineCollection import time """ This code was built just to generate ICE plots for comparison in the paper. We just hacked it together. """ from stratx.partdep import getcats def predict_catice(model, X:pd.DataFrame, colname:str, targetname, cats=None, ncats=None): if cats is None: cats = np.unique(X[colname]) # get unique codes return predict_ice(model=model, X=X, colname=colname, targetname=targetname, cats=cats, nlines=ncats) def predict_ice(model, X:pd.DataFrame, colname:str, targetname="target", cats=None, numx=50, nlines=None): """ Return dataframe with one row per observation in X and one column per unique value of column identified by colname. Row 0 is actually the sorted unique X[colname] values used to get predictions. It's handy to have so we don't have to pass X around to other methods. Points in a single ICE line are the unique values of colname zipped with one row of returned dataframe. E.g., predicted weight predicted weight ... height=62.3638789416112 height=62.78667197542318 ... 0 62.786672 70.595222 ... unique X[colname] values 1 109.270644 161.270843 ... """ start = time.time() save = X[colname].copy() if nlines is not None and nlines > len(X): nlines = len(X) if cats is not None: linex = np.unique(cats) numx = None elif numx is not None: linex = np.linspace(np.min(X[colname]), np.max(X[colname]), numx, endpoint=True) else: linex = sorted(X[colname].unique()) lines = np.zeros(shape=(len(X) + 1, len(linex))) lines[0, :] = linex i = 0 for v in linex: X[colname] = v y_pred = model.predict(X) lines[1:, i] = y_pred i += 1 X[colname] = save columns = [f"predicted {targetname}\n{colname}={str(v)}" for v in linex] df = pd.DataFrame(lines, columns=columns) if nlines is not None: # sample lines (first row is special: linex) df_ = pd.DataFrame(lines) df_ = df_.sample(n=nlines, axis=0, replace=False) lines = df_.values lines = np.concatenate([linex.reshape(1,-1),lines], axis=0) df = pd.DataFrame(lines, columns=columns) stop = time.time() print(f"ICE_predict {stop - start:.3f}s") return df def ice2lines(ice:np.ndarray) -> np.ndarray: """ Return a 3D array of 2D matrices holding X coordinates in col 0 and Y coordinates in col 1. result[0] is first 2D matrix of [X,Y] points in a single ICE line for single observations. Shape of result is: (nobservations,nuniquevalues,2) """ start = time.time() linex = ice.iloc[0,:] # get unique x values from first row # If needed, apply_along_axis() is faster than the loop # def getline(liney): return np.array(list(zip(linex, liney))) # lines = np.apply_along_axis(getline, axis=1, arr=ice.iloc[1:]) lines = [] for i in range(1,len(ice)): # ignore first row liney = ice.iloc[i].values line = np.array(list(zip(linex, liney))) lines.append(line) stop = time.time() # print(f"ICE_lines {stop - start:.3f}s") return np.array(lines) def plot_ice(ice, colname, targetname="target", ax=None, linewidth=.5, linecolor='#9CD1E3', alpha=.1, title=None, xrange=None, yrange=None, pdp=True, pdp_linewidth=.5, pdp_alpha=1, pdp_color='black', show_xlabel=True, show_ylabel=True): start = time.time() if ax is None: fig, ax = plt.subplots(1,1) avg_y = np.mean(ice[1:], axis=0) min_pdp_y = avg_y[0] # if 0 is in x feature and not on left/right edge, get y at 0 # and shift so that is x,y 0 point. linex = ice.iloc[0,:] # get unique x values from first row nx = len(linex) if linex[int(nx*0.05)]<0 or linex[-int(nx*0.05)]>0: closest_x_to_0 = np.abs(linex - 0.0).argmin() min_pdp_y = avg_y[closest_x_to_0] lines = ice2lines(ice) lines[:,:,1] = lines[:,:,1] - min_pdp_y # lines[:,:,0] scans all lines, all points in a line, and gets x column minx, maxx = np.min(lines[:,:,0]),
np.max(lines[:,:,0])
numpy.max
import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset import numpy as np import matplotlib.pyplot as plt import random as rn import os import time from torchvision import datasets, transforms import argparse from torchsummary import summary from pyntcloud import PyntCloud from glob import glob from utils.training_tools import save_ckp,load_ckp,compute_metric, Rotation, Random_sampling import datetime from torchvision.transforms import Compose from torch.utils.tensorboard import SummaryWriter '''RESNET BLOCKS''' def conv_bn(in_channels, out_channels, *args, **kwargs): return nn.Sequential(nn.Conv3d(in_channels, out_channels, *args, **kwargs), nn.BatchNorm3d(out_channels)) class ResnetBlock(nn.Module): def __init__(self, in_filters, out_filters, *args, **kwargs): super().__init__() self.in_filters=in_filters self.out_filters=out_filters self.block=nn.Sequential( conv_bn(self.in_filters,self.out_filters,kernel_size=1,stride=1, padding=0,bias=False), nn.ReLU(), conv_bn(self.out_filters,self.out_filters,kernel_size=3,stride=1, padding=1,bias=False), nn.ReLU(), conv_bn(self.out_filters,self.in_filters,kernel_size=1,stride=1, padding=0,bias=False), ) def forward(self,x): identity=x out=self.block(x) out=out+identity out=F.relu(out) return out class ResNet_kkk(nn.Module): def __init__(self,in_filters,out_filters,nblocks,block): super().__init__() self.in_filters=in_filters self.out_filters=out_filters self.nblocks=nblocks self.block=block self.blocks=nn.Sequential( nn.Conv3d(self.in_filters,self.out_filters,kernel_size=7,stride=1,padding=3,bias=False), *[block(self.out_filters, self.out_filters) for _ in range(self.nblocks)] ) def forward(self,x): out=self.blocks(x) return out class ResNet_kk2k(nn.Module): def __init__(self,in_filters,out_filters,nblocks,block): super().__init__() self.in_filters=in_filters self.out_filters=out_filters self.nblocks=nblocks self.block=block self.blocks=nn.Sequential( nn.Conv3d(self.in_filters,self.out_filters,kernel_size=7,stride=1,padding=(3,3,3),bias=False), nn.Conv3d(self.out_filters,self.out_filters,kernel_size=3,stride=(1,1,2),padding=(1,1,1),bias=False), *[block(self.out_filters, self.out_filters) for _ in range(self.nblocks)] ) def forward(self,x): out=self.blocks(x) return out class ResNet_k2k2k(nn.Module): def __init__(self,in_filters,out_filters,nblocks,block): super().__init__() self.in_filters=in_filters self.out_filters=out_filters self.nblocks=nblocks self.block=block self.blocks=nn.Sequential( nn.Conv3d(self.in_filters,self.out_filters,kernel_size=7,stride=1,padding=(3,3,3),bias=False), nn.Conv3d(self.out_filters,self.out_filters,kernel_size=3,stride=(1,2,2),padding=(1,1,1),bias=False), *[block(self.out_filters, self.out_filters) for _ in range(self.nblocks)] ) def forward(self,x): out=self.blocks(x) return out class ResNet_2k2k2k(nn.Module): def __init__(self,in_filters,out_filters,nblocks,block): super().__init__() self.in_filters=in_filters self.out_filters=out_filters self.nblocks=nblocks self.block=block self.blocks=nn.Sequential( nn.Conv3d(self.in_filters,self.out_filters,kernel_size=7,stride=1,padding=(3,3,3),bias=False), nn.Conv3d(self.out_filters,self.out_filters,kernel_size=3,stride=(2,2,2),padding=(1,1,1),bias=False), *[block(self.out_filters, self.out_filters) for _ in range(self.nblocks)] ) def forward(self,x): out=self.blocks(x) return out '''Voxel CNN BLOCKS''' class maskedConv3D(nn.Conv3d): def __init__(self, masktype, *args, **kwargs): super().__init__(*args, **kwargs) self.register_buffer('mask', self.weight.data.clone()) _, _, kD, kH, kW = self.weight.size() self.mask.fill_(1) self.mask[:, :, kD // 2, kH // 2, kW // 2 + (masktype == 'B'):] = 0 self.mask[:, :, kD // 2, kH // 2 + 1:, :] = 0 self.mask[:, :, kD // 2 + 1:, :, :] = 0 def forward(self, x): self.weight.data *= self.mask return super(maskedConv3D, self).forward(x) class maskedResnet(nn.Module): def __init__(self, no_filters): super().__init__() self.no_filters = no_filters self.conv2a = nn.Conv3d(in_channels=2 * self.no_filters, out_channels=self.no_filters, kernel_size=1, stride=1, padding=0) self.conv2b = maskedConv3D(masktype='B', in_channels=self.no_filters, out_channels=self.no_filters, kernel_size=3, stride=1, padding=1) self.conv2c = nn.Conv3d(in_channels=self.no_filters, out_channels=2 * self.no_filters, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x out = self.conv2a(x) out = F.relu(out) out = self.conv2b(out) out = F.relu(out) out = self.conv2c(out) out += identity return out class VoxelCNN(nn.Module): def __init__(self, input_channel): super().__init__() self.pixelcnn = nn.Sequential( maskedConv3D(masktype='A', in_channels=input_channel, out_channels=64, kernel_size=7, stride=1, padding=3), maskedResnet(32), maskedConv3D(masktype='B', in_channels=64, out_channels=32, kernel_size=1, stride=1, padding=0), nn.ReLU(), maskedConv3D(masktype='B', in_channels=32, out_channels=2, kernel_size=1, stride=1, padding=0), nn.ReLU(), ) def forward(self, x): # print(x.size()) batch, cin, d, h, w = x.size() # print(batch, cin, h,w) assert torch.sum(torch.isnan(x)) == 0 out = self.pixelcnn(x) # print(out.size()) out = out.view(batch, 2, d, h, w) # out = out.permute(0, 1, 3, 4, 2) # print(out.shape) return out ''' BUILDING PIPELINE, MERGE AND SPLIT''' class MSVoxelCNN(nn.Module): def __init__(self, Mpatch, input_channel,input_size,no_resnet,group): super().__init__() self.Mpatch=Mpatch self.input_channel=input_channel self.input_size=input_size self.VoxelCNN=VoxelCNN(32) self.patch_size=self.input_size//self.Mpatch self.group = group if (self.group <= 1): self.Resnet = ResNet_kkk(1, 32, no_resnet, ResnetBlock) # 1 is number of input channel ,32 is number of output, 12 is number of resnet block elif (self.group == 2): self.Resnet = ResNet_kk2k(1, 32, no_resnet, ResnetBlock) elif (self.group == 3 or self.group == 4): self.Resnet = ResNet_k2k2k(1, 32, no_resnet, ResnetBlock) else: self.Resnet = ResNet_2k2k2k(1, 32, no_resnet, ResnetBlock) def forward(self,x): #x=self.maxpooling(x) ResnetFeature = self.Resnet(x) patches = ResnetFeature.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, self.patch_size).unfold(4, self.patch_size, self.patch_size) unfold_shape = patches.size() patches_orig = torch.zeros(unfold_shape[0],2,unfold_shape[2],unfold_shape[3],unfold_shape[4],unfold_shape[5],unfold_shape[6],unfold_shape[7]) for i in range (unfold_shape[2]): for j in range (unfold_shape[3]): for k in range (unfold_shape[4]): patches_orig[:,:,i,j,k,:,:,:]= self.VoxelCNN(patches[:,:,i,j,k,:,:,:]) output_d = unfold_shape[2] * unfold_shape[5] output_h = unfold_shape[3] * unfold_shape[6] output_w = unfold_shape[4] * unfold_shape[7] patches_orig = patches_orig.permute(0,1,2,5,3,6,4,7).contiguous() patches_orig = patches_orig.view(unfold_shape[0],2,output_d, output_h, output_w) return patches_orig class PCdataset(Dataset): def __init__(self, files, transforms=None): self.files=np.asarray(files) self.transforms=transforms def __len__(self): return len(self.files) def __getitem__(self, idx): pc=PyntCloud.from_file(self.files[idx]) points=pc.points.to_numpy()[:,:3] if(self.transforms): points=self.transforms(points) try: points = np.unique(points, axis=0) except: return None points=torch.from_numpy(points).type(torch.LongTensor) #print(points.shape) v=torch.ones(points.shape[0]) dense_block=torch.sparse.FloatTensor(torch.transpose( points,0,1),v, torch.Size([64,64,64])).to_dense().view(1,64,64,64) #print(dense_block.shape, torch.max(dense_block), torch.min(dense_block), torch.count_nonzero(dense_block)) return dense_block def collate_fn(batch): batch = list(filter(lambda x: x is not None, batch)) return torch.utils.data.dataloader.default_collate(batch) def data_collector(training_dirs,params): total_files = [] for training_dir in training_dirs: training_dir = training_dir + '**/*.ply' files = glob(training_dir, recursive=True) print('Total files: ',len(files)) total_files_len = len(files) total_files = np.concatenate((total_files, files), axis=0) print('Selected ', len(files), ' from ', total_files_len, ' in ', training_dir) assert len(total_files) > 0 rn.shuffle(total_files) # shuffle file print('Total blocks for training: ', len(total_files)) files_cat = np.array([os.path.split(os.path.split(x)[0])[1] for x in total_files]) files_train = total_files[files_cat == 'train'] files_valid = total_files[files_cat == 'test'] rotation = Rotation(64) sampling = Random_sampling() #rotation, sampling, transforms_ = Compose([rotation, sampling]) #,transforms.ToTensor() training_set = PCdataset(files_train) training_generator = torch.utils.data.DataLoader(training_set,collate_fn=collate_fn, **params) # Validation data valid_set = PCdataset(files_valid) valid_generator = torch.utils.data.DataLoader(valid_set, collate_fn=collate_fn,**params) return training_generator, valid_generator def index_hr(group,d,h,w):#generate the index to select high resolution from block d,h,w for input index=[[np.arange(0,d,2),np.arange(0,h,2),np.arange(0,w,2)], [np.arange(0,d,2),np.arange(0,h,2),np.arange(0,w,1)], [np.arange(0,d,2),np.arange(0,h,1),np.arange(0,w,1)], [np.arange(0,d,2),np.arange(0,h,1),np.arange(0,w,1)], [np.arange(0,d,1),np.arange(0,h,1),np.arange(0,w,1)], [np.arange(0,d,1),
np.arange(0,h,1)
numpy.arange
import warnings import numpy as np from nbeats_keras.model import NBeatsNet as NBeatsKeras from nbeats_pytorch.model import NBeatsNet as NBeatsPytorch warnings.filterwarnings(action='ignore', message='Setting attributes') def main(): # https://keras.io/layers/recurrent/ num_samples, time_steps, input_dim, output_steps = 50_000, 10, 1, 1 # Definition of the model. # NOTE: If you choose the Keras backend with input_dim>1, you have # to set the value here too (in the constructor). model_keras = NBeatsKeras(backcast_length=time_steps, forecast_length=output_steps, stack_types=(NBeatsKeras.GENERIC_BLOCK, NBeatsKeras.GENERIC_BLOCK), nb_blocks_per_stack=2, thetas_dim=(4, 4), share_weights_in_stack=True, hidden_layer_units=64) model_pytorch = NBeatsPytorch(backcast_length=time_steps, forecast_length=output_steps, stack_types=(NBeatsPytorch.GENERIC_BLOCK, NBeatsPytorch.GENERIC_BLOCK), nb_blocks_per_stack=2, thetas_dim=(4, 4), share_weights_in_stack=True, hidden_layer_units=64) # Definition of the objective function and the optimizer. model_keras.compile(loss='mae', optimizer='adam') model_pytorch.compile(loss='mae', optimizer='adam') # Definition of the data. The problem to solve is to find f such as | f(x) - y | -> 0. # where f = np.mean. x = np.random.uniform(size=(num_samples, time_steps, input_dim)) y = np.mean(x, axis=1, keepdims=True) # Split data into training and testing datasets. c = num_samples // 10 x_train, y_train, x_test, y_test = x[c:], y[c:], x[:c], y[:c] test_size = len(x_test) # Train the model. print('Keras training...') model_keras.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=128) print('Pytorch training...') model_pytorch.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=128) # Save the model for later. model_keras.save('n_beats_model.h5') model_pytorch.save('n_beats_pytorch.th') # Predict on the testing set (forecast). predictions_keras_forecast = model_keras.predict(x_test) predictions_pytorch_forecast = model_pytorch.predict(x_test)
np.testing.assert_equal(predictions_keras_forecast.shape, (test_size, model_keras.forecast_length, output_steps))
numpy.testing.assert_equal
import numpy as np from flask import Flask, jsonify, make_response, request from bokeh.models import AjaxDataSource, CustomJS from bokeh.plotting import figure, show # Bokeh related code adapter = CustomJS(code=""" const result = {x: [], y: []} const pts = cb_data.response.points for (let i=0; i<pts.length; i++) { result.x.push(pts[i][0]) result.y.push(pts[i][1]) } return result """) source = AjaxDataSource(data_url='http://localhost:5555/data', polling_interval=100, adapter=adapter) p = figure(plot_height=300, plot_width=800, background_fill_color="lightgrey", title="Streaming Noisy sin(x) via Ajax") p.circle('x', 'y', source=source) p.x_range.follow = "end" p.x_range.follow_interval = 10 # Flask related code app = Flask(__name__) def crossdomain(f): def wrapped_function(*args, **kwargs): resp = make_response(f(*args, **kwargs)) h = resp.headers h['Access-Control-Allow-Origin'] = '*' h['Access-Control-Allow-Methods'] = "GET, OPTIONS, POST" h['Access-Control-Max-Age'] = str(21600) requested_headers = request.headers.get('Access-Control-Request-Headers') if requested_headers: h['Access-Control-Allow-Headers'] = requested_headers return resp return wrapped_function x = list(np.arange(0, 6, 0.1)) y = list(np.sin(x) + np.random.random(len(x))) @app.route('/data', methods=['GET', 'OPTIONS', 'POST']) @crossdomain def data(): x.append(x[-1]+0.1) y.append(np.sin(x[-1])+
np.random.random()
numpy.random.random
# ---------------------------------------------------------------------------- # Title: Scientific Visualisation - Python & Matplotlib # Author: <NAME> # License: BSD # ---------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt import matplotlib.path as mpath from matplotlib.collections import LineCollection from matplotlib.collections import PathCollection from matplotlib.collections import CircleCollection from matplotlib.collections import PolyCollection from matplotlib.collections import EllipseCollection from matplotlib.collections import RegularPolyCollection from matplotlib.collections import StarPolygonCollection from matplotlib.collections import AsteriskPolygonCollection fig = plt.figure(figsize=(4.25, 8 * 0.4)) ax = fig.add_axes( [0, 0, 1, 1], xlim=[0, 11], ylim=[0.5, 8.5], frameon=False, xticks=[], yticks=[], aspect=1, ) y = 8 # Line collection # ---------------------------------------------------------------------------- n = 50 segments = np.zeros((n, 2, 2)) segments[:, 0, 0] = np.linspace(1, 10.25, n) - 0.2 segments[:, 0, 1] = y - 0.2 segments[:, 1, 0] = segments[:, 0, 0] + 0.2 segments[:, 1, 1] = y + 0.15 linewidths = np.linspace(0.5, 2.5, n) collection = LineCollection(segments, linewidths=linewidths, edgecolor="black") ax.add_collection(collection) ax.text(1 - 0.25, y + 0.25, "Line collection", size="small", ha="left", va="baseline") ax.text( 10 + 0.25, y + 0.25, "LineCollection", color="blue", size="small", ha="right", va="baseline", family="monospace", ) y -= 1 # Circle collection # ---------------------------------------------------------------------------- n = 10 offsets = np.ones((n, 2)) offsets[:, 0], offsets[:, 1] = np.linspace(1, 10, n), y X, Y = offsets[:, 0], offsets[:, 1] sizes = np.linspace(25, 100, n) linewidths = np.linspace(1, 2, n) facecolors = ["%.1f" % c for c in np.linspace(0.25, 0.75, n)] collection = CircleCollection( sizes, # linewidths = linewidths, facecolors=facecolors, edgecolor="black", offsets=offsets, transOffset=ax.transData, ) ax.add_collection(collection) ax.text( X[0] - 0.25, y + 0.35, "Circle collection", size="small", ha="left", va="baseline" ) ax.text( X[-1] + 0.25, y + 0.35, "CircleCollection", color="blue", size="small", ha="right", va="baseline", family="monospace", ) y -= 1 # Ellipse collection # ---------------------------------------------------------------------------- n = 10 offsets = np.ones((n, 2)) offsets[:, 0], offsets[:, 1] = np.linspace(1, 10, n), y X, Y = offsets[:, 0], offsets[:, 1] widths, heights = 15 * np.ones(n), 10 * np.ones(n) angles = np.linspace(0, 45, n) linewidths = np.linspace(1, 2, n) facecolors = ["%.1f" % c for c in np.linspace(0.25, 0.75, n)] collection = EllipseCollection( widths, heights, angles, # linewidths = linewidths, facecolors=facecolors, edgecolor="black", offsets=offsets, transOffset=ax.transData, ) ax.add_collection(collection) ax.text( X[0] - 0.25, y + 0.35, "Ellipse collection", size="small", ha="left", va="baseline" ) ax.text( X[-1] + 0.25, y + 0.35, "EllipseCollection", color="blue", size="small", ha="right", va="baseline", family="monospace", ) y -= 1 # Polygon collection # ---------------------------------------------------------------------------- n = 10 offsets = np.ones((n, 2)) offsets[:, 0], offsets[:, 1] = np.linspace(1, 10, n) - 0.2, y + 0.1 X, Y = offsets[:, 0], offsets[:, 1] verts = np.zeros((n, 4, 2)) verts[:] = [0, 0], [1, 0], [1, 1], [0, 1] sizes = np.linspace(0.25, 0.50, n) verts *= sizes.reshape(n, 1, 1) widths, heights = 15 * np.ones(n), 10 * np.ones(n) numsides = 5 rotation = np.pi / 4 offsets[:, 1] -= sizes / 2 - 0.25 linewidths =
np.linspace(1, 2, n)
numpy.linspace
from numpy import arctan, zeros, pi, real as re, imag as im, linspace,eye, prod, newaxis from numpy import array as arr, exp, log, arange, diag, kron, savetxt, cumsum, argmax from numpy.linalg import det, norm, solve from scipy.optimize import fsolve import matplotlib.pyplot as plt from copy import deepcopy from time import clock from numpy.random import uniform, shuffle from scipy import integrate import matplotlib.patches as pat import pylab as pl def ncr(n,r): if r < 0: return 0 p,q = 1,1 for j in range(r): p *= n-j q *= j+1 return p//q def ind_draw(o,m,n): #generator giving all ways to draw n elements from range(o,m) without replacement if n>=0: l = m-o if n == 0: yield [] elif n == l: yield list(range(o,m)) else: for k in range(o,m-n+1): for wha in ind_draw(k+1,m,n-1): yield [k]+wha def disect(We): #We is l-dimensional tensor, returns the sum along all but each axes. w = [] As = We.shape l = len(As) for j in range(l): if As[j] >1: w.append(We.sum(tuple(range(1,l-j)))) else: w.append(arr([1])) We = We.sum(0) for j in range(l): if As[j] >1: #don't calculate the full sum rule over and over again on trivial boxes. (empty or full) w[j] /= We return w def boxicles(n,deps): #puts n particles in boxes with maximal capacity deps. oo=None was last input M = len(deps) if n == 0: yield [0 for _ in range(M)] else: for preput in boxicles(n-1,deps): for k in range(M): #postput = [a for a in preput] #postput[k] += 1 #yield postput if preput[k]<deps[k]: yield [preput[a]+int(a==k) for a in range(M)] if preput[k]: break def TBA(T,c,chempot,givedens = True): interpts = 101 #odd is best bdys = 20 la = linspace(-bdys,bdys,interpts) #lambda dla = la[1]-la[0] ootp = 1/(2*pi) lala = (la*la-chempot)/T convo = dla*c/(pi*(c*c+(la[:,newaxis]-la[newaxis,:])**2)) tba = lambda eps: lala- eps +(convo*log(1+exp(-eps))[newaxis,:]).sum(axis=1) exep = exp(fsolve(tba,zeros(interpts))) ooexep = 1/(1+exep) #plt.plot(la,ooexep) tba2 = lambda rhop: rhop/(ootp+(convo*rhop[newaxis,:]).sum(axis=1))-ooexep rhopsol = fsolve(tba2,0.15*ooexep) #plt.plot(la,ooexep/rhopsol) rhopsol -= min(rhopsol) #ensure non-negativity, despite numerical error D = sum(rhopsol)*dla if givedens: return D else: rhot = ootp+(convo*rhopsol[newaxis,:]).sum(axis=1) xi = [0] for rj in rhot: xi.append(xi[-1]+dla*rj) xi = (arr(xi[1:])+arr(xi[:-1]))/2 xi -= xi[interpts//2] return rhopsol/rhot, xi def LL_gibbs(N,L,T,c,ss): #more closely recreates a gibbs ensemble from a finite set of states. qngen = LL_thermal_disc(N,L,T,c,200*ss) ensemble = [] pref = 2*pi/L for qn in qngen: aqn = arr(qn) lam,_ = newtrap(aqn,L,c,aqn*pref) ensemble.append([sum(lam*lam),qn]) ensemble.sort() h=1 while h<len(ensemble): if ensemble[h-1][0]==ensemble[h][0]: if ensemble[h-1][1]==ensemble[h][1]: ensemble.pop(h) h += 1 energies = arr([e[0] for e in ensemble]) prolly = cumsum(exp(-energies/T)) prolly /= prolly[-1] #plt.hist(energies,bins=linspace(0,150,100)) #plt.plot(prolly) for _ in range(ss): yield ensemble[argmax(prolly>uniform())][1] def LL_thermal_disc(N,L,T,c,samplesize): if N==0: for _ in range(samplesize): yield [] else: dens = N/L chempot = fsolve(lambda chemp: TBA(T,c,chemp)-dens,1) #plt.plot([TBA(T,c,ch) for ch in linspace(-10,10,100)]) rhox,xi = TBA(T,c,chempot,False) pref = 1/L #dom = max(1000,T/L) #print(xi[0],xi[-1]) nf = lambda k : smirt(xi,rhox,k) #KX = linspace(-10,10,1000) #plt.plot(KX,[nf(kx) for kx in KX]) #boundbox = int(fsolve(lambda bd: integrate.quad(nf,-bd*pref,bd*pref)[0]-0.99*dens,L/2)[0]+2) #find the Qn inside which 99.5% of the particles should be boundbox = int(xi[-1]*L) for _ in range(samplesize): if N%2: I = [0] index = 1 else: I = [] index = 0.5 sign = 1 newreject = [] while len(I) < N and index<boundbox: ki = index*pref if uniform()<nf(ki): I.append(sign*index) else: newreject.append(sign*index) if sign == 1: sign = -1 else: sign = 1 index += 1 while len(I) < N: shuffle(newreject) reject = newreject shuffle(reject) rejlen,rejind = len(reject),0 newreject = [] while len(I) < N and rejind<rejlen: if uniform()<nf(pref*reject[rejind]): I.append(reject[rejind]) else: newreject.append(reject[rejind]) rejind +=1 if uniform()<0.5: I = [-ii for ii in I] yield sorted(I) def smirt(x,y,a): # y(x) irregularly spaced, x in increasing tho. a is desired x coordinate: interpolate n = len(y)-1 h = 0 if a<x[0] or a>x[-1]: return 0 while x[h+1]<a and h<n: h += 1 return y[h]+(y[h+1]-y[h])*(a-x[h])/(x[h+1]-x[h]) def fd_better_disc(N,L,T,samplesize): pref = 2*pi/L if L==0: for _ in range(samplesize): yield [] else: beta = 0.5/T #dom = max(1000,T/L) dom = 100 dens = 2*pi*N/L mu = fsolve(lambda moo: integrate.quad(lambda k: 1/(1+exp((k*k-moo)*beta)),-dom,dom)[0]-dens,0)[0] nf = lambda k : 1/(1+exp((k*k-mu)*beta)) boundbox = int(fsolve(lambda bd: integrate.quad(nf,-bd*pref,bd*pref)[0]-0.99*dens,L/2)[0]+2) #find the Qn inside which 99.5% of the particles should be for _ in range(samplesize): if N%2: I = [0] index = 1 else: I = [] index = 0.5 sign = 1 newreject = [] while len(I) < N and index<boundbox: ki = index*pref if
uniform()
numpy.random.uniform
""" A collection of (mostly) stand alone helper functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import numpy as np import sys if sys.version_info >= (3,0): xrange = range """ Miscellaneous functions ~~~~~~~~~~~~~~~~~~~~~~~ """ def setDefaultArgs(func, **kwargs): """ Changes the default args in `func` to match `kwargs`. This can be useful when dealing with deeply nested functions for which the default parameters cannot be set directly in the top-level function. Raises ------ ValueError if `func` does not have default arguments that match `kwargs`. Example ------- >>> def foo(bar="Hello world!"): ... print bar >>> setDefaultArgs(foo, bar="The world has changed!") >>> foo() The world has changed! """ import inspect args, varargs, varkwargs, defaults = inspect.getargspec(func) have_defaults = args[-len(defaults):] defaults = list(defaults) # so that we can write to it for kwd in kwargs: try: i = have_defaults.index(kwd) except ValueError: raise ValueError("Function '%s()' does not have default argument " "named '%s'." % (func.__name__, kwd)) defaults[i] = kwargs[kwd] func.__defaults__ = tuple(defaults) def monotonicIndices(x): """ Returns the indices of `x` such that `x[i]` is purely increasing. """ x = np.array(x) if x[0] > x[-1]: x = x[::-1] is_reversed = True else: is_reversed = False I = [0] for i in xrange(1, len(x)-1): if x[i] > x[I[-1]] and x[i] < x[-1]: I.append(i) I.append(len(x)-1) if is_reversed: return len(x)-1-np.array(I) else: return np.array(I) def clampVal(x, a, b): """ Clamp the value `x` to be between `a` and `b`. Parameters ---------- x, a, b : array_like Must have the same shape or be broadcastable. Returns ------- array_like """ s = np.sign(b-a) # +1 for b > a, -1 for b < a sa = 1+s*np.sign(x-a) x = (x*sa + a*(2-sa)) // 2 sb = 1+s*np.sign(b-x) x = (x*sb + b*(2-sb)) // 2 return x """ Numerical integration ~~~~~~~~~~~~~~~~~~~~~ """ class IntegrationError(Exception): """ Used to indicate an integration error, primarily in :func:`rkqs`. """ pass _rkqs_rval = namedtuple("rkqs_rval", "Delta_y Delta_t dtnxt") def rkqs(y,dydt,t,f, dt_try, epsfrac, epsabs, args=()): """ Take a single 5th order Runge-Kutta step with error monitoring. This function is adapted from Numerical Recipes in C. The step size dynamically changes such that the error in `y` is smaller than the larger of `epsfrac` and `epsabs`. That way, if one wants to disregard the fractional error, set `epsfrac` to zero but keep `epsabs` non-zero. Parameters ---------- y, dydt : array_like The initial value and its derivative at the start of the step. They should satisfy ``dydt = f(y,t)``. `dydt` is included here for efficiency (in case the calling function already calculated it). t : float The integration variable. f : callable The derivative function. dt_try : float An initial guess for the step size. epsfrac, epsabs : array_like The maximual fractional and absolute errors. Should be either length 1 or the same size as `y`. args : tuple Optional arguments for `f`. Returns ------- Delta_y : array_like Change in `y` during this step. Delta_t : float Change in `t` during this step. dtnext : float Best guess for next step size. Raises ------ IntegrationError If the step size gets smaller than the floating point error. References ---------- Based on algorithms described in [1]_. .. [1] <NAME>, et. al. "Numerical Recipes in C: The Art of Scientific Computing. Second Edition." Cambridge, 1992. """ dt = dt_try while True: dy,yerr = _rkck(y,dydt,t,f,dt,args) errmax = np.nan_to_num(np.max(np.min([ abs(yerr/epsabs), abs(yerr)/((abs(y)+1e-300)*epsfrac) ], axis=0))) if(errmax < 1.0): break # Step succeeded dttemp = 0.9*dt*errmax**-.25 dt = max(dttemp,dt*.1) if dt > 0 else min(dttemp,dt*.1) if t + dt == t: raise IntegrationError("Stepsize rounds down to zero.") if errmax > 1.89e-4: dtnext = 0.9 * dt * errmax**-.2 else: dtnext = 5*dt return _rkqs_rval(dy, dt, dtnext) def rkqs2(y,dydt,t,f, dt_try, inv_epsabs, args=()): """ Same as :func:`rkqs`, but ``inv_epsabs = 1/epsabs`` and ``epsfrac`` is not used. """ dt = dt_try while True: dy,yerr = _rkck(y,dydt,t,f,dt,args) errmax = np.max(yerr * inv_epsabs) if(errmax < 1.0): break # Step succeeded dttemp = 0.9*dt*errmax**-.25 dt = max(dttemp,dt*.1) if dt > 0 else min(dttemp,dt*.1) if t+dt == t: raise IntegrationError("Stepsize rounds down to zero.") if errmax > 1.89e-4: dtnext = 0.9 * dt * errmax**-.2 else: dtnext = 5*dt return _rkqs_rval(dy, dt, dtnext) def _rkck(y,dydt,t,f,dt,args=()): """ Take one 5th-order Cash-Karp Runge-Kutta step. Returns ------- array_like The change in `y` during this step. array_like An error estimate for `y`. """ a2=0.2;a3=0.3;a4=0.6;a5=1.0;a6=0.875;b21=0.2 # noqa b31=3.0/40.0;b32=9.0/40.0;b41=0.3;b42 = -0.9;b43=1.2; # noqa b51 = -11.0/54.0; b52=2.5;b53 = -70.0/27.0;b54=35.0/27.0; # noqa b61=1631.0/55296.0;b62=175.0/512.0;b63=575.0/13824.0; # noqa b64=44275.0/110592.0;b65=253.0/4096.0;c1=37.0/378.0; # noqa c3=250.0/621.0;c4=125.0/594.0;c6=512.0/1771.0; # noqa dc5 = -277.00/14336.0; # noqa dc1=c1-2825.0/27648.0;dc3=c3-18575.0/48384.0; # noqa dc4=c4-13525.0/55296.0;dc6=c6-0.25 # noqa ytemp = y+b21*dt*dydt ak2 = f(ytemp, t+a2*dt, *args) ytemp = y+dt*(b31*dydt+b32*ak2) ak3 = f(ytemp, t+a3*dt, *args) ytemp = y+dt*(b41*dydt+b42*ak2+b43*ak3) ak4 = f(ytemp, t+a4*dt, *args) ytemp = y + dt*(b51*dydt+b52*ak2+b53*ak3+b54*ak4) ak5 = f(ytemp, t+a5*dt, *args) ytemp = y + dt*(b61*dydt+b62*ak2+b63*ak3+b64*ak4+b65*ak5) ak6 = f(ytemp, t+a6*dt, *args) dyout = dt*(c1*dydt+c3*ak3+c4*ak4+c6*ak6) yerr = dt*(dc1*dydt+dc3*ak3+dc4*ak4+dc5*ak5+dc6*ak6) return dyout, yerr """ Numerical derivatives ~~~~~~~~~~~~~~~~~~~~~ The *derivij()* functions accept arrays as input and return arrays as output. In contrast, :class:`gradientFunction` and :class:hessianFunction` accept functions as input and return callable class instances (essentially functions) as output. The returned functions can then be used to find derivatives. """ def deriv14(y,x): R""" Calculates :math:`dy/dx` to fourth-order in :math:`\Delta x` using finite differences. The derivative is taken along the last dimension of `y`. Both `y` and `x` should be numpy arrays. The derivatives are centered in the interior of the array, but not at the edges. The spacing in `x` does not need to be uniform. """ n = len(x) j = np.arange(5) j[j > 4//2] -= 5 i = np.arange(n) - j[:,np.newaxis] i[i < 0] += 5 i[i >= n] -= 5 d1 = x[i[1]]-x[i[0]] d2 = x[i[2]]-x[i[0]] d3 = x[i[3]]-x[i[0]] d4 = x[i[4]]-x[i[0]] w4 = (d1*d2*d3) / ( -d4 * (-d1*d2*d3 + d4 * (d1*d2+d2*d3+d3*d1 + d4 * (+d4-d1-d2-d3)))) w3 = (d1*d2*d4) / ( -d3 * (-d1*d2*d4 + d3 * (d1*d2+d2*d4+d4*d1 + d3 * (-d4-d1-d2+d3)))) w2 = (d1*d4*d3) / ( -d2 * (-d1*d4*d3 + d2 * (d1*d4+d4*d3+d3*d1 + d2 * (-d4-d1+d2-d3)))) w1 = (d4*d2*d3) / ( -d1 * (-d4*d2*d3 + d1 * (d4*d2+d2*d3+d3*d4 + d1 * (-d4+d1-d2-d3)))) w0 = -(w1+w2+w3+w4) dy = (w0*y[...,i[0]] + w1*y[...,i[1]] + w2*y[...,i[2]] + w3*y[...,i[3]] + w4*y[...,i[4]]) return dy def deriv14_const_dx(y, dx=1.0): R""" Calculates :math:`dy/dx` to fourth-order in :math:`\Delta x` using finite differences. The derivative is taken along the last dimension of `y`. The output of this function should be identical to :func:`deriv14` when the spacing in `x` is constant, but this will be faster. Parameters ---------- y : array_like dx : float, optional """ y = y.T # now the derivative is along the first dimension dy = np.empty_like(y) dy[2:-2] = y[:-4] - 8*y[1:-3] + 8*y[3:-1] - y[4:] dy[+0] = -25*y[+0] + 48*y[+1] - 36*y[+2] + 16*y[+3] - 3*y[+4] dy[+1] = -3*y[+0] - 10*y[+1] + 18*y[+2] - 6*y[+3] + y[+4] dy[-2] = +3*y[-1] + 10*y[-2] - 18*y[-3] + 6*y[-4] - y[-5] dy[-1] = +25*y[-1] - 48*y[-2] + 36*y[-3] - 16*y[-4] + 3*y[-5] return dy.T / (12.0 * dx) def deriv1n(y,x,n): """ Calculates :math:`dy/dx` to nth-order in :math:`\Delta x` using finite differences. The derivative is taken along the last dimension of `y`. Both `y` and `x` should be numpy arrays. The derivatives are centered in the interior of the array, but not at the edges. The spacing in `x` does not need to be uniform. """ nx = len(x) j = np.arange(n+1) j[j > n//2] -= n+1 i = np.arange(nx) - j[:,np.newaxis] i[i < 0] += n+1 i[i >= nx] -= n+1 d = np.empty((n,n,nx), dtype=x.dtype)*1.0 d[0] = x[i[1:]] - x[i[0]] for j in xrange(1,n): d[j] = np.roll(d[j-1], -1, axis=0) d[:,0] *= -1 w = np.zeros((n+1,nx), dtype=y.dtype)*1. # For example, when calculating w[1], we need only use # w[1]: d1 = d[0,0], d2 = d[0,1], d3 = d[0,2], ..., dn = d[0,n-1] # and for the other weights we just increment the first index: # w[2]: d2 = d[1,0], d3 = d[1,1], d4 = d[1,2], ..., dn = d[1,n-2], # d1 = d[1,n-1] # So we should be able to calculate all of them at once like this. s = ((2**np.arange(n-1)) & np.arange(2**(n-1))[:,np.newaxis]) s[s > 0] = (np.arange(1,n) * np.ones(2**(n-1))[:,np.newaxis])[s > 0] w[1:] = (np.sum(np.product(d[:,s],axis=2), axis=1)*d[:,0] / np.product(d[:,1:], axis=1)) w[1:] = -w[1:]**-1 w[0] = -np.sum(w[1:],axis=0) dy = np.sum(w*y[...,i], axis=-2) return dy def deriv23(y,x): """ Calculates :math:`d^2y/dx^2` to third-order in :math:`\Delta x` using finite differences. The derivative is taken along the last dimension of `y`. Both `y` and `x` should be numpy arrays. The derivatives are centered in the interior of the array, but not at the edges. The spacing in `x` does not need to be uniform. The accuracy increases to fourth-order if the spacing is uniform. """ n = len(x) j = np.arange(5) j[j > 4//2] -= 5 i = np.arange(n) - j[:,np.newaxis] i[i < 0] += 5 i[i >= n] -= 5 d1 = x[i[1]]-x[i[0]] d2 = x[i[2]]-x[i[0]] d3 = x[i[3]]-x[i[0]] d4 = x[i[4]]-x[i[0]] w4 = 2*(d1*d2+d2*d3+d3*d1) / ( d4 * (-d1*d2*d3 + d4 * (d1*d2+d2*d3+d3*d1 + d4 * (+d4-d1-d2-d3) ) ) ) w3 = 2*(d1*d2+d2*d4+d4*d1) / ( d3 * (-d1*d2*d4 + d3 * (d1*d2+d2*d4+d4*d1 + d3 * (-d4-d1-d2+d3) ) ) ) w2 = 2*(d1*d4+d4*d3+d3*d1) / ( d2 * (-d1*d4*d3 + d2 * (d1*d4+d4*d3+d3*d1 + d2 * (-d4-d1+d2-d3) ) ) ) w1 = 2*(d4*d2+d2*d3+d3*d4) / ( d1 * (-d4*d2*d3 + d1 * (d4*d2+d2*d3+d3*d4 + d1 * (-d4+d1-d2-d3) ) ) ) w0 = -(w1+w2+w3+w4) d2y = (w0*y[...,i[0]] + w1*y[...,i[1]] + w2*y[...,i[2]] + w3*y[...,i[3]] + w4*y[...,i[4]]) return d2y def deriv23_const_dx(y, dx=1.0): """ Calculates :math:`d^2y/dx^2` to third-order in :math:`\Delta x` using finite differences. The derivative is taken along the last dimension of `y`. The output of this function should be identical to :func:`deriv23` when the spacing in `x` is constant, but this will be faster. Parameters ---------- y : array_like dx : float, optional """ y = y.T # now the derivative is along the first dimension dy = np.empty_like(y) dy[2:-2] = -y[:-4] + 16*y[1:-3] - 30*y[2:-2] + 16*y[3:-1] - y[4:] dy[+0] = 35*y[+0] - 104*y[+1] + 114*y[+2] - 56*y[+3] + 11*y[+4] dy[+1] = 11*y[+0] - 20*y[+1] + 6*y[+2] + 4*y[+3] - y[+4] dy[-2] = 11*y[-1] - 20*y[-2] + 6*y[-3] + 4*y[-4] - y[-5] dy[-1] = 35*y[-1] - 104*y[-2] + 114*y[-3] - 56*y[-4] + 11*y[-5] return dy.T / (12.0 * dx) class gradientFunction: """ Make a function which returns the gradient of some scalar function. Parameters ---------- f : callable The first argument `x` should either be a single point with length `Ndim` or an array (or matrix, etc.) of points with shape ``(..., Ndim)``, where ``...`` is some arbitrary shape. The return shape should be the same as the input shape, but with the last axis stripped off (i.e., it should be a scalar function). Additional required or optional arguments are allowed. eps : float or array_like The small change in `x` used to calculate the finite differences. Can either be a scalar or have length `Ndim`. Ndim : int Number of dimensions for each point. order : 2 or 4 Calculate the derivatives to either 2nd or 4th order in `eps`. Example ------- >>> def f(X): ... x,y = np.asarray(X).T ... return (x*x + x*y +3.*y*y*y).T >>> df = gradientFunction(f, eps=.01, Ndim=2, order=4) >>> x = np.array([[0,0],[0,1],[1,0],[1,1]]) >>> print df(x) array([[ 0., 0.], [ 1., 9.], [ 2., 1.], [ 3., 10.]]) """ def __init__(self, f, eps, Ndim, order=4): assert order == 2 or order == 4 eps = np.asanyarray(eps) dx = np.empty((order, Ndim, Ndim)) dx[:] = np.diag(np.ones(Ndim)*eps) dxT = dx.T coef = np.empty((order, Ndim)) coef[:] = 1.0/eps coefT = coef.T if order == 2: dxT *= [-1, 1] coefT *= [-.5, .5] if order == 4: dxT *= [-2, -1, 1, 2] coefT *= [1, -8, 8, -1] coefT /= 12.0 self.f = f self.dx = dx self.coef = coef def __call__(self, x, *args, **kwargs): """ Calculate the gradient. Output shape is the same as the input shape. """ x = np.asanyarray(x)[...,np.newaxis,np.newaxis,:] return np.sum(self.f(x+self.dx, *args, **kwargs)*self.coef, axis=-2) class hessianFunction: """ Make a function which returns the Hessian (second derivative) matrix of some scalar function. Parameters ---------- f : callable The first argument `x` should either be a single point with length `Ndim` or an array (or matrix, etc.) of points with shape ``(..., Ndim)``, where ``...`` is some arbitrary shape. The return shape should be the same as the input shape, but with the last axis stripped off (i.e., it should be a scalar function). Additional required or optional arguments are allowed. eps : float or array_like The small change in `x` used to calculate the finite differences. Can either be a scalar or have length `Ndim`. Ndim : int Number of dimensions for each point. order : 2 or 4 Calculate the derivatives to either 2nd or 4th order in `eps`. """ def __init__(self, f, eps, Ndim, order=4): assert order == 2 or order == 4 eps = np.ones(Ndim) * eps dx = [] coef = [] for i in xrange(Ndim): dx.append([]) coef.append([]) for j in xrange(i): dx_ = np.zeros((order, order, Ndim)) if (order == 2): dx_[:,:,i] = np.array([-1,1]) * eps[i] dx_ = np.rollaxis(dx_, 1) dx_[:,:,j] = np.array([-1,1]) * eps[j] coef_ = np.array([-.5, .5]) coef_ = coef_[:,np.newaxis] * coef_[np.newaxis,:] coef_ /= eps[i]*eps[j] if (order == 4): dx_[:,:,i] = np.array([-2,-1,1,2]) * eps[i] dx_ = np.rollaxis(dx_, 1) dx_[:,:,j] = np.array([-2,-1,1,2]) * eps[j] coef_ =
np.array([1, -8, 8, -1.])
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu Oct 4 13:30:06 2018 @author: gregz """ import time import numpy as np import os.path as op import glob import warnings from astropy.io import fits from utils import biweight_location from scipy.signal import savgol_filter, medfilt2d from scipy.interpolate import interp1d, interp2d from input_utils import setup_logging from astrometry import Astrometry dither_pattern = np.array([[0., 0.], [1.27, -0.73], [1.27, 0.73]]) virus_amps = ['LL', 'LU', 'RU', 'RL'] lrs2_amps = [['LL', 'LU'], ['RL', 'RU']] fplane_file = '/work/03730/gregz/maverick/fplane.txt' flt_obs = '%07d' % 15 twi_obs = '%07d' % 1 sci_obs = '%07d' % 13 twi_date = '20170205' sci_date = twi_date flt_date = twi_date # FOR LRS2 instrument = 'lrs2' AMPS = lrs2_amps[0] dither_pattern = np.zeros((10, 2)) log = setup_logging('panacea_quicklook') basered = '/work/03730/gregz/maverick' baseraw = '/work/03946/hetdex/maverick' twi_path = op.join(basered, 'reductions', twi_date, '%s', '%s%s', 'exp01', '%s', 'multi_*_%s_*_LL.fits') sci_path = op.join(baseraw, sci_date, '%s', '%s%s', 'exp%s', '%s', '2*_%sLL*.fits') flt_path = op.join(baseraw, flt_date, '%s', '%s%s', 'exp*', '%s', '2*_%sLL*.fits') sciflt_path = op.join(baseraw, twi_date, '%s', '%s%s', 'exp*', '%s', '2*_%sLL_twi.fits') bias_path = op.join(baseraw, twi_date, '%s', '%s%s', 'exp*', '%s', '2*_%sLL_zro.fits') def get_cal_info(twi_path, amp): F = fits.open(glob.glob(twi_path.replace('LL', amp))[0]) return (np.array(F['ifupos'].data, dtype=float), np.array(F['trace'].data, dtype=float), np.array(F['wavelength'].data, dtype=float)) def orient_image(image, amp, ampname): ''' Orient the images from blue to red (left to right) Fibers are oriented to match configuration files ''' if amp == "LU": image[:] = image[::-1, ::-1] if amp == "RL": image[:] = image[::-1, ::-1] if ampname is not None: if ampname == 'LR' or ampname == 'UL': image[:] = image[:, ::-1] return image def make_avg_spec(wave, spec, binsize=35, per=50): ind = np.argsort(wave.ravel()) T = 1 for p in wave.shape: T *= p wchunks = np.array_split(wave.ravel()[ind], T / binsize) schunks = np.array_split(spec.ravel()[ind], T / binsize) nwave = np.array([np.mean(chunk) for chunk in wchunks]) nspec = np.array([np.percentile(chunk, per) for chunk in schunks]) nwave, nind = np.unique(nwave, return_index=True) return nwave, nspec[nind] def base_reduction(filename): a = fits.open(filename) image = np.array(a[0].data, dtype=float) # overscan sub overscan_length = 32 * (image.shape[1] / 1064) O = biweight_location(image[:, -(overscan_length-2):]) image[:] = image - O # trim image image = image[:, :-overscan_length] try: ampname = a[0].header['AMPNAME'] except: ampname = None a = orient_image(image, amp, ampname) return a def get_sciflat_field(flt_path, amp, array_wave, array_trace, common_wave, masterbias, log): files = glob.glob(flt_path.replace('LL', amp)) listflat = [] array_flt = base_reduction(files[0]) bigW = np.zeros(array_flt.shape) Y, X = np.indices(array_wave.shape) YY, XX = np.indices(array_flt.shape) for x, at, aw, xx, yy in zip(np.array_split(X, 2, axis=0), np.array_split(array_trace, 2, axis=0), np.array_split(array_wave, 2, axis=0), np.array_split(XX, 2, axis=0), np.array_split(YY, 2, axis=0)): for j in np.arange(at.shape[1]): with warnings.catch_warnings(): warnings.simplefilter("ignore") p0 = np.polyfit(at[:, j], aw[:, j], 7) bigW[yy[:, j], j] = np.polyval(p0, yy[:, j]) listspec = [] for filename in files: log.info('Working on sciflat %s' % filename) array_flt = base_reduction(filename) - masterbias x =
np.arange(array_wave.shape[1])
numpy.arange
# Module survey figures from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np import glob, copy, os, sys import json import matplotlib as mpl mpl.rcParams['font.family'] = 'stixgeneral' from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec import aplpy from astropy import units as u from astropy.units import Unit from astropy.io import ascii, fits from astropy.table import QTable, Table, Column from astropy.coordinates import SkyCoord from astropy import constants as const from astropy import wcs from linetools.spectra.xspectrum1d import XSpectrum1D from xastropy.obs import x_getsdssimg as xosdss from xastropy.obs import radec as xra from xastropy.plotting import utils as xputils from xastropy.xutils import xdebug as xdb from xastropy.casbah import utils as xcasu from xastropy.casbah import load_casbah as xcasl # Local #sys.path.append(os.path.abspath("./py")) #import qpq_spec as qpqs #### ########################## ######################### def hectospec_targets(field, outfil=None): # Init fcoord = SkyCoord(ra=field[1],dec=field[2]) if outfil is None: outfil = xcasu.get_filename(field,'HECTO_TARG_FIG') # Load field lfield = xcasl.load_field(field) targ_coord = SkyCoord(ra=lfield.targets['TARG_RA']*u.deg, dec=lfield.targets['TARG_DEC']*u.deg) all_pa = fcoord.position_angle(targ_coord) all_sep = fcoord.separation(targ_coord).to('arcmin') # Start the plot if outfil is not None: pp = PdfPages(outfil) # Targets only plt.figure(figsize=(8, 4.5)) plt.clf() gs = gridspec.GridSpec(1,2) plt.suptitle('{:s}: Hectospec Targets (from SDSS imaging)'.format(field[0]) ,fontsize=19.) ## # Hectospec first for tt in range(2): ax_hecto = plt.subplot(gs[tt]) # Read SDSS Image if tt == 0: imsize=60. # arcmin else: imsize=10. # arcmin #Configs if tt == 0: hecto_obs = lfield.observing[np.where( lfield.observing['INSTR']=='HECTOSPEC')[0]] unimsk = np.unique(
np.array(hecto_obs['MASK_NAME'])
numpy.array
import numpy as np from scipy.special import erfinv, gammainc from scipy.stats import gamma from scipy.linalg import lstsq from copy import deepcopy from obspy.geodetics.base import calc_vincenty_inverse """ Contains the auxilliary functions called by fast_lts_array.py Many of these codes are Python3 translations of those found in the MATLAB Continuous Sound and Vibration Toolbox. """ def hcalc(ALPHA, n, p): r""" Generate the h-value, the number of points to fit. Args: ALPHA (float): The decimal percentage of points to keep. Default is 0.75. n (int): The total number of points. p (int): The number of parameters. Returns: (int): ``h``: The number of points to fit. """ h = np.floor(2*np.floor((n + p + 1)/2) - n + 2*(n - np.floor((n + p + 1)/2)) * ALPHA) return int(h) def uniran(seed): r""" Generate a random number and a new seed. Args: seed (int): A seed value. Returns: (tuple): ``random`` (float): A pseudorandom number. ``seed`` (float): A (new) seed value. """ seed = np.floor(seed * 5761) + 999 quot = np.floor(seed / 65536) seed = np.floor(seed) - np.floor(quot * 65536) random = float(seed / 65536) return random, seed def randomset(tot, npar, seed): r""" Generate an array of indices and a new seed. This function is called if not all (p+1) subsets out of n will be considered. It randomly draws a subsample of nel cases out of tot. Args: tot (int): The total number of data points. npar (int): The number of parameters to estimate. seed (float): A random seed. Returns: (tuple): ``randset`` (array): A random set of indices for choosing subsets. ``seed`` (float): A new random seed. """ randlist = [] for jj in range(0, npar): random, seed = uniran(seed) num = np.floor(random * tot) + 1 if jj > 0: while num in randlist: random, seed = uniran(seed) num = np.floor(random * tot) + 1 randlist.append(num) randset = np.array(randlist, dtype=int) return randset, seed def qgamma(p, a): r""" The gamma inverse distribution function. """ x = np.max((a - 1, 0.1)) dx = 1 eps = 7/3 - 4/3 - 1 while np.abs(dx) > 256 * eps * np.max(np.append(x, 1)): dx = (pgamma(x, a) - p) / dgamma(x, a) x = x - dx x = x + (dx - x) / 2 * float(x < 0) if hasattr(x, "__len__"): x[x == 0] = 0 x[x == 1] = np.inf return x def pgamma(x, a): """ Regularized lower incomplete gamma function. """ g1 = gammainc(a, x) return g1 def dgamma(x, a): """ Probability of a gamma continuous random variable. """ g2 = gamma.pdf(x, a) return g2 def qchisq(p, a): """ The Chi-squared inverse distribution function. """ x = 2*qgamma(p, 0.5*a) return x def insertion(bestmean, bobj, z, obj): r""" Keep track of the value of the objective function and the associated parameter vector z. This code could likely be re-written for more simplicty. Args: bestmean (array): Array of best least squares fit values. bobj (array): Array of lowest 10 objective function values. z (array): Trial coefficient vector. obj (float): Trial objective function value; the sum of squared residuals. Returns: (tuple): ``bestmean`` (array): New array of best least squares fit values. ``bobj`` (array): New array of lowest objective function values. """ insert = 1 equ = [x for x in range(len(bobj)) if bobj[x] == obj] z = np.reshape(z, (len(z), )) for jj in equ: if (bestmean[:, jj] == z).all(): insert = 0 if insert: ins = np.min([x for x in range(0, 10) if obj < bobj[x]]) if ins == 9: bestmean[:, ins] = z bobj[ins] = obj else: ins2 = np.array(list(range(ins, 9))) best2 = deepcopy(bestmean[:, ins2]) bestmean[:, ins] = z best1 = deepcopy(bestmean[:, range(0, ins+1)]) if ins == 0: m = np.shape(bestmean)[0] best1 = np.reshape(best1, (m, 1)) bestmean = np.concatenate((best1, best2), axis=1) bobj2 = deepcopy(bobj[ins2]) bobj[ins] = obj bobj1 = deepcopy(bobj[range(0, ins+1)]) if ins == 0: bobj = np.append(bobj1, bobj2) else: bobj = np.concatenate((bobj1, bobj2), axis=0) return bestmean, bobj def rawcorfactorlts(p, intercept, n, ALPHA): r""" Calculate small sample correction factor. Calculates the correction factor (from Pison et al. 2002) to make the LTS solution unbiased for small n. Args: p (int): The rank of X, the number of parameters to fit. intercept (int): Logical. Are you fitting an intercept? Set to false for array processing. n (int): The number of data points used in processing. ALPHA (float): The percentage of data points to keep in the LTS, e.g. h = floor(ALPHA*n). Returns: (float): ``finitefactor``: A correction factor to make the LTS solution approximately unbiased for small (i.e. finite n). """ if intercept == 1: p = p - 1 if p == 0: fp_500_n = 1 - np.exp(0.262024211897096)*1/(n**0.604756680630497) fp_875_n = 1 - np.exp(-0.351584646688712)*1/(n**1.01646567502486) if (ALPHA >= 0.500) and (ALPHA <= 0.875): fp_alpha_n = fp_500_n + (fp_875_n - fp_500_n)/0.375*(ALPHA - 0.500) fp_alpha_n = np.sqrt(fp_alpha_n) if (ALPHA > 0.875) and (ALPHA < 1): fp_alpha_n = fp_875_n + (1 - fp_875_n)/0.125*(ALPHA - 0.875) fp_alpha_n = np.sqrt(fp_alpha_n) else: if p == 1: if intercept == 1: fp_500_n = 1 - np.exp(0.630869217886906)*1/(n**0.650789250442946) fp_875_n = 1 - np.exp(0.565065391014791)*1/(n**1.03044199012509) else: fp_500_n = 1 - np.exp(-0.0181777452315321)*1/(n**0.697629772271099) fp_875_n = 1 - np.exp(-0.310122738776431)*1/(n**1.06241615923172) if p > 1: if intercept == 1: # ALPHA = 0.875. coeffalpha875 = np.array([ [-0.251778730491252, -0.146660023184295], [0.883966931611758, 0.86292940340761], [3, 5]]) # ALPHA = 0.500. coeffalpha500 = np.array([ [-0.487338281979106, -0.340762058011], [0.405511279418594, 0.37972360544988], [3, 5]]) else: # ALPHA = 0.875. coeffalpha875 = np.array([ [-0.251778730491252, -0.146660023184295], [0.883966931611758, 0.86292940340761], [3, 5]]) # ALPHA = 0.500. coeffalpha500 = np.array([ [-0.487338281979106, -0.340762058011], [0.405511279418594, 0.37972360544988], [3, 5]]) # Apply eqns (6) and (7) from Pison et al. (2002) y1_500 = 1 + coeffalpha500[0, 0]/np.power(p, coeffalpha500[1, 0]) y2_500 = 1 + coeffalpha500[0, 1]/np.power(p, coeffalpha500[1, 1]) y1_875 = 1 + coeffalpha875[0, 0]/
np.power(p, coeffalpha875[1, 0])
numpy.power
""" A federated learning training session using FedProx. Reference: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2020). "Federated optimization in heterogeneous networks." Proceedings of Machine Learning and Systems, 2, 429-450. https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf """ import torch import numpy as np from plato.config import Config from plato.trainers import basic def flatten_weights_from_model(model): """ Return the weights of the given model as a 1-D tensor """ weights = torch.tensor([], requires_grad=False) for param in model.parameters(): weights = torch.cat((weights, torch.flatten(param))) return weights class FedProxLocalObjective: """ Representing the local objective of FedProx clients. """ def __init__(self, model): self.model = model self.init_global_weights = flatten_weights_from_model(model) def compute_objective(self, outputs, labels): """ Compute the objective the FedProx client wishes to minimize. """ cur_weights = flatten_weights_from_model(self.model) mu = Config().clients.proximal_term_penalty_constant prox_term = mu / 2 * torch.linalg.norm( cur_weights - self.init_global_weights, ord=2) local_function = torch.nn.CrossEntropyLoss() h = local_function(outputs, labels) + prox_term return h class Trainer(basic.Trainer): """ The federated learning trainer for the FedProx client. """ def train_process(self, config, trainset, sampler, cut_layer=None): """The main training loop in FedProx framework. """ # For FedProx, the server will accept partial solutions from straggling clients # after waiting them for a certain amount of time. To re-create this scenario in # an experiment, a proportion of the selected clients will train for a smaller # number of epochs to simulate the stragglers that return with partial solutions, # as mentioned in Section 5.2 if hasattr(Config().clients, 'straggler_simulation') and Config( ).clients.straggler_simulation:
np.random.seed(self.client_id)
numpy.random.seed
import pytest import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import networkx as nx from mossspider import NetworkTMLE @pytest.fixture def sm_network(): """Loads a small network for short test runs and checks of data set creations""" G = nx.Graph() G.add_nodes_from([(1, {'W': 1, 'A': 1, 'Y': 1, 'C': 1}), (2, {'W': 0, 'A': 0, 'Y': 0, 'C': -1}), (3, {'W': 0, 'A': 1, 'Y': 0, 'C': 5}), (4, {'W': 0, 'A': 0, 'Y': 1, 'C': 0}), (5, {'W': 1, 'A': 0, 'Y': 0, 'C': 0}), (6, {'W': 1, 'A': 0, 'Y': 1, 'C': 0}), (7, {'W': 0, 'A': 1, 'Y': 0, 'C': 10}), (8, {'W': 0, 'A': 0, 'Y': 0, 'C': -5}), (9, {'W': 1, 'A': 1, 'Y': 0, 'C': -5})]) G.add_edges_from([(1, 2), (1, 3), (1, 9), (2, 3), (2, 6), (3, 4), (4, 7), (5, 7), (5, 9) ]) return G @pytest.fixture def r_network(): """Loads network from the R library tmlenet for comparison""" df = pd.read_csv("tests/tmlenet_r_data.csv") df['IDs'] = df['IDs'].str[1:].astype(int) df['NETID_split'] = df['Net_str'].str.split() G = nx.DiGraph() G.add_nodes_from(df['IDs']) for i, c in zip(df['IDs'], df['NETID_split']): if type(c) is list: for j in c: G.add_edge(i, int(j[1:])) # Adding attributes for node in G.nodes(): G.nodes[node]['W'] = np.int(df.loc[df['IDs'] == node, 'W1']) G.nodes[node]['A'] = np.int(df.loc[df['IDs'] == node, 'A']) G.nodes[node]['Y'] = np.int(df.loc[df['IDs'] == node, 'Y']) return G class TestNetworkTMLE: def test_error_node_ids(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 1, 'Y': 1}), (2, {'A': 0, 'Y': 1}), ("N", {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_self_loops(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 1, 'Y': 1}), (2, {'A': 0, 'Y': 1}), (3, {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) G.add_edges_from([(1, 1), (1, 2), (3, 4)]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_nonbinary_a(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 2, 'Y': 1}), (2, {'A': 5, 'Y': 1}), (3, {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_degree_restrictions(self, r_network): with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=2) with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=[0, 1, 2]) with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=[2, 0]) def test_error_fit_gimodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') # tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_fit_gsmodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') # tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_gs_distributions(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') with pytest.raises(ValueError): tmle.exposure_map_model('W', measure='mean', distribution=None) with pytest.raises(ValueError): tmle.exposure_map_model('W', measure='mean', distribution='multinomial') def test_error_fit_qmodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) # tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_p_bound(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') # For single 'p' with pytest.raises(ValueError): tmle.fit(p=1.5, samples=10) # For multiple 'p' with pytest.raises(ValueError): tmle.fit(p=[0.1, 1.5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], samples=100) def test_error_p_type(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=5, samples=10) def test_error_summary(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.summary() def test_df_creation(self, sm_network): columns = ["_original_id_", "W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"] expected = pd.DataFrame([[1, 1, 1, 1, 2, 2/3, 1, 1/3, 3], [2, 0, 0, 0, 2, 2/3, 2, 2/3, 3], [3, 0, 1, 0, 1, 1/3, 1, 1/3, 3], [4, 0, 0, 1, 2, 1, 0, 0, 2], [5, 1, 0, 0, 2, 1, 1, 1/2, 2], [6, 1, 0, 1, 0, 0, 0, 0, 1], [7, 0, 1, 0, 0, 0, 1, 1/2, 2], [8, 0, 0, 0, 0, 0, 0, 0, 0], [9, 1, 1, 0, 1, 1/2, 2, 1, 2]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is False pdt.assert_frame_equal(expected, created[columns], check_dtype=False) def test_df_creation_restricted(self, sm_network): expected = pd.DataFrame([[1, 1, 1, 2, 2/3, 1, 1/3, 3], [0, 0, 0, 2, 2/3, 2, 2/3, 3], [0, 1, 0, 1, 1/3, 1, 1/3, 3], [0, 0, 1, 2, 1, 0, 0, 2], [1, 0, 0, 2, 1, 1, 1/2, 2], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1/2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1/2, 2, 1, 2]], columns=["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) expected_r = pd.DataFrame([[0, 0, 1, 2, 1, 0, 0, 2], [1, 0, 0, 2, 1, 1, 1/2, 2], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1/2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1/2, 2, 1, 2]], columns=["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[0, 2]) created = tmle.df created_r = tmle.df_restricted # Checking that expected is the same as the created pdt.assert_frame_equal(expected, created[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) pdt.assert_frame_equal(expected_r, created_r[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) def test_restricted_number(self, sm_network): tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[0, 2]) n_created = tmle.df.shape[0] n_created_r = tmle.df_restricted.shape[0] assert 6 == n_created_r assert 3 == n_created - n_created_r tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[1, 3]) n_created = tmle.df.shape[0] n_created_r = tmle.df_restricted.shape[0] assert 8 == n_created_r assert 1 == n_created - n_created_r def test_continuous_processing(self): G = nx.Graph() y_list = [1, -1, 5, 0, 0, 0, 10, -5] G.add_nodes_from([(1, {'A': 0, 'Y': y_list[0]}), (2, {'A': 1, 'Y': y_list[1]}), (3, {'A': 1, 'Y': y_list[2]}), (4, {'A': 0, 'Y': y_list[3]}), (5, {'A': 1, 'Y': y_list[4]}), (6, {'A': 1, 'Y': y_list[5]}), (7, {'A': 0, 'Y': y_list[6]}), (8, {'A': 0, 'Y': y_list[7]})]) tmle = NetworkTMLE(network=G, exposure='A', outcome='Y', continuous_bound=0.0001) # Checking all flagged parts are correct assert tmle._continuous_outcome is True assert tmle._continuous_min_ == -5.0001 assert tmle._continuous_max_ == 10.0001 assert tmle._cb_ == 0.0001 # Checking that TMLE bounding works as intended maximum = 10.0001 minimum = -5.0001 y_bound = (np.array(y_list) - minimum) / (maximum - minimum) pdt.assert_series_equal(pd.Series(y_bound, index=[0, 1, 2, 3, 4, 5, 6, 7]), tmle.df['Y'], check_dtype=False, check_names=False) def test_df_creation_continuous(self, sm_network): expected = pd.DataFrame([[1, 1, 2, 1, 3], [0, 0, 2, 2, 3], [0, 1, 1, 1, 3], [0, 0, 2, 0, 2], [1, 0, 2, 1, 2], [1, 0, 0, 0, 1], [0, 1, 0, 1, 2], [0, 0, 0, 0, 0], [1, 1, 1, 2, 2]], columns=["W", "A", "A_sum", "W_sum", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) expected["C"] = [4.00001333e-01, 2.66669778e-01, 6.66664444e-01, 3.33335556e-01, 3.33335556e-01, 3.33335556e-01, 9.99993333e-01, 6.66657778e-06, 6.66657778e-06] tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='C', continuous_bound=0.0001) created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is True pdt.assert_frame_equal(expected[["W", "A", "C", "A_sum", "W_sum", "degree"]], created[["W", "A", "C", "A_sum", "W_sum", "degree"]], check_dtype=False) def test_no_consecutive_ids(self): G = nx.Graph() G.add_nodes_from([(1, {'W': 1, 'A': 1, 'Y': 1}), (2, {'W': 0, 'A': 0, 'Y': 0}), (3, {'W': 0, 'A': 1, 'Y': 0}), (4, {'W': 0, 'A': 0, 'Y': 1}), (5, {'W': 1, 'A': 0, 'Y': 0}), (7, {'W': 1, 'A': 0, 'Y': 1}), (9, {'W': 0, 'A': 1, 'Y': 0}), (11, {'W': 0, 'A': 0, 'Y': 0}), (12, {'W': 1, 'A': 1, 'Y': 0})]) G.add_edges_from([(1, 2), (1, 3), (1, 12), (2, 3), (2, 7), (3, 4), (4, 9), (5, 9), (5, 12)]) expected = pd.DataFrame([[1, 1, 1, 1, 2, 2 / 3, 1, 1 / 3, 3], [2, 0, 0, 0, 2, 2/3, 2, 2/3, 3], [3, 0, 1, 0, 1, 1 / 3, 1, 1 / 3, 3], [4, 0, 0, 1, 2, 1, 0, 0, 2], [5, 1, 0, 0, 2, 1, 1, 1 / 2, 2], [7, 1, 0, 1, 0, 0, 0, 0, 1], [8, 0, 1, 0, 0, 0, 1, 1 / 2, 2], [11, 0, 0, 0, 0, 0, 0, 0, 0], [12, 1, 1, 0, 1, 1 / 2, 2, 1, 2] ], columns=["_original_id_", "W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=G, exposure='A', outcome='Y') created = tmle.df.sort_values(by='_original_id_').reset_index() pdt.assert_frame_equal(expected[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], created[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) def test_df_creation_nonparametric(self, sm_network): columns = ["_original_id_", "A", "A_map1", "A_map2", "A_map3"] expected = pd.DataFrame([[1, 1, 0, 1, 1], [2, 0, 1, 1, 0], [3, 1, 1, 0, 0], [4, 0, 1, 1, 0], [5, 0, 1, 1, 0], [6, 0, 0, 0, 0], [7, 1, 0, 0, 0], [8, 0, 0, 0, 0], [9, 1, 1, 0, 0]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df.sort_values(by='_original_id_').reset_index() # Checking that expected is the same as the created pdt.assert_frame_equal(expected[columns], created[columns], check_dtype=False) def test_summary_measures_creation(self, sm_network): columns = ["_original_id_", "A_sum", "A_mean", "A_var", "W_sum", "W_mean", "W_var"] neighbors_w = {1: np.array([0, 0, 1]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([0, 0]), 5: np.array([0, 1]), 6: np.array([0]), 7: np.array([0, 1]), 9: np.array([1, 1])} neighbors_a = {1: np.array([0, 1, 1]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([1, 1]), 5: np.array([1, 1]), 6: np.array([0]), 7: np.array([0, 0]), 9: np.array([0, 1])} expected = pd.DataFrame([[1, np.sum(neighbors_a[1]), np.mean(neighbors_a[1]), np.var(neighbors_a[1]), np.sum(neighbors_w[1]), np.mean(neighbors_w[1]), np.var(neighbors_w[1])], [2, np.sum(neighbors_a[2]), np.mean(neighbors_a[2]), np.var(neighbors_a[2]), np.sum(neighbors_w[2]), np.mean(neighbors_w[2]), np.var(neighbors_w[2])], [3, np.sum(neighbors_a[3]), np.mean(neighbors_a[3]), np.var(neighbors_a[3]), np.sum(neighbors_w[3]), np.mean(neighbors_w[3]), np.var(neighbors_w[3])], [4, np.sum(neighbors_a[4]), np.mean(neighbors_a[4]), np.var(neighbors_a[4]), np.sum(neighbors_w[4]), np.mean(neighbors_w[4]), np.var(neighbors_w[4])], [5, np.sum(neighbors_a[5]), np.mean(neighbors_a[5]), np.var(neighbors_a[5]), np.sum(neighbors_w[5]), np.mean(neighbors_w[5]), np.var(neighbors_w[5])], [6, np.sum(neighbors_a[6]), np.mean(neighbors_a[6]), np.var(neighbors_a[6]), np.sum(neighbors_w[6]), np.mean(neighbors_w[6]), np.var(neighbors_w[6])], [7, np.sum(neighbors_a[7]), np.mean(neighbors_a[7]), np.var(neighbors_a[7]), np.sum(neighbors_w[7]), np.mean(neighbors_w[7]), np.var(neighbors_w[7])], [8, 0, 0, 0, 0, 0, 0], # Isolates are = 0 [9, np.sum(neighbors_a[9]), np.mean(neighbors_a[9]), np.var(neighbors_a[9]), np.sum(neighbors_w[9]), np.mean(neighbors_w[9]), np.var(neighbors_w[9])]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is False pdt.assert_frame_equal(expected, created[columns], check_dtype=False) def test_distance_measures_creation(self, sm_network): columns = ["_original_id_", "A_mean_dist", "A_var_dist", "W_mean_dist", "W_var_dist"] neighbors_w = {1: np.array([-1, -1, 0]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([0, 0]), 5: np.array([-1, 0]), 6:
np.array([-1])
numpy.array
from typing import Optional from typing import Union import numpy as np from scipy.sparse.coo import coo_matrix from ._typing_utils import Float from ._typing_utils import Matrix from ._utils import coo_matrix_builder def build_frame_cost_matrix( dist_matrix: coo_matrix_builder, *, track_start_cost: Optional[Float], track_end_cost: Optional[Float], ) -> coo_matrix: """Build sparce array for frame-linking cost matrix. Parameters ---------- dist_matrix : Matrix or `_utils.coo_matrix_builder` The distance matrix for points at time t and t+1. track_start_cost : Float, optional The cost for starting the track (b in Jaqaman et al 2008 NMeth) track_end_cost : Float, optional The cost for ending the track (d in Jaqaman et al 2008 NMeth) Returns ------- cost_matrix : FloatArray the cost matrix for frame linking """ M = dist_matrix.shape[0] N = dist_matrix.shape[1] C = coo_matrix_builder((M + N, N + M), dtype=np.float32) C.append_matrix(dist_matrix) if track_start_cost is None: if len(C.data) > 0: track_start_cost = np.max(C.data) * 1.05 else: track_start_cost = 1.05 if track_end_cost is None: if len(C.data) > 0: track_end_cost = np.max(C.data) * 1.05 else: track_end_cost = 1.05 C[np.arange(M, M + N), np.arange(N)] = np.ones(N) * track_end_cost C[np.arange(M), np.arange(N, N + M)] = np.ones(M) * track_start_cost min_val = np.min(C.data) if len(C.data) > 0 else 0 C[dist_matrix.col + M, dist_matrix.row + N] = min_val return C.to_coo_matrix() def build_segment_cost_matrix( gap_closing_dist_matrix: Union[coo_matrix_builder, Matrix], splitting_dist_matrix: Union[coo_matrix_builder, Matrix], merging_dist_matrix: Union[coo_matrix_builder, Matrix], track_start_cost: Optional[Float], track_end_cost: Optional[Float], no_splitting_cost: Optional[Float], no_merging_cost: Optional[Float], alternative_cost_factor: Float = 1.05, alternative_cost_percentile: Float = 90, alternative_cost_percentile_interpolation: str = "lower", ) -> coo_matrix: """Build sparce array for segment-linking cost matrix. Parameters ---------- gap_closing_dist_matrix : coo_matrix_builder or Matrix The distance matrix for closing gaps between segment i and j. splitting_dist_matrix : coo_matrix_builder or Matrix The distance matrix for splitting between segment i and time/index j merging_dist_matrix : coo_matrix_builder or Matrix The distance matrix for merging between segment i and time/index j track_start_cost : Float, optional The cost for starting the track (b in Jaqaman et al 2008 NMeth) track_end_cost : Float, optional The cost for ending the track (d in Jaqaman et al 2008 NMeth) no_splitting_cost : Float, optional The cost to reject splitting (d' in Jaqaman et al 2008 NMeth) no_merging_cost : Float, optional The cost to reject merging (b' in Jaqaman et al 2008 NMeth) alternative_cost_factor: Float The factor to calculate the alternative costs, by default 1.05. alternative_cost_percentile: Float The percentile to calculate the alternative costs, by default 90. alternative_cost_percentile_interpolation: str The percentile interpolation to calculate the alternative costs, by default "lower". See `numpy.percentile` for allowed values. Returns ------- cost_matrix : Optional[coo_matrix] the cost matrix for frame linking, None if not appropriate """ M = gap_closing_dist_matrix.shape[0] assert gap_closing_dist_matrix.shape[1] == M assert splitting_dist_matrix.shape[0] == M assert merging_dist_matrix.shape[0] == M N1 = splitting_dist_matrix.shape[1] N2 = merging_dist_matrix.shape[1] S = 2 * M + N1 + N2 C = coo_matrix_builder((S, S), dtype=np.float32) C.append_matrix(gap_closing_dist_matrix) C.append_matrix(splitting_dist_matrix.T, shift=(M, 0)) C.append_matrix(merging_dist_matrix, shift=(0, M)) upper_left_size = C.size() if upper_left_size == 0: return None # Note: # Though the way of assigning track_start_cost, track_end_cost, no_splitting_cost, no_merging_cost # noqa : # and min_val is similar to that of TrackMate (link1, link2), GPL3 of TrackMate does not apply. (See link3 for license discussion.) # noqa : # link1 https://github.com/fiji/TrackMate/blob/5a97426586b3c592c986c57aa1a09bab9d21419c/src/main/java/fiji/plugin/trackmate/tracking/sparselap/costmatrix/DefaultCostMatrixCreator.java#L186 # noqa : # https://github.com/fiji/TrackMate/blob/5a97426586b3c592c986c57aa1a09bab9d21419c/src/main/java/fiji/plugin/trackmate/tracking/sparselap/costmatrix/JaqamanSegmentCostMatrixCreator.java # noqa: # https://github.com/fiji/TrackMate/blob/5a97426586b3c592c986c57aa1a09bab9d21419c/src/main/java/fiji/plugin/trackmate/tracking/sparselap/SparseLAPSegmentTracker.java#L148 # noqa: # link2 (default parameters for alternative_cost_percentile, alternative_cost_factor) # noqa : # https://github.com/fiji/TrackMate/blob/5a97426586b3c592c986c57aa1a09bab9d21419c/src/main/java/fiji/plugin/trackmate/tracking/TrackerKeys.java # noqa : # link3 https://forum.image.sc/t/linear-assignment-problem-based-tracking-package-in-python/57793 # noqa : # https://web.archive.org/web/20210921134401/https://forum.image.sc/t/linear-assignment-problem-based-tracking-package-in-python/57793 # noqa : if ( track_start_cost is None or track_end_cost is None or no_splitting_cost is None or no_merging_cost is None ): alternative_cost = ( np.percentile( C.data, alternative_cost_percentile, interpolation=alternative_cost_percentile_interpolation, ) * alternative_cost_factor ) if track_start_cost is None: track_start_cost = alternative_cost if track_end_cost is None: track_end_cost = alternative_cost if no_splitting_cost is None: no_splitting_cost = alternative_cost if no_merging_cost is None: no_merging_cost = alternative_cost C[
np.arange(M + N1, 2 * M + N1)
numpy.arange
""" This module contains all the logic required to execute sbelt simulations/runs. All functions/classes are designed for internal use and may change without note. A primary purpose of this module is to manipulate n-7 NumPy arrays which represent multiple stream particles. In these n-7 arrays, a _single_ particle is represented by a NumPy array with 7 attributes:: [x_location, diam, y_location, UID, active state, age, loop] In this general example, x_location and y_location define the centre point of spherical particle whose diameter is defined by diam. See the project docs for more information on the other attributes. """ import math import random import numpy as np import logging logging.getLogger(__name__) class Subregion(): """ A subregion in the stream. A Subregion is defined by left (upstream) and right (downstream) boundaries. Each subregion maintains a NumPy list which is used to record the number of model particles that pass the downstream boundary in a given iteration. For example:: flux_list = [0,3,2,1] Means that 0 crossings happened in the first iteration, 3 happened in the 2nd, and so on. The list has length equal to the number of iterations for a model run. Attributes: name: Name of the subregion. left_boundary: Location of the left boundary (float). right_boundary: Location of the right boundary (float). iterations: The number of iterations for the model run. """ def __init__(self, name, left_boundary, right_boundary, iterations): self.name = name self.left_boundary = left_boundary self.right_boundary = right_boundary self.flux_list = np.zeros(iterations, dtype=np.int64) def leftBoundary(self): """Returns subregion's left boundary""" return self.left_boundary def rightBoundary(self): """Returns subregion's right boundary""" return self.right_boundary def getName(self): """Returns subregion's name""" return self.name def incrementFlux(self, iteration): """Increments flux list by 1. Args: iteration: The iteration/index to increment by 1 """ self.flux_list[iteration] += 1 def getFluxList(self): """Returns subregion's flux list""" return self.flux_list def get_event_particles(e_events, subregions, model_particles, level_limit, height_dependant=False): """ Find and return list of particles to be entrained Will loop through each subregion and select n = e_events model particles (within a subregion boundaries) at random to be entrained. No particle will be selected twice. Args: e_events: The number of events requested per subregion (int). subregions: Python array of initialized Subregion objects. model_particles: An n-7 NumPy array representing the stream's n model particles. Returns: event_particles: A NumPy array of k uids representing the model particles that have been selected for entrainment. For example:: [2.0, 5.0, 25.0] Will represent that model particles with uids 2.0, 5.0 and 25.0 have been selected for entrainment. """ if e_events == 0: e_events = 1 #??? event_particles = [] for subregion in subregions: # Take only particles in the boundaries of the current subregion subregion_particles = model_particles[ (model_particles[:,0] >= subregion.leftBoundary()) & (model_particles[:,0] <= subregion.rightBoundary())] # Take only particles that are in-stream (not ghost) in_stream_particles = subregion_particles[ subregion_particles[:,0] != -1] # Take only particles that are 'active' active_particles = in_stream_particles[ in_stream_particles[:,4] != 0] # Do not take any particles that have been selected for entrainment (i.e do not double select) # This only happens when particles rest on the boundary. active_event, active_idx, event_idx = np.intersect1d(active_particles[:,3], event_particles, return_indices=True) active_particles = np.delete(active_particles, active_idx, axis=0) subregion_event_ids = [] if height_dependant: # any particle at the level limit must be entrained levels = elevation_list(subregion_particles[:,2], desc=False) tip_particles = [] # find the tip particles -- these are the particles being entrained if len(levels) == level_limit: tip_particles = active_particles[active_particles[:,2] == levels[level_limit-1]] for particle in tip_particles: subregion_event_ids.append(particle[3]) active_particles = active_particles[active_particles[:,2] != particle[2]] # If there are not enough particles in the subregion to sample from, alter the sample size if e_events > len(active_particles): random_sample = random.sample(range(len(active_particles)), len(active_particles)) else: random_sample = random.sample(range(len(active_particles)), e_events) # TODO: change so that we don't rely on loop index to grab particle for index in random_sample: subregion_event_ids.append(int(active_particles[index][3]) ) ghost_particles = np.where(model_particles[:,0] == -1)[0] for index in ghost_particles: model_particles[index][0] = 0 subregion_event_ids.append(index) if e_events != len(subregion_event_ids): msg = ( f'Requested {e_events} events in {subregion.getName()} ' f'but {len(subregion_event_ids)} are occuring' ) logging.info(msg) event_particles = event_particles + subregion_event_ids event_particles = np.array(event_particles, dtype=np.intp) return event_particles def define_subregions(bed_length, num_subregions, iterations): """ Define subregion list for model stream. Args: bed_length: The length of the stream (int). num_subregions: The number of subregions (int). iterations: The number of iterations for the model run (int). Returns: subregions_arr: Python array of initialized Subregion objects. """ subregion_length = bed_length/num_subregions left_boundary = 0.0 subregions_arr = [] for region in range(num_subregions): right_boundary = left_boundary + subregion_length subregion = Subregion(f'subregion-{region}', left_boundary, right_boundary, iterations) left_boundary = right_boundary subregions_arr.append(subregion) return subregions_arr def build_streambed(bed_length, particle_diam): """ Builds the array of bed particles. Args: bed_length: The length of the stream (int). particle_diam: The diameter of all particles (float). Returns: bed_particles: An m-7 NumPy array representing the stream's m bed particles. For example:: [[x1, diam, y, uid1, active, age, loops], ... ,[xM, diam, y, uidM, active, age, loops]] Where all bed particles share the same diam (diam1=...=diamM) and y (y1=...=yM), all uids are negative, and to represent 'static-ness' active = 0, age = 0, and loops = 0. """ max_particles = int(math.ceil( bed_length / particle_diam )) bed_particles = np.zeros([max_particles, 7],dtype=float) particle_id = -1 centre = (particle_diam/2) state = 0 age = 0 loop_age = 0 elevation = 0 while not bed_complete(centre, bed_length): # index with negative indices... bed particles are built from the final element to the first bed_particles[particle_id] = [centre, particle_diam, elevation, particle_id, state, age, loop_age] centre += particle_diam particle_id += -1 # Bed particles get negative IDs return bed_particles def bed_complete(centre, bed_length): if centre >= bed_length: return 1 else: return 0 def determine_num_particles(pack_frac, num_vertices): """Return the number of model particles to be created based on the packing fraction""" num_particles = num_vertices * pack_frac num_particles = int(math.ceil(num_particles)) return num_particles # Trig from: https://math.stackexchange.com/questions/2293201/ def place_particle(particle, model_particles, bed_particles, h): """ Calculate new y (elevation) of particle based on it's x (horizontal) location in stream. Provided a particle p's location x in the stream, search for 2 supporting particles (s1, s2) that p will rest on when placed at x. Calculate the y position of p based on the (x,y) of both s1 and s2. The computed x for p might be different up to some decimal point, so both x and y are rounded to 2 decimal places. Args: particle: NumPy array representing the model particle being placed. model_particles: An n-7 NumPy array representing the stream's n model particles. bed_particles: An m-7 NumPy array representing the stream's m bed particles. Returns: rounded_x: Rounded float of particle's new x location. rounded_y: Rounded float of particle's new y location. left_support: UID of the left support for the placed particle. right_support: UID of the right support for the placed particle. """ left_support, right_support = find_supports(particle, model_particles, bed_particles) rounded_x = round(particle[0], 2) rounded_y = round(np.add(h, left_support[2]), 2) return rounded_x, rounded_y, left_support[3], right_support[3] def update_particle_states(model_particles, model_supports): """ Set/update each model particle's state. If any model particle p has a particle resting on it in the stream then p must be set to inactive indicated by a boolean 0. If p does not have any particles resting on top of it then it is considered active indicated by a boolean 1. Args: model_particles: An n-7 NumPy array representing the stream's n model particles. model_supports: An n-2 NumPy array with the uids of the two particles supporting each model particle. bed_particles: An m-7 NumPy array representing the stream's m bed particles. Return values: model_particles: The provided model_particles array (Args) but with updated active (attribute 4) values. """ # Start by setting all model particles to active then # only set to inactive if there is a particle sitting on top model_particles[:,4] = 1 in_stream_particles = model_particles[model_particles[:,0] != -1] inactive_left = np.intersect1d(in_stream_particles[:,3], model_supports[:,0]) inactive_right = np.intersect1d(in_stream_particles[:,3], model_supports[:,1]) if inactive_left.size != 0: model_particles[inactive_left.astype(int), 4] = 0 if inactive_right.size != 0: model_particles[inactive_right.astype(int), 4] = 0 return model_particles def find_supports(particle, model_particles, bed_particles): """ Find the 2 supporting particles for a given particle. Provided a particle p at location x, this function will search the stream for particles that p would rest on, if being dropped at x. More generally, supporting particles are those particles which directly hold up a particle. Supporting particles will always have a centre location that is exactly a radius length away from p's centre. Args: particle: 1-7 NumPy array representing a model particle. model_particles: An n-7 NumPy array representing the stream's n model particles. bed_particles: An m-7 NumPy array representing the stream's m bed particles. Returns: left_support: NumPy array representing the left supporting particle right_support: NumPy array representing the right supporting particle """ all_particles = np.concatenate((model_particles, bed_particles), axis=0) # Define location where left and right supporting particles must sit # in order to be considered a supporting particle. # Note: This limits the model to using same-sized grains. left_center = particle[0] - (particle[1] / 2) right_center = particle[0] + (particle[1] / 2) l_candidates = all_particles[all_particles[:,0] == left_center] try: left_support = l_candidates[l_candidates[:,2] == np.max(l_candidates[:,2])] except ValueError: error_msg = ( f'No left supporting particle at {left_center}' f'for particle {particle[3]}' ) logging.error(error_msg) raise r_candidates = all_particles[all_particles[:,0] == right_center] try: right_support = r_candidates[r_candidates[:,2] == np.max(r_candidates[:,2])] except ValueError: error_msg = ( f'No right supporting particle at {right_center}' f'for particle {particle[3]}' ) logging.error(error_msg) raise return left_support[0], right_support[0] def set_model_particles(bed_particles, available_vertices, particle_diam, pack_fraction, h): """ Create array of n model particles and set each particle in-stream. Model particles are randomly placed at available vertex locations (x,y) across the bed. Location and initial attribute values are stored in the returned NumPy array. Args: bed_particles: An m-7 NumPy array representing the stream's m bed particles. available_vertices: A NumPy array with all available vertices in the stream. particle_diam: The diameter of all particles (float). pack_fraction: Packing density value (float). See THEORY.md in project repo for more information. h: Geometric value used in calculations of particle placement (float). See in-line and project documentation for further explanation. Returns: model_particles: An n-7 NumPy array representing the stream's n model particles and their initial placement in the stream. For example:: [[x1, diam, y1, uid1, active, age, loops], ... ,[xN, diam, yN, uidN, active, age, loops]] Where (xi, yi) pairs will define the centre location of each particle and no two particles will have the same (xi, yi) pair values. All uids are unique and are positive whole numbers. All particles will start with active = 1, age = 0, and loops = 0. model_supp: An n-2 NumPy array with the uids of the two particles supporting each model particle. For example:: [[[-1,-2]], ... ,[-3,-4]] The above example states that model particle with uid 0 (model_supp[0]) is supported by bed particles with uids -1 and -2. Similarly, the model particle with uid n (model_supp[n]) is supported by bed particles with uids -3 and -4. """ num_placement_loc = np.size(available_vertices) # determine the number of model particles that should be introduced into the stream bed num_particles = determine_num_particles(pack_fraction, num_placement_loc) # create an empty n-6 array to store model particle information model_particles = np.zeros([num_particles, 7], dtype='float') model_supp = np.zeros([num_particles, 2], dtype='float') for particle in range(num_particles): # the following lines select a vertex to place the current particle at, # and ensure that it is not already occupied by another particle random_idx = random.randint(0, np.size(available_vertices)-1) vertex = available_vertices[random_idx] available_vertices = available_vertices[available_vertices != vertex] # intialize the particle information model_particles[particle][0] = vertex model_particles[particle][1] = particle_diam model_particles[particle][3] = particle # id number for each particle model_particles[particle][4] = 1 # each particle begins as active # place particle at the chosen vertex p_x, p_y, left_supp, right_supp = place_particle(model_particles[particle], model_particles, bed_particles, h) model_particles[particle][0] = p_x model_particles[particle][2] = p_y model_particles[particle][5] = 0 model_particles[particle][6] = 0 model_supp[particle][0] = left_supp model_supp[particle][1] = right_supp return model_particles, model_supp def compute_available_vertices(model_particles, bed_particles, particle_diam, level_limit, lifted_particles=None): """ Compute the avaliable vertices in the model stream. An available vertex is an x location that a model particle is able to be entrained to. This function identifies the distinct elevations present in the stream then looks at subsets of particles in decesnding order of their elevation, in order to compute available vertices. For each elevation group, if a particle is sitting on a vertex x, then x cannot be available (it is occupied) and it is considered nulled. Then vertices v created by two particles touching are considered. If v is not already nulled by a particle occupying the location at a higher level, then it is considered an available vertex. This ends once the bed particles (the lowest elevation) have been considered. Args: model_particles: An n-7 NumPy array representing the stream's n model particles. bed_particles: An m-7 NumPy array representing the stream's m bed particles. lifted_particles: UID of particles that are 'lifted'. Lifted particles will not be considered as present in the stream when the available vertices are being calculated; their (x,y) location will not be considered as occupied. Returns: available_vertices: A NumPy array with all available vertices in the stream. """ nulled_vertices = [] avail_vertices = [] # If we are lifting particles, we need to consider the subset of particles # that includes every particles _except_ the particles being if lifted_particles is not None: model_particles_lifted = np.delete(model_particles, lifted_particles, 0) all_particles = np.concatenate((model_particles_lifted, bed_particles), axis=0) else: all_particles = np.concatenate((model_particles, bed_particles), axis=0) # Get unique model particle elevations in stream (descending) elevations = elevation_list(all_particles[:,2]) for idx, elevation in enumerate(elevations): tmp_particles = all_particles[all_particles[:,2] == elevation] for particle in tmp_particles: nulled_vertices.append(particle[0]) right_vertices = tmp_particles[:,0] + (particle_diam / 2) left_vertices = tmp_particles[:,0] - (particle_diam / 2) tmp_shared_vertices =
np.intersect1d(left_vertices, right_vertices)
numpy.intersect1d
""" This module contains our thermodynamic calculations. Calculation of pressure, fugacity coefficient, and max density are handled by an Eos object so that these functions can be used with any EOS. The thermodynamics module contains a series of wrapper to handle the inputs and outputs of these functions. """ import numpy as np from scipy import interpolate import scipy.optimize as spo from scipy.ndimage.filters import gaussian_filter1d import copy import logging import despasito.utils.general_toolbox as gtb from despasito import fundamental_constants as constants import despasito.utils.general_toolbox as gtb logger = logging.getLogger(__name__) def pressure_vs_volume_arrays( T, xi, Eos, min_density_fraction=(1.0 / 500000.0), density_increment=5.0, max_volume_increment=1.0e-4, pressure_min=100, maxiter=25, multfactor=2, extended_npts=20, max_density=None, density_max_opts={}, **kwargs ): r""" Output arrays with specific volume and pressure arrays calculated from the given EOS. This function is fundamental to every calculation, the options of which are passed through higher level calculation with the keyword variable ``density_opts``. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. min_density_fraction : float, Optional, default=(1.0/500000.0) Fraction of the maximum density used to calculate, and is equal to, the minimum density of the density array. The minimum density is the reciprocal of the maximum specific volume used to calculate the roots. density_increment : float, Optional, default=5.0 The increment between density values in the density array. max_volume_increment : float, Optional, default=1.0E-4 Maximum increment between specific volume array values. After conversion from density to specific volume, the increment values are compared to this value. pressure_min : float, Optional, default=100 Ensure pressure curve reaches down to this value multfactor : int, Optional, default=2 Multiplication factor to extend range extended_npts : int, Optional, default=20 Number of points in extended range maxiter : int, Optional, default=25 Number of times to multiply range by to obtain full pressure vs. specific volume curve max_density : float, Optional, default=None [mol/:math:`m^3`] Maximum molar density defined, if default of None is used then the Eos object method, density_max is used. density_max_opts : dict, Optional, default={} Keyword arguments for density_max method for EOS object Returns ------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_arrays' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.any(np.isnan(xi)): raise ValueError("Given mole fractions are NaN") if isinstance(xi, list): xi = np.array(xi) # estimate the maximum density based on the hard sphere packing fraction, part of EOS if not max_density: max_density = Eos.density_max(xi, T, **density_max_opts) elif gtb.isiterable(max_density): logger.error( " Maxrho should be type float. Given value: {}".format(max_density) ) max_density = max_density[0] if max_density > 1e5: raise ValueError( "Max density of {} mol/m^3 is not feasible, check parameters.".format( max_density ) ) # min rho is a fraction of max rho, such that minrho << rhogassat minrho = max_density * min_density_fraction # list of densities for P,rho and P,v if (max_density - minrho) < density_increment: raise ValueError( "Density range, {}, is less than increment, {}. Check parameters used in Eos.density_max().".format( (max_density - minrho), density_increment ) ) rholist = np.arange(minrho, max_density, density_increment) # check rholist to see when the spacing vspace = (1.0 / rholist[:-1]) - (1.0 / rholist[1:]) if np.amax(vspace) > max_volume_increment: vspaceswitch = np.where(vspace > max_volume_increment)[0][-1] rholist_2 = ( 1.0 / np.arange( 1.0 / rholist[vspaceswitch + 1], 1.0 / minrho, max_volume_increment )[::-1] ) rholist = np.append(rholist_2, rholist[vspaceswitch + 2 :]) # compute Pressures (Plist) for rholist Plist = Eos.pressure(rholist, T, xi) # Make sure enough of the pressure curve is obtained for i in range(maxiter): if Plist[0] > pressure_min: rhotmp = np.linspace(rholist[0] / 2, rholist[0], extended_npts)[:-1] Ptmp = Eos.pressure(rhotmp, T, xi) Plist = np.append(Ptmp, Plist) rholist = np.append(rhotmp, rholist) else: break # Flip Plist and rholist arrays Plist = Plist[:][::-1] rholist = rholist[:][::-1] vlist = 1.0 / rholist return vlist, Plist def pressure_vs_volume_spline(vlist, Plist): r""" Fit arrays of specific volume and pressure values to a cubic Univariate Spline. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Returns ------- Pvspline : obj Function object of pressure vs. specific volume roots : list List of specific volume roots. Subtract a system pressure from the output of Pvsrho to find density of vapor and/or liquid densities. extrema : list List of specific volume values corresponding to local minima and maxima. """ # Larger sigma value Psmoothed = gaussian_filter1d(Plist, sigma=1.0e-2) Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed) roots = Pvspline.roots().tolist() Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed, k=4) extrema = Pvspline.derivative().roots().tolist() if extrema: if len(extrema) > 2: extrema = extrema[0:2] # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if np.any(np.isnan(Plist)): roots = [np.nan] return Pvspline, roots, extrema def pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=[], **kwargs): r""" Plot pressure vs. specific volume. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Pvspline : obj Function object of pressure vs. specific volume markers : list, Optional, default=[] List of plot markers used in plot """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_plot' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) try: import matplotlib.pyplot as plt plt.figure(1) plt.plot(vlist, Plist, label="Orig.") plt.plot(vlist, Pvspline(vlist), label="Smoothed") plt.plot([vlist[0], vlist[-1]], [0, 0], "k") for k in range(len(markers)): plt.plot([markers[k], markers[k]], [min(Plist), max(Plist)], "k") plt.xlabel("Specific Volume [$m^3$/mol]"), plt.ylabel("Pressure [Pa]") # plt.ylim(min(Plist)/2,np.abs(min(Plist))/2) plt.legend(loc="best") plt.tight_layout() plt.show() except Exception: logger.error("Matplotlib package is not installed, could not plot") def calc_saturation_properties( T, xi, Eos, density_opts={}, tol=1e-6, Pconverged=1, **kwargs ): r""" Computes the saturated pressure, gas and liquid densities for a single component system. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` tol : float, Optional, default=1e-6 Tolerance to accept pressure value Pconverged : float, Optional, default=1.0 If the pressure is negative (under tension), we search from a value just above vacuum Returns ------- Psat : float [Pa] Saturation pressure given system information rhov : float [mol/:math:`m^3`] Density of vapor at saturation pressure rhol : float [mol/:math:`m^3`] Density of liquid at saturation pressure """ if len(kwargs) > 0: logger.debug( " 'calc_saturation_properties' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.count_nonzero(xi) != 1: if np.count_nonzero(xi > 0.1) != 1: raise ValueError( "Multiple components have compositions greater than 10%, check code for source" ) else: ind = np.where((xi > 0.1) == True)[0] raise ValueError( "Multiple components have compositions greater than 0. Do you mean to obtain the saturation pressure of {} with a mole fraction of {}?".format( Eos.beads[ind], xi[ind] ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) if not extrema or len(extrema) < 2 or np.any(np.isnan(roots)): logger.warning(" The component is above its critical point") Psat, rhol, rhov = np.nan, np.nan, np.nan else: ind_Pmin1 = np.argwhere(np.diff(Plist) > 0)[0][0] ind_Pmax1 = np.argmax(Plist[ind_Pmin1:]) + ind_Pmin1 Pmaxsearch = Plist[ind_Pmax1] Pminsearch = max(Pconverged, np.amin(Plist[ind_Pmin1:ind_Pmax1])) # Using computed Psat find the roots in the maxwell construction to give liquid (first root) and vapor (last root) densities Psat = spo.minimize_scalar( objective_saturation_pressure, args=(Plist, vlist), bounds=(Pminsearch, Pmaxsearch), method="bounded", ) Psat = Psat.x obj_value = objective_saturation_pressure(Psat, Plist, vlist) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist - Psat) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if obj_value < tol: logger.debug( " Psat found: {} Pa, obj value: {}, with {} roots and {} extrema".format( Psat, obj_value, np.size(roots), np.size(extrema) ) ) if len(roots) == 2: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:] - Psat, 1) vroot = -yroot / slope if vroot < 0.0: vroot = np.finfo(float).eps rho_tmp = spo.minimize( pressure_spline_error, 1.0 / vroot, args=(Psat, T, xi, Eos), bounds=[(1.0 / (vroot * 1e2), 1.0 / (1.1 * roots[-1]))], ) roots = np.append(roots, [1.0 / rho_tmp.x]) rhol = 1.0 / roots[0] rhov = 1.0 / roots[2] else: logger.warning( " Psat NOT found: {} Pa, obj value: {}, consider decreasing 'pressure_min' option in density_opts".format( Psat, obj_value ) ) Psat, rhol, rhov = np.nan, np.nan, np.nan tmpv, _, _ = calc_vapor_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) tmpl, _, _ = calc_liquid_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) logger.debug(" phiv: {}, phil: {}".format(tmpv, tmpl)) return Psat, rhol, rhov def objective_saturation_pressure(shift, Pv, vlist): r""" Objective function used to calculate the saturation pressure. Parameters ---------- shift : float [Pa] Guess in Psat value used to translate the pressure vs. specific volume curve Pv : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition vlist : numpy.ndarray [mol/:math:`m^3`] Specific volume array. Length depends on values in density_opts passed to :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- obj_value : float Output of objective function, the addition of the positive area between first two roots, and negative area between second and third roots, quantity squared. """ Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Pv - shift) if len(roots) >= 3: a = Pvspline.integral(roots[0], roots[1]) b = Pvspline.integral(roots[1], roots[2]) elif len(roots) == 2: a = Pvspline.integral(roots[0], roots[1]) # If the curve hasn't decayed to 0 yet, estimate the remaining area as a triangle. This isn't super accurate but we are just using the saturation pressure to get started. slope, yroot = np.polyfit(vlist[-4:], Pv[-4:] - shift, 1) b = ( Pvspline.integral(roots[1], vlist[-1]) + (Pv[-1] - shift) * (-yroot / slope - vlist[-1]) / 2 ) # raise ValueError("Pressure curve only has two roots. If the curve hasn't fully decayed, either increase maximum specific volume or decrease 'pressure_min' in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays`.") elif np.any(np.isnan(roots)): raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing pressure." ) else: raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing min_density_fraction" ) # pressure_vs_volume_plot(vlist, Pv-shift, Pvspline, markers=extrema) return (a + b) ** 2 def calc_vapor_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes vapor density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhov: P {} Pa, roots {} m^3/mol".format(P, roots)) flag_NoOpt = False l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]) < 0: try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vlist[0], args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) flag = 3 rho_tmp = np.nan elif l_roots == 1: if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) elif l_roots == 2: if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and yi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: # 3 roots logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure.".format( T, xi ) ) rho_tmp = 1.0 / roots[2] flag = 0 if flag in [0, 2]: # vapor or critical fluid tmp = [rho_tmp * 0.99, rho_tmp * 1.01] if rho_tmp * 1.01 > Eos.density_max(xi, T, maxpack=0.99): tmp[1] = Eos.density_max(xi, T, maxpack=0.99) if ( pressure_spline_error(tmp[0], P, T, xi, Eos) * pressure_spline_error(tmp[1], P, T, xi, Eos) ) < 0: rho_tmp = spo.brentq( pressure_spline_error, tmp[0], tmp[1], args=(P, T, xi, Eos), rtol=0.0000001, ) else: if Plist[0] < 0: logger.warning( " Density value could not be bounded with (rhomin,rhomax), {}. Using approximate density value".format( tmp ) ) elif not flag_NoOpt: rho_tmp = spo.least_squares( pressure_spline_error, rho_tmp, args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x logger.debug(" Vapor Density: {} mol/m^3, flag {}".format(rho_tmp, flag)) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) # Flag: 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas return rho_tmp, flag def calc_liquid_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes liquid density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhol : float [mol/:math:`m^3`] Density of liquid at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true """ if len(kwargs) > 0: logger.debug( " 'calc_liquid_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) # Get roots and local minima and maxima vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhol: P {} Pa, roots {} m^3/mol".format(P, str(roots))) flag_NoOpt = False if extrema: if len(extrema) == 1: logger.warning( " One extrema at {}, assume weird minima behavior. Check your parameters.".format( 1 / extrema[0] ) ) # Assess roots, what is the liquid density l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]): try: bounds = (1 / vlist[0], Eos.density_max(xi, T, maxpack=0.99)) rho_tmp = spo.least_squares( pressure_spline_error, np.mean(bounds), args=(P, T, xi, Eos), bounds=bounds, ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1.0 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and xi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: flag = 3 logger.error( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( str(T), str(xi) ) ) rho_tmp = np.nan # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) elif l_roots == 2: # 2 roots if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and xi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: # There should be three roots, but the values of specific volume don't go far enough to pick up the last one flag = 1 rho_tmp = 1.0 / roots[0] elif l_roots == 1: # 1 root if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and xi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: # 3 roots rho_tmp = 1.0 / roots[0] flag = 1 logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) if flag in [1, 2]: # liquid or critical fluid tmp = [rho_tmp * 0.99, rho_tmp * 1.01] P_tmp = [ pressure_spline_error(tmp[0], P, T, xi, Eos), pressure_spline_error(tmp[1], P, T, xi, Eos), ] if (P_tmp[0] * P_tmp[1]) < 0: rho_tmp = spo.brentq( pressure_spline_error, tmp[0], tmp[1], args=(P, T, xi, Eos), rtol=1e-7 ) else: if P_tmp[0] < 0: logger.warning( " Density value could not be bounded with (rhomin,rhomax), {}. Using approximate density value".format( tmp ) ) elif not flag_NoOpt: rho_tmp = spo.least_squares( pressure_spline_error, rho_tmp, args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x[0] logger.debug(" Liquid Density: {} mol/m^3, flag {}".format(rho_tmp, flag)) # Flag: 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true return rho_tmp, flag def pressure_spline_error(rho, Pset, T, xi, Eos): """ Calculate difference between set point pressure and computed pressure for a given density. Used to ensure an accurate value from the EOS rather than an estimate from a spline. Parameters ---------- rho : float [mol/:math:`m^3`] Density of system Pset : float [Pa] Guess in pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. Returns ------- pressure_spline_error : float [Pa] Difference in set pressure and predicted pressure given system conditions. """ Pguess = Eos.pressure(rho, T, xi) return Pguess - Pset def calc_vapor_fugacity_coefficient(P, T, yi, Eos, density_opts={}, **kwargs): r""" Computes vapor fugacity coefficient under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system yi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- phiv : float Fugacity coefficient of vapor at system pressure rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_fugacity_coefficient' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) rhov, flagv = calc_vapor_density(P, T, yi, Eos, density_opts) if flagv == 4: phiv = np.ones_like(yi) rhov = 0.0 logger.info(" rhov set to 0.") elif flagv == 3: phiv = np.array([np.nan, np.nan]) else: phiv = Eos.fugacity_coefficient(P, rhov, yi, T) return phiv, rhov, flagv def calc_liquid_fugacity_coefficient(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes liquid fugacity coefficient under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- phil : float Fugacity coefficient of liquid at system pressure rhol : float [mol/:math:`m^3`] Density of liquid at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true. """ if len(kwargs) > 0: logger.debug( " 'calc_liquid_fugacity_coefficient' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) rhol, flagl = calc_liquid_density(P, T, xi, Eos, density_opts) if flagl == 3: phil =
np.array([np.nan, np.nan])
numpy.array
#!/usr/bin/env python import cPickle as pk import numpy as np import pylab as pl with open("share/data/skymap.ew.50.p", "rb") as f: globals().update(pk.load(f)) power = 0.5*np.trapz(flux, frequencies, axis=0)*1E+06 RL = 50. kB = 1.38E-23 T = 297. pl.figure() pl.plot(lst, power, "k-") pl.plot(lst, kB*T*50E+06*
np.ones(lst.shape)
numpy.ones
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test graph fallback """ import pytest import numpy as np from mindspore import ms_function, context, Tensor context.set_context(mode=context.GRAPH_MODE) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_linspace(): """ Feature: JIT Fallback Description: Test numpy with linspace in graph mode. Expectation: No exception. """ @ms_function def np_linspace(): a = Tensor(np.linspace(1, 10, 10)) b = Tensor(np.linspace(1, 1, 10)) c = Tensor(np.linspace(10, 20, 5, endpoint=False)) d = Tensor(np.linspace(10, 20, 5, endpoint=True)) e = Tensor(np.linspace(1, 10, 10).reshape([10, 1])) return a, b, c, d, e a, b, c, d, e = np_linspace() print("a:", a) print("b:", b) print("c:", c) print("d:", d) print("e:", e) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_arange_slice_1(): """ Feature: JIT Fallback Description: Test numpy with arange slice in graph mode. Expectation: No exception. """ @ms_function def np_arange_slice_1(): x = np.arange(10) index = slice(2, 7, 2) a = Tensor(x[index]) b = Tensor(x[2:7:2]) c = Tensor(x[5]) d = Tensor(x[2:]) e = Tensor(x[2:5]) return a, b, c, d, e a, b, c, d, e = np_arange_slice_1() assert np.all(a.asnumpy() == np.array([2, 4, 6])) assert np.all(b.asnumpy() == np.array([2, 4, 6])) assert np.all(c.asnumpy() == np.array([5])) assert np.all(d.asnumpy() == np.array([2, 3, 4, 5, 6, 7, 8, 9])) assert np.all(e.asnumpy() == np.array([2, 3, 4])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_arange_slice_2(): """ Feature: JIT Fallback Description: Test numpy with arange slice in graph mode. Expectation: No exception. """ @ms_function def np_arange_slice_2(): x = np.array([[1, 2, 3], [3, 4, 5], [4, 5, 6]]) a = Tensor(x[1:]) b = Tensor(x[..., 1]) c = Tensor(x[1, ...]) d = Tensor(x[..., 1:]) return a, b, c, d a, b, c, d = np_arange_slice_2() assert np.all(a.asnumpy() == np.array([[3, 4, 5], [4, 5, 6]])) assert np.all(b.asnumpy() == np.array([2, 4, 5])) assert np.all(c.asnumpy() == np.array([3, 4, 5])) assert np.all(d.asnumpy() == np.array([[2, 3], [4, 5], [5, 6]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_array_advanced_index_1(): """ Feature: JIT Fallback Description: Test numpy with array advanced index in graph mode. Expectation: No exception. """ @ms_function def np_array_advanced_index_1(): x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) a = Tensor(x[[0, 1, 2], [0, 1, 0]]) rows = np.array([[0, 0], [3, 3]]) cols = np.array([[0, 2], [0, 2]]) b = Tensor(x[rows, cols]) c = Tensor(x[1:3, 1:3]) d = Tensor(x[1:3, [1, 2]]) e = Tensor(x[..., 1:]) return a, b, c, d, e a, b, c, d, e = np_array_advanced_index_1() assert np.all(a.asnumpy() == np.array([0, 4, 6])) assert np.all(b.asnumpy() == np.array([[0, 2], [9, 11]])) assert np.all(c.asnumpy() == np.array([[4, 5], [7, 8]])) assert np.all(d.asnumpy() == np.array([[4, 5], [7, 8]])) assert np.all(e.asnumpy() == np.array([[1, 2], [4, 5], [7, 8], [10, 11]])) # Not support <class 'complex'> yet. @pytest.mark.skip(reason='Not support graph fallback feature yet') def test_np_array_advanced_index_2(): """ Feature: JIT Fallback Description: Test numpy with array advanced index in graph mode. Expectation: No exception. """ @ms_function def np_array_advanced_index_2(): x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) y = np.array([np.nan, 1, 2, np.nan, 3, 4, 5]) z = np.array([1, 2 + 6j, 5, 3.5 + 5j]) a = Tensor(x[x > 5]) b = Tensor(y[~np.isnan(y)]) c = Tensor(z[np.iscomplex(z)]) return a, b, c a, b, c = np_array_advanced_index_2() assert np.all(a.asnumpy() == np.array([6, 7, 8, 9, 10, 11])) assert np.all(b.asnumpy() == np.array([1., 2., 3., 4., 5.])) assert np.all(c.asnumpy() == np.array([2. + 6.j, 3.5 + 5.j])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_array_advanced_index_3(): """ Feature: JIT Fallback Description: Test numpy with array advanced index in graph mode. Expectation: No exception. """ @ms_function def np_array_advanced_index_3(): x = np.arange(32).reshape((8, 4)) a = Tensor(x[[4, 2, 1, 7]]) y = np.arange(32).reshape((8, 4)) b = Tensor(y[[-4, -2, -1, -7]]) z = np.arange(32).reshape((8, 4)) c = Tensor(z[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]) return a, b, c a, b, c = np_array_advanced_index_3() print("a:", a) print("b:", b) print("c:", c) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_reshape(): """ Feature: JIT Fallback Description: Test numpy.reshape() method in graph mode. Expectation: No exception. """ @ms_function def np_reshape(): x = np.arange(8) y = x.reshape(2, 4) return Tensor(y) assert np.all(np_reshape().asnumpy() == np.array([[0, 1, 2, 3], [4, 5, 6, 7]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_ndarray_flatten(): """ Feature: JIT Fallback Description: Test numpy.flatten() method in graph mode. Expectation: No exception. """ @ms_function def np_ndarray_flatten(): x = np.arange(8).reshape(2, 4) y = x.flatten() return Tensor(y) assert np.all(np_ndarray_flatten().asnumpy() == np.array([0, 1, 2, 3, 4, 5, 6, 7])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_ravel(): """ Feature: JIT Fallback Description: Test numpy.ravel() method in graph mode. Expectation: No exception. """ @ms_function def np_ravel(): x = np.arange(8).reshape(2, 4) y = x.ravel(order='F') return Tensor(y) assert np.all(np_ravel().asnumpy() == np.array([0, 4, 1, 5, 2, 6, 3, 7])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_transpose(): """ Feature: JIT Fallback Description: Test numpy.transpose() method in graph mode. Expectation: No exception. """ @ms_function def np_transpose(): x = np.arange(4).reshape(4, 1) y = np.transpose(x) return Tensor(y) assert np.all(np_transpose().asnumpy() == np.array([0, 1, 2, 3])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_rollaxis(): """ Feature: JIT Fallback Description: Test numpy.rollaxis() method in graph mode. Expectation: No exception. """ @ms_function def np_rollaxis(): x = np.arange(8).reshape(2, 2, 2) tensor_x = Tensor(x) y = np.rollaxis(x, 2, 0) tensor_y = Tensor(y) return tensor_x[1, 1, 0], tensor_y[1, 1, 0] x, y = np_rollaxis() assert x == 6 and y == 5 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_swapaxes(): """ Feature: JIT Fallback Description: Test numpy.swapaxes() method in graph mode. Expectation: No exception. """ @ms_function def np_swapaxes(): x = np.arange(8).reshape(2, 2, 2) tensor_x = Tensor(x) y = np.swapaxes(x, 2, 0) tensor_y = Tensor(y) return tensor_x[1, 1, 0], tensor_y[1, 1, 0] x, y = np_swapaxes() assert x == 6 and y == 3 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_broadcast(): """ Feature: JIT Fallback Description: Test numpy.broadcast() method in graph mode. Expectation: No exception. """ @ms_function def np_broadcast(): x = np.array([[1], [2], [3]]) y = np.array([4, 5, 6]) z = np.broadcast(x, y) return Tensor(z.shape) assert np.all(np_broadcast().asnumpy() == np.array([3, 3])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_broadcast_to(): """ Feature: JIT Fallback Description: Test numpy.broadcast_to() method in graph mode. Expectation: No exception. """ @ms_function def np_broadcast_to(): x = np.arange(4).reshape(1, 4) y = np.broadcast_to(x, (2, 4)) return Tensor(y) assert np.all(np_broadcast_to().asnumpy() == np.array([[0, 1, 2, 3], [0, 1, 2, 3]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_expand_dims(): """ Feature: JIT Fallback Description: Test numpy.expand_dims() method in graph mode. Expectation: No exception. """ @ms_function def np_expand_dims(): x = np.array(([1, 2], [3, 4])) y = np.expand_dims(x, axis=0) return Tensor(y) assert np.all(np_expand_dims().asnumpy() == np.array([[[1, 2], [3, 4]]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_squeeze(): """ Feature: JIT Fallback Description: Test numpy.squeeze() method in graph mode. Expectation: No exception. """ @ms_function def np_squeeze(): x = np.arange(4).reshape(1, 2, 2) y = np.squeeze(x) return Tensor(y) assert np.all(np_squeeze().asnumpy() == np.array([[0, 1], [2, 3]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_concat(): """ Feature: JIT Fallback Description: Test numpy method in graph mode. Expectation: No exception. """ @ms_function def np_concat(): x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) concatenate = np.concatenate((x, y)) stack = np.stack((x, y), 0) hstack = np.hstack((x, y)) vstack = np.vstack((x, y)) return Tensor(concatenate), Tensor(stack), Tensor(hstack), Tensor(vstack) out_concatenate, out_stack, out_hstack, out_vstack = np_concat() assert np.all(out_concatenate.asnumpy() == np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) assert np.all(out_stack.asnumpy() == np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])) assert np.all(out_hstack.asnumpy() == np.array([[1, 2, 5, 6], [3, 4, 7, 8]])) assert np.all(out_vstack.asnumpy() == np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_split(): """ Feature: JIT Fallback Description: Test numpy split method in graph mode. Expectation: No exception. """ @ms_function def np_split(): x = np.arange(4).reshape(2, 2) split = np.split(x, 2) hsplit = np.hsplit(x, 2) vsplit = np.vsplit(x, 2) return Tensor(split), Tensor(hsplit), Tensor(vsplit) out_split, out_hsplit, out_vsplit = np_split() assert np.all(out_split.asnumpy() == np.array([[[0, 1]], [[2, 3]]])) assert np.all(out_hsplit.asnumpy() == np.array([[[0], [2]], [[1], [3]]])) assert np.all(out_vsplit.asnumpy() == np.array([[[0, 1]], [[2, 3]]])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_element(): """ Feature: JIT Fallback Description: Test numpy method in graph mode. Expectation: No exception. """ @ms_function def np_element(): resize = np.resize(np.array([[1, 2, 3], [4, 5, 6]]), (3, 2)) append = np.append(np.array([[1, 2, 3], [4, 5, 6]]), [[7, 8, 9]], axis=0) insert = np.insert(np.array([[1, 2], [3, 4], [5, 6]]), 3, [7, 8], axis=0) delete = np.delete(np.arange(6).reshape(2, 3), 0, axis=0) unique = np.unique(np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])) return Tensor(resize), Tensor(append), Tensor(insert), Tensor(delete), Tensor(unique) out_resize, out_append, out_insert, out_delete, out_unique = np_element() assert np.all(out_resize.asnumpy() == np.array([[1, 2], [3, 4], [5, 6]])) assert np.all(out_append.asnumpy() == np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert np.all(out_insert.asnumpy() == np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) assert np.all(out_delete.asnumpy() == np.array([3, 4, 5])) assert np.all(out_unique.asnumpy() == np.array([2, 5, 6, 7, 8, 9])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_bitwise(): """ Feature: JIT Fallback Description: Test numpy bitwise method in graph mode. Expectation: No exception. """ @ms_function def np_bitwise(): bitwise_and = np.bitwise_and(13, 17) bitwise_or = np.bitwise_or(13, 17) invert = np.invert(np.array([13], dtype=np.uint8)) left_shift = np.left_shift(10, 2) right_shift = np.right_shift(40, 2) return Tensor(bitwise_and), Tensor(bitwise_or), Tensor(invert), Tensor(left_shift), Tensor(right_shift) bitwise_and, bitwise_or, invert, left_shift, right_shift = np_bitwise() assert bitwise_and.asnumpy() == 1 assert bitwise_or.asnumpy() == 29 assert np.all(invert.asnumpy() == np.array([242])) assert left_shift.asnumpy() == 40 assert right_shift.asnumpy() == 10 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_char_1(): """ Feature: JIT Fallback Description: Test numpy char method in graph mode. Expectation: No exception. """ @ms_function def np_char(): char_add = np.char.add(['MindSpore'], [' fallback']) char_multiply = np.char.multiply('fallback ', 3) char_center = np.char.center('fallback', 10, fillchar='*') char_capitalize = np.char.capitalize('fallback') char_title = np.char.title('fallback') char_lower = np.char.lower('FALLBACK') char_upper = np.char.upper('fallback') return Tensor(char_add), Tensor(char_multiply), Tensor(char_center), Tensor(char_capitalize), \ Tensor(char_title), Tensor(char_lower), Tensor(char_upper) char_add, char_multiply, char_center, char_capitalize, char_title, char_lower, char_upper = np_char() assert char_add.asnumpy() == 'MindSpore fallback' assert char_multiply.asnumpy() == 'fallback fallback fallback ' assert char_center.asnumpy() == '*fallback*' assert char_capitalize.asnumpy() == 'Fallback' assert char_title.asnumpy() == 'Fallback' assert char_lower.asnumpy() == 'fallback' assert char_upper.asnumpy() == 'FALLBACK' @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_char_2(): """ Feature: JIT Fallback Description: Test numpy char method in graph mode. Expectation: No exception. """ @ms_function def np_char(): char_split = np.char.split('MindSpore fallback') out_split = np.char.join(' ', char_split) char_splitlines = np.char.splitlines('MindSpore\nfallback') out_splitlines = np.char.join(',', char_splitlines) out_strip = np.char.strip('abc acd', 'a') out_replace = np.char.replace('faooback', 'oo', 'll') char_encode = np.char.encode('runoob', 'cp500') out_decode = np.char.decode(char_encode, 'cp500') return Tensor(out_split), Tensor(out_splitlines), Tensor(out_strip), Tensor(out_replace), Tensor(out_decode) char_split, char_splitlines, char_strip, char_replace, char_decode = np_char() assert char_split.asnumpy() == 'MindSpore fallback' assert char_splitlines.asnumpy() == 'MindSpore,fallback' assert char_strip.asnumpy() == 'bc acd' assert char_replace.asnumpy() == 'fallback' assert char_decode.asnumpy() == 'runoob' @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_np_degree(): """ Feature: JIT Fallback Description: Test numpy method in graph mode. Expectation: No exception. """ @ms_function def np_degree(): out_sin = np.sin(30 * np.pi / 180) out_arcsin = np.degrees(np.arcsin(out_sin)) out_cos =
np.cos(60 * np.pi / 180)
numpy.cos
import numpy as np from numerical_eqs.utils import SimTime def basicStep ( x, t, vf, dt ): '''Euler step, but using derivative at middle point of dt ''' dt2 = dt/2.0 tmid = t + dt2 w = x + dt2 * vf( t, x ) return x + dt * vf( tmid, w ) def step ( x, t, vf, dt ): '''Roughly estimate the future position and error of calculation given position, callable derivative function ''' xcourse = basicStep ( x, t, vf, dt ) xmid = basicStep ( x, t, vf, dt/2.0 ) xfine = basicStep ( xmid, t+dt/2.0, vf, dt/2.0 ) xnew = xfine * 4/3.0 - xcourse * 1/3.0 # Return our guess, and the estimated error return (xnew, xfine - xcourse) def SDOLESolve( y0, func, t1, t0=0, time_controls = { 'tol': 1.0e-3, 'agrow': 1.25, 'ashrink': 0.8, 'dtmin': 1e-6, 'dtmax': 100 }, dont_wrap_func = False, explicit_times = { 'time points' : [], 'callback': lambda yt, t: yt }, progress=True, pbar = None, include_t0=True, ): '''Solve the PDE system, using step doubling and local extrapolation If you want to run some function on the current state at specific points in time, use the explicit_times to control this operation. The callback result will be used to replace yt at each time specified Args: y0: Initial value func: callable which should evaluate to the derivative of y(t, yt) t1: time value upon which to terminate t0: start time, corresponding to y0 [default 0] time_controls: dict, controls the time stepping and error tolerances. See utils.SimTime for more info on these. Defaults to { 'tol': 1.0e-3, 'agrow': 1.25, 'ashrink': 0.8, 'dtmin': 1e-6, 'dtmax': 100 } dont_wrap_func: This parameter will modify how func is treated. If set to True, func will be called like func(x,t,dt), and func should return (dY, error) where y_(t+dt) = y_t + dY. The error returned is used in the tolerance estimates explicit_times: dict, used to evaluate a separate callable which can optionally modify the ODE value at certain times. dict should look like { 'time points' : [ (t0+t1)/2, ... ], 'callback': (lambda yt, t: yt) } with 'time points' a list of points to evaluate callable on, and 'callback', a function which should return the new value of yt progress: boolean, whether to load with TQDM bar include_t0: Whether to add y0 and t0 to the lists of results. Defaults to true pbar: not for public use, leave this as None unless you know what you're doing ''' # Handle progress and possibly load in TQDM if progress: try: from tqdm import tqdm except: raise ImportError('TQDM module not found. Try installing tqdm or use progress=False to disable the progress bar') # Get our time controls in order # This makes sure our function can handle either the recursive case or the base level time_controls = { **{ 'start_dt': time_controls.get('dtmin', 1e-6) }, **{ 'tol': 1.0e-3, 'agrow': 1.25, 'ashrink': 0.8, 'dtmin': 1e-6, 'dtmax': 100 }, **time_controls, } # time_controls['start_dt'] = time_controls.get('start_dt', time_controls['dtmin']) should_close_pbar = False # Generate our progress bar, possibly if progress and (pbar is None): pbar = tqdm(total=t1-t0) should_close_pbar = True # We might have to aggregate this known_times = sorted(set([t0, t1] + np.asarray(explicit_times.get('time points',[])).tolist())) # print(known_times) sol = None # print(explicit_times) # See exactly what we should be calling callback = explicit_times.get( 'callback', (lambda ys, t: ys) ) new_start_dt = None if len(known_times) > 2: # print("Using recursive mode") res = None for i in range(1, len(known_times)): tt0 = known_times[i-1] tt1 = known_times[i] y0 = y0 if res is None else res['ys'][-1,:] # Recursively get the subinterval we're looking for new_res = SDOLESolve( y0 = y0, func = func, t1 = tt1, t0 = tt0, time_controls = {**time_controls, 'start_dt': new_start_dt}, explicit_times = {}, progress=progress, pbar = pbar, dont_wrap_func = dont_wrap_func, include_t0 = ( include_t0 if i == 1 else False ) ) new_start_dt = new_res['rolling dt'] # Combine if res is None: res = new_res else: for k in ('steps accepted', 'steps rejected'): res[k] += new_res[k] for k in ('ys', 'time'): res[k] = np.concatenate( [ res[k], new_res[k], ], axis = 0 ) # Explicitly replace the value requested res['ys'][-1,:] = callback( res['ys'][-1,:], # yt res['time'][-1], # t ) # Go to the end, and this will be returned sol = res # We should actually compute the thing # This is the base-level recursive step else: # print("Using base mode") # Get all our ducks in a row before this thingy res = [y0] ts = [t0] stepsAccepted = 0 stepsRejected = 0 # Get our time simulator in order simtime = SimTime( tol = time_controls['tol'], agrow = time_controls['agrow'], ashrink = time_controls['ashrink'], dtmin = time_controls['dtmin'], dtmax = time_controls['dtmax'], tstart = t0, tend = t1, start_dt = time_controls['start_dt'] ) # We need a function that can evaluate # the derivative & error given the # stepsize, time, and current position # This could possibly be user-supplied if dont_wrap_func: def dyFunc(x, t, dt): return func ( x = x, t = t, dt = dt ) else: def dyFunc(x, t, dt): return step ( x = x, t = t, vf = func, dt = dt ) while ts[-1] < t1: yt = res[-1] t = ts[-1] # Evaluate our error using the established step function yt, error = dyFunc( x = yt, t = t, dt = simtime.dt ) # Should we increment step? if simtime.advance(error): # Store back our info res.append(yt) # Move to the next time ts.append(simtime.nextStep()) if progress: # Update our progress bar pbar.update(ts[-1] - t) stepsAccepted += 1 # This step was rejected else: stepsRejected += 1 sol = { 'ys': np.asarray(res), 'time':
np.asarray(ts)
numpy.asarray
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets def loadDataSet(): dataMat = [] labelMat = [] fr = open('./data/testSet.txt', 'r') lines = fr.readlines() for line in lines: strArr = line.strip().split() dataMat.append([float(strArr[0]), float(strArr[1])]) labelMat.append(int(strArr[2])) #dataMat = np.mat(dataMat) #labelMat = np.mat(labelMat).reshape(np.shape(dataMat)[0], 1) return np.array(dataMat), np.array(labelMat) def f_Z(X, w, b): Z = np.dot(X, w.T) + b return Z def f_A(Z): # activation function (sigmoid function) A = 1.0 / (1.0 +
np.exp(-Z)
numpy.exp
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Reliability calibration plugins.""" import operator import warnings import iris import numpy as np import scipy from improver import BasePlugin, PostProcessingPlugin from improver.calibration.utilities import ( check_forecast_consistency, create_unified_frt_coord, filter_non_matching_cubes, ) from improver.metadata.probabilistic import ( find_threshold_coordinate, probability_is_above_or_below, ) from improver.metadata.utilities import generate_mandatory_attributes from improver.utilities.cube_manipulation import MergeCubes, collapsed class ConstructReliabilityCalibrationTables(BasePlugin): """A plugin for creating and populating reliability calibration tables.""" def __init__( self, n_probability_bins=5, single_value_lower_limit=False, single_value_upper_limit=False, ): """ Initialise class for creating reliability calibration tables. These tables include data columns entitled observation_count, sum_of_forecast_probabilities, and forecast_count, defined below. n_probability_bins (int): The total number of probability bins required in the reliability tables. If single value limits are turned on, these are included in this total. single_value_lower_limit (bool): Mandates that the lowest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus 0 to 1.0E-6. single_value_upper_limit (bool): Mandates that the highest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus (1 - 1.0E-6) to 1. """ self.single_value_tolerance = 1.0e-6 self.probability_bins = self._define_probability_bins( n_probability_bins, single_value_lower_limit, single_value_upper_limit ) self.table_columns = np.array( ["observation_count", "sum_of_forecast_probabilities", "forecast_count"] ) self.expected_table_shape = (len(self.table_columns), n_probability_bins) def __repr__(self): """Represent the configured plugin instance as a string.""" bin_values = ", ".join( ["[{:1.2f} --> {:1.2f}]".format(*item) for item in self.probability_bins] ) result = "<ConstructReliabilityCalibrationTables: " "probability_bins: {}>" return result.format(bin_values) def _define_probability_bins( self, n_probability_bins, single_value_lower_limit, single_value_upper_limit ): """ Define equally sized probability bins for use in a reliability table. The range 0 to 1 is divided into ranges to give n_probability bins. If single_value_lower_limit and / or single_value_upper_limit are True, additional bins corresponding to values of 0 and / or 1 will be created, each with a width defined by self.single_value_tolerance. Args: n_probability_bins (int): The total number of probability bins desired in the reliability tables. This number includes the extrema bins (equals 0 and equals 1) if single value limits are turned on, in which case the minimum number of bins is 3. single_value_lower_limit (bool): Mandates that the lowest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus 0 to 1.0E-6. single_value_upper_limit (bool): Mandates that the highest bin should be single valued, with a small precision tolerance, defined as 1.0E-6. The bin is thus (1 - 1.0E-6) to 1. Returns: numpy.ndarray: An array of 2-element arrays that contain the bounds of the probability bins. These bounds are non-overlapping, with adjacent bin boundaries spaced at the smallest representable interval. Raises: ValueError: If trying to use both single_value_lower_limit and single_value_upper_limit with 2 or fewer probability bins. """ if single_value_lower_limit and single_value_upper_limit: if n_probability_bins <= 2: msg = ( "Cannot use both single_value_lower_limit and " "single_value_upper_limit with 2 or fewer " "probability bins." ) raise ValueError(msg) n_probability_bins = n_probability_bins - 2 elif single_value_lower_limit or single_value_upper_limit: n_probability_bins = n_probability_bins - 1 bin_lower = np.linspace(0, 1, n_probability_bins + 1, dtype=np.float32) bin_upper =
np.nextafter(bin_lower, 0, dtype=np.float32)
numpy.nextafter
""" Contextual bandit environments to evaluate performance. """ import numpy as np import os class StationaryContextualBandit: def __init__(self, dataset, seed, err_sigma = 0.05): # Can also be used for real-world non-stationary problems # as it doesn't shuffle the data. self.random_state = np.random.RandomState(seed) if os.path.isdir("rnlps/datasets/" + dataset): self.X = np.load("rnlps/datasets/" + dataset + "/X.npy") self.targets = np.load("rnlps/datasets/" + dataset + "/y.npy") else : raise Exception("Dataset does not exist. Check the path.") self.n_arms = len(np.unique(self.targets)) self.step = 0 self.context_dims = np.shape(self.X)[-1] self.err_sigma = err_sigma def reset(self): self.step = 0 return self.X[self.step] def pull(self, arm): if (arm >= self.n_arms) or (arm < 0): raise Exception('Invalid arm.') reward = 0.0 regret = 1.0 if arm == self.targets[self.step]: reward = 1.0 regret = 0.0 assert (reward + regret) == 1 self.step += 1 context = self.X[self.step] reward = reward + self.random_state.normal(0, self.err_sigma) return reward, context, regret def best_arms(self): return [self.targets[self.step]] def expected_cumulative_rewards(self, trial_length): return np.cumsum(np.ones(trial_length)) def __repr__(self): r = 'StationaryContextualBandit(n_arms={0}, X_dims={1})' return r.format(self.n_arms, np.shape(self.X)) class FlippingContextualBandit: def __init__(self, dataset, half_period, seed, err_sigma = 0.05): self.random_state = np.random.RandomState(seed) if os.path.isdir("rnlps/datasets/" + dataset): self.X = np.load("rnlps/datasets/" + dataset + "/X.npy") self.targets =
np.load("rnlps/datasets/" + dataset + "/y.npy")
numpy.load
from scipy.integrate import solve_bvp,solve_ivp import numpy as np __all__=["FermatEquationsEuclid","UniformFermatEquationsEuclid", "FermatEquationsCurve","UniformFermatEquationsCurve","FermatEquations"] class FermatEquations(object): def __init__(self): pass def solve_ivp(self,a,b,y0,dy0,**kwargs): """Solve initial value problem for light rays. Notes ----- The solver can solve the path of an arbitrary number of light rays in one function call however the format of the solutions has the y(x) positions stacked on top of the derivatives. Parameters ---------- a : scalar initial position for the solution of the ray's path. b : scalar final position for the solution of the ray's path. y0 : array_like of shape (n,) initial position of the ray's. dy0 : array_like of shape (n,) initial derivative (with respect to the independent variable) of the ray's trajectory. kwargs : optional additional arguments to pass into solver, see scipy.integrate.solve_ivp for more details. Returns ------- Bunch object with the following fields defined: t : ndarray, shape (n_points,) Time points. y : ndarray, shape (n, n_points) Values of the solution at `t`. sol : `OdeSolution` or None Found solution as `OdeSolution` instance; None if `dense_output` was set to False. t_events : list of ndarray or None Contains for each event type a list of arrays at which an event of that type event was detected. None if `events` was None. nfev : int Number of evaluations of the right-hand side. njev : int Number of evaluations of the Jacobian. nlu : int Number of LU decompositions. status : int Reason for algorithm termination: * -1: Integration step failed. * 0: The solver successfully reached the end of `tspan`. * 1: A termination event occurred. message : string Human-readable description of the termination reason. success : bool True if the solver reached the interval end or a termination event occurred (``status >= 0``). """ y0 = np.vstack((y0,dy0)) self._yout =
np.zeros_like(y0)
numpy.zeros_like
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jul 26 13:57:35 2020 @author: calebhallinan """ # Making the randnet package in R # # importing numpy import numpy as np # importing random import random # importing powerlaw, must downlaod from github import powerlaw # importing math import math # import skicit from sklearn.cluster import KMeans # downloaded this from github # pip install -e git+https://github.com/bwlewis/irlbpy.git#egg=irlb # had to make a slight change on line 138 deleting the x from irlb import irlb # for norm function from numpy import linalg as LA # for roc curve import sklearn.metrics as metrics # to check speed of functions import timeit # to copy matrices from copy import deepcopy def BlockModelGen(lamb, n, beta = 0, K = 3, rho = 0, simple = True, power = True, alpha = 5, degree_seed = None): """ Description ---------- Generates networks from degree corrected stochastic block model, with various options for node degree distribution Arguments ---------- lambda : average node degree n : size of network beta : out-in ratio: the ratio of between-block edges over within-block edges K : number of communities w : not effective Pi : a vector of community proportion rho : proportion of small degrees within each community if the degrees are from two point mass disbribution. rho >0 gives degree corrected block model. If rho > 0 and simple=TRUE, then generate the degrees from two point mass distribution, with rho porition of 0.2 values and 1-rho proportion of 1 for degree parameters. If rho=0, generate from SBM. simple : Indicator of wether two point mass degrees are used, if rho > 0. If rho=0, this is not effective power : Whether or not use powerlaw distribution for degrees. If FALSE, generate from theta from U(0.2,1); if TRUE, generate theta from powerlaw. Only effective if rho >0, simple=FALSE. alpha : Shape parameter for powerlaw distribution. degree.seed : Can be a vector of a prespecified values for theta. Then the function will do sampling with replacement from the vector to generate theta. It can be used to control noise level between different configuration settings. Returns ------- A dictionary with: (variable name)["A"] : the generated network adjacency matrix (variable name)["g"] : community membership (variable name)["P"] : probability matrix of the network (variable name)["theta"] : node degree parameter Author(s) ---------- <NAME>, <NAME>, <NAME> """ w = [1] * K Pi = 1/K P0 = np.diag(w) if (beta > 0): P0 = np.ones((K, K), dtype=np.int32) diag_P0 = [w_element / beta for w_element in w] np.fill_diagonal(P0, diag_P0) Pi_vec = [[Pi] for i in range(K)] P1 = lamb * P0 P2 = np.matmul((np.transpose(Pi_vec)), P0) P3 = (n-1) * np.matmul(P2, Pi_vec) * (rho * 0.2 + (1-rho))**2 P = P1/P3 if (rho > 0) and (simple != True) and (power != True): P1 = lamb * P0 P2 = np.matmul(((n-1) * np.transpose(Pi_vec)), P0) P3 = np.matmul(P2, Pi_vec) * (0.6)**2 P = P1/P3 if (rho > 0) and (simple != True) and (power == True): P1 = lamb * P0 P2 = np.matmul(((n-1) * np.transpose(Pi_vec)), P0) P3 = np.matmul(P2, Pi_vec) * (1.285)**2 P = P1/P3 M = np.zeros((n, K), dtype=np.int32) membership = random.choices(range(0, K), k = n, weights = [Pi]*K) i = 0 while i < n: M[i][membership[i]] = 1 i +=1 MP = np.matmul(M, P) A_bar = np.matmul(MP, np.transpose(M)) node_degree = [1] * n if rho > 0: randunif = np.random.uniform(size = n) if simple == True: j = 0 while j < n: if randunif[j] < rho: node_degree[j] = 0.2 j += 1 else: j += 1 else: if power == False: node_degree = np.random.uniform(size = n) * 0.8 + 0.2 else: MM = math.ceil(n/300) if degree_seed == None: degree_seed = powerlaw.Power_Law(xmin=1, parameters=[alpha]).generate_random(n) node_degree = random.choices(degree_seed, k = n) DD = np.diag(node_degree) A_bar = np.matmul(DD, A_bar) A_bar = np.matmul(A_bar, DD) A_bar = A_bar * lamb/np.mean(np.sum(A_bar, axis = 0)) upper_index = np.triu_indices(n, k = 1) upper_p = A_bar[upper_index] upper_u = np.random.uniform(size = len(upper_p)) upper_A = np.where(upper_u < upper_p, 1, 0) A = np.zeros((n, n), dtype=np.int32) A[upper_index] = upper_A A = A + np.transpose(A) np.fill_diagonal(A, 0) # return statement in dictionary form dic = dict() # generated network adjacency matrix dic["A"] = A # community membership dic["g"] = membership # probability matrix of the network dic["P"] = A_bar # node degree parameter dic["theta"] = node_degree return(dic) def reg_SP(A, K, tau = 1, lap = False): """ Description ---------- Community detection by regularized spectral clustering Arguments ---------- A : Adjacency Matrix K : Number of Communities tau : reguarlization parameter. Default value is one. Typically set between 0 and 1. If tau=0, no regularization is applied. lap : indicator. If TRUE, the Laplacian matrix for clustering. If FALSE, the adjacency matrix will be used. Returns ------- A dictionary with: (variable name)["cluster"] giving the cluster levels (variable name)["loss"] giving the loss of KMeans algorithm Author(s) ---------- <NAME>, <NAME>, <NAME> """ avg_d = np.mean(A.sum(axis = 0)) A_tau = (A + tau*avg_d)/len(A) if lap != True: SVD = irlb(A_tau, K, maxit=1000) else: d_tau = A_tau.sum(axis = 0) pre_L_tau = np.matmul(np.diag(1/np.sqrt(d_tau)), A_tau) L_tau = np.matmul(pre_L_tau, np.diag(1/np.sqrt(d_tau))) SVD = irlb(L_tau, K, maxit=1000) dic = dict() dic["cluster"] = KMeans(n_clusters=K, max_iter = 30).fit_predict(SVD["V"][:,0:K]) dic["loss"] = KMeans(n_clusters=K, max_iter = 30).fit(SVD["V"][:,0:K]).inertia_ return(dic) def reg_SSP(A, K, tau = 1, lap = False): """ Description ---------- Community detection by regularized spherical spectral clustering Arguments ---------- A : Adjacency Matrix K : Number of Communities tau : reguarlization parameter. Default value is one. Typically set between 0 and 1. If tau=0, no regularization is applied. lap : indicator. If TRUE, the Laplacian matrix for clustering. If FALSE, the adjacency matrix will be used. Returns ------- A dictionary with: (variable name)["cluster"] giving the cluster levels (variable name)["loss"] giving the loss of KMeans algorithm Author(s) ---------- <NAME>, <NAME>, <NAME> """ # finding the average distance by taking mean of columns summed avg_d = np.mean(A.sum(axis = 0)) A_tau = A + (tau*avg_d)/len(A) if lap != True: SVD = irlb(A_tau, K, maxit=1000) V = SVD["V"][:,0:K] V_norm = LA.norm(V, axis=1) V_normalized = np.matmul(np.diag(1/V_norm), V) else: d_tau = A_tau.sum(axis = 0) pre_L_tau = np.matmul(np.diag(1/np.sqrt(d_tau)), A_tau) L_tau = np.matmul(pre_L_tau, np.diag(1/np.sqrt(d_tau))) SVD = irlb(L_tau, K, maxit=1000) V = SVD["V"][:,0:K] V_norm = LA.norm(V, axis=1) V_normalized = np.matmul(np.diag(1/V_norm), V) dic = dict() dic["cluster"] = KMeans(n_clusters=K, max_iter = 30).fit_predict(V_normalized) dic["loss"] = KMeans(n_clusters=K, max_iter = 30).fit(V_normalized).inertia_ return(dic) def SBM_estimate(A, g): """ Description ---------- Estimates SBM parameters given community labels Arguments ---------- A : adjacency matrix g : a vector of community labels Returns ------- A dictionary with: (variable name)["B"] : estimated block connection probability matrix (variable name)["Phat"] : estimated probability matrix (variable name)["g"] : community labels Author(s) ---------- <NAME>, <NAME>, <NAME> """ n = A.shape[0] K = len(np.unique(g)) B = np.zeros((K,K)) M = np.zeros((n,K)) for i in range(K): for j in range(i, K): if i != j: # in order to get each row and column needed, a bit of crazy # indexing was needed - could possibly be better some other way pre_mean = A[np.where(g == i),:][0] B[i,j] = np.mean(pre_mean[:,np.where(g == j)]) B[j,i] = np.mean(pre_mean[:,np.where(g == j)]) else: n_i = len(np.where(g==i)[0]) pre_sum = A[np.where(g == i),:][0] B[i,i] = np.sum(pre_sum[:,np.where(g == i)])/(n_i**2 - n_i) # maybe a faster way ? for i in range(n): M[i,g[i]] = 1 pP = np.matmul(M,B) P = np.matmul(pP,M.T) dic = {} dic["B"] = B dic["Phat"] = P dic["g"] = g return dic def DCSBM_estimate(A,g): """ Description ---------- Estimates DCSBM model by given community labels Arguments ---------- A : adjacency matrix g : vector of community labels for the nodes Returns ------- A dictionary with: (variable name)["Phat"] : estimated probability matrix (variable name)["B"] : the B matrix with block connection probability, up to a scaling constant (variable name)["Psi"] : vector of of degree parameter theta, up to a scaling constant Author(s) ---------- <NAME>, <NAME>, <NAME>hu """ n = A.shape[0] K = len(np.unique(g)) B = np.zeros((K,K)) Theta = np.zeros((n,K)) for i in range(K): for j in range(i,K): N_i = np.where(g==i) psum = A[np.where(g == i),:][0] B[i,j] = np.sum(psum[:,np.where(g == j)]) + .001 B[j,i] = np.sum(psum[:,np.where(g == j)]) + .001 Theta[N_i,i] = 1 Psi = np.sum(A, axis = 0) B_rowSums = np.sum(B, axis = 1) B_g = np.matmul(Theta, B_rowSums) Psi = (Psi/B_g).reshape(300,1) tmp_mat = Theta * Psi pP_hat = np.matmul(tmp_mat,B) P_hat = np.matmul(pP_hat,tmp_mat.T) dic = {} dic["Phat"] = P_hat dic["B"] = B dic["Psi"] = Psi.T dic["g"] = g return dic def iter_SVD_core_fast_all(A, Kmax, tol = .00001, max_iter = 100, sparse = True, init = None, verbose = False, tau = 0, p_sample = 1): """ This function is used in ECV_block function """ #?? make sparse? #if sparse == True: # possibly do this # A = n = A.shape[0] cap = 1 #kappa*avg.p A = np.where(np.isnan(A), 0, A) A = A/p_sample #svd.new <- svd(A,nu=K,nv=K) #print("begin SVD") svd_new = irlb(A, Kmax, maxit = max_iter) # might be a better SVD out there result = dict() for K in range(Kmax): # print(K) # not sure why this is here if K == 0: A_new = svd_new["S"][0] * np.matmul(np.array(svd_new["U"][:,0]).reshape(n,1), np.array(svd_new["V"][:,0]).reshape(n,1).T) else: A_new = A_new + svd_new["S"][K] * np.matmul(np.array(svd_new["U"][:,K]).reshape(n,1), np.array(svd_new["V"][:,K]).reshape(n,1).T) A_new_thr = A_new A_new_thr = np.where(A_new < (0 + tau), 0 + tau, A_new_thr) A_new_thr = np.where(A_new > cap, cap, A_new_thr) tmp_SVD = dict() tmp_SVD["u"] = svd_new["U"][:,range(K+1)] tmp_SVD["v"] = svd_new["V"][:,range(K+1)] tmp_SVD["d"] = svd_new["S"][range(K+1)] result[K] = {"iter": None, "SVD": tmp_SVD, "A": A_new, "err_seq": None, "A_thr": A_new_thr} return(result) def ECV_block(A, max_K, cv = None, B = 3, holdout_p = 0.1, tau = 0, kappa = None): """ Description ---------- Model selection by ECV for SBM and DCSBM. It can be used to select between the two models or given on model (either SBM or DCSBM) and select K. Arguments ---------- A : adjacency matrix max_K : largest possible K for number of communities cv : cross validation fold. The default value is NULL. We recommend to use the argument B instead, doing indpendent sampling. B : number of replications holdout_p : testing set proportion tau : constant for numerical stability only. Not useful for current version. dc_est : estimation method for DCSBM. By defaulty (dc.est=2), the maximum likelihood is used. If dc.est=1, the method used by Chen and Lei (2016) is used, which is less stable according to our observation. kappa : constant for numerical stability only. Not useful for current version. Returns ------- A dictionary with: (variable name)["impute_err"] : average validaiton imputation error (variable name)["l2"] : average validation L_2 loss under SBM (variable name)["dev"] : average validation binomial deviance loss under SBM (variable name)["auc"] : average validation AUC (variable name)["dc_l2"] : average validation L_2 loss under DCSBM (variable name)["dc_dev"] : average validation binomial deviance loss under DCSBM (variable name)["sse"] : average validation SSE (variable name)["l2_model"] : selected model by L_2 loss (variable name)["dev_model"] : selected model by binomial deviance loss (variable name)["l2_mat"] : cross-validation loss matrix for B replications (variable name)["dc_l2_mat"] : cross-validation loss matrix for B replications Author(s) ---------- <NAME>, <NAME>, <NAME> """ n = A.shape[0] edge_index = np.triu_indices(n, k = 1) edge_n = len(edge_index[0]) holdout_index_list = list() if cv == None: holdout_n = math.floor(holdout_p * edge_n) for i in range(B): holdout_index_list.append(random.sample(range(edge_n), k = holdout_n)) else: sample_index = random.sample(range(edge_n), k = edge_n) max_fold_num = np.ceil(edge_n/cv) fold_index = np.repeat(range(cv), max_fold_num)[edge_n-1] cv_index = np.where(fold_index-(fold_index) == sample_index, fold_index, None) B = cv for i in range(B): holdout_index_list.append(np.where(cv_index == i)[0].tolist()) def holdout_evaluation_fast_all(holdout_index, A = A, max_K = max_K, tau = tau, p_sample = 1, kappa = kappa): n = A.shape[0] edge_index = np.triu_indices(n, k = 1) edge_n = len(edge_index[0]) A_new = np.zeros(n**2).reshape(n,n) A_new[np.triu_indices_from(A_new,k = 1)] = A[edge_index] # may be better way to index here x = A_new[np.triu_indices_from(A_new,k = 1)] for i in range(len(holdout_index)): x[holdout_index[i]] = None A_new[np.triu_indices_from(A_new,k = 1)] = x A_new = A_new + A_new.T degrees = np.nansum(A_new, axis = 1) no_edge = 0 no_edge = np.sum(degrees == 0) Omega = np.isnan(A_new) non_miss = ~np.isnan(A_new) #A.new[non.miss] <- A.new[non.miss] + 0.5 SVD_result = iter_SVD_core_fast_all(A_new, max_K, p_sample = p_sample) dc_block_sq_err = [0] * max_K dc_loglike = [0] * max_K roc_auc = [0] * max_K bin_dev = [0] * max_K block_sq_err = [0] * max_K impute_sq_err = [0] * max_K loglike = [0] * max_K for k in range(max_K): tmp_est = SVD_result[k] A_approx = tmp_est["A_thr"] impute_sq_err[k] = np.sum((A_approx[Omega] - A[Omega])**2) response = list() upper_A = A[np.triu_indices_from(A, k = 1)] for i in range(len(holdout_index)): response.append(upper_A[holdout_index[i]]) predictors = list() upper_A_approx = A_approx[np.triu_indices_from(A_approx, k = 1)] for i in range(len(holdout_index)): predictors.append(upper_A_approx[holdout_index[i]]) print("AUC calculation") fpr, tpr, threshold = metrics.roc_curve(response, predictors, pos_label=1) roc_auc[k] = metrics.auc(fpr, tpr) trunc_predictors = np.array(predictors) # changing to an array to compare values trunc_predictors[np.array(predictors) > (1-1e-6)] = 1-1e-6 trunc_predictors[np.array(predictors) < (1e-6)] = 1e-6 bin_dev[k] = np.sum((np.array(response) - trunc_predictors)**2) if k == 0: pb = (np.nansum(A_new) + 1)/ (np.sum(~np.isnan(A_new)) - np.sum(~np.isnan(np.diag(A_new))) + 1) if pb < 1e-6: pb = 1e-6 if pb > 1-1e-6: pb = 1-1e-6 A_Omega = A[Omega] block_sq_err[k] = np.sum((pb - A_Omega)**2) loglike[k] = -np.sum(A_Omega * np.log(pb)) - np.sum((1 - A_Omega) * np.log(1-pb)) print("SBM calculation") start = timeit.default_timer() if k == 0: U_approx = np.array(tmp_est["SVD"]["v"]).reshape(len(tmp_est["SVD"]["v"]), k+1) else: U_approx = tmp_est["SVD"]["v"][:,range(k+1)] if tau > 0: A_approx = A_approx + (tau * np.mean(np.sum(A_approx, axis = 0))/n) d_approx = np.sum(A_approx, axis = 0) preL_approx = np.matmul(np.diag(1/np.sqrt(d_approx)), A_approx) L_approx = np.matmul(preL_approx, np.diag(1/np.sqrt(d_approx))) A_approx_svd = irlb(L_approx, k+1, maxit = 1000) U_approx = A_approx_svd["V"][:,range(k+1)] km = KMeans(n_clusters = k + 1, max_iter = 30).fit(U_approx) B = np.zeros((k+1,k+1)) Theta = np.zeros((n, k+1)) for i in range(k+1): for j in range(i, k+1): N_i = np.where(km.labels_ == i) N_j = np.where(km.labels_ == j) if i != j: B[i,j] = (np.nansum(A_new[N_i[0][:, None], N_j[0][None, :]]) + 1)/ (np.sum(~np.isnan(A_new[N_i[0][:, None], N_j[0][None, :]]))+1) # i believe this is the same indexing, but was having trouble figuring it out B[j,i] = (np.nansum(A_new[N_i[0][:, None], N_j[0][None, :]]) + 1)/ (np.sum(~np.isnan(A_new[N_i[0][:, None], N_j[0][None, :]]))+1) else: B[i,j] = (np.nansum(A_new[N_i[0][:, None], N_j[0][None, :]]) + 1)/(np.sum(~np.isnan(A_new[N_i[0][:, None], N_j[0][None, :]])) - np.sum(~np.isnan(np.diag(A_new[N_i[0][:, None], N_j[0][None, :]])))+1) B[j,i] = (np.nansum(A_new[N_i[0][:, None], N_j[0][None, :]]) + 1)/(np.sum(~np.isnan(A_new[N_i[0][:, None], N_j[0][None, :]])) - np.sum(~np.isnan(np.diag(A_new[N_i[0][:, None], N_j[0][None, :]])))+1) Theta[N_i,i] = 1 preP_hat = np.matmul(Theta, B) P_hat = np.matmul(preP_hat, Theta.T) np.fill_diagonal(P_hat,0) block_sq_err[k] = np.sum((P_hat[Omega]-A[Omega])**2) P_hat_Omega = P_hat[Omega] A_Omega = A[Omega] P_hat_Omega[P_hat_Omega < 1e-6] = 1e-6 P_hat_Omega[P_hat_Omega > (1-1e-6)] = 1-1e-6 loglike[k] = -np.sum(A_Omega*np.log(P_hat_Omega)) - np.sum((1-A_Omega)* np.log(1-P_hat_Omega)) stop = timeit.default_timer() print('Time: ', stop - start) #### Degree correct model V = U_approx print("DCSBM calculation") start = timeit.default_timer() if k == 0: V_norms = np.abs(V.reshape(1, n * (k+1))[0]) else: def sq_sum(x): return(np.sqrt(np.sum(x**2))) # made this to use the apply func V_norms = np.apply_along_axis(sq_sum, 1, V) iso_index = np.where(V_norms == 0) Psi = V_norms Psi = Psi / np.max(V_norms) inv_V_norms = 1/V_norms inv_V_norms[iso_index] = 1 # this should work but indexing may be different here V_normalized = np.matmul(np.diag(inv_V_norms), V) if k == 0: B = np.nansum(A_new) + 0.01 partial_d = np.nansum(A_new, axis = 0) partial_gd = B phi = [0] * n B_g = partial_gd phi = partial_d/B_g B = B/p_sample P_hat = ((np.array([B] * (n*n)).reshape(n,n) * phi).T * phi).T np.fill_diagonal(P_hat,0) dc_block_sq_err[k] = np.sum((pb - A[Omega])**2) P_hat_Omega = P_hat[Omega] A_Omega = A[Omega] P_hat_Omega[P_hat_Omega < 1e-6] = 1e-6 P_hat_Omega[P_hat_Omega > (1-1e-6)] = 1-1e-6 dc_loglike[k] = -np.sum(A_Omega * np.log(P_hat_Omega)) - np.sum((1 - A_Omega)*np.log(1-P_hat_Omega)) else: km = KMeans(n_clusters = k + 1, max_iter = 30).fit(V_normalized) B = np.zeros((k+1,k+1)) Theta = np.zeros((n, k+1)) for i in range(k+1): for j in range(k+1): N_i = np.where(km.labels_ == i) N_j = np.where(km.labels_ == j) B[i,j] = (np.nansum(A_new[N_i[0][:, None], N_j[0][None, :]]) + 0.01) Theta[N_i,i] = 1 partial_d = np.nansum(A_new, axis = 0) partial_gd = np.sum(B, axis = 0) phi = [0] * n B_g = np.matmul(Theta, partial_gd) phi = partial_d/B_g B = B/p_sample tmp_int_mat = Theta * phi[:, None] preP_hat = np.matmul(tmp_int_mat, B) P_hat = np.matmul(preP_hat, tmp_int_mat.T) np.fill_diagonal(P_hat,0) dc_block_sq_err[k] = np.sum((P_hat[Omega]-A[Omega])**2) P_hat_Omega = P_hat[Omega] A_Omega = A[Omega] P_hat_Omega[P_hat_Omega < 1e-6] = 1e-6 P_hat_Omega[P_hat_Omega > (1-1e-6)] = 1-1e-6 dc_loglike[k] = -np.sum(A_Omega * np.log(P_hat_Omega)) - np.sum((1 - A_Omega)*np.log(1-P_hat_Omega)) stop = timeit.default_timer() print('Time: ', stop - start) dic = {} dic["impute_sq_err"] = impute_sq_err dic["block_sq_err"] = block_sq_err dic["loglike"] = loglike dic["roc_auc"] = roc_auc dic["no_edge"] = no_edge dic["dc_block_sq_err"] = dc_block_sq_err dic["dc_loglike"] = dc_loglike dic["bin_dev"] = bin_dev return dic def my_lapply(lst): dic = {} j = 0 for i in lst: dic[j] = holdout_evaluation_fast_all(i, max_K = max_K, A = A, p_sample = 1 - holdout_p) j += 1 return dic result = my_lapply(holdout_index_list) dc_block_err_mat = np.zeros((B, max_K)) dc_loglike_mat = np.zeros((B, max_K)) bin_dev_mat = np.zeros((B, max_K)) roc_auc_mat = np.zeros((B, max_K)) impute_err_mat = np.zeros((B, max_K)) block_err_mat = np.zeros((B, max_K)) loglike_mat = np.zeros((B, max_K)) no_edge_seq = [0] * B for b in range(0,B): impute_err_mat[b,] = result[b]["impute_sq_err"] block_err_mat[b,] = result[b]["block_sq_err"] loglike_mat[b,] = result[b]["loglike"] roc_auc_mat[b,] = result[b]["roc_auc"] bin_dev_mat[b,] = result[b]["bin_dev"] no_edge_seq[b] = result[b]["no_edge"] dc_block_err_mat[b,] = result[b]["dc_block_sq_err"] dc_loglike_mat[b,] = result[b]["dc_loglike"] output = {} output["impute_err"] = np.mean(impute_err_mat,axis = 0) output["l2"] = np.mean(block_err_mat, axis = 0) output["dev"] = np.sum(loglike_mat, axis = 0) output["auc"] = np.mean(roc_auc_mat, axis = 0) output["dc_l2"] = np.mean(dc_block_err_mat, axis = 0) output["dc_dev"] = np.sum(dc_loglike_mat, axis = 0) output["sse"] = np.mean(impute_err_mat, axis = 0) output["auc_mat"] = roc_auc_mat output["dev_mat"] = loglike_mat output["l2_mat"] = block_err_mat output["SSE_mat"] = impute_err_mat output["dc_dev_mat"] = dc_loglike_mat output["dc_l2_mat"] = dc_block_err_mat if np.min(output["dev"]) > np.min(output["dc_dev"]): #?? should i change it to 1-6 or leave index as 0-5? dev_model = "DCSBM-" + str(list(output["dc_dev"]).index(min(list(output["dc_dev"])))) else: dev_model = "SBM-" + str(list(output["dev"]).index(min(list(output["dev"])))) if
np.min(output["l2"])
numpy.min
import numpy as np import matplotlib.pyplot as plt import itertools import time import os from numpy.fft import fft, ifft, fft2, ifft2, fftn, ifftn, fftshift, ifftshift from IPython import display from scipy.ndimage import uniform_filter from concurrent.futures import ProcessPoolExecutor from .util import * from .optics import * from .background_estimator import * def intensity_mapping(img_stack): img_stack_out = np.zeros_like(img_stack) img_stack_out[0] = img_stack[0].copy() img_stack_out[1] = img_stack[4].copy() img_stack_out[2] = img_stack[3].copy() img_stack_out[3] = img_stack[1].copy() img_stack_out[4] = img_stack[2].copy() return img_stack_out def instrument_matrix_and_source_calibration(I_cali_mean, handedness = 'RCP'): _, N_cali = I_cali_mean.shape # Source intensity I_tot = np.sum(I_cali_mean,axis=0) # Calibration matrix theta = np.r_[0:N_cali]/N_cali*2*np.pi C_matrix = np.array([np.ones((N_cali,)), np.cos(2*theta), np.sin(2*theta)]) # offset calibration I_cali_norm = I_cali_mean/I_tot offset_est = np.transpose(np.linalg.pinv(C_matrix.transpose()).dot(np.transpose(I_cali_norm[0,:]))) alpha = np.arctan2(-offset_est[2], offset_est[1])/2 # Source calibration C_matrix_offset = np.array([np.ones((N_cali,)), np.cos(2*(theta+alpha)), np.sin(2*(theta+alpha))]) S_source = np.linalg.pinv(C_matrix_offset.transpose()).dot(I_tot[:,np.newaxis]) S_source_norm = S_source/S_source[0] Ax = np.sqrt((S_source_norm[0]+S_source_norm[1])/2) Ay = np.sqrt((S_source_norm[0]-S_source_norm[1])/2) del_phi = np.arccos(S_source_norm[2]/2/Ax/Ay) if handedness == 'RCP': E_in = np.array([Ax, Ay*np.exp(1j*del_phi)]) elif handedness == 'LCP': E_in = np.array([Ax, Ay*np.exp(-1j*del_phi)]) else: raise TypeError("handedness type must be 'LCP' or 'RCP'") # Instrument matrix calibration A_matrix = np.transpose(np.linalg.pinv(C_matrix_offset.transpose()).dot(np.transpose(I_cali_norm))) theta_fine = np.r_[0:360]/360*2*np.pi C_matrix_offset_fine = np.array([np.ones((360,)), np.cos(2*(theta_fine+alpha)), np.sin(2*(theta_fine+alpha))]) print('Calibrated source field:\n' + str(np.round(E_in,4))) print('Calibrated instrument matrix:\n' + str(np.round(A_matrix,4))) fig,ax = plt.subplots(2,2,figsize=(20,20)) ax[0,0].plot(theta/np.pi*180,np.transpose(I_cali_mean)) ax[0,0].legend(['$I_0$', '$I_{45}$', '$I_{90}$', '$I_{135}$']) ax[0,0].set_title('Calibration curve without normalization') ax[0,0].set_xlabel('Orientation of LP (deg)') ax[0,0].set_ylabel('Raw intensity') ax[0,1].plot(theta/np.pi*180,I_tot) ax[0,1].plot(theta_fine/np.pi*180,np.transpose(C_matrix_offset_fine).dot(S_source)) ax[0,1].legend(['Mean source intensity', 'Fitted source intensity']) ax[0,1].set_title('Source calibration curve') ax[0,1].set_xlabel('Orientation of LP (deg)') ax[0,1].set_ylabel('Mean intensity from 4 linear channels') ax[1,0].plot(theta/np.pi*180,np.transpose(I_cali_mean/I_tot)) ax[1,0].legend(['$I_0$', '$I_{45}$', '$I_{90}$', '$I_{135}$']) ax[1,0].set_title('Normalized calibration curve') ax[1,0].set_xlabel('Orientation of LP (deg)') ax[1,0].set_ylabel('Normalized intensity') ax[1,1].plot(theta/np.pi*180,np.transpose(I_cali_norm)) ax[1,1].plot(theta_fine/np.pi*180,np.transpose(A_matrix.dot(C_matrix_offset_fine))) ax[1,1].legend(['$I_0$', '$I_{45}$', '$I_{90}$', '$I_{135}$']) ax[1,1].set_xlabel('Orientation of LP (deg)') ax[1,1].set_ylabel('Normalized intensity') ax[1,1].set_title('Fitted calibration curves') return E_in, A_matrix, np.transpose(A_matrix.dot(C_matrix_offset_fine)) def instrument_matrix_calibration(I_cali_norm, I_meas): _, N_cali = I_cali_norm.shape theta = np.r_[0:N_cali]/N_cali*2*np.pi S_matrix = np.array([np.ones((N_cali,)), np.cos(2*theta), np.sin(2*theta)]) A_matrix = np.transpose(np.linalg.pinv(S_matrix.transpose()).dot(np.transpose(I_cali_norm))) if I_meas.ndim == 3: I_mean = np.mean(I_meas,axis=(1,2)) elif I_meas.ndim == 4: I_mean = np.mean(I_meas,axis=(1,2,3)) I_tot = np.sum(I_mean) A_matrix_S3 = I_mean/I_tot-A_matrix[:,0] I_corr = (I_tot/4)*(A_matrix_S3)/np.mean(A_matrix[:,0]) print('Calibrated instrument matrix:\n' + str(np.round(A_matrix,4))) print('Last column of instrument matrix:\n' + str(np.round(A_matrix_S3.reshape((4,1)),4))) plt.plot(np.transpose(I_cali_norm)) plt.plot(np.transpose(A_matrix.dot(S_matrix))) plt.xlabel('Orientation of LP (deg)') plt.ylabel('Normalized intensity') plt.title('Fitted calibration curves') plt.legend(['$I_0$', '$I_{45}$', '$I_{90}$', '$I_{135}$']) return A_matrix, I_corr class waveorder_microscopy: ''' waveorder_microscopy contains methods to compute weak object transfer function for label-free image reconstruction with various types of dataset: 1) 2D/3D phase reconstruction with a single brightfield defocused stack (Transport of intensity, TIE) 2) 2D/3D phase reconstruction with intensities of asymetric illumination (differential phase contrast, DPC) 3) 2D/3D joint phase and polarization (2D orientation) reconstruction with brightfield-illuminated polarization-sensitive intensities (QLIPP) 4) 2D/3D joint phase and polarization (uniaxial permittivity tensor) reconstruction with asymmetrically-illuminated polarization-sensitive intensities (uPTI) Parameters ---------- img_dim : tuple shape of the computed 2D space with size of (N, M) lambda_illu : float wavelength of the incident light ps : float xy pixel size of the image space psz : float z step size of the image space NA_obj : float numerical aperture of the detection objective NA_illu : float numerical aperture of the illumination condenser z_defocus : numpy.ndarray 1D array of defocused z position corresponds to the intensity stack (matters for 2D reconstruction, the direction positive z matters for 3D reconstruction) chi : float swing of the illumination or detection polarization state (in radian) n_media : float refractive index of the immersing media cali : bool 'True' for the orientation convention of QLIPP data, 'False' for the orientation convention of uPTI data bg_option : str 'local' for estimating background with scipy uniform filter 'local_fit' for estimating background with polynomial fit other string for normal background subtraction with the provided background A_matrix : numpy.ndarray self-provided instrument matrix converting polarization-sensitive intensity images into Stokes parameters with shape of (N_channel, N_Stokes) If None is provided, the instrument matrix is determined by the QLIPP convention with swing specify by chi QLIPP_birefringence_only : bool 'True' to skip pre-processing functions for phase/uPTI reconstruction 'False' to continue with pre-processing functions for phase/uPTI reconstruction bire_in_plane_deconv : str string contains the dimension of 2D birefringence deconvolution '2D' for 2D deconvolution of 2D birefringence '3D' for 3D deconvolution of 2D birefringence inc_recon : str option for constructing settings for 3D orientation reconstruction '2D-vec-WOTF' for 2D diffractive reconstruction of 3D anisotropy '3D' for 3D for diffractive reconstruction of 3D anisotropy phase_deconv : str string contains the phase reconstruction dimension '2D' for 2D phase deconvolution '3D' for 3D phase deconvolution ph_deconv_layer : int number of layers included for each layer of semi-3D phase reconstruction illu_mode : str string to set the pattern of illumination source 'BF' for brightfield illumination with source pattern specified by NA_illu 'PH' for phase contrast illumination with the source pattern specify by NA_illu and NA_illu_in 'Arbitrary' for self-defined source pattern of dimension (N_pattern, N, M) NA_illu_in : flaot numerical aperture of the inner circle for phase contrast ring illumination Source : numpy.ndarray illumination source pattern with dimension of (N_pattern, N, M) Source_PolState : numpy.ndarray illumination polarization states (Ex, Ey) for each illumination pattern with dimension of (N_pattern, 2) If provided with size of (2,), a single state is used for all illumination patterns pad_z : int number of z-layers to pad (reflection boundary condition) for 3D deconvolution use_gpu : bool option to use gpu or not gpu_id : int number refering to which gpu will be used ''' def __init__(self, img_dim, lambda_illu, ps, NA_obj, NA_illu, z_defocus, chi=None,\ n_media=1, cali=False, bg_option='global', A_matrix=None, QLIPP_birefringence_only = False, bire_in_plane_deconv=None, inc_recon=None, phase_deconv=None, ph_deconv_layer = 5, illu_mode='BF', NA_illu_in=None, Source=None, Source_PolState=np.array([1, 1j]), pad_z=0, use_gpu=False, gpu_id=0): ''' initialize the system parameters for phase and orders microscopy ''' t0 = time.time() # GPU/CPU self.use_gpu = use_gpu self.gpu_id = gpu_id if self.use_gpu: globals()['cp'] = __import__("cupy") cp.cuda.Device(self.gpu_id).use() # Basic parameter self.N, self.M = img_dim self.n_media = n_media self.lambda_illu = lambda_illu/n_media self.ps = ps self.z_defocus = z_defocus.copy() if len(z_defocus) >= 2: self.psz = np.abs(z_defocus[0] - z_defocus[1]) self.G_tensor_z_upsampling = np.ceil(self.psz/(self.lambda_illu/2)) self.pad_z = pad_z self.NA_obj = NA_obj/n_media self.NA_illu = NA_illu/n_media self.N_defocus = len(z_defocus) self.N_defocus_3D = self.N_defocus + 2*self.pad_z self.chi = chi self.cali = cali self.bg_option = bg_option self.phase_deconv = phase_deconv if QLIPP_birefringence_only == False: # setup microscocpe variables self.xx, self.yy, self.fxx, self.fyy = gen_coordinate((self.N, self.M), ps) self.Pupil_obj = gen_Pupil(self.fxx, self.fyy, self.NA_obj, self.lambda_illu) self.Pupil_support = self.Pupil_obj.copy() # illumination setup self.illumination_setup(illu_mode, NA_illu_in, Source, Source_PolState) # Defocus kernel initialization self.Hz_det_setup(self.phase_deconv, ph_deconv_layer, bire_in_plane_deconv, inc_recon) # select either 2D or 3D model for phase deconvolution self.phase_deconv_setup(self.phase_deconv) # instrument matrix for polarization detection self.instrument_matrix_setup(A_matrix) # select either 2D or 3D model for 2D birefringence deconvolution self.bire_in_plane_deconv_setup(bire_in_plane_deconv) # inclination reconstruction model selection self.inclination_recon_setup(inc_recon) else: # instrument matrix for polarization detection self.instrument_matrix_setup(A_matrix) ############## constructor function group ############## def illumination_setup(self, illu_mode, NA_illu_in, Source, Source_PolState): ''' setup illumination source function for transfer function computing Parameters ---------- illu_mode : str string to set the pattern of illumination source 'BF' for brightfield illumination with source pattern specified by NA_illu 'PH' for phase contrast illumination with the source pattern specify by NA_illu and NA_illu_in 'Arbitrary' for self-defined source pattern of dimension (N_pattern, N, M) NA_illu_in : flaot numerical aperture of the inner circle for phase contrast ring illumination Source : numpy.ndarray illumination source pattern with dimension of (N_pattern, N, M) Source_PolState : numpy.ndarray illumination polarization states (Ex, Ey) for each illumination pattern with dimension of (N_pattern, 2) ''' if illu_mode == 'BF': self.Source = gen_Pupil(self.fxx, self.fyy, self.NA_illu, self.lambda_illu) self.N_pattern = 1 elif illu_mode == 'PH': if NA_illu_in == None: raise('No inner rim NA specified in the PH illumination mode') else: self.NA_illu_in = NA_illu_in/self.n_media inner_pupil = gen_Pupil(self.fxx, self.fyy, self.NA_illu_in/self.n_media, self.lambda_illu) self.Source = gen_Pupil(self.fxx, self.fyy, self.NA_illu, self.lambda_illu) self.Source -= inner_pupil Pupil_ring_out = gen_Pupil(self.fxx, self.fyy, self.NA_illu/self.n_media, self.lambda_illu) Pupil_ring_in = gen_Pupil(self.fxx, self.fyy, self.NA_illu_in/self.n_media, self.lambda_illu) self.Pupil_obj = self.Pupil_obj*np.exp((Pupil_ring_out-Pupil_ring_in)*(np.log(0.7)-1j*(np.pi/2 - 0.0*np.pi))) self.N_pattern = 1 elif illu_mode == 'Arbitrary': self.Source = Source.copy() if Source.ndim == 2: self.N_pattern = 1 else: self.N_pattern = len(Source) self.Source_PolState = np.zeros((self.N_pattern, 2), complex) if Source_PolState.ndim == 1: for i in range(self.N_pattern): self.Source_PolState[i] = Source_PolState/(np.sum(np.abs(Source_PolState)**2))**(1/2) else: if len(Source_PolState) != self.N_pattern: raise('The length of Source_PolState needs to be either 1 or the same as N_pattern') for i in range(self.N_pattern): self.Source_PolState[i] = Source_PolState[i]/(np.sum(np.abs(Source_PolState[i])**2))**(1/2) def Hz_det_setup(self, phase_deconv, ph_deconv_layer, bire_in_plane_deconv, inc_recon): ''' setup defocus kernels for deconvolution with the corresponding dimensions Parameters ---------- phase_deconv : str string contains the dimension of the phase reconstruction '2D' for 2D phase deconvolution '3D' for 3D phase deconvolution ph_deconv_layer : int number of layers included for each layer of semi-3D phase reconstruction bire_in_plane_deconv : str string contains the dimension of 2D birefringence deconvolution '2D' for 2D deconvolution of 2D birefringence '3D' for 3D deconvolution of 2D birefringence inc_recon : str option for constructing settings for 3D orientation reconstruction '2D-geometric' for 2D non-diffractive reconstruction of 3D anisotropy '2D-vec-WOTF' for 2D diffractive reconstruction of 3D anisotropy '3D' for 3D for diffractive reconstruction of 3D anisotropy ''' if phase_deconv == '2D' or bire_in_plane_deconv == '2D' or inc_recon == '2D-vec-WOTF': # generate defocus kernel based on Pupil function and z_defocus self.Hz_det_2D = gen_Hz_stack(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, self.z_defocus) if phase_deconv == 'semi-3D': self.ph_deconv_layer = ph_deconv_layer if self.z_defocus[0] - self.z_defocus[1] >0: z_deconv = -(np.r_[:self.ph_deconv_layer]-self.ph_deconv_layer//2)*self.psz else: z_deconv = (np.r_[:self.ph_deconv_layer]-self.ph_deconv_layer//2)*self.psz self.Hz_det_semi_3D = gen_Hz_stack(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, z_deconv) self.G_fun_z_semi_3D = gen_Greens_function_z(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, z_deconv) if phase_deconv == '3D' or bire_in_plane_deconv == '3D' or inc_recon == '3D': # generate defocus kernel and Green's function if self.z_defocus[0] - self.z_defocus[1] >0: z = -ifftshift((np.r_[0:self.N_defocus_3D]-self.N_defocus_3D//2)*self.psz) else: z = ifftshift((np.r_[0:self.N_defocus_3D]-self.N_defocus_3D//2)*self.psz) self.Hz_det_3D = gen_Hz_stack(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, z) self.G_fun_z_3D = gen_Greens_function_z(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, z) def phase_deconv_setup(self, phase_deconv): ''' setup transfer functions for phase deconvolution with the corresponding dimensions Parameters ---------- phase_deconv : str string contains the dimension of the phase reconstruction '2D' for 2D phase deconvolution '3D' for 3D phase deconvolution ph_deconv_layer : int number of layers included for each layer of semi-3D phase reconstruction ''' if phase_deconv == '2D': # compute 2D phase transfer function self.gen_WOTF() elif phase_deconv == 'semi-3D': self.gen_semi_3D_WOTF() elif phase_deconv == '3D': # compute 3D phase transfer function self.gen_3D_WOTF() def bire_in_plane_deconv_setup(self, bire_in_plane_deconv): ''' setup transfer functions for 2D birefringence deconvolution with the corresponding dimensions Parameters ---------- bire_in_plane_deconv : str string contains the dimension of 2D birefringence deconvolution '2D' for 2D deconvolution of 2D birefringence '3D' for 3D deconvolution of 2D birefringence ''' if bire_in_plane_deconv == '2D': # generate 2D vectorial transfer function for 2D birefringence deconvolution in 2D space self.gen_2D_vec_WOTF(False) elif bire_in_plane_deconv == '3D': # generate 3D vectorial transfer function for 2D birefringence deconvolution in 3D space self.gen_3D_vec_WOTF(False) def inclination_recon_setup(self, inc_recon): ''' setup transfer functions for uPTI reconstruction Parameters ---------- phase_deconv : str string contains the phase reconstruction dimension '2D' for 2D phase deconvolution '3D' for 3D phase deconvolution inc_recon : str option for constructing settings for 3D orientation reconstruction '2D-geometric' for 2D non-diffractive reconstruction of 3D anisotropy '2D-vec-WOTF' for 2D diffractive reconstruction of 3D anisotropy '3D' for 3D for diffractive reconstruction of 3D anisotropy ''' if inc_recon is not None and inc_recon != '3D': if inc_recon == '2D-geometric': wave_vec_norm_x = self.lambda_illu*self.fxx wave_vec_norm_y = self.lambda_illu*self.fyy wave_vec_norm_z = (np.maximum(0,1 - wave_vec_norm_x**2 - wave_vec_norm_y**2))**(0.5) incident_theta = np.arctan2((wave_vec_norm_x**2 + wave_vec_norm_y**2)**(0.5), wave_vec_norm_z) incident_phi = np.arctan2(wave_vec_norm_y,wave_vec_norm_x) self.geometric_inc_matrix, self.geometric_inc_matrix_inv = gen_geometric_inc_matrix(incident_theta, incident_phi, self.Source) elif inc_recon == '2D-vec-WOTF': # generate 2D vectorial transfer function for 2D uPTI self.gen_2D_vec_WOTF(True) # compute the AHA matrix for later 2D inversion self.inc_AHA_2D_vec = np.zeros((7,7,self.N,self.M),complex) for i,j,p in itertools.product(range(7), range(7), range(self.N_Stokes)): self.inc_AHA_2D_vec[i,j] += np.sum(np.conj(self.H_dyadic_2D_OTF[p,i])*self.H_dyadic_2D_OTF[p,j],axis=2) elif inc_recon == '3D': # generate 3D vectorial transfer function for 3D uPTI self.gen_3D_vec_WOTF(True) self.inc_AHA_3D_vec = np.zeros((7,7,self.N,self.M,self.N_defocus_3D), dtype='complex64') # compute the AHA matrix for later 3D inversion for i,j,p in itertools.product(range(7), range(7), range(self.N_Stokes)): self.inc_AHA_3D_vec[i,j] += np.sum(np.conj(self.H_dyadic_OTF[p,i])*self.H_dyadic_OTF[p,j],axis=0) def instrument_matrix_setup(self, A_matrix): ''' setup instrument matrix Parameters ---------- A_matrix : numpy.ndarray self-provided instrument matrix converting polarization-sensitive intensity images into Stokes parameters with shape of (N_channel, N_Stokes) If None is provided, the instrument matrix is determined by the QLIPP convention with swing specify by chi ''' if A_matrix is None: self.N_channel = 5 self.N_Stokes = 4 self.A_matrix = 0.5*np.array([[1,0,0,-1], \ [1, np.sin(self.chi), 0, -np.cos(self.chi)], \ [1, 0, np.sin(self.chi), -np.cos(self.chi)], \ [1, -np.sin(self.chi), 0, -np.cos(self.chi)], \ [1, 0, -np.sin(self.chi), -np.cos(self.chi)]]) else: self.N_channel = A_matrix.shape[0] self.N_Stokes = A_matrix.shape[1] self.A_matrix = A_matrix.copy() ############## constructor asisting function group ############## def gen_WOTF(self): ''' generate 2D phase transfer functions ''' self.Hu = np.zeros((self.N, self.M, self.N_defocus*self.N_pattern),complex) self.Hp = np.zeros((self.N, self.M, self.N_defocus*self.N_pattern),complex) if self.N_pattern == 1: for i in range(self.N_defocus): self.Hu[:,:,i], self.Hp[:,:,i] = WOTF_2D_compute(self.Source, self.Pupil_obj * self.Hz_det_2D[:,:,i], \ use_gpu=self.use_gpu, gpu_id=self.gpu_id) else: for i,j in itertools.product(range(self.N_defocus), range(self.N_pattern)): idx = i*self.N_pattern+j self.Hu[:,:,idx], self.Hp[:,:,idx] = WOTF_2D_compute(self.Source[j], self.Pupil_obj * self.Hz_det_2D[:,:,i], \ use_gpu=self.use_gpu, gpu_id=self.gpu_id) def gen_semi_3D_WOTF(self): ''' generate semi-3D phase transfer functions ''' self.Hu = np.zeros((self.N, self.M, self.ph_deconv_layer*self.N_pattern),complex) self.Hp = np.zeros((self.N, self.M, self.ph_deconv_layer*self.N_pattern),complex) for i,j in itertools.product(range(self.ph_deconv_layer), range(self.N_pattern)): if self.N_pattern == 1: Source_current = self.Source.copy() else: Source_current = self.Source[j].copy() idx = i*self.N_pattern+j self.Hu[:,:,idx], self.Hp[:,:,idx] = WOTF_semi_3D_compute(Source_current, Source_current, self.Pupil_obj, self.Hz_det_semi_3D[:,:,i], \ self.G_fun_z_semi_3D[:,:,i]*4*np.pi*1j/self.lambda_illu, \ use_gpu=self.use_gpu, gpu_id=self.gpu_id) def gen_3D_WOTF(self): ''' generate 3D phase transfer functions ''' self.H_re = np.zeros((self.N_pattern, self.N, self.M, self.N_defocus_3D),dtype='complex64') self.H_im = np.zeros((self.N_pattern, self.N, self.M, self.N_defocus_3D),dtype='complex64') for i in range(self.N_pattern): if self.N_pattern == 1: Source_current = self.Source.copy() else: Source_current = self.Source[i].copy() self.H_re[i], self.H_im[i] = WOTF_3D_compute(Source_current.astype('float32'), Source_current.astype('float32'), self.Pupil_obj.astype('complex64'), \ self.Hz_det_3D.astype('complex64'), self.G_fun_z_3D.astype('complex64'), self.psz,\ use_gpu=self.use_gpu, gpu_id=self.gpu_id) self.H_re = np.squeeze(self.H_re) self.H_im = np.squeeze(self.H_im) def gen_2D_vec_WOTF(self, inc_option): ''' generate 2D vectorial transfer functions for 2D QUTIPP ''' if inc_option == True: self.H_dyadic_2D_OTF = np.zeros((self.N_Stokes, 7, self.N, self.M, self.N_defocus*self.N_pattern),dtype='complex64') else: self.H_dyadic_2D_OTF_in_plane = np.zeros((2, 2, self.N, self.M, self.N_defocus*self.N_pattern),dtype='complex64') # angle-dependent electric field components due to focusing effect fr = (self.fxx**2 + self.fyy**2)**(0.5) cos_factor = (1-(self.lambda_illu**2)*(fr**2)*self.Pupil_support)**(0.5)*self.Pupil_support dc_idx = (fr==0) nondc_idx = (fr!=0) E_field_factor = np.zeros((5, self.N, self.M)) E_field_factor[0, nondc_idx] = ((self.fxx[nondc_idx]**2)*cos_factor[nondc_idx]+ self.fyy[nondc_idx]**2) / fr[nondc_idx]**2 E_field_factor[0, dc_idx] = 1 E_field_factor[1, nondc_idx] = (self.fxx[nondc_idx]*self.fyy[nondc_idx] * (cos_factor[nondc_idx]-1)) / fr[nondc_idx]**2 E_field_factor[2, nondc_idx] = ((self.fyy[nondc_idx]**2)*cos_factor[nondc_idx] + self.fxx[nondc_idx]**2) / fr[nondc_idx]**2 E_field_factor[2, dc_idx] = 1 E_field_factor[3, nondc_idx] = -self.lambda_illu*self.fxx[nondc_idx] E_field_factor[4, nondc_idx] = -self.lambda_illu*self.fyy[nondc_idx] # generate dyadic Green's tensor G_fun_z = gen_Greens_function_z(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, self.z_defocus) G_tensor_z = gen_dyadic_Greens_tensor_z(self.fxx, self.fyy, G_fun_z, self.Pupil_support, self.lambda_illu) # compute transfer functions OTF_compute = lambda x, y, z, w: WOTF_semi_3D_compute(x, y, self.Pupil_obj, w, \ z, use_gpu=self.use_gpu, gpu_id=self.gpu_id) for i,j in itertools.product(range(self.N_defocus), range(self.N_pattern)): if self.N_pattern == 1: Source_current = self.Source.copy() else: Source_current = self.Source[j].copy() idx = i*self.N_pattern+j # focusing electric field components Ex_field = self.Source_PolState[j,0]*E_field_factor[0] + self.Source_PolState[j,1]*E_field_factor[1] Ey_field = self.Source_PolState[j,0]*E_field_factor[1] + self.Source_PolState[j,1]*E_field_factor[2] Ez_field = self.Source_PolState[j,0]*E_field_factor[3] + self.Source_PolState[j,1]*E_field_factor[4] IF_ExEx = np.abs(Ex_field)**2 IF_ExEy = Ex_field * np.conj(Ey_field) IF_ExEz = Ex_field * np.conj(Ez_field) IF_EyEy = np.abs(Ey_field)**2 IF_EyEz = Ey_field * np.conj(Ez_field) Source_norm = Source_current*(IF_ExEx + IF_EyEy) # intermediate transfer functions ExEx_Gxx_re, ExEx_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[0,0,:,:,i], self.Hz_det_2D[:,:,i]) # ExEy_Gxy_re, ExEy_Gxy_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[0,1,:,:,i], self.Hz_det_2D[:,:,i]) # EyEx_Gyx_re, EyEx_Gyx_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[0,1,:,:,i], self.Hz_det_2D[:,:,i]) # EyEy_Gyy_re, EyEy_Gyy_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[1,1,:,:,i], self.Hz_det_2D[:,:,i]) # ExEx_Gxy_re, ExEx_Gxy_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[0,1,:,:,i], self.Hz_det_2D[:,:,i]) # ExEy_Gxx_re, ExEy_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[0,0,:,:,i], self.Hz_det_2D[:,:,i]) # EyEx_Gyy_re, EyEx_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[1,1,:,:,i], self.Hz_det_2D[:,:,i]) # EyEy_Gyx_re, EyEy_Gyx_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[0,1,:,:,i], self.Hz_det_2D[:,:,i]) # ExEx_Gyy_re, ExEx_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[1,1,:,:,i], self.Hz_det_2D[:,:,i]) # EyEy_Gxx_re, EyEy_Gxx_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[0,0,:,:,i], self.Hz_det_2D[:,:,i]) # EyEx_Gxx_re, EyEx_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[0,0,:,:,i], self.Hz_det_2D[:,:,i]) # ExEy_Gyy_re, ExEy_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[1,1,:,:,i], self.Hz_det_2D[:,:,i]) # if inc_option == True: ExEz_Gxz_re, ExEz_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[0,2,:,:,i], self.Hz_det_2D[:,:,i]) EyEz_Gyz_re, EyEz_Gyz_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[1,2,:,:,i], self.Hz_det_2D[:,:,i]) ExEx_Gxz_re, ExEx_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[0,2,:,:,i], self.Hz_det_2D[:,:,i]) ExEz_Gxx_re, ExEz_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[0,0,:,:,i], self.Hz_det_2D[:,:,i]) EyEx_Gyz_re, EyEx_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[1,2,:,:,i], self.Hz_det_2D[:,:,i]) EyEz_Gyx_re, EyEz_Gyx_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[0,1,:,:,i], self.Hz_det_2D[:,:,i]) ExEy_Gxz_re, ExEy_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[0,2,:,:,i], self.Hz_det_2D[:,:,i]) ExEz_Gxy_re, ExEz_Gxy_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[0,1,:,:,i], self.Hz_det_2D[:,:,i]) EyEy_Gyz_re, EyEy_Gyz_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[1,2,:,:,i], self.Hz_det_2D[:,:,i]) EyEz_Gyy_re, EyEz_Gyy_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[1,1,:,:,i], self.Hz_det_2D[:,:,i]) ExEz_Gyz_re, ExEz_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[1,2,:,:,i], self.Hz_det_2D[:,:,i]) EyEz_Gxz_re, EyEz_Gxz_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[0,2,:,:,i], self.Hz_det_2D[:,:,i]) EyEx_Gxz_re, EyEx_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[0,2,:,:,i], self.Hz_det_2D[:,:,i]) EyEz_Gxx_re, EyEz_Gxx_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[0,0,:,:,i], self.Hz_det_2D[:,:,i]) ExEy_Gyz_re, ExEy_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[1,2,:,:,i], self.Hz_det_2D[:,:,i]) ExEz_Gyy_re, ExEz_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[1,1,:,:,i], self.Hz_det_2D[:,:,i]) EyEy_Gxz_re, EyEy_Gxz_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[0,2,:,:,i], self.Hz_det_2D[:,:,i]) ExEx_Gyz_re, ExEx_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[1,2,:,:,i], self.Hz_det_2D[:,:,i]) # 2D vectorial transfer functions self.H_dyadic_2D_OTF[0,0,:,:,idx] = ExEx_Gxx_re + ExEy_Gxy_re + ExEz_Gxz_re + EyEx_Gyx_re + EyEy_Gyy_re + EyEz_Gyz_re self.H_dyadic_2D_OTF[0,1,:,:,idx] = ExEx_Gxx_im + ExEy_Gxy_im + ExEz_Gxz_im + EyEx_Gyx_im + EyEy_Gyy_im + EyEz_Gyz_im self.H_dyadic_2D_OTF[0,2,:,:,idx] = ExEx_Gxx_re - ExEy_Gxy_re + EyEx_Gyx_re - EyEy_Gyy_re self.H_dyadic_2D_OTF[0,3,:,:,idx] = ExEx_Gxy_re + ExEy_Gxx_re + EyEx_Gyy_re + EyEy_Gyx_re self.H_dyadic_2D_OTF[0,4,:,:,idx] = ExEx_Gxz_re + ExEz_Gxx_re + EyEx_Gyz_re + EyEz_Gyx_re self.H_dyadic_2D_OTF[0,5,:,:,idx] = ExEy_Gxz_re + ExEz_Gxy_re + EyEy_Gyz_re + EyEz_Gyy_re self.H_dyadic_2D_OTF[0,6,:,:,idx] = ExEz_Gxz_re + EyEz_Gyz_re self.H_dyadic_2D_OTF[1,0,:,:,idx] = ExEx_Gxx_re + ExEy_Gxy_re + ExEz_Gxz_re - EyEx_Gyx_re - EyEy_Gyy_re - EyEz_Gyz_re self.H_dyadic_2D_OTF[1,1,:,:,idx] = ExEx_Gxx_im + ExEy_Gxy_im + ExEz_Gxz_im - EyEx_Gyx_im - EyEy_Gyy_im - EyEz_Gyz_im self.H_dyadic_2D_OTF[1,2,:,:,idx] = ExEx_Gxx_re - ExEy_Gxy_re - EyEx_Gyx_re + EyEy_Gyy_re self.H_dyadic_2D_OTF[1,3,:,:,idx] = ExEx_Gxy_re + ExEy_Gxx_re - EyEx_Gyy_re - EyEy_Gyx_re self.H_dyadic_2D_OTF[1,4,:,:,idx] = ExEx_Gxz_re + ExEz_Gxx_re - EyEx_Gyz_re - EyEz_Gyx_re self.H_dyadic_2D_OTF[1,5,:,:,idx] = ExEy_Gxz_re + ExEz_Gxy_re - EyEy_Gyz_re - EyEz_Gyy_re self.H_dyadic_2D_OTF[1,6,:,:,idx] = ExEz_Gxz_re - EyEz_Gyz_re self.H_dyadic_2D_OTF[2,0,:,:,idx] = ExEx_Gxy_re + ExEy_Gyy_re + ExEz_Gyz_re + EyEx_Gxx_re + EyEy_Gyx_re + EyEz_Gxz_re self.H_dyadic_2D_OTF[2,1,:,:,idx] = ExEx_Gxy_im + ExEy_Gyy_im + ExEz_Gyz_im + EyEx_Gxx_im + EyEy_Gyx_im + EyEz_Gxz_im self.H_dyadic_2D_OTF[2,2,:,:,idx] = ExEx_Gxy_re - ExEy_Gyy_re + EyEx_Gxx_re - EyEy_Gyx_re self.H_dyadic_2D_OTF[2,3,:,:,idx] = ExEx_Gyy_re + ExEy_Gxy_re + EyEx_Gyx_re + EyEy_Gxx_re self.H_dyadic_2D_OTF[2,4,:,:,idx] = ExEx_Gyz_re + ExEz_Gxy_re + EyEx_Gxz_re + EyEz_Gxx_re self.H_dyadic_2D_OTF[2,5,:,:,idx] = ExEy_Gyz_re + ExEz_Gyy_re + EyEy_Gxz_re + EyEz_Gyx_re self.H_dyadic_2D_OTF[2,6,:,:,idx] = ExEz_Gyz_re + EyEz_Gxz_re # transfer functions for S3 if self.N_Stokes == 4: self.H_dyadic_2D_OTF[3,0,:,:,idx] = -ExEx_Gxy_im - ExEy_Gyy_im - ExEz_Gyz_im + EyEx_Gxx_im + EyEy_Gyx_im + EyEz_Gxz_im self.H_dyadic_2D_OTF[3,1,:,:,idx] = ExEx_Gxy_re + ExEy_Gyy_re + ExEz_Gyz_re - EyEx_Gxx_re - EyEy_Gyx_re - EyEz_Gxz_re self.H_dyadic_2D_OTF[3,2,:,:,idx] = -ExEx_Gxy_im + ExEy_Gyy_im + EyEx_Gxx_im - EyEy_Gyx_im self.H_dyadic_2D_OTF[3,3,:,:,idx] = -ExEx_Gyy_im - ExEy_Gxy_im + EyEx_Gyx_im + EyEy_Gxx_im self.H_dyadic_2D_OTF[3,4,:,:,idx] = -ExEx_Gyz_im - ExEz_Gxy_im + EyEx_Gxz_im + EyEz_Gxx_im self.H_dyadic_2D_OTF[3,5,:,:,idx] = -ExEy_Gyz_im - ExEz_Gyy_im + EyEy_Gxz_im + EyEz_Gyx_im self.H_dyadic_2D_OTF[3,6,:,:,idx] = -ExEz_Gyz_im + EyEz_Gxz_im else: self.H_dyadic_2D_OTF_in_plane[0,0,:,:,idx] = ExEx_Gxx_re - ExEy_Gxy_re - EyEx_Gyx_re + EyEy_Gyy_re self.H_dyadic_2D_OTF_in_plane[0,1,:,:,idx] = ExEx_Gxy_re + ExEy_Gxx_re - EyEx_Gyy_re - EyEy_Gyx_re self.H_dyadic_2D_OTF_in_plane[1,0,:,:,idx] = ExEx_Gxy_re - ExEy_Gyy_re + EyEx_Gxx_re - EyEy_Gyx_re self.H_dyadic_2D_OTF_in_plane[1,1,:,:,idx] = ExEx_Gyy_re + ExEy_Gxy_re + EyEx_Gyx_re + EyEy_Gxx_re def gen_3D_vec_WOTF(self, inc_option): ''' generate 3D vectorial transfer functions for 3D QUTIPP ''' if inc_option == True: self.H_dyadic_OTF = np.zeros((self.N_Stokes, 7, self.N_pattern, self.N, self.M, self.N_defocus_3D),dtype='complex64') else: self.H_dyadic_OTF_in_plane = np.zeros((2, 2, self.N_pattern, self.N, self.M, self.N_defocus_3D),dtype='complex64') # angle-dependent electric field components due to focusing effect fr = (self.fxx**2 + self.fyy**2)**(0.5) cos_factor = (1-(self.lambda_illu**2)*(fr**2)*self.Pupil_support)**(0.5)*self.Pupil_support dc_idx = (fr==0) nondc_idx = (fr!=0) E_field_factor = np.zeros((5, self.N, self.M)) E_field_factor[0, nondc_idx] = ((self.fxx[nondc_idx]**2)*cos_factor[nondc_idx]+ self.fyy[nondc_idx]**2) / fr[nondc_idx]**2 E_field_factor[0, dc_idx] = 1 E_field_factor[1, nondc_idx] = (self.fxx[nondc_idx]*self.fyy[nondc_idx] * (cos_factor[nondc_idx]-1)) / fr[nondc_idx]**2 E_field_factor[2, nondc_idx] = ((self.fyy[nondc_idx]**2)*cos_factor[nondc_idx] + self.fxx[nondc_idx]**2) / fr[nondc_idx]**2 E_field_factor[2, dc_idx] = 1 E_field_factor[3, nondc_idx] = -self.lambda_illu*self.fxx[nondc_idx] E_field_factor[4, nondc_idx] = -self.lambda_illu*self.fyy[nondc_idx] # generate dyadic Green's tensor N_defocus = self.G_tensor_z_upsampling*self.N_defocus_3D psz = self.psz/self.G_tensor_z_upsampling if self.z_defocus[0] - self.z_defocus[1] >0: z = -ifftshift((np.r_[0:N_defocus]-N_defocus//2)*psz) else: z = ifftshift((np.r_[0:N_defocus]-N_defocus//2)*psz) G_fun_z = gen_Greens_function_z(self.fxx, self.fyy, self.Pupil_support, self.lambda_illu, z) G_real = fftshift(ifft2(G_fun_z, axes=(0,1))/self.ps**2) G_tensor = gen_dyadic_Greens_tensor(G_real, self.ps, psz, self.lambda_illu, space='Fourier') G_tensor_z = (ifft(G_tensor, axis=4)/psz)[...,::np.int(self.G_tensor_z_upsampling)] # compute transfer functions OTF_compute = lambda x, y, z: WOTF_3D_compute(x.astype('float32'), y.astype('complex64'), self.Pupil_obj.astype('complex64'), self.Hz_det_3D.astype('complex64'), \ z.astype('complex64'), self.psz,\ use_gpu=self.use_gpu, gpu_id=self.gpu_id) for i in range(self.N_pattern): if self.N_pattern == 1: Source_current = self.Source.copy() else: Source_current = self.Source[i].copy() # focusing electric field components Ex_field = self.Source_PolState[i,0]*E_field_factor[0] + self.Source_PolState[i,1]*E_field_factor[1] Ey_field = self.Source_PolState[i,0]*E_field_factor[1] + self.Source_PolState[i,1]*E_field_factor[2] Ez_field = self.Source_PolState[i,0]*E_field_factor[3] + self.Source_PolState[i,1]*E_field_factor[4] IF_ExEx = np.abs(Ex_field)**2 IF_ExEy = Ex_field * np.conj(Ey_field) IF_ExEz = Ex_field * np.conj(Ez_field) IF_EyEy = np.abs(Ey_field)**2 IF_EyEz = Ey_field * np.conj(Ez_field) Source_norm = Source_current*(IF_ExEx + IF_EyEy) # intermediate transfer functions ExEx_Gxx_re, ExEx_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[0,0]) # ExEy_Gxy_re, ExEy_Gxy_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[0,1]) # EyEx_Gyx_re, EyEx_Gyx_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[0,1]) # EyEy_Gyy_re, EyEy_Gyy_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[1,1]) # ExEx_Gxy_re, ExEx_Gxy_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[0,1]) # ExEy_Gxx_re, ExEy_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[0,0]) # EyEx_Gyy_re, EyEx_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[1,1]) # EyEy_Gyx_re, EyEy_Gyx_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[0,1]) # ExEy_Gyy_re, ExEy_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[1,1]) # EyEx_Gxx_re, EyEx_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[0,0]) # ExEx_Gyy_re, ExEx_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[1,1]) # EyEy_Gxx_re, EyEy_Gxx_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[0,0]) # if inc_option == True: ExEz_Gxz_re, ExEz_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[0,2]) EyEz_Gyz_re, EyEz_Gyz_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[1,2]) ExEx_Gxz_re, ExEx_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[0,2]) ExEz_Gxx_re, ExEz_Gxx_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[0,0]) EyEx_Gyz_re, EyEx_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[1,2]) EyEz_Gyx_re, EyEz_Gyx_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[0,1]) ExEy_Gxz_re, ExEy_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[0,2]) ExEz_Gxy_re, ExEz_Gxy_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[0,1]) EyEy_Gyz_re, EyEy_Gyz_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[1,2]) EyEz_Gyy_re, EyEz_Gyy_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[1,1]) ExEz_Gyz_re, ExEz_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[1,2]) EyEz_Gxz_re, EyEz_Gxz_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[0,2]) EyEx_Gxz_re, EyEx_Gxz_im = OTF_compute(Source_norm, Source_current*IF_ExEy.conj(), G_tensor_z[0,2]) EyEz_Gxx_re, EyEz_Gxx_im = OTF_compute(Source_norm, Source_current*IF_EyEz, G_tensor_z[0,0]) ExEy_Gyz_re, ExEy_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEy, G_tensor_z[1,2]) ExEz_Gyy_re, ExEz_Gyy_im = OTF_compute(Source_norm, Source_current*IF_ExEz, G_tensor_z[1,1]) EyEy_Gxz_re, EyEy_Gxz_im = OTF_compute(Source_norm, Source_current*IF_EyEy, G_tensor_z[0,2]) ExEx_Gyz_re, ExEx_Gyz_im = OTF_compute(Source_norm, Source_current*IF_ExEx, G_tensor_z[1,2]) # 3D vectorial transfer functions self.H_dyadic_OTF[0,0,i] = ExEx_Gxx_re + ExEy_Gxy_re + ExEz_Gxz_re + EyEx_Gyx_re + EyEy_Gyy_re + EyEz_Gyz_re self.H_dyadic_OTF[0,1,i] = ExEx_Gxx_im + ExEy_Gxy_im + ExEz_Gxz_im + EyEx_Gyx_im + EyEy_Gyy_im + EyEz_Gyz_im self.H_dyadic_OTF[0,2,i] = ExEx_Gxx_re - ExEy_Gxy_re + EyEx_Gyx_re - EyEy_Gyy_re self.H_dyadic_OTF[0,3,i] = ExEx_Gxy_re + ExEy_Gxx_re + EyEx_Gyy_re + EyEy_Gyx_re self.H_dyadic_OTF[0,4,i] = ExEx_Gxz_re + ExEz_Gxx_re + EyEx_Gyz_re + EyEz_Gyx_re self.H_dyadic_OTF[0,5,i] = ExEy_Gxz_re + ExEz_Gxy_re + EyEy_Gyz_re + EyEz_Gyy_re self.H_dyadic_OTF[0,6,i] = ExEz_Gxz_re + EyEz_Gyz_re self.H_dyadic_OTF[1,0,i] = ExEx_Gxx_re + ExEy_Gxy_re + ExEz_Gxz_re - EyEx_Gyx_re - EyEy_Gyy_re - EyEz_Gyz_re self.H_dyadic_OTF[1,1,i] = ExEx_Gxx_im + ExEy_Gxy_im + ExEz_Gxz_im - EyEx_Gyx_im - EyEy_Gyy_im - EyEz_Gyz_im self.H_dyadic_OTF[1,2,i] = ExEx_Gxx_re - ExEy_Gxy_re - EyEx_Gyx_re + EyEy_Gyy_re self.H_dyadic_OTF[1,3,i] = ExEx_Gxy_re + ExEy_Gxx_re - EyEx_Gyy_re - EyEy_Gyx_re self.H_dyadic_OTF[1,4,i] = ExEx_Gxz_re + ExEz_Gxx_re - EyEx_Gyz_re - EyEz_Gyx_re self.H_dyadic_OTF[1,5,i] = ExEy_Gxz_re + ExEz_Gxy_re - EyEy_Gyz_re - EyEz_Gyy_re self.H_dyadic_OTF[1,6,i] = ExEz_Gxz_re - EyEz_Gyz_re self.H_dyadic_OTF[2,0,i] = ExEx_Gxy_re + ExEy_Gyy_re + ExEz_Gyz_re + EyEx_Gxx_re + EyEy_Gyx_re + EyEz_Gxz_re self.H_dyadic_OTF[2,1,i] = ExEx_Gxy_im + ExEy_Gyy_im + ExEz_Gyz_im + EyEx_Gxx_im + EyEy_Gyx_im + EyEz_Gxz_im self.H_dyadic_OTF[2,2,i] = ExEx_Gxy_re - ExEy_Gyy_re + EyEx_Gxx_re - EyEy_Gyx_re self.H_dyadic_OTF[2,3,i] = ExEx_Gyy_re + ExEy_Gxy_re + EyEx_Gyx_re + EyEy_Gxx_re self.H_dyadic_OTF[2,4,i] = ExEx_Gyz_re + ExEz_Gxy_re + EyEx_Gxz_re + EyEz_Gxx_re self.H_dyadic_OTF[2,5,i] = ExEy_Gyz_re + ExEz_Gyy_re + EyEy_Gxz_re + EyEz_Gyx_re self.H_dyadic_OTF[2,6,i] = ExEz_Gyz_re + EyEz_Gxz_re # transfer functions for S3 if self.N_Stokes == 4: self.H_dyadic_OTF[3,0,i] = -ExEx_Gxy_im - ExEy_Gyy_im - ExEz_Gyz_im + EyEx_Gxx_im + EyEy_Gyx_im + EyEz_Gxz_im self.H_dyadic_OTF[3,1,i] = ExEx_Gxy_re + ExEy_Gyy_re + ExEz_Gyz_re - EyEx_Gxx_re - EyEy_Gyx_re - EyEz_Gxz_re self.H_dyadic_OTF[3,2,i] = -ExEx_Gxy_im + ExEy_Gyy_im + EyEx_Gxx_im - EyEy_Gyx_im self.H_dyadic_OTF[3,3,i] = -ExEx_Gyy_im - ExEy_Gxy_im + EyEx_Gyx_im + EyEy_Gxx_im self.H_dyadic_OTF[3,4,i] = -ExEx_Gyz_im - ExEz_Gxy_im + EyEx_Gxz_im + EyEz_Gxx_im self.H_dyadic_OTF[3,5,i] = -ExEy_Gyz_im - ExEz_Gyy_im + EyEy_Gxz_im + EyEz_Gyx_im self.H_dyadic_OTF[3,6,i] = -ExEz_Gyz_im + EyEz_Gxz_im else: self.H_dyadic_OTF_in_plane[0,0,i] = ExEx_Gxx_re - ExEy_Gxy_re - EyEx_Gyx_re + EyEy_Gyy_re self.H_dyadic_OTF_in_plane[0,1,i] = ExEx_Gxy_re + ExEy_Gxx_re - EyEx_Gyy_re - EyEy_Gyx_re self.H_dyadic_OTF_in_plane[1,0,i] = ExEx_Gxy_re - ExEy_Gyy_re + EyEx_Gxx_re - EyEy_Gyx_re self.H_dyadic_OTF_in_plane[1,1,i] = ExEx_Gyy_re + ExEy_Gxy_re + EyEx_Gyx_re + EyEy_Gxx_re ############## polarization computing function group ############## def Stokes_recon(self, I_meas): ''' reconstruct Stokes parameters from polarization-sensitive intensity images Parameters ---------- I_meas : numpy.ndarray polarization-sensitive intensity images with the size of (N_channel, ...) Returns ------- S_image_recon : numpy.ndarray reconstructed Stokes parameters with the size of (N_Stokes, ...) ''' img_shape = I_meas.shape A_pinv = np.linalg.pinv(self.A_matrix) S_image_recon = np.reshape(np.dot(A_pinv, I_meas.reshape((self.N_channel, -1))), (self.N_Stokes,)+img_shape[1:]) return S_image_recon def Stokes_transform(self, S_image_recon): ''' transform Stokes parameters into normalized Stokes parameters Parameters ---------- S_image_recon : numpy.ndarray reconstructed Stokes parameters with the size of (N_Stokes, ...) Returns ------- S_transformed : numpy.ndarray normalized Stokes parameters with the size of (3, ...) or (5, ...) ''' if self.use_gpu: S_image_recon = cp.array(S_image_recon) if self.N_Stokes == 4: S_transformed = cp.zeros((5,)+S_image_recon.shape[1:]) elif self.N_Stokes == 3: S_transformed = cp.zeros((3,)+S_image_recon.shape[1:]) else: if self.N_Stokes == 4: S_transformed = np.zeros((5,)+S_image_recon.shape[1:]) elif self.N_Stokes == 3: S_transformed = np.zeros((3,)+S_image_recon.shape[1:]) S_transformed[0] = S_image_recon[0] if self.N_Stokes == 4: S_transformed[1] = S_image_recon[1] / S_image_recon[3] S_transformed[2] = S_image_recon[2] / S_image_recon[3] S_transformed[3] = S_image_recon[3] S_transformed[4] = (S_image_recon[1]**2 + S_image_recon[2]**2 + S_image_recon[3]**2)**(1/2) / S_image_recon[0] # DoP elif self.N_Stokes == 3: S_transformed[1] = S_image_recon[1] / S_image_recon[0] S_transformed[2] = S_image_recon[2] / S_image_recon[0] if self.use_gpu: S_transformed = cp.asnumpy(S_transformed) return S_transformed def Polscope_bg_correction(self, S_image_tm, S_bg_tm, kernel_size=400, poly_order=2): ''' QLIPP background correction algorithm Parameters ---------- S_image_tm : numpy.ndarray normalized Stokes parameters with the size of (3, ...) or (5, ...) S_bg_tm : numpy.ndarray normalized background Stokes parameters kernel_size : int size of smoothing window for background estimation in 'local' method poly_order : int order of polynomial fitting for background estimation in 'local_fit' method Returns ------- S_image_tm : numpy.ndarray background corrected normalized Stokes parameters with the same size as the input Stokes parameters ''' if self.use_gpu: S_image_tm = cp.array(S_image_tm) S_bg_tm = cp.array(S_bg_tm) dim = S_image_tm.ndim if dim == 3: S_image_tm[0] /= S_bg_tm[0] S_image_tm[1] -= S_bg_tm[1] S_image_tm[2] -= S_bg_tm[2] if self.N_Stokes == 4: S_image_tm[4] /= S_bg_tm[4] else: S_image_tm[0] /= S_bg_tm[0,:,:,np.newaxis] S_image_tm[1] -= S_bg_tm[1,:,:,np.newaxis] S_image_tm[2] -= S_bg_tm[2,:,:,np.newaxis] if self.N_Stokes == 4: S_image_tm[4] /= S_bg_tm[4,:,:,np.newaxis] if self.bg_option == 'local': if dim == 3: S_image_tm[1] -= uniform_filter_2D(S_image_tm[1], size=kernel_size, use_gpu=self.use_gpu, gpu_id=self.gpu_id) S_image_tm[2] -= uniform_filter_2D(S_image_tm[2], size=kernel_size, use_gpu=self.use_gpu, gpu_id=self.gpu_id) else: if self.use_gpu: S1_bg = uniform_filter_2D(cp.mean(S_image_tm[1],axis=-1), size=kernel_size, use_gpu=self.use_gpu, gpu_id=self.gpu_id) S2_bg = uniform_filter_2D(cp.mean(S_image_tm[2],axis=-1), size=kernel_size, use_gpu=self.use_gpu, gpu_id=self.gpu_id) else: S1_bg = uniform_filter_2D(np.mean(S_image_tm[1],axis=-1), size=kernel_size, use_gpu=self.use_gpu, gpu_id=self.gpu_id) S2_bg = uniform_filter_2D(np.mean(S_image_tm[2],axis=-1), size=kernel_size, use_gpu=self.use_gpu, gpu_id=self.gpu_id) for i in range(self.N_defocus): S_image_tm[1,:,:,i] -= S1_bg S_image_tm[2,:,:,i] -= S2_bg elif self.bg_option == 'local_fit': if self.use_gpu: bg_estimator = BackgroundEstimator2D_GPU(gpu_id=self.gpu_id) if dim != 3: S1_bg = bg_estimator.get_background(cp.mean(S_image_tm[1],axis=-1), order=poly_order, normalize=False) S2_bg = bg_estimator.get_background(cp.mean(S_image_tm[2],axis=-1), order=poly_order, normalize=False) else: bg_estimator = BackgroundEstimator2D() if dim != 3: S1_bg = bg_estimator.get_background(np.mean(S_image_tm[1],axis=-1), order=poly_order, normalize=False) S2_bg = bg_estimator.get_background(np.mean(S_image_tm[2],axis=-1), order=poly_order, normalize=False) if dim ==3: S_image_tm[1] -= bg_estimator.get_background(S_image_tm[1], order=poly_order, normalize=False) S_image_tm[2] -= bg_estimator.get_background(S_image_tm[2], order=poly_order, normalize=False) else: for i in range(self.N_defocus): S_image_tm[1,:,:,i] -= S1_bg S_image_tm[2,:,:,i] -= S2_bg if self.use_gpu: S_image_tm = cp.asnumpy(S_image_tm) return S_image_tm def Polarization_recon(self, S_image_recon): ''' reconstruction of polarization-related physical properties in QLIPP Parameters ---------- S_image_recon : numpy.ndarray normalized Stokes parameters with the size of (3, ...) or (5, ...) Returns ------- Recon_para : numpy.ndarray reconstructed polarization-related physical properties channel 0 is retardance channel 1 is in-plane orientation channel 2 is brightfield channel 3 is degree of polarization ''' if self.use_gpu: S_image_recon = cp.array(S_image_recon) Recon_para = cp.zeros((self.N_Stokes,)+S_image_recon.shape[1:]) else: Recon_para = np.zeros((self.N_Stokes,)+S_image_recon.shape[1:]) if self.use_gpu: if self.N_Stokes == 4: ret_wrapped = cp.arctan2((S_image_recon[1]**2 + S_image_recon[2]**2)**(1/2) * \ S_image_recon[3], S_image_recon[3]) # retardance elif self.N_Stokes == 3: ret_wrapped = cp.arcsin(cp.minimum((S_image_recon[1]**2 + S_image_recon[2]**2)**(0.5),1)) if self.cali == True: sa_wrapped = 0.5*cp.arctan2(-S_image_recon[1], -S_image_recon[2]) % np.pi # slow-axis else: sa_wrapped = 0.5*cp.arctan2(-S_image_recon[1], S_image_recon[2]) % np.pi # slow-axis else: if self.N_Stokes == 4: ret_wrapped = np.arctan2((S_image_recon[1]**2 + S_image_recon[2]**2)**(1/2) * \ S_image_recon[3], S_image_recon[3]) # retardance elif self.N_Stokes == 3: ret_wrapped = np.arcsin(np.minimum((S_image_recon[1]**2 + S_image_recon[2]**2)**(0.5),1)) if self.cali == True: sa_wrapped = 0.5*np.arctan2(-S_image_recon[1], -S_image_recon[2]) % np.pi # slow-axis else: sa_wrapped = 0.5*np.arctan2(-S_image_recon[1], S_image_recon[2]) % np.pi # slow-axis sa_wrapped[ret_wrapped<0] += np.pi/2 ret_wrapped[ret_wrapped<0] += np.pi Recon_para[0] = ret_wrapped.copy() Recon_para[1] = sa_wrapped%np.pi Recon_para[2] = S_image_recon[0] # transmittance if self.N_Stokes == 4: Recon_para[3] = S_image_recon[4] # DoP if self.use_gpu: Recon_para = cp.asnumpy(Recon_para) return Recon_para def Birefringence_recon(self, S1_stack, S2_stack, reg = 1e-3): # Birefringence deconvolution with slowly varying transmission approximation if self.use_gpu: Hu = cp.array(self.Hu, copy=True) Hp = cp.array(self.Hp, copy=True) AHA = [cp.sum(cp.abs(Hu)**2 + cp.abs(Hp)**2, axis=2) + reg, \ cp.sum(Hu*cp.conj(Hp) - cp.conj(Hu)*Hp, axis=2), \ -cp.sum(Hu*cp.conj(Hp) - cp.conj(Hu)*Hp, axis=2), \ cp.sum(cp.abs(Hu)**2 + cp.abs(Hp)**2, axis=2) + reg] S1_stack_f = cp.fft.fft2(cp.array(S1_stack), axes=(0,1)) if self.cali: S2_stack_f = cp.fft.fft2(-cp.array(S2_stack), axes=(0,1)) else: S2_stack_f = cp.fft.fft2(cp.array(S2_stack), axes=(0,1)) b_vec = [cp.sum(-cp.conj(Hu)*S1_stack_f + cp.conj(Hp)*S2_stack_f, axis=2), \ cp.sum(cp.conj(Hp)*S1_stack_f + cp.conj(Hu)*S2_stack_f, axis=2)] else: AHA = [np.sum(np.abs(self.Hu)**2 + np.abs(self.Hp)**2, axis=2) + reg, \ np.sum(self.Hu*np.conj(self.Hp) - np.conj(self.Hu)*self.Hp, axis=2), \ -np.sum(self.Hu*np.conj(self.Hp) - np.conj(self.Hu)*self.Hp, axis=2), \ np.sum(np.abs(self.Hu)**2 + np.abs(self.Hp)**2, axis=2) + reg] S1_stack_f = fft2(S1_stack, axes=(0,1)) if self.cali: S2_stack_f = fft2(-S2_stack, axes=(0,1)) else: S2_stack_f = fft2(S2_stack, axes=(0,1)) b_vec = [np.sum(-np.conj(self.Hu)*S1_stack_f + np.conj(self.Hp)*S2_stack_f, axis=2), \ np.sum(np.conj(self.Hp)*S1_stack_f + np.conj(self.Hu)*S2_stack_f, axis=2)] del_phi_s, del_phi_c = Dual_variable_Tikhonov_deconv_2D(AHA, b_vec, use_gpu=self.use_gpu, gpu_id=self.gpu_id) Retardance = 2*(del_phi_s**2 + del_phi_c**2)**(1/2) slowaxis = 0.5*np.arctan2(del_phi_s, del_phi_c)%np.pi return Retardance, slowaxis def Birefringence_recon_2D(self, S1_stack, S2_stack, method='Tikhonov', reg_br = 1,\ rho = 1e-5, lambda_br=1e-3, itr = 20, verbose=True): ''' conduct 2D birefringence deconvolution from defocused or asymmetrically-illuminated set of intensity images Parameters ---------- S1_stack : numpy.ndarray defocused or asymmetrically-illuminated set of S1 intensity images with the size of (N, M, N_pattern*N_defocus) S2_stack : numpy.ndarray defocused or asymmetrically-illuminated set of S1 intensity images with the size of (N, M, N_pattern*N_defocus) method : str denoiser for 2D birefringence deconvolution 'Tikhonov' for Tikhonov denoiser 'TV' for TV denoiser reg_br : float Tikhonov regularization parameter lambda_br : float TV regularization parameter rho : float augmented Lagrange multiplier for 2D ADMM algorithm itr : int number of iterations for 2D ADMM algorithm verbose : bool option to display detailed progress of computations or not Returns ------- retardance : numpy.ndarray 2D retardance (in the unit of rad) reconstruction with the size of (N, M) azimuth : numpy.ndarray 2D orientation reconstruction with the size of (N, M) ''' if self.N_defocus == 1: S1_stack = np.reshape(S1_stack, (self.N, self.M, 1)) S2_stack = np.reshape(S2_stack, (self.N, self.M, 1)) H_1_1c = self.H_dyadic_2D_OTF_in_plane[0,0] H_1_1s = self.H_dyadic_2D_OTF_in_plane[0,1] H_2_1c = self.H_dyadic_2D_OTF_in_plane[1,0] H_2_1s = self.H_dyadic_2D_OTF_in_plane[1,1] S1_stack_f = fft2(S1_stack, axes=(0,1)) S2_stack_f = fft2(S2_stack, axes=(0,1)) cross_term = np.sum(np.conj(H_1_1c)*H_1_1s + np.conj(H_2_1c)*H_2_1s, axis=2) AHA = [np.sum(np.abs(H_1_1c)**2 + np.abs(H_2_1c)**2, axis=2), cross_term,\ np.conj(cross_term) , np.sum(np.abs(H_1_1s)**2 + np.abs(H_2_1s)**2, axis=2)] AHA[0] += np.mean(np.abs(AHA[0]))*reg_br AHA[3] += np.mean(np.abs(AHA[3]))*reg_br b_vec = [np.sum(np.conj(H_1_1c)*S1_stack_f + np.conj(H_2_1c)*S2_stack_f, axis=2), \ np.sum(np.conj(H_1_1s)*S1_stack_f + np.conj(H_2_1s)*S2_stack_f, axis=2)] if self.use_gpu: AHA = cp.array(AHA) b_vec = cp.array(b_vec) if method == 'Tikhonov': # Deconvolution with Tikhonov regularization g_1c, g_1s = Dual_variable_Tikhonov_deconv_2D(AHA, b_vec, use_gpu=self.use_gpu, gpu_id=self.gpu_id) elif method == 'TV': # ADMM deconvolution with anisotropic TV regularization g_1c, g_1s = Dual_variable_ADMM_TV_deconv_2D(AHA, b_vec, rho, lambda_br, lambda_br, itr, verbose, use_gpu=self.use_gpu, gpu_id=self.gpu_id) azimuth = (np.arctan2(-g_1s, -g_1c)/2)%np.pi retardance = ((np.abs(g_1s)**2 + np.abs(g_1c)**2)**(1/2))/(2*np.pi/self.lambda_illu) return retardance, azimuth def Birefringence_recon_3D(self, S1_stack, S2_stack, method='Tikhonov', reg_br = 1,\ rho = 1e-5, lambda_br=1e-3, itr = 20, verbose=True): ''' conduct 3D deconvolution of 2D birefringence from defocused stack of intensity images Parameters ---------- S1_stack : numpy.ndarray defocused stack of S1 intensity images with the size of (N, M, N_defocus) S2_stack : numpy.ndarray defocused stack of S2 intensity images with the size of (N, M, N_defocus) method : str denoiser for 3D phase reconstruction 'Tikhonov' for Tikhonov denoiser 'TV' for TV denoiser reg_br : float Tikhonov regularization parameter rho : float augmented Lagrange multiplier for 3D ADMM algorithm lambda_br : float TV regularization parameter itr : int number of iterations for 3D ADMM algorithm verbose : bool option to display detailed progress of computations or not Returns ------- retardance : numpy.ndarray 3D reconstruction of retardance (in the unit of rad) with the size of (N, M, N_defocus) azimuth : numpy.ndarray 3D reconstruction of 2D orientation with the size of (N, M, N_defocus) ''' if self.pad_z != 0: S1_pad = np.pad(S1_stack,((0,0),(0,0),(self.pad_z,self.pad_z)), mode='constant',constant_values=S1_stack.mean()) S2_pad = np.pad(S2_stack,((0,0),(0,0),(self.pad_z,self.pad_z)), mode='constant',constant_values=S2_stack.mean()) if self.pad_z < self.N_defocus: S1_pad[:,:,:self.pad_z] = (S1_stack[:,:,:self.pad_z])[:,:,::-1] S1_pad[:,:,-self.pad_z:] = (S1_stack[:,:,-self.pad_z:])[:,:,::-1] S2_pad[:,:,:self.pad_z] = (S2_stack[:,:,:self.pad_z])[:,:,::-1] S2_pad[:,:,-self.pad_z:] = (S2_stack[:,:,-self.pad_z:])[:,:,::-1] else: print('pad_z is larger than number of z-slices, use zero padding (not effective) instead of reflection padding') S1_stack = S1_pad.copy() S2_stack = S2_pad.copy() H_1_1c = self.H_dyadic_OTF_in_plane[0,0,0] H_1_1s = self.H_dyadic_OTF_in_plane[0,1,0] H_2_1c = self.H_dyadic_OTF_in_plane[1,0,0] H_2_1s = self.H_dyadic_OTF_in_plane[1,1,0] S1_stack_f = fftn(S1_stack) S2_stack_f = fftn(S2_stack) cross_term = np.conj(H_1_1c)*H_1_1s + np.conj(H_2_1c)*H_2_1s AHA = [np.abs(H_1_1c)**2 + np.abs(H_2_1c)**2, cross_term,\ np.conj(cross_term) , np.abs(H_1_1s)**2 + np.abs(H_2_1s)**2] AHA[0] += np.mean(np.abs(AHA[0]))*reg_br AHA[3] += np.mean(np.abs(AHA[3]))*reg_br b_vec = [np.conj(H_1_1c)*S1_stack_f + np.conj(H_2_1c)*S2_stack_f, \ np.conj(H_1_1s)*S1_stack_f + np.conj(H_2_1s)*S2_stack_f] if self.use_gpu: AHA = cp.array(AHA) b_vec = cp.array(b_vec) if method == 'Tikhonov': # Deconvolution with Tikhonov regularization f_1c, f_1s = Dual_variable_Tikhonov_deconv_3D(AHA, b_vec, use_gpu=self.use_gpu, gpu_id=self.gpu_id) elif method == 'TV': # ADMM deconvolution with anisotropic TV regularization f_1c, f_1s = Dual_variable_ADMM_TV_deconv_3D(AHA, b_vec, rho, lambda_br, lambda_br, itr, verbose, use_gpu=self.use_gpu, gpu_id=self.gpu_id) azimuth = (np.arctan2(-f_1s, -f_1c)/2)%np.pi retardance = ((np.abs(f_1s)**2 + np.abs(f_1c)**2)**(1/2))/(2*np.pi/self.lambda_illu)*self.psz if self.pad_z != 0: azimuth = azimuth[:,:,self.pad_z:-(self.pad_z)] retardance = retardance[:,:,self.pad_z:-(self.pad_z)] return retardance, azimuth def Inclination_recon_geometric(self, retardance, orientation, on_axis_idx, reg_ret_pr = 1e-2): ''' estimating 2D principal retardance and 3D orientation from off-axis retardance and orientation using geometric model Parameters ---------- retardance : numpy.ndarray measured retardance from different pattern illuminations with the size of (N_pattern, N, M) orientation : numpy.ndarray measured 2D orientation from different pattern illuminations with the size of (N_pattern, N, M) on_axis_idx : int index of the illumination pattern corresponding to on-axis illumination reg_ret_pr : float regularization for computing principal retardance Returns ------- inclination : numpy.ndarray estimated inclination angle with the size of (N, M) retardance_pr : numpy.ndarray estimated principal retardance with the size of (N, M) inc_coeff : numpy.ndarray estimated inclination coefficients with the size of (6, N, M) ''' retardance_on_axis = retardance[:,:,on_axis_idx].copy() orientation_on_axis = orientation[:,:,on_axis_idx].copy() retardance = np.transpose(retardance,(2,0,1)) N_meas = self.N_pattern * self.N_defocus inc_coeff = np.reshape(self.geometric_inc_matrix_inv.dot(retardance.reshape((N_meas,self.N*self.M))), (6, self.N, self.M)) inc_coeff_sin_2theta = (inc_coeff[2]**2 + inc_coeff[3]**2)**(0.5) inclination = np.arctan2(retardance_on_axis*2, inc_coeff_sin_2theta) inclination = np.pi/2 - (np.pi/2-inclination)*np.sign(inc_coeff[2]*np.cos(orientation_on_axis)+inc_coeff[3]*np.sin(orientation_on_axis)) retardance_pr = retardance_on_axis*np.sin(inclination)**2 / (np.sin(inclination)**4+reg_ret_pr) return inclination, retardance_pr, inc_coeff def scattering_potential_tensor_recon_2D_vec(self, S_image_recon, reg_inc=1e-1*np.ones((7,)), cupy_det=False): ''' Tikhonov reconstruction of 2D scattering potential tensor components with vectorial model in QUTIPP Parameters ---------- S_image_recon : numpy.ndarray background corrected Stokes parameters normalized with S0's mean with the size of (3, N, M, N_pattern) reg_inc : numpy.ndarray Tikhonov regularization parameters for 7 scattering potential tensor components with the size of (7,) cupy_det : bool option to use the determinant algorithm from cupy package (cupy v9 has very fast determinant calculation compared to array-based determinant calculation) Returns ------- f_tensor : numpy.ndarray 2D scattering potential tensor components with the size of (7, N, M) ''' start_time = time.time() S_stack_f = fft2(S_image_recon, axes=(1,2)) AHA = self.inc_AHA_2D_vec.copy() for i in range(7): AHA[i,i] += np.mean(np.abs(AHA[i,i]))*reg_inc[i] b_vec = np.zeros((7,self.N,self.M), complex) for i,j in itertools.product(range(7), range(self.N_Stokes)): b_vec[i] += np.sum(np.conj(self.H_dyadic_2D_OTF[j,i])*S_stack_f[j],axis=2) print('Finished preprocess, elapsed time: %.2f'%(time.time()-start_time)) if self.use_gpu: if cupy_det: AHA = cp.transpose(cp.array(AHA), (2,3,0,1)) b_vec = cp.transpose(cp.array(b_vec), (1,2,0)) determinant = cp.linalg.det(AHA) f_tensor = cp.zeros((7, self.N, self.M), dtype='float32') for i in range(7): AHA_b_vec = AHA.copy() AHA_b_vec[:,:,:,i] = b_vec.copy() f_tensor[i] = cp.real(cp.fft.ifftn(cp.linalg.det(AHA_b_vec) / determinant)) else: AHA = cp.array(AHA) b_vec = cp.array(b_vec) determinant = array_based_7x7_det(AHA) f_tensor = cp.zeros((7, self.N, self.M)) for i in range(7): AHA_b_vec = AHA.copy() AHA_b_vec[:,i] = b_vec.copy() f_tensor[i] = cp.real(cp.fft.ifft2(array_based_7x7_det(AHA_b_vec) / determinant)) f_tensor = cp.asnumpy(f_tensor) else: AHA_pinv = np.linalg.pinv(np.transpose(AHA,(2,3,0,1))) f_tensor = np.real(ifft2(np.transpose(np.squeeze(np.matmul(AHA_pinv, np.transpose(b_vec,(1,2,0))[...,np.newaxis])),(2,0,1)),axes=(1,2))) print('Finished reconstruction, elapsed time: %.2f'%(time.time()-start_time)) return f_tensor def scattering_potential_tensor_recon_3D_vec(self, S_image_recon, reg_inc=1e-1*np.ones((7,)), cupy_det=False): ''' Tikhonov reconstruction of 3D scattering potential tensor components with vectorial model in QUTIPP Parameters ---------- S_image_recon : numpy.ndarray background corrected Stokes parameters normalized with S0's mean with the size of (3, N_pattern, N, M, N_defocus) reg_inc : numpy.ndarray Tikhonov regularization parameters for 7 scattering potential tensor components with the size of (7,) cupy_det : bool option to use the determinant algorithm from cupy package (cupy v9 has very fast determinant calculation compared to array-based determinant calculation) Returns ------- f_tensor : numpy.ndarray 3D scattering potential tensor components with the size of (7, N, M, N_defocus) ''' start_time = time.time() if self.pad_z != 0: S_pad = np.pad(S_image_recon,((0,0),(0,0),(0,0),(0,0),(self.pad_z,self.pad_z)), mode='constant',constant_values=0) if self.pad_z < self.N_defocus: S_pad[...,:self.pad_z] = (S_image_recon[...,:self.pad_z])[:,:,::-1] S_pad[...,-self.pad_z:] = (S_image_recon[...,-self.pad_z:])[:,:,::-1] else: print('pad_z is larger than number of z-slices, use zero padding (not effective) instead of reflection padding') S_image_recon = S_pad.copy() S_stack_f = fftn(S_image_recon,axes=(-3,-2,-1)) AHA = self.inc_AHA_3D_vec.copy() for i in range(7): AHA[i,i] += np.mean(np.abs(AHA[i,i]))*reg_inc[i] b_vec = np.zeros((7,self.N,self.M,self.N_defocus_3D), dtype='complex64') for i,j in itertools.product(range(7), range(self.N_Stokes)): b_vec[i] += np.sum(np.conj(self.H_dyadic_OTF[j,i])*S_stack_f[j],axis=0) print('Finished preprocess, elapsed time: %.2f'%(time.time()-start_time)) if self.use_gpu: if cupy_det: AHA = cp.transpose(cp.array(AHA), (2,3,4,0,1)) b_vec = cp.transpose(cp.array(b_vec), (1,2,3,0)) determinant = cp.linalg.det(AHA) f_tensor = cp.zeros((7, self.N, self.M, self.N_defocus_3D), dtype='float32') for i in range(7): AHA_b_vec = AHA.copy() AHA_b_vec[:,:,:,:,i] = b_vec.copy() f_tensor[i] = cp.real(cp.fft.ifftn(cp.linalg.det(AHA_b_vec) / determinant)) else: AHA = cp.array(AHA) b_vec = cp.array(b_vec) determinant = array_based_7x7_det(AHA) f_tensor = cp.zeros((7, self.N, self.M, self.N_defocus_3D), dtype='float32') for i in range(7): AHA_b_vec = AHA.copy() AHA_b_vec[:,i] = b_vec.copy() f_tensor[i] = cp.real(cp.fft.ifftn(array_based_7x7_det(AHA_b_vec) / determinant)) f_tensor = cp.asnumpy(f_tensor) else: AHA_pinv = np.linalg.pinv(np.transpose(AHA,(2,3,4,0,1))) f_tensor = np.real(ifftn(np.transpose(np.squeeze(np.matmul(AHA_pinv, np.transpose(b_vec,(1,2,3,0))[...,np.newaxis])),(3,0,1,2)),axes=(1,2,3))) if self.pad_z != 0: f_tensor = f_tensor[...,self.pad_z:-(self.pad_z)] print('Finished reconstruction, elapsed time: %.2f'%(time.time()-start_time)) return f_tensor def scattering_potential_tensor_to_3D_orientation(self, f_tensor, S_image_recon=None, material_type='positive', reg_ret_pr = 1e-2, itr=20, step_size=0.3,verbose=True,fast_gpu_mode=False): ''' estimating principal retardance, 3D orientation, optic sign from scattering potential tensor components Parameters ---------- f_tensor : numpy.ndarray scattering potential tensor components with the size of (7, N, M) or (7, N, M, N_defocus) for 3D S_image_recon : numpy.ndarray background corrected Stokes parameters normalized with S0's mean material_type : str 'positive' for assumption of positively uniaxial material 'negative' for assumption of negatively uniaxial material 'unknown' for triggering optic sign estimation algorithm -> return two sets of solution with a probability map of material reg_ret_pr : numpy.ndarray regularization parameters for principal retardance estimation itr : int number of iterations for the optic sign retrieval algorithm step_size : float scaling of the gradient step size for the optic sign retrieval algorithm verbose : bool option to display details of optic sign retrieval algorithm in each iteration fast_gpu_mode : bool option to use faster gpu computation mode (all arrays in gpu, it may consume more memory) Returns ------- retardance_pr : numpy.ndarray reconstructed principal retardance with the size of (2, N, M) for 2D and (2, N, M, N_defocus) for 3D channel 0: positively uniaxial solution (or return retardance_pr_p when 'positive' is specified for material_type) channel 1: negatively uniaxial solution (or return retardance_pr_n when 'negative' is specified for material_type) azimuth : numpy.ndarray reconstructed in-plane orientation with the size of (2, N, M) for 2D and (2, N, M, N_defocus) for 3D channel 0: positively uniaxial solution (or return azimuth_p when 'positive' is specified for material_type) channel 1: negatively uniaxial solution (or return azimuth_n when 'negative' is specified for material_type) theta : numpy.ndarray reconstructed out-of-plane inclination with the size of (2, N, M) for 2D and (2, N, M, N_defocus) for 3D channel 0: positively uniaxial solution (or return theta_p when 'positive' is specified for material_type) channel 1: negatively uniaxial solution (or return theta_n when 'negative' is specified for material_type) mat_map : numpy.ndarray reconstructed material tendancy with the size of (2, N, M) for 2D and (2, N, M, N_defocus) for 3D channel 0: tendancy for positively uniaxial solution channel 1: tendancy for negatively uniaxial solution ''' if self.pad_z != 0 and material_type == 'unknown': S_pad = np.pad(S_image_recon,((0,0),(0,0),(0,0),(0,0),(self.pad_z,self.pad_z)), mode='constant',constant_values=0) f_tensor_pad = np.pad(f_tensor,((0,0),(0,0),(0,0),(self.pad_z,self.pad_z)), mode='constant',constant_values=0) if self.pad_z < self.N_defocus: S_pad[...,:self.pad_z] = (S_image_recon[...,:self.pad_z])[:,:,::-1] S_pad[...,-self.pad_z:] = (S_image_recon[...,-self.pad_z:])[:,:,::-1] f_tensor_pad[...,:self.pad_z] = (f_tensor[...,:self.pad_z])[:,:,::-1] f_tensor_pad[...,-self.pad_z:] = (f_tensor[...,-self.pad_z:])[:,:,::-1] else: print('pad_z is larger than number of z-slices, use zero padding (not effective) instead of reflection padding') S_image_recon = S_pad.copy() f_tensor = f_tensor_pad.copy() if material_type == 'positive' or 'unknown': # Positive uniaxial material retardance_pr_p, azimuth_p, theta_p = scattering_potential_tensor_to_3D_orientation_PN(f_tensor, material_type='positive', reg_ret_pr = reg_ret_pr) if material_type == 'positive': return retardance_pr_p, azimuth_p, theta_p if material_type == 'negative' or 'unknown': # Negative uniaxial material retardance_pr_n, azimuth_n, theta_n = scattering_potential_tensor_to_3D_orientation_PN(f_tensor, material_type='negative', reg_ret_pr = reg_ret_pr) if material_type == 'negative': return retardance_pr_n, azimuth_n, theta_n if material_type == 'unknown': if f_tensor.ndim == 4: S_stack_f = fftn(S_image_recon,axes=(-3,-2,-1)) elif f_tensor.ndim == 3: S_stack_f = fft2(S_image_recon,axes=(1,2)) f_tensor_p = np.zeros((5,)+f_tensor.shape[1:]) f_tensor_p[0] = -retardance_pr_p*(np.sin(theta_p)**2)*np.cos(2*azimuth_p) f_tensor_p[1] = -retardance_pr_p*(np.sin(theta_p)**2)*np.sin(2*azimuth_p) f_tensor_p[2] = -retardance_pr_p*(np.sin(2*theta_p))*np.cos(azimuth_p) f_tensor_p[3] = -retardance_pr_p*(np.sin(2*theta_p))*np.sin(azimuth_p) f_tensor_p[4] = retardance_pr_p*(np.sin(theta_p)**2 - 2*np.cos(theta_p)**2) f_tensor_n = np.zeros((5,)+f_tensor.shape[1:]) f_tensor_n[0] = -retardance_pr_n*(np.sin(theta_n)**2)*np.cos(2*azimuth_n) f_tensor_n[1] = -retardance_pr_n*(np.sin(theta_n)**2)*np.sin(2*azimuth_n) f_tensor_n[2] = -retardance_pr_n*(np.sin(2*theta_n))*np.cos(azimuth_n) f_tensor_n[3] = -retardance_pr_n*(np.sin(2*theta_n))*np.sin(azimuth_n) f_tensor_n[4] = retardance_pr_n*(np.sin(theta_n)**2 - 2*np.cos(theta_n)**2) f_vec = f_tensor.copy() x_map = np.zeros(f_tensor.shape[1:]) y_map = np.zeros(f_tensor.shape[1:]) if f_tensor.ndim == 4: f_vec_f = fftn(f_vec, axes=(1,2,3)) S_est_vec = np.zeros((self.N_Stokes, self.N_pattern, self.N, self.M, self.N_defocus_3D), complex) for p,q in itertools.product(range(self.N_Stokes), range(2)): S_est_vec[p] += self.H_dyadic_OTF[p,q]*f_vec_f[np.newaxis,q] elif f_tensor.ndim == 3: f_vec_f = fft2(f_vec, axes=(1,2)) S_est_vec = np.zeros((self.N_Stokes, self.N, self.M, self.N_defocus*self.N_pattern), complex) for p,q in itertools.product(range(self.N_Stokes), range(2)): S_est_vec[p] += self.H_dyadic_2D_OTF[p,q]*f_vec_f[q,:,:,np.newaxis] if self.use_gpu: f_tensor_p = cp.array(f_tensor_p) f_tensor_n = cp.array(f_tensor_n) f_vec = cp.array(f_vec) if fast_gpu_mode: S_stack_f = cp.array(S_stack_f) # iterative optic sign estimation algorithm err = np.zeros(itr+1) tic_time = time.time() if verbose: print('| Iter | error | Elapsed time (sec) |') f1,ax = plt.subplots(2,2,figsize=(20,20)) for i in range(itr): if self.use_gpu: x_map = cp.array(x_map) y_map = cp.array(y_map) for j in range(5): f_vec[j+2] = x_map*f_tensor_p[j] + y_map*f_tensor_n[j] S_est_vec_update = S_est_vec.copy() if self.use_gpu: if fast_gpu_mode: S_est_vec_update = cp.array(S_est_vec_update) if f_tensor.ndim == 4: f_vec_f = cp.fft.fftn(f_vec, axes=(1,2,3)) for p,q in itertools.product(range(self.N_Stokes), range(5)): S_est_vec_update[p] += cp.array(self.H_dyadic_OTF[p,q+2])*f_vec_f[np.newaxis,q+2] elif f_tensor.ndim == 3: f_vec_f = cp.fft.fft2(f_vec, axes=(1,2)) for p,q in itertools.product(range(self.N_Stokes), range(5)): S_est_vec_update[p] += cp.array(self.H_dyadic_2D_OTF[p,q+2])*f_vec_f[q+2,:,:,np.newaxis] else: if f_tensor.ndim == 4: f_vec_f = cp.fft.fftn(f_vec, axes=(1,2,3)) for p,q in itertools.product(range(self.N_Stokes), range(5)): S_est_vec_update[p] += cp.asnumpy(cp.array(self.H_dyadic_OTF[p,q+2])*f_vec_f[np.newaxis,q+2]) elif f_tensor.ndim == 3: f_vec_f = cp.fft.fft2(f_vec, axes=(1,2)) for p,q in itertools.product(range(self.N_Stokes), range(5)): S_est_vec_update[p] += cp.asnumpy(cp.array(self.H_dyadic_2D_OTF[p,q+2])*f_vec_f[q+2,:,:,np.newaxis]) else: if f_tensor.ndim == 4: f_vec_f = fftn(f_vec, axes=(1,2,3)) for p,q in itertools.product(range(self.N_Stokes), range(5)): S_est_vec_update[p] += self.H_dyadic_OTF[p,q+2]*f_vec_f[np.newaxis,q+2] elif f_tensor.ndim == 3: f_vec_f = fft2(f_vec, axes=(1,2)) for p,q in itertools.product(range(self.N_Stokes), range(5)): S_est_vec_update[p] += self.H_dyadic_2D_OTF[p,q+2]*f_vec_f[q+2,:,:,np.newaxis] S_diff = S_stack_f-S_est_vec_update if fast_gpu_mode and self.use_gpu: err[i+1] = cp.asnumpy(cp.sum(cp.abs(S_diff)**2)) else: err[i+1] = np.sum(np.abs(S_diff)**2) if err[i+1]>err[i] and i>0: if self.use_gpu: x_map = cp.asnumpy(x_map) y_map = cp.asnumpy(y_map) break if self.use_gpu: AH_S_diff = cp.zeros((5,)+f_tensor.shape[1:], complex) if f_tensor.ndim == 4: for p,q in itertools.product(range(5), range(self.N_Stokes)): if fast_gpu_mode: AH_S_diff[p] += cp.sum(cp.conj(cp.array(self.H_dyadic_OTF[q,p+2]))*S_diff[q],axis=0) else: AH_S_diff[p] += cp.sum(cp.conj(cp.array(self.H_dyadic_OTF[q,p+2]))*cp.array(S_diff[q]),axis=0) grad_x_map = -cp.real(cp.sum(f_tensor_p*cp.fft.ifftn(AH_S_diff,axes=(1,2,3)),axis=0)) grad_y_map = -cp.real(cp.sum(f_tensor_n*cp.fft.ifftn(AH_S_diff,axes=(1,2,3)),axis=0)) elif f_tensor.ndim == 3: for p,q in itertools.product(range(5), range(self.N_Stokes)): if fast_gpu_mode: AH_S_diff[p] += cp.sum(cp.conj(cp.array(self.H_dyadic_2D_OTF[q,p+2]))*S_diff[q],axis=2) else: AH_S_diff[p] += cp.sum(cp.conj(cp.array(self.H_dyadic_2D_OTF[q,p+2]))*cp.array(S_diff[q]),axis=2) grad_x_map = -cp.real(cp.sum(f_tensor_p*cp.fft.ifft2(AH_S_diff,axes=(1,2)),axis=0)) grad_y_map = -cp.real(cp.sum(f_tensor_n*cp.fft.ifft2(AH_S_diff,axes=(1,2)),axis=0)) x_map -= grad_x_map/cp.max(cp.abs(grad_x_map))*step_size y_map -= grad_y_map/cp.max(cp.abs(grad_y_map))*step_size x_map = cp.asnumpy(x_map) y_map = cp.asnumpy(y_map) else: AH_S_diff = np.zeros((5,)+f_tensor.shape[1:], complex) if f_tensor.ndim == 4: for p,q in itertools.product(range(5), range(self.N_Stokes)): AH_S_diff[p] += np.sum(np.conj(self.H_dyadic_OTF[q,p+2])*S_diff[q],axis=0) grad_x_map = -np.real(np.sum(f_tensor_p*ifftn(AH_S_diff,axes=(1,2,3)),axis=0)) grad_y_map = -np.real(np.sum(f_tensor_n*ifftn(AH_S_diff,axes=(1,2,3)),axis=0)) elif f_tensor.ndim == 3: for p,q in itertools.product(range(5), range(self.N_Stokes)): AH_S_diff[p] += np.sum(np.conj(self.H_dyadic_2D_OTF[q,p+2])*S_diff[q],axis=2) grad_x_map = -np.real(np.sum(f_tensor_p*ifft2(AH_S_diff,axes=(1,2)),axis=0)) grad_y_map = -np.real(np.sum(f_tensor_n*
ifft2(AH_S_diff,axes=(1,2))
numpy.fft.ifft2
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (
np.dtype("float")
numpy.dtype
# Evolutionary optimizer for hyperparameters and architecture. Project at https://github.com/pgfeldman/optevolver import concurrent.futures import copy import datetime import getpass import os import random import re import threading from enum import Enum from typing import Dict, List, Tuple, Callable import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as st from matplotlib import cm from mpl_toolkits.mplot3d import axes3d, Axes3D # <-- DON'T DELETE, and note the capitalization! from sklearn.utils import resample import optevolver.hyperparameter.ValueAxis as VA import optevolver.util.ExcelUtils as eu class EvolverTags(Enum): """A class containing enumerations elements for use in the argument dictionaries""" FITNESS = "fitness" ID = "id" FUNCTION = "func" FLOAT = "float" GENERATION = "generation" GENOME = "genome" THREAD_NAME = "thread_str" FILENAME = "filename" class Genome: """ Class that handles the evolution of a set of ValueAxis (i.e. the chromosome) ... Attributes ---------- chromosome_dict: Dict fitness: float ea_list: List population: List meta_info: Dict data_list: List generation:int Methods ------- reset(self): Resets all the variables. Needed to eliminate class cross-contamination of class-global variables equals(self, g: "Genome") -> bool: Does a deep compare of two Genomes. returns a True if they have the same structure and value(s). get_chromosome_value(self, key: str) -> Dict: mutate(self, chance: float = 0.1): create_args_from_chromo(self, chromo: dict = None) -> Dict: create_dict_from_chromo(self, chromo: dict = None) -> Dict: calc_fitness(self, func, id_str: str) -> float: calc_fitness2(self, args: Dict): calc_fitness_stats(self, resample_size: int = 100) -> float: get_data_list(self) -> List: get_name(self) -> str: to_dict(self): to_string(self, meta: bool = True, chromo: bool = True) -> str: """ chromosome_dict: Dict fitness: float ea_list: List population: List meta_info: Dict data_list: List generation = 0 def __init__(self, evolve_axis_list: List, p1: 'Genome' = None, p2: 'Genome' = None, crossover: float = 0.5, generation=0): """ Parameters ---------- evolve_axis_list : List The list of all EvolveAxis used to create this genome p1 : Optional parent for this Genome. Two are required to breed. p2 Optional parent for this Genome. Two are required to breed. crossover: float probability that a chromosome will be selected randomly from p1 generation: int The generation (as determined by the calling EvolutionaryOpimizer) that this genome belongs to """ self.reset() self.generation = generation self.ea_list = copy.deepcopy(evolve_axis_list) ea: VA.EvolveAxis if p1 == None and p2 == None: for ea in self.ea_list: self.chromosome_dict[ea.name] = ea.get_random_val() else: # for ea in self.ea_list: for i in range(len(self.ea_list)): ea = self.ea_list[i] ea1 = p1.ea_list[i] ea2 = p2.ea_list[i] probability = random.random() if probability < crossover: ea.set_value(ea1) else: ea.set_value(ea2) self.chromosome_dict[ea.name] = ea.get_result() def reset(self): """Resets all the variables. Needed to eliminate class cross-contamination of class-global variables""" self.ea_list = [] self.chromosome_dict = {} self.meta_info = {} self.fitness = 0 self.population = [] self.generation = 0 self.data_list = [] def equals(self, g: "Genome") -> bool: """Does a deep compare of two Genomes. returns a True if they have the same structure and value(s) Parameters ---------- g : Genome The genome we are testing against """ d1 = self.create_args_from_chromo() d2 = g.create_args_from_chromo() if len(d1) != len(d2): return False for key, val in d1.items(): if d1[key] != d2[key]: return False return True def get_chromosome_value(self, key: str) -> Dict: """ Get the current value of a specified EvolveAxis Parameters ---------- key : str The name of the EvolveAxis """ return self.chromosome_dict[key] def mutate(self, chance: float = 0.1): """ Randomly set new values in the chromosomes that make up this genome Parameters ---------- chance : float = 0.1 The probability that any particular chromosome will mutate. Default is 10% """ ea: VA.EvolveAxis for ea in self.ea_list: if random.random() < chance: # mutate. # calculate a new random val self.chromosome_dict[ea.name] = ea.get_random_val() def create_args_from_chromo(self, chromo: dict = None) -> Dict: """ Creates a dictionary that provides values that can be evaluated using the callback function passed to the EvolutionaryOptimizer. An example of this is the function near the bottom of this file: def example_evaluation_function(arguments: Dict) -> Tuple[Dict, Dict]: The arguments:Dict parameter is created and returned by this method Parameters ---------- chromo : dict = None An optional chromosome. Otherwise the arguments are created by using this Genome's self.chromosome_dict """ if chromo == None: chromo = self.chromosome_dict to_return = {} ea: VA.EvolveAxis for ea in self.ea_list: to_return[ea.name] = ea.get_result() return to_return def create_dict_from_chromo(self, chromo: dict = None) -> Dict: """ Creates a dictionary that provides a detailed list of the parameters used by this genome. This differs from create_args_from_chromo() by including nested parameters of each EvolveAxis Parameters ---------- chromo : dict = None An optional chromosome. Otherwise the arguments are created by using this Genome's self.chromosome_dict """ if chromo == None: chromo = self.chromosome_dict to_return = {} ea: VA.EvolveAxis for ea in self.ea_list: dict = ea.get_last_history() for key, value in dict.items(): to_return["{}".format(key)] = value return to_return def calc_fitness(self, func: Callable, id_str: str) -> float: """ Depricated - Conceptually the heart of the approach. A pointer to a function is passed in, which is used to calculate the fitness of whatever is being evaluated and returns it. Parameters ---------- func : Callable The function that will produce some fitness value. It returns two Dicts (d1, d2), where d1 must contain a "fitness" value and d2, which contains data that will be recorded to the spreadsheet for post-hoc analysis id_str: str The name for this evaluation. Added to the argument Dict in case it is needed, for example, as a file name """ args = self.create_args_from_chromo(self.chromosome_dict) args[EvolverTags.ID.value] = id_str d1, d2 = func(args) self.data_list.append(d2) self.fitness = d1[EvolverTags.FITNESS.value] self.population.append(self.fitness) return self.fitness def calc_fitness2(self, args: Dict): """ Conceptually the heart of the approach. A pointer to a function is passed in, which is used to calculate the fitness of whatever is being evaluated. Parameters ---------- args : Dict Contains the arguments that will be passed to the evaluate function, and a reference to the function as well. The function is deleted from the arguments, and the remaining Dict os passed to the function, which is required to produce a fitness value. It returns two Dicts (d1, d2), where d1 must contain a {EvolverTags.FITNESS.value : <some fitness value>} and d2, which contains data that will be recorded to the spreadsheet for post-hoc analysis """ args.update(self.create_args_from_chromo()) func = args[EvolverTags.FUNCTION.value] del args[EvolverTags.FUNCTION.value] d1, d2 = func(args) self.data_list.append(d2) self.fitness = d1[EvolverTags.FITNESS.value] self.population.append(self.fitness) def calc_fitness_stats(self, resample_size: int = 100) -> float: """ Creates a bootstrap resampling of the fitness values that have accumulated for this genome. Since the fitness value may be stochastic, it's best to return a reasonable mean value. It returns the mean fitness value from this population, and saves the 5%, 95%, minimum, and maximum values for post-hoc analysis Parameters ---------- resample_size: int = 100 The size of the bootstrap population to resample into """ # print("calc_fitness_stats(): population = {}".format(len(self.population))) boot = resample(self.population, replace=True, n_samples=resample_size, random_state=1) s = pd.Series(boot) conf = st.t.interval(0.95, len(boot) - 1, loc=s.mean(), scale=st.sem(boot)) self.meta_info = {'mean': s.mean(), '5_conf': conf[0], '95_conf': conf[1], 'max': s.max(), 'min': s.min()} self.fitness = s.mean() return self.fitness def get_data_list(self) -> List: """ Returns the list of parameters for this genome over time for export to spreadsheet. printing, etc""" return self.data_list def get_name(self) -> str: """ Creates and returns a name constructed from the active key/value pairs in the active elements of the chromosomes""" d = self.create_dict_from_chromo() to_return = "" for key, val in d.items(): to_return += "{}_".format(val) return to_return.rstrip("_") def to_dict(self) -> Dict: """ Returns a Dict that contains all the meta information about this genome (population, generation, etc), and the current parameters and values """ to_return = {} to_return[EvolverTags.GENERATION.value] = self.generation for key, val in self.meta_info.items(): to_return[key] = val to_return.update(self.create_dict_from_chromo()) return to_return def to_string(self, meta: bool = True, chromo: bool = True) -> str: """ Returns a str that contains all the meta information about this genome (population, generation, etc), and the current parameters and values """ to_return = "generation = {}, ".format(self.generation, ) if meta: to_return += "meta: " for key, val in self.meta_info.items(): to_return += "{}:{:.3f}, ".format(key, val) if chromo: to_return += "chromo: {}".format(self.create_dict_from_chromo(self.chromosome_dict)) return to_return.rstrip(",") class EvolutionaryOpimizer: """ Class that manages the evolution of a population of Genomes ... Attributes ---------- evolve_axis_list:List = [] The master list of all the EvoveAxis that make up the Genomes. current_genome_list:List = [] The list of currently active Genomes all_genomes_list:List = [] The list of all Genomes, including inactive ones for post-hoc analysis best_genome_list:List = [] The list of highest-fitness Genomes, Typically the top 10% - 50% best_genome_history_list:List = [] The list of the best Genome from each of the generations keep_percent:float = 0.1 The percent to keep in the "best_genome" popuation. Default is 10% resample_size:int = 100 The bootstrap resample population. Default is 100 num_genomes:int = 10 The number of "live" Genomes in the population. Default is 10 generation:int = 0 The current generation logfile_name:str = "defaultLog.txt" The name of the debugging logfile. Useful for multithreading debugging threads:int = 0 Number of threads/gpus thread_label:str = "gpu" The label associated with the threads. Typically this would be "gpu", "tpu", or "cpu" last_num_regex = None A regex to get the last number in a string. Used to determine which thread a process is running in Methods ------- reset(self): Resets all the variables. Needed to eliminate class cross-contamination of class-global variables log(self, s: str): Opens the specifies log file, writes a string, and closes it add_axis(self, val_axis: VA.EvolveAxis): Adds an EvolveAxis to the master axis list - self.evolve_axis_list create_intital_genomes(self, num_genomes: int): create the genomes of generation 0 breed_genomes(self, g1: Genome, g2: Genome, crossover_rate: float, mutation_rate: float) -> Genome: Take two parent genomes and breed a child Genome, then mutate that child and return it thread_function(self, args: List): The function called by the thread pooler. All arguments are passed in in a Dict, including the function that will do the model creation and evaluation. The number of the thread is determined and used to configure which tensor processor (CPU:x, GPU:x, or TPU:x) this thread will utilize utilize. run_optimizer(self, eval_func: Callable, save_func: Callable, crossover_rate: float, mutation_rate: float) -> float: Method that handles the evolution of a single generation of our population of Genomes, and returns an average fitness for the Ensemble associated with the best Genome get_ranked_chromosome(self, rank: int = 0) -> Dict: Get the Genome of the current nth rank, and return its chromosome Dict get_ranked_genome(self, rank: int = 0) -> Genome: Get the Genome of the current nth rank, and return it save_results(self, file_name: str, data_dict: Dict = None): Save the results of this population's evolution to an Excel spreadsheet for post hoc analysis to_string(self, meta: bool = True, chromo: bool = True) -> str: Returns a string representation of this class """ evolve_axis_list: List = [] current_genome_list: List = [] all_genomes_list: List = [] best_genome_list: List = [] best_genome_history_list: List = [] keep_percent: float = 0.1 resample_size: int = 100 num_genomes: int = 10 generation: int = 0 logfile_name: str = "defaultLog.txt" threads: int = 0 thread_label: str = "gpu" last_num_regex = None def __init__(self, keep_percent: float = 0.1, pop_size: int = 10, resample_size: int = 100, threads: int = 0, logfile: str = None, thread_label: str = "gpu"): """ Ctor - Sets up the the EvolutionaryOpimizer, but does not create the populations, since the EvolveAxis haven't been added yet Parameters ---------- keep_percent : float The number of Genomes to keep from the previous generation. Defaults to 10% pop_size : int The number of Genomes in the population. Defaults to 10 resample_size : int The bootstap distribution size that we calculate statistics from threads : int The number of device-specific threads that this class will manage. Default is 0 """ self.reset() self.keep_percent = keep_percent self.num_genomes = pop_size self.resample_size = resample_size self.threads = threads self.thread_label = thread_label if logfile != None: self.logfile_name = logfile try: os.remove(self.logfile_name) except OSError as e: ## if failed, report it back to the user ## print("Error: %s - %s. Creating file." % (e.filename, e.strerror)) def reset(self): """ Resets all the variables. Needed to eliminate class cross-contamination of class-global variables """ self.evolve_axis_list = [] self.all_genomes_list = [] self.current_genome_list = [] self.best_genome_list = [] self.best_genome_history_list = [] self.keep_percent = 0.1 self.resample_size = 100 self.num_genomes = 10 self.generation = 0 self.threads = 0 self.thread_label = "gpu" last_num_in_str_re = '(\d+)(?!.*\d)' self.last_num_regex = re.compile(last_num_in_str_re) def log(self, s: str): """ Opens the specifies log file, writes a string, and closes it Parameters ---------- s : str The string to write to file """ with open(self.logfile_name, "a") as f: f.write("{}\n".format(s)) def add_axis(self, val_axis: VA.EvolveAxis): """ Adds an EvolveAxis to the master axis list - self.evolve_axis_list Parameters ---------- val_axis : EvolveAxis The initialized EvovleAxis """ self.evolve_axis_list.append(val_axis) def create_intital_genomes(self, num_genomes: int): """ create the genomes of generation 0 Parameters ---------- num_genomes : int The number of Genomes to create as our evolving population """ self.num_genomes = num_genomes for i in range(num_genomes): # create a genome without parents. This genome will be a member of generation 0 g = Genome(self.evolve_axis_list, generation=self.generation) # append to the list of currently active Genomes self.current_genome_list.append(g) # append to the list of all Genomes self.all_genomes_list.append(g) def breed_genomes(self, g1: Genome, g2: Genome, crossover_rate: float, mutation_rate: float) -> Genome: """ Take two parent genomes and breed a child Genome, then mutate that child and return it Parameters ---------- g1 : Genome Parent 1 g2 : Genome Parent 2 crossover_rate: float probability that a chromosome will be selected randomly from p1 mutation_rate: float The generation (as determined by the calling EvolutionaryOpimizer) that this genome belongs to """ g = Genome(self.evolve_axis_list, g1, g2, crossover_rate, generation=self.generation) g.mutate(mutation_rate) return g def thread_function(self, args: Dict): """ The function called by the thread pooler. All arguments are passed in in a Dict, including the function that will do the model creation and evaluation. The number of the thread is determined and used to configure which tensor processor (CPU:x, GPU:x, or TPU:x) this thread will utilize utilize. Parameters ---------- args : Dict The values that are needed to calculate and evaluate fitness. An example would be: {EvolverTags.ID.value: "eval_{}".format(i), EvolverTags.FUNCTION.value: eval_func, EvolverTags.GENOME.value: g} where i is the index in a list of Genomes, eval_func is a reference to the function that will calculate and evaluate fitness, and g is the Genome that contains the parameters to be evaluated """ # get the last number in the thread name. This is how we figure out the id of the device we'll use num = self.last_num_regex.search(threading.current_thread().name) # create the tf.distribute compatable argument for the device thread_str = "{}:{}".format(self.thread_label, int(num.group(0))) args[EvolverTags.THREAD_NAME.value] = thread_str # get the genome we'll evaluate and delete it from the arguments g = args[EvolverTags.GENOME.value] del args[EvolverTags.GENOME.value] # print("thread_func() args = {}".format(args)) # evaluate the genome, using the eval_func from the args Dict g.calc_fitness2(args) def run_optimizer(self, eval_func: Callable, save_func: Callable, crossover_rate: float, mutation_rate: float) -> float: """ Method that handles the evolution of a single generation of our population of Genomes, and returns an average fitness for the Ensemble associated with the best Genome Parameters ---------- eval_func: Callable The function that performs the construction and evaluation of the model save_func: Callable The function that performs the saving of the ensemble of models that crossover_rate: float probability that a chromosome will be selected randomly from p1 mutation_rate: float The generation (as determined by the calling EvolutionaryOpimizer) that this genome belongs to """ # increment the current generation first. This way we can tell the difference between these generations and the # initial, 'generation 0' Genomes self.generation += 1 # Declare types before the loop so the IDE knows what's going on g: Genome best_fitness = -1000.0 # iterate over all the current Genomes for g in self.current_genome_list: # set up the task list (needed for threading) task_list = [] for i in range(self.num_genomes): task = {EvolverTags.ID.value: "eval_{}".format(i), EvolverTags.FUNCTION.value: eval_func, EvolverTags.GENOME.value: g} task_list.append(task) # A population of 0 means that this is a new Genome. We don't have to re-calculate a Genome's fitness if len(g.population) == 0: if self.threads == 0: # if there are no threads, call g.calc_fitness directly. This makes debugging MUCH easier for t in task_list: g.calc_fitness2(t) else: # if there are threads, execute using the thread pool executing the thread_function with the # task_list as the set of parameters with concurrent.futures.ThreadPoolExecutor(max_workers=self.threads) as executor: executor.map(self.thread_function, task_list) # calculate the fitess statistics for the ensemble of models created for the Genome fitness = g.calc_fitness_stats(resample_size=self.resample_size) # if the fitness is better, save it if fitness > best_fitness: result = save_func(g.get_name()) self.log(result) best_fitness = fitness # log the new Genome, now that the values have been calculated. Note that we log all Genomes, # so we can see how effectively we're increasing fitness self.log(g.to_string(meta=True, chromo=True)) # sort the list in place soch that the highest value of fitness is at index zero self.current_genome_list.sort(key=lambda x: x.fitness, reverse=True) # self.log(self.to_string()) # determine how many Genomes we're going to keep. If we use the default population size of ten, and the # default keep_percent of 10%, then we would keep num_best = int(np.ceil(len(self.current_genome_list) * self.keep_percent)) self.best_genome_list = [] # build a list of the best performing Genomes by taking the top performing Genome(s) of this generation. # This could be the same Genome as the previous generation bg = self.current_genome_list[0] best_fitness = bg.fitness self.best_genome_history_list.append(bg) print("best: {}".format(bg.to_string(meta=True, chromo=False))) # append the best Genomes to the best_genome_list, and keep track of any new # best_fitness (This shouldn't change from above?) for i in range(num_best): g = self.current_genome_list[i] self.best_genome_list.append(g) best_fitness = max(best_fitness, g.fitness) # clear the current_genome_list out and repopulate self.current_genome_list = [] # first, add the best Genome(s) back in for g in self.best_genome_list: self.current_genome_list.append(g) # randomly breed new genomes with a chance of mutation. Stop when we've generated a population # of Genome's we've never had before while len(self.current_genome_list) < self.num_genomes: # choose two random parents, with replacement g1i = random.randrange(len(self.best_genome_list)) g2i = random.randrange(len(self.best_genome_list)) g1 = self.best_genome_list[g1i] g2 = self.best_genome_list[g2i] # create a new Genome for evaluation g = self.breed_genomes(g1, g2, crossover_rate, mutation_rate) # test against all previous Genomes for a match. If there is, we'll try again match = False for gtest in self.all_genomes_list: if g.equals(gtest): match = True break # if there is no match with a previous Genome, add it to the current_genome_list for evaluation # and the all_genomes_list history if not match: self.current_genome_list.append(g) self.all_genomes_list.append(g) # return the highest fitness for this set of Genomes return best_fitness def get_ranked_chromosome(self, rank: int = 0) -> Dict: """ Get the Genome of the current nth rank, and return its chromosome Dict Parameters ---------- rank: int = 0 The index of the Genome """ self.best_genome_history_list.sort(key=lambda x: x.fitness, reverse=True) g = self.best_genome_history_list[rank] c = g.chromosome_dict return c def get_ranked_genome(self, rank: int = 0) -> Genome: """ Get the Genome of the current nth rank, and return it Parameters ---------- rank: int = 0 The index of the Genome """ self.best_genome_history_list.sort(key=lambda x: x.fitness, reverse=True) g = self.best_genome_history_list[rank] return g def save_results(self, file_name: str, data_dict: Dict = None): """ Save the results of this population's evolution to an Excel spreadsheet for post hoc analysis Parameters ---------- file_name: str The name of the Excel file data_dict: Dict = None Optional dictionary of additional information to save """ print("save_results({})".format(file_name)) # sort the list self.best_genome_history_list.sort(key=lambda x: x.fitness, reverse=True) # create the setup Dict that will contain the meta information about this run setup = {} setup["user"] = getpass.getuser() setup["date"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") setup["resample_size"] = self.resample_size setup["keep percent"] = self.keep_percent setup["num genomes"] = self.num_genomes if data_dict: for key, val in data_dict.items(): setup[key] = val # create an Excel workbook wb = eu.ExcelUtils() wb.to_excel(file_name) # write the setup data to its own tab wb.dict_to_spreadsheet("setup", setup) # set up the list of best chromosomes. These is a sequential list of the # best chromosome for each generations chromosome_list = [] g: Genome for g in self.best_genome_history_list: chromosome_list.append(g.to_dict()) # save this list to its own tab wb.dict_list_matrix_to_spreadsheet("Chromosomes", chromosome_list) # write and close wb.finish_up() def to_string(self): """ Returns a string representation of this class """ str = "All genomes:\n" for g in self.current_genome_list: str += g.to_string() + "\n" str += "\nBest genomes:\n" for g in self.best_genome_list: str += g.to_string() + "\n" return str # The following code provides an example of how to use the EvolutionaryOptimizer class # This is an evaluation function that is passed to the Evolutionary Optomizer. There are three parameters passed in # using the 'arguments' Dict. X and Y are used to create a surface that can be visualized # (and are the only values used for an exhaustive search). An additional function parameter is added if available. # Two Dicts are returned, one with a fitness value, and one with an ID def example_evaluation_function(arguments: Dict) -> Tuple[Dict, Dict]: x = arguments['X'] + random.random() - 0.5 y = arguments['Y'] + random.random() - 0.5 val = np.cos(x) + x * .1 + np.sin(y) + y * .1 if 'Zfunc' in arguments: z = arguments['Zfunc'] + random.random() - 0.5 val += z return {EvolverTags.FITNESS.value: val}, { EvolverTags.FILENAME.value: "{}.tf".format(arguments[EvolverTags.ID.value])} # A stub of a save function that def example_save_function(name: str) -> str: return "would have new best value: {}".format(name) # The next four functions are used as elements of vzfunc EvolveAxis def plus_func(v1: float, v2: float) -> float: return v1 + v2 def minus_func(v1: float, v2: float) -> float: return v1 - v2 def mult_func(v1: float, v2: float) -> float: return v1 * v2 def div_func(v1: float, v2: float) -> float: if v2 > 0: return v1 / v2 return 0 # The main entry point if used as a standalone example if __name__ == '__main__': # create the x and y values for our surface. For this example, these are intervals from -5 to 5, with a step of 0.25 v1 = VA.EvolveAxis("X", VA.ValueAxisType.FLOAT, min=-5, max=5, step=0.25) v2 = VA.EvolveAxis("Y", VA.ValueAxisType.FLOAT, min=-5, max=5, step=0.25) # create an Evolve axis that contains a List of functions, and two EvolveAxis that will be the arguments for those functions. # First, we create a List of function references func_array = [plus_func, minus_func, mult_func, div_func] # Next, we create the vzfunc EvolveAxis, using the List of functions vzfunc = VA.EvolveAxis("Zfunc", VA.ValueAxisType.FUNCTION, range_array=func_array) # Add child EvolveAxis that can provide the arguments to the functions. The order that they are instanced is # the order in the function's argument list vzvals = VA.EvolveAxis("Zvals1", VA.ValueAxisType.FLOAT, parent=vzfunc, min=0, max=5, step=0.5) vzvals = VA.EvolveAxis("Zvals2", VA.ValueAxisType.FLOAT, parent=vzfunc, min=0, max=5, step=0.5) # do an exhaustive evaluation for comparison. Each time a new, better value is found, add it to the list for plotting prev_fitness = -10 num_exhaust = 0 exhaustive_list = [] for x in range(len(v1.range_array)): for y in range(len(v2.range_array)): num_exhaust += 1 args = {'X': v1.range_array[x], 'Y': v2.range_array[y], EvolverTags.ID.value: "eval_[{}]_[{}]".format(x, y)} d1, d2 = example_evaluation_function(args) cur_fitness = d1[EvolverTags.FITNESS.value] if (cur_fitness > prev_fitness): prev_fitness = cur_fitness exhaustive_list.append(cur_fitness) # now do it using evoultionary fitness landscape evaluation # create an instance of the EvolutionaryOpimizer that keeps the top 50% of the genomes for each generation. # Threads can equal the number of processors. Zero is best for stepping through code in a debugger eo = EvolutionaryOpimizer(keep_percent=.5, threads=0) # add the EvolveAxis. Order doesn't matter here eo.add_axis(v1) eo.add_axis(v2) eo.add_axis(vzfunc) # create an initial population of 10 genomes eo.create_intital_genomes(10) # run for the same number of steps that it took to create the exhaustive list. Note - this is completely arbitrary # so that some nice plots can be made. In an actual version, there should ba a max number of iterations that a fitness # no longer improves # create a List of fitness values to plot evolve_list = [] # set the number of generations num_generations = len(exhaustive_list) * 2 for i in range(num_generations): # evolve a generation, providing the evaluation and save functions, and a crossover and mutation rate of 50% fitness = eo.run_optimizer(example_evaluation_function, example_save_function, 0.5, 0.5) evolve_list.append(fitness) # print("best fitness = {:.3f}".format(fitness)) # print the genomes print("xxxxxxxxxxxxxxxx\n{}".format(eo.to_string())) best_genome = eo.get_ranked_genome(0) best_genome_data = best_genome.get_data_list() d: Dict print("best genome = {}".format(best_genome.get_name())) for i in range(len(best_genome_data)): d = best_genome_data[i] for key, val in d.items(): print("data [{}]: {} = {}".format(i, key, val)) # save the results to a spreadsheet for post hoc analysis eo.save_results("evolve_test.xlsx") # plot the exhaustive and evolve sequences. The exhaustive line is almost deterministic and will pretty much look # the same for each run. The evolved line is stochastic, and can change significantly for each run fig = plt.figure(1) plt.plot(exhaustive_list) plt.plot(evolve_list) plt.legend(["exhaustive ({} iterations)".format(num_exhaust), "evolved ({} iterations)".format(num_generations)]) # draw a picture of our XY fitness landscape. This is the same range used to create the axis and the same equation in # def example_evaluation_function(arguments: Dict) -> Dict: fig = plt.figure(2) ax = fig.gca(projection='3d') # Make our 3d surface using the same equation in example_evaluation_function() X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.cos(X) + X * .1 +
np.sin(Y)
numpy.sin
""" Add Cell Connectivity To Points ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Example for :class:`PVGeo.filters.AddCellConnToPoints` This filter will add **linear** cell connectivity between scattered points. You have the option to add ``VTK_LINE`` or ``VTK_POLYLINE`` connectivity. ``VTK_LINE`` connectivity makes a straight line between the points in order (either in the order by index or using a nearest neighbor calculation). The ``VTK_POLYLINE`` adds polyline connectivity between all points as one spline (either in the order by index or using a nearest neighbor calculation). """ ############################################################################### # sphinx_gallery_thumbnail_number = 2 import numpy as np import pyvista from PVGeo import points_to_poly_data from PVGeo.filters import AddCellConnToPoints ############################################################################### # First, lets generate some points which we'd like to connect def path1(y): """Equation: x = a(y-h)^2 + k""" a = -110.0 / 160.0 ** 2 x = a * y ** 2 + 110.0 idxs = np.argwhere(x > 0) return x[idxs][:, 0], y[idxs][:, 0] x, y = path1(np.arange(0.0, 200.0, 25.0)) zo = np.linspace(9.0, 11.0, num=len(y)) coords = np.vstack((x, y, zo)).T # Shuffle points to demonstrate value of Nearest Neighbor
np.random.shuffle(coords)
numpy.random.shuffle
# OneZone.py: simple one-zone chemical evolution models from functools import wraps import numpy from scipy import optimize import hashlib from astropy import units as u def _recalc_model(method): @wraps(method) def wrapper(*args,**kwargs): new_model_hash= args[0]._model_hash() if new_model_hash != args[0]._current_model_hash: args[0]._update_timescales() args[0]._calc_equilibrium() args[0]._current_model_hash= new_model_hash new_solar_hash= args[0]._solar_hash() if new_solar_hash != args[0]._current_solar_hash: args[0]._calc_solar() args[0]._current_solar_hash= new_solar_hash return method(*args,**kwargs) return wrapper _defaults= {'eta':2.5, 'tau_SFE': 1.*u.Gyr, 'tau_SFH': 6.*u.Gyr, 'tau_Ia': 1.5*u.Gyr, 'min_dt_Ia': 0.15*u.Gyr, 'sfh': 'exp', 'mCC_O': 0.015, 'mCC_Fe': 0.0012, 'mIa_O': 0., 'mIa_Fe': 0.0017, 'r': 0.4, 'tau_Ia_2': None, 'frac_Ia_2': 0.522, 'solar_O': 8.69, 'solar_Fe': 7.47} class OneZone(object): """OneZone: simple one-zone chemical evolution models""" def __init__(self,**kwargs): """ NAME: __init__ PURPOSE: Setup a simple OneZone chemical-evolution object using the analytical formalism from Weinberg, Andrews, & Freudenberg (2017) INPUT: The following can be updated on-the-fly: eta= (2.5) outflow mass loading factor as a fraction of SFR (float) tau_SFE= (1 Gyr) star-formation efficiency time scale (Quantity with units of time) tau_SFH= (6 Gyr) star-formation exponential decay time scale sfh= ('exp') use an exponential ['exp'] or linear-exponential ['linexp'] star-formation history tau_Ia= (1.5 Gyr) SNe Ia exponential decay time scale min_dt_Ia= (150 Myr) minimum time delay for SNe Ia mCC_O= (0.015) mass fraction of oxygen returned by core-collapse SNe (mass of O / stellar mass formed) mCC_Fe= (0.0012) mass fraction of iron returned by core-collapse SNe (mass of O / stellar mass formed) mIa_O= (0.) mass fraction of oxygen returned by SNe Ia (mass of O / stellar mass formed) mIa_Fe= (0.0017) mass fraction of iron returned by SNe Ia (mass of O / stellar mass formed) r= (0.4) mass recycling parameter (core-collapse SNe + AGB returns): amount of mass returned at abundances of star at birth solar_O= (8.69) solar oxygen number density on the x_O = 12 + log10(X_O/H) scale solar_Fe=7.47 solar iron number density on the x_O = 12 + log10(X_O/H) scale tau_Ia_2= (None) SNe Ia exponential decay time scale for second Ia component (useful when approximating t^{-1.1} delay time distribution) frac_Ia_2= (0.522) fraction of Ias coming from the second decay time scale (useful when approximating t^{-1.1} delay time distribution) OUTPUT: instance HISTORY: 2018-07-09 - Written - Bovy (UofT) 2018-11-01 - Added second Ia component for approximxating t^{-1.1} decay distribution - Bovy (UofT) """ self._initialize_params(**kwargs) # Setup hash for storing models self._current_model_hash= None self._current_solar_hash= None return None def _initialize_params(self,**kwargs): self._init_params= {} # To store initial for key in _defaults.keys(): self.__dict__[key]= kwargs.get(key,_defaults[key]) self._init_params[key]= kwargs.get(key,_defaults[key]) return None def initial(self): for key in _defaults.keys(): self.__dict__[key]= self._init_params[key] return None def default(self): for key in _defaults.keys(): self.__dict__[key]= _defaults[key] return None def __str__(self): out= '' for key in sorted(_defaults.keys()): out+= '{0:<10}:\t{1}\n'.format(key,self.__dict__[key]) return out[:-1] def _calc_solar(self): self._logZO_solar= -2.25+self.solar_O-8.69 self._logZFe_solar= -2.93+self.solar_Fe-7.47 return None # Equilibrium and model parameters def _update_timescales(self): # Update all relevant timescales for the model based on the current # model parameters self._tau_dep= self.tau_SFE/(1.+self.eta-self.r) self._tau_dep_SFH= 1./(1./self._tau_dep-1./self.tau_SFH) self._tau_dep_Ia= 1./(1./self._tau_dep-1./self.tau_Ia) self._tau_Ia_SFH= 1./(1./self.tau_Ia-1./self.tau_SFH) if not self.tau_Ia_2 is None: self._tau_dep_Ia_2= 1./(1./self._tau_dep-1./self.tau_Ia_2) self._tau_Ia_SFH_2= 1./(1./self.tau_Ia_2-1./self.tau_SFH) return None def _calc_equilibrium(self): self._ZO_CC_eq= self.mCC_O*self._tau_dep_SFH/self.tau_SFE self._ZO_Ia_eq= self.mIa_O*self._tau_dep_SFH/self.tau_SFE\ *self._tau_Ia_SFH/self.tau_Ia\ *numpy.exp(self.min_dt_Ia/self.tau_SFH) self._ZFe_CC_eq= self.mCC_Fe*self._tau_dep_SFH/self.tau_SFE self._ZFe_Ia_eq= self.mIa_Fe*self._tau_dep_SFH/self.tau_SFE\ *self._tau_Ia_SFH/self.tau_Ia\ *numpy.exp(self.min_dt_Ia/self.tau_SFH) if not self.tau_Ia_2 is None: self._ZO_Ia_eq*= (1.-self.frac_Ia_2) self._ZFe_Ia_eq*= (1.-self.frac_Ia_2) self._ZO_Ia_eq_2= self.frac_Ia_2*self.mIa_O\ *self._tau_dep_SFH/self.tau_SFE\ *self._tau_Ia_SFH_2/self.tau_Ia_2\ *numpy.exp(self.min_dt_Ia/self.tau_SFH) self._ZFe_Ia_eq_2= self.frac_Ia_2*self.mIa_Fe\ *self._tau_dep_SFH/self.tau_SFE\ *self._tau_Ia_SFH_2/self.tau_Ia_2\ *numpy.exp(self.min_dt_Ia/self.tau_SFH) return None # Time evolution equations def _evol_CC(self,t): if self.sfh.lower() == 'exp': return (1.-numpy.exp(-t/self._tau_dep_SFH)) else: return (1.-self._tau_dep_SFH/t *(1.-numpy.exp(-t/self._tau_dep_SFH))) def _evol_Ia(self,t,tau_dep_Ia,tau_Ia_SFH): # Ia contribution dt= t-self.min_dt_Ia idx= dt > 0. out= numpy.zeros(t.shape) if self.sfh.lower() == 'exp': out[idx]+= \ (1.-
numpy.exp(-dt[idx]/self._tau_dep_SFH)
numpy.exp
import numpy as np from baselines import util import os import copy import nltk #import crf import scipy.special import sklearn class HMM: """ Hidden Markov Model """ def __init__(self, n, m): """ fix n, m :param n: number of states :param m: number of observations """ self.n = n self.m = m self.t = np.zeros((n, n)) self.e = np.zeros((n, m)) self.start = np.asarray([1.0 / n] * n) def pr_obs(self, i, list_features, t=None): """ :param i: state :param list_features: :param t: time, not used here :return: probability of observing the features in state i """ res = 1 for f in list_features: res *= self.e[i, f] return res def decode(self, a, include_crowd_obs=False): """ Viterbi decoding :param a: seq of observations, each observation is a list of features :return: """ l = len(a) if l == 0: return [] # c[t][i] = prob of best path time t, at state i c = np.zeros((l, self.n)) c[0] = np.copy(self.start) # * self.e[:, a[0]] # print self.n, c.shape for i in range(self.n): c[0][i] *= self.pr_obs(i, a[0]) # b[t][i] = backpointer b = np.zeros((l, self.n)) for t in range(1, l, 1): # time ob = a[t] for i in range(self.n): # current state for j in range(self.n): # previous state # todo: change to log scale p = c[t - 1][j] * self.t[j, i] * self.pr_obs(i, ob) if include_crowd_obs: p *= self.pr_crowd_labs(t, i, self.current_list_cl) # print t, i, j, p if p > c[t][i]: c[t][i] = p b[t][i] = j # normalise otherwise p ends up as zeros with long sequences c_t_total = 0 for i in range(self.n): c_t_total += c[t][i] for i in range(self.n): c[t][i] /= c_t_total res = np.zeros((l,)) # trace p = 0 for i in range(self.n): if c[l - 1][i] > p: p = c[l - 1][i] res[l - 1] = i seq_prob = p for t in range(l - 2, -1, -1): res[t] = b[int(t + 1), int(res[t + 1])] # print c # print b return res, seq_prob def learn(self, sentences, smooth=0.001): """ learn parameters from labeled data :param sentences: list of sentence, which is list of instance :return: """ # counting self.t = smooth * np.ones((self.n, self.n)) self.e = smooth * np.ones((self.n, self.m)) self.start = smooth * np.ones((self.n,)) for sentence in sentences: if len(sentence) > 0: i = sentence[0] self.start[i.label] += 1 prev = -1 # previous state for i in sentence: state = i.label if prev != -1: self.t[prev][state] += 1 for f in i.features: self.e[state][int(f)] += 1 prev = state # save count for e self.count_e = copy.deepcopy(self.e) # normalizing self.start = self.start * 1.0 / np.sum(self.start) for i in range(self.n): self.t[i] = self.t[i] * 1.0 / np.sum(self.t[i]) self.e[i] = self.e[i] * 1.0 / np.sum(self.e[i]) def decode_all(self, sentences): self.res = [] self.res_prob = [] for s in sentences: mls, mls_prob = self.decode(util.get_obs(s)) self.res.append(mls) self.res_prob.append(mls_prob) ########################################################################## ########################################################################## ########################################################################## ########################################################################## class WorkerModel: """ model of workers """ def __init__(self, n_workers = 47, n_class = 10, smooth = 0.001, ne = 9, rep = 'cv'): """ :param n_workers: :param n_class: :param smooth: :param ne: :param rep: representation. cv2 = confusion vec of accuracy in two cases: non-entity/ entity """ self.n_workers = n_workers self.n = n_class self.smooth = smooth self.ne = ne self.rep = rep def learn_from_pos(self, data, pos): """ :param data: crowd_data :param pos: sentence posterior :return: """ count = self.smooth * np.ones( (self.n_workers, self.n, self.n)) for i, sentence in enumerate(data.sentences): for j in range(len(sentence)): for l, w in data.get_lw(i, j): for k in range(self.n): # 'true' label = k count[w][k][l] += pos[i][j][k] self.learn_from_count(count) def learn_from_count(self, count): """ :return: """ #save the count for debug self.count = count if self.rep == 'cv2': ne = self.ne self.cv = np.zeros((self.n_workers, 2)) for w in range(self.n_workers): self.cv[w][0] = count[w][ne][ne] * 1.0 / np.sum(count[w][ne]) # accuracy for ne class cc = self.smooth; cw = self.smooth # count for correct and wrong for non ne classes for i in range(self.n): if i != ne: cc += count[w][i][i] cw += np.sum(count[w][i]) - count[w][i][i] self.cv[w][1] = cc * 1.0 / (cc + cw) elif self.rep == 'cv': self.cv = np.zeros((self.n_workers, self.n)) for w in range(self.n_workers): if np.mod(w, 100) == 0: print('M-step, processing worker counts %i of %i' % (w, self.n_workers)) for i in range(self.n): self.cv[w][i] = count[w][i][i] * 1.0 / np.sum(count[w][i]) # accuracy for ne class elif self.rep == 'cm_sage': self.cm = np.zeros((self.n_workers, self.n, self.n)) # background dist m = np.sum(count, axis=0) for i in range(self.n): m[i] = m[i] * 1.0 / np.sum(m[i]) m = np.log(m) for w in range(self.n_workers): for i in range(self.n): temp = additive.estimate(count[w][i], m[i]) temp = np.reshape(temp, (self.n,) ) self.cm[w][i] = np.exp(temp + m[i]) self.cm[w][i] = self.cm[w][i] * 1.0 / np.sum(self.cm[w][i]) else: self.cm = np.zeros((self.n_workers, self.n, self.n)) for w in range(self.n_workers): for k in range(self.n): self.cm[w][k] = count[w][k] * 1.0 / np.sum(count[w][k]) def get_prob(self, w, true_lab, lab): """ :param w: worker :param true_lab: :param lab: :return: probability of response lab given true label """ #return 1.0 if self.rep == 'cv2': if self.ne == true_lab: if true_lab == lab: return self.cv[w][0] else: return (1 - self.cv[w][0]) / float(self.n - 1) else: if true_lab == lab: return self.cv[w][1] else: return (1 - self.cv[w][1]) / float(self.n - 1) elif self.rep == 'cv': if true_lab == lab: return self.cv[w][true_lab] else: return (1 - self.cv[w][true_lab]) / float(self.n - 1) elif self.rep == 'cm_sage': return self.cm[w][true_lab][lab] else: return self.cm[w][true_lab][lab] class HMM_crowd(HMM): def __init__(self, n, m, data, features, labels, n_workers=47, init_w=0.9, smooth=0.001, smooth_w=10, ne = 9, vb = None): """ :param data: util.crowd_data with crowd label :return: """ HMM.__init__(self, n, m) self.data = data self.smooth = smooth self.n_workers = n_workers self.ep = 1e-300 self.features = features self.labels = labels self.init_w = init_w self.ne = ne #self.wsen = np.zeros((n_workers,)) #self.wspe = np.zeros((n_workers,)) self.wca = np.zeros((n, n_workers)) #self.ne = labels['O'] # id of 'non entity' label self.ne = ne self.smooth_w = smooth_w self.n_sens = len(data.sentences) self.vb = vb def pr_crowd_labs(self, t, i, list_cl): """ :param t: time :param i: the state :param list_cl: list of util.crowddlab :return: probability of observing crowd labels at state i """ res = 1# * self.prior[i] for cl in list_cl: wid = cl.wid sen = cl.sen lab = sen[t] # crowd label # if i == self.ne: # res *= self.wspe[wid] if lab == i else 1 - self.wspe[wid] # specificity # else: # res *= self.wsen[wid] if lab == i else 1 - self.wsen[wid] # # sensitivity #res *= self.wca[i, wid] if lab == i else 1 - self.wca[i, wid] #res *= self.wa[wid][i][lab] res *= self.wm.get_prob(wid, i, lab) return res def inference(self, sentence, list_cl, return_ab=False): T = len(sentence) # number of timesteps alpha = np.zeros((T, self.n)) # T * states beta = np.zeros((T, self.n)) # alpha (forward): for i in range(self.n): alpha[0][i] = self.pr_obs( i, sentence[0].features) * self.pr_crowd_labs(0, i, list_cl) * self.start[i] for t in range(1, T, 1): ins = sentence[t] alpha_t_sum = 0 for i in range(self.n): # current state alpha[t][i] = 0 for j in range(self.n): # previous state alpha[t][i] += self.pr_obs(i, ins.features) * self.t[j][i] * alpha[t - 1][j] \ * self.pr_crowd_labs(t, i, list_cl) alpha_t_sum += alpha[t][i] # normalise for i in range(self.n): alpha[t][i] /= alpha_t_sum # beta (backward): for i in range(self.n): beta[T - 1][i] = self.pr_obs(i, sentence[T - 1].features) * \ self.pr_crowd_labs(T - 1, i, list_cl) for t in range(T - 2, -1, -1): ins = sentence[t + 1] beta_t_sum = 0 for i in range(self.n): # current state beta[t][i] = 0 for j in range(self.n): # next state beta[t][i] += self.pr_obs(j, ins.features) * self.t[i][j] * beta[t + 1][j] \ * self.pr_crowd_labs(t + 1, j, list_cl)#\ #* (self.start[i] if t == 0 else 1) beta_t_sum += beta[t][i] for i in range(self.n): beta[t][i] /= beta_t_sum if return_ab: return (alpha, beta) sen_posterior = [] # update counts p = np.zeros((self.n,)) for t in range(T): for i in range(self.n): p[i] = self.ep + alpha[t][i] * beta[t][i] p = p * 1.0 / np.sum(p) # normalilze #save the posterior sen_posterior.append(p.copy()) if t == 0: # update start counts self.count_start += p # update prior count #self.count_prior += p # update emission counts ins = sentence[t] for i in range(self.n): for f in ins.features: self.count_e[i][f] += p[i] # update crowd params counts for i in range(self.n): # state for cl in list_cl: wid = cl.wid # worker ans lab = cl.sen[t] # if i == self.ne: # if lab == self.ne: # self.count_spe[wid][0] += p[i] # else: # self.count_spe[wid][1] += p[i] # else: # if lab == self.ne: # self.count_sen[wid][0] += p[i] # else: # self.count_sen[wid][1] += p[i] #if lab == i: # self.count_wa[i, wid][1] += p[i] #else: # self.count_wa[i, wid][0] += p[i] self.count_wa[wid][i][lab] += p[i] trans_pos = [] # update transition counts for t in range(T - 1): p = np.zeros((self.n, self.n)) ins = sentence[t+1] for i in range(self.n): # state at time t for j in range(self.n): # state at time t+1 p[i][j] = self.ep + alpha[t][i] * self.t[i][j] * self.pr_obs(j, ins.features) \ * self.pr_crowd_labs(t + 1, j, list_cl) * beta[t + 1][j] # update transition counts p = p * 1.0 / np.sum(p) for i in range(self.n): #p[i] = p[i] * 1.0 / np.sum(p[i]) self.count_t[i] += p[i] trans_pos.append(p.copy()) # log likelihood ll = np.log( np.sum(alpha[t-1]) ) return (sen_posterior, trans_pos, ll) def e_step(self): """ do alpha-beta passes :return: """ # setup counting self.count_t = self.smooth * np.ones((self.n, self.n)) self.count_e = self.smooth * np.ones((self.n, self.m)) self.count_start = self.smooth * np.ones((self.n,)) #self.count_sen = self.smooth * np.ones((self.n_workers,2)) #self.count_spe = self.smooth * np.ones((self.n_workers, 2)) #self.count_wca = self.smooth_w * np.ones((self.n, self.n_workers, 2)) #self.count_prior = self.smooth * np.ones( (self.n,) ) self.count_wa = self.smooth * np.ones( (self.n_workers, self.n, self.n) ) self.sen_posterior = [] self.trans_posterior = [] sum_ll = 0 for i, sentence in enumerate(self.data.sentences): if np.mod(i, 100) == 0: print('E-step, processing sentence %i of %i' % (i, len(self.data.sentences))) if len(sentence) > 0: sen_pos, trans_pos, ll = self.inference(sentence, self.data.crowdlabs[i]) sum_ll += ll else: sen_pos, trans_pos = ([], []) self.sen_posterior.append (sen_pos) self.trans_posterior.append(trans_pos) # save sum of log-likelihood self.sum_ll = sum_ll def m_step(self): if self.vb != None: self.m_step_vb() return # normalize all the counts self.start = self.count_start * 1.0 / np.sum(self.count_start) #self.prior = self.count_prior * 1.0 / np.sum(self.count_prior) for i in range(self.n): if np.mod(i, 100) == 0: print('M-step, processing class counts %i of %i' % (i, self.n)) self.t[i] = self.count_t[i] * 1.0 / np.sum(self.count_t[i]) self.e[i] = self.count_e[i] * 1.0 / np.sum(self.count_e[i]) self.wm.learn_from_count(self.count_wa) #for w in range(self.n_workers): #self.wsen[w] = self.count_sen[w][1] * 1.0 / (self.count_sen[w][0] + self.count_sen[w][1]) #self.wspe[w] = self.count_spe[w][0] * 1.0 / (self.count_spe[w][0] + self.count_spe[w][1]) #ne = self.ne #self.wca[ne, w] = self.count_wca[ne, w][1] * 1.0 / \ # (self.count_wca[ne, w][0] + self.count_wca[ne, w][1]) # sum over pos class (not include non-entity) #sum_pos_1 = np.sum( # self.count_wca[:, w, 1]) - self.count_wca[ne, w, 1] #sum_pos_0 = np.sum( # self.count_wca[:, w, 0]) - self.count_wca[ne, w, 0] #for i in range(self.n): # if i != ne: #self.wca[i, w] = self.count_wca[i, w][1] * 1.0 / (self.count_wca[i, w][0] + self.count_wca[i, w][1]) # self.wca[i, w] = sum_pos_1 * 1.0 / (sum_pos_1 + sum_pos_0) #for i in range(self.n): # self.wa[w][i] = self.count_wa[w][i] * 1.0 / np.sum(self.count_wa[w][i]) #self.wm.learn_from_pos(self.data, self.sen_posterior) def m_step_vb(self): """ use Variational Bayes """ self.start = self.count_start * 1.0 / np.sum(self.count_start) f = lambda x: np.exp( scipy.special.digamma(x)) for i in range(self.n): if np.mod(i, 100) == 0: print('VB M-step, processing class counts %i of %i' % (i, self.n)) self.count_t[i] = self.count_t[i] - self.smooth + self.vb[0] self.count_e[i] = self.count_e[i] - self.smooth + self.vb[1] self.t[i] = f(self.count_t[i] * 1.0) / f(np.sum(self.count_t[i])) self.e[i] = f(self.count_e[i] * 1.0) / f(np.sum(self.count_e[i])) self.wm.learn_from_count(self.count_wa) def init_te_from_pos(self, pos): """ init transition and emission from posterior """ self.t = self.smooth * np.ones((self.n, self.n)) self.e = self.smooth * np.ones((self.n, self.m)) self.start = self.smooth * np.ones((self.n,)) for sentence, p in zip(self.data.sentences, pos): if len(sentence) > 0: self.start += p[0] for t, ins in enumerate(sentence): for i in range(self.n): #current state for f in ins.features: self.e[i][f] += p[t][i] if t > 0: for j in range(self.n): #previous state self.t[j][i] += p[t-1][j] * p[t][i] # normalizing self.start = self.start * 1.0 / np.sum(self.start) for i in range(self.n): self.t[i] = self.t[i] * 1.0 / np.sum(self.t[i]) self.e[i] = self.e[i] * 1.0 / np.sum(self.e[i]) def init(self, init_type='mv', sen_a=1, sen_b=1, spe_a=1, spe_b=1, wm_rep = 'cv', save_count_e = False, dw_em = 5, wm_smooth = 0.001): """ :param init_type: :param sen_a: :param sen_b: :param spe_a: :param spe_b: priors for sen, spe expect MV to over-estimate worker :return: """ if init_type == 'mv': h = HMM(self.n, self.m) mv_sen = util.mv_cd(self.data, self.labels) h.learn(mv_sen, smooth=self.smooth) for i in range(self.n): self.start[i] = h.start[i] #(correct_0, correct_1, wrong_0, wrong_1) = util.cal_workers_true_acc(self.data, util.get_all_lab(mv_sen), ne = self.ne) self.wca = util.cal_workers_true_acc( self.data, util.get_all_lab(mv_sen), ne=self.ne, return_ss=True) # for i in range(self.n_workers): #self.wsen[i] = (correct_1[i] + sen_a) * 1.0 / (wrong_1[i] + correct_1[i] + sen_a + sen_b) #self.wsen[i] = 0.5 #self.wspe[i] = (correct_0[i] + spe_a) * 1.0 / (wrong_0[i] + correct_0[i] + spe_a + spe_b) for s in range(self.n): for s2 in range(self.n): self.t[s][s2] = h.t[s][s2] # for s in range(self.n): for o in range(self.m): self.e[s][o] = h.e[s][o] #save the count of e for hmm_sage if save_count_e: self.count_e = h.count_e #self.init2() elif init_type == 'dw': d = dw(self.n, self.m, self.data, self.features, self.labels, self.n_workers, self.init_w, self.smooth) d.init() d.em(dw_em) d.mls() self.d = d h = HMM(self.n, self.m) sen = copy.deepcopy(self.data.sentences) util.make_sen(sen, d.res) h.learn(sen, smooth = self.smooth) #self.wm = WorkerModel() #self.wm.learn_from_pos(self.data, d.pos) self.wm = WorkerModel(n_workers = self.n_workers, n_class = self.n, rep=wm_rep, ne = self.ne, smooth = wm_smooth) self.wm.learn_from_pos(self.data, d.pos) self.start = h.start for s in range(self.n): for s2 in range(self.n): self.t[s][s2] = h.t[s][s2] # for s in range(self.n): for o in range(self.m): self.e[s][o] = h.e[s][o] #self.init_te_from_pos(d.pos) #save the count of e for sage if save_count_e: self.count_e = h.count_e self.h = h else: # init params (uniform) for i in range(self.n): self.start[i] = 1.0 / self.n self.wa = [0.9] * self.n_workers for s in range(self.n): for s2 in range(self.n): self.t[s][s2] = 1.0 / self.n for s in range(self.n): for o in range(self.m): self.e[s][o] = 1.0 / self.m for w in range(self.n_workers): #self.wsen[i] = 0.9 #self.wspe[i] = 0.6 for i in range(self.n): self.wca[i, w] = 0.8 def init2(self): """ init """ pos = [] self.prior = np.zeros( (self.n,) ) for i, sentence in enumerate(self.data.sentences): pos.append( self.smooth * np.ones((len(sentence), self.n)) ) for j in range(len(sentence)): for l in self.data.get_labs(i, j): # labels for sen i, pos j pos[i][j][l] += 1 pos[i][j] = pos[i][j] * 1.0 / np.sum(pos[i][j]) self.prior += pos[i][j] self.prior = self.prior * 1.0 / np.sum(self.prior) def learn(self, num=4): """ learn by EM :return: """ # init params (uniform) # for i in range(self.n): # self.start[i] = 1.0/self.n # self.wa = [0.9] * self.n_workers # for s in range(self.n): # for s2 in range(self.n): # self.t[s][s2] = 1.0/self.n # # for s in range(self.n): # for o in range(self.m): # self.e[s][o] = 1.0/self.m self.init() self.em(num) def em(self, num=4): # run EM for it in range(num): print('HMM-crowd running e-step %i of %i' % (it, num)) self.e_step() print('HMM-crowd running m-step %i of %i' % (it, num)) self.m_step() def mls(self): """ compute the most likely states seq for all sentences :return: """ self.res = [] self.res_prob = [] for s, sentence in enumerate(self.data.sentences): if len(sentence) > 0: self.current_list_cl = self.data.crowdlabs[s] ml_states, ml_probs = self.decode(util.get_obs( sentence), include_crowd_obs=True) self.res.append(ml_states) self.res_prob.append(ml_probs) else: self.res.append([]) self.res_prob.append(1) def marginal_decode(self, th): """ decode by marginal prob """ self.res = [] for i in range(len(self.data.sentences)): temp = [] for j in range(len(self.sen_posterior[i])): temp.append ( np.argmax(self.sen_posterior[i][j]) ) self.res.append(temp) def decode_sen_no(self, s): self.current_list_cl = self.data.crowdlabs[s] sentence = self.data.sentences[s] ml_states, ml_probs = self.decode(util.get_obs( sentence), include_crowd_obs=True) return ml_states def threshold(self, thresh = 0.9): self.flag = np.zeros((self.n_sens,), dtype=bool) for i, r in enumerate(self.res): for j, l in enumerate(r): if self.posterior[i][j][int(l)] < thresh: self.flag[i] = True def pos_decode(pos, th, ne = 9): """ decode by posterior: res = argmax if pro > th else res = ne """ res = [] for i in range(len(pos)): temp = [] for j in range(len(pos[i])): #p = copy.copy(pos[i][j]) #p[ne] = -1 k = np.argmax(pos[i][j]) if pos[i][j][k] > th: temp.append(k) else: temp.append(ne) res.append(temp) return res ########################################################################## ########################################################################## class HMM_sage(HMM_crowd): def __init__(self, n, m, data, features, labels, n_workers=47, init_w=0.9, smooth=0.001, smooth_w=10): HMM_crowd.__init__(self, n, m, data, features, labels, n_workers, init_w, smooth) HMM.eta = np.zeros((self.m, self.n)) def init(self, init_type = 'dw', wm_rep = 'cm'): HMM_crowd.init(self, init_type=init_type, wm_rep=wm_rep, save_count_e = True) self.estimate_sage() def estimate_sage(self, mult = 2.0): # dont do sage for non-entity self.count_e[self.ne, :] = np.zeros((self.m,)) eq_m = np.sum(self.count_e, axis=0) / np.sum(self.count_e) #eq_m = 1.0 / self.m * np.ones((self.m)) eq_m = np.log(eq_m) eta = additive.estimate(mult*self.count_e.T, eq_m) for i in range(self.n): if i != self.ne: self.e[i] = np.exp(eta[:, i] + eq_m) * 1.0 / \ np.sum(np.exp(eta[:, i] + eq_m)) # save eq_m and eta self.eq_m = eq_m self.eta = eta def m_step(self): HMM_crowd.m_step(self) self.estimate_sage() class dw(HMM_crowd): """ """ def __init__(self, n, m, data, features, labels, n_workers=47, init_w=0.9, smooth=0.001, smooth_w=10): """ n: number of states :param data: util.crowd_data with crowd label :return: """ HMM_crowd.__init__(self, n, m, data, features, labels, n_workers, init_w, smooth) def init(self): self.pos = [] self.prior = np.zeros( (self.n,) ) for i, sentence in enumerate(self.data.sentences): self.pos.append( self.smooth * np.ones((len(sentence), self.n)) ) for j in range(len(sentence)): for l in self.data.get_labs(i, j): # labels for sen i, pos j self.pos[i][j][l] += 1 self.pos[i][j] = self.pos[i][j] * 1.0 / np.sum(self.pos[i][j]) self.prior += self.pos[i][j] self.prior = self.prior * 1.0 / np.sum(self.prior) def e_step(self): for i, sentence in enumerate(self.data.sentences): if np.mod(i, 100) == 0: print('dw e-step, sentence %i of %i' % (i, len(self.data.sentences))) self.pos[i] = np.ones( (len(sentence), self.n) ) for j in range(len(sentence)): self.pos[i][j] = self.prior.copy() for l, w in self.data.get_lw(i, j): # labels for sen i, pos j self.pos[i][j] *= self.wa[w][:,l] self.pos[i][j] = self.pos[i][j] * 1.0 / np.sum(self.pos[i][j]) def m_step(self): count = self.smooth * np.ones ( (self.n_workers, self.n, self.n) ) count_prior = self.smooth * np.ones_like(self.prior) #get-another-label heuristic: 0.9 to diagonal, uniform to elsewhere print('dw m-step') for w in range(self.n_workers): #print('dw m-step, worker %i of %i' % (w, self.n_workers)) for i in range(self.n): for j in range(self.n): count[w][i][j] = 0.9 if i == j else 0.1 / (self.n-1) for i, sentence in enumerate(self.data.sentences): #print('dw w-step, sentence %i of %i' % (i, len(self.data.sentences))) for j in range(len(sentence)): count_prior += self.pos[i][j] for l, w in self.data.get_lw(i,j): for k in range(self.n): # 'true' label = k count[w][k][l] += self.pos[i][j][k] self.prior = count_prior * 1.0 / np.sum(count_prior) self.wa = np.zeros( (self.n_workers, self.n, self.n) ) for w in range(self.n_workers): #print('dw m-step part 3, worker %i of %i' % (w, self.n_workers)) for k in range(self.n): self.wa[w][k] = count[w][k] * 1.0 / np.sum(count[w][k]) def em(self, iterations = 3): self.init() self.m_step() for it in range(iterations): self.e_step() self.m_step() def mls(self): self.res = [] for i, sentence in enumerate(self.data.sentences): self.res.append([0] * len(sentence)) for j in range(len(sentence)): self.res[i][j] = np.argmax(self.pos[i][j]) ########################################################################## ########################################################################## data_atis = 'atis3_features.txt' def run_test(test, h): cnt = 0 correct = 0 for s in test: x = util.get_obs(s) g = util.get_lab(s) p = h.decode(x) for i, j in zip(g, p): cnt += 1 if i == j: correct += 1 print(correct * 1.0 / cnt) def run(smooth, filename=data_atis): #train, test, features, labels = util.load(filename) #train, test, features, labels = util.load('data/WSJ_all.txt', 0.49) train, test, features, labels = util.load('atis3_features.txt') n = len(labels) + 1 m = len(features) + 1 h = HMM(n, m) h.learn(train, smooth) run_test(test, h) return h def run_crowd(filename='atis3_features.txt'): train, test, features, labels = util.load(filename) n = len(labels) + 1 m = len(features) + 1 s = util.simulator(train, features, labels, 1) s.simulate() hc = HMM_crowd(n, m, s.cd, features, labels) return hc def split_rod(all_sen, cd, features, labels): """ split rod data into validation/test """ n = len(all_sen) / 2 sen_val = all_sen[:n] sen_test = all_sen[n:] cd_val = util.crowd_data(sen_val, cd.crowdlabs[:n]) cd_test = util.crowd_data(sen_test, cd.crowdlabs[n:]) return (sen_val, sen_test, cd_val, cd_test) def run_rod(smooth = 0.001, dirname = 'task1/val/'): """ use_set: validation or test """ #if use_set == 'val': # dirname = 'task1/val/' #elif use_set == 'test': # dirname = 'task1/test/' #else: # dirname = '' # read ground truth all_sen, features, labels, docs = util.read_rod(dirname = dirname + 'ground_truth') # read crowd labels cd = util.read_workers_rod(all_sen, features, labels, docs, dirname = dirname + 'mturk_train_data') n = len(labels) + 1 m = len(features) + 1 hc = HMM_crowd(n, m, cd, features, labels, smooth = smooth) hs = HMM_sage(n, m, cd, features, labels, smooth = smooth) return hs, hc, all_sen, features, labels def list_entities(sen, st, inside): """ list the occurence of an entity """ n = len(sen) res = [] i = 0 while i < n: if sen[i] == st: x = i i += 1 while i < n and sen[i] == inside: i += 1 res.append((x, i - 1)) else: i += 1 return res def eval_ner(gold, sen, labels): """ evaluate NER """ if len(gold) != len(sen): print(len(gold), len(sen)) raise "lenghts not equal" tp = 0 #tn = 0 fp = 0 fn = 0 list_en = ["LOC", "MISC", "ORG", "PER"] for en in list_en: g = list_entities(gold, labels["B-" + en], labels["I-" + en]) s = list_entities(sen, labels["B-" + en], labels["I-" + en]) for loc in g: if loc in s: tp += 1 else: fn += 1 for loc in s: if loc not in g: fp += 1 return (tp, fp, fn) def eval_hc_train(hc, labels, print_err = False): """ evaluate in the train set :param hc: :param labels: :return: """ n = len(hc.res) tp = 0 fp = 0 fn = 0 for i in range(n): if len(hc.data.sentences[i]) > 0: (x, y, z) = eval_ner(util.get_lab( hc.data.sentences[i]), hc.res[i], labels) tp += x fp += y fn += z try: pre = tp * 1.0 / (tp + fp) rec = tp * 1.0 / (tp + fn) f = 2.0 * pre * rec / (pre + rec) print(pre, rec, f) except ZeroDivisionError: print("DIV BY 0 ", tp, fp, fn) def has_oov(sen): for i in sen: for j in i.features: if j == 0: return True return False def get_tag_hc(hc, sen): return hc.decode(util.get_obs(sen)) def get_tag_t(tagger, sen, features): words = [] for i in sen: words.append(i.word) x = nltk.pos_tag(words) x = [crf.word2features(x, i) for i in range(len(x))] tags = tagger.tag(x) return list(map(int, tags)) def get_tag(f, sen, features, decoder): if decoder == 'hc': return get_tag_hc(f, sen) else: return get_tag_t(f, sen, features) def eval_hc_test(hc, features, labels, print_err=False, decoder='hc'): """ evaluate in the train set :param hc: :param labels: :return: """ tp = 0 fp = 0 fn = 0 dirname = "testa" input = [] for file in os.listdir(dirname): # print file if file.endswith(".txt"): f = open(os.path.join(dirname, file)) l = list(f) input.extend(l) f.close() # return input sentences = util.extract(input, features, labels, keep_word = True) # return sentences for sen in sentences: if True: # if not has_oov(sen): #predicted = hc.decode(util.get_obs(sen)) predicted = get_tag(hc, sen, features, decoder) (x, y, z) = eval_ner(util.get_lab(sen), predicted, labels) tp += x fp += y fn += z if print_err: if y + z > 0: print("sen: ", util.get_words(sen, features) + " OOV = " + str(has_oov(sen))) print("true labels: ", util.get_lab_name(util.get_lab(sen), labels)) print("predicted: ", util.get_lab_name(predicted, labels)) try: pre = tp * 1.0 / (tp + fp) rec = tp * 1.0 / (tp + fn) f = 2.0 * pre * rec / (pre + rec) print(pre, rec, f) except ZeroDivisionError: print("DIV BY 0 ", tp, fp, fn) def eval_seq_train(gold, pre, labels, hc = None, features = None): """ evaluate a sequence labeler """ n = len(gold) tp = 0 fp = 0 fn = 0 for i in range(n): (x, y, z) = eval_ner(gold[i], pre[i], labels) tp += x fp += y fn += z if hc != None: if y + z > 0: sen = hc.sentences[i] print("sen: ", util.get_words(sen, features) + " OOV = " + str(has_oov(sen))) print("true labels: ", util.get_lab_name(gold[i], labels)) print("predicted: ", util.get_lab_name(pre[i], labels)) try: pre = tp * 1.0 / (tp + fp) rec = tp * 1.0 / (tp + fn) f = 2.0 * pre * rec / (pre + rec) print(pre, rec, f) except ZeroDivisionError: print("DIV BY 0 ", tp, fp, fn) return (pre, rec, f) def eval_pico_word_bs(gold, res, n = 100, l = 0, r = 950, seed = 33): """ use bootstrap re-sample """ rs = np.random.RandomState() rs.seed(seed) a = rs.permutation(len(gold)) b = [] # list of indices to use for index in a[l:r]: b.append(index) list_p = []; list_r = []; list_f = [] for bs in range(n): c = sklearn.utils.resample(b, random_state = bs) cm = np.zeros( (2,2) ) for index in c: g = gold[index] i = g[0] t = g[1] for x, y in zip(t, res[i]): cm[x][y] += 1 p = cm[1][1] * 1.0 / (cm[1][1] + cm[0][1]) r = cm[1][1] * 1.0 / (cm[1][1] + cm[1][0]) f = 2 * p * r / (p + r) list_p.append(p); list_r.append(r); list_f.append(f) print(
np.mean(list_p)
numpy.mean
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Sawyer environment for pushing objects.""" import metaworld.envs.mujoco.cameras as camera_configs from metaworld.google import glfw import mujoco_py import numpy as np from collections import OrderedDict from gym.spaces import Dict, Box from metaworld.envs.env_util import get_stat_in_paths, \ create_stats_ordered_dict, get_asset_full_path from metaworld.envs.mujoco.sawyer_xyz.base import SawyerXYZEnv from metaworld.envs.mujoco.utils.rotation import euler2quat from metaworld.envs.mujoco.sawyer_xyz.base import OBS_TYPE sideview_cam = camera_configs.create_sawyer_camera_init( lookat=(0.2, 0.75, 0.4), distance=0.8, elevation=-55, azimuth=180, trackbodyid=-1, ) topview_cam = camera_configs.create_sawyer_camera_init( lookat=(0., 1.0, 0.5), distance=0.6, elevation=-45, azimuth=270, trackbodyid=-1, ) # list of changes # object position has been changed to have lower variance # the constant for pushing reward has been changed from 1000 -> 10 # added reset_goal function # the observation "with_goal" has been changed class SawyerReachPushPickPlaceEnv(SawyerXYZEnv): def __init__( self, random_init=False, task_types=['pick_place', 'reach', 'push'], task_type='pick_place', obs_type='plain', goal_low=(-0.1, 0.8, 0.05), goal_high=(0.1, 0.9, 0.3), liftThresh=0.04, sampleMode='equal', rotMode='fixed', #'fixed', **kwargs): self.quick_init(locals()) hand_low = (-0.5, 0.40, 0.05) hand_high = (0.5, 1, 0.5) obj_low = (-0.02, 0.58, 0.02) obj_high = (0.02, 0.62, 0.02) SawyerXYZEnv.__init__( self, frame_skip=5, action_scale=1. / 100, hand_low=hand_low, hand_high=hand_high, model_name=self.model_name, **kwargs) self.task_type = task_type self.init_config = { 'obj_init_angle': .3, 'obj_init_pos': np.array([0, 0.6, 0.02]), 'hand_init_pos': np.array([0, .6, .2]), } # we only do one task from [pick_place, reach, push] # per instance of SawyerReachPushPickPlaceEnv. # Please only set task_type from constructor. if self.task_type == 'pick_place': self.goal = np.array([0.1, 0.8, 0.2]) elif self.task_type == 'reach': self.goal = np.array([-0.1, 0.8, 0.2]) elif self.task_type == 'push': self.goal = np.array([0.1, 0.8, 0.02]) else: raise NotImplementedError self.obj_init_angle = self.init_config['obj_init_angle'] self.obj_init_pos = self.init_config['obj_init_pos'] self.hand_init_pos = self.init_config['hand_init_pos'] assert obs_type in OBS_TYPE self.obs_type = obs_type if goal_low is None: goal_low = self.hand_low if goal_high is None: goal_high = self.hand_high self.random_init = random_init self.liftThresh = liftThresh self.max_path_length = 150 self.rotMode = rotMode self.sampleMode = sampleMode self.task_types = task_types if rotMode == 'fixed': self.action_space = Box( np.array([-1, -1, -1, -1]), np.array([1, 1, 1, 1]), ) elif rotMode == 'rotz': self.action_rot_scale = 1. / 50 self.action_space = Box( np.array([-1, -1, -1, -np.pi, -1]), np.array([1, 1, 1, np.pi, 1]), ) elif rotMode == 'quat': self.action_space = Box( np.array([-1, -1, -1, 0, -1, -1, -1, -1]), np.array([1, 1, 1, 2 * np.pi, 1, 1, 1, 1]), ) else: self.action_space = Box( np.array([-1, -1, -1, -np.pi / 2, -np.pi / 2, 0, -1]), np.array([1, 1, 1, np.pi / 2, np.pi / 2, np.pi * 2, 1]), ) self.obj_and_goal_space = Box( np.hstack((obj_low, goal_low)), np.hstack((obj_high, goal_high)), ) self.goal_space = Box(np.array(goal_low), np.array(goal_high)) if self.obs_type == 'plain': self.observation_space = Box( np.hstack(( self.hand_low, obj_low, )), np.hstack(( self.hand_high, obj_high, )), ) elif self.obs_type == 'with_goal': self.observation_space = Box( np.hstack((self.hand_low, obj_low, goal_low)), np.hstack((self.hand_high, obj_high, goal_high)), ) else: raise NotImplementedError('If you want to use an observation\ with_obs_idx, please discretize the goal space after instantiate an environment.' ) self.num_resets = 0 self.reset() def get_goal(self): return { 'state_desired_goal': self._state_goal, } @property def model_name(self): return get_asset_full_path( 'sawyer_xyz/sawyer_reach_push_pick_and_place.xml') def step(self, action): if self.rotMode == 'euler': action_ = np.zeros(7) action_[:3] = action[:3] action_[3:] = euler2quat(action[3:6]) self.set_xyz_action_rot(action_) elif self.rotMode == 'fixed': self.set_xyz_action(action[:3]) elif self.rotMode == 'rotz': self.set_xyz_action_rotz(action[:4]) else: self.set_xyz_action_rot(action[:7]) self.do_simulation([action[-1], -action[-1]]) # The marker seems to get reset every time you do a simulation self._set_goal_marker(self._state_goal) ob = self._get_obs() obs_dict = self._get_obs_dict() reward, reachRew, reachDist, pushRew, pushDist, pickRew, placeRew, placingDist = self.compute_reward( action, obs_dict, mode=self.rewMode, task_type=self.task_type) self.curr_path_length += 1 #info = self._get_info() if self.curr_path_length == self.max_path_length: done = True else: done = False goal_dist = placingDist if self.task_type == 'pick_place' else pushDist if self.task_type == 'reach': success = float(reachDist <= 0.05) else: success = float(goal_dist <= 0.07) info = { 'reachDist': reachDist, 'pickRew': pickRew, 'epRew': reward, 'goalDist': goal_dist, 'success': success } info['goal'] = self._state_goal return ob, reward, done, info def _get_obs(self): hand = self.get_endeff_pos() objPos = self.data.get_geom_xpos('objGeom') flat_obs = np.concatenate( (hand, objPos - hand)) # delta position from the hand if self.obs_type == 'with_goal_and_id': return np.concatenate([flat_obs, self._state_goal, self._state_goal_idx]) elif self.obs_type == 'with_goal': return np.concatenate([flat_obs, self._state_goal - objPos ]) # delta position of the goal from the object elif self.obs_type == 'plain': return np.concatenate([ flat_obs, ]) # TODO ZP do we need the concat? else: return np.concatenate([flat_obs, self._state_goal_idx]) def _get_obs_dict(self): hand = self.get_endeff_pos() objPos = self.data.get_geom_xpos('objGeom') flat_obs = np.concatenate((hand, objPos)) return dict( state_observation=flat_obs, state_desired_goal=self._state_goal, state_achieved_goal=objPos, ) def _get_info(self): pass def _set_goal_marker(self, goal): """ This should be use ONLY for visualization. Use self._state_goal for logging, learning, etc. """ self.data.site_xpos[self.model.site_name2id('goal_{}'.format( self.task_type))] = ( goal[:3]) for task_type in self.task_types: if task_type != self.task_type: self.data.site_xpos[self.model.site_name2id( 'goal_{}'.format(task_type))] = ( np.array([10.0, 10.0, 10.0])) def _set_objCOM_marker(self): """ This should be use ONLY for visualization. Use self._state_goal for logging, learning, etc. """ objPos = self.data.get_geom_xpos('objGeom') self.data.site_xpos[self.model.site_name2id('objSite')] = (objPos) def _set_obj_xyz(self, pos): qpos = self.data.qpos.flat.copy() qvel = self.data.qvel.flat.copy() qpos[9:12] = pos.copy() qvel[9:15] = 0 self.set_state(qpos, qvel) def sample_goals(self, batch_size): # Required by HER-TD3 goals = self.sample_goals_(batch_size) if self.discrete_goal_space is not None: goals = [self.discrete_goals[g].copy() for g in goals] return { 'state_desired_goal': goals, } def sample_task(self): idx = self.sample_goals_(1) return self.discrete_goals[idx] def adjust_initObjPos(self, orig_init_pos): #This is to account for meshes for the geom and object are not aligned #If this is not done, the object could be initialized in an extreme position diff = self.get_body_com('obj')[:2] - self.data.get_geom_xpos('objGeom')[:2] adjustedPos = orig_init_pos[:2] + diff #The convention we follow is that body_com[2] is always 0, and geom_pos[2] is the object height return [ adjustedPos[0], adjustedPos[1], self.data.get_geom_xpos('objGeom')[-1] ] def reset_goal(self, goal=None): # choose one of the discrete ends for a goal if none is given if goal is None: discrete_goal_list = np.array([[0.0, 0.9, 0.02], [0.0, 0.3, 0.02], [-0.3, 0.6, 0.02], [0.3, 0.6, 0.02]]) goal_idx = [ 0, 2, 3 ][np.random.choice(3)] # skip the back goal as it is not reachable goal = discrete_goal_list[goal_idx] solve_reverse_task = np.random.choice( 1) # goal-object reversal to simulate potential reset problems if solve_reverse_task: goal = np.concatenate([goal[:2], [self.obj_init_pos[-1]]]) self.obj_init_pos, goal = goal, self.obj_init_pos self._set_obj_xyz(self.obj_init_pos) # update the chosen goal in environment self._state_goal = np.concatenate((goal[:2], [self.obj_init_pos[-1]])) self._set_goal_marker(self._state_goal) # update quantities for reward calculation rightFinger, leftFinger = self.get_site_pos( 'rightEndEffector'), self.get_site_pos('leftEndEffector') self.init_fingerCOM = (rightFinger + leftFinger) / 2 self.maxReachDist = np.linalg.norm(self.init_fingerCOM - np.array(self._state_goal)) self.maxPushDist = np.linalg.norm(self.obj_init_pos[:2] - np.array(self._state_goal)[:2]) self.maxPlacingDist = np.linalg.norm( np.array( [self.obj_init_pos[0], self.obj_init_pos[1], self.heightTarget]) - np.array(self._state_goal)) + self.heightTarget self.target_rewards = [ 1000 * self.maxPlacingDist + 1000 * 2, 1000 * self.maxReachDist + 1000 * 2, 10 * self.maxPushDist + 10 * 2 ] if self.task_type == 'reach': idx = 1 elif self.task_type == 'push': idx = 2 else: idx = 0 self.target_reward = self.target_rewards[idx] def reset_model(self): self._reset_hand() self._state_goal = self.goal.copy() self.obj_init_pos = self.adjust_initObjPos(self.init_config['obj_init_pos']) self.obj_init_angle = self.init_config['obj_init_angle'] self.objHeight = self.data.get_geom_xpos('objGeom')[2] self.heightTarget = self.objHeight + self.liftThresh if self.random_init: goal_pos = np.random.uniform( self.obj_and_goal_space.low, self.obj_and_goal_space.high, size=(self.obj_and_goal_space.low.size), ) if self.task_type == 'push': self.obj_init_pos = np.concatenate( (goal_pos[:2], [self.obj_init_pos[-1]])) else: self.obj_init_pos = goal_pos[:3] self._set_obj_xyz(self.obj_init_pos) self.reset_goal() # segregate the call to goal resetting for reuse later #self._set_obj_xyz_quat(self.obj_init_pos, self.obj_init_angle) self.curr_path_length = 0 self.num_resets += 1 return self._get_obs() def reset_model_to_idx(self, idx): raise NotImplementedError('This API is deprecated! Please explicitly\ call `set_goal_` then reset the environment.') def _reset_hand(self): for _ in range(10): self.data.set_mocap_pos('mocap', self.hand_init_pos) self.data.set_mocap_quat('mocap', np.array([1, 0, 1, 0])) self.do_simulation([-1, 1], self.frame_skip) rightFinger, leftFinger = self.get_site_pos( 'rightEndEffector'), self.get_site_pos('leftEndEffector') self.init_fingerCOM = (rightFinger + leftFinger) / 2 self.pickCompleted = False def get_site_pos(self, siteName): _id = self.model.site_names.index(siteName) return self.data.site_xpos[_id].copy() def compute_rewards(self, actions, obsBatch): #Required by HER-TD3 assert isinstance(obsBatch, dict) == True obsList = obsBatch['state_observation'] rewards = [ self.compute_reward(action, obs, task_type=self.task_type)[0] for action, obs in zip(actions, obsList) ] return np.array(rewards) def compute_reward(self, actions, obs, mode='general', task_type='reach'): if isinstance(obs, dict): obs = obs['state_observation'] objPos = obs[3:6] rightFinger, leftFinger = self.get_site_pos( 'rightEndEffector'), self.get_site_pos('leftEndEffector') fingerCOM = (rightFinger + leftFinger) / 2 heightTarget = self.heightTarget goal = self._state_goal def compute_reward_reach(actions, obs, mode): c1 = 1000 c2 = 0.01 c3 = 0.001 reachDist = np.linalg.norm(fingerCOM - goal) # reachRew = -reachDist # if reachDist < 0.1: # reachNearRew = 1000*(self.maxReachDist - reachDist) + c1*(np.exp(-(reachDist**2)/c2) + np.exp(-(reachDist**2)/c3)) # else: # reachNearRew = 0. reachRew = c1 * (self.maxReachDist - reachDist) + c1 * ( np.exp(-(reachDist**2) / c2) + np.exp(-(reachDist**2) / c3)) reachRew = max(reachRew, 0) # reachNearRew = max(reachNearRew,0) # reachRew = -reachDist reward = reachRew # + reachNearRew return [reward, reachRew, reachDist, None, None, None, None, None] def compute_reward_push(actions, obs, mode): c1 = 10 c2 = 0.01 c3 = 0.001 assert np.all(goal == self.get_site_pos('goal_push')) reachDist = np.linalg.norm(fingerCOM - objPos) pushDist = np.linalg.norm(objPos[:2] - goal[:2]) reachRew = -reachDist if reachDist < 0.05: # pushRew = -pushDist pushRew = c1 * (self.maxPushDist - pushDist) + c1 * ( np.exp(-(pushDist**2) / c2) + np.exp(-(pushDist**2) / c3)) pushRew = max(pushRew, 0) else: pushRew = 0 reward = self.reach_reward_scale * reachRew + pushRew return [reward, reachRew, reachDist, pushRew, pushDist, None, None, None] def compute_reward_pick_place(actions, obs, mode): reachDist = np.linalg.norm(objPos - fingerCOM) placingDist = np.linalg.norm(objPos - goal) assert np.all(goal == self.get_site_pos('goal_pick_place')) def reachReward(): reachRew = -reachDist # + min(actions[-1], -1)/50 reachDistxy = np.linalg.norm(objPos[:-1] - fingerCOM[:-1]) zRew = np.linalg.norm(fingerCOM[-1] - self.init_fingerCOM[-1]) if reachDistxy < 0.05: #0.02 reachRew = -reachDist else: reachRew = -reachDistxy - 2 * zRew #incentive to close fingers when reachDist is small if reachDist < 0.05: reachRew = -reachDist + max(actions[-1], 0) / 50 return reachRew, reachDist def pickCompletionCriteria(): tolerance = 0.01 if objPos[2] >= (heightTarget - tolerance): return True else: return False if pickCompletionCriteria(): self.pickCompleted = True def objDropped(): return (objPos[2] < (self.objHeight + 0.005)) and (placingDist > 0.02) and (reachDist > 0.02) # Object on the ground, far away from the goal, and from the gripper #Can tweak the margin limits def objGrasped(thresh=0): sensorData = self.data.sensordata return (sensorData[0] > thresh) and (sensorData[1] > thresh) def orig_pickReward(): # hScale = 50 hScale = 100 # hScale = 1000 if self.pickCompleted and not (objDropped()): return hScale * heightTarget # elif (reachDist < 0.1) and (objPos[2]> (self.objHeight + 0.005)) : elif (reachDist < 0.1) and (objPos[2] > (self.objHeight + 0.005)): return hScale * min(heightTarget, objPos[2]) else: return 0 def general_pickReward(): hScale = 50 if self.pickCompleted and objGrasped(): return hScale * heightTarget elif objGrasped() and (objPos[2] > (self.objHeight + 0.005)): return hScale * min(heightTarget, objPos[2]) else: return 0 def placeReward(): # c1 = 1000 ; c2 = 0.03 ; c3 = 0.003 c1 = 1000 c2 = 0.01 c3 = 0.001 if mode == 'general': cond = self.pickCompleted and objGrasped() else: cond = self.pickCompleted and (reachDist < 0.1) and not (objDropped()) if cond: placeRew = 1000 * (self.maxPlacingDist - placingDist) + c1 * ( np.exp(-(placingDist**2) / c2) +
np.exp(-(placingDist**2) / c3)
numpy.exp
import numpy as np import random import copy from collections import namedtuple, deque import torch import torch.nn.functional as F import torch.optim as optim from model_ddpg import Actor, Critic from replay_buffer import ReplayBuffer, PrioritizedReplayBuffer BUFFER_SIZE = int(1e6) # replay buffer size START_SIZE = int(1e3) # when to start training BATCH_SIZE = 128 # minibatch size GAMMA = 0.99 # discount factor TAU = 0.05 # for soft update of target parameters LR_ACTOR = 1e-4 # learning rate of the actor LR_CRITIC = 3e-4 # learning rate of the critic WEIGHT_DECAY = 0 # L2 weight decay TRAIN_EVERY = 5 # how often to train a batch TRAIN_STEPS = 10 # how many training steps when a batch is trained device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Agent(): """Interacts with and learns from the environment.""" def __init__(self, num_agents, state_size, action_size, random_seed, use_per=False): """Initialize an Agent object. Params ====== num_agents (int): number of agents state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed use_per (bool): whether to use prioritized replay buffer """ self.num_agents = num_agents self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) self.use_per = use_per # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory if use_per: self.memory = PrioritizedReplayBuffer(BUFFER_SIZE, BATCH_SIZE) else: self.memory = ReplayBuffer(BUFFER_SIZE, BATCH_SIZE, random_seed) # Initialize time step self.t_step = 0 def get_critic_Q(self, states, actions, rewards, next_states, dones, gamma, is_train=True): # Get max predicted Q values (for next states) from target model if is_train: actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * (1 - dones) * Q_targets_next) Q_expected = self.critic_local(states, actions) else: self.actor_local.eval() self.actor_target.eval() self.critic_local.eval() self.critic_target.eval() with torch.no_grad(): actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * (1 - dones) * Q_targets_next) Q_expected = self.critic_local(states, actions) self.actor_local.train() self.actor_target.train() self.critic_local.train() self.critic_target.train() return Q_expected, Q_targets def step(self, states, actions, rewards, next_states, dones): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward if self.use_per: # Convert numpy array to torch tensor states = torch.from_numpy(states).float().to(device) actions = torch.from_numpy(actions).float().to(device) rewards = torch.from_numpy(np.array(rewards)).float().unsqueeze(1).to(device) next_states = torch.from_numpy(next_states).float().to(device) dones = torch.from_numpy(np.array(dones).astype(np.uint8)).float().unsqueeze(1).to(device) # Get max predicted Q values (for next states) from target model Q_expected, Q_targets = self.get_critic_Q(states, actions, rewards, next_states, dones, GAMMA, is_train=False) # Convert torch tensor to numpy array states = states.cpu().data.numpy() actions = actions.cpu().data.numpy() rewards = rewards.cpu().data.numpy().squeeze(1).tolist() next_states = next_states.cpu().data.numpy() dones = dones.cpu().data.numpy().squeeze(1).astype(np.bool).tolist() # Calculate error errors = Q_expected - Q_targets errors = errors.cpu().data.numpy().squeeze(1) for i in range(self.num_agents): self.memory.add(states[i], actions[i], rewards[i], next_states[i], dones[i], errors[i]) else: for i in range(self.num_agents): self.memory.add(states[i], actions[i], rewards[i], next_states[i], dones[i]) # Update time step self.t_step += 1 # If enough samples are available in memory, if len(self.memory) >= START_SIZE: # Get random subset and learn every TRAIN_EVERY time steps, if self.t_step % TRAIN_EVERY == 0: for _ in range(TRAIN_STEPS): if self.use_per: experiences, idx_tree, is_weight = self.memory.sample() self.learn(experiences, GAMMA, idx_tree, is_weight) else: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, states, add_noise=True): """Returns epsilon-greedy actions for given state as per current policy.""" states = torch.from_numpy(states).float().to(device) self.actor_local.eval() with torch.no_grad(): actions = self.actor_local(states).cpu().data.numpy() self.actor_local.train() if add_noise: actions += np.concatenate([np.expand_dims(self.noise.sample(), axis=0) for _ in range(self.num_agents)], axis=0) return
np.clip(actions, -1, 1)
numpy.clip
from DartDeepRNN.rnn.RNNController import RNNController from DartDeepRNN.util.Pose2d import Pose2d from DartDeepRNN.util.Util import * from OpenGL.GL import * from OpenGL.GLU import * from fltk import * from PyCommon.modules.GUI.hpSimpleViewer import hpSimpleViewer as SimpleViewer from PyCommon.modules.Renderer import ysRenderer as yr from PyCommon.modules.Math import mmMath as mm from PyCommon.modules.Motion import ysMotion as ym from PyCommon.modules.Resource import ysMotionLoader as yf from PyCommon.modules.dart.dart_ik import DartIk import pydart2 as pydart import numpy as np MOTION_SCALE = .01 joint_point_list = [None, "Head_End", "LeftHand", "LeftFoot", "LeftToeBase", "RightHand", "RightFoot", "RightToeBase", "LeftArm", "RightArm", "LeftForeArm", "LeftLeg", "RightForeArm", "RightLeg", "Spine", "LeftHandIndex1", "RightHandIndex1", "Neck1", "LeftUpLeg", "RightUpLeg"] joint_list = ["Head", "Hips", "LHipJoint", "LeftArm", "LeftFoot", "LeftForeArm", "LeftHand", "LeftLeg", "LeftShoulder", "LeftToeBase", "LeftUpLeg", "LowerBack", "Neck", "Neck1", "RHipJoint", "RightArm", "RightFoot","RightForeArm","RightHand", "RightLeg","RightShoulder","RightToeBase","RightUpLeg", "Spine","Spine1"] class ModelViewer(object): def __init__(self, folder): pydart.init() self.world = pydart.World(1./1200., "../data/cmu_with_ground.xml") self.model = self.world.skeletons[1] self.ik = DartIk(self.model) self.controller = RNNController(folder) self.all_angles = [[] for i in range(93)] viewer = SimpleViewer(rect=[0, 0, 1280+300, 720+1+55], viewForceWnd=False) self.viewer = viewer # viewer.record(True) viewer.record(False) viewer.setMaxFrame(10000) self.isFirst = True self.lines = None viewer.motionViewWnd.glWindow.set_mouse_pick(True) def callback_btn(ptr): self.controller.reset() viewer.objectInfoWnd.addBtn('reset', callback_btn) self.rc = yr.RenderContext() self.rd_target_position = [None] self.rd_frames = [None] viewer.doc.addRenderer('contact', yr.PointsRenderer(self.rd_target_position, (0, 255, 0), save_state=False)) viewer.doc.addRenderer('MotionModel', yr.DartRenderer(self.world, (150,150,255), yr.POLYGON_FILL, save_state=False)) viewer.doc.addRenderer('rd_frames', yr.FramesRenderer(self.rd_frames)) def extraDrawCallback(): self.rd_target_position[0] = self.viewer.motionViewWnd.glWindow.pickPoint self.step_model() del self.rd_frames[:] self.rd_frames.append(self.model.body(0).world_transform()) # for i in range(3): # print(self.model.body(0).world_transform()[:3, i]) viewer.setExtraDrawCallback(extraDrawCallback) viewer.startTimer(1. / 30.) viewer.show() # viewer.play() Fl.run() def get_target(self): p = self.viewer.motionViewWnd.glWindow.pickPoint target = Pose2d([p[0]/MOTION_SCALE, -p[2]/MOTION_SCALE]) target = self.controller.pose.relativePose(target) target = target.p t_len = v_len(target) if t_len > 80: ratio = 80/t_len target[0] *= ratio target[1] *= ratio return target def step_model(self): contacts, points, angles, orientations, root_orientation = self.controller.step(self.get_target()) # pairs = [[0,11,3,4], # [0,8,10,2], # [0,13,6,7], # [0,9,12,5], # [0,1]] pairs = [[0,18,11,3,4], [0,14,8,10,2], [0,19,13,6,7], [0,14,9,12,5], [0,14,17,1]] self.lines = [] for pair in pairs: for i in range(len(pair)-1): self.lines.append([points[pair[i]], points[pair[i+1]]]) # print(len(orientations)) for i in range(len(angles)): self.all_angles[i].append(angles[i]) for j in range(len(self.model.joints)): if j == 0: joint = self.model.joints[j] # type: pydart.FreeJoint joint_idx = joint_list.index(joint.name) hip_angles = mm.logSO3(np.dot(root_orientation, orientations[joint_idx])) # hip_angles = mm.logSO3(root_orientation) joint.set_position(np.array([hip_angles[0], hip_angles[1], hip_angles[2], points[0][0], points[0][1], points[0][2]])) continue joint = self.model.joints[j] # type: pydart.BallJoint joint_idx = joint_list.index(joint.name) joint.set_position(angles[joint_idx*3:joint_idx*3+3]) self.ik.clean_constraints() self.ik.add_joint_pos_const('LeftForeArm', np.asarray(points[10])) self.ik.add_joint_pos_const('LeftHand', np.asarray(points[2])) self.ik.add_joint_pos_const('LeftLeg', np.asarray(points[11])) self.ik.add_joint_pos_const('LeftFoot', np.asarray(points[3])) if contacts[0] > 0.8 and False: body_transform = self.model.body('LeftFoot').transform()[:3, :3] angle = math.acos(body_transform[1, 1]) body_ori = np.dot(body_transform, mm.rotX(-angle)) self.ik.add_orientation_const('LeftFoot', body_ori) self.ik.add_joint_pos_const('RightForeArm', np.asarray(points[12])) self.ik.add_joint_pos_const('RightHand', np.asarray(points[5])) self.ik.add_joint_pos_const('RightLeg', np.asarray(points[13])) self.ik.add_joint_pos_const('RightFoot', np.asarray(points[6])) self.ik.solve() foot_joint_ori = mm.exp(self.model.joint('LeftFoot').position()) self.model.joint('LeftFoot').set_position(mm.logSO3(np.dot(foot_joint_ori, np.dot(mm.rotX(-.6), mm.rotZ(.4))))) foot_joint_ori = mm.exp(self.model.joint('RightFoot').position()) self.model.joint('RightFoot').set_position(mm.logSO3(np.dot(foot_joint_ori, np.dot(mm.rotX(-.6), mm.rotZ(-.4))))) left_foot = self.model.body('LeftFoot') if (left_foot.to_world([0.05, -0.045, 0.1125])[1] < 0. or left_foot.to_world([-0.05, -0.045, 0.1125])[1] < 0.) \ and (left_foot.to_world([0.05, -0.045, -0.1125])[1] < 0. or left_foot.to_world([-0.05, -0.045, -0.1125])[1] < 0.): left_toe_pos1 = left_foot.to_world([0.05, -0.045, +0.1125]) left_toe_pos1[1] = 0. left_toe_pos2 = left_foot.to_world([-0.05, -0.045, +0.1125]) left_toe_pos2[1] = 0. left_heel_pos1 = left_foot.to_world([0.05, -0.045, -0.1125]) left_heel_pos1[1] = 0. left_heel_pos2 = left_foot.to_world([-0.05, -0.045, -0.1125]) left_heel_pos2[1] = 0. self.ik.clean_constraints() self.ik.add_position_const('LeftFoot', left_toe_pos1, np.array([0.05, -0.045, +0.1125])) self.ik.add_position_const('LeftFoot', left_toe_pos2, np.array([-0.05, -0.045, +0.1125])) self.ik.add_position_const('LeftFoot', left_heel_pos1, np.array([0.05, -0.045, -0.1125])) self.ik.add_position_const('LeftFoot', left_heel_pos2, np.array([-0.05, -0.045, -0.1125])) self.ik.solve() right_foot = self.model.body('RightFoot') if (right_foot.to_world([0.05, -0.045, 0.1125])[1] < 0. or right_foot.to_world([-0.05, -0.045, 0.1125])[1] < 0.) \ and (right_foot.to_world([0.05, -0.045, -0.1125])[1] < 0. or right_foot.to_world([-0.05, -0.045, -0.1125])[1] < 0.): right_toe_pos1 = right_foot.to_world([0.05, -0.045, +0.1125]) right_toe_pos1[1] = 0. right_toe_pos2 = right_foot.to_world([-0.05, -0.045, +0.1125]) right_toe_pos2[1] = 0. right_heel_pos1 = right_foot.to_world([0.05, -0.045, -0.1125]) right_heel_pos1[1] = 0. right_heel_pos2 = right_foot.to_world([-0.05, -0.045, -0.1125]) right_heel_pos2[1] = 0. self.ik.clean_constraints() self.ik.add_position_const('RightFoot', right_toe_pos1, np.array([0.05, -0.045, +0.1125])) self.ik.add_position_const('RightFoot', right_toe_pos2, np.array([-0.05, -0.045, +0.1125])) self.ik.add_position_const('RightFoot', right_heel_pos1, np.array([0.05, -0.045, -0.1125])) self.ik.add_position_const('RightFoot', right_heel_pos2,
np.array([-0.05, -0.045, -0.1125])
numpy.array
import os import json import pickle import codecs import random import shutil import hashlib import argparse import gym import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import tensorflow as tf from nets import * import load_policy parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='Humanoid-v2') parser.add_argument('--optimizer', type=str, default='Adam', help='Optimizer to use for training (case-sensitive)') parser.add_argument('--nonlinearity', type=str, default='elu', help='Type of nonlinearity used in neural network (tanh, relu, etc.)') parser.add_argument('--net-size', type=float, default=4.0, help='Multiplier for the size of hidden layers') parser.add_argument('--grad-clip', type=float, default=0.5, help='Maximum gradient norm') parser.add_argument('--dropout-prob', type=float, default=0, help='Probability of dropping nodes in Dropout') parser.add_argument('--weight-decay', type=float, default=3e-4, help='L2-regularizer strength') parser.add_argument('--learning-rate', type=float, default=1e-3, help='Learning rate used in optimization') parser.add_argument('--aggregation-rate', type=float, default=0.2, help='Rate of dataset aggregation') parser.add_argument('--seed', type=int, default=1, help='Manual PRNG seed for reproducibility') parser.add_argument('--only-mean', type=int, default=1, help='Only optimize mean of distribution for this many epochs (-1 means always)') parser.add_argument('--num-demos', type=int, default=20, help='Number of expert demonstrations to learn from') parser.add_argument('--num-layers', type=int, default=3, help='Number of layers in neural network') parser.add_argument('--batch-size', type=int, default=128, help='Batch size used for training and evaluation') parser.add_argument('--num-epochs', type=int, default=200, help='Number of training epochs') parser.add_argument('--cpu', action='store_false', dest='gpu') parser.add_argument('--render', action='store_true') parser.add_argument('--record', action='store_true') ARGS = parser.parse_args() ARGS_STR = '' for key, val in sorted(vars(ARGS).items()): if key not in ['seed', 'gpu', 'render', 'record', 'env']: ARGS_STR += str(val) ARGS_HASH = hashlib.md5(str.encode(ARGS_STR)).hexdigest()[-8:] SAVE_PATH = './output_dagger/%s/%s/seed_%d' % (ARGS_HASH, ARGS.env, ARGS.seed) shutil.rmtree(SAVE_PATH, ignore_errors=True) os.makedirs(SAVE_PATH, exist_ok=True) def log(s, disp=True, write=False, filename='log.txt', **kwargs): if disp: print(s, **kwargs) if write: with codecs.open(os.path.join(SAVE_PATH, filename), 'a', 'utf-8') as f: print(s, file=f, **kwargs) def log_tabular(vals, keys=None, formats=None): log(','.join([str(x) for x in vals]), disp=False, write=True, filename='log.csv') if formats is not None: assert len(formats) == len(vals) vals = [x[0] % x[1] for x in zip(formats, vals)] if keys is not None: assert len(keys) == len(vals) log(' | '.join(['%s: %s' % (x[0], str(x[1])) for x in zip(keys, vals)]), write=True) ARGS.nonlinearity = ARGS.nonlinearity.lower() ARGS_JSON = json.dumps(vars(ARGS), sort_keys=True, indent=4) log('ARGS = %s' % ARGS_JSON) ARGS.optimizer = eval('optim.%s' % ARGS.optimizer) ARGS.nonlinearity = eval('F.%s' % ARGS.nonlinearity) with open(os.path.join(SAVE_PATH, 'args.json'), 'w') as f: f.write(ARGS_JSON) # reproducibility random.seed(ARGS.seed, version=2) torch.manual_seed(random.randint(0, 2**32 - 1)) np.random.seed(random.randint(0, 2**32 - 1)) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False DEMO_PATH = 'expert_data_%d/%s.pkl' % (ARGS.num_demos, ARGS.env) with open(DEMO_PATH, 'rb') as f: demo = pickle.load(f) DEMO_SIZE = demo['observations'].shape[0] assert demo['actions'].shape[0] == DEMO_SIZE demo['observations'] = np.reshape(demo['observations'], (DEMO_SIZE, -1)) demo['actions'] = np.reshape(demo['actions'], (DEMO_SIZE, -1)) OBS_DIM = demo['observations'].shape[1] ACT_DIM = demo['actions'].shape[1] # observation stats used for normalization obs_mean = np.mean(demo['observations'], axis=0) obs_mean_sqr = np.mean(demo['observations'] ** 2, axis=0) obs_std = lambda m1, m2: np.maximum(m2 - m1 ** 2, 0) ** 0.5 count = DEMO_SIZE log('Number of time-steps in demonstrations: %d' % DEMO_SIZE) log('Dimensionality of observation-space: %d' % OBS_DIM) log('Dimensionality of action-space: %d' % ACT_DIM) # 90% / 10% split of dataset into training-set / evaluation-set EVAL_SIZE = DEMO_SIZE // 10 TRAIN_SIZE = DEMO_SIZE - EVAL_SIZE shuffle_idx = np.arange(DEMO_SIZE) np.random.shuffle(shuffle_idx) demo_eval = { 'observations': demo['observations'][shuffle_idx[:EVAL_SIZE]], 'actions': demo['actions'][shuffle_idx[:EVAL_SIZE]] } demo_train = { 'observations': demo['observations'][shuffle_idx[EVAL_SIZE:]], 'actions': demo['actions'][shuffle_idx[EVAL_SIZE:]] } DEVICE = torch.device('cuda' if ARGS.gpu and torch.cuda.is_available() else 'cpu') log('DEVICE = %s' % str(DEVICE)) WIDTH = int(np.sqrt(OBS_DIM * ACT_DIM) * ARGS.net_size + 16) log('Width of hidden layers: %d' % WIDTH, write=True) hidden_layers = [WIDTH] * (ARGS.num_layers - 1) net = ControlNet(widths=[OBS_DIM] + hidden_layers + [ACT_DIM], act_fn=ARGS.nonlinearity, dropout_prob=ARGS.dropout_prob) net.set_obs_stats(obs_mean=obs_mean, obs_std=obs_std(obs_mean, obs_mean_sqr)) print(net) net.to(DEVICE) opt = ARGS.optimizer(net.parameters(), lr=ARGS.learning_rate, weight_decay=ARGS.weight_decay) expert_policy = load_policy.load_policy('./experts/%s.pkl' % ARGS.env) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) env = gym.make(ARGS.env) env.seed(ARGS.seed) if ARGS.record: env = gym.wrappers.Monitor(env, directory=SAVE_PATH, video_callable=lambda x: True) def update_stats(observations, obs_mean, obs_mean_sqr, count, net): n = observations.shape[0] obs_mean = (obs_mean * count + n * np.mean(observations, axis=0)) / (count + n) obs_mean_sqr = (obs_mean_sqr * count + n * np.mean(observations ** 2, axis=0)) / (count + n) count += n net.set_obs_stats(obs_mean=obs_mean, obs_std=obs_std(obs_mean, obs_mean_sqr)) return obs_mean, obs_mean_sqr, count def aggregate_dataset(demo_train, demo_eval, observations, expert_policy, sess): with sess.as_default(): actions = expert_policy(observations) eval_size = observations.shape[0] // 10 new_train = { 'observations': observations[eval_size:], 'actions': actions[eval_size:] } new_eval = { 'observations': observations[:eval_size], 'actions': actions[:eval_size] } for key in demo_train: demo_train[key] = np.concatenate((demo_train[key], new_train[key]), axis=0) for key in demo_eval: demo_eval[key] = np.concatenate((demo_eval[key], new_eval[key]), axis=0) return demo_train, demo_eval def train_batch(net, opt, obs_batch, act_batch, only_mean=False): net.train() mu, log_var = net.forward(obs_batch) if only_mean: log_var.zero_() loss = net.loss(mu, log_var, act_batch) opt.zero_grad() loss.backward() nn.utils.clip_grad_norm_(net.parameters(), ARGS.grad_clip) opt.step() loss = loss.item() return loss def eval_batch(net, obs_batch, act_batch): net.eval() with torch.no_grad(): mu, log_var = net.forward(obs_batch) loss = net.loss(mu, log_var, act_batch) loss = loss.item() return loss def run_epoch(net, opt, demo, train, num_samples=None, **kwargs): dataset_size = demo['observations'].shape[0] assert demo['actions'].shape[0] == dataset_size if train: shuffle_idx = np.arange(dataset_size) np.random.shuffle(shuffle_idx) demo['observations'] = demo['observations'][shuffle_idx] demo['actions'] = demo['actions'][shuffle_idx] i = 0 total_loss = 0 if num_samples is None: num_samples = dataset_size while i < num_samples: obs_batch = demo['observations'][i: min(i + ARGS.batch_size, num_samples)] act_batch = demo['actions'][i: min(i + ARGS.batch_size, num_samples)] cur_batch_size = obs_batch.shape[0] i += ARGS.batch_size obs_batch = torch.tensor(obs_batch, dtype=torch.float, device=DEVICE) act_batch = torch.tensor(act_batch, dtype=torch.float, device=DEVICE) if train: loss = train_batch(net, opt, obs_batch, act_batch, **kwargs) else: loss = eval_batch(net, obs_batch, act_batch, **kwargs) total_loss += cur_batch_size * loss total_loss /= num_samples return total_loss def run_policy(net, env, render=False): net.eval() done = False total_reward = 0 obs_list = [] obs = env.reset() if render: env.render() while not done: obs_list.append(obs) with torch.no_grad(): obs = torch.tensor([obs], dtype=torch.float, device=DEVICE) mu, log_var = net.forward(obs) mu = mu.cpu().numpy()[0] log_var = log_var.cpu().numpy()[0] sigma = np.exp(log_var * 0.5) act =
np.random.normal(loc=mu, scale=sigma)
numpy.random.normal
from PIL import Image import numpy as np import cv2 class DeHaze(): def __init__(self,omega=0.8, k_size=9, model='origin'): self.omega = omega self.ksize = k_size self.model = model return def atmosphere(self, img: Image): #calculate the atmospheric light in this paper r, g, b = img.split() r, g, b = np.array(r).flatten(), np.array(g).flatten(), np.array(b).flatten() img_np = np.asarray(img, dtype='float') dark_c = np.min(img_np, axis=-1) first_100 = dark_c.argsort(axis=None)[-100:] first_100r, first_100g, first_100b = r[first_100], g[first_100], b[first_100] sum_rgb = first_100r + first_100g + first_100b choice = np.argmax(sum_rgb) return first_100r[choice], first_100g[choice], first_100b[choice] #float def dark_channel(self, img_np:np.ndarray): dark_c = np.min(img_np, axis=-1) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (self.ksize, self.ksize)) dark = cv2.erode(dark_c, kernel) #Image.fromarray(dark).show() return dark #np.ndarray def transmission(self, img:Image): a = self.atmosphere(img) img_np = np.asarray(img, dtype='float') img_temp = np.zeros_like(img_np) img_temp[:, :, 0] = img_np[:, :, 0] / a[0] img_temp[:, :, 1] = img_np[:, :, 1] / a[1] img_temp[:, :, 2] = img_np[:, :, 2] / a[2] #print(img_temp) trans = 1 - self.omega * self.dark_channel(img_temp) #Image.fromarray(np.uint8(trans * 255)).show() #print(trans) return trans #np.ndarray 3d def cal_p(self, trans: np.ndarray): p = np.zeros_like(trans) p[trans > 0.5] = 1 p[trans < 0.5] = trans[trans < 0.5] * 2 return p def run(self, img: Image): img_np = np.asarray(img, dtype='float') R = 255 - img_np rev_img = Image.fromarray(np.uint8(R)) a = self.atmosphere(rev_img) h, w, _ = img_np.shape ar, ag, ab =
np.ones((h, w))
numpy.ones
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import onnx from onnx import helper from onnx import TensorProto import numpy as np import torch import torch.nn import torch.onnx # GRU enums GRU_DIR_FORWARD = 'forward' GRU_DIR_REVERSE = 'reverse' GRU_DIR_BIDIRECTIONAL = 'bidirectional' GRU_DIRS = [GRU_DIR_FORWARD, GRU_DIR_REVERSE, GRU_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor(name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist()) # Function to generate GRU ONNX test model def gen_gru_onnx_test_model(model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, linear_before_reset=False): # Validate parameters assert direction in GRU_DIRS, 'ONNX GRU direction invalid!' assert not has_sequence_lens, 'ONNX GRU Variable sequence length not supported' # Get number of directions num_directions = 2 if (direction == GRU_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 3 * hidden_size, input_size] R_shape = [num_directions, 3 * hidden_size, hidden_size] B_shape = [num_directions, 6 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: z,r,h) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B =
np.random.randn(*B_shape)
numpy.random.randn
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to preprocess the raw annotation output to NP/object annotation files import os import sys import json import argparse import numpy as np from collections import Counter, defaultdict from stanfordcorenlp import StanfordCoreNLP def define_split(database): with open(args.train_cap_file) as f: train_ids = json.load(f).keys() with open(args.val_cap_file) as f: valtest_ids = json.load(f).keys() val_split = np.random.rand(len(valtest_ids))>=0.5 # split a half as the test split val_ids = [valtest_ids[i] for i,j in enumerate(val_split) if j] test_ids = [valtest_ids[i] for i,j in enumerate(val_split) if ~j] vid_ids = set(database.keys()) train_ann_ids = vid_ids.intersection(set(train_ids)) val_ann_ids = vid_ids.intersection(set(val_ids)) test_ann_ids = vid_ids.intersection(set(test_ids)) print('All data - total: {}, train split: {}, val split: {}, test split: {}'.format(len(train_ids+val_ids+test_ids), len(train_ids), len(val_ids), len(test_ids))) print('Annotated data - total: {}, train split: {}, val split: {}, and test split: {}'.format( len(vid_ids), len(train_ann_ids), len(val_ann_ids), len(test_ann_ids))) return [train_ids, val_ids, test_ids] def extract_attr(database, splits): split_dict = {} for split in splits: split_dict.update({s:s for s in split}) print('Object classes defined on {} videos, freq threshold is {}'.format(len(split_dict), args.freq_thresh)) attr_all = [] # all the attributes for vid_id, vid in database.items(): if split_dict.get(vid_id, -1) != -1: for seg_id, seg in vid['segments'].items(): for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) for box_id, box in obj['frame_ind'].items(): tmp = [] attr_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) if len(tmp) == 0: tmp.append(attr[1].lower()) # convert to lowercase else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr[1].lower()) else: attr_lst.append(tmp) tmp = [attr[1].lower()] if len(tmp) > 0: # the last one attr_lst.append(tmp) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: attr_all.extend([' '.join(i) for i in attr_lst]) return attr_all def prep_all(database, database_cap, obj_cls_lst, w2l, nlp): w2d = {} for ind, obj in enumerate(obj_cls_lst): w2d[obj] = ind avg_box = [] # number of boxes per segment avg_attr = [] # number of attributes per box attr_all = [] # all the attributes crowd_all = [] # all the crowd labels attr_dict = defaultdict(list) with open(args.attr_to_video_file) as f: for line in f.readlines(): line_split = line.split(',') attr_id = line_split[0] vid_name = line_split[-1] attr = ','.join(line_split[1:-1]) vid_id, seg_id = vid_name.strip().split('_segment_') attr_dict[(vid_id, str(int(seg_id)))].append([int(attr_id), attr]) print('Number of segments with attributes: {}'.format(len(attr_dict))) vid_seg_dict = {} for vid_id, vid in database.items(): for seg_id, _ in vid['segments'].items(): vid_seg_dict[(vid_id, seg_id)] = vid_seg_dict.get((vid_id, seg_id), 0) + 1 new_database = {} new_database_np = {} seg_counter = 0 for vid_id, cap in database_cap.items(): new_database_np[vid_id] = {'segments':{}} new_seg = {} for cap_id in range(len(cap['sentences'])): new_obj_lst = defaultdict(list) seg_id = str(cap_id) new_database_np[vid_id]['segments'][seg_id] = {'objects':[]} if vid_seg_dict.get((vid_id, seg_id), 0) == 0: new_obj_lst['tokens'] = nlp.word_tokenize(cap['sentences'][cap_id].encode('utf-8')) # sentences not in ANet-BB else: vid = database[vid_id] seg = vid['segments'][seg_id] # preprocess attributes attr_sent = sorted(attr_dict[(vid_id, seg_id)], key=lambda x:x[0]) start_ind = attr_sent[0][0] # legacy token issues from our annotation tool for ind, tup in enumerate(attr_sent): if attr_sent[ind][1] == '\\,': attr_sent[ind][1] = ',' new_obj_lst['tokens'] = [i[1] for i in attr_sent] # all the word tokens for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) np_ann = {} box_id = obj['frame_ind'].keys()[0] box = obj['frame_ind'].values()[0] np_ann['frame_ind'] = int(box_id) np_ann.update(box) if len(box['attributes']) > 0: # just in case the attribute is empty, though it should not be tmp = [] tmp_ind = [] tmp_obj = [] attr_lst = [] attr_ind_lst = [] tmp_np_ind = [] np_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered sorted_attr = [(x[0]-start_ind, x[1]) for x in sorted_attr] # index relative to the sent for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) attr_w = attr[1].lower() if len(tmp) == 0: tmp.append(attr_w) # convert to lowercase tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr_w) tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) tmp = [attr_w] tmp_np_ind = [attr[0]] if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj = [attr_l] tmp_ind = [attr[0]] else: tmp_obj = [] tmp_ind = [] else: tmp_obj = [] tmp_ind = [] if len(tmp) > 0: # the last one np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) assert(len(np_lst) > 0) np_ann['noun_phrases'] = np_lst np_ann.pop('attributes', None) new_database_np[vid_id]['segments'][seg_id]['objects'].append(np_ann) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: new_obj_lst['process_bnd_box'].append([box['xtl'], box['ytl'], box['xbr'], box['ybr']]) new_obj_lst['frame_ind'].append(int(box_id)) new_obj_lst['crowds'].append(box['crowds']) new_obj_lst['process_clss'].append(attr_lst) new_obj_lst['process_idx'].append(attr_ind_lst) avg_attr.append(len(attr_lst)) attr_all.extend([' '.join(i) for i in attr_lst]) crowd_all.append(box['crowds']) avg_box.append(len(new_obj_lst['frame_ind'])) # cound be 0 if len(new_obj_lst['frame_ind']) == 0: new_obj_lst['process_bnd_box'] = [] new_obj_lst['frame_ind'] = [] # all empty new_obj_lst['crowds'] = [] new_obj_lst['process_clss'] = [] new_obj_lst['process_idx'] = [] seg_counter += 1 new_seg[seg_id] = new_obj_lst new_database_np[vid_id]['segments'][seg_id]['tokens'] = new_obj_lst['tokens'] new_database[vid_id] = {'segments':new_seg} # quick stats print('Number of videos: {} (including empty ones)'.format(len(new_database))) print('Number of segments: {}'.format(seg_counter)) print('Average number of valid segments per video: {}'.format(np.mean([len(vid['segments']) for vid_id, vid in new_database.items()]))) print('Average number of box per segment: {} and frequency: {}'.format(np.mean(avg_box), Counter(avg_box))) print('Average number of attributes per box: {} and frequency: {} (for valid box only)'.format(np.mean(avg_attr), Counter(avg_attr))) crowd_freq = Counter(crowd_all) print('Percentage of crowds: {} (for valid box only)'.format(crowd_freq[1]*1./(crowd_freq[1]+crowd_freq[0]))) return new_database, new_database_np def freq_obj_list(attr_all, nlp, props): # generate a list of object classes num_nn_per_attr = [] anet_obj_cls = [] nn_wo_noun = [] # noun phrases that contain no nouns w2lemma = defaultdict(list) for i, v in enumerate(attr_all): if i%10000 == 0: print(i) out = json.loads(nlp.annotate(v.encode('utf-8'), properties=props)) assert(out['sentences'] > 0) counter = 0 for token in out['sentences'][0]['tokens']: if ('NN' in token['pos']) or ('PRP' in token['pos']): lemma_w = token['lemma'] anet_obj_cls.append(lemma_w) w2lemma[token['word']].append(lemma_w) counter += 1 num_nn_per_attr.append(counter) if counter == 0: nn_wo_noun.append(v) top_nn_wo_noun = Counter(nn_wo_noun) print('Frequency of NPs w/o nouns:') print(top_nn_wo_noun.most_common(10)) print('Frequency of number of nouns per attribute:') print(Counter(num_nn_per_attr)) top_obj_cls = Counter(anet_obj_cls) print('Top 10 objects:', top_obj_cls.most_common(20)) obj_cls_lst = [] for w,freq in top_obj_cls.items(): if freq >= args.freq_thresh: obj_cls_lst.append(w.encode('ascii')) w2l = {} for w, l in w2lemma.items(): # manually correct some machine lemmatization mistakes spec_w2l = {'outfits':'outfit', 'mariachi':'mariachi', 'barrios':'barrio', 'mans':'man', 'bags':'bag', 'aerobics':'aerobic', 'motobikes':'motobike', 'graffiti':'graffiti', 'semi':'semi', 'los':'los', 'tutus':'tutu'} if spec_w2l.get(w, -1) != -1: # one special case... w2l[w] = spec_w2l[w] print('Ambiguous lemma for: {}'.format(w)) else: assert(len(set(l)) == 1) w2l[w] = list(set(l))[0] print('Number of words derived from lemma visual words {}'.format(len(w2l))) return obj_cls_lst, w2l def main(args): nlp = StanfordCoreNLP(args.corenlp_path) props={'annotators': 'ssplit, tokenize, lemma','pipelineLanguage':'en', 'outputFormat':'json'} # load anet captions with open(args.train_cap_file) as f: database_cap = json.load(f) with open(args.val_cap_file) as f: database_cap.update(json.load(f)) print('Number of videos in ActivityNet Captions (train+val): {}'.format(len(database_cap))) # load raw annotation output anet bb with open(args.src_file) as f: database = json.load(f)['database'] print('Number of videos in ActivityNet-BB (train+val): {}'.format(len(database))) if os.path.isfile(args.split_file): with open(args.split_file) as f: all_splits = json.load(f) splits = [all_splits['training'], all_splits['validation'], all_splits['testing']] else: raise '[WARNING] Cannot find the split file! Uncomment this if you want to create a new split.' splits = define_split(database) all_splits = {'training':splits[0], 'validation':splits[1], 'testing':splits[2]} with open(args.split_file, 'w') as f: json.dump(all_splits, f) attr_all = extract_attr(database, splits[:2]) # define object classes on train/val data obj_cls_lst, w2l = freq_obj_list(attr_all, nlp, props) new_database, new_database_np = prep_all(database, database_cap, obj_cls_lst, w2l, nlp) # write raw annotation file new_database_np = {'database':new_database_np} with open(args.target_np_file, 'w') as f: json.dump(new_database_np, f) # write pre-processed annotation file new_database = {'vocab':obj_cls_lst, 'annotations':new_database} with open(args.target_file, 'w') as f: json.dump(new_database, f) nlp.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='ActivityNet-Entities dataset preprocessing script.') parser.add_argument('--dataset_root', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/', help='dataset root directory') parser.add_argument('--corenlp_path', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttn/tools/stanford-corenlp-full-2018-02-27', help='path to stanford core nlp toolkit') parser.add_argument('--freq_thresh', type=int, default=50, help='frequency threshold for determining object classes') parser.add_argument('--train_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/train.json') parser.add_argument('--val_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/val_1.json') args = parser.parse_args() args.src_file = args.dataset_root+'anet_bb.json' # the raw annotation file args.target_np_file = args.dataset_root+'anet_entities.json' # output np file args.target_file = args.dataset_root+'anet_entities_cleaned_class_thresh'+str(args.freq_thresh)+'.json' # output object file args.attr_to_video_file = args.dataset_root+'attr_to_video.txt' # from annotation tool args.split_file = args.dataset_root+'split_ids_anet_entities.json' # split file
np.random.seed(123)
numpy.random.seed
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for processing depth images. """ from argparse import Namespace import itertools import numpy as np import torch import envs.utils.rotation_utils as ru def get_camera_matrix(width, height, fov): """Returns a camera matrix from image size and fov.""" xc = (width - 1.) / 2. zc = (height - 1.) / 2. f = (width / 2.) / np.tan(np.deg2rad(fov / 2.)) camera_matrix = {'xc': xc, 'zc': zc, 'f': f} camera_matrix = Namespace(**camera_matrix) return camera_matrix def get_point_cloud_from_z(Y, camera_matrix, scale=1): """Projects the depth image Y into a 3D point cloud. Inputs: Y is ...xHxW camera_matrix Outputs: X is positive going right Y is positive into the image Z is positive up in the image XYZ is ...xHxWx3 """ x, z = np.meshgrid(np.arange(Y.shape[-1]), np.arange(Y.shape[-2] - 1, -1, -1)) for _ in range(Y.ndim - 2): x = np.expand_dims(x, axis=0) z = np.expand_dims(z, axis=0) X = (x[::scale, ::scale] - camera_matrix.xc) * \ Y[::scale, ::scale] / camera_matrix.f Z = (z[::scale, ::scale] - camera_matrix.zc) * \ Y[::scale, ::scale] / camera_matrix.f XYZ = np.concatenate((X[..., np.newaxis], Y[::scale, ::scale][..., np.newaxis], Z[..., np.newaxis]), axis=X.ndim) return XYZ def transform_camera_view(XYZ, sensor_height, camera_elevation_degree): """ Transforms the point cloud into geocentric frame to account for camera elevation and angle Input: XYZ : ...x3 sensor_height : height of the sensor camera_elevation_degree : camera elevation to rectify. Output: XYZ : ...x3 """ R = ru.get_r_matrix( [1., 0., 0.], angle=np.deg2rad(camera_elevation_degree)) XYZ = np.matmul(XYZ.reshape(-1, 3), R.T).reshape(XYZ.shape) XYZ[..., 2] = XYZ[..., 2] + sensor_height return XYZ def transform_pose(XYZ, current_pose): """ Transforms the point cloud into geocentric frame to account for camera position Input: XYZ : ...x3 current_pose : camera position (x, y, theta (radians)) Output: XYZ : ...x3 """ R = ru.get_r_matrix([0., 0., 1.], angle=current_pose[2] - np.pi / 2.) XYZ = np.matmul(XYZ.reshape(-1, 3), R.T).reshape(XYZ.shape) XYZ[:, :, 0] = XYZ[:, :, 0] + current_pose[0] XYZ[:, :, 1] = XYZ[:, :, 1] + current_pose[1] return XYZ def bin_points(XYZ_cms, map_size, z_bins, xy_resolution): """Bins points into xy-z bins XYZ_cms is ... x H x W x3 Outputs is ... x map_size x map_size x (len(z_bins)+1) """ sh = XYZ_cms.shape XYZ_cms = XYZ_cms.reshape([-1, sh[-3], sh[-2], sh[-1]]) n_z_bins = len(z_bins) + 1 counts = [] for XYZ_cm in XYZ_cms: isnotnan = np.logical_not(np.isnan(XYZ_cm[:, :, 0])) X_bin =
np.round(XYZ_cm[:, :, 0] / xy_resolution)
numpy.round
import numba.cuda as cuda import numpy as np import math @cuda.jit def mat_morph_mul_max_plus_impl(a, b, c, stmp, w, q, h): row, col = cuda.grid(2) tmp = stmp if row < h and col < w: for i in range(q): val = a[row, i] + b[i, col] tmp = max(tmp, val) c[row, col] = tmp @cuda.jit def mat_morph_mul_max_minus_impl(a, b, c, stmp, w, q, h): row, col = cuda.grid(2) tmp = stmp if row < h and col < w: for i in range(q): val = a[row, i] - b[i, col] tmp = max(tmp, val) c[row, col] = tmp @cuda.jit def mat_morph_mul_min_plus_impl(a, b, c, stmp, w, q, h): row, col = cuda.grid(2) tmp = stmp if row < h and col < w: for i in range(q): val = a[row, i] + b[i, col] tmp = min(tmp, val) c[row, col] = tmp @cuda.jit def mat_morph_mul_min_minus_impl(a, b, c, stmp, w, q, h): row, col = cuda.grid(2) tmp = stmp if row < h and col < w: for i in range(q): val = a[row, i] - b[i, col] tmp = min(tmp, val) c[row, col] = tmp def mat_dot(fn, stmp, a, b, c, stream=0): """ m --------- | | q | b | | | q --------- --------- --------- | | | | n | a | | c | n | | | | --------- --------- m """ n = a.shape[0] m = b.shape[1] assert c.shape == (n, m) assert a.shape[1] == b.shape[0] q = a.shape[1] if n*m > 1024: threads_per_block = [32, 32] bpg_n = int(math.ceil(n / threads_per_block[0])) bpg_m = int(math.ceil(m / threads_per_block[1])) blocks_per_grid = [bpg_n, bpg_m] else: threads_per_block = [n, m] blocks_per_grid = [1, 1] fn[blocks_per_grid, threads_per_block, stream](a, b, c, stmp, m, q, n) def mat_morph_mul_max_plus(a, b, c, stream=0): mat_dot(mat_morph_mul_max_plus_impl, float('-inf'), a, b, c, stream) def mat_morph_mul_max_minus(a, b, c, stream=0): mat_dot(mat_morph_mul_max_minus_impl, float('-inf'), a, b, c, stream) def mat_morph_mul_min_plus(a, b, c, stream=0): mat_dot(mat_morph_mul_min_plus_impl, float('+inf'), a, b, c, stream) def mat_morph_mul_min_minus(a, b, c, stream=0): mat_dot(mat_morph_mul_min_minus_impl, float('+inf'), a, b, c, stream) ################################################################################ import unittest @cuda.jit def _test_mat_mul_impl(a, b, c, stmp, w, q, h): row, col = cuda.grid(2) tmp = stmp if row < h and col < w: for i in range(q): tmp += a[row, i] * b[i, col] c[row, col] = tmp def _test_mat_mul(a, b, c): mat_dot(_test_mat_mul_impl, 0, a, b, c) class TestMnnPackage(unittest.TestCase): def setUp(self): self.mat_a = np.matrix( [[10, 2, -1, 0], [4, -12, 4, 2]]) self.mat_b = np.matrix( [[-1, 7], [9, 12], [0, 0], [3, -5]]) def test_mat_dot_simple(self): '''Smoke test''' actual = np.zeros([2, 2]) expected = np.matrix([[ 8, 94], [-106, -126]]) _test_mat_mul(self.mat_a, self.mat_b, actual) np.testing.assert_array_equal(expected, actual) def test_cuda_mat_dot(self): '''Check whether CUDA kernel is invoked correctly for big matrices''' n = 1024 m = 512 a =
np.random.randint(0, 10, size=n*m)
numpy.random.randint
import json import numpy as np import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) from . import commons as bc # データベースファイルの保存場所 database_directory = os.path.dirname(os.path.abspath(__file__)) + "/database/" def perfCURVE(fcgs_e_rated,fcgs_e_75,fcgs_e_50,fcgs_hr_rated,fcgs_hr_75,fcgs_hr_50): """ Input fcgs_e_rated : CGSの定格発電効率(低位発熱量基準) fcgs_e_75 : CGSの負荷率0.75時発電効率(低位発熱量基準) fcgs_e_50 : CGSの負荷率0.50時発電効率(低位発熱量基準) fcgs_hr_rated : CGSの定格排熱効率(低位発熱量基準) fcgs_hr_75 : CGSの負荷率0.75時排熱効率(低位発熱量基準) fcgs_hr_50 : CGSの負荷率0.50時排熱効率(低位発熱量基準) Output fe2 : CGSの発電効率特性式の2次式の係数項 fe1 : CGSの発電効率特性式の1次式の係数項 fe0 : CGSの発電効率特性式の定数項 fhr2 : CGSの排熱効率特性式の2次式の係数項 fhr1 : CGSの排熱効率特性式の1次式の係数項 fhr0 : CGSの排熱効率特性式の定数項 """ fe2 = 8 * ( fcgs_e_rated - 2*fcgs_e_75 +fcgs_e_50 ) fe1 = -2 * (5*fcgs_e_rated - 12*fcgs_e_75 + 7*fcgs_e_50 ) fe0 = 3 * fcgs_e_rated - 8*fcgs_e_75 + 6*fcgs_e_50 fhr2 = 8 * (fcgs_hr_rated - 2*fcgs_hr_75 + fcgs_hr_50 ) fhr1 = -2 * ( 5*fcgs_hr_rated - 12*fcgs_hr_75 + 7*fcgs_hr_50 ) fhr0 = 3 * fcgs_hr_rated - 8*fcgs_hr_75 + 6*fcgs_hr_50 return fe2,fe1,fe0,fhr2,fhr1,fhr0 def calc_energy(inputdata, resultJson_for_CGS, DEBUG = False): resultJson = {} # CGS系統名の取得 cgs_name = None if len(inputdata["CogenerationSystems"]) != 1: raise Exception("計算可能なCGS系統は1系統のみです。") for cgs_name_list in inputdata["CogenerationSystems"]: cgs_name = cgs_name_list # CGSの発電機容量 kW Ecgs_rated = inputdata["CogenerationSystems"][cgs_name]["RatedCapacity"] # CGS設置台数 台 Ncgs = inputdata["CogenerationSystems"][cgs_name]["Number"] # CGSの定格発電効率(低位発熱量基準) 無次元 fcgs_e_rated = inputdata["CogenerationSystems"][cgs_name]["PowerGenerationEfficiency_100"] # CGSの負荷率0.75時発電効率(低位発熱量基準) 無次元 fcgs_e_75 = inputdata["CogenerationSystems"][cgs_name]["PowerGenerationEfficiency_75"] # CGSの負荷率0.50時発電効率(低位発熱量基準) 無次元 fcgs_e_50 = inputdata["CogenerationSystems"][cgs_name]["PowerGenerationEfficiency_50"] # CGSの定格排熱効率(低位発熱量基準) 無次元 fcgs_hr_rated = inputdata["CogenerationSystems"][cgs_name]["HeatGenerationEfficiency_100"] # CGSの負荷率0.75時排熱効率(低位発熱量基準) 無次元 fcgs_hr_75 = inputdata["CogenerationSystems"][cgs_name]["HeatGenerationEfficiency_75"] # CGSの負荷率0.50時排熱効率(低位発熱量基準) 無次元 fcgs_hr_50 = inputdata["CogenerationSystems"][cgs_name]["HeatGenerationEfficiency_50"] # 排熱利用優先順位(冷熱源) ※1 無次元 npri_hr_c = inputdata["CogenerationSystems"][cgs_name]["HeatRecoveryPriorityCooling"] # 排熱利用優先順位(温熱源)  ※1 無次元 npri_hr_h = inputdata["CogenerationSystems"][cgs_name]["HeatRecoveryPriorityHeating"] # 排熱利用優先順位(給湯)  ※1 無次元 npri_hr_w = inputdata["CogenerationSystems"][cgs_name]["HeatRecoveryPriorityHotWater"] # CGS24時間運転の有無 ※2 - C24ope = inputdata["CogenerationSystems"][cgs_name]["24hourOperation"] ##---------------------------------------------------------------------------------- ## 解説書附属書 G.10 ##---------------------------------------------------------------------------------- # 日付dにおける空気調和設備の電力消費量 MWh/日 if resultJson_for_CGS["AC"]: EAC_total_d = np.array(resultJson_for_CGS["AC"]["electric_power_comsumption"]) else: EAC_total_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な排熱投入型吸収式冷温水機(系統)の冷熱源としての主機の一次エネルギー消費量 MJ/日 if resultJson_for_CGS["AC"]: EAC_ref_c_d = np.array(resultJson_for_CGS["AC"]["E_ref_cgsC_ABS_day"]) else: EAC_ref_c_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な排熱投入型吸収式冷温水機(系統)の冷熱源としての負荷率 無次元 if resultJson_for_CGS["AC"]: mxLAC_ref_c_d = np.array(resultJson_for_CGS["AC"]["Lt_ref_cgsC_day"]) else: mxLAC_ref_c_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な温熱源群の主機の一次エネルギー消費量 MJ/日 if resultJson_for_CGS["AC"]: EAC_ref_h_hr_d = np.array(resultJson_for_CGS["AC"]["E_ref_cgsH_day"]) else: EAC_ref_h_hr_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な温熱源群の熱源負荷 MJ/日 if resultJson_for_CGS["AC"]: qAC_ref_h_hr_d = np.array(resultJson_for_CGS["AC"]["Q_ref_cgsH_day"]) else: qAC_ref_h_hr_d = np.zeros(365) # 日付dにおける機械換気設備の電力消費量 MWh/日 if resultJson_for_CGS["V"]: EV_total_d = np.array(resultJson_for_CGS["V"]["Edesign_MWh_day"]) else: EV_total_d = np.zeros(365) # 日付dにおける照明設備の電力消費量 MWh/日 if resultJson_for_CGS["L"]: EL_total_d = np.array(resultJson_for_CGS["L"]["Edesign_MWh_day"]) else: EL_total_d = np.zeros(365) # 日付dにおける給湯設備の電力消費量 MWh/日 if resultJson_for_CGS["HW"]: EW_total_d = np.array(resultJson_for_CGS["HW"]["Edesign_MWh_Ele_day"]) else: EW_total_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な給湯機(系統)の一次エネルギー消費量 MJ/日 if resultJson_for_CGS["HW"]: EW_hr_d = np.array(resultJson_for_CGS["HW"]["Edesign_MJ_CGS_day"]) else: EW_hr_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な給湯機(系統)の給湯負荷 MJ/日 if resultJson_for_CGS["HW"]: qW_hr_d = np.array(resultJson_for_CGS["HW"]["Q_eqp_CGS_day"]) else: qW_hr_d = np.zeros(365) # 日付dにおける昇降機の電力消費量 MWh/日 if resultJson_for_CGS["EV"]: EEV_total_d = np.array(resultJson_for_CGS["EV"]["Edesign_MWh_day"]) else: EEV_total_d = np.zeros(365) # 日付dにおける効率化設備(太陽光発電)の発電量 MWh/日 if resultJson_for_CGS["PV"]: EPV_total_d = np.array(resultJson_for_CGS["PV"]["Edesign_MWh_day"]) else: EPV_total_d = np.zeros(365) # 日付dにおけるその他の電力消費量 MWh/日 if resultJson_for_CGS["OT"]: EM_total_d = np.array(resultJson_for_CGS["OT"]["Edesign_MWh_day"]) else: EM_total_d = np.zeros(365) # 日付dにおけるCGSの排熱利用が可能な排熱投入型吸収式冷温水機(系統)の運転時間 h/日 if resultJson_for_CGS["AC"]: TAC_c_d =
np.array(resultJson_for_CGS["AC"]["T_ref_cgsC_day"])
numpy.array
# FT_connect_functions from __future__ import print_function import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import color, feature, filters, io, measure, morphology, segmentation, img_as_ubyte, transform, registration import warnings import math import pandas as pd import argparse import subprocess import re import glob from skimage.segmentation import clear_border from ortools.graph import pywrapgraph import time from shutil import copyfile from scipy.spatial import distance from FT_connect_config import * def genDisplacement(filename_t0,filename_t1): global pathToSegs temp1 = np.asarray(np.load(filename_t0,allow_pickle=True)).item() imfilename1 = temp1['filename'].split('/')[-1] img1 = io.imread(pathToSegs+imfilename1); temp2 = np.asarray(np.load(filename_t1,allow_pickle=True)).item() imfilename2 = temp2['filename'].split('/')[-1] img2 = io.imread(pathToSegs+imfilename2); shift_vector = registration.phase_cross_correlation(img1, img2) return(shift_vector[0]) def buildFeatureFrame(filename_t0,timepoint,pathtoimage="./"): temp = np.asarray(np.load(filename_t0,allow_pickle=True)).item() imfilename = temp['filename'].split('/')[-1] img = io.imread(pathtoimage+imfilename); masks = clear_border(temp['masks']) image_props = measure.regionprops_table(masks, intensity_image=img, properties=('label','area', 'centroid', 'bbox','mean_intensity')) im_df = pd.DataFrame(image_props) im_df['time'] = timepoint return(im_df) def expandBoundBox(FeatureFrame, expansion = 2): hf_row = np.ceil((FeatureFrame['bbox-3']-FeatureFrame['bbox-1'])/2) hf_col = np.ceil((FeatureFrame['bbox-2']-FeatureFrame['bbox-0'])/2) maxes = expansion*np.amax(np.vstack((hf_row,hf_col)).T,axis=1).astype(int) FeatureFrame['ebox-0'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['bbox-0']-maxes)).T,axis=1).astype(int) FeatureFrame['ebox-1'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['bbox-1']-maxes)).T,axis=1).astype(int) FeatureFrame['ebox-2'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['bbox-2']),FeatureFrame['bbox-2']+maxes)).T,axis=1).astype(int) FeatureFrame['ebox-3'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['bbox-3']),FeatureFrame['bbox-3']+maxes)).T,axis=1).astype(int) return(FeatureFrame) def futureBoundBox(FeatureFrame,shiftVector): FeatureFrame['fbox-0'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['ebox-0'] - shiftVector[1] )).T,axis=1).astype(int) FeatureFrame['fbox-1'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['ebox-1'] - shiftVector[0] )).T,axis=1).astype(int) FeatureFrame['fbox-2'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['ebox-2']),FeatureFrame['ebox-2'] - shiftVector[1] )).T,axis=1).astype(int) FeatureFrame['fbox-3'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['ebox-3']),FeatureFrame['ebox-3'] - shiftVector[0] )).T,axis=1).astype(int) return(FeatureFrame) def expectedLocation(FeatureFrame,shiftVector): FeatureFrame['fcentroid-0'] = FeatureFrame['centroid-0'] - shiftVector[1] FeatureFrame['fcentroid-1'] = FeatureFrame['centroid-1'] - shiftVector[0] return(FeatureFrame) def genCandidateNodes(FeatureFrame_t0, FeatureFrame_t1): candidates = (((np.asarray(FeatureFrame_t1['centroid-0'])[:,None]>=np.asarray(FeatureFrame_t0['fbox-0']))& (np.asarray(FeatureFrame_t1['centroid-0'])[:,None]<np.asarray(FeatureFrame_t0['fbox-2']))& (np.asarray(FeatureFrame_t1['centroid-1'])[:,None]>=np.asarray(FeatureFrame_t0['fbox-1']))& (np.asarray(FeatureFrame_t1['centroid-1'])[:,None]<np.asarray(FeatureFrame_t0['fbox-3'])))) return(candidates) def getDifference(FeatureFrame_t0, FeatureFrame_t1, feature="position",normed=True): if (feature == "position"): delta0 = (np.asarray(FeatureFrame_t1['centroid-0'])[:,None]-np.asarray(FeatureFrame_t0['fcentroid-0'])) delta1 = (np.asarray(FeatureFrame_t1['centroid-1'])[:,None]-np.asarray(FeatureFrame_t0['fcentroid-1'])) result = np.sqrt(delta0**2 + delta1**2 ) else : result = np.abs(np.asarray(FeatureFrame_t1[feature])[:,None]-np.asarray(FeatureFrame_t0[feature])) if normed: result = result/10**np.floor(np.log10(np.max(result))) return(result) def DivSizeScore(mom_area, sis_area_1, sis_area_2): global DivSizeDiffThreshold,DivSizeScoreReturn,DivSizeRatio_Min,DivSizeRatio_Max areaRatio = (mom_area / (sis_area_1 + sis_area_2)) diffArea = np.abs(sis_area_1 - sis_area_2)/np.sqrt(sis_area_1 *sis_area_2) if((areaRatio >= DivSizeRatio_Min)&(areaRatio < DivSizeRatio_Max)&(diffArea<DivSizeDiffThreshold)): return(0.0) else: return(DivSizeScoreReturn) def DivIntScore(sis_int_1, sis_int_2): global DivIntensityDiffThreshold,DivIntensityScoreReturn diffInt = np.abs(sis_int_1 - sis_int_2)/np.sqrt(sis_int_1*sis_int_2) if((diffInt<DivIntensityDiffThreshold)): return(0.0) else: return(DivIntensityScoreReturn) def DivScore(FeatureFrame_t0, FeatureFrame_t1, index_mom, index_sis_1, index_sis_2): global DivMoveScoreReturn, mitosis_RangeMultiplier momFF_select = FeatureFrame_t0.loc[index_mom] sis1FF_select = FeatureFrame_t1.loc[index_sis_1] sis2FF_select = FeatureFrame_t1.loc[index_sis_2] mom_loc = [momFF_select['centroid-0'],momFF_select['centroid-1']] mom_corner_1 = [momFF_select['bbox-0'],momFF_select['bbox-1']] mom_corner_2 = [momFF_select['bbox-2'],momFF_select['bbox-3']] mom_area = (momFF_select['area']) mom_range = distance.euclidean(mom_corner_1,mom_corner_2) sis1_loc = [sis1FF_select['centroid-0'],sis1FF_select['centroid-1']] sis1_area = (sis1FF_select['area']) sis1_int = (sis1FF_select['mean_intensity']) sis2_loc = [sis2FF_select['centroid-0'],sis2FF_select['centroid-1']] sis2_area = (sis2FF_select['area']) sis2_int = (sis2FF_select['mean_intensity']) mom_s1_dist = distance.euclidean(sis1_loc,mom_loc) mom_s2_dist = distance.euclidean(sis2_loc,mom_loc) sis_middle_loc = (np.array(sis1_loc)+np.array(sis2_loc))/2 cost1 = distance.euclidean(sis_middle_loc,mom_loc) cost2 = np.abs(mom_s1_dist-mom_s2_dist) cost3 = distance.euclidean(sis1_loc,sis2_loc) if(cost3 < (mitosis_RangeMultiplier*mom_range)): MoveCost = cost1 + cost2/2 else: MoveCost = DivMoveScoreReturn SizeCost = DivSizeScore(mom_area=mom_area, sis_area_1=sis1_area, sis_area_2=sis2_area) IntCost = DivIntScore(sis_int_1=sis1_int, sis_int_2=sis2_int) finalScore = np.round((MoveCost+SizeCost+IntCost),1) return([index_mom,index_sis_1,index_sis_2,finalScore]) def GenMitosisPairs(CandidateFrame, motherIndex): #returns array of daughter index-pairs in candidate frame DaughtersPossible = np.where(CandidateFrame[:,motherIndex])[0] if(len(DaughtersPossible)>1): DaughtersPairs = np.array(np.meshgrid(DaughtersPossible, DaughtersPossible)).T.reshape(-1,2) Sisters = np.unique(
np.sort(DaughtersPairs)
numpy.sort
import math as mt import numpy as np import byxtal.find_csl_dsc as fcd import byxtal.integer_manipulations as iman import byxtal.bp_basis as bpb import byxtal.pick_fz_bpl as pfb import numpy.linalg as nla import ovito.data as ovd from ovito.pipeline import StaticSource, Pipeline import ovito.modifiers as ovm from ovito.data import CutoffNeighborFinder def find_int_solns(a_vec, b_vec): """ Given two basis vectors (a_vec and b_vec) in the primitive basis, find the third basis vector (c_vec) such that the matrix [a_vec, b_vec, c_vec] is a valid basis. All the components of the vectors are integers and the determinant of the matrix must be equal to **1**. Parameters ----------------- a_vec: numpy.array The first basis vector. Must be an integer array. b_vec: numpy.array The second basis vector. Must be an integer array. Returns ------------ l_p2_p1: numpy.array, (3X3, must be an integer array) A 3x3 numpy array of integers that forms the new basis for the lattice. """ a1 = a_vec[0] a2 = a_vec[1] a3 = a_vec[2] b1 = b_vec[0] b2 = b_vec[1] b3 = b_vec[2] a = a2*b3 - a3*b2 b = -(a1*b3 - a3*b1) c = a1*b2 - a2*b1 d = 1 a = int(a) b = int(b) c = int(c) d = int(d) p = mt.gcd(a, b) if p == 0: if c == 1: y1 = 0 y2 = 0 y3 = 1 # l_p2_p1 = (np.hstack((a_vec, b_vec, np.array([[y1],[y2],[y3]])))) l_p2_p1 = np.dstack((a_vec, b_vec, np.array([y1, y2, y3]))).squeeze() det1 = nla.det(l_p2_p1) if ((np.abs(det1)-1) > 1e-10): raise Exception('Error with Diophantine solution') else: if det1 == -1: l_p2_p1[:, 2] = -l_p2_p1[:, 2] else: raise Exception('Error with boundary-plane indices') else: a1 = int(a/p) b1 = int(b/p) # Let u0 and v0 any solution of a'u + b'v = c int_soln1 = bpb.lbi_dioph_soln(a1, b1, c) u0 = int(int_soln1[0]) v0 = int(int_soln1[1]) # z0, t0 any solution of cz + pt = d int_soln2 = bpb.lbi_dioph_soln(c, p, d) z0 = int(int_soln2[0]) t0 = int(int_soln2[1]) # x0, y0 any solution of a'x + b'y = t0 int_soln3 = bpb.lbi_dioph_soln(a1, b1, t0) x0 = int(int_soln3[0]) y0 = int(int_soln3[1]) # The general solution of ax + by + cz = d is : # x = x0 + b'k - u0m # y = y0 - a'k - v0m # z = z0 + pm with k and m any integer in \mathbb{Z} tn1 = 10 ival = np.arange(-(tn1), tn1+1) k1, m1 = np.meshgrid(ival, ival) k1 = k1.flatten() m1 = m1.flatten() x = x0 + b1*k1 - u0*m1 y = y0 - a1*k1 - v0*m1 z = z0 + p*m1 l2_val = x**2 + y**2 + z**2 ind1 = np.where(l2_val == np.min(l2_val))[0][0] y1 = x[ind1] y2 = y[ind1] y3 = z[ind1] l_p2_p1 = (np.vstack((a_vec, b_vec, np.array([y1, y2, y3])))).transpose() det1 = nla.det(l_p2_p1) if (np.abs(det1-1) > (1e-10*np.max(np.abs(l_p2_p1)))): raise Exception('Error with Diophantine solution') else: if det1 == -1: l_p2_p1[:, 2] = -l_p2_p1[:, 2] return (l_p2_p1).astype(int) def compute_rCut(l2d_bp_po): """ Given two vectors in the interface plane, compute the maximum of the norms of the two vectors. Parameters ----------------- l2d_bpb_po: numpy.array The two vectors, expressed in the **po** reference frame, that define the two-dimensional box vectors of the interface. Returns ------------ rCut: float The cut-off radius for replicating the lattice basis. """ bv1 = l2d_bp_po[:, 0] bv2 = l2d_bp_po[:, 1] l1 = nla.norm(bv1) l2 = nla.norm(bv2) l3 = nla.norm((bv1+bv2)) rCut =
np.max([l1, l2, l3])
numpy.max
import numpy as np # version 03.10.2019 # solveODE(f, y0, Ttrans, Teval, dt, outSteps, method) solves ODEs for their solution sol # # arguments: # f : right hand side of ode, function object, returns float or numpy array # y0 : initial values, # for onedimensional odes int or float # for n-dimensional odes list or numpy array # Ttrans : transient time, float # Teval : evaluation time, float # dt : integration time step, float # outSteps : store every outSteps-th step in sol, integer # method : method for numerical integration, string class ODE_Solver: # constructor def __init__ (self): pass # numerical method functions perform integration step for given right-hand side f of ode # performs explicit Euler step # convergence order 1 def explicitEuler (self, f, y, t, dt): return (y + f(y, t) * dt) # performs implicit Euler step with fixed point iteration # convergence order 1 def implicitEulerFPI (self, f, y, t, dt, tol = 1e-10): x = y x_prev = x + 2.0 * tol j = 0 while np.linalg.norm(x - x_prev) >= tol and j < 15: # raise error j += 1 x_prev = x x = y + f(x, t) * dt return (x) # performs explicit midpoint step # convergence order 2 def explicitMidpoint (self, f, y, t, dt): k1 = f(y, t) k2 = f(y + k1 * dt / 2.0, t + dt / 2.0) return (y + k2 * dt) # performs explicit Runge-Kutta step of stage 2 # convergence order 2 def explicitHeun (self, f, y, t, dt): k1 = f(y, t) k2 = f(y + k1 * dt, t + dt) return (y + (k1 + k2) * dt / 2.0) # performs explicit Runge-Kutta step of stage 4 # convergence order 4 def explicitRungeKutta4 (self, f, y, t, dt): k1 = f(y, t) k2 = f(y + k1 * dt / 2.0, t + dt / 2.0) k3 = f(y + k2 * dt / 2.0, t + dt / 2.0) k4 = f(y + k3 * dt, t + dt) return (y + (k1 + 2.0 * (k2 + k3) + k4) * dt / 6.0) def RungeKutta54_coefficients (): # stage s = 7 c = np.array([0, 1.0 / 5.0, 3.0, 10.0, 4.0 / 5.0, 8.0 / 9.0, 1.0, 1.0]) A = np.matrix([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0 / 5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [3.0 / 40.0, 9.0 / 40.0, 0.0, 0.0, 0.0, 0.0, 0.0], [44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0, 0.0, 0.0, 0.0, 0.0], [19372.0 / 6561.0, -25360.0 / 2187.0, 64448.0 / 6561.0, -212.0 / 729.0, 0.0, 0.0, 0.0], [9017.0 / 3168.0, -355.0 / 33.0, 46732.0 / 5247.0, 49.0 / 176.0, -5103.0 / 18656.0, 0.0, 0.0], [35.0 / 384.0, 0.0, 500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0, 11.0 / 84.0, 0.0]]) # niederordrig b1 =
np.array([5179.0 / 57600.0, 0.0, 7571.0 / 16695.0, 393.0 / 640.0, -92097.0 / 339200.0, 187.0 / 2100.0, 1.0 / 40.0])
numpy.array
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.common.tensor import Tensor from mindspore.common.parameter import ParameterTuple, Parameter context.set_context(device_target='CPU') class LstmNet(nn.Cell): def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(LstmNet, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 self.lstm = P.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]], [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]], [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]], [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]], [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]] ]).astype(np.float32) self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') self.h = Parameter(initializer( Tensor( np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_layers * num_directions, batch_size, hidden_size)).astype( np.float32)), [num_layers * num_directions, batch_size, hidden_size]), name='h') self.c = Parameter(initializer( Tensor( np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_layers * num_directions, batch_size, hidden_size)).astype( np.float32)), [num_layers * num_directions, batch_size, hidden_size]), name='c') wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01], [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i [-3.2140e-01, 5.5578e-01, 6.3589e-01], [1.6547e-01, -7.9030e-02, -2.0045e-01], [-6.9863e-01, 5.9773e-01, -3.9062e-01], [-3.0253e-01, -1.9464e-01, 7.0591e-01], [-4.0835e-01, 3.6751e-01, 4.7989e-01], [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32) # .reshape([1,-1]) whh = np.array([[-0.4820, -0.2350], [-0.1195, 0.0519], [0.2162, -0.1178], [0.6237, 0.0711], [0.4511, -0.3961], [-0.5962, 0.0906], [0.1867, -0.1225], [0.1831, 0.0850]]).astype(np.float32) # .reshape([1,-1]) wih = wih.transpose((1, 0)) whh = whh.transpose((1, 0)) bih = np.zeros((1, 8)).astype(np.float32) w_np = np.concatenate((wih, whh, bih), axis=0).reshape([-1, 1, 1]) self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w') @ms_function def construct(self): return self.lstm(self.x, self.h, self.c, self.w) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_lstm(): seq_len = 5 batch_size = 2 input_size = 3 hidden_size = 2 num_layers = 1 has_bias = True bidirectional = False dropout = 0.0 num_directions = 1 if bidirectional: num_directions = 2 net = LstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) y, h, c, _, _ = net() print(y) print(c) print(h) expect_y = np.array([[[-0.16709016, 0.13125697], [-0.08438572, -0.01969833]], [[-0.2746155, 0.32764038], [-0.06504016, -0.07770399]], [[-0.00140004, 0.17706314], [0.03244496, -0.10135599]], [[0.08328028, 0.06437367], [-0.04133911, -0.11072896]], [[0.19004421, -0.02852732], [0.09138509, -0.00344161]]] ) error = np.ones([num_layers, batch_size, hidden_size]) * 1.0e-4 diff = y.asnumpy() - expect_y assert np.all(diff < error) assert np.all(-diff < error) # expect_h = np.array([[[0.19004421, -0.02852732], [0.09138509, -0.00344161]]]) error = np.ones((num_layers * num_directions, batch_size, hidden_size)) * 1.0e-4 diff = h.asnumpy() - expect_h assert np.all(diff < error) assert np.all(-diff < error) # expect_c = np.array([[[0.34533143, -0.06313794], [0.169008, -0.00555446]]]) error = np.ones((num_layers * num_directions, batch_size, hidden_size)) * 1.0e-4 diff = c.asnumpy() - expect_c assert np.all(diff < error) assert np.all(-diff < error) class MultiLayerBiLstmNet(nn.Cell): def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(MultiLayerBiLstmNet, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) input_np = np.array([[[-0.1887, -0.4144, -0.0235, 0.7489, 0.7522, 0.5969, 0.3342, 1.2198, 0.6786, -0.9404], [-0.8643, -1.6835, -2.4965, 2.8093, 0.1741, 0.2707, 0.7387, -0.0939, -1.7990, 0.4765]], [[-0.5963, -1.2598, -0.7226, 1.1365, -1.7320, -0.7302, 0.1221, -0.2111, -1.6173, -0.0706], [0.8964, 0.1737, -1.0077, -0.1389, 0.4889, 0.4391, 0.7911, 0.3614, -1.9533, -0.9936]], [[0.3260, -1.3312, 0.0601, 1.0726, -1.6010, -1.8733, -1.5775, 1.1579, -0.8801, -0.5742], [-2.2998, -0.6344, -0.5409, -0.9221, -0.6500, 0.1206, 1.5215, 0.7517, 1.3691, 2.0021]], [[-0.1245, -0.3690, 2.1193, 1.3852, -0.1841, -0.8899, -0.3646, -0.8575, -0.3131, 0.2026], [1.0218, -1.4331, 0.1744, 0.5442, -0.7808, 0.2527, 0.1566, 1.1484, -0.7766, -0.6747]], [[-0.6752, 0.9906, -0.4973, 0.3471, -0.1202, -0.4213, 2.0213, 0.0441, 0.9016, 1.0365], [1.2223, -1.3248, 0.1207, -0.8256, 0.1816, 0.7057, -0.3105, 0.5713, 0.2804, -1.0685]]]).astype(np.float32) self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') self.h0 = Parameter(initializer( Tensor(
np.ones((num_directions, batch_size, hidden_size))
numpy.ones
# -*- coding: utf-8 -*- """ @author: <NAME> Affiliation: TU Delft and Deltares, Delft, The Netherlands Pre-processing for Gibbs sampler to: 1. Extract seasonal shape 2. Produce time shifts for the new scenarios """ #============================================================================== #STEP 0 - Import data import matplotlib.pyplot as plt import numpy as np from lmfit.models import LinearModel from scipy.signal import argrelextrema from scipy import stats from scipy.stats import rankdata import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose import random from scipy import interpolate #============================================================================== #Define functions def seasonal_mean(x, freq): """ Return means for each period in x. freq is an int that gives the number of periods per cycle. E.g., 12 for monthly. NaNs are ignored in the mean. """ return np.array([np.nanmean(x[i::freq], axis=0) for i in range(freq)]) def seasonal_component(x, freq): """ Tiles seasonal means (periodical avereages) into a time seris as long as the original. """ nobs=len(x) period_averages=seasonal_mean(x, freq) period_averages -= np.mean(period_averages, axis=0) return np.tile(period_averages.T, nobs // freq + 1).T[:nobs] #============================================================================== #Load and initialize data data=np.load(r'tensor_daily_mean_5D.npy') #Replace Nan with 0 data[np.where(np.isnan(data) == True)]=0 #Reshape data=np.append(data[:,:,:,:,0],data[:,:,:,:,1],axis=3) #Data view 3D data_slice=data[:,3,0,:] #CalendarYear calendarYear=365.00 #============================================================================== #Initialize empty vectors #cosine_yearly_fitted=np.zeros((400, 90,np.shape(data)[3])) x_data_ideal_matrix=np.zeros((420, 90,np.shape(data)[3])) x_data_ideal_cont_matrix=np.zeros((420, 90,np.shape(data)[3])) x_data_slice_matrix=np.zeros((420, 90,np.shape(data)[3])) y_data_slice_matrix=np.zeros((420, 90,np.shape(data)[3])) y_data_slice_smooth_matrix=np.zeros((420, 90,np.shape(data)[3])) y_data_slice_smooth_365_nearest_matrix=np.zeros((420, 90,np.shape(data)[3])) x_data_ideal_1D_matrix=np.zeros((np.shape(data)[0], np.shape(data)[3])) y_data_365_nearest_matrix=np.zeros((np.shape(data)[0], np.shape(data)[3])) deviation_matrix=np.zeros((90,np.shape(data)[3])) line_intercept=np.zeros((1,np.shape(data)[3])) line_slope=np.zeros((1,np.shape(data)[3])) residual_pattern_sqr_matrix=np.zeros((int(calendarYear), np.shape(data)[3])) #============================================================================== #Zero to Nan x_data_slice_matrix[x_data_slice_matrix == 0] = np.nan x_data_ideal_matrix[x_data_ideal_matrix == 0] = np.nan x_data_ideal_cont_matrix[x_data_ideal_cont_matrix == 0] = np.nan y_data_slice_matrix[y_data_slice_matrix == 0] = np.nan y_data_slice_smooth_matrix[y_data_slice_smooth_matrix == 0] = np.nan y_data_slice_smooth_365_nearest_matrix[y_data_slice_smooth_365_nearest_matrix == 0] = np.nan x_data_ideal_1D_matrix[x_data_ideal_1D_matrix == 0] = np.nan y_data_365_nearest_matrix[y_data_365_nearest_matrix == 0] = np.nan residual_pattern_sqr_matrix[residual_pattern_sqr_matrix == 0] = np.nan #============================================================================== #Choose time interval by the number of timesteps datalimit1=0 datalimit2=32872 #Initialize empty matrices y_data_detrended_matrix=np.zeros((datalimit2, np.shape(data)[3])) trend=np.zeros((datalimit2,np.shape(data)[3])) residual=np.zeros((datalimit2,
np.shape(data)
numpy.shape
# License is MIT: see LICENSE.md. """Nestle: nested sampling routines to evaluate Bayesian evidence.""" import sys import warnings import math import numpy as np try: from scipy.cluster.vq import kmeans2 HAVE_KMEANS = True except ImportError: # pragma: no cover HAVE_KMEANS = False __all__ = ["sample", "print_progress", "mean_and_cov", "resample_equal", "Result"] __version__ = "0.2.0" SQRTEPS = math.sqrt(float(np.finfo(np.float64).eps)) # ----------------------------------------------------------------------------- # Helpers def vol_prefactor(n): """Volume constant for an n-dimensional sphere: for n even: (2pi)^(n /2) / (2 * 4 * ... * n) for n odd : 2 * (2pi)^((n-1)/2) / (1 * 3 * ... * n) """ if n % 2 == 0: f = 1. i = 2 while i <= n: f *= (2. / i * math.pi) i += 2 else: f = 2. i = 3 while i <= n: f *= (2. / i * math.pi) i += 2 return f def randsphere(n, rstate=np.random): """Draw a random point within an n-dimensional unit sphere""" z = rstate.randn(n) return z * rstate.rand()**(1./n) / np.sqrt(np.sum(z**2)) def random_choice(a, p, rstate=np.random): """replacement for numpy.random.choice (only in numpy 1.7+)""" if abs(np.sum(p) - 1.) > SQRTEPS: # same tol as in np.random.choice. raise ValueError("probabilities do not sum to 1") r = rstate.rand() i = 0 t = p[i] while t < r: i += 1 t += p[i] return i def resample_equal(samples, weights, rstate=None): """Resample the samples so that the final samples all have equal weight. Each input sample appears in the output array either `floor(weights[i] * N)` or `ceil(weights[i] * N)` times, with `floor` or `ceil` randomly selected (weighted by proximity). Parameters ---------- samples : `~numpy.ndarray` Unequally weight samples returned by the nested sampling algorithm. Shape is (N, ...), with N the number of samples. weights : `~numpy.ndarray` Weight of each sample. Shape is (N,). Returns ------- equal_weight_samples : `~numpy.ndarray` Samples with equal weights, same shape as input samples. Examples -------- >>> x = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) >>> w = np.array([0.6, 0.2, 0.15, 0.05]) >>> nestle.resample_equal(x, w) array([[ 1., 1.], [ 1., 1.], [ 1., 1.], [ 3., 3.]]) Notes ----- Implements the systematic resampling method described in `this PDF <http://people.isy.liu.se/rt/schon/Publications/HolSG2006.pdf>`_. Another way to sample according to weights would be:: N = len(weights) new_samples = samples[np.random.choice(N, size=N, p=weights)] However, the method used in this function is less "noisy". """ if abs(np.sum(weights) - 1.) > SQRTEPS: # same tol as in np.random.choice. raise ValueError("weights do not sum to 1") if rstate is None: rstate = np.random N = len(weights) # make N subdivisions, and choose positions with a consistent random offset positions = (rstate.random() + np.arange(N)) / N idx = np.zeros(N, dtype=np.int) cumulative_sum = np.cumsum(weights) i, j = 0, 0 while i < N: if positions[i] < cumulative_sum[j]: idx[i] = j i += 1 else: j += 1 return samples[idx] class Result(dict): """Represents a sampling result. Since this class is essentially a subclass of dict with attribute accessors, one can see which attributes are available using the `keys()` method. """ def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __repr__(self): if list(self.keys()): m = max(list(map(len, list(self.keys())))) + 1 return '\n'.join([k.rjust(m) + ': ' + repr(v) for k, v in list(self.items())]) else: return self.__class__.__name__ + "()" def summary(self): """Return a nicely formatted string giving summary.""" return ("niter: {:d}\n" "ncall: {:d}\n" "nsamples: {:d}\n" "logz: {:6.3f} +/- {:6.3f}\n" "h: {:6.3f}" .format(self.niter, self.ncall, len(self.samples), self.logz, self.logzerr, self.h)) def mean_and_cov(x, weights): """Compute weighted sample mean and covariance. Parameters ---------- x : `~numpy.ndarray` 2-D array containing data samples. Shape is (M, N) where N is the number of variables and M is the number of samples or observations. This is ordering is equivalent to using ``rowvar=0`` in numpy.cov. weights : `~numpy.ndarray` 1-D array of sample weights. Shape is (M,). Returns ------- mean : `~numpy.ndarray` Weighted average of samples, with shape (N,). cov : `~numpy.ndarray` The covariance matrix of the variables with shape (N, N). Notes ----- Implements formula described here: https://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance (see "weighted samples" section) """ mean = np.average(x, weights=weights, axis=0) dx = x - mean wsum = np.sum(weights) w2sum = np.sum(weights**2) cov = wsum / (wsum**2 - w2sum) * np.einsum('i,ij,ik', weights, dx, dx) return mean, cov def print_progress(info): """Callback function that prints a running total on a single line. Parameters ---------- info : dict Dictionary containing keys ``'it'`` and ``'logz'``. """ print("\r\033[Kit={:6d} logz={:8f}".format(info['it'], info['logz']), end='') sys.stdout.flush() # because flush keyword not in print() in py2.7 # ----------------------------------------------------------------------------- # Ellipsoid class Ellipsoid(object): """An N-ellipsoid. Defined by:: (x - v)^T A (x - v) = 1 where the vector ``v`` is the center of the ellipse and ``A`` is an N x N matrix. Assumes that ``A`` is symmetric positive definite. Parameters ---------- ctr : `~numpy.ndarray` with shape ``(N,)`` Coordinates of ellipse center. Note that the array is *not* copied. This array is never modified internally. a : `~numpy.ndarray` with shape ``(N, N)`` Matrix describing the axes. Watch out! This array is *not* copied. but may be modified internally! """ def __init__(self, ctr, a): self.n = len(ctr) self.ctr = ctr # center coordinates self.a = a # ~ inverse of covariance of points contained self.vol = vol_prefactor(self.n) / np.sqrt(np.linalg.det(a)) # eigenvalues (l) are a^-2, b^-2, ... (lengths of principle axes) # eigenvectors (v) are normalized principle axes l, v = np.linalg.eigh(a) self.axlens = 1. / np.sqrt(l) # Scaled eigenvectors are the axes: axes[:,i] is the i-th # axis. Multiplying this matrix by a vector will transform a # point in the unit n-sphere into a point in the ellipsoid. self.axes = np.dot(v, np.diag(self.axlens)) def scale_to_vol(self, vol): """Scale ellipoid to satisfy a target volume.""" f = (vol / self.vol) ** (1.0 / self.n) # linear factor self.a *= f**-2 self.axlens *= f self.axes *= f self.vol = vol def major_axis_endpoints(self): """Return the endpoints of the major axis""" i = np.argmax(self.axlens) # which is the major axis? v = self.axes[:, i] # vector to end of major axis return self.ctr - v, self.ctr + v def contains(self, x): """Does the ellipse contain the point?""" d = x - self.ctr return np.dot(np.dot(d, self.a), d) <= 1.0 def randoffset(self, rstate=np.random): """Return an offset from ellipsoid center, randomly distributed within ellipsoid.""" return np.dot(self.axes, randsphere(self.n, rstate=rstate)) def sample(self, rstate=np.random): """Chose a sample randomly distributed within the ellipsoid. Returns ------- x : 1-d array A single point within the ellipsoid. """ return self.ctr + self.randoffset(rstate=rstate) def samples(self, nsamples, rstate=np.random): """Chose a sample randomly distributed within the ellipsoid. Returns ------- x : (nsamples, ndim) array Coordinates within the ellipsoid. """ x = np.empty((nsamples, self.n), dtype=np.float) for i in range(nsamples): x[i, :] = self.sample(rstate=rstate) return x def __repr__(self): return "Ellipsoid(ctr={})".format(self.ctr) # ----------------------------------------------------------------------------- # Functions for determining the ellipsoid or set of ellipsoids bounding a # set of points. def make_eigvals_positive(a, targetprod): """For the symmetric square matrix ``a``, increase any zero eigenvalues to fulfill the given target product of eigenvalues. Returns a (possibly) new matrix.""" w, v = np.linalg.eigh(a) # Use eigh because we assume a is symmetric. mask = w < 1.e-10 if np.any(mask): nzprod = np.product(w[~mask]) # product of nonzero eigenvalues nzeros = mask.sum() # number of zero eigenvalues w[mask] = (targetprod / nzprod) ** (1./nzeros) # adjust zero eigvals a = np.dot(np.dot(v, np.diag(w)), np.linalg.inv(v)) # re-form cov return a def bounding_ellipsoid(x, pointvol=0., minvol=False): """Calculate bounding ellipsoid containing a set of points x. Parameters ---------- x : (npoints, ndim) ndarray Coordinates of points. pointvol : float, optional Used to set a minimum bound on the ellipsoid volume when minvol is True. minvol : bool, optional If True, ensure that ellipsoid volume is at least len(x) * pointvol. Returns ------- ellipsoid : Ellipsoid """ npoints, ndim = x.shape # If there is only a single point, return an N-sphere with volume `pointvol` # centered at the point. if npoints == 1: r = (pointvol / vol_prefactor(ndim))**(1./ndim) return Ellipsoid(x[0], (1. / r**2) * np.identity(ndim)) # Calculate covariance of points ctr = np.mean(x, axis=0) delta = x - ctr cov = np.cov(delta, rowvar=0) # when ndim = 1, np.cov returns a 0-d array. Make it a 1x1 2-d array. if ndim == 1: cov = np.atleast_2d(cov) # For a ball of uniformly distributed points, the covariance will be # smaller than r^2 by a factor of 1/(n+2) [see, e.g., # http://mathoverflow.net/questions/35276/ # covariance-of-points-distributed-in-a-n-ball]. In nested sampling, # we are supposing the points are uniformly distributed within # an ellipse, so the same factor holds. Expand `cov` # to compensate for that when defining the ellipse matrix: cov *= (ndim + 2) # Ensure that ``cov`` is nonsingular. # It can be singular when the ellipsoid has zero volume, which happens # when npoints <= ndim or when enough points are linear combinations # of other points. (e.g., npoints = ndim+1 but one point is a linear # combination of others). When this happens, we expand the ellipse # in the zero dimensions to fulfill the volume expected from # ``pointvol``. targetprod = (npoints * pointvol / vol_prefactor(ndim))**2 cov = make_eigvals_positive(cov, targetprod) # The matrix defining the ellipsoid. a = np.linalg.inv(cov) # Calculate expansion factor necessary to bound each point. # Points should obey x^T A x <= 1, so we calculate x^T A x for # each point and then scale A up or down to make the # "outermost" point obey x^T A x = 1. # # fast way to compute delta[i] @ A @ delta[i] for all i. f = np.einsum('...i, ...i', np.tensordot(delta, a, axes=1), delta) fmax = np.max(f) # Due to round-off errors, we actually scale the ellipse so the outermost # point obeys x^T A x < 1 - (a bit), so that all the points will # *definitely* obey x^T A x < 1. one_minus_a_bit = 1. - SQRTEPS if fmax > one_minus_a_bit: a *= one_minus_a_bit / fmax ell = Ellipsoid(ctr, a) if minvol: v = len(x) * pointvol if ell.vol < v: ell.scale_to_vol(v) return ell def _bounding_ellipsoids(x, ell, pointvol=0.): """Internal bounding ellipsoids method for when a bounding ellipsoid for the entire set has already been calculated. Parameters ---------- x : (npoints, ndim) ndarray Coordinates of points. ell : Ellipsoid, optional If known, the bounding ellipsoid of the points `x`. If not supplied, it will be calculated. This option is used when the function calls itself recursively. pointvol : float, optional Volume represented by a single point. Used when number of points per ellipsoid is less than number of dimensions in order to make volume non-zero. Returns ------- ells : list of Ellipsoid Ellipsoids. """ npoints, ndim = x.shape # starting cluster centers for kmeans (k=2) p1, p2 = ell.major_axis_endpoints() # returns two 1-d arrays start_ctrs = np.vstack((p1, p2)) # shape is (k, N) = (2, N) # Split points into two clusters using k-means clustering with k=2 # centroid = (2, ndim) ; label = (npoints,) # [Each entry in `label` is 0 or 1, corresponding to cluster number] centroid, label = kmeans2(x, k=start_ctrs, iter=10, minit='matrix') # Get points in each cluster. xs = [x[label == k, :] for k in (0, 1)] # points in each cluster # If either cluster has less than ndim+1 points, the bounding ellipsoid # will be ill-constrained, so we reject the split and simply return the # ellipsoid bounding all the points. if xs[0].shape[0] < 2 * ndim or xs[1].shape[0] < 2 * ndim: return [ell] # Bounding ellipsoid for each cluster, enlarging to minimum volume. ells = [bounding_ellipsoid(xi, pointvol=pointvol, minvol=True) for xi in xs] # If the total volume decreased by a significant amount, # then we will accept the split into subsets and try to perform the # algorithm on each subset. if ells[0].vol + ells[1].vol < 0.5 * ell.vol: return (_bounding_ellipsoids(xs[0], ells[0], pointvol=pointvol) + _bounding_ellipsoids(xs[1], ells[1], pointvol=pointvol)) # Otherwise, see if the total ellipse volume is significantly greater # than expected. If it is, this indicates that there may be more than 2 # clusters and we should try to subdivide further. if ell.vol > 2. * npoints * pointvol: out = (_bounding_ellipsoids(xs[0], ells[0], pointvol=pointvol) + _bounding_ellipsoids(xs[1], ells[1], pointvol=pointvol)) # only accept split if volume decreased significantly if sum(e.vol for e in out) < 0.5 * ell.vol: return out # Otherwise, we are happy with the single bounding ellipse. return [ell] def bounding_ellipsoids(x, pointvol=0.): """Calculate a set of ellipses that bound the points. Parameters ---------- x : (npoints, ndim) ndarray Coordinates of points. pointvol : float, optional Volume represented by a single point. Used when number of points per ellipsoid is less than number of dimensions in order to make volume non-zero. Returns ------- ells : list of Ellipsoid Ellipsoids. """ # Calculate a single bounding ellipsoid for the points, and enlarge it # so that it has at least the minimum volume. ell = bounding_ellipsoid(x, pointvol=pointvol, minvol=True) return _bounding_ellipsoids(x, ell, pointvol=pointvol) def sample_ellipsoids(ells, rstate=np.random): """Chose sample(s) randomly distributed within a set of (possibly overlapping) ellipsoids. Parameters ---------- ells : list of Ellipsoid Returns ------- x : 1-d ndarray Coordinates within the ellipsoids. """ nells = len(ells) if nells == 1: return ells[0].sample(rstate=rstate) # Select an ellipsoid at random, according to volumes vols = np.array([ell.vol for ell in ells]) i = random_choice(nells, vols / vols.sum(), rstate=rstate) # Select a point from the ellipsoid x = ells[i].sample(rstate=rstate) # How many ellipsoids is the sample in? n = 1 for j in range(nells): if j == i: continue n += ells[j].contains(x) # Only accept the point with probability 1/n # (If rejected, sample again). if n == 1 or rstate.rand() < 1.0 / n: return x else: return sample_ellipsoids(ells, rstate=rstate) # ----------------------------------------------------------------------------- # Classes for dealing with non-parallel calls class FakePool(object): """A fake Pool for serial function evaluations.""" def __init__(self): pass def submit(self, fn, *args, **kwargs): return FakeFuture(fn, *args, **kwargs) def map(self, func, *iterables): return list(map(func, *iterables)) def shutdown(self): pass class FakeFuture(object): """A fake Future to mimic function calls.""" def __init__(self, fn, *args, **kwargs): self.fn = fn self.args = args self.kwargs = kwargs def result(self): return self.fn(*self.args, **self.kwargs) def cancel(self): return True # ----------------------------------------------------------------------------- # Sampler classes class Sampler: """A sampler simply selects a new point obeying the likelihood bound, given some existing set of points.""" def __init__(self, loglikelihood, prior_transform, points, rstate, options, queue_size, pool): self.loglikelihood = loglikelihood self.prior_transform = prior_transform self.points = points self.rstate = rstate self.set_options(options) self.queue_size = queue_size self.pool = pool self.queue = [] self.submitted = 0 self.cancelled = 0 self.unused = 0 self.used = 0 def empty_queue(self): """Dump all operations on the queue.""" while self.queue: x, v, f = self.queue.pop() if f.cancel(): self.cancelled += 1 else: self.unused += 1 def fill_queue(self): """Fill up the queue with operations.""" while len(self.queue)<self.queue_size: x = self.propose_point() v = self.prior_transform(x) self.queue.append((x, v, self.pool.submit(self.loglikelihood, v))) self.submitted += 1 def get_point_value(self): """ Get evaluation sequentially from the queue. If we should update our proposal distribution, do not refill the queue.""" if not self.queue: self.fill_queue() x, v, f = self.queue.pop(0) r = f.result() self.fill_queue() self.used += 1 return x, v, r class ClassicSampler(Sampler): """Picks an active point at random and evolves it with a Metropolis-Hastings style MCMC with fixed number of iterations.""" def set_options(self, options): self.steps = options.get('steps', 20) def update(self, pointvol): """Calculate an ellipsoid to get the rough shape of the point distribution correct, but then scale it down to the volume corresponding to a single point.""" self.ell = bounding_ellipsoid(self.points, pointvol=pointvol) self.ell.scale_to_vol(pointvol) def propose_point(self, u, scale): while True: new_u = u + scale * self.ell.randoffset(rstate=self.rstate) if np.all(new_u > 0.) and np.all(new_u < 1.): break return new_u def new_point(self, loglstar): # choose a point at random and copy it i = self.rstate.randint(len(self.points)) u = self.points[i, :] # evolve it. scale = 1. accept = 0 reject = 0 ncall = 0 while ncall < self.steps or accept == 0: new_u = self.propose_point(u, scale) new_v = self.prior_transform(new_u) new_logl = self.loglikelihood(new_v) if new_logl >= loglstar: u = new_u v = new_v logl = new_logl accept += 1 else: reject += 1 # adjust scale, aiming for acceptance ratio of 0.5. if accept > reject: scale *= math.exp(1. / accept) if accept < reject: scale /= math.exp(1. / reject) ncall += 1 return u, v, logl, ncall class SingleEllipsoidSampler(Sampler): """Bounds active points in a single ellipsoid and samples randomly from within that ellipsoid.""" def set_options(self, options): self.enlarge = options.get('enlarge', 1.2) def update(self, pointvol): self.empty_queue() self.ell = bounding_ellipsoid(self.points, pointvol=pointvol, minvol=True) self.ell.scale_to_vol(self.ell.vol * self.enlarge) self.fill_queue() def propose_point(self): while True: u = self.ell.sample(rstate=self.rstate) if np.all(u > 0.) and np.all(u < 1.): break return u def new_point(self, loglstar): ncall = 0 while True: u, v, logl = self.get_point_value() ncall += 1 if logl >= loglstar: break return u, v, logl, ncall class MultiEllipsoidSampler(Sampler): """Bounds active points in multiple ellipsoids and samples randomly from within joint distribution.""" def set_options(self, options): self.enlarge = options.get('enlarge', 1.2) def update(self, pointvol): self.empty_queue() self.ells = bounding_ellipsoids(self.points, pointvol=pointvol) for ell in self.ells: ell.scale_to_vol(ell.vol * self.enlarge) self.fill_queue() def propose_point(self): while True: u = sample_ellipsoids(self.ells, rstate=self.rstate) if np.all(u > 0.) and np.all (u < 1.): break return u def new_point(self, loglstar): ncall = 0 while True: u, v, logl = self.get_point_value() ncall += 1 if logl >= loglstar: break return u, v, logl, ncall # ----------------------------------------------------------------------------- # Main entry point _SAMPLERS = {'classic': ClassicSampler, 'single': SingleEllipsoidSampler, 'multi': MultiEllipsoidSampler} def sample(loglikelihood, prior_transform, ndim, npoints=100, method='single', update_interval=None, npdim=None, maxiter=None, maxcall=None, dlogz=None, decline_factor=None, rstate=None, callback=None, queue_size=None, pool=None, **options): """Perform nested sampling to evaluate Bayesian evidence. Parameters ---------- loglikelihood : function Function returning log(likelihood) given parameters as a 1-d numpy array of length *ndim*. prior_transform : function Function translating a unit cube to the parameter space according to the prior. The input is a 1-d numpy array with length *ndim*, where each value is in the range [0, 1). The return value should also be a 1-d numpy array with length *ndim*, where each value is a parameter. The return value is passed to the loglikelihood function. For example, for a 2 parameter model with flat priors in the range [0, 2), the function would be:: def prior_transform(u): return 2.0 * u ndim : int Number of parameters returned by prior and accepted by loglikelihood. npoints : int, optional Number of active points. Larger numbers result in a more finely sampled posterior (more accurate evidence), but also a larger number of iterations required to converge. Default is 100. method : {'classic', 'single', 'multi'}, optional Method used to select new points. Choices are 'classic', single-ellipsoidal ('single'), multi-ellipsoidal ('multi'). Default is 'single'. update_interval : int, optional Only update the new point selector every ``update_interval``-th likelihood call. Update intervals larger than 1 can be more efficient when the likelihood function is very fast, particularly when using the multi-ellipsoid method. Default is round(0.6 * npoints). npdim : int, optional Number of parameters accepted by prior. This might differ from *ndim* in the case where a parameter of loglikelihood is dependent upon multiple independently distributed parameters, some of which may be nuisance parameters. maxiter : int, optional Maximum number of iterations. Iteration may stop earlier if termination condition is reached. Default is no limit. maxcall : int, optional Maximum number of likelihood evaluations. Iteration may stop earlier if termination condition is reached. Default is no limit. dlogz : float, optional If supplied, iteration will stop when the estimated contribution of the remaining prior volume to the total evidence falls below this threshold. Explicitly, the stopping criterion is ``log(z + z_est) - log(z) < dlogz`` where *z* is the current evidence from all saved samples, and *z_est* is the estimated contribution from the remaining volume. This option and decline_factor are mutually exclusive. If neither is specified, the default is ``dlogz=0.5``. decline_factor : float, optional If supplied, iteration will stop when the weight (likelihood times prior volume) of newly saved samples has been declining for ``decline_factor * nsamples`` consecutive samples. A value of 1.0 seems to work pretty well. This option and dlogz are mutually exclusive. rstate : `~numpy.random.RandomState`, optional RandomState instance. If not given, the global random state of the ``numpy.random`` module will be used. callback : function, optional Callback function to be called at each iteration. A single argument, a dictionary, is passed to the callback. The keys include ``'it'``, the current iteration number, and ``'logz'``, the current total log evidence of all saved points. To simply print these at each iteration, use the convience function ``callback=nestle.print_progress``. queue_size: int, optional Carry out evaluation in parallel by queueing up new active point proposals using at most this many threads. Each thread independently proposes new live points until one is selected. Default is no parallelism (queue_size=1). pool: ThreadPoolExecutor Use this pool of workers to propose live points in parallel. If queue_size>1 and `pool` is not specified, an Exception will be thrown. Other Parameters ---------------- steps : int, optional For the 'classic' method, the number of steps to take when selecting a new point. Default is 20. enlarge : float, optional For the 'single' and 'multi' methods, enlarge the ellipsoid(s) by this fraction in volume. Default is 1.2. Returns ------- result : `Result` A dictionary-like object with attribute access: Attributes can be accessed with, for example, either ``result['niter']`` or ``result.niter``. Attributes: niter *(int)* Number of iterations. ncall *(int)* Number of likelihood calls. logz *(float)* Natural logarithm of evidence (integral of posterior). logzerr *(float)* Estimated numerical (sampling) error on *logz*. h *(float)* Information. This is a measure of the "peakiness" of the likelihood function. A constant likelihood has zero information. samples *(ndarray)* Parameter values of each sample. Shape is *(nsamples, ndim)*. logvol *(ndarray)* Natural log of prior volume of corresponding to each sample. Shape is *(nsamples,)*. logl *(ndarray)* Natural log of the likelihood for each sample, as returned by user-supplied *logl* function. Shape is *(nsamples,)*. weights *(ndarray)* Weight corresponding to each sample, normalized to unity. These are proportional to ``exp(logvol + logl)``. Shape is *(nsamples,)*. """ if npdim is None: npdim = ndim if maxiter is None: maxiter = sys.maxsize if maxcall is None: maxcall = sys.maxsize if method == 'multi' and not HAVE_KMEANS: raise ValueError("scipy.cluster.vq.kmeans2 is required for the " "'multi' method.") # pragma: no cover if method not in _SAMPLERS: raise ValueError("Unknown method: {:r}".format(method)) if npoints < 2 * ndim: warnings.warn("You really want to make npoints >= 2 * ndim!") if rstate is None: rstate = np.random # Stopping criterion. if dlogz is not None and decline_factor is not None: raise ValueError("Cannot specify two separate stopping criteria: " "decline_factor and dlogz") elif dlogz is None and decline_factor is None: dlogz = 0.5 if update_interval is None: update_interval = max(1, round(0.6 * npoints)) else: update_interval = round(update_interval) if update_interval < 1: raise ValueError("update_interval must be >= 1") # Parallel evaluation. if queue_size is None or queue_size == 1: queue_size = 1 pool = FakePool() else: if pool is None: raise ValueError("Missing pool. Please provide a Pool object.") # Initialize active points and calculate likelihoods active_u = rstate.rand(npoints, npdim) # position in unit cube active_v =
np.empty((npoints, ndim), dtype=np.float64)
numpy.empty
"""Define the COOmatrix class.""" from __future__ import division, print_function import numpy as np from numpy import ndarray from scipy.sparse import coo_matrix from six import iteritems from six.moves import range from collections import OrderedDict from openmdao.matrices.matrix import Matrix, _compute_index_map, sparse_types class COOMatrix(Matrix): """ Sparse matrix in Coordinate list format. Attributes ---------- _mat_range_cache : dict Dictionary of cached CSC matrices needed for solving on a sub-range of the parent CSC matrix. """ def __init__(self, comm): """ Initialize all attributes. Parameters ---------- comm : MPI.Comm or <FakeComm> communicator of the top-level system that owns the <Jacobian>. """ super(COOMatrix, self).__init__(comm) self._mat_range_cache = {} def _build_sparse(self, num_rows, num_cols): """ Allocate the data, rows, and cols for the sparse matrix. Parameters ---------- num_rows : int number of rows in the matrix. num_cols : int number of cols in the matrix. Returns ------- (ndarray, ndarray, ndarray) data, rows, cols that can be used to construct a sparse matrix. """ counter = 0 submats = self._submats metadata = self._metadata pre_metadata = self._key_ranges = OrderedDict() locations = {} for key, (info, loc, src_indices, shape, factor) in iteritems(submats): val = info['value'] rows = info['rows'] dense = (rows is None and (val is None or isinstance(val, ndarray))) full_size = np.prod(shape) if dense: if src_indices is None: delta = full_size else: delta = shape[0] * len(src_indices) elif rows is None: # sparse matrix delta = val.data.size else: # list sparse format delta = len(rows) if loc in locations: ind1, ind2, otherkey = locations[loc] if not (src_indices is None and (ind2 - ind1) == delta == full_size): raise RuntimeError("Keys %s map to the same sub-jacobian of a CSC or " "CSR partial jacobian and at least one of them is either " "not dense or uses src_indices. This can occur when " "multiple inputs on the same " "component are connected to the same output." % sorted((key, otherkey))) else: ind1 = counter counter += delta ind2 = counter locations[loc] = (ind1, ind2, key) pre_metadata[key] = (ind1, ind2, dense, rows) data = np.zeros(counter) rows = np.empty(counter, dtype=int) cols = np.empty(counter, dtype=int) for key, (ind1, ind2, dense, jrows) in iteritems(pre_metadata): info, loc, src_indices, shape, factor = submats[key] irow, icol = loc val = info['value'] idxs = None if dense: jac_type = ndarray if src_indices is None: colrange = np.arange(shape[1], dtype=int) else: colrange = src_indices ncols = colrange.size subrows = rows[ind1:ind2] subcols = cols[ind1:ind2] for i in range(shape[0]): subrows[i * ncols: (i + 1) * ncols] = i subcols[i * ncols: (i + 1) * ncols] = colrange subrows += irow subcols += icol else: # sparse if jrows is None: jac_type = type(val) jac = val.tocoo() jrows = jac.row jcols = jac.col else: jac_type = list jcols = info['cols'] if src_indices is None: rows[ind1:ind2] = jrows + irow cols[ind1:ind2] = jcols + icol else: irows, icols, idxs = _compute_index_map(jrows, jcols, irow, icol, src_indices) rows[ind1:ind2] = irows cols[ind1:ind2] = icols metadata[key] = (ind1, ind2, idxs, jac_type, factor) return data, rows, cols def _build(self, num_rows, num_cols): """ Allocate the matrix. Parameters ---------- num_rows : int number of rows in the matrix. num_cols : int number of cols in the matrix. """ data, rows, cols = self._build_sparse(num_rows, num_cols) metadata = self._metadata for key, (ind1, ind2, idxs, jac_type, factor) in iteritems(metadata): if idxs is None: metadata[key] = (slice(ind1, ind2), jac_type, factor) else: # store reverse indices to avoid copying subjac data during # update_submat. metadata[key] = (np.argsort(idxs) + ind1, jac_type, factor) self._matrix = coo_matrix((data, (rows, cols)), shape=(num_rows, num_cols)) def _update_submat(self, key, jac): """ Update the values of a sub-jacobian. Parameters ---------- key : (str, str) the global output and input variable names. jac : ndarray or scipy.sparse or tuple the sub-jacobian, the same format with which it was declared. """ idxs, jac_type, factor = self._metadata[key] if not isinstance(jac, jac_type) and (jac_type is list and not isinstance(jac, ndarray)): raise TypeError("Jacobian entry for %s is of different type (%s) than " "the type (%s) used at init time." % (key, type(jac).__name__, jac_type.__name__)) if isinstance(jac, ndarray): self._matrix.data[idxs] = jac.flat else: # sparse self._matrix.data[idxs] = jac.data if factor is not None: self._matrix.data[idxs] *= factor def _update_add_submat(self, key, jac): """ Add the subjac values to an existing sub-jacobian. Parameters ---------- key : (str, str) the global output and input variable names. jac : ndarray or scipy.sparse or tuple the sub-jacobian, the same format with which it was declared. """ idxs, jac_type, factor = self._metadata[key] if not isinstance(jac, jac_type) and (jac_type is list and not isinstance(jac, ndarray)): raise TypeError("Jacobian entry for %s is of different type (%s) than " "the type (%s) used at init time." % (key, type(jac).__name__, jac_type.__name__)) if isinstance(jac, ndarray): val = jac.flatten() else: # sparse val = jac.data if factor is not None: self._matrix.data[idxs] += val * factor else: self._matrix.data[idxs] += val def _prod(self, in_vec, mode, ranges, mask=None): """ Perform a matrix vector product. Parameters ---------- in_vec : ndarray[:] incoming vector to multiply. mode : str 'fwd' or 'rev'. ranges : (int, int, int, int) Min row, max row, min col, max col for the current system. mask : ndarray of type bool, or None Array used to zero out part of the matrix data. Returns ------- ndarray[:] vector resulting from the product. """ # when we have a derivative based solver at a level below the # group that owns the AssembledJacobian, we need to use only # the part of the matrix that is relevant to the lower level # system. mat = self._matrix if ranges is not None: rstart, rend, cstart, cend = ranges if rstart != 0 or cstart != 0 or rend != mat.shape[0] or cend != mat.shape[1]: if ranges in self._mat_range_cache: mat, idxs = self._mat_range_cache[ranges] # update the data array of our smaller cached matrix with current data from # self._matrix mat.data[:] = self._matrix.data[idxs] else: rstart, rend, cstart, cend = ranges rmat = mat.tocoo() # find all row and col indices that are within the desired range ridxs = np.nonzero(np.logical_and(rmat.row >= rstart, rmat.row < rend))[0] cidxs = np.nonzero(
np.logical_and(rmat.col >= cstart, rmat.col < cend)
numpy.logical_and
# coding=UTF-8 # ex:ts=4:sw=4:et=on # Copyright (c) 2013, <NAME> # All rights reserved. # Complete license can be found in the LICENSE file. import numpy as np class RefineHistory(object): """ A history tracking class for refinements """ INITIAL_ITERATION_INDEX = -1 LAST_ITERATION_INDEX = -1 ITERATION_INDEX = 0 RESIDUAL_INDEX = -1 SOLUTION_SELECTOR = np.s_[ITERATION_INDEX+1:RESIDUAL_INDEX] PLOT_SAMPLE_SELECTOR = np.s_[ITERATION_INDEX+1:] samples = None _closed = False @property def best_entry(self): if self._closed: samples = self.samples else: samples = np.asanyarray(self.samples) residuals = samples[:,self.RESIDUAL_INDEX] return samples[np.where(residuals == residuals.min()),:][-1].flatten() @property def initial_entry(self): if self._closed: samples = self.samples else: samples = np.asanyarray(self.samples) iterations = samples[:,self.ITERATION_INDEX] return samples[np.where(iterations == self.INITIAL_ITERATION_INDEX),:][-1].flatten() @property def last_entry(self): if self._closed: samples = self.samples else: samples = np.asanyarray(self.samples) iterations = samples[:,self.ITERATION_INDEX] return samples[np.where(iterations == self.LAST_ITERATION_INDEX),:][-1].flatten() @property def best_solution(self): return self.best_entry[self.SOLUTION_SELECTOR].flatten() @property def initial_solution(self): return self.initial_entry[self.SOLUTION_SELECTOR] @property def last_solution(self): return self.last_entry[self.SOLUTION_SELECTOR] @property def initial_residual(self): return float(self.initial_entry[self.RESIDUAL_INDEX]) @property def best_residual(self): return float(self.best_entry[self.RESIDUAL_INDEX]) @property def last_residual(self): return float(self.last_entry[self.RESIDUAL_INDEX]) # ------------------------------------------------------------ # Initialization and other internals # ------------------------------------------------------------ def __init__(self): self.samples = [] def _sort_solutions_by_iteration(self): self.samples.sort(key=lambda s: s[0]) # ------------------------------------------------------------ # ContextManager implementation # ------------------------------------------------------------ def close(self): self._closed = True self._sort_solutions_by_iteration() self.samples =
np.asanyarray(self.samples)
numpy.asanyarray
from functools import wraps from typing import Callable, TypeVar, cast import numpy as np from numba import njit from numfun.barycentric import barycentric_interpolation F = TypeVar('F', bound=Callable) def complexify(g: F) -> F: """Decorator to apply g on real and imaginary parts and the return the sum. :param g: A linear operator such that g(a+ib) = g(a) + i g(b) :return: a function which adds g(real(input)) + 1j * g(imag(input)) """ @wraps(g) def wrapper(coefficients: np.ndarray) -> np.ndarray: """coefficients is a complex input array.""" # Make sure c is a numpy array coefficients = 1.0 * np.array(coefficients) if np.all(np.isreal(coefficients)): return g(coefficients.real) if np.all(np.isreal(1j * coefficients)): return 1j * g(coefficients.imag) u = g(coefficients.real) v = g(coefficients.imag) return u + 1j * v return cast(F, wrapper) @complexify @njit def chebyshev_coefficients_of_integral(coefficients: np.array) -> np.array: """Indefinite integral of a Function with given Chebyshev coefficients such that f(-1) = 0. NOTE: The algorithm works for complex coefficients, but for jit to work, we have to wrap this in the @complexify decorator ########################################################################### If the underlying function is represented as a n-vector c[k]: \sum_{k=0}^{n-1} c_k T_k(x) its integral is represented as a vector of length n+1 given by: \sum_{k=0}^{n} b_k T_k(x) where b_0 is determined from the constant of integration as b_0 = \sum_{k=1}^{n} (-1)^(k+1) b_k and other coefficients are given by b_1 = c_0 - c_2/2, b_k = (c_{k-1} - c_{k+1})/(2k) if 0 < k \leq n. with c_{n+1} = c_{n+2} = 0. Pages 32-33 of Mason & Handscomb, "Chebyshev Polynomials". Chapman & Hall/CRC (2003). ########################################################################### """ # Handle the empty case: n = len(coefficients) if n == 0: return np.zeros((0,)) # Make room in c[k] with zeros c = np.zeros((n + 2,)) c[:n] = coefficients # Initialize vector b for the integral b = np.zeros((n + 1,)) # values of b_(2) ... b_(n+1): b[2:] = (c[1:n] - c[3:n + 2]) / (2.0 * np.arange(2, n + 1)) # value of b_1 b[1] = c[0] - c[2] / 2.0 v = np.ones((n,)) v[1::2] = -1.0 # value of b_0 such that f(-1) = 0 b[0] = np.dot(v, b[1:]) return b @complexify @njit def chebyshev_definite_integral(coefficients: np.array) -> float: """Definite integral of a function on the interval [-1, 1].""" n = len(coefficients) # Get the length of the coefficients: if n == 0: # Trivial cases: return np.nan if n == 1: # Constant Function return 2.0 * coefficients[0] # General case c =
np.zeros((n,))
numpy.zeros
import topogenesis as tg import numpy as np import pandas as pd # Environment class class environment(): def __init__(self, avail_lattice : tg.lattice, lattices : dict, agents_dict : dict, stencils: dict): """ Creates an environment and agents based on given initial available lattice, lattices, agent dictionary and stencils. If all the lattices are of the same shape and the values are normalized, a valid environment will be created. Args: avail_lattice (tg.lattice): a lattice initiating available voxels of the base envelope lattices (dict): a dictionary of lattices of environmental values for each voxel agents_dict (dict): a dictionary of agents, including attributes, preferences and behaviors of the agent stencils (dict): [description] """ self.lattices = lattices self.lattice_names = [lattices.keys()] self.avail_lattice = avail_lattice self.occ_lattice = avail_lattice * 0 - 1 self.bounds = avail_lattice.bounds self.shape = avail_lattice.shape self.stencils = stencils self.initialization(agents_dict) def all_lattice_update(self): """updates all the dynamic lattices """ # TODO: run lattice update on all dynamic lattices pass def lattice_update(self, lattice_key: str): # TODO: recompute the specified lattice pass def all_agents_action(self): """perform the 'action' method on all agents """ # TODO: run the action method of all agents pass # Bahar: Let's talk about this one def agent_action(self, agent_key: str): """ a method which enables an agent to act based on its preferences to occupy a new voxel or negotiate to exchange another """ # TODO: run the action method of specified agents agn = self.agents[agent_key] while (agn.area <= agn.behavior['char']['area'] or agn.behavior['char']['area'] == 0.0): neigh_lat = self.avail_lattice * 0.0 for s, w in zip( agn.behaviors["neighbourhood"]["stencils"], agn.behaviors["neighbourhood"]["weights"]): # find and aggregate neighs neigh_lat += agn.bhv_find_neighbour(s, self, rectilinear_exp=10.0) * w # extract neigh values for agent neigh_eval_lat = neigh_lat * agn.eval_lat * self.avail_lattice # Occupation ########## agn.bhv_occupy(self, np.unravel_index(neigh_eval_lat.argmax(), neigh_eval_lat.shape)) break pass def all_agents_evaluation(self): """ evaluates all the agents based on their preferences for each environment lattice """ # TODO: run the evaluation method of all agents pass def agent_evaluation(self, agent_key: str): """evaluates a given agent based on its preference for each environment lattice Args: agent_key (str): specifies the agent with the given key """ # TODO: run the evaluation method of specified agents pass def all_neighbours_evaluation(self): """ runs the evaluation on all stencils of all agents """ # TODO: run the evaluation method of all neighbours for agn in self.agents: for lat in self.lattices: pass pass def all_agents_initialization(self, agents_dict : dict): """creating all of the agents in the environment with the given dictionary Args: agents_dict (dict): a reference dictionary of agent's names, ids, preferences, attributes and behaviors and so on """ env_agents = {} for name, a in agents_dict.items(): # TODO: Check if the agents preferences are matching with the environment lattices agent_preferences = a["preferences"].keys() agent_pref_name_check = agent_preferences == self.lattices.keys() if agent_pref_name_check: # TODO: Check if the specified stencils by agent is available in the environment stencils # TODO: Run agent initialization method env_agents[name] = agent(name, self, a["attributes"], a["preferences"], a["behaviors"]) else: pass self.agents = env_agents def initialization(self, agents_dict: dict): """if all the requirements are met, creates an environment with agents and neighbouring graph Args: agents_dict (dict): a reference dictionary of agent's names, ids, preferences, attributes and behaviors and so on """ if self.lattice_check(): self.all_agents_initialization(agents_dict) self.init_neighbour_matrices() else: return def lattice_check(self) -> bool: """chackes the prerequisites of initializing an environment which is lattices of the same shape and bound, and normalized values Returns: bool: if all the prerequisites are met, a valid environment will be created with a returning text informing its properties; if false, returns the error and breaks the operation. """ shapes, bounds, mins, maxs = [],[],[],[] # iterate over all lattices for l in self.lattices.values(): shapes.append(l.shape) bounds.append(l.bounds.flatten()) mins.append(l.min()) maxs.append(l.max()) # access lattice names in self.lattice_names --> Bahar: what is this? shape_check = np.all(np.array(shapes) == self.shape) bound_check = np.all(np.array(bounds) == self.bounds.flatten()) mins_check = np.array(mins).astype(float).min() >= 0.0 maxs_check = np.array(maxs).astype(float).max() <= 1.0 if (shape_check and bound_check and mins_check and maxs_check): print("Valid environment created, shape =" + str(self.shape)) return True else: error = "Couldn't initialize the environment. Error: " if not shape_check: error += "lattice shapes doesn't match, " if not bound_check: error += "lattice bounds' doesn't match, " if not mins_check: error += "negative value found in a lattice, " if not maxs_check: error += "maximum value in a lattice is more than one." print(error) return False def init_neighbour_matrices(self): """initializes the dictionary of neighbouring values of each voxels based on each stencil, that is a square matrice with rows and columns equal to the number of voxels will be creaated, specifying each voxel's neighbours """ neigh_matrices = {} for stencil_name, stencil in self.stencils.items(): neigh_matrices[stencil_name] = self.avail_lattice.find_neighbours(stencil) self.neigh_matrices = neigh_matrices # Agent class class agent(): def __init__(self, name: str, env: environment, attributes: dict, preferences: dict, behaviors: list, origin: list = None): """initializes an agent with a name as a key to be defined by, the environment it exists in, the agent's prefernces of each environment lattice, its behaviors and attributes, and the option of the initial origin. Args: name (str): agent's name env (environment): the context attributes (dict): define agent's attributes, i.e. id, area and so on preferences (dict): define agent's environment lattice preferences. it should be a dictionary of the same lattices key in the environment within each, there's a preference value to be used in evaluation behaviors (list): a list of behaviors with valued weight origin (list, optional): optional list of initial origin of the agent, if none, a random origin will be generated. Defaults to None. """ self.name = name self.aid = attributes["identity"]["aid"] self.attributes = attributes self.preferences = preferences self.behaviors = behaviors if origin: self.origin = origin else: self.origin = agent.find_seed(self, env) self.occ_lattice = (env.occ_lattice * 0).astype(np.bool) self.occ_lattice[tuple(self.origin.flatten())] = True self.update_env_lattices(env) self.evaluation(env) # TODO: initialize the agent's available neighbour lattice per stencil # self.neighbours = {} # self.update_neighbor(env) def find_seed(self, env: environment): """randomly generates an origin for the gent Args: env (environment): agent's environment context Returns: ndarray: index array of the selected origin """ # TODO: run the initial seed finding avail_voxels = np.argwhere(env.avail_lattice == 1) select_id = np.random.choice(len(avail_voxels), 1) return avail_voxels[select_id] def update_env_lattices(self, env:environment): """updates environment occupation and available lattice based on agent's current state Args: env (environment): agent's environment context """ env.occ_lattice[self.occ_lattice] = self.aid env.avail_lattice[self.occ_lattice] = 0 def evaluation(self, env:environment): """evaluates all of the environment's lattices with concerning preference by multiplying for the agent and stores it in its eval_lat Args: env (environment): agent's environment context """ eval_lattice = tg.to_lattice(
np.ones(env.avail_lattice.shape)
numpy.ones
import numpy as np import random,sys import scipy from scipy.spatial.distance import pdist,squareform,cdist #from scipy.spatial import distance_matrix import matplotlib.pyplot as plt import scipy ### "for loop" version ### faster than "matrix version" ### because only need to consider points within h_k ### for loop version ### run this cell to overwrite the previous matrix version ### because this version is faster def adaptive_cluster(data, gap_par = 0.5, n0=None,debug=False,assign_outliers = 'nearest_cluster'): ''' data:: a numeric numpy array gap_par: the lambda parameter used to test the gap n0: the initial neighbors for each data point. debug: for debug assign_outliers: nearest_cluster, assign outliers to nearest cluster. new_cluster, assign outliers to a new cluster ''' weight_matrix_history = [] (n_points,n_features) = data.shape #distance_matrix = scipy.spatial.distance_matrix(data,data) ## faster version distance_matrix = scipy.spatial.distance.cdist(data, data, 'euclidean') #print('distance_matrix.shape',distance_matrix.shape) weight_matrix = np.zeros(shape=(n_points,n_points)) weight_matrix_history.append((0,weight_matrix)) #print('weight_matrix.shape',weight_matrix.shape) #plot_weight_matrix(weight_matrix) ### sort the distance matrix sorted_distance_idx_matrix = np.argsort(distance_matrix,axis=1) sorted_distance_matrix = np.sort(distance_matrix,axis=1) #print('sorted_distance_matrix.shape',sorted_distance_matrix.shape) #print('sorted_distance_idx_matrix.shape',sorted_distance_idx_matrix.shape) ### number of neighbors if n0 is None: n0 = 2*n_features+2 ### h0 is the the radius such that the point has n0 neighbors h0 = sorted_distance_matrix[:,n0] #print('h0.shape',h0.shape) ### max(h0(Xi),h0(Xj)) #max_h0 = np.reshape([np.maximum(h0[i],h0[j]) for i in range(n_points) for j in range(n_points)],newshape=(n_points,n_points)) #print('max_h0.shape',max_h0.shape) ### weight_matrix #weight_matrix = (distance_matrix <= max_h0).astype('int') ### faster version h0_matrix = np.tile(h0, (n_points, 1)) h0_matrix_T = h0_matrix.T h0_matrix_max = np.maximum(h0_matrix,h0_matrix_T) weight_matrix = (distance_matrix<=h0_matrix_max).astype('int') #print('weight_matrix.shape',weight_matrix.shape) #plot_weight_matrix(weight_matrix) ################################################################# ### find h sequence a = 1.4142135623730951 b = 1.95 #gap_par = -1 max_distance = np.max(sorted_distance_matrix) ### h0 is a vector, each data point has n0 neighbors ### max(h0) makes sure that each data point has at least n0 neighbors h_array = np.array([np.max(h0)]) #n_matrix = np.repeat(n0, n_points) #n_matrix = n_matrix[:,np.newaxis] k = 0 weight_matrix_history.append((h_array[k],weight_matrix.copy())) while h_array[k] <= max_distance: ### upper bound of n(Xi,h_k+1) ### given radius h_array[k], how many neighbors for each data point ### -1 removes its self from counting n_upper = a * np.array([np.sum(sorted_distance_matrix[i,:]<=h_array[k])-1 for i in np.arange(n_points)]) n_upper = (np.floor(n_upper)).astype('int') ### when h is big, the n_upper may be > n_points n_upper = np.clip(n_upper, a_min=None,a_max=(n_points-1)) #print(n_upper) ### n_upper can decide the h_upper h_upper_by_n_upper = np.min(np.array([sorted_distance_matrix[i,n_upper[i]] for i in np.arange(n_points)])) ### upper bound of h_k+1 h_upper = b*h_array[k] ### must satisfy both conditions min_h_upper = np.minimum(h_upper_by_n_upper,h_upper) #print(k,min_h_upper) ### append to the h_array ### just make sure h is not > max_distance if min_h_upper <= max_distance: if min_h_upper <= h_array[k]: break #print(k,'h',min_h_upper) h_array = np.append(h_array,min_h_upper) k = k + 1 ################################################################# ### check if those h satisfy the conditions if debug: for k in range(1,len(h_array)): if h_array[k] <= b*h_array[k-1]: continue print('k',k,h_array[k],h_array[k-1],b*h_array[k-1],end=',') print(h_array[k]/h_array[k-1]) else: print('h error') for k in range(1,len(h_array)): for i in range(n_points): n1 = np.sum(sorted_distance_matrix[i,:]<=h_array[k-1])-1 n2 = np.sum(sorted_distance_matrix[i,:]<=h_array[k])-1 if n2<=a*n1 and n1>=n0 and n2>=n0: continue print('n',k,n1,n2,a*n1,end=',') print(n2/n1) else: print('n error') ################################################################# beta_a = (n_features+1.0)/2.0 beta_b = 0.5 beta_function = scipy.special.beta(beta_a,beta_b) np.seterr(divide='ignore', invalid='ignore') print('h_k',h_array[0]) for k in range(1,len(h_array)): print('h_k',h_array[k]) #t_matrix = distance_matrix/h_array[k-1] #beta_x_matrix = 1.0-(t_matrix**2)/4.0 #incomplete_beta_function_matrix = scipy.special.betainc(beta_a,beta_b,beta_x_matrix) #q_matrix = incomplete_beta_function_matrix / (2*beta_function-incomplete_beta_function_matrix) for i in range(n_points): weight_matrix[i,i] = 1 for j in range(i,n_points): #if weight_matrix[i,j] == 1: # continue #if i == j: # weight_matrix[i,j] = 1 # continue #if i > j: # weight_matrix[i,j] = weight_matrix[j,i] # continue if distance_matrix[i,j] <= h_array[k] and h_array[k-1] >= h0[i] and h_array[k-1] >= h0[j]: #### caclulate overlap N_overlap = np.dot(weight_matrix[i,:],weight_matrix[j,:]) #### caclulate complement #N_complement = np.zeros(shape=(n_points,n_points)) if k>1: ind1 = (distance_matrix[j,:] > h_array[k-1]) + 0.0 ind2 = (distance_matrix[i,:] > h_array[k-1]) + 0.0 else: ind1 = (distance_matrix[j,:] > h0_matrix_max[i,j]) + 0.0 ind2 = (distance_matrix[i,:] > h0_matrix_max[i,j]) + 0.0 N_complement = np.dot(weight_matrix[i,:],ind1) + np.dot(weight_matrix[j,:],ind2) #### caclulate union N_union = N_overlap + N_complement #### theta theta = N_overlap / N_union #### q t = distance_matrix[i,j]/h_array[k-1] beta_x = 1.0-(t**2)/4.0 incomplete_beta_function = scipy.special.betainc(beta_a,beta_b,beta_x) q = incomplete_beta_function / (2*beta_function-incomplete_beta_function) #q = q_matrix[i,j] T1 = N_union #### this may raise warnings about log(0) or log(nan) #### this is fine, since I used the whole matrix here #### some of the points are out of the h(k) radius #### we will mask those points in the later step T2 = theta*np.log(theta/q)+(1.0-theta)*np.log((1.0-theta)/(1.0-q)) #### when N_overlap is 0, theta is 0, this leands to T is nan #### replace those nan with 0 in T #T2 = np.where(theta==0.0,0.0,T2) #T2 = np.where(theta==1.0,0.0,T2) #T3 = ((theta<=q).astype('int')-(theta>q).astype('int')) ### faster version if theta<=q: T = T1 * T2 else: T = - (T1 * T2) #T = T1 * T2 * T3 #### #### #weight_matrix[i,j] = (distance_matrix[i,j]<=h_array[k]) * (T<=gap_par) + 0.0 weight_matrix[i,j] = (T<=gap_par) + 0.0 #### be careful with those boundary points #### theta=0 means no overlap at all #### theta=1 means completely overlap #### needs special treatment for them if theta==0: weight_matrix[i,j] = 0 if theta==1: weight_matrix[i,j] = 1 #### weight_matrix[j,i] = weight_matrix[i,j] weight_matrix_history.append((h_array[k],weight_matrix.copy())) ### reset to default np.seterr(divide='warn', invalid='warn') ### calculate S S = np.sum(weight_matrix) ### extract clusters from weight matrix labels = (np.zeros(shape=weight_matrix.shape[0])) labels.fill(np.nan) cluster_ind = 0 for i in range(len(labels)): for j in range(len(labels)): if i == j:continue if weight_matrix[i,j] == 1: if np.isnan(labels[i]) and
np.isnan(labels[j])
numpy.isnan
"""Functions defining expected losses from the instruments.""" from __future__ import annotations from pathlib import Path import numpy as np from edges_cal import reflection_coefficient as rc from ..config import config from scipy import integrate def balun_and_connector_loss( band: str, freq, gamma_ant, monte_carlo_flags=(False, False, False, False, False, False, False, False), ): """ Compute balun and connector losses. Parameters ---------- band : str {'low3', 'mid'} Parameters of the loss are different for each antenna. freq : array-like Frequency in MHz gamma_ant: float Reflection coefficient of antenna at the reference plane, the LNA input. monte_carlo_flags : tuple of bool Which parameters to add a random offset to, in order: * tube_inner_radius * tube_outer_radius * tube_length * connector_inner_radius * connector_outer_radius * connector_length * metal_conductivity * teflon_permittivity Returns ------- Gb : float or array-like The balun loss Gc : float or array-like The connector loss """ # Angular frequency w = 2 * np.pi * freq * 1e6 # Inch-to-meters conversion inch2m = 1 / 39.370 # Conductivity of copper # Pozar 3rd edition. Alan uses a different number. What sigma_copper0 = 5.96 * 10 ** 7 # Metal conductivity sigma_copper = 1 * sigma_copper0 sigma_brass = 0.24 * sigma_copper0 sigma_xx_inner = 0.24 * sigma_copper0 sigma_xx_outer = 0.024 * sigma_copper0 # Permeability u0 = ( 4 * np.pi * 10 ** (-7) ) # permeability of free space (same for copper, brass, etc., all nonmagnetic ur_air = 1 # relative permeability of air u_air = u0 * ur_air # Permittivity c = 299792458 # speed of light e0 = 1 / (u0 * c ** 2) # permittivity of free space parameters = { "low": { "balun_length": 43.6 * inch2m, "connector_length": 0.8 * inch2m, "er_air": 1.07, "ric_b": ((5 / 16) * inch2m) / 2, "roc_b": ((3 / 4) * inch2m) / 2, "roc_c": (0.16 * inch2m) / 2, }, "mid": { "balun_length": 35 * inch2m, "connector_length": 0.03, "er_air": 1.2, "ric_b": ((16 / 32) * inch2m) / 2, "roc_b": ((1.25) * inch2m) / 2, "roc_c": (0.161 * inch2m) / 2, }, } ep_air = e0 * parameters[band]["er_air"] tan_delta_air = 0 epp_air = ep_air * tan_delta_air er_teflon = 2.05 # why Alan???? ep_teflon = e0 * er_teflon # http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html tan_delta_teflon = 0.0002 epp_teflon = ep_teflon * tan_delta_teflon ur_teflon = 1 # relative permeability of teflon u_teflon = u0 * ur_teflon ric_b = parameters[band]["ric_b"] if monte_carlo_flags[0]: # 1-sigma of 3% ric_b *= 1 + 0.03 * np.random.normal() roc_b = parameters[band]["roc_b"] if monte_carlo_flags[1]: # 1-sigma of 3% roc_b *= 1 + 0.03 * np.random.normal() l_b = parameters[band]["balun_length"] # length in meters if monte_carlo_flags[2]: l_b += 0.001 * np.random.normal() # 1-sigma of 1 mm # Connector dimensions ric_c = (0.05 * inch2m) / 2 # radius of outer wall of inner conductor if monte_carlo_flags[3]: # 1-sigma of 3%, about < 0.04 mm ric_c *= 1 + 0.03 * np.random.normal() roc_c = parameters[band]["roc_c"] if monte_carlo_flags[4]: # 1-sigma of 3% roc_c *= 1 + 0.03 * np.random.normal() l_c = parameters[band]["connector_length"] if monte_carlo_flags[5]: l_c += 0.0001 * np.random.normal() if monte_carlo_flags[6]: sigma_copper *= 1 + 0.01 * np.random.normal() sigma_brass *= 1 + 0.01 * np.random.normal() sigma_xx_inner *= 1 + 0.01 * np.random.normal() sigma_xx_outer *= 1 + 0.01 * np.random.normal() if monte_carlo_flags[7] == 1: # 1-sigma of 1% epp_teflon *= 1 + 0.01 * np.random.normal() # Skin Depth skin_depth_copper = np.sqrt(2 / (w * u0 * sigma_copper)) skin_depth_brass = np.sqrt(2 / (w * u0 * sigma_brass)) skin_depth_xx_inner = np.sqrt(2 / (w * u0 * sigma_xx_inner)) skin_depth_xx_outer = np.sqrt(2 / (w * u0 * sigma_xx_outer)) # Surface resistance Rs_copper = 1 / (sigma_copper * skin_depth_copper) Rs_brass = 1 / (sigma_brass * skin_depth_brass) Rs_xx_inner = 1 / (sigma_xx_inner * skin_depth_xx_inner) Rs_xx_outer = 1 / (sigma_xx_outer * skin_depth_xx_outer) def get_induc_cap_res_cond_prop( ric, roc, skin_depth_inner, skin_depth_outer, rs_inner, rs_outer, u, ep, epp ): L_inner = u0 * skin_depth_inner / (4 * np.pi * ric) L_dielec = (u / (2 * np.pi)) * np.log(roc / ric) L_outer = u0 * skin_depth_outer / (4 * np.pi * roc) L = L_inner + L_dielec + L_outer C = 2 * np.pi * ep / np.log(roc / ric) R = (rs_inner / (2 * np.pi * ric)) + (rs_outer / (2 * np.pi * roc)) G = 2 * np.pi * w * epp / np.log(roc / ric) return ( np.sqrt((R + 1j * w * L) * (G + 1j * w * C)), np.sqrt((R + 1j * w * L) / (G + 1j * w * C)), ) # Inductance per unit length gamma_b, Zchar_b = get_induc_cap_res_cond_prop( ric_b, roc_b, skin_depth_copper, skin_depth_brass, Rs_copper, Rs_brass, u_air, ep_air, epp_air, ) gamma_c, Zchar_c = get_induc_cap_res_cond_prop( ric_c, roc_c, skin_depth_xx_inner, skin_depth_xx_outer, Rs_xx_inner, Rs_xx_outer, u_teflon, ep_teflon, epp_teflon, ) # Impedance of Agilent terminations Zref = 50 Ropen, Rshort, Rmatch = rc.agilent_85033E(freq * 1e6, Zref, 1) def get_gamma(r): Z = rc.gamma2impedance(r, Zref) Zin_b = rc.input_impedance_transmission_line(Zchar_b, gamma_b, l_b, Z) Zin_c = rc.input_impedance_transmission_line(Zchar_c, gamma_c, l_c, Z) Rin_b = rc.impedance2gamma(Zin_b, Zref) Rin_c = rc.impedance2gamma(Zin_c, Zref) return Rin_b, Rin_c Rin_b_open, Rin_c_open = get_gamma(Ropen) Rin_b_short, Rin_c_short = get_gamma(Rshort) Rin_b_match, Rin_c_match = get_gamma(Rmatch) # S-parameters (it has to be done in this order, first the Connector+Bend, then the # Balun) ra_c, S11c, S12S21c, S22c = rc.de_embed( Ropen, Rshort, Rmatch, Rin_c_open, Rin_c_short, Rin_c_match, gamma_ant ) # Reflection of antenna only, at the input of bend+connector ra_b, S11b, S12S21b, S22b = rc.de_embed( Ropen, Rshort, Rmatch, Rin_b_open, Rin_b_short, Rin_b_match, ra_c ) def get_g(S11_rev, S12S21, ra_x, ra_y): return ( np.abs(S12S21) * (1 - np.abs(ra_x) ** 2) / ((
np.abs(1 - S11_rev * ra_x)
numpy.abs
import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.imputation.bayes_mi import BayesGaussMI, MI from numpy.testing import assert_allclose def test_pat(): x = np.asarray([[1, np.nan, 3], [np.nan, 2, np.nan], [3, np.nan, 0], [np.nan, 1, np.nan], [3, 2, 1]]) bm = BayesGaussMI(x) assert_allclose(bm.patterns[0], np.r_[0, 2]) assert_allclose(bm.patterns[1], np.r_[1, 3]) def test_2x2(): # Generate correlated data with mean and variance np.random.seed(3434) x = np.random.normal(size=(1000, 2)) r = 0.5 x[:, 1] = r*x[:, 0] +
np.sqrt(1-r**2)
numpy.sqrt