prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python3 import sys import os.path import numpy as np if len(sys.argv) != 3: print("\033[1;31mUsage is %s order_file l_max\033[0m" % sys.argv[0]) sys.exit() # Input/output path_in = sys.argv[1] path_out = os.path.splitext(path_in)[0] l_max = int(sys.argv[2]) size = (l_max+1)*(2*l_max+1) + 2*l_max * (l_max+1)*(2*l_max+1)/3 if not os.path.isfile(path_in): print("\033[1;31mCouldn't open file %s - aborting\033[0m" % path_in) sys.exit() # Format c++ complex output data_in = np.genfromtxt(path_in, dtype=str) data_in = np.vectorize(lambda x: complex(*eval(x)))(data_in) eta_grid =
np.real(data_in[:,0])
numpy.real
########## # # funcs.py # # # Author: <NAME> # Email: <EMAIL> # # Last Edit: 11/8/19 ########## import networkx as nx from numba import jit import math from scipy.spatial import ConvexHull from scipy.spatial import Delaunay import numpy as np from . import globals as const basal_offset = const.basal_offset def vector(A,B): return [(B[0]-A[0]), (B[1]-A[1]), (B[2]-A[2])] @jit(nopython=True, cache=True) def euclidean_distance(v1, v2): dist = [(a - b)**2 for a, b in zip(v1, v2)] dist = math.sqrt(sum(dist)) return dist # def unit_vector(A,B): # # Calculate the unit vector from A to B in 3D # dist = distance.euclidean(A,B) # if dist < 10e-15: # dist = 1.0 # return [(B[0]-A[0])/dist,(B[1]-A[1])/dist, (B[2] - A[2])/dist] # ############### @jit(nopython=True, cache=True) def unit_vector(A,B): # Calculate the unit vector from A to B in 3D dist = euclidean_distance(A,B) if dist < 10e-15: dist = 1.0 return (B-A)/dist ############### @jit(nopython=True, cache=True) def unit_vector_and_dist(A,B): # Calculate the unit vector from A to B in 3D dist = euclidean_distance(A,B) if dist < 10e-15: dist = 1.0 return (B-A)/dist, dist ############### def unit_vector_2D(A,B): # Calculate the unit vector from A to B in 3D dist = euclidean_distance(A,B) if dist < 10e-15: dist = 1.0 return (B-A)[0:2]/dist ############### def elastic_force(l,l0,muu): # Calculate the magnitude of the force obeying Hooke's Law frce = muu*(l-l0) return frce ############### def get_angle_formed_by(p1,p2,p3): # angle formed by three positions in space # based on code submitted by <NAME> r1 = np.linalg.norm([p1[0]-p2[0],p1[1]-p2[1]]) r2 = np.linalg.norm([p2[0]-p3[0],p2[1]-p3[1]]) r3 = np.linalg.norm([p1[0]-p3[0],p1[1]-p3[1]]) small = 1.0e-10 if (r1 + r2 - r3) < small: # This seems to happen occasionally for 180 angles theta = np.pi else: theta = np.arccos( (r1*r1 + r2*r2 - r3*r3) / (2.0 * r1*r2) ) return theta; ############### def signed_angle(v1,v2): theta = np.arctan2(v2[1],v2[0]) - np.arctan2(v1[1],v1[0]) if theta > np.pi: theta -= 2*np.pi elif theta <= -np.pi: theta += 2*np.pi return theta ############### def tetrahedron_volume(a, b, c, d): return np.abs(np.einsum('ij,ij->i', a-d, crossMatMat(b-d, c-d))) / 6 def convex_hull_volume(pts): ch = ConvexHull(pts) dt = Delaunay(pts[ch.vertices]) tets = dt.points[dt.simplices] return np.sum(tetrahedron_volume(tets[:, 0], tets[:, 1], tets[:, 2], tets[:, 3])) def convex_hull_volume_bis(pts): ch = ConvexHull(pts) simplices = np.column_stack((np.repeat(ch.vertices[0], ch.nsimplex), ch.simplices)) tets = ch.points[simplices] return np.sum(tetrahedron_volume(tets[:, 0], tets[:, 1], tets[:, 2], tets[:, 3])) def in_hull(p, hull): """ Test if points in `p` are in `hull` `p` should be a `NxK` coordinates of `N` points in `K` dimensions `hull` is either a scipy.spatial.Delaunay object or the `MxK` array of the coordinates of `M` points in `K`dimensions for which Delaunay triangulation will be computed """ from scipy.spatial import Delaunay if not isinstance(hull,Delaunay): hull = Delaunay(hull) return hull.find_simplex(p)>=0 def get_points(G, q, pos): # get node numbers associated with a given center # inputs: G: networkx graph # q: number of center node (apical only) # pos: position of nodes # returns: pts: list of positions that are associated with that center api_nodes = [q] + list(G.neighbors(q)) basal_nodes = [q+basal_offset] + list(G.neighbors(q+basal_offset)) # basal_nodes = [api_nodes[n] + 1000 for n in range(1,7)] pts = api_nodes + basal_nodes pts = [pos[n] for n in pts] return pts @jit(nopython=True, cache=True) def cross33(a,b): return np.array([a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]]) @jit(nopython=True, cache=True) def cross3Mat(a,b): out = np.zeros((b.shape)) for i in range(0,b.shape[0]): out[i,0]=a[1]*b[i,2]-a[2]*b[i,1] out[i,1]=a[2]*b[i,0]-a[0]*b[i,2] out[i,2]=a[0]*b[i,1]-a[1]*b[i,0] return out @jit(nopython=True, cache=True) def crossMatMat(a,b): out = np.zeros((b.shape)) for i in range(0,b.shape[0]): out[i,0]=a[i,1]*b[i,2]-a[i,2]*b[i,1] out[i,1]=a[i,2]*b[i,0]-a[i,0]*b[i,2] out[i,2]=a[i,0]*b[i,1]-a[i,1]*b[i,0] return out def sort_corners(corners,center_pos,pos_nodes): corn_sort = [(corners[0],0)] u = unit_vector_2D(center_pos,pos_nodes[corners[0]]) for i in range(1,len(corners)): v = unit_vector_2D(center_pos,pos_nodes[corners[i]]) dot = np.dot(u,v) det = np.linalg.det([u,v]) angle = np.arctan2(det,dot) corn_sort.append((corners[i],angle)) corn_sort = sorted(corn_sort, key=lambda tup: tup[1]) corn2 = [pos_nodes[entry[0]] for entry in corn_sort] return corn2, corn_sort @jit(nopython=True, cache=True) def area_side(pos_side): A_alpha = np.zeros((3,)) # inds=[2,0,1] for i in range(0,3): A_alpha += (1/2)*cross33(pos_side[i],pos_side[i-1]) return np.linalg.norm(A_alpha), A_alpha # def area_side(pos_side): # A_alpha = np.array([0.,0.,0.]) # for i in range(0,3): # A_alpha += (1/2)*np.cross(np.asarray(pos_side[i]),np.asarray(pos_side[i-1])) # return [np.linalg.norm(A_alpha), A_alpha] def be_area(cw_alpha, cw_beta, pos): A_alpha = np.array([0.,0.,0.]) A_beta = np.array([0.,0.,0.]) for i in range(0,3): A_alpha += (1/2)*np.cross(np.asarray(pos[cw_alpha[i]]),np.asarray(pos[cw_alpha[i-1]])) A_beta += (1/2)*np.cross(np.asarray(pos[cw_beta[i]]),np.asarray(pos[cw_beta[i-1]])) return [np.linalg.norm(A_alpha), A_alpha], [np.linalg.norm(A_beta), A_beta] @jit(nopython=True, cache=True) def be_area_2( pos_alpha, pos_beta): A_alpha = np.zeros((3,)) A_beta = np.zeros((3,)) # inds=np.array([2,0,1]) for i in range(0,3): A_alpha += (1/2)*cross33(pos_alpha[i],pos_alpha[i-1]) A_beta += (1/2)*cross33(pos_beta[i],pos_beta[i-1]) # A_alpha = np.sum(crossMatMat(pos_alpha,pos_alpha[inds]),axis=0) # A_beta = np.sum(crossMatMat(pos_beta,pos_beta[inds]),axis=0) return np.linalg.norm(A_alpha), A_alpha, np.linalg.norm(A_beta), A_beta # principal unit vectors e_x, e_y, e_z e = np.array([[1,0,0], [0,1,0], [0,0,1]]) #@profile @jit(nopython=True, cache=True) def bending_energy_2(nbhrs_alpha, nbhrs_beta, alpha_vec, A_alpha, beta_vec, A_beta, pos_alpha_A, pos_alpha_B, pos_beta_A, pos_beta_B): sums = np.array([[0.,0.,0.],[0.,0.,0.],[0.,0.,0.],[0.,0.,0.],[0.,0.,0.]]) for k in range(0,3): # sum (1) and (5) use the alpha cell if nbhrs_alpha != False: cross = np.cross(pos_alpha_B-pos_alpha_A,e[k]) sums[0] += beta_vec[k]*(1/2)*cross sums[4] += alpha_vec[k]*(1/2)*cross # sum (2) and (4) use the beta cell if nbhrs_beta != False: cross = np.cross(pos_beta_B-pos_beta_A,e[k]) sums[1] += alpha_vec[k]*(1/2)*cross sums[3] += beta_vec[k]*(1/2)*cross # sum (3) sums[2] += alpha_vec[k]*beta_vec[k] return (1.0/(A_alpha*A_beta))*(sums[0]+sums[1]) \ + (-sums[2]/(A_alpha*A_beta)**2)*((A_alpha/A_beta)*sums[3] \ +(A_beta/A_alpha)*sums[4]) def bending_energy(nbhrs_alpha, nbhrs_beta, A_alpha, A_beta, pos): # principal unit vectors e_x, e_y, e_z e = np.array([[1,0,0], [0,1,0], [0,0,1]]) # initialize the sums to zero sums =
np.array([[0.,0.,0.],[0.,0.,0.],[0.,0.,0.],[0.,0.,0.],[0.,0.,0.]]) for k in range(0,3)
numpy.array
#!/usr/bin/env python3 """ This file contains main computational loop and functions highly related to it .. module:: GMDA_main :platform: linux .. moduleauthor:: <NAME> <<EMAIL>> """ __license__ = "MIT" __docformat__ = 'reStructuredText' import heapq import time import os import multiprocessing as mp import numpy as np from shutil import copy2 as cp2 from pathlib import Path import zlib import gc from typing import NoReturn from db_proc import insert_into_log, insert_into_main_stor, insert_into_visited, copy_old_db from helper_funcs import trjcat_many, make_a_step, create_core_mapping, get_seed_dirs, check_precomputed_noize, \ get_new_seeds, get_digest, make_a_step2, rm_seed_dirs, make_a_step3, main_state_recover, supp_state_recover, \ main_state_backup, supp_state_backup from parse_topology_for_hydrogens import parse_top_for_h from gmx_wrappers import gmx_trjcat, gmx_trjconv from metric_funcs import get_knn_dist_mdsctk, get_bb_to_angle_mdsctk, get_angle_to_sincos_mdsctk, \ get_native_contacts, gen_file_for_amb_noize, save_an_file, compute_init_metric, compute_metric, \ select_metrics_by_snr, get_contat_profile_mdsctk # from pympler import muppy, summary # from memory_profiler import profile # import sys MAX_ITEMS_TO_HANDLE = 50000 # extra_past = './' # define extra past dir - this is temporary handle. # def proc_local_minim(open_queue, best_so_far_name: str, tol_error, ndx_file: str, name_2_digest_map: dict, goal_top: str, local_minim_names: list): # """ # Deprecated approach to block falling into local minima basin # :param open_queue: sorted queue that contains nodes about to be processed. This is actually only a partial queue (only top elements) # :param best_so_far_name: name of the trajectory closest to the goal (according to the current metric) # :param tol_error: minimal metric vibration of the NMR structure # :param ndx_file: .ndx - index of the protein atoms of the current conformation # :param name_2_digest_map: dictionary that maps trajectory name to it's precomputed digest # :param goal_top: .top - topology of the NMR conformation # :param local_minim_names: list of nodes close to the local minima # :return: # """ # # split name into subnames # # compute distance # # import math # range_lim = 6 # strict = True # if strict: # basin_err = tol_error * 4 # stem_err = lambda i: tol_error - 2 * tol_error * i / 5 # else: # basin_err = tol_error * 2 # stem_err = lambda i: tol_error - tol_error * i / 5 # # prev_points = best_so_far_name.split('_') # past_dir = './past' # # len_prev_points = len(prev_points) # # step = len_prev_points//18 # all_prev_names = ['_'.join(prev_points[:i]) for i in range(1, len(prev_points))] # hashed_names = [os.path.join(past_dir, name_2_digest_map[point] + '.xtc') for point in all_prev_names] # len_hashed_names = len(hashed_names) # closest_to_minim = hashed_names[len_hashed_names:len_hashed_names // 2:-1] # gmx_trjcat(f=closest_to_minim, o='local_min.xtc', n=ndx_file, cat=True, vel=False, sort=False, overwrite=True) # # range_lim = min(6, len_prev_points) # # hashed_names = [name_2_digest_map[name[4]] for name in open_queue] # # trjcat_many(hashed_names, past_dir, './combinded_traj_openq.xtc') # # rmsd = get_knn_dist_mdsctk('./combinded_traj_openq.xtc', 'local_min.xtc', goal_top) # # rmsd_structured = list() # for i in range(len(closest_to_minim)): # rmsd_structured.append(rmsd[i * len(hashed_names):(i + 1) * len(hashed_names)]) # # # next part of code implements gradual pruning: # # the closer point to the end of perfect path - the closer we are to the local minim center # # so we need to remove all near points. # # some extra code here to handle case when we have shorter paths and make sure that # # the most pruning will receive only center # step = len(rmsd_structured)//range_lim if len(rmsd_structured) > range_lim else 1 # how_many = [0] # sum = 0 # for i in range(1, range_lim): # sum += step # how_many.append(sum) # if sum == len(rmsd_structured): # break # how_many[-1] += len(rmsd_structured) - step * (len(how_many) - 1) # set_of_points_to_remove = set() # # for i in range(len(how_many)-1): # subarr = rmsd_structured[how_many[i]:how_many[i+1]] # for line_of_points in subarr: # for point_pos, point in enumerate(line_of_points): # if point < stem_err(i): # set_of_points_to_remove.add(point_pos) # # print('Main stem, trimming {} points'.format(len(set_of_points_to_remove))) # # # at this point we cleaned main stem of perfect path # # now its time to clean local minimum basin # # hashed_names = [name_2_digest_map[name] for name in local_minim_names] # trjcat_many(hashed_names, past_dir, './combinded_traj_basin.xtc') # # if os.path.exists('./local_minim_bas.xtc'): # gmx_trjcat(f=['./combinded_traj_basin.xtc', 'local_minim_bas.xtc'], # o='./combinded_traj_basin_comb.xtc', # n='./prot_dir/prot.ndx', cat=True, vel=False, sort=False, overwrite=True) # os.remove('./combinded_traj_basin.xtc') # os.rename('./combinded_traj_basin_comb.xtc', './combinded_traj_basin.xtc') # # gmx_trjcat(f=['./combinded_traj_basin.xtc', 'local_min.xtc'], # o='./local_minim_bas.xtc', # n='./prot_dir/prot.ndx', cat=True, vel=False, sort=False, overwrite=True) # # rmsd = get_knn_dist_mdsctk('./combinded_traj_openq.xtc', './combinded_traj_basin.xtc', goal_top) # # rmsd_structured = list() # for i in range(len(closest_to_minim)): # rmsd_structured.append(rmsd[i * len(hashed_names):(i + 1) * len(hashed_names)]) # # for line_of_points in rmsd_structured: # for point_pos, point in enumerate(line_of_points): # if point < basin_err: # set_of_points_to_remove.add(point_pos) # # print('Total points to trim: {} points'.format(len(set_of_points_to_remove))) # # open_queue = [node for index, node in enumerate(open_queue) if index not in set_of_points_to_remove] # # heapq.heappush(open_queue, elem) # heapq.heapify(open_queue) # return open_queue # def check_local_minimum(temp_xtc_file: str, goal_top: str, tol_error: float): # """ # Checks whether tested frames are close to the local minima basin # :param temp_xtc_file: frames to check # :param goal_top: .top - topology of the NMR conformation # :param tol_error: minimal metric vibration of the NMR structure # :return: True if belongs, False otherwise # """ # if os.path.exists('./local_minim_bas.xtc'): # strict = True # if strict: # prune_err = tol_error*4 # else: # prune_err = tol_error * 2 # min_dist = min(get_knn_dist_mdsctk(temp_xtc_file, 'local_minim_bas.xtc', goal_top)) # if min_dist < prune_err: # return False # return True def queue_rebuild(process_queue: list, open_queue_to_rebuild: list, node_info: dict, cur_mult: float, new_metr_name: str, sep_proc: bool = True) -> list: """Resorts the queue according to the new metric. Args: :param list process_queue: queue to use if function is executed in a separate process :param list open_queue_to_rebuild: sorted queue that contains nodes about to be processed. This is actually only a partial queue (only top elements) :param dict node_info: :param float cur_mult: current greedy factor :param str new_metr_name: defines how to sort the new queue :param bool sep_proc: whether the function runs in a separate process Returns: :return: if separate process - then new queue and metric name are pushed into the queue, otherwise returned :rtype: list """ gc.collect() new_queue = list() to_goal, total = '{}_to_goal'.format(new_metr_name), '{}_dist_total'.format(new_metr_name) try: for elem in open_queue_to_rebuild[1:]: heapq.heappush(new_queue, (cur_mult*node_info[elem[2]][total] + node_info[elem[2]][to_goal], 0, elem[2])) except Exception: print(len(node_info)) print(len(open_queue_to_rebuild)) print(new_metr_name) print(cur_mult) print(sep_proc) del open_queue_to_rebuild gc.collect() if sep_proc: process_queue.put((new_queue, new_metr_name)) else: return new_queue def get_atom_num(ndx_file: str) -> int: """Computes number of atoms in the particular index file. Args: :param str ndx_file: .ndx - index of the protein atoms of the current conformation. Returns: :return: number of atoms in the .ndx file. :rtype: int """ with open(ndx_file, 'r') as index_file: index_file.readline() # first line is the comment - skip it indices = index_file.read().strip() elems = indices.split() atom_num = len(elems) return atom_num def parse_hostnames(seednum: int, hostfile: str = 'hostfile') -> tuple: """Spreads the load among the hosts found in the hostfile. Needed for MPI Args: :param seednum: total number of seeds used in the current run :param hostfile: filename of the hostfile Returns: :return: hosts split partitioned according to the number of seeds and total number of cores for each job """ with open(hostfile, 'r') as f: hosts = f.readlines() del hostfile hostnames = [elem.strip().split(' ')[0] for elem in hosts] ncores = [int(elem.strip().split(' ')[1].split('=')[1]) for elem in hosts] ev_num = len(hosts) // seednum if ev_num == 0: raise Exception('Special case is not implemented') else: chopped = [tuple(hostnames[i:i+ev_num]) for i in range(0, len(hostnames), ev_num)] ncores_sum = [sum(ncores[i:i+ev_num]) for i in range(0, len(ncores), ev_num)] return chopped, ncores_sum def compute_on_local_machine(cpu_map: list, seed_list: list, cur_name: str, past_dir: str, work_dir: str, seed_dirs: dict, topol_file_init: str, ndx_file_init: str, old_name_digest: str) -> tuple: """This version is optimised for usage on one machine with tMPI (see GROMACS docs). Performs check whether requested simulation was completed in the past. If so (and all requested files exist), we skip the computation, otherwise we start the sequence of events that prepare and run the simulation in the separate process. I was playing with better core distribution, but it did not work well, since GROMACS may complain when you assign odd number of cores, or when 14 cores does not work, but 12 and 16 are fine. What I know fo sure that powers of 2 work the best until 128 cores, but we do not have so many cores on one machine. Two machines are worse than one (yes, 64+64 is slower than 64, same with 32+32) - maybe Infiniband can help, but we do not have one. Additionally, I commented prev_runs - it just uses more RAM without giving any significant speedup. Args: :param list cpu_map: number of cores for particular task (seed) :param list seed_list: list of current seeds :param str cur_name: name of the current node (prior path constructed from seed names s_0_1_4) :param str past_dir: path to the directory with prior computations :param str work_dir: path to the directory where seed dirs reside :param dict seed_dirs: dict which contains physical path to the directory where simulation with particular seed is performed :param str topol_file_init: .top - topology of the initial (unfolded) conformation :param str ndx_file_init: .ndx - index of the protein atoms of the unfolded conformation :param list prev_runs_files: information about all previously generated files in ./past directory :param str old_name_digest: digest of the current name Returns: :return: array of PIDs to join them later and allow some more parallel computation, hash names, simulation names. :rtype: tuple Returns: PIDs and new filenames. PIDs - to join processes later. """ files_for_trjcat = list() recent_filenames = list() pid_arr = list() # recent_n2d = dict() # recent_d2n = dict() for i, exec_group in enumerate(cpu_map): saved_cores = 0 for cur_group_sched in exec_group: cores, seed_2_process = cur_group_sched seed_2_process = seed_list[seed_2_process] new_name = '{}_{}'.format(cur_name, seed_2_process) seed_digest_filename = get_digest(new_name) # recent_n2d[new_name] = seed_digest_filename # recent_d2n[seed_digest_filename] = new_name xtc_filename = '{}.xtc'.format(seed_digest_filename) gro_filename = '{}.gro'.format(seed_digest_filename) files_for_trjcat.append(os.path.join(past_dir, xtc_filename)) # # if os.path.exists(os.path.join('./past', xtc_filename)) and os.path.exists(os.path.join('./past', gro_filename)): # saved_cores += cores # not fair, but short TODO: write better logic for cores remapping # recent_filenames.append(xtc_filename) # recent_filenames.append(gro_filename) # continue # else: if not (os.path.exists(os.path.join(past_dir, xtc_filename)) and os.path.exists(os.path.join(past_dir, gro_filename))): #\ # and not (os.path.exists(os.path.join(extra_past, xtc_filename)) and os.path.exists(os.path.join(extra_past, gro_filename))): md_process = None md_process = mp.Process(target=make_a_step, args=(work_dir, seed_2_process, seed_dirs, topol_file_init, ndx_file_init, seed_digest_filename, old_name_digest, past_dir, cores + saved_cores)) md_process.start() # print('Process started :{} pid:{} alive:{} ecode:{} with next param: s:{}, pd:{}, cor:{}'.format(md_process.name, # md_process.pid, md_process.is_alive(), md_process.exitcode, seed_2_process, past_dir, cores+saved_cores)) pid_arr.append(md_process) # make_a_step(work_dir, seed_2_process, seed_dirs, seed_list, topol_file, ndx_file, name_2_digest_map, # cur_job_name, past_dir, cores+saved_cores) saved_cores = 0 # print('md_process{} '.format(seed_2_process), end="") # recent_filenames.append(xtc_filename) # recent_filenames.append(gro_filename) if i is not len(cpu_map) - 1: # if it is not the last portion of threads then wait for completion [proc.join() for proc in pid_arr] # combine prev_step and goal to compute two dist in one pass # rm_queue.join() # make sure that queue is empty (all files were deleted) # Test code for multiprocessing check. There was a problem with python3.4 and old sqlite (too many parallel # connections when reusing past results). # [proc.join(timeout=90) for proc in pid_arr] # if len(pid_arr): # print('Proc arr is not empty:', end=' ') # while True: # proc_stil_running = 0 # for cur_group_sched in pid_arr: # print('waiting for name:{} pid:{} alive:{} ecode:{}'.format(cur_group_sched.name, # cur_group_sched.pid, cur_group_sched.is_alive(), cur_group_sched.exitcode)) # cur_group_sched.join(timeout=40) # if cur_group_sched.exitcode is not None: # proc_stil_running += 1 # if proc_stil_running == len(pid_arr): # print('Done.') # break # if len(pid_arr): # print('j{} '.format(len(pid_arr)), end="") return pid_arr, files_for_trjcat, recent_filenames, None, None # recent_n2d, recent_d2n def compute_with_mpi(seed_list: list, cur_name: str, past_dir: str, work_dir: str, seed_dirs: dict, topol_file_init: str, ndx_file_init: str, old_name_digest: str, tot_seeds: int, hostnames: list, ncores: list, sched: bool = False, ntomp: int = 1) -> tuple: """This version is optimised for usage on more than one machine with tMPI and/or MPI. If you use scheduler and know exactly how many cores each machine has - supply correct hostfile and use tMPI on each machine with OMP. If you use scheduler without option to choose specific machine - use version without scheduler or local version (depends on your cluster implementation). Performs check whether requested simulation was completed in the past. If so (and all requested files exist), we skip the computation, otherwise we start the sequence of events that prepare and run the simulation in the separate process. I was playing with better core distribution, but it did not work well, since GROMACS may complain when you assign odd number of cores, or when 14 cores does not work, but 12 and 16 are fine. What I know fo sure that powers of 2 work the best until 128 cores, but we do not have so many cores on one machine. Two machines are worse than one (yes, 64+64 is slower than 64, same with 32+32) - maybe InfiniBand can help, but we do not have one. Additionally, I commented prev_runs - it just uses more RAM without giving any significant speedup. Args: :param list seed_list: list of current seeds :param str cur_name: name of the current node (prior path constructed from seed names s_0_1_4) :param str past_dir: path to the directory with prior computations :param strwork_dir: path to the directory where seed dirs reside :param dict seed_dirs: dict which contains physical path to the directory where simulation with particular seed is performed :param str topol_file_init: .top - topology of the initial (unfolded) conformation :param str ndx_file_init: .ndx - index of the protein atoms of the initial (unfolded) conformation :param list prev_runs_files: information about all previously generated files in ./past directory :param str old_name_digest: digest of the current name :param int tot_seeds: total number of seeds, controversial optimisation. :param list hostnames: correct names/IPs of the hosts :param int ncores: number of cores on each host :param bool sched: secelts proper make_a_step version :param int ntomp: how many OMP threads use during the MD simulation (2-4 is the optimal value on 32-64 core hosts) Returns: :return: array of PIDs to join them later and allow some more parallel computation, hash names, simulation names. :rtype: tuple PIDs and new filenames. PIDs - to join processes later. """ # if os.path.exists(os.path.join(os.getcwd(), 'local.comp')): # hostnames = [('Perseus', )]*tot_seeds gc.collect() files_for_trjcat = list() recent_filenames = list() pid_arr = list() # recent_n2d = dict() # recent_d2n = dict() for i in range(tot_seeds): seed_2_process = seed_list[i] new_name = '{}_{}'.format(cur_name, seed_2_process) seed_digest_filename = get_digest(new_name) # recent_n2d[new_name] = seed_digest_filename # recent_d2n[seed_digest_filename] = new_name xtc_filename = '{}.xtc'.format(seed_digest_filename) gro_filename = '{}.gro'.format(seed_digest_filename) # if os.path.exists(os.path.join(extra_past, xtc_filename)) and os.path.exists(os.path.join(extra_past, gro_filename)): # files_for_trjcat.append(os.path.join(extra_past, xtc_filename)) # else: files_for_trjcat.append(os.path.join(past_dir, xtc_filename)) if not (os.path.exists(os.path.join(past_dir, xtc_filename)) and os.path.exists(os.path.join(past_dir, gro_filename))): # \ # make_a_step2(work_dir, seed_2_process, seed_dirs, topol_file_init, ndx_file_init, seed_digest_filename, old_name_digest, # past_dir, hostnames[i], ncores[i]) if sched: md_process = mp.Process(target=make_a_step3, args=(work_dir, seed_2_process, seed_dirs, topol_file_init, ndx_file_init, seed_digest_filename, old_name_digest, past_dir, int(ncores/tot_seeds), ntomp)) else: md_process = mp.Process(target=make_a_step2, args=(work_dir, seed_2_process, seed_dirs, topol_file_init, ndx_file_init, seed_digest_filename, old_name_digest, past_dir, hostnames[i], ncores[i])) md_process.start() pid_arr.append(md_process) recent_filenames.append(xtc_filename) recent_filenames.append(gro_filename) return pid_arr, files_for_trjcat, recent_filenames, None, None # recent_n2d, recent_d2n def check_in_queue(queue: list, elem_hash: str) -> bool: """Checks whether elements with provided hash exists in the queue Args: :param list queue: specific queue to check :param str elem_hash: name to find in the queue Returns: :return: True if element found, False otherwise :rtype: bool """ for elem in queue: if elem[2] == elem_hash: return True return False def second_chance(open_queue: list, visited_queue: list, best_so_far_name: str, cur_metric: str, main_dict: dict, node_max_att: int, cur_metric_name: str, best_so_far: dict, tol_error: float, greed_mult: float) -> list: """Typically executed during the seed change. We want to give the second chance to a promising trajectories with different seeds. Typically, we allow up to 4 attempts. However, the best trajectories are always readded to the queue. Args: :param list open_queue: sorted queue that contains nodes about to be processed. This is actually only a partial queue (only top elements) :param list visited_queue: sorted queue that contains nodes processed prior. This is actually only a partial queue (only top elements) :param str best_so_far_name: node with the closest distance to the goal according to the guiding metric - we want to keep it for a long time, with hope that it will jump over the energy barrier :param str cur_metric: index of the current metric :param dict main_dict: map with all the information (prior and goal distances for all metrics, names, hashnames, attempts, etc) :param int node_max_att: defines how many attempts each node can have :param str cur_metric_name: name of the current metric :param dict best_so_far: name of the node with the closest metric distance to the goal :param float tol_error: minimal metric vibration of the NMR structure :param float greed_mult: greedy multiplier, used to assign correct metric value (ballance between optimality and greedyness) Returns: :return: short list of promising nodes, they will be merged with the open queue later :rtype: list """ res_arr = list() recover_best = True for elem in open_queue: if elem[2] == best_so_far_name[cur_metric_name]: recover_best = False break for elem in visited_queue: # elem structure: tot_dist, att, cur_name # we give node_max_att attempts for a node to make progress with different seed if (elem[1] < node_max_att and main_dict[elem[2]]['{}_to_goal'.format(cur_metric_name)] - best_so_far[cur_metric_name] < tol_error[cur_metric_name]): # \ # and elem[2] != best_so_far_name[cur_metric]: # or main_dict[elem[2]]['{}_to_goal'.format(cur_metric_name)] != best_so_far[cur_metric]: if elem[2] == best_so_far_name[cur_metric_name]: if recover_best: res_arr.append(elem) recover_best = False break else: if elem[1] > 1 and check_in_queue(open_queue, elem[2]): print('Not adding regular node (already in the queue)') else: res_arr.append(elem) print('Readding "{}" with attempt counter: {} and dist: {}'.format(elem[2], elem[1], elem[0])) elem = main_dict[best_so_far_name[cur_metric_name]] if recover_best: res_arr.append((elem['{}_dist_total'.format(cur_metric_name)] * greed_mult + elem['{}_to_goal'.format(cur_metric_name)], 0, best_so_far_name[cur_metric_name])) print('Recovering best') else: print('Not recovering best (already in the open queue)') del elem return res_arr def check_dupl(name_to_check: str, visited_queue: list) -> list: """ This function is just a detector of duplicates. Main source of dupplicates is when the algorithme gives the second chance to the same seed, but does not use it. This function checks whether specific name was used recently Args: :param name_to_check: name that is about to be sampled :param visited_queue: all previously used names Returns: :return: True if name was used recently, otherwise False """ arr = [name[2] for name in visited_queue] if name_to_check in arr: print("Duplicate found in {} last elements, index: {}\nelem:{}".format(len(arr), arr.index(name_to_check), name_to_check)) return True return False def define_rules() -> list: """Generates rules to make metric usage more flexible thus reduce unproductive CPU cycles. Rules are generated according to the next scheme: rule: [rule_num {num or None}] [condition] [action] condition : [metr_val/iter] [value] [metr_name] [lower/higher/equal] action: [put/remove/switch] [metr_name] @ - indicates initial metr value Example: [0], [metr_val 0.7@ AARMSD lower], [switch BBRMSD] [1], [metr_val 0.5@ BBRMSD lower], [put ANGL] [2], [metr_val 0.4@ BBRMSD lower], [put AND_H] [3], [metr_val 0.7 BBRMSD lower], [remove BBRMSD] Returns: :return: all defined rules in a sorted order. :rtype: list. """ metric_rules = list() # # condition action metric_rules.append((0, ["metr_val", "0.7@", "AARMSD", "lower"], ["switch", "BBRMSD"])) metric_rules.append((1, ["metr_val", "7", "BBRMSD", "lower"], ["remove", "AARMSD"])) metric_rules.append((2, ["metr_val", "7", "BBRMSD", "lower"], ["put", "ANGL"])) metric_rules.append((3, ["metr_val", "3.5", "BBRMSD", "lower"], ["put", "AARMSD"])) metric_rules.append((4, ["metr_val", "3", "BBRMSD", "lower"], ["put", "AND_H"])) metric_rules.append((5, ["metr_val", "2.5", "AARMSD", "lower"], ["put", "AND"])) metric_rules.append((6, ["metr_val", "2.5", "AARMSD", "lower"], ["put", "XOR"])) return metric_rules def check_rules(metrics_sequence: list, rules: list, best_so_far: dict, init_metr: dict, metric_names: list, cur_gc: int) -> tuple: """Checks custom conditions and adds/removes available metrics. For each rule, we check the condition. If it is true - we apply the action and remove the rule. Args: :param list metrics_sequence: currently available metrics :param list rules: current list of rules :param dict best_so_far: lowest distance to the goal for each metric :param dict init_metr: initial distance to the goal for each metric :param list metric_names: list of all metrics to check proper metric name in the rule :param int cur_gc: gurrent value of the greedy_counter since Returns: :return: updated list of rules, updated list of alowed metrics, and metric to switch if appropriate rule was activated. :rtype: tuple """ switch_metric = None rules_to_remove = list() for rule in rules: perform_action = False condition = rule[1] if condition[0] == 'metr_val': cond_metr = condition[2] compar_val = float(condition[1]) if '@' not in condition[1] else float(condition[1][:-1])*init_metr[cond_metr] if condition[3] == 'lower' and best_so_far[cond_metr] < compar_val: perform_action = True elif condition[3] == 'higher' and best_so_far[cond_metr] > compar_val: perform_action = True elif condition[3] == 'equal' and best_so_far[cond_metr] == compar_val: perform_action = True else: continue else: # this is where you need exact cur_gc, so you still can check raise Exception("Not implemented") if perform_action: action = rule[2] if action[0] == 'put' and action[1] in metric_names and action[1] not in metrics_sequence: metrics_sequence.append(action[1]) if action[0] == 'remove' and action[1] in metrics_sequence: metrics_sequence.remove(action[1]) if action[0] == 'switch' and action[1] in metric_names: if cur_gc >= 120: continue switch_metric = action[1] if action[1] not in metrics_sequence: print('You were trying to switch to {}, but it was not in the list of metrics.\nAdding it to the list.\n') metrics_sequence.append(action[1]) rules_to_remove.append(rule[0]) if len(rules_to_remove): rules = [rule for rule in rules if rule[0] not in rules_to_remove] return rules, metrics_sequence, switch_metric # def GMDA_main(prev_runs_files: list, past_dir: str, print_queue: mp.JoinableQueue, # db_input_queue: mp.JoinableQueue, copy_queue: mp.JoinableQueue, rm_queue: mp.JoinableQueue, tot_seeds: int = 4) -> NoReturn: def GMDA_main(past_dir: str, print_queue: mp.JoinableQueue, db_input_queue: mp.JoinableQueue, tot_seeds: int = 4) -> NoReturn: """This is the main loop. Note that it has many garbage collector calls - it can slightly reduce the performance, but also reduces total memory usage. Feel free to comment them - they do not affect the algorithm Args: :param list prev_runs_files you may see this as the list of files found before the execution. We do not use it anymore to reduce the memory footprint. Instead we check existence of the file separately. :param str past_dir: location of all generated .gro, .xtc, metric values. Sequence of past seeds results in the unique name. :type past_dir: str :param mp.JoinableQueue print_queue: separate thread for printing operations, connected to the main process by Queue. It helps significantly during the restart without the previously saved state: you can query DB faster without waiting for printing operations to complete. :param mp.JoinableQueue db_input_queue: :param mp.JoinableQueue copy_queue: connection to the separate process that handled async copy. Should be rewriten with asyncio :param mp.JoinableQueue rm_queue: connection to the separate process that handled async rm. Should be rewriten with asyncio :param int tot_seeds: number of parallel seeds to be executed - very powerful knob Returns: :return: Nothing, once stop condition is reached, looping stops and returns to the parent to join/clean other threads """ possible_prot_states = ['Full_box', 'Prot', 'Backbone'] print('Main process rebuild_queue_process: ', os.getpid()) gc.collect() prot_dir = os.path.join(os.getcwd(), 'prot_dir') if not os.path.exists(prot_dir): os.makedirs(prot_dir) print('Prot dir: ', prot_dir) # These files has to be in prot_dir init = os.path.join(prot_dir, 'init.gro') # initial state, will be copied into work dir, used for MD goal = os.path.join(prot_dir, 'goal.gro') # final state, will not be used, but needed for derivation of other files topol_file_init = os.path.join(prot_dir, 'topol_unfolded.top') # needed for MD topol_file_goal = os.path.join(prot_dir, 'topol_folded.top') # needed for MD ndx_file_init = os.path.join(prot_dir, 'prot_unfolded.ndx') # needed for extraction of protein data ndx_file_goal = os.path.join(prot_dir, 'prot_folded.ndx') # needed for extraction of protein data init_bb_ndx = os.path.join(prot_dir, 'bb_unfolded.ndx') goal_bb_ndx = os.path.join(prot_dir, 'bb_folded.ndx') # These files will be generated init_xtc = os.path.join(prot_dir, 'init.xtc') # small version, used for rmsd init_xtc_bb = os.path.join(prot_dir, 'init_bb.xtc') # small version, used for rmsd goal_xtc = os.path.join(prot_dir, 'goal.xtc') # small version, used for rmsd goal_prot_only = os.path.join(prot_dir, 'goal_prot.gro') # needed for knn_rms init_prot_only = os.path.join(prot_dir, 'init_prot.gro') # needed for contacts goal_bb_only = os.path.join(prot_dir, 'goal_bb.gro') # needed for knn_rms # goal_bb_gro = os.path.join(prot_dir, 'goal_bb.gro') goal_bb_xtc = os.path.join(prot_dir, 'goal_bb.xtc') goal_angle_file = os.path.join(prot_dir, 'goal_angle.dat') goal_sincos_file = os.path.join(prot_dir, 'goal_sincos.dat') # I create two structures to reduce number input params in compute_metric # the more metrics we have in the future - the more parameters we have to track and pass goal_conf_files = {"goal_box_gro": goal, "goal_prot_only_gro": goal_prot_only, "goal_bb_only_gro": goal_bb_only, "goal_prot_only_xtc": goal_xtc, "goal_bb_xtc": goal_bb_xtc, "angl_file_angl": goal_angle_file, "sin_cos_file": goal_sincos_file, "goal_top": topol_file_goal, "goal_bb_ndx": goal_bb_ndx, "goal_prot_ndx": ndx_file_goal} init_conf_files = {"init_top": topol_file_init, "init_bb_ndx": init_bb_ndx, "init_prot_ndx": ndx_file_init} # create prot_only init and goal gmx_trjconv(f=init, o=init_xtc, n=ndx_file_init) gmx_trjconv(f=goal, o=goal_xtc, n=ndx_file_goal) gmx_trjconv(f=goal, o=goal_prot_only, n=ndx_file_goal, s=goal) gmx_trjconv(f=goal_prot_only, o=goal_bb_only, n=goal_bb_ndx, s=goal_prot_only) gmx_trjconv(f=init, o=init_prot_only, n=ndx_file_init, s=init) gmx_trjconv(f=init_prot_only, o=init_xtc_bb, n=init_bb_ndx, s=init) gmx_trjconv(f=goal_prot_only, o=goal_bb_xtc, n=goal_bb_ndx, s=goal_prot_only) get_bb_to_angle_mdsctk(x=goal_bb_xtc, o=goal_angle_file) get_angle_to_sincos_mdsctk(i=goal_angle_file, o=goal_sincos_file) atom_num = get_atom_num(ndx_file_init) atom_num_bb = get_atom_num(goal_bb_ndx) angl_num = 2 * int(atom_num_bb / 3) - 2 # each bb amino acid has 3 atoms, thus 3 angles, we skip 1 since it is almost always 0. # In order to make plain you need three points, this is why you loose 2 elements. Last two do not have extra atoms to form a plain. with open(goal_sincos_file, 'rb') as file: initial_1d_array = np.frombuffer(file.read(), dtype=np.float64, count=-1) goal_angles =
np.reshape(initial_1d_array, (-1, angl_num*2))
numpy.reshape
#!/usr/bin/env python """Very simple SVG rasterizer NOT SUPPORTED: - markers - symbol - color-interpolation and filter-color-interpolation attributes PARTIALLY SUPPORTED: - text (textPath is not supported) - fonts - font resolution logic is very basic - style font attribute is not parsed only font-* attrs are supported KNOWN PROBLEMS: - multiple pathes over going over the same pixels are breakin antialising (would draw all pixels with multiplied AA coverage (clamped)). """ from __future__ import annotations import builtins import gzip import io import math import numpy as np import numpy.typing as npt import os import re import struct import sys import textwrap import time import warnings import xml.etree.ElementTree as etree import zlib from functools import reduce, partial from typing import Any, Callable, NamedTuple, List, Tuple, Optional, Dict EPSILON = sys.float_info.epsilon FLOAT_RE = re.compile(r"[-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?") FLOAT = np.float64 # ------------------------------------------------------------------------------ # Layer # ------------------------------------------------------------------------------ COMPOSE_OVER = 0 COMPOSE_OUT = 1 COMPOSE_IN = 2 COMPOSE_ATOP = 3 COMPOSE_XOR = 4 COMPOSE_PRE_ALPHA = {COMPOSE_OVER, COMPOSE_OUT, COMPOSE_IN, COMPOSE_ATOP, COMPOSE_XOR} BBox = Tuple[float, float, float, float] FNDArray = npt.NDArray[FLOAT] class Layer(NamedTuple): image: np.ndarray[Tuple[int, int, int], FLOAT] offset: Tuple[int, int] pre_alpha: bool linear_rgb: bool @property def x(self) -> int: return self.offset[0] @property def y(self) -> int: return self.offset[1] @property def width(self) -> int: return self.image.shape[1] @property def height(self) -> int: return self.image.shape[0] @property def channels(self) -> int: return self.image.shape[2] @property def bbox(self) -> BBox: return (*self.offset, *self.image.shape[:2]) def translate(self, x: int, y: int) -> Layer: offset = (self.x + x, self.y + y) return Layer(self.image, offset, self.pre_alpha, self.linear_rgb) def color_matrix(self, matrix: np.ndarray) -> Layer: """Apply color matrix transformation""" if not isinstance(matrix, np.ndarray) or matrix.shape != (4, 5): raise ValueError("expected 4x5 matrix") layer = self.convert(pre_alpha=False, linear_rgb=True) M = matrix[:, :4] B = matrix[:, 4] image = np.matmul(layer.image, M.T) + B np.clip(image, 0, 1, out=image) return Layer(image, layer.offset, pre_alpha=False, linear_rgb=True) def convolve(self, kernel: np.ndarray) -> Layer: """Convlve layer""" try: from scipy.signal import convolve layer = self.convert(pre_alpha=False, linear_rgb=True) kw, kh = kernel.shape image = convolve(layer.image, kernel[..., None]) x, y = int(layer.x - kw / 2), int(layer.y - kh / 2) return Layer(image, (x, y), pre_alpha=False, linear_rgb=True) except ImportError: warnings.warn("Layer::convolve requires `scipy`") return self def morphology(self, x: int, y: int, method: str) -> Layer: """Morphology filter operation Morphology is essentially {min|max} pooling with [1, 1] stride """ layer = self.convert(pre_alpha=True, linear_rgb=True) image = pooling(layer.image, ksize=(x, y), stride=(1, 1), method=method) return Layer(image, layer.offset, pre_alpha=True, linear_rgb=True) def convert(self, pre_alpha=None, linear_rgb=None) -> Layer: """Convert image if needed to specified alpha and colorspace""" pre_alpha = self.pre_alpha if pre_alpha is None else pre_alpha linear_rgb = self.linear_rgb if linear_rgb is None else linear_rgb if self.channels == 1: # single channel value assumed to be alpha return Layer(self.image, self.offset, pre_alpha, linear_rgb) in_image, out_offset, out_pre_alpha, out_linear_rgb = self out_image = None if out_linear_rgb != linear_rgb: out_image = in_image.copy() # convert to straight alpha first if needed if out_pre_alpha: out_image = color_pre_to_straight_alpha(out_image) out_pre_alpha = False if linear_rgb: out_image = color_srgb_to_linear(out_image) else: out_image = color_linear_to_srgb(out_image) out_linear_rgb = linear_rgb if out_pre_alpha != pre_alpha: if out_image is None: out_image = in_image.copy() if pre_alpha: out_image = color_straight_to_pre_alpha(out_image) else: out_image = color_pre_to_straight_alpha(out_image) out_pre_alpha = pre_alpha if out_image is None: return self return Layer(out_image, out_offset, out_pre_alpha, out_linear_rgb) def background(self, color: np.ndarray) -> Layer: layer = self.convert(pre_alpha=True, linear_rgb=True) image = canvas_compose(COMPOSE_OVER, color[None, None, ...], layer.image) return Layer(image, layer.offset, pre_alpha=True, linear_rgb=True) def opacity(self, opacity: float, linear_rgb=False) -> Layer: """Apply additinal opacity""" layer = self.convert(pre_alpha=True, linear_rgb=linear_rgb) image = layer.image * opacity return Layer(image, layer.offset, pre_alpha=True, linear_rgb=linear_rgb) @staticmethod def compose(layers: List[Layer], method=COMPOSE_OVER, linear_rgb=False) -> Optional[Layer]: """Compose multiple layers into one with specified `method` Composition in linear RGB is correct one but SVG composes in sRGB by default. Only filter is composing in linear RGB by default. """ if not layers: return None elif len(layers) == 1: return layers[0] images = [] pre_alpha = method in COMPOSE_PRE_ALPHA for layer in layers: layer = layer.convert(pre_alpha=pre_alpha, linear_rgb=linear_rgb) images.append((layer.image, layer.offset)) #print([i[0].shape for i in images]) blend = partial(canvas_compose, method) if method == COMPOSE_IN: result = canvas_merge_intersect(images, blend) elif method == COMPOSE_OVER: start = time.time() result = canvas_merge_union(images, full=False, blend=blend) print("render from image,offset pair take:",time.time()-start) else: result = canvas_merge_union(images, full=True, blend=blend) if result is None: return None image, offset = result return Layer(image, offset, pre_alpha=pre_alpha, linear_rgb=linear_rgb) def write_png(self, output=None): if self.channels != 4: raise ValueError("Only RGBA layers are supported") layer = self.convert(pre_alpha=False, linear_rgb=False) return canvas_to_png(layer.image, output) def __repr__(self): return "Layer(x={}, y={}, w={}, h={}, pre_alpha={}, linear_rgb={})".format( self.x, self.y, self.width, self.height, self.pre_alpha, self.linear_rgb ) def show(self, format=None): """Show layer on terminal if `imshow` if available NOTE: used only for debugging """ try: from imshow import show layer = self.convert(pre_alpha=False, linear_rgb=False) show(layer.image, format=format) except ImportError: warnings.warn("to be able to show layer on terminal imshow is required") def canvas_create(width, height, bg=None): """Create canvas of a specified size Returns (canvas, transform) tuple: canvas - float64 ndarray of (height, width, 4) shape transform - transform from (x, y) to canvas pixel coordinates """ if bg is None: canvas = np.zeros((height, width, 4), dtype=FLOAT) else: canvas = np.broadcast_to(bg, (height, width, 4)).copy() return canvas, Transform().matrix(0, 1, 0, 1, 0, 0) def canvas_to_png(canvas, output=None): """Convert (height, width, rgba{float64}) to PNG""" def png_pack(output, tag, data): checksum = 0xFFFFFFFF & zlib.crc32(data, zlib.crc32(tag)) output.write(struct.pack("!I", len(data))) output.write(tag) output.write(data) output.write(struct.pack("!I", checksum)) height, width, _ = canvas.shape data = io.BytesIO() comp = zlib.compressobj(level=9) for row in np.round(canvas * 255.0).astype(np.uint8): data.write(comp.compress(b"\x00")) data.write(comp.compress(row.tobytes())) data.write(comp.flush()) output = io.BytesIO() if output is None else output output.write(b"\x89PNG\r\n\x1a\n") png_pack(output, b"IHDR", struct.pack("!2I5B", width, height, 8, 6, 0, 0, 0)), png_pack(output, b"IDAT", data.getvalue()), png_pack(output, b"IEND", b"") return output def canvas_compose(mode, dst, src): """Compose two alpha premultiplied images https://ciechanow.ski/alpha-compositing/ http://ssp.impulsetrain.com/porterduff.html """ src_a = src[..., -1:] if len(src.shape) == 3 else src dst_a = dst[..., -1:] if len(dst.shape) == 3 else dst if mode == COMPOSE_OVER: return src + dst * (1 - src_a) elif mode == COMPOSE_OUT: return src * (1 - dst_a) elif mode == COMPOSE_IN: return src * dst_a elif mode == COMPOSE_ATOP: return src * dst_a + dst * (1 - src_a) elif mode == COMPOSE_XOR: return src * (1 - dst_a) + dst * (1 - src_a) elif isinstance(mode, tuple) and len(mode) == 4: k1, k2, k3, k4 = mode return (k1 * src * dst + k2 * src + k3 * dst + k4).clip(0, 1) raise ValueError(f"invalid compose mode: {mode}") canvas_compose_over = partial(canvas_compose, COMPOSE_OVER) def canvas_merge_at(base, overlay, offset, blend=canvas_compose_over): """Alpha blend `overlay` on top of `base` at offset coordintate Updates `base` with `overlay` in place. """ x, y = offset b_h, b_w = base.shape[:2] o_h, o_w = overlay.shape[:2] clip = lambda v, l, h: l if v < l else h if v > h else v b_x_low, b_x_high = clip(x, 0, b_h), clip(x + o_h, 0, b_h) b_y_low, b_y_high = clip(y, 0, b_w), clip(y + o_w, 0, b_w) effected = base[b_x_low:b_x_high, b_y_low:b_y_high] if effected.size == 0: return o_x_low, o_x_high = clip(-x, 0, o_h), clip(b_h - x, 0, o_h) o_y_low, o_y_high = clip(-y, 0, o_w), clip(b_w - y, 0, o_w) overlay = overlay[o_x_low:o_x_high, o_y_low:o_y_high] if overlay.size == 0: return effected[...] = blend(effected, overlay).clip(0, 1) return base def canvas_merge_union(layers, full=True, blend=canvas_compose_over): """Blend multiple `layers` into single large enough image""" if not layers: raise ValueError("can not blend zero layers") elif len(layers) == 1: return layers[0] min_x, min_y, max_x, max_y = None, None, None, None for image, offset in layers: x, y = offset w, h = image.shape[:2] if min_x is None: min_x, min_y = x, y max_x, max_y = x + w, y + h else: min_x, min_y = min(min_x, x), min(min_y, y) max_x, max_y = max(max_x, x + w), max(max_y, y + h) width, height = max_x - min_x, max_y - min_y if full: output = None for image, offset in layers: x, y = offset w, h = image.shape[:2] ox, oy = x - min_x, y - min_y image_full = np.zeros((width, height, 4), dtype=FLOAT) image_full[ox : ox + w, oy : oy + h] = image if output is None: output = image_full else: output = blend(output, image_full) else: # this is optimization for method `over` blending output = np.zeros((max_x - min_x, max_y - min_y, 4), dtype=FLOAT) for index, (image, offset) in enumerate(layers): x, y = offset w, h = image.shape[:2] ox, oy = x - min_x, y - min_y effected = output[ox : ox + w, oy : oy + h] if index == 0: effected[...] = image else: effected[...] = blend(effected, image) return output, (min_x, min_y) def canvas_merge_intersect(layers, blend=canvas_compose_over): """Blend multiple `layers` into single image coverd by all layers""" if not layers: raise ValueError("can not blend zero layers") elif len(layers) == 1: return layers[0] min_x, min_y, max_x, max_y = None, None, None, None for layer, offset in layers: x, y = offset w, h = layer.shape[:2] if min_x is None: min_x, min_y = x, y max_x, max_y = x + w, y + h else: min_x, min_y = max(min_x, x), max(min_y, y) max_x, max_y = min(max_x, x + w), min(max_y, y + h) if min_x >= max_x or min_y >= max_y: return None # empty intersection (first, (fx, fy)), *rest = layers output = first[min_x - fx : max_x - fx, min_y - fy : max_y - fy] w, h, c = output.shape if c == 1: output = np.broadcast_to(output, (w, h, 4)) output = output.copy() for layer, offset in rest: x, y = offset output[...] = blend(output, layer[min_x - x : max_x - x, min_y - y : max_y - y]) return output, (min_x, min_y) def pooling(mat, ksize, stride=None, method="max", pad=False): """Overlapping pooling on 2D or 3D data. <mat>: ndarray, input array to pool. <ksize>: tuple of 2, kernel size in (ky, kx). <stride>: tuple of 2 or None, stride of pooling window. If None, same as <ksize> (non-overlapping pooling). <method>: str, 'max for max-pooling, 'mean' for mean-pooling. <pad>: bool, pad <mat> or not. If no pad, output has size (n-f)//s+1, n being <mat> size, f being kernel size, s stride. if pad, output has size ceil(n/s). Return <result>: pooled matrix. """ m, n = mat.shape[:2] ky, kx = ksize if stride is None: stride = (ky, kx) sy, sx = stride if pad: nx = int(np.ceil(n / float(sx))) ny = int(np.ceil(m / float(sy))) size = ((ny - 1) * sy + ky, (nx - 1) * sx + kx) + mat.shape[2:] mat_pad = np.full(size, np.nan) mat_pad[:m, :n, ...] = mat else: mat_pad = mat[: (m - ky) // sy * sy + ky, : (n - kx) // sx * sx + kx, ...] # Get a strided sub-matrices view of an ndarray. s0, s1 = mat_pad.strides[:2] m1, n1 = mat_pad.shape[:2] m2, n2 = ksize view_shape = (1 + (m1 - m2) // stride[0], 1 + (n1 - n2) // stride[1], m2, n2) + mat_pad.shape[ 2: ] strides = (stride[0] * s0, stride[1] * s1, s0, s1) + mat_pad.strides[2:] view = np.lib.stride_tricks.as_strided(mat_pad, view_shape, strides=strides) if method == "max": result = np.nanmax(view, axis=(2, 3)) elif method == "min": result = np.nanmin(view, axis=(2, 3)) elif method == "mean": result = np.nanmean(view, axis=(2, 3)) else: raise ValueError(f"invalid poll method: {method}") return result def color_pre_to_straight_alpha(rgba): """Convert from premultiplied alpha inplace""" rgb = rgba[..., :-1] alpha = rgba[..., -1:] np.divide(rgb, alpha, out=rgb, where=alpha > 0.0001) np.clip(rgba, 0, 1, out=rgba) return rgba def color_straight_to_pre_alpha(rgba): """Convert to premultiplied alpha inplace""" rgba[..., :-1] *= rgba[..., -1:] return rgba def color_linear_to_srgb(rgba): """Convert pixels from linear RGB to sRGB inplace""" rgb = rgba[..., :-1] small = rgb <= 0.0031308 rgb[small] = rgb[small] * 12.92 large = ~small rgb[large] = 1.055 * np.power(rgb[large], 1.0 / 2.4) - 0.055 return rgba def color_srgb_to_linear(rgba): """Convert pixels from sRGB to linear RGB inplace""" rgb = rgba[..., :-1] small = rgb <= 0.04045 rgb[small] = rgb[small] / 12.92 large = ~small rgb[large] = np.power((rgb[large] + 0.055) / 1.055, 2.4) return rgba # ------------------------------------------------------------------------------ # Transform # ------------------------------------------------------------------------------ class Transform: __slots__: List[str] = ["m", "_m_inv"] m: np.ndarray[Tuple[int, int], FLOAT] _m_inv: np.ndarray[Tuple[int, int], FLOAT] def __init__(self, matrix=None, matrix_inv=None): if matrix is None: self.m = np.identity(3) self._m_inv = self.m else: self.m = matrix self._m_inv = matrix_inv def __matmul__(self, other: Transform) -> Transform: return Transform(self.m @ other.m) @property def invert(self) -> Transform: if self._m_inv is None: self._m_inv = np.linalg.inv(self.m) return Transform(self._m_inv, self.m) def __call__(self, points: FNDArray) -> FNDArray: if len(points) == 0: return points return points @ self.m[:2, :2].T + self.m[:2, 2] def apply(self) -> Callable[[FNDArray], FNDArray]: M = self.m[:2, :2].T B = self.m[:2, 2] return lambda points: points @ M + B def matrix(self, m00, m01, m02, m10, m11, m12): return Transform(self.m @ np.array([[m00, m01, m02], [m10, m11, m12], [0, 0, 1]])) def translate(self, tx: float, ty: float) -> Transform: return Transform(self.m @ np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])) def scale(self, sx, sy=None): sy = sx if sy is None else sy return Transform(self.m @ np.array([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])) def rotate(self, angle): cos_a = math.cos(angle) sin_a = math.sin(angle) return Transform(self.m @ np.array([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]])) def skew(self, ax, ay): return Transform( np.matmul(self.m, np.array([[1, math.tan(ax), 0], [math.tan(ay), 1, 0], [0, 0, 1]])) ) def __repr__(self): return str(np.around(self.m, 4).tolist()[:2]) def no_translate(self): m = self.m.copy() m[0, 2] = 0 m[1, 2] = 0 return Transform(m) # ------------------------------------------------------------------------------ # Render scene # ------------------------------------------------------------------------------ RENDER_FILL = 0 RENDER_STROKE = 1 RENDER_GROUP = 2 RENDER_OPACITY = 3 RENDER_CLIP = 4 RENDER_TRANSFORM = 5 RENDER_FILTER = 6 RENDER_MASK = 7 class Scene(tuple): __slots__: List[str] = [] def __new__(cls, type, args): return tuple.__new__(cls, (type, args)) @classmethod def fill(cls, path, paint, fill_rule=None): return cls(RENDER_FILL, (path, paint, fill_rule)) @classmethod def stroke(cls, path, paint, width, linecap=None, linejoin=None): return cls(RENDER_STROKE, (path, paint, width, linecap, linejoin)) @classmethod def group(cls, children): if not children: raise ValueError("group have to contain at least one child") if len(children) == 1: return children[0] return cls(RENDER_GROUP, children) def opacity(self, opacity): if opacity > 0.999: return self return Scene(RENDER_OPACITY, (self, opacity)) def clip(self, clip, bbox_units=False): return Scene(RENDER_CLIP, (self, clip, bbox_units)) def mask(self, mask, bbox_units=False): return Scene(RENDER_MASK, (self, mask, bbox_units)) def transform(self, transform): type, args = self if type == RENDER_TRANSFORM: target, target_transform = args return Scene(RENDER_TRANSFORM, (target, transform @ target_transform)) else: return Scene(RENDER_TRANSFORM, (self, transform)) def filter(self, filter): return Scene(RENDER_FILTER, (self, filter)) def render(self, transform, mask_only=False, viewport=None, linear_rgb=False): """Render graph""" type, args = self if type == RENDER_FILL: path, paint, fill_rule = args if mask_only: return path.mask(transform, fill_rule=fill_rule, viewport=viewport) else: return path.fill( transform, paint, fill_rule=fill_rule, viewport=viewport, linear_rgb=linear_rgb ) elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args stroke = path.stroke(width, linecap, linejoin) if mask_only: return stroke.mask(transform, viewport=viewport) else: return stroke.fill(transform, paint, viewport=viewport, linear_rgb=linear_rgb) elif type == RENDER_GROUP: layers, hulls = [], [] start = time.time() for child in args: layer = child.render(transform, mask_only, viewport, linear_rgb) if layer is None: continue layer, hull = layer layers.append(layer) hulls.append(hull) group = Layer.compose(layers, COMPOSE_OVER, linear_rgb) if not group: return None return group, ConvexHull.merge(hulls) elif type == RENDER_OPACITY: target, opacity = args layer = target.render(transform, mask_only, viewport, linear_rgb) if layer is None: return None layer, hull = layer return layer.opacity(opacity, linear_rgb), hull elif type == RENDER_CLIP: target, clip, bbox_units = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result if bbox_units: transform = hull.bbox_transform(transform) clip_result = clip.render(transform, True, viewport, linear_rgb) if clip_result is None: return None mask, _ = clip_result result = Layer.compose([mask, image], COMPOSE_IN, linear_rgb) if result is None: return None return result, hull elif type == RENDER_TRANSFORM: target, target_transfrom = args return target.render(transform @ target_transfrom, mask_only, viewport, linear_rgb) elif type == RENDER_MASK: target, mask_scene, bbox_units = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result if bbox_units: transform = hull.bbox_transform(transform) mask_result = mask_scene.render(transform, mask_only, viewport, linear_rgb) if mask_result is None: return None mask, _ = mask_result mask = mask.convert(pre_alpha=False, linear_rgb=linear_rgb) mask_image = mask.image[..., :3] @ [0.2125, 0.7154, 0.072] * mask.image[..., 3] mask = Layer(mask_image[..., None], mask.offset, pre_alpha=False, linear_rgb=linear_rgb) result = Layer.compose([mask, image], COMPOSE_IN, linear_rgb) if result is None: return None return result, hull elif type == RENDER_FILTER: target, filter = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result return filter(transform, image), hull else: raise ValueError(f"unhandled scene type: {type}") def to_path(self, transform: Transform): """Try to convert whole scene to a path (used only for testing)""" def to_path(scene, transform): type, args = scene if type == RENDER_FILL: path, _paint, _fill_rule = args yield path.transform(transform) elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args yield path.transform(transform).stroke(width, linecap, linejoin) elif type == RENDER_GROUP: for child in args: yield from to_path(child, transform) elif type == RENDER_OPACITY: target, _opacity = args yield from to_path(target, transform) elif type == RENDER_CLIP: target, _clip, _bbox_units = args yield from to_path(target, transform) elif type == RENDER_TRANSFORM: target, target_transfrom = args yield from to_path(target, transform @ target_transfrom) elif type == RENDER_MASK: target, _mask_scene, _bbox_units = args yield from to_path(target, transform) elif type == RENDER_FILTER: target, _filter = args yield from to_path(target, transform) else: raise ValueError(f"unhandled scene type: {type}") subpaths = [spath for path in to_path(self, transform) for spath in path.subpaths] return Path(subpaths) def __repr__(self) -> str: def repr_rec(scene, output, depth): output.write(indent * depth) type, args = scene if type == RENDER_FILL: path, paint, fill_rule = args if isinstance(paint, np.ndarray): paint = format_color(paint) output.write(f"FILL fill_rule:{fill_rule} paint:{paint}\n") output.write(textwrap.indent(repr(path), indent * (depth + 1))) output.write("\n") elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args if isinstance(paint, np.ndarray): paint = format_color(paint) output.write(f"STROKE ") output.write(f"width:{width} ") output.write(f"linecap:{linecap} ") output.write(f"linejoin:{linejoin} ") output.write(f"paint:{paint}\n") output.write(textwrap.indent(repr(path), indent * (depth + 1))) output.write("\n") elif type == RENDER_GROUP: output.write("GROUP\n") for child in args: repr_rec(child, output, depth + 1) elif type == RENDER_OPACITY: target, opacity = args output.write(f"OPACITY {opacity}\n") repr_rec(target, output, depth + 1) elif type == RENDER_CLIP: target, clip, bbox_units = args output.write(f"CLIP bbox_units:{bbox_units}\n") output.write(indent * (depth + 1)) output.write("CLIP_PATH\n") repr_rec(clip, output, depth + 2) output.write(indent * (depth + 1)) output.write("CLIP_TARGET\n") repr_rec(target, output, depth + 2) elif type == RENDER_MASK: target, mask, bbox_units = args output.write(f"MASK bbox_units:{bbox_units}\n") output.write(indent * (depth + 1)) output.write("MAKS_PATH\n") repr_rec(mask, output, depth + 2) output.write(indent * (depth + 1)) output.write("MASK_TARGET\n") repr_rec(target, output, depth + 2) elif type == RENDER_TRANSFORM: target, transform = args output.write(f"TRANSFORM {transform}\n") repr_rec(target, output, depth + 1) elif type == RENDER_FILTER: target, filter = args output.write(f"FILTER {filter}\n") repr_rec(target, output, depth + 1) else: raise ValueError(f"unhandled scene type: {type}") return output def format_color(cs): return "#" + "".join(f"{c:0<2x}" for c in (cs * 255).astype(np.uint8)) indent = " " return repr_rec(self, io.StringIO(), 0).getvalue()[:-1] # ------------------------------------------------------------------------------ # Path # ------------------------------------------------------------------------------ PATH_LINE = 0 PATH_QUAD = 1 PATH_CUBIC = 2 PATH_ARC = 3 PATH_CLOSED = 4 PATH_UNCLOSED = 5 PATH_LINES = {PATH_LINE, PATH_CLOSED, PATH_UNCLOSED} PATH_FILL_NONZERO = "nonzero" PATH_FILL_EVENODD = "evenodd" STROKE_JOIN_MITER = "miter" STROKE_JOIN_ROUND = "round" STROKE_JOIN_BEVEL = "bevel" STROKE_CAP_BUTT = "butt" STROKE_CAP_ROUND = "round" STROKE_CAP_SQUARE = "square" class Path: """Single rendering unit that can be filled or converted to stroke path `subpaths` is a list of tuples: - `(PATH_LINE, (p0, p1))` - line from p0 to p1 - `(PATH_CUBIC, (p0, c0, c1, p1))` - cubic bezier curve from p0 to p1 with control c0, c1 - `(PATH_QUAD, (p0, c0, p1))` - quadratic bezier curve from p0 to p1 with control c0 - `(PATH_ARC, (center, rx, ry, phi, eta, eta_delta)` - arc with a center and to radii rx, ry rotated to phi angle, going from inital eta to eta + eta_delta angle. - `(PATH_CLOSED | PATH_UNCLOSED, (p0, p1))` - last segment of subpath `"closed"` if path was closed and `"unclosed"` if path was not closed. p0 - end subpath p1 - beggining of this subpath. """ __slots__ = ["subpaths"] subpaths: List[List[Tuple[int, Tuple[Any, ...]]]] def __init__(self, subpaths): self.subpaths = subpaths def __iter__(self): """Itearte over subpaths""" return iter(self.subpaths) def __bool__(self) -> bool: return bool(self.subpaths) def mask( self, transform: Transform, fill_rule: Optional[str] = None, viewport: Optional[BBox] = None, ): """Render path as a mask (alpha channel only image)""" # convert all curves to cubic curves and lines lines_defs, cubics_defs = [], [] for path in self.subpaths: if not path: continue for cmd, args in path: if cmd in PATH_LINES: lines_defs.append(args) elif cmd == PATH_CUBIC: cubics_defs.append(args) elif cmd == PATH_QUAD: cubics_defs.append(bezier2_to_bezier3(args)) elif cmd == PATH_ARC: cubics_defs.extend(arc_to_bezier3(*args)) else: raise ValueError(f"unsupported path type: `{cmd}`") #def __call__(self, points: FNDArray) -> FNDArray: #if len(points) == 0: #return points #return points @ self.m[:2, :2].T + self.m[:2, 2] # transform all curves into presentation coordinate system lines = transform(np.array(lines_defs, dtype=FLOAT)) cubics = transform(np.array(cubics_defs, dtype=FLOAT)) # flattend (convet to lines) all curves if cubics.size != 0: # flatness of 0.1px gives good accuracy if lines.size != 0: lines = np.concatenate([lines, bezier3_flatten_batch(cubics, 0.1)]) else: lines = bezier3_flatten_batch(cubics, 0.1) if lines.size == 0: return # calculate size of the mask min_x, min_y = np.floor(lines.reshape(-1, 2).min(axis=0)).astype(int) - 1 max_x, max_y = np.ceil(lines.reshape(-1, 2).max(axis=0)).astype(int) + 1 if viewport is not None: vx, vy, vw, vh = viewport min_x, min_y = max(vx, min_x), max(vy, min_y) max_x, max_y = min(vx + vw, max_x), min(vy + vh, max_y) width = max_x - min_x height = max_y - min_y if width <= 0 or height <= 0: return # create trace (signed coverage) trace = np.zeros((width, height), dtype=FLOAT) for points in lines - np.array([min_x, min_y]): line_signed_coverage(trace, points) # render mask mask = np.cumsum(trace, axis=1) if fill_rule is None or fill_rule == PATH_FILL_NONZERO: mask = np.fabs(mask).clip(0, 1) elif fill_rule == PATH_FILL_EVENODD: mask = np.fabs(np.remainder(mask + 1.0, 2.0) - 1.0) else: raise ValueError(f"Invalid fill rule: {fill_rule}") mask[mask < 1e-6] = 0 # reound down to zero very small mask values output = Layer(mask[..., None], (min_x, min_y), pre_alpha=True, linear_rgb=True) return output, ConvexHull(lines) def fill(self, transform, paint, fill_rule=None, viewport=None, linear_rgb=True): """Render path by fill-ing it.""" if paint is None: return None # create a mask mask = self.mask(transform, fill_rule, viewport) if mask is None: return None mask, hull = mask # create background with specified paint if isinstance(paint, np.ndarray) and paint.shape == (4,): if not linear_rgb: paint = color_pre_to_straight_alpha(paint.copy()) paint = color_linear_to_srgb(paint) paint = color_straight_to_pre_alpha(paint) output = Layer(mask.image * paint, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) elif isinstance(paint, (GradLinear, GradRadial)): if paint.bbox_units: user_tr = hull.bbox_transform(transform).invert else: user_tr = transform.invert # convert grad pixels to user coordinate system pixels = user_tr(grad_pixels(mask.bbox)) if paint.linear_rgb is not None: linear_rgb = paint.linear_rgb image = paint.fill(pixels, linear_rgb=linear_rgb) # NOTE: consider optimizing calculation of grad only for unmasked points # masked = mask.image > EPSILON # painted = paint.fill( # pixels[np.broadcast_to(masked, pixels.shape)].reshape(-1, 2), # linear_rgb=linear_rgb, # ) # image = np.zeros((mask.width, mask.height, 4), dtype=FLOAT) # image[np.broadcast_to(masked, image.shape)] = painted.reshape(-1) background = Layer(image, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) # use `canvas_compose` directly to avoid needless allocation background = background.convert(pre_alpha=True, linear_rgb=linear_rgb) mask = mask.convert(pre_alpha=True, linear_rgb=linear_rgb) image = canvas_compose(COMPOSE_IN, mask.image, background.image) output = Layer(image, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) elif isinstance(paint, Pattern): # render pattern pat_tr = transform.no_translate() if paint.scene_view_box: if paint.bbox_units: px, py, pw, ph = paint.bbox() _hx, _hy, hw, hh = hull.bbox(transform) bbox = (px * hw, py * hh, pw * hw, ph * hh) else: bbox = paint.bbox() pat_tr @= svg_viewbox_transform(bbox, paint.scene_view_box) elif paint.scene_bbox_units: pat_tr = hull.bbox_transform(pat_tr) pat_tr @= paint.transform result = paint.scene.render(pat_tr, linear_rgb=linear_rgb) if result is None: return None pat_layer, _pat_hull = result # repeat pattern repeat_tr = transform if paint.bbox_units: repeat_tr = hull.bbox_transform(repeat_tr) repeat_tr @= paint.transform repeat_tr = repeat_tr.no_translate() offsets = repeat_tr.invert(grad_pixels(mask.bbox)) offsets = repeat_tr( np.remainder(offsets - [paint.x, paint.y], [paint.width, paint.height]) ) offsets = offsets.astype(int) corners = repeat_tr( [ [0, 0], [paint.width, 0], [0, paint.height], [paint.width, paint.height], ] ) max_x, max_y = corners.max(axis=0).astype(int) min_x, min_y = corners.min(axis=0).astype(int) w, h = max_x - min_x, max_y - min_y offsets -= [min_x, min_y] pat = np.zeros((w + 1, h + 1, 4)) pat = canvas_merge_at(pat, pat_layer.image, (pat_layer.x - min_x, pat_layer.y - min_y)) image = canvas_compose(COMPOSE_IN, mask.image, pat[offsets[..., 0], offsets[..., 1]]) output = Layer( image, mask.offset, pre_alpha=pat_layer.pre_alpha, linear_rgb=pat_layer.linear_rgb ) else: warnings.warn(f"fill method is not implemented: {paint}") return None return output, hull def stroke(self, width, linecap=None, linejoin=None) -> "Path": """Convert path to stroked path""" curve_names = {2: PATH_LINE, 3: PATH_QUAD, 4: PATH_CUBIC} dist = width / 2 outputs = [] for path in self: if not path: continue # offset curves forward, backward = [], [] for cmd, args in path: if cmd == PATH_LINE or cmd == PATH_CLOSED: line = np.array(args) line_forward = line_offset(line, dist) if line_forward is None: continue forward.append(line_forward) backward.append(line_offset(line, -dist)) elif cmd == PATH_CUBIC: cubic = np.array(args) forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_QUAD: cubic = bezier2_to_bezier3(args) forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_ARC: for cubic in arc_to_bezier3(*args): forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_UNCLOSED: continue else: raise ValueError(f"unsupported path type: `{cmd}`") closed = cmd == PATH_CLOSED if not forward: continue # connect curves curves = [] for curve in forward: if not curves: curves.append(curve) continue curves.extend(stroke_line_join(curves[-1], curve, linejoin)) curves.append(curve) # complete subpath if path is closed or add line cap if closed: curves.extend(stroke_line_join(curves[-1], curves[0], linejoin)) outputs.append([(curve_names[len(curve)], np.array(curve)) for curve in curves]) curves = [] else: curves.extend(stroke_line_cap(curves[-1][-1], backward[-1][-1], linecap)) # extend subpath with backward path while backward: curve = list(reversed(backward.pop())) if not curves: curves.append(curve) continue curves.extend(stroke_line_join(curves[-1], curve, linejoin)) curves.append(curve) # complete subpath if closed: curves.extend(stroke_line_join(curves[-1], curves[0], linejoin)) else: curves.extend(stroke_line_cap(curves[-1][-1], curves[0][0], linecap)) outputs.append([(curve_names[len(curve)], np.array(curve)) for curve in curves]) return Path(outputs) def transform(self, transform: Transform) -> "Path": """Apply transformation to a path This method is usually not used directly but rather transformation is passed to mask/fill method. """ paths_out = [] for path_in in self.subpaths: path_out = [] if not path_in: continue for cmd, args in path_in: if cmd == PATH_ARC: cubics = arc_to_bezier3(*args) for cubic in transform(cubics): path_out.append((PATH_CUBIC, cubic.tolist())) else: points = transform(np.array(args)).tolist() path_out.append((cmd, points)) paths_out.append(path_out) return Path(paths_out) def to_svg(self) -> str: """Convert to SVG path""" output = io.StringIO() for path in self.subpaths: if not path: continue cmd_prev = None for cmd, args in path: if cmd == PATH_LINE: (x0, y0), (x1, y1) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") else: output.write("L") output.write(f"{x1:g},{y1:g} ") cmd_prev = PATH_LINE elif cmd == PATH_QUAD: (x0, y0), (x1, y1), (x2, y2) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") output.write("Q") output.write(f"{x1:g},{y1:g} {x2:g},{y2:g} ") cmd_prev = PATH_QUAD elif cmd in {PATH_CUBIC, PATH_ARC}: if cmd == PATH_ARC: cubics = arc_to_bezier3(*args) else: cubics = [args] for args in cubics: (x0, y0), (x1, y1), (x2, y2), (x3, y3) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") output.write("C") output.write(f"{x1:g},{y1:g} {x2:g},{y2:g} {x3:g},{y3:g} ") cmd_prev = PATH_CUBIC elif cmd == PATH_CLOSED: output.write("Z ") cmd_prev = None elif cmd == PATH_UNCLOSED: cmd_prev = None else: raise ValueError("unhandled path type: `{cmd}`") output.write("\n") return output.getvalue()[:-1] @staticmethod def from_svg(input: str) -> "Path": """Parse SVG path For more info see [SVG spec](https://www.w3.org/TR/SVG11/paths.html) """ input_len = len(input) input_offset = 0 WHITESPACE = set(" \t\r\n,") COMMANDS = set("MmZzLlHhVvCcSsQqTtAa") def position(is_relative, pos, dst): return [pos[0] + dst[0], pos[1] + dst[1]] if is_relative else dst def smooth(points): px, py = points[-1] cx, cy = points[-2] return [px * 2 - cx, py * 2 - cy] # parser state paths = [] path = [] args = [] cmd = None pos = [0.0, 0.0] first = True # true if this is a frist command start = [0.0, 0.0] smooth_cubic = None smooth_quad = None while input_offset <= input_len: char = input[input_offset] if input_offset < input_len else None if char in WHITESPACE: # remove whitespaces input_offset += 1 elif char is None or char in COMMANDS: # process current command cmd_args, args = args, [] if cmd is None: pass elif cmd in "Mm": # terminate current path if path: path.append((PATH_UNCLOSED, [pos, start])) paths.append(path) path = [] is_relative = cmd == "m" (move, *lineto) = chunk(cmd_args, 2) pos = position(is_relative and not first, pos, move) start = pos for dst in lineto: dst = position(is_relative, pos, dst) path.append((PATH_LINE, [pos, dst])) pos = dst # line to elif cmd in "Ll": for dst in chunk(cmd_args, 2): dst = position(cmd == "l", pos, dst) path.append((PATH_LINE, [pos, dst])) pos = dst # vertical line to elif cmd in "Vv": if not cmd_args: raise ValueError(f"command '{cmd}' expects at least one argument") is_relative = cmd == "v" for dst in cmd_args: dst = position(is_relative, pos, [0 if is_relative else pos[0], dst]) path.append((PATH_LINE, [pos, dst])) pos = dst # horizontal line to elif cmd in "Hh": if not cmd_args: raise ValueError(f"command '{cmd}' expects at least one argument") is_relative = cmd == "h" for dst in cmd_args: dst = position(is_relative, pos, [dst, 0 if is_relative else pos[1]]) path.append((PATH_LINE, [pos, dst])) pos = dst # cubic bezier curve elif cmd in "Cc": for points in chunk(cmd_args, 6): points = [position(cmd == "c", pos, point) for point in chunk(points, 2)] path.append((PATH_CUBIC, [pos, *points])) pos = points[-1] smooth_cubic = smooth(points) # smooth cubic bezier curve elif cmd in "Ss": for points in chunk(cmd_args, 4): points = [position(cmd == "s", pos, point) for point in chunk(points, 2)] if smooth_cubic is None: smooth_cubic = pos path.append((PATH_CUBIC, [pos, smooth_cubic, *points])) pos = points[-1] smooth_cubic = smooth(points) # quadratic bezier curve elif cmd in "Qq": for points in chunk(cmd_args, 4): points = [position(cmd == "q", pos, point) for point in chunk(points, 2)] path.append((PATH_QUAD, [pos, *points])) pos = points[-1] smooth_quad = smooth(points) # smooth quadratic bezier curve elif cmd in "Tt": for points in chunk(cmd_args, 2): points = position(cmd == "t", pos, points) if smooth_quad is None: smooth_quad = pos points = [pos, smooth_quad, points] path.append((PATH_QUAD, points)) pos = points[-1] smooth_quad = smooth(points) # elliptical arc elif cmd in "Aa": # NOTE: `large_f`, and `sweep_f` are not float but flags which can only be # 0 or 1 and as the result some svg minimizers merge them with next # float which may break current parser logic. for points in chunk(cmd_args, 7): rx, ry, x_axis_rot, large_f, sweep_f, dst_x, dst_y = points dst = position(cmd == "a", pos, [dst_x, dst_y]) src, pos = pos, dst if rx == 0 or ry == 0: path.append((PATH_LINE, [pos, dst])) else: path.append( ( PATH_ARC, arc_svg_to_parametric( src, dst, rx, ry, x_axis_rot, large_f > 0.001, sweep_f > 0.001, ), ) ) # close current path elif cmd in "Zz": if cmd_args: raise ValueError(f"`z` command does not accept any argmuents: {cmd_args}") path.append((PATH_CLOSED, [pos, start])) if path: paths.append(path) path = [] pos = start else: raise ValueError(f"unsuppported command '{cmd}' at: {input_offset}") if cmd is not None and cmd not in "CcSs": smooth_cubic = None if cmd is not None and cmd not in "QqTt": smooth_quad = None first = False input_offset += 1 cmd = char else: # parse float arguments match = FLOAT_RE.match(input, input_offset) if match: match_str = match.group(0) args.append(float(match_str)) input_offset += len(match_str) else: raise ValueError(f"not recognized command '{char}' at: {input_offset}") if path: path.append((PATH_UNCLOSED, [pos, start])) paths.append(path) return Path(paths) def is_empty(self): return not bool(self.subpaths) def __repr__(self): if not self.subpaths: return "EMPTY" output = io.StringIO() for subpath in self.subpaths: for type, coords in subpath: if type == PATH_LINE: output.write(f"LINE {repr_coords(coords)}\n") elif type == PATH_CUBIC: output.write(f"CUBIC {repr_coords(coords)}\n") elif type == PATH_QUAD: output.write(f"QUAD {repr_coords(coords)}\n") elif type == PATH_ARC: center, rx, ry, phi, eta, eta_delta = coords output.write(f"ARC ") output.write(f"{repr_coords([center])} ") output.write(f"{rx:.4g} {ry:.4g} ") output.write(f"{phi:.3g} {eta:.3g} {eta_delta:.3g}\n") elif type == PATH_CLOSED: output.write("CLOSE\n") return output.getvalue()[:-1] def repr_coords(coords): return " ".join(f"{x:.4g},{y:.4g}" for x, y in coords) # offset along tanget to approximate circle with four bezier3 curves CIRCLE_BEIZER_OFFSET = 4 * (math.sqrt(2) - 1) / 3 def stroke_line_cap(p0, p1, linecap=None): """Generate path connecting two curves p0 and p1 with a cap""" if linecap is None: linecap = STROKE_CAP_BUTT if np.allclose(p0, p1): return [] if linecap == STROKE_CAP_BUTT: return [np.array([p0, p1])] elif linecap == STROKE_CAP_ROUND: seg = p1 - p0 radius = np.linalg.norm(seg) / 2 seg /= 2 * radius seg_norm = np.array([-seg[1], seg[0]]) offset = CIRCLE_BEIZER_OFFSET * radius center = (p0 + p1) / 2 midpoint = center + seg_norm * radius return [ np.array([p0, p0 + seg_norm * offset, midpoint - seg * offset, midpoint]), np.array([midpoint, midpoint + seg * offset, p1 + seg_norm * offset, p1]), ] elif linecap == STROKE_CAP_SQUARE: seg = p1 - p0 seg_norm = np.array([-seg[1], seg[0]]) polyline = [p0, p0 + seg_norm / 2, p1 + seg_norm / 2, p1] return [np.array([s0, s1]) for s0, s1 in zip(polyline, polyline[1:])] else: raise ValueError(f"unkown line cap type: `{linecap}`") def stroke_line_join(c0, c1, linejoin=None, miterlimit=4): """Stroke used at the joints of paths""" if linejoin is None: linejoin = STROKE_JOIN_MITER if linejoin == STROKE_JOIN_BEVEL: return [np.array([c0[-1], c1[0]])] _, l0 = stroke_curve_tangent(c0) l1, _ = stroke_curve_tangent(c1) if l0 is None or l1 is None: return [np.array([c0[-1], c1[0]])] if np.allclose(l0[-1], l1[0]): return [] p, t0, t1 = line_intersect(l0, l1) if p is None or (0 <= t0 <= 1 and 0 <= t1 <= 1): # curves intersect or parallel return [np.array([c0[-1], c1[0]])] # FIXME correctly determine miterlength: stroke_width / sin(eta / 2) if abs(t0) < miterlimit and abs(t1) < miterlimit: if linejoin == STROKE_JOIN_MITER: return [np.array([c0[-1], p]), np.array([p, c1[0]])] elif linejoin == STROKE_JOIN_ROUND: # FIXME: correctly produce round instead quad curve return [np.array([c0[-1], p, c1[0]])] return [np.array([c0[-1], c1[0]])] def stroke_curve_tangent(curve): """Find tangents of a curve at t = 0 and at t = 1 points""" segs = [] for p0, p1 in zip(curve, curve[1:]): if np.allclose(p0, p1): continue segs.append([p0, p1]) if not segs: return None, None return segs[0], segs[-1] def chunk(vs, size): """Chunk list `vs` into chunk of size `size`""" chunks = [vs[i : i + size] for i in range(0, len(vs), size)] if not chunks or len(chunks[-1]) != size: raise ValueError(f"list {vs} can not be chunked in {size}s") return chunks # ------------------------------------------------------------------------------ # Gradients # ------------------------------------------------------------------------------ class GradLinear(NamedTuple): p0: np.ndarray p1: np.ndarray stops: List[Tuple[float, np.ndarray]] transform: Optional[Transform] spread: str bbox_units: bool linear_rgb: Optional[bool] def fill(self, pixels, linear_rgb=True): """Fill pixels (array of coordinates) with gradient Returns new array same size as pixels filled with gradient """ if self.transform is not None: pixels = self.transform.invert(pixels) vec = self.p1 - self.p0 offset = (pixels - self.p0) @ vec / np.dot(vec, vec) return grad_interpolate(grad_spread(offset, self.spread), self.stops, linear_rgb) class GradRadial(NamedTuple): center: np.ndarray radius: float fcenter: Optional[np.ndarray] fradius: float stops: List[Tuple[float, np.ndarray]] transform: Optional[Transform] spread: str bbox_units: bool linear_rgb: Optional[bool] def fill(self, pixels, linear_rgb=True): """Fill pixels (array of coordinates) with gradient Returns new array same size as pixels filled with gradient. Two circle gradient is an interpolation between two cirles (c0, r0) and (c1, r1), with center `c(t) = (1 - t) * c0 + t * c1`, and radius `r(t) = (1 - t) * r0 + t * r1`. If we have a pixel with coordinates `p`, we should solve equation for it `|| c(t) - p || = r(t)` and pick solution corresponding to bigger radius. Solving this equation for `t`: || c(t) - p || = r(t) -> At² - 2Bt + C = 0 where: cd = c2 - c1 pd = p - c1 rd = r2 - r1 A = cdx ^ 2 + cdy ^ 2 - rd ^ 2 B = pdx * cdx + pdy * cdy + r1 * rd C = pdx ^2 + pdy ^ 2 - r1 ^ 2 results in: t = (B +/- (B ^ 2 - A * C).sqrt()) / A [reference]: https://cgit.freedesktop.org/pixman/tree/pixman/pixman-radial-gradient.c """ mask = None if self.transform is not None: pixels = self.transform.invert(pixels) if self.fcenter is None and self.fradius is None: offset = (pixels - self.center) / self.radius offset = np.sqrt((offset * offset).sum(axis=-1)) else: fcenter = self.center if self.fcenter is None else self.fcenter fradius = self.fradius or 0 # This is SVG 1.1 behaviour. If focal center is outside of circle it # should be moved inside. But in SVG 2.0 it should produce a cone # shaped gradient. # fdist = np.linalg.norm(fcenter - self.center) # if fdist > self.radius: # fcenter = self.center + (fcenter - self.center) * self.radius / fdist cd = self.center - fcenter pd = pixels - fcenter rd = self.radius - fradius a = (cd ** 2).sum() - rd ** 2 b = (pd * cd).sum(axis=-1) + fradius * rd c = (pd ** 2).sum(axis=-1) - fradius ** 2 det = b * b - a * c if (det < 0).any(): mask = det >= 0 det = det[mask] b = b[mask] c = c[mask] t0 = np.sqrt(det) t1 = (b + t0) / a t2 = (b - t0) / a if mask is None: offset = np.maximum(t1, t2) else: offset = np.zeros(mask.shape, dtype=FLOAT) offset[mask] = np.maximum(t1, t2) if fradius != self.radius: # exclude negative `r(t)` mask &= offset > (fradius / (fradius - self.radius)) overlay = grad_interpolate(grad_spread(offset, self.spread), self.stops, linear_rgb) if mask is not None: overlay[~mask] = np.array([0, 0, 0, 0]) return overlay def grad_pixels(viewport): """Create pixels matrix to be filled by gradient""" off_x, off_y, width, height = viewport xs, ys = np.indices((width, height)).astype(FLOAT) offset = [off_x + 0.5, off_y + 0.5] return np.concatenate([xs[..., None], ys[..., None]], axis=2) + offset def grad_spread(offsets, spread): if spread == "pad": return offsets elif spread == "repeat": return np.modf(offsets)[0] elif spread == "reflect": return np.fabs(np.remainder(offsets + 1.0, 2.0) - 1.0) raise ValueError(f"invalid spread method: {spread}") def grad_interpolate(offset, stops, linear_rgb): """Create gradient by interpolating offsets from stops""" stops = grad_stops_colorspace(stops, linear_rgb) output = np.zeros((*offset.shape, 4), dtype=FLOAT) o_min, c_min = stops[0] output[offset <= o_min] = c_min o_max, c_max = stops[-1] output[offset > o_max] = c_max for (o0, c0), (o1, c1) in zip(stops, stops[1:]): mask = np.logical_and(offset > o0, offset <= o1) ratio = ((offset[mask] - o0) / (o1 - o0))[..., None] output[mask] += (1 - ratio) * c0 + ratio * c1 return output def grad_stops_colorspace(stops, linear_rgb=False): if linear_rgb: return stops output = [] for offset, color in stops: color = color_pre_to_straight_alpha(color.copy()) color = color_linear_to_srgb(color) color = color_straight_to_pre_alpha(color) output.append((offset, color)) return output class Pattern(NamedTuple): scene: Scene scene_bbox_units: bool scene_view_box: Optional[Tuple[float, float, float, float]] x: float y: float width: float height: float transform: Transform bbox_units: bool def bbox(self): return (self.x, self.y, self.width, self.height) # ------------------------------------------------------------------------------ # Filter # ------------------------------------------------------------------------------ FE_BLEND = 0 FE_COLOR_MATRIX = 1 FE_COMPONENT_TRANSFER = 2 FE_COMPOSITE = 3 FE_CONVOLVE_MATRIX = 4 FE_DIFFUSE_LIGHTING = 5 FE_DISPLACEMENT_MAP = 6 FE_FLOOD = 7 FE_GAUSSIAN_BLUR = 8 FE_MERGE = 9 FE_MORPHOLOGY = 10 FE_OFFSET = 11 FE_SPECULAR_LIGHTING = 12 FE_TILE = 13 FE_TURBULENCE = 14 FE_SOURCE_ALPHA = "SourceAlpha" FE_SOURCE_GRAPHIC = "SourceGraphic" COLOR_MATRIX_LUM = np.array( [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0.2125, 0.7154, 0.0721, 0, 0]], dtype=FLOAT ) COLOR_MATRIX_HUE = np.array( [ [[0.213, 0.715, 0.072], [0.213, 0.715, 0.072], [0.213, 0.715, 0.072]], [[0.787, -0.715, -0.072], [-0.213, 0.285, -0.072], [-0.213, -0.715, 0.928]], [[-0.213, -0.715, 0.928], [0.143, 0.140, -0.283], [-0.787, 0.715, 0.072]], ], dtype=FLOAT, ) class Filter(NamedTuple): names: Dict[str, int] # {name: index} filters: List[Tuple[int, List[Any], List[int]]] # [(type, attrs, inputs)] @classmethod def empty(cls): return cls({FE_SOURCE_ALPHA: 0, FE_SOURCE_GRAPHIC: 1}, []) def add_filter(self, type, attrs, inputs, result): names = self.names.copy() filters = self.filters.copy() args = [] for input in inputs: if input is None: args.append(len(filters) + 1) # use previous result else: arg = self.names.get(input) if arg is None: warnings.warn(f"unknown filter result name: {input}") args.append(len(filters) + 1) # use previous result else: args.append(arg) if result is not None: names[result] = len(filters) + 2 filters.append((type, attrs, args)) return Filter(names, filters) def offset(self, dx, dy, input=None, result=None): return self.add_filter(FE_OFFSET, (dx, dy), [input], result) def merge(self, inputs, result=None): return self.add_filter(FE_MERGE, tuple(), inputs, result) def blur(self, std_x, std_y=None, input=None, result=None): return self.add_filter(FE_GAUSSIAN_BLUR, (std_x, std_y), [input], result) def blend(self, in1, in2, mode=None, result=None): return self.add_filter(FE_BLEND, (mode,), [in1, in2], result) def composite(self, in1, in2, mode=None, result=None): return self.add_filter(FE_COMPOSITE, (mode,), [in1, in2], result) def color_matrix(self, input, matrix, result=None): return self.add_filter(FE_COLOR_MATRIX, (matrix,), [input], result) def morphology(self, rx, ry, method, input, result=None): return self.add_filter(FE_MORPHOLOGY, (rx, ry, method), [input], result) def __call__(self, transform, source): """Execute fiter on the provided source""" alpha = Layer( source.image[..., -1:] * np.array([0, 0, 0, 1]), source.offset, pre_alpha=True, linear_rgb=True, ) stack = [alpha, source.convert(pre_alpha=False, linear_rgb=True)] for filter in self.filters: type, attrs, inputs = filter if type == FE_OFFSET: fn = filter_offset(transform, *attrs) elif type == FE_MERGE: fn = filter_merge(transform, *attrs) elif type == FE_BLEND: fn = filter_blend(transform, *attrs) elif type == FE_COMPOSITE: fn = filter_composite(transform, *attrs) elif type == FE_GAUSSIAN_BLUR: fn = filter_blur(transform, *attrs) elif type == FE_COLOR_MATRIX: fn = filter_color_matrix(transform, *attrs) elif type == FE_MORPHOLOGY: fn = filter_morphology(transform, *attrs) else: raise ValueError(f"unsupported filter type: {type}") stack.append(fn(*(stack[input] for input in inputs))) return stack[-1] def filter_color_matrix(_transform, matrix): def filter_color_matrix_apply(input): if not isinstance(matrix, np.ndarray) or matrix.shape != (4, 5): warnings.warn(f"invalid color matrix: {matrix}") return input return input.color_matrix(matrix) return filter_color_matrix_apply def filter_offset(transform, dx, dy): def filter_offset_apply(input): x, y = input.offset tx, ty = transform(transform.invert([x, y]) + [dx, dy]) return input.translate(int(tx) - x, int(ty) - y) return filter_offset_apply def filter_morphology(transform, rx, ry, method): def filter_morphology_apply(input): # NOTE: # I have no idea how to account for rotation, except to roate # apply morphology and rotate back, but it is slow, so I'm not doing it ux, uy = transform([[rx, 0], [0, ry]]) - transform([[0, 0], [0, 0]]) x = int(np.linalg.norm(ux) * 2) y = int(np.linalg.norm(uy) * 2) if x < 1 or y < 1: return input return input.morphology(x, y, method) return filter_morphology_apply def filter_merge(_transform): def filter_merge_apply(*inputs): return Layer.compose(inputs, linear_rgb=True) return filter_merge_apply def filter_blend(_transform, mode): def filter_blend_apply(in1, in2): warnings.warn("feBlend is not properly supported") return Layer.compose([in2, in1], linear_rgb=True) return filter_blend_apply def filter_composite(_transform, mode): def filter_composite_apply(in1, in2): return Layer.compose([in2, in1], mode, linear_rgb=True) return filter_composite_apply def filter_blur(transform, std_x, std_y=None): if std_y is None: std_y = std_x def filter_blur_apply(input): kernel = blur_kernel(transform, (std_x, std_y)) if kernel is None: return input return input.convolve(kernel) return filter_blur_apply def blur_kernel(transform, sigma): """Gaussian blur convolution kerenel Gaussiange kernel ginven presentation transformation and sigma in user coordinate system. """ sigma_x, sigma_y = sigma # if one of the sigmas is smaller then a pixel rotatetion produces # incorrect degenerate state when the whole convolution is the same as over # a delta function. So we need to adjust it. If both simgas are smallerd # then a pixel then gaussian blur is a nonop. scale_x, scale_y = np.linalg.norm(transform(np.eye(2)) - transform([0, 0]), axis=1) if scale_x * sigma_x < 0.5 and scale_y * sigma_y < 0.5: return None elif scale_x * sigma_x < 0.5: sigma_x = 0.5 / scale_x elif scale_y * sigma_y < 0.5: sigma_y = 0.5 / scale_y sigma = np.array([sigma_x, sigma_y]) sigmas = 2.5 user_box = [ [-sigmas * sigma_x, -sigmas * sigma_y], [-sigmas * sigma_x, sigmas * sigma_y], [sigmas * sigma_x, sigmas * sigma_y], [sigmas * sigma_x, -sigmas * sigma_y], ] box = transform(user_box) - transform([0, 0]) min_x, min_y = box.min(axis=0).astype(int) max_x, max_y = box.max(axis=0).astype(int) kernel_w, kernel_h = max_x - min_x, max_y - min_y kernel_w += ~kernel_w & 1 # make it odd kernel_h += ~kernel_h & 1 user_tr = transform.invert kernel = user_tr(grad_pixels([-kernel_w / 2, -kernel_h / 2, kernel_w, kernel_h])) kernel -= user_tr([0, 0]) # remove translation kernel = np.exp(-np.square(kernel) / (2 * np.square(sigma))) kernel = kernel.prod(axis=-1) return kernel / kernel.sum() def color_matrix_hue_rotate(angle): """Hue rotation matrix for speicified angle in radians""" matrix = np.eye(4, 5) matrix[:3, :3] = np.dot(COLOR_MATRIX_HUE.T, [1, math.cos(angle), math.sin(angle)]).T return matrix def color_matrix_saturate(value): matrix = np.eye(4, 5) matrix[:3, :3] = np.dot(COLOR_MATRIX_HUE.T, [1, value, 0]).T return matrix # ------------------------------------------------------------------------------ # Convex Hull # ------------------------------------------------------------------------------ class ConvexHull: """Convex hull using graham scan Points are stored in presenetation coordinate system, so we would not have to convert them back and force when merging. """ __slots__ = ["points"] def __init__(self, points): """Construct convex hull of a set of points using graham scan""" if isinstance(points, np.ndarray): points = points.reshape(-1, 2).tolist() def turn(p, q, r): return (q[0] - p[0]) * (r[1] - p[1]) - (r[0] - p[0]) * (q[1] - p[1]) def keep_left(hull, p): while len(hull) > 1 and turn(hull[-2], hull[-1], p) <= 0: hull.pop() if not hull or hull[-1] != p: hull.append(p) return hull points = sorted(points) left = reduce(keep_left, points, []) right = reduce(keep_left, reversed(points), []) left.extend(right[1:-1]) self.points = left @classmethod def merge(cls, hulls): """Merge multiple convex hulls into one""" points = [] for hull in hulls: points.extend(hull.points) return cls(points) def bbox(self, transform): """Bounding box in user coordinate system""" points = transform.invert(np.array(self.points)) min_x, min_y = points.min(axis=0) max_x, max_y = points.max(axis=0) return [min_x, min_y, max_x - min_x, max_y - min_y] def bbox_transform(self, transform): """Transformation matrix for `objectBoundingBox` units Create bounding box transfrom for `objectBoundingBox`, using convex hull in the canvas coordinate system and current user space transformation. `objectBoundingBox` is a coordinate system where bounding box is a unit square. Returns `objectBoundingBox` transform. FIXME: In case of stroke we should use bounding box of the original path, not the stroked path. """ x, y, w, h = self.bbox(transform) if w <= 0 and h <= 0: return transform return transform.translate(x, y).scale(w, h) def path(self): points = self.points lines = [(PATH_LINE, l) for l in zip(points, points[1:])] lines.append((PATH_CLOSED, [points[-1], points[0]])) return Path([lines]) # ------------------------------------------------------------------------------ # Bezier # ------------------------------------------------------------------------------ BEZIER3_FLATNESS =
np.array([[-2, 3, 0, -1], [-1, 0, 3, -2]], dtype=FLOAT)
numpy.array
""""Run MS²PIP prediction for single peptide.""" import re import logging import click import matplotlib.pyplot as plt import numpy as np import xgboost as xgb import spectrum_utils.plot as sup import spectrum_utils.spectrum as sus from ms2pip.config_parser import ConfigParser from ms2pip.cython_modules import ms2pip_pyx from ms2pip.exceptions import InvalidModificationFormattingError, InvalidPeptideError from ms2pip.ms2pipC import MODELS, apply_mods from ms2pip.peptides import AMINO_ACID_IDS, Modifications, write_amino_accid_masses from ms2pip.predict_xgboost import validate_requested_xgb_model, initialize_xgb_models logger = logging.getLogger("ms2pip") class SinglePrediction: """Run MS²PIP prediction for single peptide.""" def __init__(self, modification_strings=None) -> None: """ Run MS²PIP prediction for single peptide. Parameters ---------- modification_strings: list-like List of MS²PIP configuration-style modification strings, e.g. `Carbamidomethyl,57.02146,opt,C` or `Oxidation,15.994915,opt,M`. See MS²PIP README.md for more info. Examples -------- >>> from ms2pip.single_prediction import SinglePrediction >>> ms2pip_sp = SinglePrediction( >>> modification_strings=[ >>> "Carbamidomethyl,57.021464,opt,C" >>> ] >>> ) >>> mz, intensity, annotation = ms2pip_sp.predict( >>> "GSIGECIAEEEEFELDSESNR", "6|Carbamidomethyl", 3 >>> ) """ if not modification_strings: modification_strings = [] self._init_ms2pip(modification_strings) def _init_ms2pip(self, modification_strings): self.mod_info = Modifications() self.mod_info.modifications = {"ptm": {}, "sptm": {}} self.mod_info.add_from_ms2pip_modstrings(modification_strings) afile = write_amino_accid_masses() modfile = self.mod_info.write_modifications_file(mod_type="ptm") modfile2 = self.mod_info.write_modifications_file(mod_type="sptm") ms2pip_pyx.ms2pip_init(afile, modfile, modfile2) def predict( self, peptide, modifications, charge, model="HCD", validate_input=True, ): """ Predict single peptide spectrum with MS²PIP. Parameters ---------- peptide: string Unmodified peptide sequence. Only canonical amino acids are allowed, and peptide sequence should be of length [3, 100]. modifications: string MS²PIP style-formatted modification string (e.g. `0|Acetyl|5|Oxidation`). See MS²PIP README.md for more info. charge: int Peptide precursor charge model: string (default: "HCD") MS²PIP model to use, identical to the option in the MS²PIP configuration file. validate_input: boolean (default: True) Whether to validate input peptide and modifications. Disable for speed-up. Returns ------- mz: list[float] List with fragment ion m/z values in Da. intensity: list[float] List with TIC-normalized predicted intensities, order matches `mz` annotation: list[str] List with fragment ion types and series, order matches `mz` """ peptide = peptide.upper().replace("L", "I") if validate_input: self._validate_sequence(peptide) self._validate_mod_string(modifications) peptide = np.array( [0] + [AMINO_ACID_IDS[x] for x in peptide] + [0], dtype=np.uint16 ) modpeptide = apply_mods(peptide, modifications, self.mod_info.ptm_ids) model_id = MODELS[model]["id"] peaks_version = MODELS[model]["peaks_version"] ce = 30 mz = np.array(ms2pip_pyx.get_mzs(modpeptide, peaks_version)) if "xgboost_model_files" in MODELS[model].keys(): validate_requested_xgb_model( MODELS[model]["xgboost_model_files"], MODELS[model]["model_hash"] ) xgboost_models = initialize_xgb_models( MODELS[model]["xgboost_model_files"], 1 ) xgb_vector = np.array( ms2pip_pyx.get_vector(peptide, modpeptide, charge), dtype=np.uint16 ) xgb_vector = xgb.DMatrix(xgb_vector) intensity = [] for ion_type, model_file in xgboost_models.items(): preds = model_file.predict(xgb_vector) if ion_type in ["x", "y", "y2", "z"]: preds = list(
np.array(preds[::-1], dtype=np.float32)
numpy.array
# # gemini_python # # primitives_ghost_spect.py # ------------------------------------------------------------------------------ import os import numpy as np import math from copy import deepcopy import scipy import scipy.signal as signal from scipy.optimize import leastsq import functools from datetime import datetime, date, time, timedelta import re import astropy.coordinates as astrocoord import astropy.io.fits as astropyio from astropy.time import Time from astropy import units as u from astropy import constants as const from astropy.stats import sigma_clip from scipy import interpolate import scipy.ndimage as nd from pysynphot import observation, spectrum import astrodata from geminidr.gemini.lookups import DQ_definitions as DQ from gempy.gemini import gemini_tools as gt # from gempy.mosaic.mosaicAD import MosaicAD from .polyfit import GhostArm, Extractor, SlitView from .polyfit.ghost import GhostArm from .primitives_ghost import GHOST, filename_updater from . import parameters_ghost_spect from .lookups import polyfit_dict, line_list, keyword_comments, targetn_dict from recipe_system.utils.decorators import parameter_override # ------------------------------------------------------------------------------ GEMINI_SOUTH_LOC = astrocoord.EarthLocation.from_geodetic((-70, 44, 12.096), (-30, 14, 26.700), height=2722., ellipsoid='WGS84') BAD_FLAT_FLAG = 16 # FIXME: This should go somewhere else, but where? from scipy.ndimage import median_filter def convolve_with_mask(data, mask, rectangle_width = (100,20)): """Helper function to convolve a masked array with a uniform rectangle after median filtering to remove cosmic rays. """ #Create our rectangular function rectangle_function = np.zeros_like(data) rectangle_function[:rectangle_width[0], :rectangle_width[1]] = 1.0 rectangle_function = np.roll(rectangle_function, int(-rectangle_width[ 0] / 2), axis=0) rectangle_function = np.roll(rectangle_function, int(-rectangle_width[1]/2), axis=1) rectangle_fft = np.fft.rfft2(rectangle_function) #Median filter in case of cosmic rays filt_data = median_filter(data,3) #Now convolve. The mask is never set to exactly zero in order to avoid divide #by zero errors outside the mask. convolved_data = np.fft.irfft2(np.fft.rfft2(filt_data * (mask + 1e-4))*rectangle_fft) convolved_data /= np.fft.irfft2(np.fft.rfft2(mask + 1e-4)*rectangle_fft) return convolved_data @parameter_override class GHOSTSpect(GHOST): """ Primitive class for processing GHOST science data. This class contains the primitives necessary for processing GHOST science data, as well as all related calibration files from the main spectrograph cameras. Slit viewer images are processed with another primitive class (:class:`ghostdr.ghost.primitives_ghost_slit.GHOSTSlit`). """ """Applicable tagset""" tagset = set(["GEMINI", "GHOST"]) # NOT SPECT because of bias/dark def __init__(self, adinputs, **kwargs): super(GHOSTSpect, self).__init__(adinputs, **kwargs) self._param_update(parameters_ghost_spect) self.keyword_comments.update(keyword_comments.keyword_comments) def addWavelengthSolution(self, adinputs=None, **params): """ Compute and append a wavelength solution for the data. The GHOST instrument is designed to be very stable over a long period of time, so it is not strictly necessary to take arcs for every observation. The alternative is use the arcs taken most recently before and after the observation of interest, and compute an average of their wavelength solutions. The average is weighted by the inverse of the time between each arc observation and science observation. E.g., if the 'before' arc is taken 12 days before the science observation, and the 'after' arc is taken 3 days after the science observation, then the 'after' arc will have a weight of 80% in the final wavelength solution (12/15), and the 'before' arc 20% (3/15). In the event that either a 'before' arc can't be found but an 'after' arc can, or vice versa, the wavelength solution from the arc that was found will be applied as-is. If neither a 'before' nor 'after' arc can be found, an IOError will be raised. It is possible to explicitly pass which arc files to use as the ``arc`` parameter. This should be a list of two-tuples, with each tuple being of the form ``('before_arc_filepath', 'after_arc_filepath')``. This list must be the same length as the list of ``adinputs``, with a one-to-one correspondence between the two lists. Parameters ---------- suffix: str suffix to be added to output files arc: list of two-tuples A list of two-tuples, with each tuple corresponding to an element of the ``adinputs`` list. Within each tuple, the two elements are the designated 'before' and 'after' arc for that observation. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] # No attempt to check if this primitive has already been run - # new arcs may be available which we wish to apply. Any old WAVL # extensions will simply be removed. # CJS: Heavily edited because of the new AD way # Get processed slits, slitFlats, and flats (for xmod) # slits and slitFlats may be provided as parameters arc_list = params["arcs"] # if arc_list is None: # # CJS: This populates the calibrations cache (dictionary) with # # "processed_slit" filenames for each input AD # self.getProcessedArc(adinputs) # # This then gets those filenames # arc_list = [self._get_cal(ad, 'processed_arc') # for ad in adinputs] # log.stdinfo(arc_list) # for ad, arcs in zip( # *gt.make_lists(adinputs, arc_list, force_ad=True)): for i, ad in enumerate(adinputs): found_arcs = False if arc_list: try: arc_before, arc_after = arc_list[i] found_arcs = True except (TypeError, ValueError): pass # self.getProcessedArc(ad, howmany=2) # if not found_arcs: # try: # arcs_calib = self._get_cal(ad, 'processed_arc', ) # log.stdinfo('Found following arcs: {}'.format( # ', '.join([_ for _ in arcs_calib]) # )) # arc_before, arc_after = self._get_cal(ad, 'processed_arc',) # except (TypeError, ValueError): # # Triggers if only one arc, or more than two # arc_before = self._get_cal(ad, 'processed_arc',)[0] # arc_after = None if not found_arcs: # Fetch the arc_before and arc_after in sequence arc_before = self._request_bracket_arc(ad, before=True) arc_after = self._request_bracket_arc(ad, before=False) if arc_before is None and arc_after is None: raise IOError('No valid arcs found for {}'.format(ad.filename)) log.stdinfo('Arcs for {}: \n' ' before: {}\n' ' after: {}'.format(ad.filename, arc_before, arc_after)) # Stand up a GhostArm instance for this ad gs = GhostArm(arm=ad.arm(), mode=ad.res_mode(), detector_x_bin=ad.detector_x_bin(), detector_y_bin=ad.detector_y_bin()) if arc_before is None: # arc = arc_after arc_after = astrodata.open(arc_after) wfit = gs.evaluate_poly(arc_after[0].WFIT) ad.phu.set('ARCIM_A', os.path.abspath(arc_after.path), "'After' arc image") elif arc_after is None: # arc = arc_before arc_before = astrodata.open(arc_before) wfit = gs.evaluate_poly(arc_before[0].WFIT) ad.phu.set('ARCIM_B', os.path.abspath(arc_before.path), "'Before' arc image") else: # Need to weighted-average the wavelength fits from the arcs # Determine the weights (basically, the inverse time between # the observation and the arc) arc_after = astrodata.open(arc_after) arc_before = astrodata.open(arc_before) wfit_b = gs.evaluate_poly(arc_before[0].WFIT) wfit_a = gs.evaluate_poly(arc_after[0].WFIT) weight_b = np.abs((arc_before.ut_datetime() - ad.ut_datetime()).total_seconds()) weight_a = np.abs((arc_after.ut_datetime() - ad.ut_datetime()).total_seconds()) weight_a, weight_b = 1. / weight_a, 1 / weight_b log.stdinfo('Cominbing wavelength solutions with weights ' '%.3f, %.3f' % (weight_a / (weight_a + weight_b), weight_b / (weight_a + weight_b), )) # Compute weighted mean fit wfit = wfit_a * weight_a + wfit_b * weight_b wfit /= (weight_a + weight_b) ad.phu.set('ARCIM_A', os.path.abspath(arc_after.path), self.keyword_comments['ARCIM_A']) ad.phu.set('ARCIM_B', os.path.abspath(arc_before.path), self.keyword_comments['ARCIM_B']) ad.phu.set('ARCWT_A', weight_a, self.keyword_comments['ARCWT_A']) ad.phu.set('ARCWT_B', weight_b, self.keyword_comments['ARCWT_B']) # rebin the wavelength fit to match the rest of the extensions for _ in range(int(math.log(ad.detector_x_bin(), 2))): wfit = wfit[:, ::2] + wfit[:, 1::2] wfit /= 2.0 for ext in ad: ext.WAVL = wfit # FIXME Wavelength unit needs to be in output ad # Timestamp and update filename gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=params["suffix"], strip=True) return adinputs def applyFlatBPM(self, adinputs=None, **params): """ Find the flat relevant to the file(s) being processed, and merge the flat's BPM into the target file's. GHOST does not use flat subtraction in the traditional sense; instead, the extracted flat profile is subtracted from the extracted object profile. This means that the BPM from the flat needs to be applied to the object file before profile extraction, and hence well before actual flat correction is performed. The BPM flat is applied by ``bitwise_or`` combining it into the main adinput(s) BPM. Parameters ---------- suffix: str suffix to be added to output files flat: str/None Name (full path) of the flatfield to use. If None, try: flatstream: str/None Name of the stream containing the flatfield as the first item in the stream. If None, the calibration service is used write_result: bool Denotes whether or not to write out the result of profile extraction to disk. This is useful for both debugging, and data quality assurance. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] # No attempt to check if this primitive has already been run - # re-applying a flat BPM should have no adverse effects, and the # primitive simply skips if no flat is found. # CJS: extractProfile() contains comments explaining what's going on here flat_list = params["flat"] flat_stream = params["flat_stream"] if flat_list is None: if flat_stream is not None: flat_list = self.streams[flat_stream][0] else: self.getProcessedFlat(adinputs, refresh=False) flat_list = [self._get_cal(ad, 'processed_flat') for ad in adinputs] for ad, flat in zip(*gt.make_lists(adinputs, flat_list, force_ad=True)): if flat is None: log.warning("No flat identified/provided for {} - " "skipping".format(ad.filename)) continue # Re-bin the flat if necessary # We only need the mask, but it's best to use the full rebin # helper function in case the mask rebin code needs to change if flat.detector_x_bin() != ad.detector_x_bin( ) or flat.detector_y_bin() != ad.detector_y_bin(): xb = ad.detector_x_bin() yb = ad.detector_y_bin() flat = self._rebin_ghost_ad(flat, xb, yb) # Re-name the flat so we don't blow away the old one on save flat_filename_orig = flat.filename flat.filename = filename_updater(flat, suffix='_rebin%dx%d' % (xb, yb,), strip=True) flat.write(overwrite=True) # CJS: Edited here to require that the science and flat frames' # extensions are the same shape. The original code would no-op # with a warning for each pair that didn't, but I don't see how # this would happen in normal operations. The clip_auxiliary_data() # function in gemini_tools may be an option here. try: gt.check_inputs_match(adinput1=ad, adinput2=flat, check_filter=False) except ValueError: log.warning("Input mismatch between flat and {} - " "skipping".format(ad.filename)) continue for ext, flat_ext in zip(ad, flat): if ext.mask is None: ext.mask = flat_ext.mask else: ext.mask |= flat_ext.mask ad.phu.set('FLATBPM', os.path.abspath(flat.path), self.keyword_comments['FLATBPM']) # Timestamp and update filename gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=params["suffix"], strip=True) if params["write_result"]: ad.phu.set('PROCIMG', os.path.abspath(ad.path), keyword_comments.keyword_comments['PROCIMG']) ad.write(overwrite=True) return adinputs def barycentricCorrect(self, adinputs=None, **params): """ Perform barycentric correction of the wavelength extension in the input files. Barycentric correction is performed by multiplying the wavelength (``.WAVL``) data extension by a correction factor. This factor can be supplied manually, or can be left to be calculated based on the headers in the AstroData input. Parameters ---------- suffix: str suffix to be added to output files correction_factor: float Barycentric correction factor to be applied. Defaults to None, at which point a computed value will be applied. The computed value is based on the recorded position of the Gemini South observatory. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] for ad in adinputs: if ad.phu.get(timestamp_key): log.warning("No changes will be made to {}, since it has " "already been processed by barycentricCorrect". format(ad.filename)) continue # FIXME: It is more pythonic to ask forgiveness than permission, # so a try # statement is preferred. if not hasattr(ad[0], 'WAVL'): log.warning("No changes will be made to {}, since it contains " "no wavelength information". format(ad.filename)) continue # Get or compute the correction factor if params['correction_factor'] is None: cf = self._compute_barycentric_correction(ad, return_wavl=True) else: cf = [params['correction_factor'], ] * len(ad) # Multiply the wavelength scale by the correction factor for i, ext in enumerate(ad): log.stdinfo('Applying barycentric correction factor of ' '{} to ext {} of {}'.format(cf[i], i, ad.filename)) ext.WAVL *= float(cf[i]) # Timestamp and update filename gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=params["suffix"], strip=True) return adinputs def clipSigmaBPM(self, adinputs=None, **params): """ Perform a sigma-clipping on the input data frame. This is a primitive wrapper for the :func:`astropy.stats.sigma_clip` method. The ``sigma`` and ``iters`` parameters are passed through to the corresponding keyword arguments. Parameters ---------- sigma: float/None The sigma value to be used for clipping. bpm_value: int/None The integer value to be applied to the data BPM where the sigma threshold is exceeded. Defaults to 1 (which is the generic bad pixel flag). Note that the final output BPM is made using a bitwise_or operation. iters : int/None Number of sigma clipping iterations to perform. Default is None, which will continue sigma clipping until no further points are masked. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] sigma = params["sigma"] bpm_value = params["bpm_value"] iters = params["iters"] for ad in adinputs: if ad.phu.get(timestamp_key): log.warning("No changes will be made to {}, since it has " "already been processed by clipSigmaBPM". format(ad.filename)) continue for ext in ad: extver = ext.hdr['EXTVER'] if ext.mask is not None: # MCW 190218: Form a masked array to operate on masked_data = np.ma.masked_where(ext.mask != 0, ext.data, copy=True) # Perform the sigma clip clipd = sigma_clip( # ext.data, masked_data, sigma=sigma, maxiters=iters, copy=True) # Convert the mask from the return into 0s and 1s and # bitwise OR into the ext BPM clipd_mask = clipd.mask.astype(ext.mask.dtype) ext.mask |= clipd_mask * bpm_value log.stdinfo(' {}:{}: nPixMasked: {:9d} / {:9d}'.format( ad.filename, extver, np.sum(clipd_mask), ext.data.size)) # Original implementaion # mean_data = np.mean(ext.data) # sigma_data = np.std(ext.data) # mask_map = (np.abs(ext.data-mean_data) > sigma*sigma_data) # if bpm_value: # might call with None for diagnosis # ext.mask[mask_map] |= bpm_value # # log.stdinfo(' {}:{}: nPixMasked: {:9d} / {:9d}'.format( # ad.filename, extver, np.sum(mask_map), ext.data.size)) else: log.warning('No DQ plane in {}:{}'.format(ad.filename, extver)) # Timestamp; DO NOT update filename gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) return adinputs def darkCorrect(self, adinputs=None, **params): """ Dark-correct GHOST observations. This primitive, at its core, simply copies the standard DRAGONS darkCorrect (part of :any:`Preprocess`). However, it has the ability to examine the binning mode of the requested dark, compare it to the adinput(s), and re-bin the dark to the correct format. To do this, this version of darkCorrect takes over the actual fetching of calibrations from :meth:`subtractDark`, manipulates the dark(s) as necessary, saves the updated dark to the present working directory, and then passes the updated list of dark frame(s) on to :meth:`subtractDark`. As a result, :any:`IOError` will be raised if the adinputs do not all share the same binning mode. Parameters ---------- suffix: str suffix to be added to output files dark: str/list name(s) of the dark file(s) to be subtracted do_cal: str controls the behaviour of this primitive """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] if params['do_cal'] == 'skip': log.warning("Dark correction has been turned off.") return adinputs sfx = params["suffix"] # Check if all the inputs have matching detector_x_bin and # detector_y_bin descriptors if not(all( [_.detector_x_bin() == adinputs[0].detector_x_bin() for _ in adinputs])) or not(all( [_.detector_y_bin() == adinputs[0].detector_y_bin() for _ in adinputs] )): log.stdinfo('Detector x bins: %s' % str([_.detector_x_bin() for _ in adinputs])) log.stdinfo('Detector y bins: %s' % str([_.detector_y_bin() for _ in adinputs])) raise IOError('Your input list of files contains a mix of ' 'different binning modes') adinputs_orig = list(adinputs) if isinstance(params['dark'], list): params['dark'] = [params['dark'][i] for i in range(len(adinputs)) if not adinputs[i].phu.get(timestamp_key)] adinputs = [_ for _ in adinputs if not _.phu.get(timestamp_key)] if len(adinputs) != len(adinputs_orig): log.stdinfo('The following files have already been processed by ' 'darkCorrect and will not be further modified: ' '{}'.format(', '.join([_.filename for _ in adinputs_orig if _ not in adinputs]))) if params['dark']: pass else: # All this line seems to do is check the valid darks can be found # for the adinputs self.getProcessedDark(adinputs, refresh=False) # Here we need to ape the part of subtractDark which creates the # dark_list, then re-bin as required, and send the updated dark_list # through to subtractDark # This is preferable to writing our own subtractDark, as it should # be stable against algorithm changes to dark subtraction dark_list = params["dark"] if params["dark"] else [ self._get_cal(ad, 'processed_dark') for ad in adinputs] # We need to make sure we: # - Provide a dark AD object for each science frame; # - Do not unnecessarily re-bin the same dark to the same binning # multiple times dark_list_out = [] dark_processing_done = {} for ad, dark in zip(*gt.make_lists(adinputs, dark_list, force_ad=True)): if dark is None: if 'qa' in self.mode: log.warning("No changes will be made to {}, since no " "dark was specified".format(ad.filename)) dark_list_out.append(None) continue else: raise IOError("No processed dark listed for {}". format(ad.filename)) if dark.detector_x_bin() == ad.detector_x_bin() and \ dark.detector_y_bin() == ad.detector_y_bin(): log.stdinfo('Binning for %s already matches input file' % dark.filename) dark_list_out.append(dark.filename) else: xb = ad.detector_x_bin() yb = ad.detector_y_bin() dark = self._rebin_ghost_ad(dark, xb, yb) # Re-name the dark so we don't blow away the old one on save dark_filename_orig = dark.filename dark.filename = filename_updater(dark, suffix='_rebin%dx%d' % (xb, yb, ), strip=True) dark.write(overwrite=True) dark_processing_done[ (dark_filename_orig, xb, yb)] = dark.filename dark_list_out.append(dark.filename) log.stdinfo('Wrote out re-binned dark %s' % dark.filename) # Check the inputs have matching binning, and shapes # Copied from standard darkCorrect (primitives_preprocess) # TODO: Check exposure time? try: gt.check_inputs_match(ad, dark, check_filter=False) except ValueError: # Else try to extract a matching region from the dark log.warning('AD inputs did not match - attempting to clip dark') dark = gt.clip_auxiliary_data(ad, aux=dark, aux_type="cal") # Check again, but allow it to fail if they still don't match gt.check_inputs_match(ad, dark, check_filter=False) log.stdinfo("Subtracting the dark ({}) from the input " "AstroData object {}". format(dark.filename, ad.filename)) ad.subtract(dark) # Record dark used, timestamp, and update filename ad.phu.set('DARKIM', # os.path.abspath(dark.path), dark.filename, self.keyword_comments["DARKIM"]) gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=sfx, strip=True) return adinputs_orig def extractProfile(self, adinputs=None, **params): """ Extract the object profile from a slit or flat image. This is a primtive wrapper for a collection of :any:`polyfit <polyfit>` calls. For each AstroData input, this primitive: - Instantiates a :class:`polyfit.GhostArm` class for the input, and executes :meth:`polyfit.GhostArm.spectral_format_with_matrix`; - Instantiate :class:`polyfit.SlitView` and :class:`polyfit.Extractor` objects for the input - Extract the profile from the input AstroData, using calls to :meth:`polyfit.Extractor.one_d_extract` and :meth:`polyfit.Extractor.two_d_extract`. Parameters ---------- suffix: str suffix to be added to output files slit: str/None Name of the (processed & stacked) slit image to use for extraction of the profile. If not provided/set to None, the primitive will attempt to pull a processed slit image from the calibrations database (or, if specified, the --user_cal processed_slit command-line option) slitflat: str/None Name of the (processed) slit flat image to use for extraction of the profile. If not provided, set to None, the RecipeSystem will attempt to pull a slit flat from the calibrations system (or, if specified, the --user_cal processed_slitflat command-line option) flat: str/None Name of the (processed) flat image to use for extraction of the profile. If not provided, set to None, the RecipeSystem will attempt to pull a slit flat from the calibrations system (or, if specified, the --user_cal processed_flat command-line option) sky_correct: bool Denotes whether or not to correct for the sky profile during the object extraction. Defaults to True, although it should be altered to False when processing flats or arcs. writeResult: bool Denotes whether or not to write out the result of profile extraction to disk. This is useful for both debugging, and data quality assurance. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] # This primitive modifies the input AD structure, so it must now # check if the primitive has already been applied. If so, it must be # skipped. adinputs_orig = list(adinputs) adinputs = [_ for _ in adinputs if not _.phu.get(timestamp_key)] if len(adinputs) != len(adinputs_orig): log.stdinfo('extractProfile is skipping the following files, which ' 'already have extracted profiles: ' '{}'.format(','.join([_.filename for _ in adinputs_orig if _ not in adinputs]))) # CJS: Heavily edited because of the new AD way # Get processed slits, slitFlats, and flats (for xmod) # slits and slitFlats may be provided as parameters slit_list = params["slit"] # log.stdinfo('slit_list before processing:') # log.stdinfo(' {}'.format(slit_list)) if slit_list is not None and isinstance(slit_list, list): slit_list = [slit_list[i] for i in range(len(slit_list)) if adinputs_orig[i] in adinputs] if slit_list is None: # CJS: This populates the calibrations cache (dictionary) with # "processed_slit" filenames for each input AD self.getProcessedSlit(adinputs, refresh=False) # This then gets those filenames slit_list = [self._get_cal(ad, 'processed_slit') for ad in adinputs] # log.stdinfo('slit_list after processing:') # log.stdinfo(' {}'.format(slit_list)) slitflat_list = params["slitflat"] if slitflat_list is not None and isinstance(slitflat_list, list): slitflat_list = [slitflat_list[i] for i in range(len(slitflat_list)) if adinputs_orig[i] in adinputs] if slitflat_list is None: self.getProcessedSlitFlat(adinputs, refresh=False) slitflat_list = [self._get_cal(ad, 'processed_slitflat') for ad in adinputs] flat = params['flat'] if flat is None: self.getProcessedFlat(adinputs, refresh=False) flat_list = [self._get_cal(ad, 'processed_flat') for ad in adinputs] # TODO: Have gt.make_lists handle multiple auxiliary lists? # CJS: Here we call gt.make_lists. This has only been designed to work # with one auxiliary list at present, hence the three calls. This # produces two lists of AD objects the same length, one of the input # ADs and one of the auxiliary files, from the list # of filenames (or single passed parameter). Importantly, if multiple # auxiliary frames are the same, then the file is opened only once and # the reference to this AD is re-used, saving speed and memory. _, slit_list = gt.make_lists(adinputs, slit_list, force_ad=True) _, slitflat_list = gt.make_lists(adinputs, slitflat_list, force_ad=True) _, flat_list = gt.make_lists(adinputs, flat_list, force_ad=True) for ad, slit, slitflat, flat in zip(adinputs, slit_list, slitflat_list, flat_list): # CJS: failure to find a suitable auxiliary file (either because # there's no calibration, or it's missing) places a None in the # list, allowing a graceful continuation. if slit is None or slitflat is None or flat is None: log.warning("Unable to find calibrations for {}; " "skipping".format(ad.filename)) continue # CJS: Changed to log.debug() and changed the output log.stdinfo("Slit parameters: ") log.stdinfo(" processed_slit: {}".format(slit.filename)) log.stdinfo(" processed_slitflat: {}".format(slitflat.filename)) log.stdinfo(" processed_flat: {}".format(flat.filename)) res_mode = ad.res_mode() arm = GhostArm(arm=ad.arm(), mode=res_mode, detector_x_bin=ad.detector_x_bin(), detector_y_bin=ad.detector_y_bin()) # CJS: Heavy refactor. Return the filename for each calibration # type. Eliminates requirement that everything be updated # simultaneously. # key = self._get_polyfit_key(ad) # log.stdinfo("Polyfit key selected: {}".format(key)) try: poly_wave = self._get_polyfit_filename(ad, 'wavemod') poly_spat = self._get_polyfit_filename(ad, 'spatmod') poly_spec = self._get_polyfit_filename(ad, 'specmod') poly_rot = self._get_polyfit_filename(ad, 'rotmod') slitv_fn = self._get_slitv_polyfit_filename(ad) wpars = astrodata.open(poly_wave) spatpars = astrodata.open(poly_spat) specpars = astrodata.open(poly_spec) rotpars = astrodata.open(poly_rot) slitvpars = astrodata.open(slitv_fn) except IOError: log.warning("Cannot open required initial model files for {};" " skipping".format(ad.filename)) continue arm.spectral_format_with_matrix(flat[0].XMOD, wpars[0].data, spatpars[0].data, specpars[0].data, rotpars[0].data) sview = SlitView(slit[0].data, slitflat[0].data, slitvpars.TABLE[0], mode=res_mode, microns_pix = 4.54 * 180 / 50, binning = slit.detector_x_bin()) extractor = Extractor(arm, sview, badpixmask=ad[0].mask, vararray=ad[0].variance) # FIXED - MCW 190906 # Added a kwarg to one_d_extract (the only Extractor method which # uses Extractor.vararray), allowing an update to the instance's # .vararray attribute corrected_data = deepcopy(ad[0].data) corrected_var = deepcopy(ad[0].variance) # Compute the flat correction, and add to bad pixels based on this. # FIXME: This really could be done as part of flat processing! if params['flat_precorrect']: try: pix_to_correct = flat[0].PIXELMODEL > 0 # Lets find the flat normalisation constant. # FIXME Should this normalisation be done elsewhere? mean_flat_flux = np.mean(flat[0].data[pix_to_correct]) mean_pixelmod = np.mean(flat[0].PIXELMODEL[pix_to_correct]) # Now find the correction. correction = flat[0].PIXELMODEL[pix_to_correct] / \ flat[0].data[pix_to_correct] * \ mean_flat_flux/mean_pixelmod # Find additional bad pixels where the flat doesn't match PIXELMODEL # This is important to have somewhere, because otherwise any # newly dead pixels will result in divide by 0. smoothed_flat = convolve_with_mask(flat[0].data, pix_to_correct) normalised_flat = flat[0].data / smoothed_flat # Extra bad pixels are where the normalied flat differs from the # PIXELMODEL, where PIXELMODEL is non-zero and there is a # non-negligible amount of smoothed flat flux. # FIXME: the 0.7 on the next line should be significantly lower, but # requires a model that fits the data well. Re-examine with real # data. extra_bad = ( np.abs( normalised_flat - flat[0].PIXELMODEL/mean_pixelmod ) > 0.7 ) & pix_to_correct * ( smoothed_flat > 0.1 * mean_flat_flux ) # import pdb; pdb.set_trace() # MCW 190912 - converted to option, default is 'False' # TODO: MJI to add description of what this (should) do if params['smooth_flat_spatially']: correction_2d = np.zeros_like(flat[0].data) correction_2d[pix_to_correct] = correction smoothed_correction_2d = convolve_with_mask( correction_2d, pix_to_correct) smoothed_correction_2d[ pix_to_correct ] = correction_2d[pix_to_correct] smoothed_correction_2d = nd.median_filter( smoothed_correction_2d, size=(7, 1) ) correction = smoothed_correction_2d[pix_to_correct] # This is where we add the new bad pixels in. It is needed for # computing correct weights. #TODO: These 4 lines (and possibly correction= BLAH) can stay. #the rest to go to findApertures extractor.vararray[extra_bad] = np.inf extractor.badpixmask[extra_bad] |= BAD_FLAT_FLAG # MJI: Pre-correct the data here. corrected_data[pix_to_correct] *= correction corrected_var[pix_to_correct] *= correction**2 # Uncomment to bugshoot finding bad pixels for the flat. Should be # repeated once models are reasonable for real data as a sanity # check #import matplotlib.pyplot as plt #plt.ion() #plt.clf() #plt.imshow(corrected_data, vmin=0, vmax=4*np.percentile(corrected_data,75)) #plt.imshow(plotit) #import pdb; pdb.set_trace() except AttributeError as e: # Catch if no PIXELMODEL if 'PIXELMODEL' in e.message: e.message = 'The flat {} has no PIXELMODEL extension ' \ '- either run extractProfile without the ' \ 'flat_precorrect option, or re-generate ' \ 'your flat field without the ' \ 'skip_pixel_model option.\n' \ '(Original error message: {})'.format( flat.filename, e.message, ) raise e else: raise # MCW 190830 # MI wants iteration over all possible combinations of sky and # object(s) # This should only happen for object files, because: # - arcs require either "sky only" or "skyless" extraction; # - standards should only extract the actual profile in single # object mode. if 'ARC' in ad.tags: objs_to_use = [[], [0, 1], ] use_sky = [True, False, ] elif 'PARTNER_CAL' in ad.tags: objs_to_use = [[0, ],[1, ], ] use_sky = [True, True, ] else: objs_to_use = [ [0, ], [0, ], [1, ], [1, ], [0, 1], [0, 1], [], ] use_sky = [ False, True, False, True, False, True, True, ] # MJI - Uncomment the lines below for testing in the simplest possible case. #objs_to_use = [[0], ] #use_sky = [False, ] for i, (o, s) in enumerate(zip(objs_to_use, use_sky)): print("OBJECTS:" + str(o)) print("SKY:" + str(s)) # CJS: Makes it clearer that you're throwing the first two # returned objects away (get replaced in the two_d_extract call) # Need to use corrected_data here; the data in ad[0] is # overwritten with the first extraction pass of this loop # (see the try-except statement at line 925) DUMMY, _, extracted_weights = extractor.one_d_extract( data=corrected_data, vararray=corrected_var, correct_for_sky=params['sky_correct'], use_sky=s, used_objects=o, ) # DEBUG - see Mike's notes.txt, where we want to look at DUMMY #import matplotlib.pyplot as plt #import pickle #pickle.dump( (DUMMY), open( "dummy.p", "wb" ) ) #plt.ion() #plt.figure(1) ##plt.plot(DUMMY[1,3510:3720,0]) ##plt.plot(np.sum(corrected_data[340:410,3510:3720], axis=0)) #plt.plot(np.sum(corrected_data[540:645,2380:3280], axis=0)) #plt.plot(DUMMY[2,2380:3280], label='Extracted') #plt.ylim([0,6e4]) #plt.legend() #import pdb; pdb.set_trace() extracted_flux, extracted_var = extractor.two_d_extract( corrected_data, extraction_weights=extracted_weights, ) # CJS: Since you don't use the input AD any more, I'm going to # modify it in place, in line with your comment that you're # considering this. # MCW now going to add extra EXTVARs to account for different # extractions, where necessary # import pdb; pdb.set_trace() try: ad[i].reset(extracted_flux, mask=None, variance=extracted_var) except IndexError: new_adi = deepcopy(ad[i - 1]) ad.append(new_adi[0]) ad[i].reset(extracted_flux, mask=None, variance=extracted_var) ad[i].WGT = extracted_weights ad[i].hdr['DATADESC'] = ( 'Order-by-order processed science data - ' 'objects {}, sky correction = {}'.format( str(o), str(params['sky_correct'])), self.keyword_comments['DATADESC']) # Timestamp and update filename gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=params["suffix"], strip=True) ad.phu.set("FLATIM", flat.filename, self.keyword_comments["FLATIM"]) # ad[0].hdr['DATADESC'] = ('Order-by-order processed science data', # self.keyword_comments['DATADESC']) if params["write_result"]: ad.write(overwrite=True) return adinputs_orig def interpolateAndCombine(self, adinputs=None, **params): """ Combine the independent orders from the input ADs into a single, over-sampled spectrum. The wavelength scale of the output is determined by finding the wavelength range of the input, and generating a new wavelength sampling in accordance with the ``scale`` and ``oversample`` parameters. The output spectrum is constructed as follows: - A blank spectrum, corresponding to the new wavelength scale, is initialised; - For each order of the input AstroData object: - The spectrum order is re-gridded onto the output wavelength scale; - The re-gridded order is averaged with the final output spectrum to form a new output spectrum. This process continues until all orders have been averaged into the final output spectrum. Note that the un-interpolated data is kept - the interpolated data is appended to the end of the file as a new extension. Parameters ---------- scale : str Denotes what scale to generate for the final spectrum. Currently available are: ``'loglinear'`` Default is ``'loglinear'``. skip : bool Set to ``True`` to skip this primitive. Defaults to ``False``. oversample : int or float The factor by which to (approximately) oversample the final output spectrum, as compared to the input spectral orders. Defaults to 2. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] for ad in adinputs: if ad.phu.get(timestamp_key): log.warning("No changes will be made to {}, since it has " "already been processed by interpolateAndCombine". format(ad.filename)) continue if params['skip']: log.warning('Skipping interpolateAndCombine for {}'.format( ad.filename )) continue # MCW, 180501 - Keep initial data, append interp'd data ad_interp = deepcopy(ad) for i, ext in enumerate(ad): # Determine the wavelength bounds of the file min_wavl, max_wavl = np.min(ext.WAVL), np.max(ext.WAVL) logspacing = np.median( np.log(ext.WAVL[:, 1:]) - np.log(ext.WAVL[:, :-1]) ) # Form a new wavelength scale based on these extremes if params['scale'] == 'loglinear': wavl_grid = np.exp( np.linspace(np.log(min_wavl), np.log(max_wavl), num=int( (np.log(max_wavl) - np.log(min_wavl)) / (logspacing / float(params['oversample'])) )) ) else: raise ValueError('interpolateAndCombine does not understand ' 'the scale {}'.format(params['scale'])) # Create a final spectrum and (inverse) variance to match # (One plane per object) no_obj = ext.data.shape[-1] spec_final = np.zeros(wavl_grid.shape + (no_obj, )) var_final = np.inf * np.ones(wavl_grid.shape + (no_obj, )) # Loop over each input order, making the output spectrum the # result of the weighted average of itself and the order # spectrum for order in range(ext.data.shape[0]): for ob in range(ext.data.shape[-1]): log.stdinfo('Re-gridding order {:2d}, obj {:1d}'.format( order, ob, )) flux_for_adding = np.interp(wavl_grid, ext.WAVL[order], ext.data[order, :, ob], left=0, right=0) ivar_for_adding = np.interp(wavl_grid, ext.WAVL[order], 1.0 / ext.variance[order, :, ob], left=0, right=0) spec_comp, ivar_comp = np.ma.average( np.asarray([spec_final[:, ob], flux_for_adding]), weights=np.asarray([1.0 / var_final[:, ob], ivar_for_adding]), returned=True, axis=0, ) spec_final[:, ob] = deepcopy(spec_comp) var_final[:, ob] = deepcopy(1.0 / ivar_comp) # import pdb; # pdb.set_trace() # Can't use .reset without looping through extensions ad_interp[0].data = spec_final ad_interp[0].variance = var_final ad_interp[0].WAVL = wavl_grid try: del ad_interp[0].WGT except AttributeError: pass ad_interp[0].hdr['DATADESC'] = ( 'Interpolated data', self.keyword_comments['DATADESC'], ) ad.append(ad_interp[i]) # Timestamp & update filename gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=params["suffix"], strip=True) return adinputs def findApertures(self, adinputs=None, **params): """ Locate the slit aperture, parametrized by an :any:`polyfit` model. The primitive locates the slit apertures within a GHOST frame, and inserts a :any:`polyfit` model into a new extension on each data frame. This model is placed into a new ``.XMOD`` attribute on the extension. Parameters ---------- slitflat: str or :class:`astrodata.AstroData` or None slit flat to use; if None, the calibration system is invoked """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] # Make no attempt to check if primitive has already been run - may # have new calibrators we wish to apply. # CJS: See comment in extractProfile() for handling of calibrations flat_list = params["slitflat"] if flat_list is None: self.getProcessedSlitFlat(adinputs, refresh=False) flat_list = [self._get_cal(ad, 'processed_slitflat') for ad in adinputs] if params['skip_pixel_model']: log.stdinfo('Skipping adding the pixel model to the flat' 'step') for ad, slit_flat in zip(*gt.make_lists(adinputs, flat_list, force_ad=True)): if not {'PREPARED', 'GHOST', 'FLAT'}.issubset(ad.tags): log.warning("findApertures is only run on prepared flats: " "{} will not be processed".format(ad.filename)) continue try: poly_xmod = self._get_polyfit_filename(ad, 'xmod') log.stdinfo('Found xmod: {}'.format(poly_xmod)) poly_spat = self._get_polyfit_filename(ad, 'spatmod') log.stdinfo('Found spatmod: {}'.format(poly_spat)) slitv_fn = self._get_slitv_polyfit_filename(ad) log.stdinfo('Found slitvmod: {}'.format(slitv_fn)) xpars = astrodata.open(poly_xmod) spatpars = astrodata.open(poly_spat) slitvpars = astrodata.open(slitv_fn) except IOError: log.warning("Cannot open required initial model files for {};" " skipping".format(ad.filename)) continue arm = ad.arm() res_mode = ad.res_mode() ghost_arm = GhostArm(arm=arm, mode=res_mode) # Create an initial model of the spectrograph xx, wave, blaze = ghost_arm.spectral_format(xparams=xpars[0].data) slitview = SlitView(slit_flat[0].data, slit_flat[0].data, slitvpars.TABLE[0], mode=res_mode, microns_pix=4.54*180/50, binning=slit_flat.detector_x_bin()) # This is an attempt to remove the worse cosmic rays # in the hope that the convolution is not affected by them. # Start by performing a median filter medfilt = signal.medfilt2d(ad[0].data, (5,5)) # Now find which pixels have a percentage difference larger than # a defined value between the data and median filter, and replace # those in the data with the median filter values. Also, only # replace values above the data average, so as not to replace low # S/N values at the edges. data = ad[0].data.copy() condit = np.where(np.abs( (medfilt - data)/(medfilt+1)) > 200 ) and np.where(data > np.average(data)) data[condit] = medfilt[condit] # Convolve the flat field with the slit profile flat_conv = ghost_arm.slit_flat_convolve( data, slit_profile=slitview.slit_profile(arm=arm), spatpars=spatpars[0].data, microns_pix=slitview.microns_pix, xpars=xpars[0].data ) flat_conv = signal.medfilt2d(flat_conv, (5, 5)) # Fit the initial model to the data being considered fitted_params = ghost_arm.fit_x_to_image(flat_conv, xparams=xpars[0].data, decrease_dim=8, inspect=False) # CJS: Append the XMOD as an extension. It will inherit the # header from the science plane (including irrelevant/wrong # keywords like DATASEC) but that's not really a big deal. # (The header can be modified/started afresh if needed.) ad[0].XMOD = fitted_params #MJI: Compute a pixel-by-pixel model of the flat field from the new XMOD and #the slit image. if not params['skip_pixel_model']: # FIXME: MJI Copied directly from extractProfile. Is this compliant? try: poly_wave = self._get_polyfit_filename(ad, 'wavemod') poly_spat = self._get_polyfit_filename(ad, 'spatmod') poly_spec = self._get_polyfit_filename(ad, 'specmod') poly_rot = self._get_polyfit_filename(ad, 'rotmod') wpars = astrodata.open(poly_wave) spatpars = astrodata.open(poly_spat) specpars = astrodata.open(poly_spec) rotpars = astrodata.open(poly_rot) except IOError: log.warning("Cannot open required initial model files " "for {}; skipping".format(ad.filename)) continue #Create an extractor instance, so that we can add the pixel model to the #data. ghost_arm.spectral_format_with_matrix(ad[0].XMOD, wpars[0].data, spatpars[0].data, specpars[0].data, rotpars[0].data) extractor = Extractor(ghost_arm, slitview, badpixmask=ad[0].mask, vararray=ad[0].variance) pixel_model = extractor.make_pixel_model() ad[0].PIXELMODEL = pixel_model gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) return adinputs def fitWavelength(self, adinputs=None, **params): """ Fit wavelength solution to a GHOST ARC frame. This primitive should only be applied to a reduce GHOST ARC frame. Any other files passed through this primitive will be skipped. This primitive works as follows: - :class:`polyfit.ghost.GhostArm` and `polyfit.extract.Extractor` classes are instantiated and configured for the data; - The ``Extractor`` class is used to find the line locations; - The ``GhostArm`` class is used to fit this line solution to the data. The primitive will use the arc line files stored in the same location as the initial :module:`polyfit` models kept in the ``lookups`` system. This primitive uses no special parameters. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] # import pdb; pdb.set_trace() # Make no attempt to check if primitive has already been run - may # have new calibrators we wish to apply. flat = params['flat'] if not flat: self.getProcessedFlat(adinputs, refresh=False) flat_list = [self._get_cal(ad, 'processed_flat') for ad in adinputs] for ad, flat in zip(*gt.make_lists(adinputs, flat_list, force_ad=True)): # CJS: Since we're not saving the processed_arc before this, we # can't check for the tags. Instead, let's look for the WGT extn if not hasattr(ad[0], 'WGT'): log.warning("fitWavelength is only run on prepared GHOST arc" " files - skipping {}".format(ad.filename)) continue if self.timestamp_keys["extractProfile"] not in ad.phu: log.warning("extractProfile has not been run on {} - " "skipping".format(ad.filename)) continue if flat is None: log.warning("Could not find processed_flat calibration for " "{} - skipping".format(ad.filename)) continue try: poly_wave = self._get_polyfit_filename(ad, 'wavemod') poly_spat = self._get_polyfit_filename(ad, 'spatmod') poly_spec = self._get_polyfit_filename(ad, 'specmod') poly_rot = self._get_polyfit_filename(ad, 'rotmod') wpars = astrodata.open(poly_wave) spatpars = astrodata.open(poly_spat) specpars = astrodata.open(poly_spec) rotpars = astrodata.open(poly_rot) except IOError: log.warning("Cannot open required initial model files for {};" " skipping".format(ad.filename)) continue # CJS: line_list location is now in lookups/__init__.py arclinefile = os.path.join(os.path.dirname(polyfit_dict.__file__), line_list) arcwaves, arcfluxes = np.loadtxt(arclinefile, usecols=[1, 2]).T arm = GhostArm(arm=ad.arm(), mode=ad.res_mode()) arm.spectral_format_with_matrix(flat[0].XMOD, wpars[0].data, spatpars[0].data, specpars[0].data, rotpars[0].data) extractor = Extractor(arm, None) # slitview=None for this usage # Find lines based on the extracted flux and the arc wavelengths. # Note that "inspect=True" also requires and input arc file, which has # the non-extracted data. There is also a keyword "plots". lines_out = extractor.find_lines(ad[0].data, arcwaves, arcfile=ad[0].data, plots=params['plot_fit']) #lines_out is now a long vector of many parameters, including the #x and y position on the chip of each line, the order, the expected #wavelength, the measured line strength and the measured line width. fitted_params, wave_and_resid = arm.read_lines_and_fit( wpars[0].data, lines_out) # CJS: Append the WFIT as an extension. It will inherit the # header from the science plane (including irrelevant/wrong # keywords like DATASEC) but that's not really a big deal. ad[0].WFIT = fitted_params gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) return adinputs def flatCorrect(self, adinputs=None, **params): """ Flat-correct an extracted GHOST profile using a flat profile. This primitive works by extracting the profile from the relevant flat field using the object's extracted weights, and then performs simple division. .. warning:: While the primitive is working, it has been found that the underlying algorithm is flawed. A new algorithm is being developed. Parameters ---------- suffix: str suffix to be added to output files flat: str/None Name of the (processed) standard flat to use for flat profile extraction. If None, the primitive will attempt to pull a flat from the calibrations database (or, if specified, the --user_cal processed_flat command-line option) slit: str/None Name of the (processed & stacked) slit image to use for extraction of the profile. If not provided/set to None, the primitive will attempt to pull a processed slit image from the calibrations database (or, if specified, the --user_cal processed_slit command-line option) slitflat: str/None Name of the (processed) slit flat image to use for extraction of the profile. If not provided, set to None, the RecipeSystem will attempt to pull a slit flat from the calibrations system (or, if specified, the --user_cal processed_slitflat command-line option) writeResult: bool Denotes whether or not to write out the result of profile extraction to disk. This is useful for both debugging, and data quality assurance. """ log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] sfx = params["suffix"] if params['skip']: log.stdinfo('Skipping the flat field correction ' 'step') return adinputs adinputs_orig = list(adinputs) adinputs = [_ for _ in adinputs if not _.phu.get(timestamp_key)] if len(adinputs) != len(adinputs_orig): log.stdinfo('flatCorrect is skipping the following files, ' 'which are already flat corrected: ' '{}'.format(','.join([_ for _ in adinputs_orig if _ not in adinputs]))) # CJS: See extractProfile() refactoring for explanation of changes slit_list = params["slit"] if slit_list is not None and isinstance(slit_list, list): slit_list = [slit_list[i] for i in range(len(slit_list)) if adinputs_orig[i] in adinputs] if slit_list is None: self.getProcessedSlit(adinputs, refresh=False) slit_list = [self._get_cal(ad, 'processed_slit') for ad in adinputs] # CJS: I've renamed flat -> slitflat and obj_flat -> flat because # that's what the things are called! Sorry if I've overstepped. slitflat_list = params["slitflat"] if slitflat_list is not None and isinstance(slitflat_list, list): slitflat_list = [slitflat_list[i] for i in range(len(slitflat_list)) if adinputs_orig[i] in adinputs] if slitflat_list is None: self.getProcessedSlitFlat(adinputs, refresh=False) slitflat_list = [self._get_cal(ad, 'processed_slitflat') for ad in adinputs] flat_list = params["flat"] if flat_list is not None and isinstance(flat_list, list): flat_list = [flat_list[i] for i in range(len(flat_list)) if adinputs_orig[i] in adinputs] if flat_list is None: self.getProcessedFlat(adinputs, refresh=False) flat_list = [self._get_cal(ad, 'processed_flat') for ad in adinputs] # TODO: Have gt.make_lists handle multiple auxiliary lists? _, slit_list = gt.make_lists(adinputs, slit_list, force_ad=True) _, slitflat_list = gt.make_lists(adinputs, slitflat_list, force_ad=True) _, flat_list = gt.make_lists(adinputs, flat_list, force_ad=True) for ad, slit, slitflat, flat, in zip(adinputs, slit_list, slitflat_list, flat_list): if ad.phu.get(timestamp_key): log.warning("No changes will be made to {}, since it has " "already been processed by flatCorrect". format(ad.filename)) continue # CJS: failure to find a suitable auxiliary file (either because # there's no calibration, or it's missing) places a None in the # list, allowing a graceful continuation. if slit is None or slitflat is None or flat is None: log.warning("Unable to find calibrations for {}; " "skipping".format(ad.filename)) continue try: poly_wave = self._get_polyfit_filename(ad, 'wavemod') poly_spat = self._get_polyfit_filename(ad, 'spatmod') poly_spec = self._get_polyfit_filename(ad, 'specmod') poly_rot = self._get_polyfit_filename(ad, 'rotmod') slitv_fn = self._get_slitv_polyfit_filename(ad) wpars = astrodata.open(poly_wave) spatpars = astrodata.open(poly_spat) specpars = astrodata.open(poly_spec) rotpars = astrodata.open(poly_rot) slitvpars = astrodata.open(slitv_fn) except IOError: log.warning("Cannot open required initial model files for {};" " skipping".format(ad.filename)) continue res_mode = ad.res_mode() arm = GhostArm(arm=ad.arm(), mode=res_mode, detector_x_bin= ad.detector_x_bin(), detector_y_bin= ad.detector_y_bin() ) arm.spectral_format_with_matrix(flat[0].XMOD, wpars[0].data, spatpars[0].data, specpars[0].data, rotpars[0].data, ) sview = SlitView(slit[0].data, slitflat[0].data, slitvpars.TABLE[0], mode=res_mode, microns_pix=4.54*180/50, binning = slit.detector_x_bin()) extractor = Extractor(arm, sview) #FIXME - Marc and were *going* to try: #adjusted_data = arm.bin_data(extractor.adjust_data(flat[0].data)) extracted_flux, extracted_var = extractor.two_d_extract( arm.bin_data(flat[0].data), extraction_weights=ad[0].WGT) # Normalised extracted flat profile med = np.median(extracted_flux) extracted_flux /= med extracted_var /= med**2 flatprof_ad = deepcopy(ad) flatprof_ad.update_filename(suffix='_extractedFlatProfile', strip=True) flatprof_ad[0].reset(extracted_flux, mask=None, variance=extracted_var) if params["write_result"]: flatprof_ad.write(overwrite=True) # Record this as the flat profile used ad.phu.set('FLATPROF', os.path.abspath(flatprof_ad.path), self.keyword_comments['FLATPROF']) ad.phu.set('FLATIMG', os.path.abspath(flat.path), keyword_comments.keyword_comments['FLATIMG']) ad.phu.set('SLITIMG', os.path.abspath(slit.path), keyword_comments.keyword_comments['SLITIMG']) ad.phu.set('SLITFLAT', os.path.abspath(slitflat.path), keyword_comments.keyword_comments['SLITFLAT']) # Divide the flat field through the science data # Arithmetic propagates VAR correctly ad /= flatprof_ad gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=sfx, strip=True) # This nomenclature is misleading - this is the list of # intitially-passed AstroData objects, some of which may have been # skipped, and others which should have been modified by this # primitive return adinputs_orig def formatOutput(self, adinputs=None, **params): """ Generate an output FITS file containing the data requested by the user. This primitive should not be called until *all* required processing steps have been performed on the data. THe resulting FITS file cannot be safely passed through to other primitives. .. note:: All of the extra data packaged up by this primitive can also be obtained by using the ``write_result=True`` flag on selected other primitives. ``formatOutput`` goes and finds those output files, and then packages them into the main output file for convenience. Parameters ---------- detail: str The level of detail the user would like in their final output file. Note that, in order to preserve the ordering of FITS file extensions, the options are sequential; each option will provide all the data of less-verbose options. Valid options are: ``default`` Only returns the extracted, fully-processed object(s) and sky spectra. In effect, this causes ``formatOutput`` to do nothing. This includes computed variance data for each plane. ``processed_image`` The option returns the data that have been bias and dark corrected, and has the flat BPM applied (i.e. the state the data are in immediately prior to profile extraction). ``flat_profile`` This options includes the extracted flat profile used for flat-fielding the data. ``sensitivity_curve`` This option includes the sensitivity calculated at the :meth:`responseCorrect <responseCorrect>` step of reduction. """ # This should be the list of allowed detail descriptors in order of # increasing verbosity ALLOWED_DETAILS = ['default', 'processed_image', 'flat_profile', 'sensitivity_curve', ] log = self.log timestamp_key = self.timestamp_keys[self.myself()] sfx = params['suffix'] if params['detail'] not in ALLOWED_DETAILS: raise ValueError('formatOutput: detail option {} not known. ' 'Please use one of: {}'.format( params['detail'], ', '.join(ALLOWED_DETAILS), )) detail_index = ALLOWED_DETAILS.index(params['detail']) for ad in adinputs: # Move sequentially through the various levels of detail, adding # them as we go along # ad[0].hdr['DATADESC'] = ('Fully-reduced data', # self.keyword_comments['DATADESC'], ) if ALLOWED_DETAILS.index('processed_image') <= detail_index: # Locate the processed image data fn = ad.phu.get('PROCIMG', None) if fn is None: raise RuntimeError('The processed image file name for {} ' 'has not been ' 'recorded'.format(ad.filename)) try: proc_image = astrodata.open(fn) except astrodata.AstroDataError: raise RuntimeError('You appear not to have written out ' 'the result of image processing to ' 'disk.') log.stdinfo('Opened processed image file {}'.format(fn)) ad.append(proc_image[0]) ad[-1].hdr['DATADESC'] = ('Processed image', self.keyword_comments['DATADESC']) if ALLOWED_DETAILS.index('flat_profile') <= detail_index: # Locate the flat profile data fn = ad.phu.get('FLATPROF', None) if fn is None: raise RuntimeError('The flat profile file name for {} ' 'has not been ' 'recorded'.format(ad.filename)) try: proc_image = astrodata.open(fn) except astrodata.AstroDataError: raise RuntimeError('You appear not to have written out ' 'the result of flat profiling to ' 'disk.') log.stdinfo('Opened flat profile file {}'.format(fn)) # proc_image[0].WGT = None try: del proc_image[0].WGT except AttributeError: pass ad.append(proc_image[0]) ad[-1].hdr['DATADESC'] = ('Flat profile', self.keyword_comments['DATADESC']) if ALLOWED_DETAILS.index('sensitivity_curve') <= detail_index: fn = ad.phu.get('SENSFUNC', None) if fn is None: raise RuntimeError('The sensitivity curve file name for {} ' 'has not been ' 'recorded'.format(ad.filename)) try: proc_image = astrodata.open(fn) except astrodata.AstroDataError: raise RuntimeError('You appear not to have written out ' 'the result of sensitivity calcs to ' 'disk.') log.stdinfo('Opened sensitivity curve file {}'.format(fn)) # proc_image[0].WGT = None try: del proc_image[0].WGT except AttributeError: pass try: del proc_image[0].WAVL except AttributeError: pass ad.append(proc_image[0]) ad[-1].hdr['DATADESC'] = ('Sensitivity curve (blaze func.)', self.keyword_comments['DATADESC']) # import pdb; pdb.set_trace(); gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key) ad.update_filename(suffix=sfx, strip=True) ad.write(overwrite=True) return adinputs def rejectCosmicRays(self, adinputs=None, **params): """ Reject cosmic rays from GHOST data. .. warning:: This primitive is now deprecated - cosmic ray rejection is now handled as part of the profile extraction process. Parameters ---------- n_steps: int The number of iterations that the LACosmic algorithm will make. subsampling: int The image subsampling factor LACosmic will use to generate the input images for the algorithm. There is really no reason to change this value from the default. sigma_lim: float The sigma-clipping limit to be applied to the noise map. f_lim: float The clipping limit for the fine-structure image. """ raise DeprecationWarning('Cosmic ray rejections is now handled ' 'as part of the profile extraction process. ' 'rejectCosmicRays is *not* being maintained.') log = self.log log.debug(gt.log_message("primitive", self.myself(), "starting")) timestamp_key = self.timestamp_keys[self.myself()] n_steps = params["n_steps"] subsampling = params["subsampling"] sigma_lim = params["sigma_lim"] f_lim = params["f_lim"] # Define the Laplacian and growth kernels for L.A.Cosmic laplace_kernel = np.array([ [0.0, -1.0, 0.0], [-1.0, 4.0, -1.0], [0.0, -1.0, 0.0], ]) growth_kernel = np.ones((3, 3), dtype=np.float64) for ad in adinputs: if ad.phu.get(timestamp_key): log.warning("No changes will be made to {}, since it has " "already been processed by rejectCosmicRays". format(ad.filename)) continue # Define the function for performing the median-replace of cosmic # ray pixels # Note that this is different from a straight median filter, as we # *don't* want to include the central pixel fp = [[1, 1, 1], [1, 0, 1], [1, 1, 1]] median_replace = functools.partial(scipy.ndimage.generic_filter, function=np.median, footprint=fp, mode='constant', cval=np.nan) log.stdinfo("Doing CR removal for {}".format(ad.filename)) for ext in ad: # CJS: Added forced creation of DQ plane if ext.mask is None: ext.mask = np.zeros_like(ext.data, dtype=np.uint16) log.stdinfo('-----') log.stdinfo("EXTVER {}".format(ext.hdr['EXTVER'])) log.stdinfo('-----') # Define an array that will hold the cosmic ray flagging # Note that we're deliberately not using the BPM at this stage, # otherwise the algorithm will start searching for cosmic rays # around pixels that have been flagged bad for another reason. cosmic_bpm = np.zeros_like(ext.data, dtype=np.int16) # Start with a fresh copy of the data # Use numpy NaN to cover up any data detected bad so far # (i.e. 0 < BPM < 8) clean_data = np.copy(ext.data) clean_data[ext.mask > 0] = np.nan no_passes = 0 new_crs = 1 new_cr_pix = None while new_crs > 0 and no_passes < n_steps: no_passes += 1 curr_crs = np.count_nonzero(cosmic_bpm) if curr_crs > 0 and new_cr_pix is not None: # Median out the pixels already defined as cosmic rays log.stdinfo('Pass {}: Median over previously ' 'found CR pix'.format(no_passes)) # One pass option - slow # clean_data[new_cr_pix > 0] = median_replace( # clean_data)[new_cr_pix > 0] # Loop option - faster for the number of CR (~ few k # we expect for realistic data inds = np.argwhere(new_cr_pix) pad_data = np.pad(clean_data, 1, 'constant', constant_values=(np.nan, )) # log.stdinfo('Padded array size: %s' % # str(pad_data.shape)) # log.stdinfo( # 'Data array size: %s' % str(clean_data.shape)) # log.stdinfo( # 'CR array size: %s' % str(new_cr_pix.shape)) for ind in inds: # log.stdinfo(str(ind)) # Using nanmedian stops nan values being considered # in the ordering of median values clean_data[zip(ind)] = np.nanmedian( fp * pad_data[ ind[0]:ind[0] + 3, ind[1]:ind[1] + 3 ] ) # Actually do the cosmic ray subtraction here # ------ # STEP 1 # Construct a model for sky lines to subtract # TODO: Add option for 'wave' keyword, which parametrizes # an input wavelength solution function # ------ log.stdinfo('Pass {}: Building sky model'.format(no_passes)) sky_model = scipy.ndimage.median_filter(clean_data, size=[7, 1], mode='constant', cval=np.nan) m5_model = scipy.ndimage.median_filter(clean_data, size=[5, 5], mode='constant', cval=np.nan) subbed_data = clean_data - sky_model # ------ # STEP 2 # Remove object spectra # FIXME: Waiting on working find apertures routine # ------ # ------ # STEP 3 # Compute 2nd-order Laplacian of input frame # This is 'curly L' in van Dokkum 2001 # ------ # Subsample the data log.stdinfo('Pass {}: Computing Laplacian'.format( no_passes) ) data_shape = ext.data.shape # log.stdinfo( # 'data array size: %s' % str(data_shape)) subsampl_data = np.repeat(np.repeat( ext.data, subsampling, axis=1), subsampling, axis=0 ) # Convolve the subsampled data with the Laplacian kernel, # trimming off the edges this introduces # Bring any negative values up to 0 init_conv_data = scipy.signal.convolve2d( subsampl_data, laplace_kernel)[1:-1, 1:-1] init_conv_data[np.nonzero(init_conv_data <= 0.)] = 0. # Reverse the subsampling, returning the # correctly-convolved image conv_data = np.reshape(init_conv_data, ( data_shape[0], init_conv_data.shape[0] // data_shape[0], data_shape[1], init_conv_data.shape[1] // data_shape[1], )).mean(axis=3).mean(axis=1) # ------ # STEP 4 # Construct noise model, and use it to generate the # 'sigma_map' S # This is the equivalent of equation (11) of van Dokkum 2001 # ------ log.stdinfo('Pass {}: Constructing sigma map'.format( no_passes )) gain = ext.gain() read_noise = ext.read_noise() noise = (1.0 / gain) * ((gain * m5_model + read_noise**2)**0.5) noise_min = 0.00001 noise[np.nonzero(noise <= noise_min)] = noise_min # div by 2 to correct convolution counting sigmap = conv_data / (subsampling * noise) # Remove large structure with a 5x5 median filter # Equation (13) of van Dokkum 2001, generates S' sig_smooth = scipy.ndimage.median_filter(sigmap, size=[5, 5], mode='constant', cval=np.nan) sig_detrend = sigmap - sig_smooth # ------ # STEP 5 # Identify the potential cosmic rays # ------ log.stdinfo('Pass {}: Flagging cosmic rays'.format( no_passes )) # Construct the fine-structure image # (F, eqn 14 of van Dokkum) m3 = scipy.ndimage.median_filter(subbed_data, size=[3, 3], mode='constant', cval=np.nan) fine_struct = m3 - scipy.ndimage.median_filter(m3, size=[7, 7], mode='constant', cval=np.nan) # Pixels are flagged as being cosmic rays if: # - The sig_detrend image (S') is > sigma_lim # - The contrast between the Laplacian image (L+) and the # fine-structure image (F) is greater than f_lim new_cr_pix = np.logical_and(sig_detrend > sigma_lim, (conv_data/fine_struct) > f_lim) cosmic_bpm[new_cr_pix] = np.uint16(DQ.cosmic_ray) new_crs =
np.count_nonzero(cosmic_bpm)
numpy.count_nonzero
""" Naives and Others Requiring No Additional Packages Beyond Numpy and Pandas """ from math import ceil import warnings import random import datetime import numpy as np import pandas as pd from autots.models.base import ModelObject, PredictionObject from autots.tools import seasonal_int from autots.tools.probabilistic import Point_to_Probability, historic_quantile # optional requirement try: from scipy.spatial.distance import cdist except Exception: pass class ZeroesNaive(ModelObject): """Naive forecasting predicting a dataframe of zeroes (0's) Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast """ def __init__( self, name: str = "ZeroesNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, verbose=verbose, ) def fit(self, df, future_regressor=None): """Train algorithm given data supplied Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) self.fit_runtime = datetime.datetime.now() - self.startTime return self def predict( self, forecast_length: int, future_regressor=None, just_point_forecast=False ): """Generates forecast data immediately following dates of index supplied to .fit() Args: forecast_length (int): Number of periods of data to forecast ahead regressor (numpy.Array): additional regressor, not used just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Returns: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() df = pd.DataFrame( np.zeros((forecast_length, (self.train_shape[1]))), columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) if just_point_forecast: return df else: predict_runtime = datetime.datetime.now() - predictStartTime prediction = PredictionObject( model_name=self.name, forecast_length=forecast_length, forecast_index=df.index, forecast_columns=df.columns, lower_forecast=df, forecast=df, upper_forecast=df, prediction_interval=self.prediction_interval, predict_runtime=predict_runtime, fit_runtime=self.fit_runtime, model_parameters=self.get_params(), ) return prediction def get_new_params(self, method: str = 'random'): """Returns dict of new parameters for parameter tuning""" return {} def get_params(self): """Return dict of current parameters""" return {} class LastValueNaive(ModelObject): """Naive forecasting predicting a dataframe of the last series value Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast """ def __init__( self, name: str = "LastValueNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, ) def fit(self, df, future_regressor=None): """Train algorithm given data supplied Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) self.last_values = df.tail(1).to_numpy() # self.df_train = df self.lower, self.upper = historic_quantile( df, prediction_interval=self.prediction_interval ) self.fit_runtime = datetime.datetime.now() - self.startTime return self def predict( self, forecast_length: int, future_regressor=None, just_point_forecast=False ): """Generates forecast data immediately following dates of index supplied to .fit() Args: forecast_length (int): Number of periods of data to forecast ahead regressor (numpy.Array): additional regressor, not used just_point_forecast (bool): If True, return a pandas.DataFrame of just point forecasts Returns: Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts """ predictStartTime = datetime.datetime.now() df = pd.DataFrame( np.tile(self.last_values, (forecast_length, 1)), columns=self.column_names, index=self.create_forecast_index(forecast_length=forecast_length), ) if just_point_forecast: return df else: # upper_forecast, lower_forecast = Point_to_Probability(self.df_train, df, prediction_interval = self.prediction_interval, method = 'historic_quantile') upper_forecast = df.astype(float) + (self.upper * 0.8) lower_forecast = df.astype(float) - (self.lower * 0.8) predict_runtime = datetime.datetime.now() - predictStartTime prediction = PredictionObject( model_name=self.name, forecast_length=forecast_length, forecast_index=df.index, forecast_columns=df.columns, lower_forecast=lower_forecast, forecast=df, upper_forecast=upper_forecast, prediction_interval=self.prediction_interval, predict_runtime=predict_runtime, fit_runtime=self.fit_runtime, model_parameters=self.get_params(), ) return prediction def get_new_params(self, method: str = 'random'): """Returns dict of new parameters for parameter tuning""" return {} def get_params(self): """Return dict of current parameters""" return {} class AverageValueNaive(ModelObject): """Naive forecasting predicting a dataframe of the series' median values Args: name (str): String to identify class frequency (str): String alias of datetime index frequency or else 'infer' prediction_interval (float): Confidence interval for probabilistic forecast """ def __init__( self, name: str = "AverageValueNaive", frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, method: str = 'Median', **kwargs ): ModelObject.__init__( self, name, frequency, prediction_interval, holiday_country=holiday_country, random_seed=random_seed, verbose=verbose, ) self.method = method def fit(self, df, future_regressor=None): """Train algorithm given data supplied. Args: df (pandas.DataFrame): Datetime Indexed """ df = self.basic_profile(df) method = str(self.method).lower() if method == 'median': self.average_values = df.median(axis=0).to_numpy() elif method == 'mean': self.average_values = df.mean(axis=0).to_numpy() elif method == 'mode': self.average_values = ( df.mode(axis=0).iloc[0].fillna(df.median(axis=0)).to_numpy() ) elif method == "midhinge": results = df.to_numpy() q1 =
np.nanquantile(results, q=0.25, axis=0)
numpy.nanquantile
#!/usr/bin/env python # coding: utf-8 """ Tools for plotting data from Dimitris' global high resolution model once read into xarray Dataset. """ import numpy as np import xarray as xr import gsw import scipy as sp from scipy import interpolate def distance(lon, lat, p=np.array([0]), axis=-1): """ From gsw: Great-circle distance in m between lon, lat points. Parameters ---------- lon, lat : array-like, 1-D or 2-D (shapes must match) Longitude, latitude, in degrees. p : array-like, scalar, 1-D or 2-D, optional, default is 0 Sea pressure (absolute pressure minus 10.1325 dbar), dbar axis : int, -1, 0, 1, optional The axis or dimension along which *lat and lon* vary. This differs from most functions, for which axis is the dimension along which p increases. Returns ------- distance : 1-D or 2-D array distance in meters between adjacent points. """ earth_radius = 6371e3 if not lon.shape == lat.shape: raise ValueError('lon, lat shapes must match; found %s, %s' % (lon.shape, lat.shape)) if not (lon.ndim in (1, 2) and lon.shape[axis] > 1): raise ValueError('lon, lat must be 1-D or 2-D with more than one point' ' along axis; found shape %s and axis %s' % (lon.shape, axis)) if lon.ndim == 1: one_d = True lon = lon[np.newaxis, :] lat = lat[np.newaxis, :] axis = -1 else: one_d = False one_d = one_d and p.ndim == 1 if axis == 0: indm = (slice(0, -1), slice(None)) indp = (slice(1, None), slice(None)) else: indm = (slice(None), slice(0, -1)) indp = (slice(None), slice(1, None)) if np.all(p == 0): z = 0 else: lon, lat, p = np.broadcast_arrays(lon, lat, p) p_mid = 0.5 * (p[indm] + p[indp]) lat_mid = 0.5 * (lat[indm] + lat[indp]) z = z_from_p(p_mid, lat_mid) lon = np.radians(lon) lat = np.radians(lat) dlon = np.diff(lon, axis=axis) dlat = np.diff(lat, axis=axis) a = ((np.sin(dlat / 2)) ** 2 +
np.cos(lat[indm])
numpy.cos
import warnings import numpy as np from numpy.testing import assert_allclose, assert_equal from pytest import raises from menpo.testing import is_same_array from menpo.image import BooleanImage, MaskedImage, Image # TODO: Remove when Pillow 3.3.0 release on all platforms import unittest from PIL import PILLOW_VERSION from distutils.version import LooseVersion def test_create_1d_error(): with raises(ValueError): Image(np.ones(1)) def test_image_n_elements(): image = Image(np.ones((3, 10, 10))) assert image.n_elements == 3 * 10 * 10 def test_image_width(): image = Image(np.ones((3, 6, 4))) assert image.width == 4 def test_image_height(): image = Image(np.ones((3, 6, 4))) assert image.height == 6 def test_image_blank(): image = Image(np.zeros((1, 6, 4))) image_blank = Image.init_blank((6, 4)) assert np.all(image_blank.pixels == image.pixels) def test_image_blank_fill(): image = Image(np.ones((1, 6, 4)) * 7) image_blank = Image.init_blank((6, 4), fill=7) assert np.all(image_blank.pixels == image.pixels) def test_image_blank_n_channels(): image = Image(np.zeros((7, 6, 4))) image_blank = Image.init_blank((6, 4), n_channels=7) assert np.all(image_blank.pixels == image.pixels) def test_image_centre(): pixels = np.ones((1, 10, 20)) image = Image(pixels) assert np.all(image.centre() == np.array([5, 10])) def test_image_str_shape_4d(): pixels = np.ones((1, 10, 20, 11, 12)) image = Image(pixels) assert image._str_shape() == "10 x 20 x 11 x 12" def test_image_str_shape_2d(): pixels = np.ones((1, 10, 20)) image = Image(pixels) assert image._str_shape() == "20W x 10H" def test_image_as_vector(): pixels = np.random.rand(1, 10, 20) image = Image(pixels) assert np.all(image.as_vector() == pixels.ravel()) def test_image_as_vector_keep_channels(): pixels = np.random.rand(2, 10, 20) image = Image(pixels) assert np.all(image.as_vector(keep_channels=True) == pixels.reshape([2, -1])) def test_image_from_vector(): pixels = np.random.rand(2, 10, 20) pixels2 = np.random.rand(2, 10, 20) image = Image(pixels) image2 = image.from_vector(pixels2.ravel()) assert np.all(image2.pixels == pixels2) def test_image_from_vector_custom_channels(): pixels = np.random.rand(2, 10, 20) pixels2 = np.random.rand(3, 10, 20) image = Image(pixels) image2 = image.from_vector(pixels2.ravel(), n_channels=3) assert
np.all(image2.pixels == pixels2)
numpy.all
import os import sys import warnings warnings.filterwarnings("ignore") import numpy as np from numpy import array import json import time import random import ray import torch from src.nn_push import PolicyNet from src.push_rollout_env import PushRolloutEnv from src.pac_es import kl_inverse, compute_grad_ES class TrainPush_PAC_ES: def __init__(self, json_file_name, result_path, model_path): # Extract JSON config self.json_file_name = json_file_name with open(json_file_name+'.json') as json_file: self.json_data = json.load(json_file) config_dic, pac_dic, nn_dic, optim_dic = \ [value for key, value in self.json_data.items()] self.delta = pac_dic['delta'] self.delta_prime = pac_dic['delta_prime'] self.delta_final = pac_dic['delta_final'] self.numTrainEnvs = pac_dic['numTrainEnvs'] self.numTestEnvs = pac_dic['numTestEnvs'] self.L = pac_dic['L'] self.include_reg = pac_dic['include_reg'] self.out_cnn_dim = nn_dic['out_cnn_dim'] self.z_conv_dim = nn_dic['z_conv_dim'] self.z_mlp_dim = nn_dic['z_mlp_dim'] self.z_total_dim = nn_dic['z_conv_dim']+nn_dic['z_mlp_dim'] self.actor_pr_path = config_dic['actor_pr_path'] self.numSteps = config_dic['numSteps'] self.num_cpus = config_dic['num_cpus'] self.x_range = config_dic['x_range'] self.y_range = config_dic['y_range'] self.yaw_range = config_dic['yaw_range'] self.target_y = config_dic['target_y'] self.mu_lr = optim_dic['mu_lr'] self.logvar_lr = optim_dic['logvar_lr'] # Set up seeds self.seed = 0 random.seed(self.seed) np.random.seed(self.seed) torch.manual_seed(self.seed) # Use CPU for ES device = 'cpu' # Configure all training and testing environments self.obj_folder = config_dic['obj_folder'] self.trainEnvs = self.get_object_config(numTrials=self.numTrainEnvs, obj_ind_list=np.arange(0,self.numTrainEnvs)) self.testEnvs = self.get_object_config(numTrials=self.numTestEnvs, obj_ind_list=np.arange(1000,1000+self.numTestEnvs)) # Load prior policy, freeze params actor_pr = PolicyNet(input_num_chann=1, dim_mlp_append=10, # eeHistory num_mlp_output=2, # x/y action out_cnn_dim=self.out_cnn_dim, z_conv_dim=self.z_conv_dim, z_mlp_dim=self.z_mlp_dim, img_size=150).to(device) actor_pr.load_state_dict(torch.load(self.actor_pr_path, map_location=device)) for name, param in actor_pr.named_parameters(): param.requires_grad = False actor_pr.eval() # not needed, but anyway # Initialize rollout environment self.rollout_env = PushRolloutEnv( actor=actor_pr, z_total_dim=self.z_total_dim, num_cpus=self.num_cpus, y_target_range=self.target_y) # Set prior distribution of parameters self.mu_pr = torch.zeros((self.z_total_dim)) self.logvar_pr = torch.zeros((self.z_total_dim)) # Initialize the posterior distribution self.mu_param = torch.tensor(self.mu_pr, requires_grad=True) self.logvar_param = torch.tensor(self.logvar_pr, requires_grad=True) # Recording: training details and results self.result_path = result_path self.model_path = model_path self.best_bound_data = (0, 0, 0, None, None, (self.seed, random.getstate(), np.random.get_state(), torch.get_rng_state())) # emp, bound, step, mu, logvar, seed self.reward_his = [] self.cost_env_his = [] # history for plotting, discrete self.reg_his = [] self.kl_his = [] self.lr_his = [] # learning rate def get_object_config(self, numTrials, obj_ind_list): obj_x = np.random.uniform(low=self.x_range[0], high=self.x_range[1], size=(numTrials, 1)) obj_y = np.random.uniform(low=-self.y_range, high=self.y_range, size=(numTrials, 1)) obj_yaw = np.random.uniform(low=-self.yaw_range, high=self.yaw_range, size=(numTrials, 1)) objPos = np.hstack((obj_x, obj_y, 0.035*
np.ones((numTrials, 1))
numpy.ones
from __future__ import division, print_function import vtk import numpy as np from vtkplotter import settings from vtk.util.numpy_support import numpy_to_vtk import vtkplotter.utils as utils import vtkplotter.colors as colors from vtkplotter.actors import Actor, Assembly import vtkplotter.docs as docs __doc__ = ( """ Submodule to generate basic geometric shapes. """ + docs._defs ) __all__ = [ "Point", "Points", "Line", "Tube", "Lines", "Ribbon", "Arrow", "Arrows", "FlatArrow", "Polygon", "Rectangle", "Disc", "Sphere", "Spheres", "Earth", "Ellipsoid", "Grid", "Plane", "Box", "Cube", "Spring", "Cylinder", "Cone", "Pyramid", "Torus", "Paraboloid", "Hyperboloid", "Text", "Latex", "Glyph", "Tensors", ] ######################################################################## def Point(pos=(0, 0, 0), r=12, c="red", alpha=1): """Create a simple point actor.""" if len(pos) == 2: pos = (pos[0], pos[1], 0) actor = Points([pos], r, c, alpha) return actor def Points(plist, r=5, c="gray", alpha=1): """ Build a point ``Actor`` for a list of 2D/3D points. Both shapes (N, 3) or (3, N) are accepted as input - if N>3. For very large point clouds a list of colors and alpha can be assigned to each point in the form `c=[(R,G,B,A), ... ]` where `0 <= R < 256, ... 0 <= A < 256`. :param float r: point radius. :param c: color name, number, or list of [R,G,B] colors of same length as plist. :type c: int, str, list :param float alpha: transparency in range [0,1]. |manypoints.py|_ |lorenz.py|_ |lorenz| """ ################ interpret the input format: n = len(plist) if n == 0: return None elif n == 3: # assume plist is in the format [all_x, all_y, all_z] if utils.isSequence(plist[0]) and len(plist[0]) > 3: plist = tuple(zip(plist[0], plist[1], plist[2])) elif n == 2: # assume plist is in the format [all_x, all_y, 0] if utils.isSequence(plist[0]) and len(plist[0]) > 3: plist = tuple(zip(plist[0], plist[1], [0] * len(plist[0]))) if len(plist[0]) == 2: #make it 3d plist = np.c_[np.array(plist), np.zeros(len(plist))] ################ if ( (utils.isSequence(c) and (len(c) > 3 or len(c[0]) == 4)) or utils.isSequence(alpha) ): actor = _PointsColors(plist, r, c, alpha) else: n = len(plist) # refresh sourcePoints = vtk.vtkPoints() sourceVertices = vtk.vtkCellArray() is3d = len(plist[0]) > 2 if is3d: # its faster for pt in plist: aid = sourcePoints.InsertNextPoint(pt) sourceVertices.InsertNextCell(1) sourceVertices.InsertCellPoint(aid) else: for pt in plist: aid = sourcePoints.InsertNextPoint(pt[0], pt[1], 0) sourceVertices.InsertNextCell(1) sourceVertices.InsertCellPoint(aid) pd = vtk.vtkPolyData() pd.SetPoints(sourcePoints) pd.SetVerts(sourceVertices) if n == 1: # passing just one point pd.GetPoints().SetPoint(0, [0, 0, 0]) else: pd.GetPoints().SetData(numpy_to_vtk(plist, deep=True)) actor = Actor(pd, c, alpha) actor.GetProperty().SetPointSize(r) if n == 1: actor.SetPosition(plist[0]) settings.collectable_actors.append(actor) return actor def _PointsColors(plist, r, cols, alpha): n = len(plist) if n != len(cols): colors.printc("~times mismatch in Points() colors", n, len(cols), c=1) raise RuntimeError() src = vtk.vtkPointSource() src.SetNumberOfPoints(n) src.Update() vgf = vtk.vtkVertexGlyphFilter() vgf.SetInputData(src.GetOutput()) vgf.Update() pd = vgf.GetOutput() pd.GetPoints().SetData(numpy_to_vtk(plist, deep=True)) ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(4) ucols.SetName("pointsRGBA") if utils.isSequence(alpha): if len(alpha) != n: colors.printc("~times mismatch in Points() alphas", n, len(alpha), c=1) raise RuntimeError() alphas = alpha alpha = 1 else: alphas = (alpha,) * n if utils.isSequence(cols): c = None if len(cols[0]) == 4: for i in range(n): # FAST rc,gc,bc,ac = cols[i] ucols.InsertNextTuple4(rc, gc, bc, ac) else: for i in range(n): # SLOW rc,gc,bc = colors.getColor(cols[i]) ucols.InsertNextTuple4(rc*255, gc*255, bc*255, alphas[i]*255) else: c = cols pd.GetPointData().SetScalars(ucols) actor = Actor(pd, c, alpha) actor.mapper.ScalarVisibilityOn() actor.GetProperty().SetInterpolationToFlat() actor.GetProperty().SetPointSize(r) return actor def Glyph(actor, glyphObj, orientationArray=None, scaleByVectorSize=False, tol=0, c=None, alpha=1): """ At each vertex of a mesh, another mesh - a `'glyph'` - is shown with various orientation options and coloring. Color can be specfied as a colormap which maps the size of the orientation vectors in `orientationArray`. :param orientationArray: list of vectors, ``vtkAbstractArray`` or the name of an already existing points array. :type orientationArray: list, str, vtkAbstractArray :param bool scaleByVectorSize: glyph mesh is scaled by the size of the vectors. :param float tol: set a minimum separation between two close glyphs (not compatible with `orientationArray` being a list). |glyphs.py|_ |glyphs_arrows.py|_ |glyphs| |glyphs_arrows| """ cmap = None # user passing a color map to map orientationArray sizes if c in list(colors._mapscales.cmap_d.keys()): cmap = c c = None if tol: actor = actor.clone().clean(tol) poly = actor.polydata() # user is passing an array of point colors if utils.isSequence(c) and len(c) > 3: ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("glyphRGB") for col in c: cl = colors.getColor(col) ucols.InsertNextTuple3(cl[0]*255, cl[1]*255, cl[2]*255) poly.GetPointData().SetScalars(ucols) c = None if isinstance(glyphObj, Actor): glyphObj = glyphObj.clean().polydata() gly = vtk.vtkGlyph3D() gly.SetInputData(poly) gly.SetSourceData(glyphObj) gly.SetColorModeToColorByScalar() if orientationArray is not None: gly.OrientOn() gly.SetScaleFactor(1) if scaleByVectorSize: gly.SetScaleModeToScaleByVector() else: gly.SetScaleModeToDataScalingOff() if isinstance(orientationArray, str): if orientationArray.lower() == "normals": gly.SetVectorModeToUseNormal() else: # passing a name gly.SetInputArrayToProcess(0, 0, 0, 0, orientationArray) gly.SetVectorModeToUseVector() elif isinstance(orientationArray, vtk.vtkAbstractArray): poly.GetPointData().AddArray(orientationArray) poly.GetPointData().SetActiveVectors("glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") gly.SetVectorModeToUseVector() elif utils.isSequence(orientationArray) and not tol: # passing a list actor.addPointVectors(orientationArray, "glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") if cmap: gly.SetColorModeToColorByVector() else: gly.SetColorModeToColorByScalar() gly.Update() pd = gly.GetOutput() gactor = Actor(pd, c, alpha) if cmap: lut = vtk.vtkLookupTable() lut.SetNumberOfTableValues(512) lut.Build() for i in range(512): r, g, b = colors.colorMap(i, cmap, 0, 512) lut.SetTableValue(i, r, g, b, 1) gactor.mapper.SetLookupTable(lut) gactor.mapper.ScalarVisibilityOn() gactor.mapper.SetScalarModeToUsePointData() rng = pd.GetPointData().GetScalars().GetRange() gactor.mapper.SetScalarRange(rng[0], rng[1]) gactor.GetProperty().SetInterpolationToFlat() settings.collectable_actors.append(gactor) return gactor def Tensors(domain, source='ellipsoid', useEigenValues=True, isSymmetric=True, threeAxes=False, scale=1, maxScale=None, length=None, c=None, alpha=1): """Geometric representation of tensors defined on a domain or set of points. Tensors can be scaled and/or rotated according to the source at eache input point. Scaling and rotation is controlled by the eigenvalues/eigenvectors of the symmetrical part of the tensor as follows: For each tensor, the eigenvalues (and associated eigenvectors) are sorted to determine the major, medium, and minor eigenvalues/eigenvectors. The eigenvalue decomposition only makes sense for symmetric tensors, hence the need to only consider the symmetric part of the tensor, which is 1/2*(T+T.transposed()). :param str source: preset type of source shape ['ellipsoid', 'cylinder', 'cube' or any specified ``Actor``] :param bool useEigenValues: color source glyph using the eigenvalues or by scalars. :param bool threeAxes: if `False` scale the source in the x-direction, the medium in the y-direction, and the minor in the z-direction. Then, the source is rotated so that the glyph's local x-axis lies along the major eigenvector, y-axis along the medium eigenvector, and z-axis along the minor. If `True` three sources are produced, each of them oriented along an eigenvector and scaled according to the corresponding eigenvector. :param bool isSymmetric: If `True` each source glyph is mirrored (2 or 6 glyphs will be produced). The x-axis of the source glyph will correspond to the eigenvector on output. :param float length: distance from the origin to the tip of the source glyph along the x-axis :param float scale: scaling factor of the source glyph. :param float maxScale: clamp scaling at this factor. |tensors| |tensors.py|_ """ if 'ellip' in source: src = vtk.vtkSphereSource() src.SetPhiResolution(24) src.SetThetaResolution(12) elif 'cyl' in source: src = vtk.vtkCylinderSource() src.SetResolution(48) src.CappingOn() elif source == 'cube': src = vtk.vtkCubeSource() else: src = source.normalize().polydata(False) src.Update() tg = vtk.vtkTensorGlyph() tg.SetInputData(domain.GetMapper().GetInput()) tg.SetSourceData(src.GetOutput()) if c is None: tg.ColorGlyphsOn() else: tg.ColorGlyphsOff() tg.SetSymmetric(int(isSymmetric)) if length is not None: tg.SetLength(length) if useEigenValues: tg.ExtractEigenvaluesOn() tg.SetColorModeToEigenvalues() else: tg.SetColorModeToScalars() tg.SetThreeGlyphs(threeAxes) tg.ScalingOn() tg.SetScaleFactor(scale) if maxScale is None: tg.ClampScalingOn() maxScale = scale*10 tg.SetMaxScaleFactor(maxScale) tg.Update() tgn = vtk.vtkPolyDataNormals() tgn.SetInputData(tg.GetOutput()) tgn.Update() return Actor(tgn.GetOutput(), c, alpha) def Line(p0, p1=None, c="r", alpha=1, lw=1, dotted=False, res=None): """ Build the line segment between points `p0` and `p1`. If `p0` is a list of points returns the line connecting them. A 2D set of coords can also be passed as p0=[x..], p1=[y..]. :param c: color name, number, or list of [R,G,B] colors. :type c: int, str, list :param float alpha: transparency in range [0,1]. :param lw: line width. :param bool dotted: draw a dotted line :param int res: number of intermediate points in the segment """ # detect if user is passing a 2D ist of points as p0=xlist, p1=ylist: if len(p0) > 3: if not utils.isSequence(p0[0]) and not utils.isSequence(p1[0]) and len(p0)==len(p1): # assume input is 2D xlist, ylist p0 = list(zip(p0, p1)) p1 = None # detect if user is passing a list of points: if utils.isSequence(p0[0]): ppoints = vtk.vtkPoints() # Generate the polyline dim = len((p0[0])) if dim == 2: for i, p in enumerate(p0): ppoints.InsertPoint(i, p[0], p[1], 0) else: ppoints.SetData(numpy_to_vtk(p0, deep=True)) lines = vtk.vtkCellArray() # Create the polyline. lines.InsertNextCell(len(p0)) for i in range(len(p0)): lines.InsertCellPoint(i) poly = vtk.vtkPolyData() poly.SetPoints(ppoints) poly.SetLines(lines) else: # or just 2 points to link lineSource = vtk.vtkLineSource() lineSource.SetPoint1(p0) lineSource.SetPoint2(p1) if res: lineSource.SetResolution(res) lineSource.Update() poly = lineSource.GetOutput() actor = Actor(poly, c, alpha) actor.GetProperty().SetLineWidth(lw) if dotted: actor.GetProperty().SetLineStipplePattern(0xF0F0) actor.GetProperty().SetLineStippleRepeatFactor(1) actor.base = np.array(p0) actor.top = np.array(p1) settings.collectable_actors.append(actor) return actor def Lines(startPoints, endPoints=None, c=None, alpha=1, lw=1, dotted=False, scale=1): """ Build the line segments between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. :param float scale: apply a rescaling factor to the lengths. |lines| .. hint:: |fitspheres2.py|_ """ if endPoints is not None: startPoints = list(zip(startPoints, endPoints)) polylns = vtk.vtkAppendPolyData() for twopts in startPoints: lineSource = vtk.vtkLineSource() lineSource.SetPoint1(twopts[0]) if scale != 1: vers = (np.array(twopts[1]) - twopts[0]) * scale pt2 = np.array(twopts[0]) + vers else: pt2 = twopts[1] lineSource.SetPoint2(pt2) polylns.AddInputConnection(lineSource.GetOutputPort()) polylns.Update() actor = Actor(polylns.GetOutput(), c, alpha) actor.GetProperty().SetLineWidth(lw) if dotted: actor.GetProperty().SetLineStipplePattern(0xF0F0) actor.GetProperty().SetLineStippleRepeatFactor(1) settings.collectable_actors.append(actor) return actor def Tube(points, r=1, c="r", alpha=1, res=12): """Build a tube along the line defined by a set of points. :param r: constant radius or list of radii. :type r: float, list :param c: constant color or list of colors for each point. :type c: float, list |ribbon.py|_ |tube.py|_ |ribbon| |tube| """ ppoints = vtk.vtkPoints() # Generate the polyline ppoints.SetData(numpy_to_vtk(points, deep=True)) lines = vtk.vtkCellArray() lines.InsertNextCell(len(points)) for i in range(len(points)): lines.InsertCellPoint(i) polyln = vtk.vtkPolyData() polyln.SetPoints(ppoints) polyln.SetLines(lines) tuf = vtk.vtkTubeFilter() tuf.CappingOn() tuf.SetNumberOfSides(res) tuf.SetInputData(polyln) if utils.isSequence(r): arr = numpy_to_vtk(np.ascontiguousarray(r), deep=True) arr.SetName("TubeRadius") polyln.GetPointData().AddArray(arr) polyln.GetPointData().SetActiveScalars("TubeRadius") tuf.SetVaryRadiusToVaryRadiusByAbsoluteScalar() else: tuf.SetRadius(r) usingColScals = False if utils.isSequence(c) and len(c) != 3: usingColScals = True cc = vtk.vtkUnsignedCharArray() cc.SetName("TubeColors") cc.SetNumberOfComponents(3) cc.SetNumberOfTuples(len(c)) for i, ic in enumerate(c): r, g, b = colors.getColor(ic) cc.InsertTuple3(i, int(255 * r), int(255 * g), int(255 * b)) polyln.GetPointData().AddArray(cc) c = None tuf.Update() polytu = tuf.GetOutput() actor = Actor(polytu, c, alpha, computeNormals=0) actor.phong() if usingColScals: actor.mapper.SetScalarModeToUsePointFieldData() actor.mapper.ScalarVisibilityOn() actor.mapper.SelectColorArray("TubeColors") actor.mapper.Modified() actor.base = np.array(points[0]) actor.top = np.array(points[-1]) settings.collectable_actors.append(actor) return actor def Ribbon(line1, line2, c="m", alpha=1, res=(200, 5)): """Connect two lines to generate the surface inbetween. |ribbon| |ribbon.py|_ """ if isinstance(line1, Actor): line1 = line1.coordinates() if isinstance(line2, Actor): line2 = line2.coordinates() ppoints1 = vtk.vtkPoints() # Generate the polyline1 ppoints1.SetData(numpy_to_vtk(line1, deep=True)) lines1 = vtk.vtkCellArray() lines1.InsertNextCell(len(line1)) for i in range(len(line1)): lines1.InsertCellPoint(i) poly1 = vtk.vtkPolyData() poly1.SetPoints(ppoints1) poly1.SetLines(lines1) ppoints2 = vtk.vtkPoints() # Generate the polyline2 ppoints2.SetData(numpy_to_vtk(line2, deep=True)) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(len(line2)) for i in range(len(line2)): lines2.InsertCellPoint(i) poly2 = vtk.vtkPolyData() poly2.SetPoints(ppoints2) poly2.SetLines(lines2) # build the lines lines1 = vtk.vtkCellArray() lines1.InsertNextCell(poly1.GetNumberOfPoints()) for i in range(poly1.GetNumberOfPoints()): lines1.InsertCellPoint(i) polygon1 = vtk.vtkPolyData() polygon1.SetPoints(ppoints1) polygon1.SetLines(lines1) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(poly2.GetNumberOfPoints()) for i in range(poly2.GetNumberOfPoints()): lines2.InsertCellPoint(i) polygon2 = vtk.vtkPolyData() polygon2.SetPoints(ppoints2) polygon2.SetLines(lines2) mergedPolyData = vtk.vtkAppendPolyData() mergedPolyData.AddInputData(polygon1) mergedPolyData.AddInputData(polygon2) mergedPolyData.Update() rsf = vtk.vtkRuledSurfaceFilter() rsf.CloseSurfaceOff() rsf.SetRuledModeToResample() rsf.SetResolution(res[0], res[1]) rsf.SetInputData(mergedPolyData.GetOutput()) rsf.Update() actor = Actor(rsf.GetOutput(), c=c, alpha=alpha) settings.collectable_actors.append(actor) return actor def FlatArrow(line1, line2, c="m", alpha=1, tipSize=1, tipWidth=1): """Build a 2D arrow in 3D space by joining two close lines. |flatarrow| |flatarrow.py|_ """ if isinstance(line1, Actor): line1 = line1.coordinates() if isinstance(line2, Actor): line2 = line2.coordinates() sm1, sm2 = np.array(line1[-1]), np.array(line2[-1]) v = (sm1-sm2)/3*tipWidth p1 = sm1+v p2 = sm2-v pm1 = (sm1+sm2)/2 pm2 = (np.array(line1[-2])+np.array(line2[-2]))/2 pm12 = pm1-pm2 tip = pm12/np.linalg.norm(pm12)*np.linalg.norm(v)*3*tipSize/tipWidth + pm1 line1.append(p1) line1.append(tip) line2.append(p2) line2.append(tip) resm = max(100, len(line1)) actor = Ribbon(line1, line2, alpha=alpha, c=c, res=(resm, 1)).phong() settings.collectable_actors.pop() settings.collectable_actors.append(actor) return actor def Arrow(startPoint, endPoint, s=None, c="r", alpha=1, res=12): """ Build a 3D arrow from `startPoint` to `endPoint` of section size `s`, expressed as the fraction of the window size. .. note:: If ``s=None`` the arrow is scaled proportionally to its length, otherwise it represents the fraction of the window size. |OrientedArrow| """ axis = np.array(endPoint) - np.array(startPoint) length = np.linalg.norm(axis) if length: axis = axis / length theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) arr = vtk.vtkArrowSource() arr.SetShaftResolution(res) arr.SetTipResolution(res) if s: sz = 0.02 arr.SetTipRadius(sz) arr.SetShaftRadius(sz / 1.75) arr.SetTipLength(sz * 15) arr.Update() t = vtk.vtkTransform() t.RotateZ(np.rad2deg(phi)) t.RotateY(np.rad2deg(theta)) t.RotateY(-90) # put it along Z if s: sz = 800.0 * s t.Scale(length, sz, sz) else: t.Scale(length, length, length) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(arr.GetOutput()) tf.SetTransform(t) tf.Update() actor = Actor(tf.GetOutput(), c, alpha) actor.GetProperty().SetInterpolationToPhong() actor.SetPosition(startPoint) actor.DragableOff() actor.base = np.array(startPoint) actor.top = np.array(endPoint) settings.collectable_actors.append(actor) return actor def Arrows(startPoints, endPoints=None, s=None, scale=1, c="r", alpha=1, res=12): """ Build arrows between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. Color can be specfied as a colormap which maps the size of the arrows. :param float s: fix aspect-ratio of the arrow and scale its cross section :param float scale: apply a rescaling factor to the length :param c: color or array of colors :param str cmap: color arrows by size using this color map :param float alpha: set transparency :param int res: set arrow resolution |glyphs_arrows| |glyphs_arrows.py|_ """ startPoints =
np.array(startPoints)
numpy.array
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # REP assert len(A._ID_dict['non-collapse']) == len(A._ID_dict['repairable']) assert len(A._ID_dict['irreparable']) == 0 # cost DV_COST = A._DV_dict['rec_cost'] # DS1 C_CDF = DV_COST.iloc[:, 0] C_CDF = np.around(C_CDF / 10., decimals=0) * 10. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 2500], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 C_CDF = DV_COST.iloc[:, 1] C_CDF = np.around(C_CDF / 100., decimals=0) * 100. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 25000], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 C_CDF = DV_COST.iloc[:, 2] C_CDF = np.around(C_CDF / 1000., decimals=0) * 1000. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 250000], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # time DV_TIME = A._DV_dict['rec_time'] # DS1 T_CDF = DV_TIME.iloc[:, 0] T_CDF = np.around(T_CDF, decimals=1) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 2.5], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 T_CDF = DV_TIME.iloc[:, 1] T_CDF = np.around(T_CDF, decimals=0) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 25], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 T_CDF = DV_TIME.iloc[:, 2] T_CDF = np.around(T_CDF / 10., decimals=0) * 10. vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 250], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert_allclose(S[('event time', 'month')], A._TIME['month'] + 1) assert_allclose(S[('event time', 'weekday?')], A._TIME['weekday?']) assert_allclose(S[('event time', 'hour')], A._TIME['hour']) assert_allclose(S[('inhabitants', '')], A._POP.iloc[:, 0]) assert SD.loc[('collapses', 'collapsed'), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('collapses', 'mode'), 'mean'] == 0. assert SD.loc[('collapses', 'mode'), 'count'] == pytest.approx(5000, rel=0.05) assert SD.loc[('red tagged', ''), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('red tagged', ''), 'count'] == pytest.approx(5000, rel=0.05) for col in ['irreparable', 'cost impractical', 'time impractical']: assert SD.loc[('reconstruction', col), 'mean'] == 0. assert SD.loc[('reconstruction', col), 'count'] == pytest.approx(5000, rel=0.05) RC = deepcopy(S.loc[:, ('reconstruction', 'cost')]) RC_CDF = np.around(RC / 1000., decimals=0) * 1000. vals, counts = np.unique(RC_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.]) * 1000.) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) RT = deepcopy(S.loc[:, ('reconstruction', 'time-parallel')]) RT_CDF = np.around(RT, decimals=0) vals, counts = np.unique(RT_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.])) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) assert_allclose(S.loc[:, ('reconstruction', 'time-parallel')], S.loc[:, ('reconstruction', 'time-sequential')]) CAS = deepcopy(S.loc[:, ('injuries', 'sev1')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.075, 0.15, 0.25, 0.3, 0.5, 1.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2, 2.5, 7, 5]) / 56., atol=0.01, rtol=0.1) CAS = deepcopy(S.loc[:, ('injuries', 'sev2')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.025, 0.05, 0.1, 2.25, 4.5, 9.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2.5, 2, 7, 5]) / 56., atol=0.01, rtol=0.1) def test_FEMA_P58_Assessment_EDP_uncertainty_basic(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_2.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_2.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T assert_allclose(thetas, [9.80665, 12.59198, 0.074081, 0.044932], rtol=0.02) assert_allclose(betas, [0.25, 0.25, 0.3, 0.4], rtol=0.02) rho = RV_EDP[0].RV_set.Rho() rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] assert_allclose(rho, rho_target, atol=0.05) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer( [0.3, 0.4], [0.3, 0.4]), upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[ 0] DMG_2_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[ 0] DMG_1_PFA = mvn_od(np.log([0.074081, 9.80665]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] DMG_2_PFA = mvn_od(np.log([0.074081, 12.59198]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert DMG_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert DMG_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert DMG_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 and 1022 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2011 and 2012 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 9.80665, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2021 and 2022 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 9.80665]), upper=np.log([0.1, 9.80665, np.inf]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert RED_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert RED_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert RED_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log([0.074081, 0.044932, 9.80665, 12.59198]), np.array( [[1.0, 0.7, 0.3, 0.3], [0.7, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.6], [0.3, 0.3, 0.6, 1.0]]) * np.outer( [0.3, 0.4, 0.25, 0.25], [0.3, 0.4, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [0.05488, 0.05488, 9.80665, 9.80665]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. def test_FEMA_P58_Assessment_EDP_uncertainty_detection_limit(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test differs from the basic case in having unreliable EDP values above a certain limit - a typical feature of interstory drifts in dynamic simulations. Such cases should not be a problem if the limits can be estimated and they are specified as detection limits in input file. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_3.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_3.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_failed_analyses(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. Here we use EDP results with unique values assigned to failed analyses. In particular, PID=1.0 and PFA=100.0 are used when an analysis fails. These values shall be handled by detection limits of 10 and 100 for PID and PFA, respectively. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_4.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_4.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_3D(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. In this test we look at the propagation of EDP values provided for two different directions. (3D refers to the numerical model used for response estimation.) """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_5.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_5.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 8.65433, 12.59198, 11.11239, 0.074081, 0.063763, 0.044932, 0.036788] EDP_beta_target = [0.25, 0.25, 0.25, 0.25, 0.3, 0.3, 0.4, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = np.array([ [1.0, 0.8, 0.6, 0.5, 0.3, 0.3, 0.3, 0.3], [0.8, 1.0, 0.5, 0.6, 0.3, 0.3, 0.3, 0.3], [0.6, 0.5, 1.0, 0.8, 0.3, 0.3, 0.3, 0.3], [0.5, 0.6, 0.8, 1.0, 0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3, 1.0, 0.8, 0.7, 0.6], [0.3, 0.3, 0.3, 0.3, 0.8, 1.0, 0.6, 0.7], [0.3, 0.3, 0.3, 0.3, 0.7, 0.6, 1.0, 0.8], [0.3, 0.3, 0.3, 0.3, 0.6, 0.7, 0.8, 1.0]]) large_rho_ids = np.where(EDP_rho_target >= 0.5) small_rho_ids = np.where(EDP_rho_target < 0.5) assert_allclose(EDP_rho_test[large_rho_ids], EDP_rho_target[large_rho_ids], atol=0.1) assert_allclose(EDP_rho_test[small_rho_ids], EDP_rho_target[small_rho_ids], atol=0.2) EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation theta_PID = np.log(EDP_theta_target[4:]) COV_PID = EDP_COV_test[4:, 4:] # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(theta_PID, COV_PID, upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1, abs=0.05) # DMG realization_count = float(A._AIM_in['general']['realizations']) DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / realization_count for i in range(8)] DMG_1_1_PID = mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_1_2_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_2_1_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_2_2_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_1_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_1_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_2_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_2_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_ref = [DMG_1_1_PID, DMG_1_2_PID, DMG_2_1_PID, DMG_2_2_PID, DMG_1_1_PFA, DMG_1_2_PFA, DMG_2_1_PFA, DMG_2_2_PFA] assert_allclose(DMG_check, DMG_ref, rtol=0.10, atol=0.01) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 249., 624., 1251., 1875.] T_target = [0., 0.249, 0.624, 1.251, 1.875] # PG 1011 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.05488, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.05488, 0.05488, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 0].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 0].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1012 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 0.05488]), upper=np.log([0.05488, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 1e-6]), upper=np.log([0.05488, 0.1, 0.05488, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 1].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 1].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 0.05488]), upper=np.log([0.05488, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 1e-6]), upper=np.log([0.05488, 0.05488, 0.1, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 2].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 2].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count #print('------------------------') #print('P_target') #print(P_target) #print('------------------------') assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1022 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 0.05488]), upper=np.log([0.05488, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.05488, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 0.05488]), upper=np.log([0.05488, 0.1, 0.05488, 0.1]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 0.05488]), upper=np.log([0.05488, 0.05488, 0.05488, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 3].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 5)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 3].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 5)] P_test = P_test[np.where(P_test > 5)] P_test = P_test / realization_count assert_allclose(P_target[:-1], P_test[:4], atol=0.05) assert_allclose(C_target[:-1], C_test[:4], rtol=0.001) assert_allclose(T_target[:-1], T_test[:4], rtol=0.001) # PG 2011 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 4].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 4].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 5].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 5].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target[:4], P_test[:4], atol=0.05) assert_allclose(C_target[:4], C_test[:4], rtol=0.001) assert_allclose(T_target[:4], T_test[:4], rtol=0.001) # PG 2021 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 6].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 6].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 7].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 7].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / realization_count).values assert_allclose(RED_check, DMG_ref, atol=0.02, rtol=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, upper=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 0.05488, 0.05488, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / realization_count assert P_no_RED_target == pytest.approx(P_no_RED_test, abs=0.03) def test_FEMA_P58_Assessment_EDP_uncertainty_single_sample(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. In this test we provide only one structural response result and see if it is properly handled as a deterministic value or a random EDP using the additional sources of uncertainty. """ print() base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_6.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_6.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = np.array( [7.634901, 6.85613, 11.685934, 10.565554, 0.061364, 0.048515, 0.033256, 0.020352]) EDP_beta_target = EDP_theta_target * 1e-6 assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) assert RV_EDP[0].RV_set == None # ------------------------------------------------- perform the calculation A.define_loss_model() A.calculate_damage() A.calculate_losses() A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. assert P_no_RED_test == 0.0 # ------------------------------------------------------------------------- # now do the same analysis, but consider additional uncertainty # ------------------------------------------------------------------------- A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) AU = A._AIM_in['general']['added_uncertainty'] AU['beta_m'] = 0.3 AU['beta_gm'] = 0.4 A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_beta_target = np.sqrt((EDP_theta_target * 1e-6)**2. + np.ones(8)*(0.3**2. + 0.4**2.)) assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) assert RV_EDP[0].RV_set == None EDP_rho_target = np.zeros((8, 8)) np.fill_diagonal(EDP_rho_target, 1.0) EDP_COV_test = EDP_rho_target * np.outer(EDP_beta_test, EDP_beta_test) # ------------------------------------------------- perform the calculation A.define_loss_model() A.calculate_damage() A.calculate_losses() A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, upper=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 0.05488, 0.05488, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. assert P_no_RED_target == pytest.approx(P_no_RED_test, abs=0.01) def test_FEMA_P58_Assessment_EDP_uncertainty_zero_variance(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test simulates a scenario when one of the EDPs is identical in all of the available samples. This results in zero variance in that dimension and the purpose of the test is to ensure that such cases are handled appropriately. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_7.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_7.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas assert EDP_theta_test[4] == pytest.approx(0.061364, rel=0.05) assert EDP_beta_test[4] < 0.061364 * 1e-3 rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = np.zeros((8, 8)) np.fill_diagonal(EDP_rho_target, 1.0) assert_allclose(EDP_rho_test[4], EDP_rho_target[4], atol=1e-6) # ------------------------------------------------- perform the calculation A.define_loss_model() A.calculate_damage() A.calculate_losses() A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. assert P_no_RED_test == 0.0 def test_FEMA_P58_Assessment_QNT_uncertainty_independent(): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in component quantities. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test assumes that component quantities are independent. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_8.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_8.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # QNT RV_QNT = list(A._QNT_dict.values()) QNT_theta_test, QNT_beta_test = np.array([rv.theta for rv in RV_QNT]).T QNT_theta_target = np.ones(8) * 25. QNT_beta_target = [25.0] * 4 + [0.4] * 4 assert_allclose(QNT_theta_test, QNT_theta_target, rtol=0.001) assert_allclose(QNT_beta_test, QNT_beta_target, rtol=0.001) for i in range(4): assert RV_QNT[i].distribution == 'normal' for i in range(4, 8): assert RV_QNT[i].distribution == 'lognormal' QNT_rho_target = [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], ] QNT_rho_test = RV_QNT[0].RV_set.Rho() assert_allclose(QNT_rho_test, QNT_rho_target, atol=0.001) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG DMG_check = A._DMG.describe().T mu_test = DMG_check['mean'] sig_test = DMG_check['std'] rho_test = A._DMG.corr() mu_target_1 = 25.0 + 25.0 * norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) sig_target_1 = np.sqrt(25.0 ** 2.0 * ( 1 - norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) - ( norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0))) ** 2.0)) mu_target_2 = np.exp(np.log(25.0) + 0.4 ** 2. / 2.) sig_target_2 = np.sqrt( (np.exp(0.4 ** 2.0) - 1.0) * np.exp(2 * np.log(25.0) + 0.4 ** 2.0)) assert_allclose(mu_test[:4], mu_target_1, rtol=0.05) assert_allclose(mu_test[4:], mu_target_2, rtol=0.05) assert_allclose(sig_test[:4], sig_target_1, rtol=0.05) assert_allclose(sig_test[4:], sig_target_2, rtol=0.05) assert_allclose(rho_test, QNT_rho_target, atol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation DV_COST = A._DV_dict['rec_cost'] / A._DMG rho_DV_target = [ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ] assert_allclose(DV_COST.corr(), rho_DV_target, atol=0.05) # Uncertainty in decision variables is controlled by the correlation # between damages RND = [tnorm.rvs(-1., np.inf, loc=25, scale=25, size=10000) for i in range(4)] RND = np.sum(RND, axis=0) P_target_PID = np.sum(RND > 90.) / 10000. P_test_PID = np.sum(DV_COST.iloc[:, 0] < 10.01) / 10000. assert P_target_PID == pytest.approx(P_test_PID, rel=0.02) RND = [np.exp(norm.rvs(loc=np.log(25.), scale=0.4, size=10000)) for i in range(4)] RND = np.sum(RND, axis=0) P_target_PFA = np.sum(RND > 90.) / 10000. P_test_PFA = np.sum(DV_COST.iloc[:, 4] < 10.01) / 10000. assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.02) # the same checks can be performed for reconstruction time DV_TIME = A._DV_dict['rec_time'] / A._DMG assert_allclose(DV_TIME.corr(), rho_DV_target, atol=0.05) P_test_PID = np.sum(DV_TIME.iloc[:, 0] < 0.0101) / 10000. assert P_target_PID == pytest.approx(P_test_PID, rel=0.02) P_test_PFA = np.sum(DV_TIME.iloc[:, 4] < 0.0101) / 10000. assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.02) # injuries... DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = (DV_INJ_dict[0] / A._DMG).describe() DV_INJ1 = (DV_INJ_dict[1] / A._DMG).describe() assert_allclose(DV_INJ0.loc['mean', :][:4], np.ones(4) * 0.025, rtol=0.001) assert_allclose(DV_INJ0.loc['mean', :][4:], np.ones(4) * 0.1, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][:4], np.ones(4) * 0.005, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][4:], np.ones(4) * 0.02, rtol=0.001) assert_allclose(DV_INJ0.loc['std', :], np.zeros(8), atol=1e-4) assert_allclose(DV_INJ1.loc['std', :], np.zeros(8), atol=1e-4) # and for red tag... # Since every component is damaged in every realization, the red tag # results should all be 1.0 assert_allclose(A._DV_dict['red_tag'], np.ones((10000, 8))) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert SD.loc[('inhabitants', ''), 'mean'] == 20.0 assert SD.loc[('inhabitants', ''), 'std'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'mean'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'std'] == 0.0 assert SD.loc[('red tagged', ''), 'mean'] == 1.0 assert SD.loc[('red tagged', ''), 'std'] == 0.0 assert np.corrcoef(S.loc[:, ('reconstruction', 'cost')], S.loc[:, ('reconstruction', 'time-sequential')])[ 0, 1] == pytest.approx(1.0) assert_allclose(A._DV_dict['rec_cost'].sum(axis=1), S.loc[:, ('reconstruction', 'cost')]) assert_allclose(A._DV_dict['rec_time'].sum(axis=1), S.loc[:, ('reconstruction', 'time-sequential')]) assert_allclose(A._DV_dict['rec_time'].max(axis=1), S.loc[:, ('reconstruction', 'time-parallel')]) assert_allclose(A._DV_dict['injuries'][0].sum(axis=1), S.loc[:, ('injuries', 'sev1')]) assert_allclose(A._DV_dict['injuries'][1].sum(axis=1), S.loc[:, ('injuries', 'sev2')]) def test_FEMA_P58_Assessment_QNT_uncertainty_dependencies(): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in component quantities. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test checks if dependencies between component quantities are handled appropriately. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_8.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_8.out" for dep in ['FG', 'PG', 'DIR', 'LOC']: A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A._AIM_in['dependencies']['quantities'] = dep A.define_random_variables() # ---------------------------------------------- check random variables # QNT RV_QNT = list(A._QNT_dict.values()) QNT_theta_test, QNT_beta_test = np.array([rv.theta for rv in RV_QNT]).T QNT_theta_target = np.ones(8) * 25. QNT_beta_target = [25.0] * 4 + [0.4] * 4 assert_allclose(QNT_theta_test, QNT_theta_target, rtol=0.001) assert_allclose(QNT_beta_test, QNT_beta_target, rtol=0.001) for i in range(4): assert RV_QNT[i].distribution == 'normal' for i in range(4, 8): assert RV_QNT[i].distribution == 'lognormal' if dep == 'FG': QNT_rho_target = np.array([ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], ]) elif dep == 'PG': QNT_rho_target = np.array([ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ]) elif dep == 'DIR': QNT_rho_target = np.array([ [1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1], ]) elif dep == 'LOC': QNT_rho_target = np.array([ [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1], ]) QNT_rho_test = RV_QNT[0].RV_set.Rho() assert_allclose(QNT_rho_test, QNT_rho_target, atol=0.001) # --------------------------------------------------------------------- A.define_loss_model() A.calculate_damage() # -------------------------------------------- check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG # Because the correlations are enforced after truncation, the marginals # shall be unaffected by the correlation structure. Hence, the # distribution of damaged quantities within a PG shall be identical in # all dep cases. # The specified dependencies are apparent in the correlation between # damaged quantities in various PGs. DMG_check = A._DMG.describe().T mu_test = DMG_check['mean'] sig_test = DMG_check['std'] rho_test = A._DMG.corr() mu_target_1 = 25.0 + 25.0 * norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) sig_target_1 = np.sqrt(25.0 ** 2.0 * ( 1 - norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0)) - ( norm.pdf(-1.0) / (1.0 - norm.cdf(-1.0))) ** 2.0)) mu_target_2 = np.exp(np.log(25.0) + 0.4 ** 2. / 2.) sig_target_2 = np.sqrt( (np.exp(0.4 ** 2.0) - 1.0) * np.exp(2 * np.log(25.0) + 0.4 ** 2.0)) assert_allclose(mu_test[:4], mu_target_1, rtol=0.05) assert_allclose(mu_test[4:], mu_target_2, rtol=0.05) assert_allclose(sig_test[:4], sig_target_1, rtol=0.05) assert_allclose(sig_test[4:], sig_target_2, rtol=0.05) assert_allclose(rho_test, QNT_rho_target, atol=0.05) # --------------------------------------------------------------------- A.calculate_losses() # ---------------------------------------------- check loss calculation DV_COST = A._DV_dict['rec_cost'] / A._DMG # After the DVs are normalized by the damaged quantities, the resulting # samples show the correlations between the DV_measure (such as # reconstruction cost) / 1 unit of damaged component. Because this # consequences are perfectly correlated among the components of a # fragility group by definition, the quadrants on the main diagonal # will follow the matrix presented below. If there are additional # correlations defined between component quantities in different # fragility groups (i.e. the off-diagonal quadrants of the rho matrix), # those will be preserved in the consequences. Therefore, the # off-diagonal quadrants need to be updated with those from QNT_rho_target # to get an appropriate rho_DV_target. rho_DV_target = np.array([ [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ]) rho_DV_target[:4, 4:] = QNT_rho_target[:4, 4:] rho_DV_target[4:, :4] = QNT_rho_target[:4, 4:] assert_allclose(DV_COST.corr(), rho_DV_target, atol=0.05) # uncertainty in decision variables is controlled by the correlation # between damages P_test_PID = np.sum(DV_COST.iloc[:, 0] < 10.01) / 10000. P_test_PFA = np.sum(DV_COST.iloc[:, 4] < 10.01) / 10000. # the first component quantities follow a truncated multivariate normal # distribution mu_target_PID = mu_target_1 * 4. sig_target_PID = np.sqrt( sig_target_1 ** 2. * np.sum(QNT_rho_target[:4, :4])) mu_target_PID_b = mu_target_PID sig_target_PID_b = sig_target_PID alpha = 100. i = 0 while (np.log( np.abs(alpha / (mu_target_PID_b / sig_target_PID_b))) > 0.001) and ( i < 10): alpha = -mu_target_PID_b / sig_target_PID_b mu_target_PID_b = mu_target_PID - sig_target_PID_b * norm.pdf( alpha) / (1.0 - norm.cdf(alpha)) sig_target_PID_b = sig_target_PID / np.sqrt( (1.0 + alpha * norm.pdf(alpha) / (1.0 - norm.cdf(alpha)))) i += 1 xi = (90 - mu_target_PID_b) / sig_target_PID_b P_target_PID = 1.0 - (norm.cdf(xi) - norm.cdf(alpha)) / ( 1.0 - norm.cdf(alpha)) assert P_target_PID == pytest.approx(P_test_PID, rel=0.05) # the second component quantities follow a multivariate lognormal # distribution mu_target_PFA = mu_target_2 * 4. sig_target_PFA = np.sqrt( sig_target_2 ** 2. * np.sum(QNT_rho_target[4:, 4:])) sig_target_PFA_b = np.sqrt( np.log(sig_target_PFA ** 2.0 / mu_target_PFA ** 2.0 + 1.0)) mu_target_PFA_b = np.log(mu_target_PFA) - sig_target_PFA_b ** 2.0 / 2. xi = np.log(90) P_target_PFA = 1.0 - norm.cdf(xi, loc=mu_target_PFA_b, scale=sig_target_PFA_b) assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.05) # the same checks can be performed for reconstruction time DV_TIME = A._DV_dict['rec_time'] / A._DMG assert_allclose(DV_TIME.corr(), rho_DV_target, atol=0.05) P_test_PID = np.sum(DV_TIME.iloc[:, 0] < 0.0101) / 10000. assert P_target_PID == pytest.approx(P_test_PID, rel=0.05) P_test_PFA = np.sum(DV_TIME.iloc[:, 4] < 0.0101) / 10000. assert P_target_PFA == pytest.approx(P_test_PFA, rel=0.05) # injuries... # Every component is damaged in every realization in this test. Once # normalized by the quantity of components, the number of injuries # shall be identical and unaffected by the correlation between # component quantities. DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = (DV_INJ_dict[0] / A._DMG).describe() DV_INJ1 = (DV_INJ_dict[1] / A._DMG).describe() assert_allclose(DV_INJ0.loc['mean', :][:4], np.ones(4) * 0.025, rtol=0.001) assert_allclose(DV_INJ0.loc['mean', :][4:], np.ones(4) * 0.1, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][:4], np.ones(4) * 0.005, rtol=0.001) assert_allclose(DV_INJ1.loc['mean', :][4:], np.ones(4) * 0.02, rtol=0.001) assert_allclose(DV_INJ0.loc['std', :], np.zeros(8), atol=1e-4) assert_allclose(DV_INJ1.loc['std', :], np.zeros(8), atol=1e-4) # and for red tag... # since every component is damaged in every realization, the red tag # results should all be 1.0 assert_allclose(A._DV_dict['red_tag'], np.ones((10000, 8))) # --------------------------------------------------------------------- A.aggregate_results() # -------------------------------------------- check result aggregation S = A._SUMMARY SD = S.describe().T assert SD.loc[('inhabitants', ''), 'mean'] == 20.0 assert SD.loc[('inhabitants', ''), 'std'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'mean'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'std'] == 0.0 assert SD.loc[('red tagged', ''), 'mean'] == 1.0 assert SD.loc[('red tagged', ''), 'std'] == 0.0 assert np.corrcoef(S.loc[:, ('reconstruction', 'cost')], S.loc[:, ('reconstruction', 'time-sequential')])[ 0, 1] == pytest.approx(1.0) assert_allclose(A._DV_dict['rec_cost'].sum(axis=1), S.loc[:, ('reconstruction', 'cost')]) assert_allclose(A._DV_dict['rec_time'].sum(axis=1), S.loc[:, ('reconstruction', 'time-sequential')]) assert_allclose(A._DV_dict['rec_time'].max(axis=1), S.loc[:, ('reconstruction', 'time-parallel')]) assert_allclose(A._DV_dict['injuries'][0].sum(axis=1), S.loc[:, ('injuries', 'sev1')]) assert_allclose(A._DV_dict['injuries'][1].sum(axis=1), S.loc[:, ('injuries', 'sev2')]) def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies(dep='IND'): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in component fragilities. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ print() idx = pd.IndexSlice base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_9.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_9.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A._AIM_in['dependencies']['fragilities'] = dep A.define_random_variables() # ---------------------------------------------- check random variables RV_FF = list(A._FF_dict.values()) fr_names = np.unique([rv.name[3:12] for rv in RV_FF]) fr_keys = {} for fr_name in fr_names: fr_list = [rv.name for rv in RV_FF if fr_name in rv.name] fr_keys.update({fr_name: fr_list}) # fr_keys = [] # for key in A._RV_dict.keys(): # if 'FR' in key: # fr_keys.append(key) dimtag_target = [4 * 2 * 3, 20 * 2 * 3 * 3, 20 * 2 * 3 * 3, 20 * 2 * 3 * 3] theta_target = [[0.048, 0.096], [0.048, 0.072, 0.096], [2.9419, 5.8840, 11.7680], [2.9419, 5.8840, 11.7680]] sig_target = [[0.5, 0.25], [1.0, 0.5, 0.25], [1.0, 0.5, 0.25], [1.0, 0.5, 0.25]] if dep == 'IND': rho_target = np.zeros((24, 24)) np.fill_diagonal(rho_target, 1.0) rho_sum = 360 elif dep == 'PG': rho_target = np.ones((24, 24)) rho_sum = 360 ** 2. elif dep == 'DIR': rho_target = [ [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.]] rho_sum = (20 * 2 * 3) ** 2. * 3 elif dep == 'LOC': rho_target = [ [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 1.]] rho_sum = (20 * 3) ** 2. * (2 * 9) elif dep in ['ATC', 'CSG']: rho_target = [ [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]] rho_sum = (20 * 3) ** 2. * (2 * 3) elif dep == 'DS': rho_target = [ [1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]] rho_sum = 3 ** 2 * (20 * 2 * 3) for k, key in enumerate(sorted(fr_keys.keys())): RV_FF_i = [A._FF_dict[rv_i] for rv_i in fr_keys[key]] assert len(RV_FF_i) == dimtag_target[k] FF_theta_test, FF_beta_test = np.array([rv.theta for rv in RV_FF_i]).T if k == 0: FF_theta_test = pd.DataFrame( np.reshape(FF_theta_test, (12, 2))).describe() FF_beta_test = pd.DataFrame( np.reshape(FF_beta_test, (12, 2))).describe() else: FF_theta_test = pd.DataFrame( np.reshape(FF_theta_test, (120, 3))).describe() FF_beta_test = pd.DataFrame( np.reshape(FF_beta_test, (120, 3))).describe() assert_allclose(FF_theta_test.loc['mean', :].values, theta_target[k], rtol=1e-4) assert_allclose(FF_theta_test.loc['std', :].values, np.zeros(np.array(theta_target[k]).shape), atol=1e-10) assert_allclose(FF_beta_test.loc['mean', :].values, sig_target[k], rtol=1e-4) assert_allclose(FF_beta_test.loc['std', :].values, np.zeros(np.array(sig_target[k]).shape), atol=1e-10) rho_test = RV_FF_i[0].RV_set.Rho(fr_keys[fr_names[k]]) if k == 0: # we perform the detailed verification of rho for the first case # only (because the others are 360x360 matrices) assert_allclose(rho_test, rho_target) else: # for the other cases we check the number of ones in the matrix assert np.sum(rho_test) == rho_sum # RV_FR = deepcopy(A._RV_dict[key]) # assert len(RV_FR._dimension_tags) == dimtag_target[k] # # COV_test = RV_FR.COV # sig_test = np.sqrt(np.diagonal(COV_test)) # rho_test = COV_test / np.outer(sig_test, sig_test) # # if k == 0: # theta_test = pd.DataFrame( # np.reshape(RV_FR.theta, (12, 2))).describe() # sig_test = pd.DataFrame( # np.reshape(sig_test, (12, 2))).describe() # else: # theta_test = pd.DataFrame( # np.reshape(RV_FR.theta, (120, 3))).describe() # sig_test = pd.DataFrame( # np.reshape(sig_test, (120, 3))).describe() # # assert_allclose(theta_test.loc['mean', :].values, theta_target[k], # rtol=1e-4) # assert_allclose(theta_test.loc['std', :].values, # np.zeros(np.array(theta_target[k]).shape), # atol=1e-10) # # assert_allclose(sig_test.loc['mean', :].values, sig_target[k], # rtol=1e-4) # assert_allclose(sig_test.loc['std', :].values, # np.zeros(np.array(sig_target[k]).shape), atol=1e-10) # # if k == 0: # # we perform the detailed verification of rho for the first case # # only (because the others are 360x360 matrices) # assert_allclose(rho_test, rho_target) # # else: # # for the other cases we check the number of ones in the matrix # assert np.sum(rho_test) == rho_sum # --------------------------------------------------------------------- A.define_loss_model() A.calculate_damage() # -------------------------------------------- check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG DMG_check = A._DMG # start with checking the damage correlations for k in range(4): DMG_corr = DMG_check.loc[:, idx[k + 1, :, :]].corr() if k == 0: DMG_corr = DMG_corr.iloc[:8, :8] if dep in ['IND', 'ATC', 'CSG', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], [ 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1], [-0.1, 1.0,-0.1, 1.0,-0.1, 1.0,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 1.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 1.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 1.0], [ 1.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 1.0], ]) if k == 1: DMG_corr = DMG_corr.iloc[:12, :12] if dep in ['IND', 'ATC', 'CSG', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0], ]) if k == 2: DMG_corr = DMG_corr.iloc[:20, :20] if dep in ['IND', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1, 1.0,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1,-0.1, 0.8, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1,-0.1, 0.5, 0.6, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1,-0.1, 0.5, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1,-0.1, 1.0, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1,-0.1, 0.5, 1.0, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1,-0.1, 0.5, 0.5, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.6, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep in ['ATC', 'CSG']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.5, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 1.0, 0.5,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.5, 0.5, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) if k == 3: DMG_corr = DMG_corr.iloc[:20, :20] if dep in ['IND', 'DS']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.0, 1.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 1.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 1.0, 0.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 0.0, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.0, 0.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 1.0, 0.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.0, 0.0, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'PG': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1], [-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1,-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1], [-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1,-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'DIR': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1,-0.1, 0.8, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1,-0.1, 0.8, 0.7, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1,-0.1, 0.7, 0.6, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1,-0.1, 1.0, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.6, 0.6,-0.1,-0.1, 0.8, 1.0, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.5,-0.1,-0.1, 0.7, 0.6, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep == 'LOC': DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.7, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 0.7, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) elif dep in ['ATC', 'CSG']: DMG_corr_ref = np.array([ [ 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,-0.1,-0.1,-0.1,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 1.0, 0.8, 0.7,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.8, 1.0, 0.6,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1, 0.7, 0.6, 1.0,-0.1], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,-0.1,-0.1,-0.1,-0.1, 1.0], ]) for i in range(len(DMG_corr.index)): for j in range(len(DMG_corr.columns)): ref_i = DMG_corr_ref[i, j] if ref_i != 0.0: if ref_i > 0.0: assert DMG_corr.iloc[i, j] > 0.97 * ref_i else: assert DMG_corr.iloc[i, j] < 0.0 else: assert DMG_corr.iloc[i, j] == pytest.approx(ref_i, abs=0.15) # then check the distribution of damage within each performance group EDP_list = np.array( [[[0.080000, 0.080000], [0.080000, 0.080000], [0.040000, 0.040000]], [[7.845320, 7.845320], [7.845320, 7.845320], [2.942000, 2.942000]]]) fr_keys = [] for key in A._RV_dict.keys(): if 'FR' in key: fr_keys.append(key) for k, key in enumerate(sorted(fr_keys)): # print(key) RV_FR = A._RV_dict[key] # only third of the data is unique because of the 3 stories rel_len = int(len(RV_FR._dimension_tags) / 3) COV_test = RV_FR.COV[:rel_len, :rel_len] theta_test = RV_FR.theta[:rel_len] lims = np.unique(theta_test) ndims = len(lims) if k in [2, 3]: ndims += 2 if (dep in ['DS', 'IND']) or k > 1: DMG_vals = [[[0., 5., 7.5, 12.5, 17.5, 20., 25.], [0., 25.]], [[0., 1.5, 3., 4.5, 6., 7.5, 9., 10.5, 12., 13.5, 15., 16.5, 18., 19.5, 21., 22.5, 24., 25.5, 27., 28.5, 30.0], [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.]]] else: DMG_vals = [[[0., 25.], [0., 25.]], [[0., 30.], [0., 20.]]] DMG_vals = np.array(DMG_vals) for story in [0, 1, 2]: for dir_ in [0, 1]: # print(story, dir_) idx = pd.IndexSlice DMG_check_FG = DMG_check.loc[:, idx[k + 1, :, :]] DMG_check_PG = DMG_check_FG.iloc[:, story * 2 * ndims + dir_ * ndims:story * 2 * ndims + ( dir_ + 1) * ndims] DMG_val_test = np.unique( np.around(DMG_check_PG.values * 10., decimals=0) / 10., return_counts=True) DMG_val_test = DMG_val_test[0][DMG_val_test[1] > 10] # only check at most the first 10 elements, because the # higher values have extremely low likelihood ddim = min(len(DMG_val_test), 10) DMG_val_ref = DMG_vals[np.sign(k), dir_] for v in DMG_val_test: assert v in DMG_val_ref # additional tests for mutually exclusive DS2 in FG3 if (k == 2) and (dep not in ['DS', 'IND']): DMG_tot = [[0., 30.], [0., 20.]][dir_] DMG_DS2_test = DMG_check_PG.iloc[:, [1, 2, 3]].sum( axis=1) # the proportion of each DS in DS2 shall follow the # pre-assigned weights ME_test = \ DMG_check_PG.iloc[DMG_DS2_test.values > 0].iloc[:, [1, 2, 3]].describe().T['mean'].values / DMG_tot[-1] assert_allclose(ME_test, [0.5, 0.3, 0.2], atol=0.01) # the sum of DMG with correlated CSGs shall be either 0. # or the total quantity DMG_DS2_test = np.unique( np.around(DMG_DS2_test * 10., decimals=0) / 10., return_counts=True) DMG_DS2_test = DMG_DS2_test[0][DMG_DS2_test[1] > 10] assert_allclose(DMG_DS2_test, DMG_tot, atol=0.01) # additional tests for simultaneous DS2 in FG4 if (k == 3) and (dep not in ['DS', 'IND']): DMG_tot = [30.0, 20.0][dir_] DMG_DS2_test = DMG_check_PG.iloc[:, [1, 2, 3]].sum( axis=1) # the proportion of each DS in DS2 shall follow the # pre-assigned weights considering replacement SIM_test = \ DMG_check_PG.iloc[DMG_DS2_test.values > 0].iloc[:, [1, 2, 3]].describe().T['mean'].values / DMG_tot P_rep = 0.5 * 0.7 * 0.8 SIM_ref = np.array([0.5, 0.3, 0.2]) * ( 1.0 + P_rep / (1.0 - P_rep)) assert_allclose(SIM_test, SIM_ref, atol=0.02) # the sum of DMG with correlated CSGs shall be either # 0. or more than the total quantity DMG_DS2_test = DMG_DS2_test.iloc[ DMG_DS2_test.values > 0] # Even with perfect correlation, the generated random # samples will not be identical. Hence, one of the 20 # CSGs in FG4, very rarely will belong to a different # DS than the rest. To avoid false negatives, we test # the third smallest value. assert DMG_DS2_test.sort_values().iloc[ 2] >= DMG_tot * 0.99 assert np.max(DMG_DS2_test.values) > DMG_tot # the first component has 3-1 CSGs in dir 1 and 2, # respectively if k == 0: dir_len = int(rel_len * 3 / 4) # the other components have 20-20 CSGs in dir 1 and 2, # respectively else: dir_len = int(rel_len / 2) if dir_ == 0: theta_t = theta_test[:dir_len] COV_t = COV_test[:dir_len, :dir_len] else: theta_t = theta_test[dir_len:] COV_t = COV_test[dir_len:, dir_len:] lim_ds1 = np.where(theta_t == lims[0])[0] lim_ds2 = np.where(theta_t == lims[1])[0] if k > 0: lim_ds3 = np.where(theta_t == lims[2])[0] ndim = len(theta_t) EDP = EDP_list[int(k > 1), story, dir_]*1.2 DS_ref_all = [] DS_ref_any = [] DS_test_all = [] DS_test_any = [] # DS0 DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=np.log(np.ones(ndim) * EDP), upper=np.ones(ndim) * np.inf)[0]) if k == 0: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0.], axis=0)) / 10000.) elif k == 1: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0.], axis=0)) / 10000.) else: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0., DMG_check_PG.iloc[:, 3] == 0., DMG_check_PG.iloc[:, 4] == 0.], axis=0)) / 10000.) # DS1 lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf lower_lim[lim_ds2] = np.log(EDP) upper_lim[lim_ds1] = np.log(EDP) if k > 0: lower_lim[lim_ds3] = np.log(EDP) DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[ 0]) lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf lower_lim[lim_ds2[0]] = np.log(EDP) upper_lim[lim_ds1[0]] = np.log(EDP) if k > 0: lower_lim[lim_ds3[0]] = np.log(EDP) P_any = mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0] if (dep in ['DS', 'IND']): P_any = 1.0 - (1.0 - P_any) ** len(lim_ds1) DS_ref_any.append(P_any) if k == 0: DS_test_all.append(np.sum(np.all( [DMG_check_PG.iloc[:, 0] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 1] == 0.], axis=0)) / 10000.) elif k == 1: DS_test_all.append(np.sum(np.all( [DMG_check_PG.iloc[:, 0] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0.], axis=0)) / 10000.) else: DS_test_all.append(np.sum(np.all( [DMG_check_PG.iloc[:, 0] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0., DMG_check_PG.iloc[:, 3] == 0., DMG_check_PG.iloc[:, 4] == 0.], axis=0)) / 10000.) DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 0] > 0.], axis=0)) / 10000.) # DS2 lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds2] = np.log(EDP) if k > 0: lower_lim[lim_ds3] = np.log(EDP) if k < 3: DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0]) else: DS_ref_all.append(0.0) lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds2[0]] = np.log(EDP) if k > 0: lower_lim[lim_ds3[0]] = np.log(EDP) P_any = mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0] if (dep in ['DS', 'IND']): P_any = 1.0 - (1.0 - P_any) ** len(lim_ds1) DS_ref_any.append(P_any) if k == 0: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] > DMG_val_ref[-1] - 0.1], axis=0)) / 10000.) elif k == 1: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 2] == 0.], axis=0)) / 10000.) elif k == 2: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, [1, 2, 3]].sum( axis=1) > DMG_val_ref[-1] - 0.1, DMG_check_PG.iloc[:, 4] == 0.], axis=0)) / 10000.) elif k == 3: # skip this case DS_test_all.append(0.0) if k < 2: DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 1] > 0.], axis=0)) / 10000.) else: DS_test_any.append(np.sum(np.all( [DMG_check_PG.iloc[:, [1, 2, 3]].sum(axis=1) > 0.], axis=0)) / 10000.) # DS3 if k > 0: lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds3] = np.log(EDP) DS_ref_all.append(mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0]) lower_lim = -np.ones(ndim) * np.inf upper_lim = np.ones(ndim) * np.inf upper_lim[lim_ds3[0]] = np.log(EDP) P_any = mvn_od(np.log(theta_t), COV_t, lower=lower_lim, upper=upper_lim)[0] if (dep in ['DS', 'IND']): P_any = 1.0 - (1.0 - P_any) ** len(lim_ds1) DS_ref_any.append(P_any) if k == 1: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] > DMG_val_ref[-1] - 0.1], axis=0)) / 10000.) else: DS_test_all.append( np.sum(np.all([DMG_check_PG.iloc[:, 0] == 0., DMG_check_PG.iloc[:, 1] == 0., DMG_check_PG.iloc[:, 2] == 0., DMG_check_PG.iloc[:, 3] == 0., DMG_check_PG.iloc[:, 4] > DMG_val_ref[-1] - 0.1], axis=0)) / 10000.) if k == 1: DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 2] > 0.], axis=0)) / 10000.) else: DS_test_any.append(np.sum( np.all([DMG_check_PG.iloc[:, 4] > 0.], axis=0)) / 10000.) assert_allclose(DS_ref_all, DS_test_all, atol=0.02) assert_allclose(DS_ref_any, DS_test_any, atol=0.02) # --------------------------------------------------------------------- A.calculate_losses() # ---------------------------------------------- check loss calculation # No additional uncertainty is introduced when it comes to losses in # this test. The decision variables and the damaged quantities shall # follow the same distribution and have the same correlation structure. # The damaged quantities have already been verified, so now we use them # as reference values for testing the decision variables. # COST and TIME and INJ DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = DV_INJ_dict[0] DV_INJ1 = DV_INJ_dict[1] DMG_check = A._DMG for k in range(4): # Start with checking the correlations... dmg = DMG_check.loc[:, (DMG_check != 0.0).any(axis=0)] dmg_corr = dmg.loc[:, idx[k + 1, :, :]].corr() for dv in [DV_COST, DV_TIME, DV_INJ0, DV_INJ1]: dv = dv.loc[:, (dv != 0.0).any(axis=0)] dv_corr = dv.loc[:, idx[k + 1, :, :]].corr() assert_allclose(dmg_corr.values, dv_corr.values, atol=0.001) # then check the distribution. # After normalizing with the damaged quantities all decision # variables in a given DS shall have the same value. dv = ((dv / dmg).describe().T).fillna(0.0) assert_allclose(dv['std'], np.zeros(len(dv.index)), atol=1.0) # red tags require special checks for f, fg_id in enumerate(sorted(A._FG_dict.keys())): dims = [2, 3, 5, 5][f] # take the total quantity of each performance group FG = A._FG_dict[fg_id] qnt = [] for PG in FG._performance_groups: if isinstance(PG._quantity, RandomVariable): qnt.append((PG._quantity.samples[:dims]).flatten()) else: qnt.append(np.ones(dims) * PG._quantity) qnt = np.array(qnt).flatten() # flag the samples where the damage exceeds the pre-defined limit # for red tagging dmg = DMG_check.loc[:, idx[FG._ID, :, :]] red_ref = dmg > 0.489 * qnt # collect the red tag results from the analysis red_test = A._DV_dict['red_tag'].loc[:, idx[FG._ID, :, :]] # compare red_diff = (red_ref - red_test).describe().T assert_allclose(red_diff['mean'].values, 0.) assert_allclose(red_diff['std'].values, 0.) # --------------------------------------------------------------------- A.aggregate_results() # -------------------------------------------- check result aggregation # Aggregate results are checked in detail by other tests. # Here we only focus on some simple checks to make sure the results # make sense. S = A._SUMMARY SD = S.describe().T assert SD.loc[('inhabitants', ''), 'mean'] == 10.0 assert SD.loc[('inhabitants', ''), 'std'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'mean'] == 0.0 assert SD.loc[('collapses', 'collapsed'), 'std'] == 0.0 assert_allclose(A._DV_dict['rec_cost'].sum(axis=1), S.loc[:, ('reconstruction', 'cost')]) assert_allclose(A._DV_dict['rec_time'].sum(axis=1), S.loc[:, ('reconstruction', 'time-sequential')]) assert_allclose(A._DV_dict['rec_time'].max(axis=1), S.loc[:, ('reconstruction', 'time-parallel')]) assert_allclose(A._DV_dict['injuries'][0].sum(axis=1), S.loc[:, ('injuries', 'sev1')]) assert_allclose(A._DV_dict['injuries'][1].sum(axis=1), S.loc[:, ('injuries', 'sev2')]) def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_PG(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('PG') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_DIR(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('DIR') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_LOC(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('LOC') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_ATC(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('ATC') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_CSG(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('CSG') def test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies_DS(): test_FEMA_P58_Assessment_FRAG_uncertainty_dependencies('DS') def test_FEMA_P58_Assessment_DV_uncertainty_dependencies(): """ Perform loss assessment with customized inputs that focus on testing the propagation of uncertainty in consequence functions and decision variables. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_10.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_10.out" dep_list = ['IND', 'FG', 'PG', 'DIR', 'LOC', 'DS'] for d in range(7): if d > 0: dep_COST = dep_list[[0, 1, 2, 3, 4, 5][d - 1]] dep_TIME = dep_list[[1, 2, 3, 4, 5, 0][d - 1]] dep_RED = dep_list[[2, 3, 4, 5, 0, 1][d - 1]] dep_INJ = dep_list[[3, 4, 5, 0, 1, 2][d - 1]] else: dep_COST = np.random.choice(dep_list) dep_TIME = np.random.choice(dep_list) dep_RED = np.random.choice(dep_list) dep_INJ = np.random.choice(dep_list) dep_CT = np.random.choice([True, False]) dep_ILVL = np.random.choice([True, False]) #print([dep_COST, dep_TIME, dep_RED, dep_INJ, dep_CT, dep_ILVL], end=' ') A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) # set the dependencies A._AIM_in['dependencies']['rec_costs'] = dep_COST A._AIM_in['dependencies']['rec_times'] = dep_TIME A._AIM_in['dependencies']['red_tags'] = dep_RED A._AIM_in['dependencies']['injuries'] = dep_INJ A._AIM_in['dependencies']['cost_and_time'] = dep_CT A._AIM_in['dependencies']['injury_lvls'] = dep_ILVL A.define_random_variables() # ---------------------------------------------- check random variables rho_ref = dict( IND=np.zeros((16, 16)), FG=np.ones((16, 16)), PG=np.array([ [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.], ]), LOC=np.array([ [1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1.], ]), DIR=np.array([ [1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1.], ]), DS=np.array([ [1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.], ]) ) np.fill_diagonal(rho_ref['IND'], 1.0) # RV_REP = deepcopy(A._RV_dict['DV_REP']) # RV_RED = deepcopy(A._RV_dict['DV_RED']) # RV_INJ = deepcopy(A._RV_dict['DV_INJ']) RV_REP = list(A._DV_REP_dict.values()) RV_RED = list(A._DV_RED_dict.values()) RV_INJ = list(A._DV_INJ_dict.values()) for r, (RV_DV, RV_tag) in enumerate( zip([RV_REP, RV_RED, RV_INJ], ['rep', 'red', 'inj'])): # assert len(RV_DV._dimension_tags) == [32, 16, 32][r] assert len(RV_DV) == [32, 16, 32][r] DV_theta_test, DV_beta_test = np.array([rv.theta for rv in RV_DV]).T DV_rho_test = RV_DV[0].RV_set.Rho([rv.name for rv in RV_DV]) # COV_test = RV_DV.COV # sig_test = np.sqrt(np.diagonal(COV_test)) # rho_test = COV_test / np.outer(sig_test, sig_test) if RV_tag == 'rep': assert_allclose(DV_theta_test, np.ones(32)) assert_allclose(DV_beta_test, np.array( [0.31, 0.71] * 8 + [0.32, 0.72] * 8)) if dep_CT == True: if (((dep_COST == 'LOC') and (dep_TIME == 'DIR')) or ((dep_COST == 'DIR') and (dep_TIME == 'LOC'))): rho_ref_CT = rho_ref['PG'] else: rho_ref_CT = np.maximum(rho_ref[dep_COST], rho_ref[dep_TIME]) assert_allclose(DV_rho_test[:16, :16], rho_ref_CT) assert_allclose(DV_rho_test[16:, 16:], rho_ref_CT) assert_allclose(DV_rho_test[:16, 16:], rho_ref_CT) assert_allclose(DV_rho_test[16:, :16], rho_ref_CT) else: assert_allclose(DV_rho_test[:16, :16], rho_ref[dep_COST]) assert_allclose(DV_rho_test[16:, 16:], rho_ref[dep_TIME]) assert_allclose(DV_rho_test[:16, 16:], np.zeros((16, 16))) assert_allclose(DV_rho_test[16:, :16], np.zeros((16, 16))) elif RV_tag == 'red': assert_allclose(DV_theta_test, np.ones(16)) assert_allclose(DV_beta_test, np.array([0.33, 0.73] * 8)) assert_allclose(DV_rho_test, rho_ref[dep_RED]) elif RV_tag == 'inj': assert_allclose(DV_theta_test, np.ones(32)) assert_allclose(DV_beta_test, np.array( [0.34, 0.74] * 8 + [0.35, 0.75] * 8)) if dep_ILVL == True: assert_allclose(DV_rho_test[:16, :16], rho_ref[dep_INJ]) assert_allclose(DV_rho_test[16:, 16:], rho_ref[dep_INJ]) assert_allclose(DV_rho_test[:16, 16:], rho_ref[dep_INJ]) assert_allclose(DV_rho_test[16:, :16], rho_ref[dep_INJ]) else: assert_allclose(DV_rho_test[:16, :16], rho_ref[dep_INJ]) assert_allclose(DV_rho_test[16:, 16:], rho_ref[dep_INJ]) assert_allclose(DV_rho_test[:16, 16:], np.zeros((16, 16))) assert_allclose(DV_rho_test[16:, :16], np.zeros((16, 16))) # --------------------------------------------------------------------- A.define_loss_model() A.calculate_damage() # -------------------------------------------- check damage calculation # COL # there shall be no collapses assert A._COL.describe().T['mean'].values == 0 # DMG DMG_check = A._DMG # Fragilities are not tested here, so we only do a few simple checks assert np.min(DMG_check.describe().loc['mean'].values) > 0. assert np.min(DMG_check.describe().loc['std'].values) > 0. # --------------------------------------------------------------------- A.calculate_losses() # ---------------------------------------------- check loss calculation # COST and TIME and INJ DV_COST = A._DV_dict['rec_cost'] / DMG_check DV_TIME = A._DV_dict['rec_time'] / DMG_check DV_INJ_dict = deepcopy(A._DV_dict['injuries']) DV_INJ0 = DV_INJ_dict[0] / DMG_check DV_INJ1 = DV_INJ_dict[1] / DMG_check for dv_i, (DV, DV_tag) in enumerate( zip([DV_COST, DV_TIME, DV_INJ0, DV_INJ1], ['cost', 'time', 'inj0', 'inj1'])): DV_desc = DV.describe().T DV_desc_log = np.log(DV).describe().T if DV_tag == 'cost': # cost consequences in DS1 are lognormal mu_ds1_ref = np.exp(np.log(10.) + 0.31 ** 2. / 2.) sig_ds1_ref = np.sqrt( np.exp(2 * np.log(10.) + 0.31 ** 2.) * ( np.exp(0.31 ** 2.) - 1.)) assert_allclose(DV_desc['mean'].values[::2], mu_ds1_ref, rtol=0.02) assert_allclose(DV_desc['std'].values[::2], sig_ds1_ref, rtol=0.10) assert_allclose(DV_desc_log['mean'].values[::2], np.log(10.), atol=0.02) assert_allclose(DV_desc_log['std'].values[::2], 0.31, rtol=0.10) # cost consequences in DS2 are (truncated) normal mu_ds2_ref, var_ds2_ref = tnorm.stats(-1. / 0.71, 1000., loc=1000., scale=710., moments='mv') sig_ds2_ref = np.sqrt(var_ds2_ref) assert_allclose(DV_desc['mean'].values[1::2], mu_ds2_ref, rtol=0.05) assert_allclose(DV_desc['std'].values[1::2], sig_ds2_ref, rtol=0.10) # make sure that all damages correspond to positive # reconstruction costs assert np.all(np.min(DV) > 0.) elif DV_tag == 'time': # cost consequences in DS1 are (truncated) normal for FG1 and # lognormal for FG2 # DS1 - FG1 mu_ds1_ref, var_ds1_ref = tnorm.stats(-1. / 0.32, 1000., loc=0.01, scale=0.0032, moments='mv') sig_ds1_ref = np.sqrt(var_ds1_ref) assert_allclose(DV_desc['mean'].values[::2][:4], mu_ds1_ref, rtol=0.02) assert_allclose(DV_desc['std'].values[::2][:4], sig_ds1_ref, rtol=0.20) assert np.mean( DV_desc['std'].values[::2][:4]) == pytest.approx( sig_ds1_ref, rel=0.1) # DS1 - FG2 mu_ds1_ref = np.exp(np.log(0.01) + 0.32 ** 2. / 2.) sig_ds1_ref = np.sqrt( np.exp(2 * np.log(0.01) + 0.32 ** 2.) * (
np.exp(0.32 ** 2.)
numpy.exp
#!/usr/bin/env python import numpy as np from utils import utils ORIGIN = np.array((0, 0)) def manhattan_dist(p1, p2): x1, y1 = p1 x2, y2 = p2 return abs(x1 - x2) + abs(y1 - y2) def build_wire(line): directions = { 'R': np.array((1, 0)), 'U':
np.array((0, 1))
numpy.array
""" Tests the Critical Line Algorithm (CLA). """ import unittest import os import numpy as np import pandas as pd from mlfinlab.portfolio_optimization.cla import CLA from mlfinlab.portfolio_optimization.returns_estimators import ReturnsEstimation class TestCLA(unittest.TestCase): # pylint: disable=too-many-public-methods """ Tests different functions of the CLA class. """ def setUp(self): """ Set the file path for the tick data csv. """ project_path = os.path.dirname(__file__) data_path = project_path + '/test_data/stock_prices.csv' self.data = pd.read_csv(data_path, parse_dates=True, index_col="Date") def test_cla_with_mean_returns(self): """ Test the calculation of CLA turning points using mean returns. """ self.data.iloc[1:10, :] = 40 self.data.iloc[11:20, :] = 50 self.data.iloc[21, :] = 100 cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, asset_names=self.data.columns) weights = cla.weights.values weights[weights <= 1e-15] = 0 # Convert very very small numbers to 0 for turning_point in weights: assert (turning_point >= 0).all() assert len(turning_point) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(turning_point), 1) def test_cla_with_weight_bounds_as_lists(self): """ Test the calculation of CLA turning points when we pass the weight bounds as a list instead of just lower and upper bound value. """ cla = CLA(weight_bounds=([0]*self.data.shape[1], [1]*self.data.shape[1]), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, asset_names=self.data.columns) weights = cla.weights.values weights[weights <= 1e-15] = 0 # Convert very very small numbers to 0 for turning_point in weights: assert (turning_point >= 0).all() assert len(turning_point) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(turning_point), 1) def test_cla_with_exponential_returns(self): """ Test the calculation of CLA turning points using exponential returns """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="exponential") cla.allocate(asset_prices=self.data, asset_names=self.data.columns) weights = cla.weights.values weights[weights <= 1e-15] = 0 # Convert very very small numbers to 0 for turning_point in weights: assert (turning_point >= 0).all() assert len(turning_point) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(turning_point), 1) def test_cla_max_sharpe(self): """ Test the calculation of maximum sharpe ratio weights. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='max_sharpe', asset_names=self.data.columns) weights = cla.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1) def test_cla_min_volatility(self): """ Test the calculation for minimum volatility weights. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns) weights = cla.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1) def test_cla_efficient_frontier(self): """ Test the calculation of the efficient frontier solution. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='efficient_frontier', asset_names=self.data.columns) assert len(cla.efficient_frontier_means) == len(cla.efficient_frontier_sigma) and \ len(cla.efficient_frontier_sigma) == len(cla.weights.values) assert cla.efficient_frontier_sigma[-1] <= cla.efficient_frontier_sigma[0] and \ cla.efficient_frontier_means[-1] <= cla.efficient_frontier_means[0] # higher risk = higher return def test_lambda_for_no_bounded_weights(self): # pylint: disable=protected-access,invalid-name """ Test the computation of lambda when there are no bounded weights. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns) data = self.data.cov() data = data.values x, y = cla._compute_lambda(covar_f_inv=data, covar_fb=data, mean_f=cla.expected_returns, w_b=None, asset_index=1, b_i=[[0], [1]]) assert isinstance(x, float) assert isinstance(y, int) def test_free_bound_weights(self): # pylint: disable=protected-access,invalid-name """ Test the method of freeing bounded weights when free-weights is None. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns) x, y = cla._free_bound_weight(free_weights=[1]*(cla.expected_returns.shape[0]+1)) assert not x assert not y def test_expected_returns_equals_means(self): # pylint: disable=protected-access,invalid-name """ Test for condition when expected returns equal the mean value. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns) data = self.data.copy() data.iloc[:, :] = 0.02320653 cla._initialise(asset_prices=data, resample_by='B', expected_asset_returns=None, covariance_matrix=None) assert cla.expected_returns[-1, 0] == 1e-5 def test_lambda_for_zero_matrices(self): # pylint: disable=protected-access,invalid-name """ Test the computation of lambda when there are no bounded weights. The method should return None, None. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns) data = self.data.cov() data = data.values data[:, :] = 0 x, y = cla._compute_lambda(covar_f_inv=data, covar_fb=data, mean_f=cla.expected_returns, w_b=None, asset_index=1, b_i=[[0], [1]]) assert not x assert not y def test_w_for_no_bounded_weights(self): # pylint: disable=protected-access,invalid-name """ Test the computation of weights (w) when there are no bounded weights. """ cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns) data = self.data.cov() data = data.values x, y = cla._compute_w(covar_f_inv=data, covar_fb=data, mean_f=cla.expected_returns, w_b=None) assert isinstance(x, np.ndarray) assert isinstance(y, float) def test_purge_excess(self): # pylint: disable=protected-access,invalid-name """ Test purge number excess for very very small tolerance. """ with self.assertRaises(IndexError): cla = CLA(weight_bounds=(0, 1), calculate_expected_returns="mean") cla.allocate(asset_prices=self.data, solution='cla_turning_points', asset_names=self.data.columns) cla.weights = list(cla.weights.values) cla.weights = cla.weights*100 cla._purge_num_err(tol=1e-18) def test_flag_true_for_purge_num_err(self): # pylint: disable=protected-access, no-self-use """ Test whether the flag becomes True in the purge num error function. """ cla = CLA() cla.weights = [[1]] cla.lower_bounds = [100] cla.upper_bounds = [1] cla.lambdas = [[1]] cla.gammas = [[1]] cla.free_weights = [[1]] cla._purge_num_err(tol=1) assert not cla.weights assert not cla.lambdas assert not cla.gammas def test_value_error_for_unknown_solution(self): """ Test ValueError on passing unknown solution string. """ with self.assertRaises(ValueError): cla = CLA() cla.allocate(asset_prices=self.data, solution='unknown_string', asset_names=self.data.columns) def test_value_error_for_non_dataframe_input(self): """ Test ValueError on passing non-dataframe input. """ with self.assertRaises(ValueError): cla = CLA() cla.allocate(asset_prices=self.data.values, solution='cla_turning_points', asset_names=self.data.columns) def test_value_error_for_non_date_index(self): """ Test ValueError on passing dataframe not indexed by date. """ with self.assertRaises(ValueError): cla = CLA() data = self.data.reset_index() cla.allocate(asset_prices=data, solution='cla_turning_points', asset_names=self.data.columns) def test_value_error_for_unknown_returns(self): """ Test ValueError on passing unknown returns string. """ with self.assertRaises(ValueError): cla = CLA(calculate_expected_returns="unknown_returns") cla.allocate(asset_prices=self.data, solution='cla_turning_points', asset_names=self.data.columns) def test_resampling_asset_prices(self): """ Test resampling of asset prices. """ cla = CLA() cla.allocate(asset_prices=self.data, resample_by='B', solution='min_volatility', asset_names=self.data.columns) weights = cla.weights.values[0] assert (weights >= 0).all() assert len(weights) == self.data.shape[1] np.testing.assert_almost_equal(np.sum(weights), 1) def test_all_inputs_none(self): """ Test allocation when all inputs are None. """ with self.assertRaises(ValueError): cla = CLA() cla.allocate(asset_names=self.data.columns) def test_cla_with_input_as_returns_and_covariance(self): # pylint: disable=invalid-name """ Test CLA when we pass expected returns and covariance matrix as input. """ cla = CLA() expected_returns = ReturnsEstimation().calculate_mean_historical_returns(asset_prices=self.data) covariance = ReturnsEstimation().calculate_returns(asset_prices=self.data).cov() cla.allocate(covariance_matrix=covariance, expected_asset_returns=expected_returns, asset_names=self.data.columns) weights = cla.weights.values weights[weights <= 1e-15] = 0 # Convert very very small numbers to 0 for turning_point in weights: assert (turning_point >= 0).all() assert len(turning_point) == self.data.shape[1] np.testing.assert_almost_equal(
np.sum(turning_point)
numpy.sum
import pandas as pd import numpy as np import sys import copy import subprocess import os CUR_PATH = os.path.abspath(os.path.dirname(__file__)) def main(): # Import CPS data file data = pd.read_csv(os.path.join(CUR_PATH, 'cps_raw.csv.gz'), compression='gzip') adj_targets = pd.read_csv(os.path.join(CUR_PATH, 'adjustment_targets.csv')) other_ben = pd.read_csv(os.path.join(CUR_PATH, 'benefitprograms.csv'), index_col='Program') # Rename specified variables renames = { 'IFDEPT': 'DSI', 'TAXYEAR': 'FLPDYR', 'XXTOT': 'XTOT', 'JCPS21': 'e00200p', 'JCPS31': 'e00200s', 'ALIMONY': 'e00800', 'JCPS25': 'e00900p', 'JCPS35': 'e00900s', 'JCPS28': 'e02100p', 'JCPS38': 'e02100s', 'UCOMP': 'e02300', 'SEHEALTH': 'e03270', 'DPAD': 'e03240', 'MEDICALEXP': 'e17500', 'REALEST': 'e18500', 'MISCITEM': 'e20400', 'CCE': 'e32800', 'ICPS01': 'age_head', 'ICPS02': 'age_spouse', 'WT': 's006', 'FILST': 'filer', 'SEQUENCE': 'RECID', 'PENSIONS': 'e01500', 'DBE': 'e00600', 'KEOGH': 'e03300', 'TIRAD': 'e01400', 'NU18': 'nu18', 'N1821': 'n1820', 'N21': 'n21', 'CGAGIX': 'e01100', 'BLIND_HEAD': 'blind_head', 'BLIND_SPOUSE': 'blind_spouse', 'HMIE': 'e19200', 'SS': 'e02400', 'VB': 'vet_ben', 'MEDICARE': 'mcare_ben', 'MEDICAID': 'mcaid_ben', 'SSI': 'ssi_ben', 'SNAP': 'snap_ben', 'WIC': 'wic_ben', 'TANF': 'tanf_ben', 'UI': 'ui_ben', 'HOUSING': 'housing_ben', 'SLTX': 'e18400', 'XHID': 'h_seq', 'XFID': 'ffpos', 'XSTATE': 'fips', 'NU13': 'nu13', 'NU05': 'nu05', 'N24': 'n24', 'ELDERLY_DEPENDENT': 'elderly_dependents', 'F2441': 'f2441' } data = data.rename(columns=renames) data['MARS'] = np.where(data.JS == 3, 4, data.JS) data['EIC'] = np.minimum(3, data.EIC) # Use taxpayer and spouse records to get total tax unit earnings and AGI data['e00100'] = data['JCPS9'] + data['JCPS19'] data['e00900'] = data['e00900p'] + data['e00900s'] np.random.seed(79) # Determine amount of qualified dividends # percent of units where all dividends are qualified all_qualified_prob = 0.429 # percent of units where no dividends are qualified no_qualified_prob = 0.093 # percent of units where either all or no dividends are qualified non_avg_prob = all_qualified_prob + no_qualified_prob # percent of dividends that are qualified among remaining units qualified_frac = 0.678 # Determine qualified dividend percentage probs = np.random.random(len(data['e00600'])) qualified = np.ones(len(data['e00600'])) qualified = np.where((probs > all_qualified_prob) & (probs <= non_avg_prob), 0.0, qualified) qualified = np.where(probs > non_avg_prob, qualified_frac, qualified) data['e00650'] = data.e00600 * qualified # Split interest income into taxable and tax exempt slope = 0.068 ratio = 0.46 prob = 1. - slope * (data.INTST * 1e-3) uniform_rn = np.random.random(len(prob)) data['e00300'] = np.where(uniform_rn < prob, data.INTST, data.INTST * ratio) data['e00400'] = data['INTST'] - data['e00300'] # Split pentions and annuities using random assignment # probabiliies used for random assignment probs = np.random.random(len(data['e01500'])) fully_taxable_prob = 0.612 zero_tax_prob = 0.073 non_avg_prob = fully_taxable_prob + zero_tax_prob avg_taxable_amout = 0.577 # determine tax ability taxability = np.ones(len(data['e01500'])) taxability = np.where((probs > fully_taxable_prob) & (probs <= non_avg_prob), 0.0, taxability) taxability = np.where(probs > non_avg_prob, avg_taxable_amout, taxability) data['e01700'] = data['e01500'] * taxability print('Applying deduction limits') data = deduction_limits(data) print('Adding AGI bins') data = add_agi_bin(data, 'INCOME') print('Adjusting distribution') data = adjust(data, adj_targets) print('Adding benefits variables') data = benefits(data, other_ben) print('Dropping unused variables') data = drop_vars(data) print('Adding zero pencon_p and pencon_s variables') data['pencon_p'] = np.zeros(len(data.index), dtype=np.int32) data['pencon_s'] = np.zeros(len(data.index), dtype=np.int32) data = data.fillna(0.) data = data.astype(np.int32) data['e00200'] = data['e00200p'] + data['e00200s'] data['e00900'] = data['e00900p'] + data['e00900s'] data['e02100'] = data['e02100p'] + data['e02100s'] data['s006'] *= 100 print('Exporting...') data.to_csv(os.path.join(CUR_PATH, 'cps.csv'), index=False) subprocess.check_call(["gzip", "-nf", "cps.csv"]) def deduction_limits(data): """ Apply limits on itemized deductions """ # Split charitable contributions into cash and non-cash using ratio in PUF cash = 0.82013 non_cash = 1. - cash data['e19800'] = data['CHARITABLE'] * cash data['e20100'] = data['CHARITABLE'] * non_cash # Apply student loan interest deduction limit data['e03210'] = np.where(data.SLINT > 2500, 2500, data.SLINT) # Apply IRA contribution limit deductable_ira = np.where(data.AGE >= 50,
np.where(data.ADJIRA > 6500, 6500, data.ADJIRA)
numpy.where
from __future__ import absolute_import from tabulate import tabulate import logging from numpy import asarray import numpy as np from numpy import dot from limix_qep.lik import Bernoulli from limix_qep.lik import Binomial from limix_math.linalg import qs_decomposition from limix_math.linalg import _QS_from_K_split from .util import gower_kinship_normalization import scipy.stats as st from limix_qep.ep import BernoulliEP from limix_qep.ep import BinomialEP def _get_offset_covariate(covariate, n): if covariate is None: covariate = np.ones((n, 1)) return covariate class LRT(object): def __init__(self, y, Q0, Q1, S0, outcome_type=Bernoulli(), full=False, covariate=None, null_model_only=False): self._logger = logging.getLogger(__name__) if not (isinstance(outcome_type, Bernoulli) or isinstance(outcome_type, Binomial)): raise Exception("Unrecognized outcome type.") outcome_type.assert_outcome(y) self._full = full self._y = y self._Q0 = Q0 self._Q1 = Q1 self._S0 = S0 self._covariate = _get_offset_covariate(covariate, y.shape[0]) self._outcome_type = outcome_type self._null_model_ready = False self._alt_model_ready = False self._genetic_variance = None self._instrumental_variance = None self._environmental_variance = None self._pvals = None self._lrs = None self._ep = None self._betas = None self._lml_null = np.nan self._X = None self._null_model_only = null_model_only self._lml_alt = None @property def genetic_variance(self): return self._genetic_variance @property def instrumental_variance(self): return self._instrumental_variance @property def environmental_variance(self): return self._environmental_variance @property def candidate_markers(self): return self._X @candidate_markers.setter def candidate_markers(self, X): if self._X is None: self._X = X self._alt_model_ready = False elif np.any(self._X != X): self._X = X self._alt_model_ready = False def _compute_statistics(self): self._logger.info('Statistics computation has started.') self._compute_null_model() if self._null_model_only: return if self._full: self._compute_alt_models_full() else: self._compute_alt_models() def _compute_alt_models(self): if self._alt_model_ready: return self._logger.info('Alternative model computation has started.') X = self._X covariate = self._covariate lml_null = self._lml_null ep = self._ep ep.pause = True fp_lml_alt = np.full(X.shape[1], -np.inf) fep = ep.fixed_ep() t = self._lml_alts(fep, X, covariate) fp_lml_alt[:] = np.maximum(fp_lml_alt, t) self._lml_alt = fp_lml_alt fp_lrs = -2 * lml_null + 2 * fp_lml_alt chi2 = st.chi2(df=1) fp_pvals = chi2.sf(fp_lrs) self._pvals = fp_pvals self._lrs = fp_lrs self._alt_model_ready = True def _compute_null_model(self): if self._null_model_ready: return self._logger.info('Null model computation has started.') y = self._y Q0, Q1 = self._Q0, self._Q1 S0 = self._S0 covariate = self._covariate outcome_type = self._outcome_type if isinstance(outcome_type, Binomial): ep = BinomialEP(y, outcome_type.ntrials, covariate, Q0, Q1, S0) elif isinstance(outcome_type, Bernoulli): ep = BernoulliEP(y, covariate, Q0, Q1, S0) ep.optimize() self._lml_null = ep.lml() self._ep = ep self._genetic_variance = ep.genetic_variance self._instrumental_variance = ep.instrumental_variance self._environmental_variance = ep.environmental_variance self._null_model_ready = True def _compute_alt_models_full(self): if self._alt_model_ready: return X = self._X covariate = self._covariate ep = self._ep lml_alts = [] for i in range(X.shape[1]): ep.M = np.hstack((covariate, X[:, i][:, np.newaxis])) assert False, 'fix me' # ep.optimize(only_step2=True) lml_alts.append(ep.lml()) lml_alts = np.asarray(lml_alts, float) lrs = -2 * self._lml_null + 2 * lml_alts chi2 = st.chi2(df=1) pvals = chi2.sf(lrs) self._pvals = pvals self._lrs = lrs self._alt_model_ready = True def _lml_alts(self, fep, X, covariate=None): if covariate is None: covariate = np.ones((X.shape[0], 1)) lml_alt = [] p = covariate.shape[1] acov = np.hstack((covariate, X)) self._logger.debug('Finding optimal betas.') if p == 1: betas = fep.optimal_betas(acov, 1) else: betas = fep.optimal_betas_general(acov, p) ms = dot(covariate, betas[:p, :]) + X * betas[p, :] lml_alt = fep.lmls(ms) self._betas = betas[p, :] return lml_alt def lml_alt(self): return self._lml_alt @property def effsizes(self): return self._betas def lrs(self): self._compute_statistics() if self._null_model_only: return [] return self._lrs def pvals(self): self._compute_statistics() if self._null_model_only: return [] return self._pvals def ep(self): self._compute_statistics() return self._ep def is_valid(self, y, QS, covariate, outcome_type): Q = QS[0] S = QS[1] if np.any(y != self._y): return False if Q[0, 0] != self._Q[0, 0] or S[0] != self._S[0]: return False if np.any(S != self._S): return False if np.any(Q != self._Q): return False n = y.shape[0] if np.any(_get_offset_covariate(covariate, n) != self._covariate): return False if outcome_type != self._outcome_type: return False return True # def _create_LRT(y, QS, covariate, outcome_type, null_model_only): # do_create = False # # if _create_LRT.cache is None: # do_create = True # else: # do_create = not _create_LRT.cache.is_valid(y, QS, covariate, # outcome_type) # # if do_create: # _create_LRT.cache = LRT(y, QS, covariate=covariate, # outcome_type=outcome_type, # null_model_only=null_model_only) # # return _create_LRT.cache # _create_LRT.cache = None def _create_LRT(y, Q0, Q1, S0, covariate, outcome_type, null_model_only): return LRT(y, Q0, Q1, S0, covariate=covariate, outcome_type=outcome_type, null_model_only=null_model_only) def scan(y, X, G=None, K=None, QS=None, covariate=None, outcome_type=None, null_model_only=False): """Perform association scan between genetic markers and phenotype. Matrix `X` shall contain the genetic markers (e.g., number of minor alleles) with rows and columsn representing samples and genetic markers, respectively. It supports Bernoulli and Binomial phenotypes (see `outcome_type`). The user must specifiy only one of the parameters `G`, `K`, and `QS` for defining the genetic background. Let :math:`N` be the sample size, :math:`S` the number of covariates, :math:`P_c` the number of genetic markers to be tested, and :math:`P_b` the number of genetic markers used for Kinship estimation. :param numpy.ndarray y: Phenotype. The domain has be the non-negative integers. Dimension (:math:`N\\times 0`). :param numpy.ndarray X: Candidate genetic markers whose association with the phenotype will be tested. Dimension (:math:`N\\times P_c`). :param numpy.ndarray G: Genetic markers matrix used internally for kinship estimation. Dimension (:math:`N\\times P_b`). :param numpy.ndarray K: Kinship matrix. Dimension (:math:`N\\times N`). :param tuple QS: Economic eigen decomposition of the Kinship matrix. :param numpy.array covariate: Covariates. Default is an offset. Dimension (:math:`N\\times S`). :param object oucome_type: Either :class:`limix_qep.Bernoulli` (default) or a :class:`limix_qep.Binomial` instance. :return: a tuple containing the estimated p-values and additional information, respectively. """ if outcome_type is None: outcome_type = Bernoulli() logger = logging.getLogger(__name__) logger.info('Association scan has started.') y = asarray(y, dtype=float) info = dict() if K is not None: logger.info('Covariace matrix normalization.') K = gower_kinship_normalization(K) info['K'] = K if G is not None: logger.info('Genetic markers normalization.') G = G - np.mean(G, 0) s = np.std(G, 0) ok = s > 0. G[:, ok] /= s[ok] G /= np.sqrt(G.shape[1]) info['G'] = G outcome_type.assert_outcome(y) if G is None and K is None and QS is None: raise Exception('G, K, and QS cannot be all None.') if QS is None: logger.info('Computing the economic eigen decomposition.') if K is None: QS = qs_decomposition(G) else: QS = _QS_from_K_split(K) Q0, Q1 = QS[0] S0 = QS[1][0] else: Q0 = QS[0] S0 = QS[1] S0 /= S0.mean() logger.info('Genetic marker candidates normalization.') X = X - np.mean(X, 0) s = np.std(X, 0) ok = s > 0. X[:, ok] /= s[ok] X /= np.sqrt(X.shape[1]) info['X'] = X lrt = _create_LRT(y, Q0, Q1, S0, covariate, outcome_type, null_model_only=null_model_only) lrt.candidate_markers = X info['lrs'] = lrt.lrs() info['effsizes'] = lrt.effsizes return_ = (lrt.pvals(), info) return return_ def scan_binomial(nsuccesses, ntrials, X, G=None, K=None, covariate=None): """Perform association scan between genetic markers and phenotype. Matrix `X` shall contain the genetic markers (e.g., number of minor alleles) with rows and columsn representing samples and genetic markers, respectively. The user must specify only one of the parameters `G` and `K` for defining the genetic background. Let :math:`N` be the sample size, :math:`S` the number of covariates, :math:`P_c` the number of genetic markers to be tested, and :math:`P_b` the number of genetic markers used for Kinship estimation. Args: nsuccesses (numpy.ndarray): Phenotype described by the number of successes, as non-negative integers. Dimension (:math:`N\\times 0`). ntrials (numpy.ndarray): Phenotype described by the number of trials, as positive integers. Dimension (:math:`N\\times 0`). X (numpy.ndarray): Candidate genetic markers (or any other type of explanatory variable) whose association with the phenotype will be tested. Dimension (:math:`N\\times P_c`). G (numpy.ndarray): Genetic markers matrix used internally for kinship estimation. Dimension (:math:`N\\times P_b`). K (numpy.ndarray): Kinship matrix. Dimension (:math:`N\\times N`). covariate (numpy.ndarray): Covariates. Default is an offset. Dimension (:math:`N\\times S`). Returns: tuple: The estimated p-values and additional information, respectively. """ logger = logging.getLogger(__name__) logger.info('Association scan has started.') nsuccesses = asarray(nsuccesses, dtype=float) print("Number of candidate markers to scan: %d" % X.shape[1]) info = dict() if K is not None: logger.info('Covariace matrix normalization.') K = gower_kinship_normalization(K) info['K'] = K if G is not None: logger.info('Genetic markers normalization.') G = G -
np.mean(G, 0)
numpy.mean
import PythonQt from PythonQt import QtCore, QtGui import director.objectmodel as om import director.visualization as vis from director import affordanceitems from director import callbacks from director import cameracontrol from director import splinewidget from director import transformUtils from director.debugpolydata import DebugData from director.pointpicker import PlacerWidget from director import vtkNumpy as vnp from director import applogic as app from director import vtkAll as vtk from director import filterUtils from director.shallowCopy import shallowCopy from director import segmentationpanel from director import segmentation from director import segmentationroutines from director.robotlinkselector import RobotLinkSelector from director.vieweventfilter import ViewEventFilter from director import viewbehaviors from director.utime import getUtime from director import drcargs import numpy as np from . import ioutils import os import re import random import colorsys lastRandomColor = 0.0 class RobotViewBehaviors(object): def __init__(self, view, _robotSystem): self.view = view self.viewBehaviors = viewbehaviors.ViewBehaviors(view) self.robotViewBehaviors = RobotViewEventFilter(self, view) self.robotName = _robotSystem.robotName self.robotSystem = _robotSystem self.robotModel = self.robotSystem.robotStateModel if app.getMainWindow() is not None: self.robotLinkSelector = RobotLinkSelector() viewbehaviors.registerContextMenuActions(self.getRobotActions) def resetCameraToRobot(self, view): link = drcargs.getRobotConfig(self.robotName)["pelvisLink"] t = self.robotModel.getLinkFrame(link) if t is None: t = vtk.vtkTransform() focalPoint = [0.0, 0.0, 0.25] position = [-4.0, -2.0, 2.25] t.TransformPoint(focalPoint, focalPoint) t.TransformPoint(position, position) flyer = cameracontrol.Flyer(view) flyer.zoomTo(focalPoint, position) def resetCameraToRobotAbove(self, view): link = drcargs.getRobotConfig(self.robotName)["pelvisLink"] t = self.robotModel.getLinkFrame(link) if t is None: t = vtk.vtkTransform() focalPoint = [2, 0.0, 0.25] position = [1, 0.0, 15.25] # to avoid singularities t.TransformPoint(focalPoint, focalPoint) t.TransformPoint(position, position) flyer = cameracontrol.Flyer(view) flyer.zoomTo(focalPoint, position) def resetCameraToHeadView(self, view): head = self.robotModel.getLinkFrame( drcargs.getRobotConfig(self.robotName)["headLink"] ) pelvis = self.robotModel.getLinkFrame( drcargs.getRobotConfig(self.robotName)["pelvisLink"] ) viewDirection = np.array([1.0, 0.0, 0.0]) pelvis.TransformVector(viewDirection, viewDirection) cameraPosition = np.array(head.GetPosition()) + 0.10 * viewDirection camera = view.camera() focalOffset = np.array(camera.GetFocalPoint()) - np.array(camera.GetPosition()) focalOffset /= np.linalg.norm(focalOffset) camera.SetPosition(cameraPosition) camera.SetFocalPoint(cameraPosition + focalOffset * 0.03) camera.SetViewUp([0, 0, 1]) camera.SetViewAngle(90) view.render() def newWalkingGoal(self, displayPoint, view): # put walking goal at robot's base mainLink = drcargs.getRobotConfig(self.robotName)["pelvisLink"] footFrame = self.robotModel.getLinkFrame(mainLink) if not footFrame: print( "ERROR: The link '{}' provided for the key 'pelvisLink' in the configuration file does not exist in " "the robot's URDF. Cannot place walking goal.".format(mainLink) ) return worldPt1, worldPt2 = vis.getRayFromDisplayPoint(view, displayPoint) groundOrigin = footFrame.GetPosition() groundNormal = [0.0, 0.0, 1.0] selectedGroundPoint = [0.0, 0.0, 0.0] t = vtk.mutable(0.0) vtk.vtkPlane.IntersectWithLine( worldPt1, worldPt2, groundNormal, groundOrigin, t, selectedGroundPoint ) walkingTarget = transformUtils.frameFromPositionAndRPY( selectedGroundPoint, np.array(footFrame.GetOrientation()) ) frameObj = vis.updateFrame( walkingTarget, self.robotName + " walking goal", parent="planning", scale=0.25, ) frameObj.setProperty("Edit", True) rep = frameObj.widget.GetRepresentation() rep.SetTranslateAxisEnabled(2, False) rep.SetRotateAxisEnabled(0, False) rep.SetRotateAxisEnabled(1, False) frameObj.widget.HandleRotationEnabledOff() terrain = om.findObjectByName("HEIGHT_MAP_SCENE") if terrain: pos = np.array(frameObj.transform.GetPosition()) polyData = filterUtils.removeNonFinitePoints(terrain.polyData) if polyData.GetNumberOfPoints(): polyData = segmentation.labelDistanceToLine( polyData, pos, pos + [0, 0, 1] ) polyData = segmentation.thresholdPoints( polyData, "distance_to_line", [0.0, 0.1] ) if polyData.GetNumberOfPoints(): pos[2] = np.nanmax(vnp.getNumpyFromVtk(polyData, "Points")[:, 2]) frameObj.transform.Translate( pos - np.array(frameObj.transform.GetPosition()) ) d = DebugData() d.addSphere((0, 0, 0), radius=0.03) handle = vis.showPolyData( d.getPolyData(), "walking goal terrain handle " + self.robotName, parent=frameObj, visible=True, color=[1, 1, 0], ) handle.actor.SetUserTransform(frameObj.transform) placer = PlacerWidget(app.getCurrentRenderView(), handle, terrain) def onFramePropertyModified(propertySet, propertyName): if propertyName == "Edit": if propertySet.getProperty(propertyName): placer.start() else: placer.stop() frameObj.properties.connectPropertyChanged(onFramePropertyModified) onFramePropertyModified(frameObj, "Edit") frameObj.connectFrameModified(self.onWalkingGoalModified) def onWalkingGoalModified(self, frame): om.removeFromObjectModel(om.findObjectByName("footstep widget")) def newDrivingGoal(self, displayPoint, view): # Places the driving goal on the plane of the root link current yaw # for husky: the bottom of the wheels. # for hyq/anymal the midpoint of the trunk # TODO: read the link from the director config mainLink = drcargs.getRobotConfig(self.robotName)["pelvisLink"] footFrame = self.robotModel.getLinkFrame(mainLink) worldPt1, worldPt2 = vis.getRayFromDisplayPoint(view, displayPoint) groundOrigin = footFrame.GetPosition() groundNormal = [0.0, 0.0, 1.0] selectedGroundPoint = [0.0, 0.0, 0.0] t = vtk.mutable(0.0) vtk.vtkPlane.IntersectWithLine( worldPt1, worldPt2, groundNormal, groundOrigin, t, selectedGroundPoint ) footFrameRPY = transformUtils.rollPitchYawFromTransform(footFrame) drivingTarget = transformUtils.frameFromPositionAndRPY( selectedGroundPoint, [0, 0, footFrameRPY[2] * 180.0 / np.pi] ) # Create the widget and send a message: # walkingGoal = walkingGoal or self.newWalkingGoalFrame(self.robotModel) frameObj = vis.updateFrame( drivingTarget, "driving goal", parent="planning", scale=0.25 ) frameObj.setProperty("Edit", True) rep = frameObj.widget.GetRepresentation() rep.SetTranslateAxisEnabled(2, False) rep.SetRotateAxisEnabled(0, False) rep.SetRotateAxisEnabled(1, False) frameObj.widget.HandleRotationEnabledOff() frameObj.connectFrameModified(onNewDrivingGoal) onNewDrivingGoal(frameObj) def getRobotActions(self, view, pickedObj, pickedPoint): # TODO this is a somewhat crude transplant to maintain functionality. The context menu construction that uses # this should be improved affordanceObj = ( pickedObj if isinstance(pickedObj, affordanceitems.AffordanceItem) else None ) def addNewFrame(): t = transformUtils.copyFrame(affordanceObj.getChildFrame().transform) t.PostMultiply() t.Translate(np.array(pickedPoint) - np.array(t.GetPosition())) newFrame = vis.showFrame( t, "%s frame %d" % (affordanceObj.getProperty("Name"), len(affordanceObj.children())), scale=0.2, parent=affordanceObj, ) affordanceObj.getChildFrame().getFrameSync().addFrame( newFrame, ignoreIncoming=True ) def copyAffordance(): desc = dict(affordanceObj.getDescription()) del desc["uuid"] desc["Name"] = desc["Name"] + " copy" aff = self.robotSystem.affordanceManager.newAffordanceFromDescription(desc) aff.getChildFrame().setProperty("Edit", True) def onPromoteToAffordance(): affObj = affordanceitems.MeshAffordanceItem.promotePolyDataItem(pickedObj) self.robotSystem.affordanceManager.registerAffordance(affObj) actions = [] if affordanceObj: actions.extend( [ ("Copy affordance", copyAffordance), ("Add new frame", addNewFrame), ] ) elif type(pickedObj) == vis.PolyDataItem: actions.extend( [ ("Promote to Affordance", onPromoteToAffordance), ] ) return actions def getChildFrame(obj): if hasattr(obj, "getChildFrame"): return obj.getChildFrame() def placeHandModel(displayPoint, view, side="left"): obj, _ = vis.findPickedObject(displayPoint, view) if isinstance(obj, vis.FrameItem): _, handFrame = handFactory.placeHandModelWithTransform( obj.transform, view, side=side, parent=obj.parent() ) handFrame.frameSync = vis.FrameSync() handFrame.frameSync.addFrame(obj) handFrame.frameSync.addFrame(handFrame, ignoreIncoming=True) return pickedPointFields = vis.pickPoint( displayPoint, view, pickType="cells", tolerance=0.0 ) pickedPoint = pickedPointFields.pickedPoint prop = pickedPointFields.pickedProp obj = vis.getObjectByProp(prop) if not obj: return yaxis = -normal zaxis = [0, 0, 1] xaxis = np.cross(yaxis, zaxis) xaxis /= np.linalg.norm(xaxis) zaxis =
np.cross(xaxis, yaxis)
numpy.cross
import torch import numpy as np import numba import copy from ...utils import common_utils from ...ops.roiaware_pool3d import roiaware_pool3d_utils from ...ops.iou3d_nms import iou3d_nms_utils import warnings try: from numba.errors import NumbaPerformanceWarning warnings.filterwarnings("ignore", category=NumbaPerformanceWarning) except: pass def random_flip_along_x(gt_boxes, points): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C) Returns: """ enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if enable: gt_boxes[:, 1] = -gt_boxes[:, 1] gt_boxes[:, 6] = -gt_boxes[:, 6] points[:, 1] = -points[:, 1] return gt_boxes, points def random_flip_along_y(gt_boxes, points): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C) Returns: """ enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if enable: gt_boxes[:, 0] = -gt_boxes[:, 0] gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi) points[:, 0] = -points[:, 0] return gt_boxes, points def global_rotation(gt_boxes, points, rot_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C), rot_range: [min, max] Returns: """ noise_rotation = np.random.uniform(rot_range[0], rot_range[1]) points = common_utils.rotate_points_along_z(points[np.newaxis, :, :], np.array([noise_rotation]))[0] gt_boxes[:, 0:3] = common_utils.rotate_points_along_z(gt_boxes[np.newaxis, :, 0:3], np.array([noise_rotation]))[0] gt_boxes[:, 6] += noise_rotation return gt_boxes, points def global_scaling(gt_boxes, points, scale_range): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C), scale_range: [min, max] Returns: """ if scale_range[1] - scale_range[0] < 1e-3: return gt_boxes, points noise_scale = np.random.uniform(scale_range[0], scale_range[1]) points[:, :3] *= noise_scale gt_boxes[:, :6] *= noise_scale return gt_boxes, points def global_sampling(gt_boxes, points, gt_boxes_mask, sample_ratio_range, prob): """ Args: gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading] points: (M, 3 + C) gt_boxes_mask: (N), boolen mask for gt_boxes sample_ratio_range: [min, max]. ratio to keep points remain. prob: prob to dentermine whether sampling this frame Returns: """ if np.random.uniform(0, 1) > prob: return gt_boxes, points, gt_boxes_mask num_points = points.shape[0] sample_ratio = np.random.uniform(sample_ratio_range[0], sample_ratio_range[1]) remain_points_num = int(num_points * sample_ratio) # shuffle points shuffle_idx = np.random.permutation(points.shape[0]) points = points[shuffle_idx] # sample points points = points[:remain_points_num] # mask empty gt_boxes num_points_in_gt = roiaware_pool3d_utils.points_in_boxes_cpu( torch.from_numpy(points[:, :3]), torch.from_numpy(gt_boxes[:, :7]) ).numpy().sum(axis=1) mask = (num_points_in_gt >= 1) gt_boxes_mask = gt_boxes_mask & mask return gt_boxes, points, gt_boxes_mask def scale_pre_object(gt_boxes, points, gt_boxes_mask, scale_perturb, num_try=50): """ uniform sacle object with given range Args: gt_boxes: (N, 7) under unified coordinates points: (M, 3 + C) points in lidar gt_boxes_mask: (N), boolen mask for scale_perturb: num_try: Returns: """ num_boxes = gt_boxes.shape[0] if not isinstance(scale_perturb, (list, tuple, np.ndarray)): scale_perturb = [-scale_perturb, scale_perturb] # boxes wise scale ratio scale_noises = np.random.uniform(scale_perturb[0], scale_perturb[1], size=[num_boxes, num_try]) for k in range(num_boxes): if gt_boxes_mask[k] == 0: continue scl_box = copy.deepcopy(gt_boxes[k]) scl_box = scl_box.reshape(1, -1).repeat([num_try], axis=0) scl_box[:, 3:6] = scl_box[:, 3:6] * scale_noises[k].reshape(-1, 1).repeat([3], axis=1) # detect conflict # [num_try, N-1] if num_boxes > 1: self_mask = np.ones(num_boxes, dtype=np.bool_) self_mask[k] = False iou_matrix = iou3d_nms_utils.boxes_bev_iou_cpu(scl_box, gt_boxes[self_mask]) ious = np.max(iou_matrix, axis=1) no_conflict_mask = (ious == 0) # all trys have conflict with other gts if no_conflict_mask.sum() == 0: continue # scale points and assign new box try_idx = no_conflict_mask.nonzero()[0][0] else: try_idx = 0 point_masks = roiaware_pool3d_utils.points_in_boxes_cpu( points[:, 0:3],np.expand_dims(gt_boxes[k], axis=0)).squeeze(0) obj_points = points[point_masks > 0] obj_center, lwh, ry = gt_boxes[k, 0:3], gt_boxes[k, 3:6], gt_boxes[k, 6] # relative coordinates obj_points[:, 0:3] -= obj_center obj_points = common_utils.rotate_points_along_z(np.expand_dims(obj_points, axis=0), -ry).squeeze(0) new_lwh = lwh * scale_noises[k][try_idx] obj_points[:, 0:3] = obj_points[:, 0:3] * scale_noises[k][try_idx] obj_points = common_utils.rotate_points_along_z(np.expand_dims(obj_points, axis=0), ry).squeeze(0) # calculate new object center to avoid object float over the road obj_center[2] += (new_lwh[2] - lwh[2]) / 2 obj_points[:, 0:3] += obj_center points[point_masks > 0] = obj_points gt_boxes[k, 3:6] = new_lwh # if enlarge boxes, remove bg points if scale_noises[k][try_idx] > 1: points_dst_mask = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3], np.expand_dims(gt_boxes[k], axis=0)).squeeze(0) keep_mask = ~np.logical_xor(point_masks, points_dst_mask) points = points[keep_mask] return points, gt_boxes def normalize_object_size(boxes, points, boxes_mask, size_res): """ :param boxes: (N, 7) under unified boxes :param points: (N, 3 + C) :param boxes_mask :param size_res: (3) [l, w, h] :return: """ points = copy.deepcopy(points) boxes = copy.deepcopy(boxes) for k in range(boxes.shape[0]): # skip boxes that not need to normalize if boxes_mask[k] == 0: continue masks = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3], boxes[k:k+1]).squeeze(0) obj_points = points[masks > 0] obj_center, lwh, ry = boxes[k, 0:3], boxes[k, 3:6], boxes[k, 6] obj_points[:, 0:3] -= obj_center obj_points = common_utils.rotate_points_along_z(np.expand_dims(obj_points, axis=0), -ry).squeeze(0) new_lwh = lwh + np.array(size_res) # skip boxes that shift to have negative if (new_lwh < 0).any(): boxes_mask[k] = False continue scale_lwh = new_lwh / lwh obj_points[:, 0:3] = obj_points[:, 0:3] * scale_lwh obj_points = common_utils.rotate_points_along_z(np.expand_dims(obj_points, axis=0), ry).squeeze(0) # calculate new object center to avoid object float over the road obj_center[2] += size_res[2] / 2 obj_points[:, 0:3] += obj_center points[masks > 0] = obj_points boxes[k, 3:6] = new_lwh # if enlarge boxes, remove bg points if (np.array(size_res) > 0).any(): points_dst_mask = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3], np.expand_dims(boxes[k], axis=0)).squeeze(0) keep_mask = ~np.logical_xor(masks, points_dst_mask) points = points[keep_mask] return points, boxes def rotate_objects(gt_boxes, points, gt_boxes_mask, rotation_perturb, prob, num_try=50): """ Args: gt_boxes: [N, 7] (x, y, z, dx, dy, dz, heading) on unified coordinate points: [M] gt_boxes_mask: [N] bool rotation_perturb: ratation noise parameter prob: prob to random rotate object num_try: times to try rotate one object Returns: """ num_boxes = gt_boxes.shape[0] if not isinstance(rotation_perturb, (list, tuple, np.ndarray)): rotation_perturb = [-rotation_perturb, rotation_perturb] # with prob to rotate each object rot_mask = np.random.uniform(0, 1, size=[num_boxes]) < prob # generate random ratate noise for each boxes rot_noise = np.random.uniform(rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try]) for idx in range(num_boxes): # don't need to rotate this object if (not rot_mask[idx]) or (not gt_boxes_mask[idx]): continue # generate rotated boxes num_try times rot_box = copy.deepcopy(gt_boxes[idx]) # [num_try, 7] rot_box = rot_box.reshape(1, -1).repeat([num_try], axis=0) rot_box[:, 6] += rot_noise[idx] # detect conflict # [num_try, N-1] if num_boxes > 1: self_mask = np.ones(num_boxes, dtype=np.bool_) self_mask[idx] = False iou_matrix = iou3d_nms_utils.boxes_bev_iou_cpu(rot_box, gt_boxes[self_mask]) ious = np.max(iou_matrix, axis=1) no_conflict_mask = (ious == 0) # all trys have conflict with other gts if no_conflict_mask.sum() == 0: continue # rotate points and assign new box try_idx = no_conflict_mask.nonzero()[0][0] else: try_idx = 0 point_masks = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3], np.expand_dims(gt_boxes[idx], axis=0)).squeeze(0) object_points = points[point_masks > 0] object_center = gt_boxes[idx][0:3] object_points[:, 0:3] -= object_center object_points = common_utils.rotate_points_along_z(object_points[np.newaxis, :, :], np.array([rot_noise[idx][try_idx]]))[0] object_points[:, 0:3] += object_center points[point_masks > 0] = object_points # remove bg points that lie the position we want to place object points_dst_mask = roiaware_pool3d_utils.points_in_boxes_cpu(points[:, 0:3],
np.expand_dims(rot_box[try_idx], axis=0)
numpy.expand_dims
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for open_spiel.python.algorithms.nash_averaging.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np from open_spiel.python.algorithms.nash_averaging import nash_averaging import pyspiel # transitive game test case game_trans = pyspiel.create_matrix_game( [[0.0, -1.0, -1.0], [1.0, 0.0, -1.0], [1.0, 1.0, 0.0]], [[0.0, 1.0, 1.0], [-1.0, 0.0, 1.0], [-1.0, -1.0, 0.0]]) eq_trans =
np.asarray([0., 0., 1.])
numpy.asarray
import numpy as np # t04 is identical to t01 except for several factors. def t04(parmod,ps,x,y,z): """ A data-based model of the external (i.e., without earth's contribution) part of the magnetospheric magnetic field, calibrated by (1) solar wind pressure pdyn (nanopascals), (2) dst (nanotesla), (3) byimf, (4) bzimf (nanotesla) (5-10) indices w1 - w6, calculated as time integrals from the beginning of a storm see the reference (3) below, for a detailed definition of those variables :param parmod: The elements are explained above. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. Computed as a sum of contributions from principal field sources. Assembled: March 25, 2004; Updated: August 2 & 31, December 27, 2004. A bug eliminated March 14, 2005 (might cause compilation problems with some fortran compilers) Attention: The model is based on data taken sunward from x=-15Re, and hence becomes invalid at larger tailward distances !!! * REFERENCES: (1) <NAME>, A new data-based model of the near magnetosphere magnetic field: 1. Mathematical structure. 2. Parameterization and fitting to observations. JGR v. 107(A8), 1176/1179, doi:10.1029/2001JA000219/220, 2002. (2) <NAME>, <NAME>, <NAME>, Storm-time distortion of the inner magnetosphere: How severe can it get ? JGR v. 108(A5), 1209, doi:10.1029/2002JA009808, 2003. (3) <NAME> and <NAME>, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., v. 110 (A3), A03208, doi: 10.1029/2004JA010798, 2005. """ a = np.array([ 1.00000,5.44118,0.891995,9.09684,0.00000,-7.18972,12.2700, -4.89408,0.00000,0.870536,1.36081,0.00000,0.688650,0.602330, 0.00000,0.316346,1.22728,-0.363620E-01,-0.405821,0.452536, 0.755831,0.215662,0.152759,5.96235,23.2036,11.2994,69.9596, 0.989596,-0.132131E-01,0.985681,0.344212E-01,1.02389,0.207867, 1.51220,0.682715E-01,1.84714,1.76977,1.37690,0.696350,0.343280, 3.28846,111.293,5.82287,4.39664,0.383403,0.648176,0.318752E-01, 0.581168,1.15070,0.843004,0.394732,0.846509,0.916555,0.550920, 0.180725,0.898772,0.387365,2.26596,1.29123,0.436819,1.28211, 1.33199,.405553,1.6229,.699074,1.26131,2.42297,.537116,.619441]) iopgen,ioptt,iopb,iopr = [0.]*4 pdyn=parmod[0] dst_ast=parmod[1]*0.8-13*np.sqrt(pdyn) bximf,byimf,bzimf=[0.,parmod[2],parmod[3]] w1,w2,w3,w4,w5,w6 = parmod[4:10] pss,xx,yy,zz = [ps,x,y,z] return extern(iopgen,ioptt,iopb,iopr,a,69,pdyn,dst_ast,bximf,byimf,bzimf, w1,w2,w3,w4,w5,w6,pss,xx,yy,zz) def extern(iopgen,iopt,iopb,iopr,a,ntot,pdyn,dst,bximf,byimf,bzimf,w1,w2,w3,w4,w5,w6,ps,x,y,z): """ :param iopgen: general option flag: iopgen=0 - calculate total field iopgen=1 - dipole shielding only iopgen=2 - tail field only iopgen=3 - birkeland field only iopgen=4 - ring current field only iopgen=5 - interconnection field only :param iopt: tail field flag: iopt=0 - both modes iopt=1 - mode 1 only iopt=2 - mode 2 only :param iopb: birkeland field flag: iopb=0 - all 4 terms iopb=1 - region 1, modes 1 and 2 iopb=2 - region 2, modes 1 and 2 :param iopr: ring current flag: iopr=0 - both src and prc iopr=1 - src only iopr=2 - prc only """ # common /tail/ dxshift1,dxshift2,d,deltady ! the common blocks forward nonlinear parameters # common /birkpar/ xkappa1,xkappa2 # common /rcpar/ sc_sy,sc_as,phi # common /g/ g # common /rh0/ rh0 global dxshift1, dxshift2, d, deltady global xkappa1, xkappa2 global sc_sy, sc_pr, phi global g global rh0 a0_a,a0_s0,a0_x0 = [34.586,1.1960,3.4397] # Shue et al. parameters dsig = 0.005 rh0,rh2 = [8.0,-5.2] xappa = (pdyn/2.)**a[22] # overall scaling parameter rh0 = 7.5 # tail hinging distance g = 35.0 # tail warping parameter xappa3=xappa**3 xx=x*xappa yy=y*xappa zz=z*xappa sps=np.sin(ps) x0=a0_x0/xappa am=a0_a/xappa s0=a0_s0 # Calculate "imf" components outside the magnetopause layer (hence begin with "o") # They are needed only if the point (x,y,z) is within the transition magnetopause layer or outside the magnetosphere: factimf=a[19] oimfx=0. oimfy=byimf*factimf oimfz=bzimf*factimf r=np.sqrt(x**2+y**2+z**2) xss=x zss=z # begin iterative search of unwarped coords (to find sigma) dd = 1. while dd > 1e-6: xsold=xss zsold=zss rh=rh0+rh2*(zss/r)**2 sinpsas=sps/(1+(r/rh)**3)**0.33333333 cospsas=np.sqrt(1-sinpsas**2) zss=x*sinpsas+z*cospsas xss=x*cospsas-z*sinpsas dd=np.abs(xss-xsold)+np.abs(zss-zsold) rho2=y**2+zss**2 asq=am**2 xmxm=am+xss-x0 if xmxm < 0: xmxm = 0 # the boundary is a cylinder tailward of x=x0-am axx0=xmxm**2 aro=asq+rho2 sigma=np.sqrt((aro+axx0+np.sqrt((aro+axx0)**2-4.*asq*axx0))/(2.*asq)) # Now, there are three possible cases: # (1) inside the magnetosphere # (2) in the boundary layer # (3) outside the magnetosphere and b.layer # First of all, consider the cases (1) and (2): if sigma < (s0+dsig): # cases (1) or (2); calculate the model field (with the potential "penetrated" interconnection field): bxcf,bycf,bzcf = [0.]*3 if iopgen <= 1: cfx,cfy,cfz = shlcar3x3(xx,yy,zz,ps) # dipole shielding field bxcf=cfx*xappa3 bycf=cfy*xappa3 bzcf=cfz*xappa3 bxt1,byt1,bzt1,bxt2,byt2,bzt2 = [0.]*6 if (iopgen == 0) | (iopgen == 2): dstt = -20. if dst < dstt: dstt = dst znam = np.abs(dstt)**0.37 dxshift1=a[23]-a[24]/znam dxshift2=a[25]-a[26]/znam d=a[35]*np.exp(-w1/a[36])+a[68] deltady=4.7 bxt1,byt1,bzt1,bxt2,byt2,bzt2 = deformed(iopt,ps,xx,yy,zz) bxr11,byr11,bzr11, bxr12,byr12,bzr12, bxr21,byr21,bzr21, bxr22,byr22,bzr22 = [0.]*12 if (iopgen == 0) | (iopgen == 3): znam = np.abs(dst) if dst >= -20: znam = 20. xkappa1=a[31]*(znam/20)**a[32] xkappa2=a[33]*(znam/20)**a[34] # Birkeland field (two modes for r1 and two modes for r2) bxr11,byr11,bzr11, bxr12,byr12,bzr12, bxr21,byr21,bzr21, bxr22,byr22,bzr22 = \ birk_tot(iopb,ps,xx,yy,zz) bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc = [0.]*6 if (iopgen == 0) | (iopgen == 4): phi=a[37] znam=np.abs(dst) if dst >= -20: znam = 20 sc_sy=a[27]*(20/znam)**a[28]*xappa sc_pr=a[29]*(20/znam)**a[30]*xappa # shielded ring current (src and prc) bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc = full_rc(iopr,ps,xx,yy,zz) hximf,hyimf,hzimf = [0.]*3 if (iopgen == 0) | (iopgen == 5): # These are components of the penetrated field per unit of the penetration coefficient. # In other words, these are derivatives of the penetration field components with respect # to the penetration coefficient. We assume that only the transverse component of the # field penetrates inside. hximf,hyimf,hzimf = [0.,byimf,bzimf] # Now, add up all the components: dlp1=(pdyn/2)**a[20] dlp2=(pdyn/2)**a[21] tamp1=a[1]+a[2]*dlp1+a[3]*a[38]*w1/np.sqrt(w1**2+a[38]**2)+a[4]*dst tamp2=a[5]+a[6]*dlp2+a[7]*a[39]*w2/np.sqrt(w2**2+a[39]**2)+a[8]*dst a_src=a[9] +a[10]*a[40]*w3/np.sqrt(w3**2+a[40]**2)+a[11]*dst a_prc=a[12]+a[13]*a[41]*w4/np.sqrt(w4**2+a[41]**2)+a[14]*dst a_r11=a[15]+a[16]*a[42]*w5/np.sqrt(w5**2+a[42]**2) a_r21=a[17]+a[18]*a[43]*w6/np.sqrt(w6**2+a[43]**2) bbx=a[0]*bxcf + tamp1*bxt1+tamp2*bxt2 + a_src*bxsrc+a_prc*bxprc + a_r11*bxr11+a_r21*bxr21 + a[19]*hximf bby=a[0]*bycf + tamp1*byt1+tamp2*byt2 + a_src*bysrc+a_prc*byprc + a_r11*byr11+a_r21*byr21 + a[19]*hyimf bbz=a[0]*bzcf + tamp1*bzt1+tamp2*bzt2 + a_src*bzsrc+a_prc*bzprc + a_r11*bzr11+a_r21*bzr21 + a[19]*hzimf # And we have the total external field. # Now, let us check whether we have the case (1). if yes - we are done: if sigma < (s0-dsig): # (x,y,z) is inside the magnetosphere bx,by,bz = [bbx,bby,bbz] else: # this is the most complex case: we are inside the interpolation region fint=0.5*(1.-(sigma-s0)/dsig) fext=0.5*(1.+(sigma-s0)/dsig) qx,qy,qz = dipole(ps,x,y,z) bx=(bbx+qx)*fint+oimfx*fext -qx by=(bby+qy)*fint+oimfy*fext -qy bz=(bbz+qz)*fint+oimfz*fext -qz # The cases (1) and (2) are exhausted; the only remaining possibility is now the case (3): else: qx,qy,qz = dipole(ps,x,y,z) bx=oimfx-qx by=oimfy-qy bz=oimfz-qz return bx,by,bz def shlcar3x3(x,y,z, ps): """ This subroutine returns the shielding field for the earth's dipole, represented by 2x3x3=18 "cartesian" harmonics, tilted with respect to the z=0 plane (nb#4, p.74) :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :param ps: geo-dipole tilt angle in radius. :return: bx,by,bz. Field components in GSM system, in nT. """ # The 36 coefficients enter in pairs in the amplitudes of the "cartesian" harmonics (A(1)-A(36). # The 14 nonlinear parameters (A(37)-A(50) are the scales Pi,Ri,Qi,and Si entering the arguments of exponents, sines, and cosines in each of the # 18 "cartesian" harmonics plus two tilt angles for the cartesian harmonics (one for the psi=0 mode and another for the psi=90 mode) a = np.array([ -901.2327248,895.8011176,817.6208321,-845.5880889,-83.73539535, 86.58542841,336.8781402,-329.3619944,-311.2947120,308.6011161, 31.94469304,-31.30824526,125.8739681,-372.3384278,-235.4720434, 286.7594095,21.86305585,-27.42344605,-150.4874688,2.669338538, 1.395023949,-.5540427503,-56.85224007,3.681827033,-43.48705106, 5.103131905,1.073551279,-.6673083508,12.21404266,4.177465543, 5.799964188,-.3977802319,-1.044652977,.5703560010,3.536082962, -3.222069852,9.620648151,6.082014949,27.75216226,12.44199571, 5.122226936,6.982039615,20.12149582,6.150973118,4.663639687, 15.73319647,2.303504968,5.840511214,.8385953499E-01,.3477844929]) p1,p2,p3, r1,r2,r3, q1,q2,q3, s1,s2,s3 = a[36:48] t1,t2 = a[48:50] cps=np.cos(ps) sps=np.sin(ps) s2ps=2*cps # modified here (sin(2*ps) instead of sin(3*ps)) st1=np.sin(ps*t1) ct1=np.cos(ps*t1) st2=np.sin(ps*t2) ct2=np.cos(ps*t2) x1=x*ct1-z*st1 z1=x*st1+z*ct1 x2=x*ct2-z*st2 z2=x*st2+z*ct2 # make the terms in the 1st sum ("perpendicular" symmetry): # i=1: sqpr= np.sqrt(1/p1**2+1/r1**2) cyp = np.cos(y/p1) syp = np.sin(y/p1) czr = np.cos(z1/r1) szr = np.sin(z1/r1) expr= np.exp(sqpr*x1) fx1 =-sqpr*expr*cyp*szr hy1 = expr/p1*syp*szr fz1 =-expr*cyp/r1*czr hx1 = fx1*ct1+fz1*st1 hz1 =-fx1*st1+fz1*ct1 sqpr= np.sqrt(1/p1**2+1/r2**2) cyp = np.cos(y/p1) syp = np.sin(y/p1) czr = np.cos(z1/r2) szr = np.sin(z1/r2) expr= np.exp(sqpr*x1) fx2 =-sqpr*expr*cyp*szr hy2 = expr/p1*syp*szr fz2 =-expr*cyp/r2*czr hx2 = fx2*ct1+fz2*st1 hz2 =-fx2*st1+fz2*ct1 sqpr= np.sqrt(1/p1**2+1/r3**2) cyp = np.cos(y/p1) syp = np.sin(y/p1) czr = np.cos(z1/r3) szr = np.sin(z1/r3) expr= np.exp(sqpr*x1) fx3 =-expr*cyp*(sqpr*z1*czr+szr/r3*(x1+1/sqpr)) hy3 = expr/p1*syp*(z1*czr+x1/r3*szr/sqpr) fz3 =-expr*cyp*(czr*(1+x1/r3**2/sqpr)-z1/r3*szr) hx3 = fx3*ct1+fz3*st1 hz3 =-fx3*st1+fz3*ct1 # i=2: sqpr= np.sqrt(1/p2**2+1/r1**2) cyp = np.cos(y/p2) syp = np.sin(y/p2) czr = np.cos(z1/r1) szr = np.sin(z1/r1) expr= np.exp(sqpr*x1) fx4 =-sqpr*expr*cyp*szr hy4 = expr/p2*syp*szr fz4 =-expr*cyp/r1*czr hx4 = fx4*ct1+fz4*st1 hz4 =-fx4*st1+fz4*ct1 sqpr= np.sqrt(1/p2**2+1/r2**2) cyp = np.cos(y/p2) syp = np.sin(y/p2) czr = np.cos(z1/r2) szr = np.sin(z1/r2) expr= np.exp(sqpr*x1) fx5 =-sqpr*expr*cyp*szr hy5 = expr/p2*syp*szr fz5 =-expr*cyp/r2*czr hx5 = fx5*ct1+fz5*st1 hz5 =-fx5*st1+fz5*ct1 sqpr= np.sqrt(1/p2**2+1/r3**2) cyp = np.cos(y/p2) syp = np.sin(y/p2) czr = np.cos(z1/r3) szr = np.sin(z1/r3) expr= np.exp(sqpr*x1) fx6 =-expr*cyp*(sqpr*z1*czr+szr/r3*(x1+1/sqpr)) hy6 = expr/p2*syp*(z1*czr+x1/r3*szr/sqpr) fz6 =-expr*cyp*(czr*(1+x1/r3**2/sqpr)-z1/r3*szr) hx6 = fx6*ct1+fz6*st1 hz6 =-fx6*st1+fz6*ct1 # i=3: sqpr= np.sqrt(1/p3**2+1/r1**2) cyp = np.cos(y/p3) syp = np.sin(y/p3) czr = np.cos(z1/r1) szr = np.sin(z1/r1) expr= np.exp(sqpr*x1) fx7 =-sqpr*expr*cyp*szr hy7 = expr/p3*syp*szr fz7 =-expr*cyp/r1*czr hx7 = fx7*ct1+fz7*st1 hz7 =-fx7*st1+fz7*ct1 sqpr= np.sqrt(1/p3**2+1/r2**2) cyp = np.cos(y/p3) syp = np.sin(y/p3) czr = np.cos(z1/r2) szr = np.sin(z1/r2) expr= np.exp(sqpr*x1) fx8 =-sqpr*expr*cyp*szr hy8 = expr/p3*syp*szr fz8 =-expr*cyp/r2*czr hx8 = fx8*ct1+fz8*st1 hz8 =-fx8*st1+fz8*ct1 sqpr= np.sqrt(1/p3**2+1/r3**2) cyp = np.cos(y/p3) syp = np.sin(y/p3) czr = np.cos(z1/r3) szr = np.sin(z1/r3) expr= np.exp(sqpr*x1) fx9 =-expr*cyp*(sqpr*z1*czr+szr/r3*(x1+1/sqpr)) hy9 = expr/p3*syp*(z1*czr+x1/r3*szr/sqpr) fz9 =-expr*cyp*(czr*(1+x1/r3**2/sqpr)-z1/r3*szr) hx9 = fx9*ct1+fz9*st1 hz9 =-fx9*st1+fz9*ct1 a1=a[0]+a[1]*cps a2=a[2]+a[3]*cps a3=a[4]+a[5]*cps a4=a[6]+a[7]*cps a5=a[8]+a[9]*cps a6=a[10]+a[11]*cps a7=a[12]+a[13]*cps a8=a[14]+a[15]*cps a9=a[16]+a[17]*cps bx=a1*hx1+a2*hx2+a3*hx3+a4*hx4+a5*hx5+a6*hx6+a7*hx7+a8*hx8+a9*hx9 by=a1*hy1+a2*hy2+a3*hy3+a4*hy4+a5*hy5+a6*hy6+a7*hy7+a8*hy8+a9*hy9 bz=a1*hz1+a2*hz2+a3*hz3+a4*hz4+a5*hz5+a6*hz6+a7*hz7+a8*hz8+a9*hz9 # make the terms in the 2nd sum ("parallel" symmetry): # i=1 sqqs= np.sqrt(1/q1**2+1/s1**2) cyq = np.cos(y/q1) syq = np.sin(y/q1) czs = np.cos(z2/s1) szs = np.sin(z2/s1) exqs= np.exp(sqqs*x2) fx1 =-sqqs*exqs*cyq*czs *sps hy1 = exqs/q1*syq*czs *sps fz1 = exqs*cyq/s1*szs *sps hx1 = fx1*ct2+fz1*st2 hz1 =-fx1*st2+fz1*ct2 sqqs= np.sqrt(1/q1**2+1/s2**2) cyq = np.cos(y/q1) syq = np.sin(y/q1) czs = np.cos(z2/s2) szs = np.sin(z2/s2) exqs= np.exp(sqqs*x2) fx2 =-sqqs*exqs*cyq*czs *sps hy2 = exqs/q1*syq*czs *sps fz2 = exqs*cyq/s2*szs *sps hx2 = fx2*ct2+fz2*st2 hz2 =-fx2*st2+fz2*ct2 sqqs= np.sqrt(1/q1**2+1/s3**2) cyq = np.cos(y/q1) syq = np.sin(y/q1) czs = np.cos(z2/s3) szs = np.sin(z2/s3) exqs= np.exp(sqqs*x2) fx3 =-sqqs*exqs*cyq*czs *sps hy3 = exqs/q1*syq*czs *sps fz3 = exqs*cyq/s3*szs *sps hx3 = fx3*ct2+fz3*st2 hz3 =-fx3*st2+fz3*ct2 # i=2: sqqs= np.sqrt(1/q2**2+1/s1**2) cyq = np.cos(y/q2) syq = np.sin(y/q2) czs = np.cos(z2/s1) szs = np.sin(z2/s1) exqs= np.exp(sqqs*x2) fx4 =-sqqs*exqs*cyq*czs *sps hy4 = exqs/q2*syq*czs *sps fz4 = exqs*cyq/s1*szs *sps hx4 = fx4*ct2+fz4*st2 hz4 =-fx4*st2+fz4*ct2 sqqs= np.sqrt(1/q2**2+1/s2**2) cyq = np.cos(y/q2) syq = np.sin(y/q2) czs = np.cos(z2/s2) szs = np.sin(z2/s2) exqs= np.exp(sqqs*x2) fx5 =-sqqs*exqs*cyq*czs *sps hy5 = exqs/q2*syq*czs *sps fz5 = exqs*cyq/s2*szs *sps hx5 = fx5*ct2+fz5*st2 hz5 =-fx5*st2+fz5*ct2 sqqs= np.sqrt(1/q2**2+1/s3**2) cyq = np.cos(y/q2) syq = np.sin(y/q2) czs = np.cos(z2/s3) szs = np.sin(z2/s3) exqs= np.exp(sqqs*x2) fx6 =-sqqs*exqs*cyq*czs *sps hy6 = exqs/q2*syq*czs *sps fz6 = exqs*cyq/s3*szs *sps hx6 = fx6*ct2+fz6*st2 hz6 =-fx6*st2+fz6*ct2 # i=3: sqqs= np.sqrt(1/q3**2+1/s1**2) cyq = np.cos(y/q3) syq = np.sin(y/q3) czs = np.cos(z2/s1) szs = np.sin(z2/s1) exqs= np.exp(sqqs*x2) fx7 =-sqqs*exqs*cyq*czs *sps hy7 = exqs/q3*syq*czs *sps fz7 = exqs*cyq/s1*szs *sps hx7 = fx7*ct2+fz7*st2 hz7 =-fx7*st2+fz7*ct2 sqqs= np.sqrt(1/q3**2+1/s2**2) cyq = np.cos(y/q3) syq = np.sin(y/q3) czs = np.cos(z2/s2) szs = np.sin(z2/s2) exqs= np.exp(sqqs*x2) fx8 =-sqqs*exqs*cyq*czs *sps hy8 = exqs/q3*syq*czs *sps fz8 = exqs*cyq/s2*szs *sps hx8 = fx8*ct2+fz8*st2 hz8 =-fx8*st2+fz8*ct2 sqqs= np.sqrt(1/q3**2+1/s3**2) cyq = np.cos(y/q3) syq = np.sin(y/q3) czs = np.cos(z2/s3) szs = np.sin(z2/s3) exqs= np.exp(sqqs*x2) fx9 =-sqqs*exqs*cyq*czs *sps hy9 = exqs/q3*syq*czs *sps fz9 = exqs*cyq/s3*szs *sps hx9 = fx9*ct2+fz9*st2 hz9 =-fx9*st2+fz9*ct2 a1=a[18]+a[19]*s2ps a2=a[20]+a[21]*s2ps a3=a[22]+a[23]*s2ps a4=a[24]+a[25]*s2ps a5=a[26]+a[27]*s2ps a6=a[28]+a[29]*s2ps a7=a[30]+a[31]*s2ps a8=a[32]+a[33]*s2ps a9=a[34]+a[35]*s2ps bx=bx+a1*hx1+a2*hx2+a3*hx3+a4*hx4+a5*hx5+a6*hx6+a7*hx7+a8*hx8+a9*hx9 by=by+a1*hy1+a2*hy2+a3*hy3+a4*hy4+a5*hy5+a6*hy6+a7*hy7+a8*hy8+a9*hy9 bz=bz+a1*hz1+a2*hz2+a3*hz3+a4*hz4+a5*hz5+a6*hz6+a7*hz7+a8*hz8+a9*hz9 return bx, by, bz def deformed(iopt, ps, x,y,z): """ Calculates gsm components of two unit-amplitude tail field modes, taking into account both effects of dipole tilt: warping in y-z (done by the subroutine warped) and bending in x-z (done by this subroutine) :param iopt: tail field mode flag: iopt=0 - the two tail modes are added up; iopt=1 - mode 1 only; iopt=2 - mode 2 only :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # rh0,rh1,rh2, and ieps control the tilt-related deformation of the tail field # common /rh0/ rh0 global rh0 rh2,ieps = [-5.2,3] sps = np.sin(ps) r2 = x**2+y**2+z**2 r = np.sqrt(r2) zr = z/r rh = rh0+rh2*zr**2 drhdr = -zr/r*2*rh2*zr drhdz = 2*rh2*zr/r rrh = r/rh f = 1/(1+rrh**ieps)**(1/ieps) dfdr = -rrh**(ieps-1)*f**(ieps+1)/rh dfdrh = -rrh*dfdr spsas = sps*f cpsas = np.sqrt(1-spsas**2) xas = x*cpsas-z*spsas zas = x*spsas+z*cpsas facps = sps/cpsas*(dfdr+dfdrh*drhdr)/r psasx = facps*x psasy = facps*y psasz = facps*z+sps/cpsas*dfdrh*drhdz dxasdx = cpsas-zas*psasx dxasdy =-zas*psasy dxasdz =-spsas-zas*psasz dzasdx = spsas+xas*psasx dzasdy = xas*psasy dzasdz = cpsas+xas*psasz fac1 = dxasdz*dzasdy-dxasdy*dzasdz fac2 = dxasdx*dzasdz-dxasdz*dzasdx fac3 = dzasdx*dxasdy-dxasdx*dzasdy # deform: bxas1,byas1,bzas1, bxas2,byas2,bzas2 = warped(iopt,ps,xas,y,zas) bx1=bxas1*dzasdz-bzas1*dxasdz +byas1*fac1 by1=byas1*fac2 bz1=bzas1*dxasdx-bxas1*dzasdx +byas1*fac3 bx2=bxas2*dzasdz-bzas2*dxasdz +byas2*fac1 by2=byas2*fac2 bz2=bzas2*dxasdx-bxas2*dzasdx +byas2*fac3 return bx1,by1,bz1, bx2,by2,bz2 def warped(iopt, ps, x,y,z): """ Calculates GSM components of the warped field for two tail unit modes. The warping deformation is imposed on the unwarped field, computed by the subroutine "unwarped". The warping parameter g was obtained by least squares fitting to the entire dataset. :param iopt: tail field mode flag: iopt=0 - the two tail modes are added up; iopt=1 - mode 1 only; iopt=2 - mode 2 only :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # common /g/ g global g dgdx,xl,dxldx = [0.,20,0] sps=np.sin(ps) rho2=y**2+z**2 rho=np.sqrt(rho2) if (y == 0) & (z == 0): phi=0. cphi=1. sphi=0. else: phi=np.arctan2(z,y) cphi=y/rho sphi=z/rho rr4l4=rho/(rho2**2+xl**4) f=phi+g*rho2*rr4l4*cphi*sps dfdphi=1-g*rho2*rr4l4*sphi*sps dfdrho=g*rr4l4**2*(3*xl**4-rho2**2)*cphi*sps dfdx=rr4l4*cphi*sps*(dgdx*rho2-g*rho*rr4l4*4*xl**3*dxldx) cf=np.cos(f) sf=np.sin(f) yas=rho*cf zas=rho*sf bx_as1,by_as1,bz_as1, bx_as2,by_as2,bz_as2 = unwarped(iopt,x,yas,zas) brho_as = by_as1*cf+bz_as1*sf # deform the 1st mode bphi_as = -by_as1*sf+bz_as1*cf brho_s = brho_as*dfdphi bphi_s = bphi_as-rho*(bx_as1*dfdx+brho_as*dfdrho) bx1 = bx_as1*dfdphi by1 = brho_s*cphi-bphi_s*sphi bz1 = brho_s*sphi+bphi_s*cphi # done brho_as = by_as2*cf+bz_as2*sf # deform the 2nd mode bphi_as = -by_as2*sf+bz_as2*cf brho_s = brho_as*dfdphi bphi_s = bphi_as-rho*(bx_as2*dfdx+brho_as*dfdrho) bx2 = bx_as2*dfdphi by2 = brho_s*cphi-bphi_s*sphi bz2 = brho_s*sphi+bphi_s*cphi # done return bx1,by1,bz1, bx2,by2,bz2 def unwarped(iopt, x,y,z): """ Calculates GSM components of the shielded field of two tail modes with unit amplitudes, without any warping or bending. Nonlinear parameters of the modes are forwarded here via a common block /tail/. :param iopt: tail field mode flag: iopt=0 - the two tail modes are added up; iopt=1 - mode 1 only; iopt=2 - mode 2 only :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # common /tail/ dxshift1,dxshift2,d,deltady global dxshift1, dxshift2, d, deltady deltadx1,alpha1,xshift1 = [1.,1.1,6] deltadx2,alpha2,xshift2 = [0.,.25,4] a1 = np.array([ -25.45869857,57.35899080,317.5501869,-2.626756717,-93.38053698, -199.6467926,-858.8129729,34.09192395,845.4214929,-29.07463068, 47.10678547,-128.9797943,-781.7512093,6.165038619,167.8905046, 492.0680410,1654.724031,-46.77337920,-1635.922669,40.86186772, -.1349775602,-.9661991179e-01,-.1662302354,.002810467517,.2487355077, .1025565237,-14.41750229,-.8185333989,11.07693629,.7569503173, -9.655264745,112.2446542,777.5948964,-5.745008536,-83.03921993, -490.2278695,-1155.004209,39.08023320,1172.780574,-39.44349797, -14.07211198,-40.41201127,-313.2277343,2.203920979,8.232835341, 197.7065115,391.2733948,-18.57424451,-437.2779053,23.04976898, 11.75673963,13.60497313,4.691927060,18.20923547,27.59044809, 6.677425469,1.398283308,2.839005878,31.24817706,24.53577264]) a2 = np.array([ -287187.1962,4970.499233,410490.1952,-1347.839052,-386370.3240, 3317.983750,-143462.3895,5706.513767,171176.2904,250.8882750, -506570.8891,5733.592632,397975.5842,9771.762168,-941834.2436, 7990.975260,54313.10318,447.5388060,528046.3449,12751.04453, -21920.98301,-21.05075617,31971.07875,3012.641612,-301822.9103, -3601.107387,1797.577552,-6.315855803,142578.8406,13161.93640, 804184.8410,-14168.99698,-851926.6360,-1890.885671,972475.6869, -8571.862853,26432.49197,-2554.752298,-482308.3431,-4391.473324, 105155.9160,-1134.622050,-74353.53091,-5382.670711,695055.0788, -916.3365144,-12111.06667,67.20923358,-367200.9285,-21414.14421, 14.75567902,20.75638190,59.78601609,16.86431444,32.58482365, 23.69472951,17.24977936,13.64902647,68.40989058,11.67828167]) xm1,xm2 = [-12.,-12] bx1,by1,bz1, bx2,by2,bz2 = [0.]*6 if iopt < 2: # iopt = 0 or 1 xsc1 = (x-xshift1-dxshift1)*alpha1-xm1*(alpha1-1) ysc1 = y*alpha1 zsc1 = z*alpha1 d0sc1 = d*alpha1 # here we use a single value d0 of the thickness for both modes fx1,fy1,fz1 = taildisk(d0sc1,deltadx1,deltady,xsc1,ysc1,zsc1) hx1,hy1,hz1 = shlcar5x5(a1,x,y,z,dxshift1) bx1=fx1+hx1 by1=fy1+hy1 bz1=fz1+hz1 if iopt != 1: # iop = 0 or 2 xsc2 = (x-xshift2-dxshift2)*alpha2-xm2*(alpha2-1) ysc2 = y*alpha2 zsc2 = z*alpha2 d0sc2 = d*alpha2 # here we use a single value d0 of the thickness for both modes fx2,fy2,fz2 = taildisk(d0sc2,deltadx2,deltady,xsc2,ysc2,zsc2) hx2,hy2,hz2 = shlcar5x5(a2,x,y,z,dxshift2) bx2=fx2+hx2 by2=fy2+hy2 bz2=fz2+hz2 return bx1,by1,bz1, bx2,by2,bz2 def taildisk(d0,deltadx,deltady, x,y,z): """ This subroutine computes the components of the tail current field, similar to that described by Tsyganenko and peredo (1994). The difference is that now we use spacewarping, as described in our paper on modeling Birkeland currents (Tsyganenko and stern, 1996) instead of shearing it in the spirit of the T89 tail model. :param d0: :param deltadx: :param deltady: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ f = np.array([-71.09346626,-1014.308601,-1272.939359,-3224.935936,-44546.86232]) b = np.array([10.90101242,12.68393898,13.51791954,14.86775017,15.12306404]) c = np.array([.7954069972,.6716601849,1.174866319,2.565249920,10.01986790]) rho=np.sqrt(x**2+y**2) drhodx=x/rho drhody=y/rho dex=np.exp(x/7) d=d0+deltady*(y/20)**2+deltadx*dex # The last term (introduced 10/11/2000) makes the sheet thicken sunward, to avoid problems in the subsolar region dddy=deltady*y*0.005 dddx=deltadx/7*dex dzeta=np.sqrt(z**2+d**2) # this is the same simple way to spread out the sheet, as that used in t89 ddzetadx=d*dddx/dzeta ddzetady=d*dddy/dzeta ddzetadz=z/dzeta dbx,dby,dbz = [0.0,0,0] for i in range(5): bi=b[i] ci=c[i] s1=np.sqrt((rho+bi)**2+(dzeta+ci)**2) s2=np.sqrt((rho-bi)**2+(dzeta+ci)**2) ds1drho=(rho+bi)/s1 ds2drho=(rho-bi)/s2 ds1ddz=(dzeta+ci)/s1 ds2ddz=(dzeta+ci)/s2 ds1dx=ds1drho*drhodx+ds1ddz*ddzetadx ds1dy=ds1drho*drhody+ds1ddz*ddzetady ds1dz= ds1ddz*ddzetadz ds2dx=ds2drho*drhodx+ds2ddz*ddzetadx ds2dy=ds2drho*drhody+ds2ddz*ddzetady ds2dz= ds2ddz*ddzetadz s1ts2=s1*s2 s1ps2=s1+s2 s1ps2sq=s1ps2**2 fac1=np.sqrt(s1ps2sq-(2*bi)**2) asas=fac1/(s1ts2*s1ps2sq) dasds1=(1/(fac1*s2)-asas/s1ps2*(s2*s2+s1*(3*s1+4*s2)))/(s1*s1ps2) dasds2=(1/(fac1*s1)-asas/s1ps2*(s1*s1+s2*(3*s2+4*s1)))/(s2*s1ps2) dasdx=dasds1*ds1dx+dasds2*ds2dx dasdy=dasds1*ds1dy+dasds2*ds2dy dasdz=dasds1*ds1dz+dasds2*ds2dz dbx=dbx-f[i]*x*dasdz dby=dby-f[i]*y*dasdz dbz=dbz+f[i]*(2*asas+x*dasdx+y*dasdy) return dbx, dby, dbz def shlcar5x5(a,x,y,z,dshift): """ This code returns the shielding field represented by 5x5=25 "cartesian" harmonics :param a: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :param dshift: :return: """ # The nlin coefficients are the amplitudes of the "cartesian" harmonics (a(1)-a(nlin). # The nnp nonlinear parameters (a(nlin+1)-a(ntot) are the scales pi and ri entering the arguments of exponents, sines, # and cosines in each of the nlin "cartesian" harmonics dhx,dhy,dhz = [0.]*3 l=0 for i in range(5): rp=1/a[50+i] cypi=np.cos(y*rp) sypi=np.sin(y*rp) for k in range(5): rr=1/a[55+k] szrk=np.sin(z*rr) czrk=np.cos(z*rr) sqpr=np.sqrt(rp**2+rr**2) epr= np.exp(x*sqpr) dbx=-sqpr*epr*cypi*szrk dby= rp*epr*sypi*szrk dbz=-rr*epr*cypi*czrk coef=a[l]+a[l+1]*dshift l += 2 dhx=dhx+coef*dbx dhy=dhy+coef*dby dhz=dhz+coef*dbz return dhx,dhy,dhz def birk_tot(iopb, ps, x,y,z): """ :param iopb: birkeland field mode flag: iopb=0 - all components; iopb=1 - region 1, modes 1 & 2; iopb=2 - region 2, modes 1 & 2 :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx11,by11,bz11, bx12,by12,bz12, bx21,by21,bz21, bx22,by22,bz22. """ # common /birkpar/ xkappa1,xkappa2 ! input parameters, specified from s/r extall # common /dphi_b_rho0/ dphi,b,rho_0,xkappa ! parameters, controlling the day-night asymmetry of f.a.c. global xkappa1, xkappa2 global dphi, b, rho_0, xkappa sh11 = np.array([ 46488.84663,-15541.95244,-23210.09824,-32625.03856,-109894.4551, -71415.32808,58168.94612,55564.87578,-22890.60626,-6056.763968, 5091.368100,239.7001538,-13899.49253,4648.016991,6971.310672, 9699.351891,32633.34599,21028.48811,-17395.96190,-16461.11037, 7447.621471,2528.844345,-1934.094784,-588.3108359,-32588.88216, 10894.11453,16238.25044,22925.60557,77251.11274,50375.97787, -40763.78048,-39088.60660,15546.53559,3559.617561,-3187.730438, 309.1487975,88.22153914,-243.0721938,-63.63543051,191.1109142, 69.94451996,-187.9539415,-49.89923833,104.0902848,-120.2459738, 253.5572433,89.25456949,-205.6516252,-44.93654156,124.7026309, 32.53005523,-98.85321751,-36.51904756,98.88241690,24.88493459, -55.04058524,61.14493565,-128.4224895,-45.35023460,105.0548704, -43.66748755,119.3284161,31.38442798,-92.87946767,-33.52716686, 89.98992001,25.87341323,-48.86305045,59.69362881,-126.5353789, -44.39474251,101.5196856,59.41537992,41.18892281,80.86101200, 3.066809418,7.893523804,30.56212082,10.36861082,8.222335945, 19.97575641,2.050148531,4.992657093,2.300564232,.2256245602,-.05841594319]) sh12 = np.array([ 210260.4816,-1443587.401,-1468919.281,281939.2993,-1131124.839, 729331.7943,2573541.307,304616.7457,468887.5847,181554.7517, -1300722.650,-257012.8601,645888.8041,-2048126.412,-2529093.041, 571093.7972,-2115508.353,1122035.951,4489168.802,75234.22743, 823905.6909,147926.6121,-2276322.876,-155528.5992,-858076.2979, 3474422.388,3986279.931,-834613.9747,3250625.781,-1818680.377, -7040468.986,-414359.6073,-1295117.666,-346320.6487,3565527.409, 430091.9496,-.1565573462,7.377619826,.4115646037,-6.146078880, 3.808028815,-.5232034932,1.454841807,-12.32274869,-4.466974237, -2.941184626,-.6172620658,12.64613490,1.494922012,-21.35489898, -1.652256960,16.81799898,-1.404079922,-24.09369677,-10.99900839, 45.94237820,2.248579894,31.91234041,7.575026816,-45.80833339, -1.507664976,14.60016998,1.348516288,-11.05980247,-5.402866968, 31.69094514,12.28261196,-37.55354174,4.155626879,-33.70159657, -8.437907434,36.22672602,145.0262164,70.73187036,85.51110098, 21.47490989,24.34554406,31.34405345,4.655207476,5.747889264, 7.802304187,1.844169801,4.867254550,2.941393119,.1379899178,.06607020029]) sh21 = np.array([ 162294.6224,503885.1125,-27057.67122,-531450.1339,84747.05678, -237142.1712,84133.61490,259530.0402,69196.05160,-189093.5264, -19278.55134,195724.5034,-263082.6367,-818899.6923,43061.10073, 863506.6932,-139707.9428,389984.8850,-135167.5555,-426286.9206, -109504.0387,295258.3531,30415.07087,-305502.9405,100785.3400, 315010.9567,-15999.50673,-332052.2548,54964.34639,-152808.3750, 51024.67566,166720.0603,40389.67945,-106257.7272,-11126.14442, 109876.2047,2.978695024,558.6019011,2.685592939,-338.0004730, -81.99724090,-444.1102659,89.44617716,212.0849592,-32.58562625, -982.7336105,-35.10860935,567.8931751,-1.917212423,-260.2023543, -1.023821735,157.5533477,23.00200055,232.0603673,-36.79100036, -111.9110936,18.05429984,447.0481000,15.10187415,-258.7297813, -1.032340149,-298.6402478,-1.676201415,180.5856487,64.52313024, 209.0160857,-53.85574010,-98.52164290,14.35891214,536.7666279, 20.09318806,-309.7349530,58.54144539,67.45226850,97.92374406, 4.752449760,10.46824379,32.91856110,12.05124381,9.962933904, 15.91258637,1.804233877,6.578149088,2.515223491,.1930034238,-.02261109942]) sh22 = np.array([ -131287.8986,-631927.6885,-318797.4173,616785.8782,-50027.36189, 863099.9833,47680.20240,-1053367.944,-501120.3811,-174400.9476, 222328.6873,333551.7374,-389338.7841,-1995527.467,-982971.3024, 1960434.268,297239.7137,2676525.168,-147113.4775,-3358059.979, -2106979.191,-462827.1322,1017607.960,1039018.475,520266.9296, 2627427.473,1301981.763,-2577171.706,-238071.9956,-3539781.111, 94628.16420,4411304.724,2598205.733,637504.9351,-1234794.298, -1372562.403,-2.646186796,-31.10055575,2.295799273,19.20203279, 30.01931202,-302.1028550,-14.78310655,162.1561899,.4943938056, 176.8089129,-.2444921680,-100.6148929,9.172262228,137.4303440, -8.451613443,-84.20684224,-167.3354083,1321.830393,76.89928813, -705.7586223,18.28186732,-770.1665162,-9.084224422,436.3368157, -6.374255638,-107.2730177,6.080451222,65.53843753,143.2872994, -1028.009017,-64.22739330,547.8536586,-20.58928632,597.3893669, 10.17964133,-337.7800252,159.3532209,76.34445954,84.74398828, 12.76722651,27.63870691,32.69873634,5.145153451,6.310949163, 6.996159733,1.971629939,4.436299219,2.904964304,.1486276863,.06859991529]) xkappa=xkappa1 # forwarded in birk_1n2 x_sc=xkappa1-1.1 # forwarded in birk_shl bx11,by11,bz11, bx12,by12,bz12, bx21,by21,bz21, bx22,by22,bz22 = [0]*12 if (iopb == 0) | (iopb == 1): fx11,fy11,fz11 = birk_1n2(1,1,ps,x,y,z) # region 1, mode 1 hx11,hy11,hz11 = birk_shl(sh11,ps,x_sc,x,y,z) bx11=fx11+hx11 by11=fy11+hy11 bz11=fz11+hz11 fx12,fy12,fz12 = birk_1n2(1,2,ps,x,y,z) # region 1, mode 2 hx12,hy12,hz12 = birk_shl(sh12,ps,x_sc,x,y,z) bx12=fx12+hx12 by12=fy12+hy12 bz12=fz12+hz12 xkappa=xkappa2 # forwarded in birk_1n2 x_sc=xkappa2-1.0 # forwarded in birk_shl if (iopb == 0) | (iopb == 2): fx21,fy21,fz21 = birk_1n2(2,1,ps,x,y,z) # region 2, mode 1 hx21,hy21,hz21 = birk_shl(sh21,ps,x_sc,x,y,z) bx21=fx21+hx21 by21=fy21+hy21 bz21=fz21+hz21 fx22,fy22,fz22 = birk_1n2(2,2,ps,x,y,z) # region 2, mode 2 hx22,hy22,hz22 = birk_shl(sh22,ps,x_sc,x,y,z) bx22=fx22+hx22 by22=fy22+hy22 bz22=fz22+hz22 return bx11,by11,bz11, bx12,by12,bz12, bx21,by21,bz21, bx22,by22,bz22 def birk_1n2(numb,mode,ps,x,y,z): # NB# 6, p.60 """ Calculates components of region 1/2 field in spherical coords. Derived from the s/r dipdef2c (which does the same job, but input/output there was in spherical coords, while here we use cartesian ones) :param numb: numb=1 (2) for region 1 (2) currents :param mode: mode=1 yields simple sinusoidal mlt variation, with maximum current at dawn/dusk meridian while mode=2 yields the second harmonic. :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # common /dphi_b_rho0/ dphi,b,rho_0,xkappa ! these parameters control day-night asymmetry of f.a.c., as follows: # (1) dphi: half-difference (in radians) between day and night latitude of fac oval at ionospheric altitude; typical value: 0.06 # (2) b: an asymmetry factor at high-altitudes; for b=0, the only asymmetry is that from dphi; typical values: 0.35-0.70 # (3) rho_0: a fixed parameter, defining the distance rho, at which the latitude shift gradually saturates and stops increasing; its value was assumed fixed, equal to 7.0. # (4) xkappa: an overall scaling factor, which can be used for changing the size of the f.a.c. oval global dtheta, m, dphi, b, rho_0, xkappa # parameters of the tilt-dependent deformation of the untilted F.A.C. field beta = 0.9 rh = 10. eps = 3. b=0.5 rho_0=7.0 a11 = np.array([ .1618068350, -.1797957553, 2.999642482, -.9322708978, -.6811059760, .2099057262, -8.358815746, -14.86033550, .3838362986, -16.30945494, 4.537022847, 2.685836007, 27.97833029, 6.330871059, 1.876532361, 18.95619213, .9651528100, .4217195118, -.08957770020, -1.823555887, .7457045438, -.5785916524, -1.010200918, .01112389357, .09572927448, -.3599292276, 8.713700514, .9763932955, 3.834602998, 2.492118385, .7113544659]) a12 = np.array([ .7058026940, -.2845938535, 5.715471266, -2.472820880, -.7738802408, .3478293930, -11.37653694, -38.64768867, .6932927651, -212.4017288, 4.944204937, 3.071270411, 33.05882281, 7.387533799, 2.366769108, 79.22572682, .6154290178, .5592050551, -.1796585105, -1.654932210, .7309108776, -.4926292779, -1.130266095, -.009613974555, .1484586169, -.2215347198, 7.883592948, .02768251655, 2.950280953, 1.212634762, .5567714182]) a21 = np.array([ .1278764024, -.2320034273, 1.805623266, -32.37241440, -.9931490648, .3175085630, -2.492465814, -16.21600096, .2695393416, -6.752691265, 3.971794901, 14.54477563, 41.10158386, 7.912889730, 1.258297372, 9.583547721, 1.014141963, .5104134759, -.1790430468, -1.756358428, .7561986717, -.6775248254, -.04014016420, .01446794851, .1200521731, -.2203584559, 4.508963850, .8221623576, 1.779933730, 1.102649543, .8867880020]) a22 = np.array([ .4036015198, -.3302974212, 2.827730930, -45.44405830, -1.611103927, .4927112073, -.003258457559, -49.59014949, .3796217108, -233.7884098, 4.312666980, 18.05051709, 28.95320323, 11.09948019, .7471649558, 67.10246193, .5667096597, .6468519751, -.1560665317, -1.460805289, .7719653528, -.6658988668, .2515179349E-05, .02426021891, .1195003324, -.2625739255, 4.377172556, .2421190547, 2.503482679, 1.071587299, .7247997430]) m=mode if numb == 1: dphi=0.055 dtheta=0.06 elif numb == 2: dphi=0.030 dtheta=0.09 else: raise ValueError xsc=x*xkappa ysc=y*xkappa zsc=z*xkappa rho=np.sqrt(xsc**2+zsc**2) rsc=np.sqrt(xsc**2+ysc**2+zsc**2) # scaled rho2=rho_0**2 if (xsc == 0) & (zsc == 0): phi=0. else: phi=np.arctan2(-zsc,xsc) # from cartesian to cylindrical (rho,phi,y) sphic=np.sin(phi) cphic=np.cos(phi) # "c" means "cylindrical", to distinguish from spherical phi brack=dphi+b*rho2/(rho2+1)*(rho**2-1)/(rho2+rho**2) r1rh=(rsc-1)/rh psias=beta*ps/(1+r1rh**eps)**(1/eps) phis=phi-brack*np.sin(phi) -psias dphisphi=1-brack*np.cos(phi) dphisrho=-2*b*rho2*rho/(rho2+rho**2)**2*np.sin(phi) \ +beta*ps*r1rh**(eps-1)*rho/(rh*rsc*(1+r1rh**eps)**(1/eps+1)) dphisdy= beta*ps*r1rh**(eps-1)*ysc/(rh*rsc*(1+r1rh**eps)**(1/eps+1)) sphics=np.sin(phis) cphics=np.cos(phis) xs= rho*cphics zs=-rho*sphics if numb ==1: if mode == 1: [bxs,byas,bzs] = twocones(a11,xs,ysc,zs) elif mode == 2: [bxs,byas,bzs] = twocones(a12,xs,ysc,zs) else: raise ValueError else: if mode == 1: [bxs,byas,bzs] = twocones(a21,xs,ysc,zs) elif mode == 2: [bxs,byas,bzs] = twocones(a22,xs,ysc,zs) else: raise ValueError brhoas = bxs*cphics-bzs*sphics bphias = -bxs*sphics-bzs*cphics brho_s=brhoas*dphisphi *xkappa # scaling bphi_s=(bphias-rho*(byas*dphisdy+brhoas*dphisrho)) *xkappa by_s=byas*dphisphi *xkappa bx=brho_s*cphic-bphi_s*sphic by=by_s bz=-brho_s*sphic-bphi_s*cphic return bx,by,bz def twocones (a,x,y,z): """ Adds fields from two cones (northern and southern), with a proper symmetry of the current and field, corresponding to the region 1 Birkeland currents. (NB #6, p.58). :param a: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ bxn,byn,bzn = one_cone(a,x, y, z) bxs,bys,bzs = one_cone(a,x,-y,-z) bx=bxn-bxs by=byn+bys bz=bzn+bzs return bx,by,bz def one_cone(a,x,y,z): """ Returns field components for a deformed conical current system, fitted to a Biosavart field. Here only the northern cone is taken into account. :param a: dimension a(31) :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # common /dtheta/ dtheta # common /modenum/ m global dtheta, m # just for numerical differentiation dr = 1e-6 dt = 1e-6 theta0=a[30] rho2=x**2+y**2 rho=np.sqrt(rho2) r=np.sqrt(rho2+z**2) theta=np.arctan2(rho,z) phi=np.arctan2(y,x) # make the deformation of coordinates: rs=r_s(a,r,theta) thetas=theta_s(a,r,theta) phis=phi # calculate field components at the new position (asterisked): btast,bfast = fialcos(rs,thetas,phis,m,theta0,dtheta) # mode #m # now transform b{r,t,f}_ast by the deformation tensor: # first of all, find the derivatives: drsdr=(r_s(a,r+dr,theta)-r_s(a,r-dr,theta))/(2*dr) drsdt=(r_s(a,r,theta+dt)-r_s(a,r,theta-dt))/(2*dt) dtsdr=(theta_s(a,r+dr,theta)-theta_s(a,r-dr,theta))/(2*dr) dtsdt=(theta_s(a,r,theta+dt)-theta_s(a,r,theta-dt))/(2*dt) stsst=np.sin(thetas)/np.sin(theta) rsr=rs/r br =-rsr/r*stsst*btast*drsdt # NB#6, p.43 brast does not enter here btheta = rsr*stsst*btast*drsdr # (it is identically zero in our case) bphi = rsr*bfast*(drsdr*dtsdt-drsdt*dtsdr) s=rho/r c=z/r sf=y/rho cf=x/rho be=br*s+btheta*c bx=a[0]*(be*cf-bphi*sf) by=a[0]*(be*sf+bphi*cf) bz=a[0]*(br*c-btheta*s) return bx,by,bz def r_s(a,r,theta): # dimension a(31) return r+a[1]/r+a[2]*r/np.sqrt(r**2+a[10]**2)+a[3]*r/(r**2+a[11]**2) \ +(a[4]+a[5]/r+a[6]*r/np.sqrt(r**2+a[12]**2)+a[7]*r/(r**2+a[13]**2))*np.cos(theta) \ +(a[8]*r/np.sqrt(r**2+a[14]**2)+a[9]*r/(r**2+a[15]**2)**2)*np.cos(2*theta) def theta_s(a,r,theta): # dimension a(31) return theta+(a[16]+a[17]/r+a[18]/r**2+a[19]*r/np.sqrt(r**2+a[26]**2))*np.sin(theta) \ +(a[20]+a[21]*r/np.sqrt(r**2+a[27]**2)+a[22]*r/(r**2+a[28]**2))*np.sin(2*theta) \ +(a[23]+a[24]/r+a[25]*r/(r**2+a[29]**2))*np.sin(3*theta) def fialcos(r,theta,phi,n,theta0,dt): """ Conical model of Birkeland current field; based on the old s/r fialco (of 1990-91) NB of 1985-86-88, note of March 5, but here both input and output are in spherical CDS. :param r: :param theta: :param phi: :param n: :param theta0: :param dt: :return: btheta,bphi. """ # btn, and bpn are the arrays of btheta and bphi (btn(i), bpn(i) correspond to i-th mode). # only first n mode amplitudes are computed (n<=10). # theta0 is the angular half-width of the cone, dt is the angular h.-w. of the current layer # note: br=0 (because only radial currents are present in this model) # dimension btn(10),bpn(10),ccos(10),ssin(10) btn = np.empty(10) bpn = np.empty(10) ccos = np.empty(10) ssin = np.empty(10) sinte=np.sin(theta) ro=r*sinte coste=np.cos(theta) sinfi=np.sin(phi) cosfi=np.cos(phi) tg=sinte/(1+coste) # tan(theta/2) ctg=sinte/(1-coste) # cot(theta/2) tetanp=theta0+dt tetanm=theta0-dt if theta >= tetanm: tgp=np.tan(tetanp*0.5) tgm=np.tan(tetanm*0.5) tgm2=tgm*tgm tgp2=tgp*tgp [cosm1, sinm1] = [1.,0] tm = 1 [tgm2m,tgp2m] = [1.,1] for m in range(1,n+1): tm=tm*tg ccos[m-1]=cosm1*cosfi-sinm1*sinfi ssin[m-1]=sinm1*cosfi+cosm1*sinfi cosm1=ccos[m-1] sinm1=ssin[m-1] if theta < tetanm: t=tm dtt=0.5*m*tm*(tg+ctg) dtt0=0 elif theta < tetanp: tgm2m=tgm2m*tgm2 fc=1/(tgp-tgm) fc1=1/(2*m+1) tgm2m1=tgm2m*tgm tg21=1+tg*tg t=fc*(tm*(tgp-tg)+fc1*(tm*tg-tgm2m1/tm)) dtt=0.5*m*fc*tg21*(tm/tg*(tgp-tg)-fc1*(tm-tgm2m1/(tm*tg))) dtt0=0.5*fc*((tgp+tgm)*(tm*tg-fc1*(tm*tg-tgm2m1/tm))+tm*(1-tgp*tgm)-(1+tgm2)*tgm2m/tm) else: tgp2m=tgp2m*tgp2 tgm2m=tgm2m*tgm2 fc=1/(tgp-tgm) fc1=1/(2*m+1) t=fc*fc1*(tgp2m*tgp-tgm2m*tgm)/tm dtt=-t*m*0.5*(tg+ctg) btn[m-1]=m*t*ccos[m-1]/ro bpn[m-1]=-dtt*ssin[m-1]/r btheta=btn[n-1] *800. bphi =bpn[n-1] *800. return btheta, bphi def birk_shl(a,ps,x_sc, x,y,z): """ B due to the Birkeland current shield. :param a: coefficient. :param ps: geo-dipole tilt angle in radius. :param x_sc: :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ cps=np.cos(ps) sps=np.sin(ps) s3ps=2*cps pst1=ps*a[84] pst2=ps*a[85] st1=np.sin(pst1) ct1=np.cos(pst1) st2=np.sin(pst2) ct2=np.cos(pst2) x1=x*ct1-z*st1 z1=x*st1+z*ct1 x2=x*ct2-z*st2 z2=x*st2+z*ct2 l=0 [bx,by,bz] = [0,0,0] for m in range(1,3): # m=1 is for the 1st sum ("perp." symmetry) and m=2 is for the second sum ("parall." symmetry) for i in range(1,4): p = a[71 + i] q = a[77 + i] cypi = np.cos(y/p) cyqi = np.cos(y/q) sypi = np.sin(y/p) syqi = np.sin(y/q) for k in range(1,4): r=a[74+k] s=a[80+k] szrk=np.sin(z1/r) czsk=np.cos(z2/s) czrk=np.cos(z1/r) szsk=np.sin(z2/s) sqpr=np.sqrt(1/p**2+1/r**2) sqqs=np.sqrt(1/q**2+1/s**2) epr=np.exp(x1*sqpr) eqs=np.exp(x2*sqqs) for n in range(1,3): # n=1 is for the first part of each coefficient and n=2 is for the second one for nn in range(1,3): # nn = 1,2 further splits the coefficients into 2 parts, to take into account the scale factor dependence if m == 1: fx = -sqpr*epr*cypi*szrk fy = epr*sypi*szrk/p fz = -epr*cypi*czrk/r if n == 1: if nn == 1: [hx,hy,hz] = [fx,fy,fz] else: [hx,hy,hz] = [fx*x_sc, fy*x_sc, fz*x_sc] else: if nn == 1: [hx,hy,hz] = [fx*cps, fy*cps, fz*cps] else: [hx,hy,hz] = [fx*cps*x_sc, fy*cps*x_sc, fz*cps*x_sc] else: # m == 2 fx = -sps*sqqs*eqs*cyqi*czsk fy = sps/q*eqs*syqi*czsk fz = sps/s*eqs*cyqi*szsk if n == 1: if nn == 1: [hx,hy,hz] = [fx,fy,fz] else: [hx,hy,hz] = [fx*x_sc, fy*x_sc, fz*x_sc] else: if nn == 1: [hx,hy,hz] = [fx*s3ps,fy*s3ps,fz*s3ps] else: [hx,hy,hz] = [fx*s3ps*x_sc, fy*s3ps*x_sc, fz*s3ps*x_sc] l=l+1 if m == 1: hxr = hx*ct1+hz*st1 hzr = -hx*st1+hz*ct1 else: hxr = hx*ct2+hz*st2 hzr = -hx*st2+hz*ct2 bx = bx+hxr*a[l-1] by = by+hy *a[l-1] bz = bz+hzr*a[l-1] return bx,by,bz def full_rc(iopr,ps,x,y,z): """ Calculates GSM field components of the symmetric (src) and partial (prc) components of the ring current :param iopr: a ring current calculation flag (for least-squares fitting only): iopr=0 - both src and prc fields are calculated; opr=1 - src only; opr=2 - prc only :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: """ # src provides a depression of -28 nt at earth # prc corresponds to the pressure difference of 2 npa between midnight and noon ring current particle pressure and yields a depression of -17 nt at x=-6re # sc_sy and sc_pr are scaling factors for the symmetric and partial components: values larger than 1 result in spatially larger currents # phi is the rotation angle in radians of the partial ring current (measured from midnight toward dusk) # common /rcpar/ sc_sy,sc_pr,phi global sc_sy, sc_pr, phi # corrected values(as of may 2006) c_sy = np.array([ # sy short for symmetric -957.2534900,-817.5450246,583.2991249,758.8568270, 13.17029064,68.94173502,-15.29764089,-53.43151590,27.34311724, 149.5252826,-11.00696044,-179.7031814,953.0914774,817.2340042, -581.0791366,-757.5387665,-13.10602697,-68.58155678,15.22447386, 53.15535633,-27.07982637,-149.1413391,10.91433279,179.3251739, -6.028703251,1.303196101,-1.345909343,-1.138296330,-0.06642634348, -0.3795246458,.07487833559,.2891156371,-.5506314391,-.4443105812, 0.2273682152,0.01086886655,-9.130025352,1.118684840,1.110838825, .1219761512,-.06263009645,-.1896093743,.03434321042,.01523060688, -.4913171541,-.2264814165,-.04791374574,.1981955976,-68.32678140, -48.72036263,14.03247808,16.56233733,2.369921099,6.200577111, -1.415841250,-0.8184867835,-3.401307527,-8.490692287,3.217860767, -9.037752107,66.09298105,48.23198578,-13.67277141,-16.27028909, -2.309299411,-6.016572391,1.381468849,0.7935312553,3.436934845, 8.260038635,-3.136213782,8.833214943,8.041075485,8.024818618, 35.54861873,12.55415215,1.738167799,3.721685353,23.06768025, 6.871230562,6.806229878,21.35990364,1.687412298,3.500885177, 0.3498952546,0.6595919814 ]) c_pr = np.array([ # pr short for partial -64820.58481, -63965.62048, 66267.93413, 135049.7504, -36.56316878, 124.6614669, 56.75637955, -87.56841077, 5848.631425, 4981.097722, -6233.712207, -10986.40188, 68716.52057, 65682.69473, -69673.32198, -138829.3568, 43.45817708, -117.9565488, -62.14836263, 79.83651604, -6211.451069, -5151.633113, 6544.481271, 11353.03491, 23.72352603, -256.4846331, 25.77629189, 145.2377187, -4.472639098, -3.554312754, 2.936973114, 2.682302576, 2.728979958, 26.43396781, -9.312348296, -29.65427726, -247.5855336, -206.9111326, 74.25277664, 106.4069993, 15.45391072, 16.35943569, -5.965177750, -6.079451700, 115.6748385, -35.27377307, -32.28763497, -32.53122151, 93.74409310, 84.25677504, -29.23010465, -43.79485175, -6.434679514, -6.620247951, 2.443524317, 2.266538956, -43.82903825, 6.904117876, 12.24289401, 17.62014361, 152.3078796, 124.5505289, -44.58690290, -63.02382410, -8.999368955, -9.693774119, 3.510930306, 3.770949738, -77.96705716, 22.07730961, 20.46491655, 18.67728847, 9.451290614, 9.313661792, 644.7620970, 418.2515954, 7.183754387, 35.62128817, 19.43180682, 39.57218411, 15.69384715, 7.123215241, 2.300635346, 21.90881131, -.01775839370, .3996346710]) hxsrc,hysrc,hzsrc, hxprc,hyprc,hzprc = src_prc(iopr, sc_sy,sc_pr, phi, ps, x,y,z) x_sc=sc_sy-1 fsx,fsy,fsz = [0.]*3 if (iopr == 0) | (iopr == 1): fsx,fsy,fsz = rc_shield(c_sy,ps,x_sc, x,y,z) x_sc=sc_pr-1 fpx,fpy,fpz = [0.]*3 if (iopr == 0) | (iopr == 2): fpx,fpy,fpz = rc_shield(c_pr,ps,x_sc, x,y,z) bxsrc=hxsrc+fsx bysrc=hysrc+fsy bzsrc=hzsrc+fsz bxprc=hxprc+fpx byprc=hyprc+fpy bzprc=hzprc+fpz return bxsrc,bysrc,bzsrc,bxprc,byprc,bzprc def src_prc(iopr,sc_sy,sc_pr,phi,ps, x,y,z): """ Returns field components from a model ring current, including its symmetric part and a partial ring current, closed via birkeland currents. based on results, described in a paper "modeling the inner magnetosphere: asymmetric ring current and region 2 birkeland currents revisited" (jgr, dec.2000). :param iopr: a ring current calculation flag (for least-squares fitting only): iopr=0 - both src and prc fields are calculated; opr=1 - src only; opr=2 - prc only :param sc_sy, sc_pr: scale factors for the above components; taking sc<1 or sc>1 makes the currents shrink or expand, respectively. :param phi: the rotation angle (radians) of the partial ring current (measured from midnight toward dusk) :param ps: geo-dipole tilt angle in radius. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc. Field components in GSM system, in nT. For the symmetric part and partial ring current. """ # 1. transform to tilted coordinates (i.e., sm coordinates): cps=np.cos(ps) sps=np.sin(ps) xt=x*cps-z*sps zt=z*cps+x*sps # 2. scale the coordinates for the symmetric and partial rc components: xts=xt/sc_sy # symmetric yts=y /sc_sy zts=zt/sc_sy xta=xt/sc_pr # partial yta=y /sc_pr zta=zt/sc_pr # 3. calculate components of the total field in the tilted (solar-magnetic) coordinate system: # only for least squares fitting: bxs,bys,bzs = [0.]*3 bxa_s,bya_s,bza_s = [0.]*3 bxa_qr,bya_qr,bza_q = [0.]*3 # 3a. symmetric field: if iopr <= 1: bxs,bys,bzs = rc_symm(xts,yts,zts) if (iopr == 0) | (iopr == 2): bxa_s,bya_s,bza_s = prc_symm(xta,yta,zta) # 3b. rotate the scaled sm coordinates by phi around zsm axis and calculate quadrupole prc field in those coords: cp=np.cos(phi) sp=np.sin(phi) xr=xta*cp-yta*sp yr=xta*sp+yta*cp if (iopr == 0) | (iopr == 2): bxa_qr,bya_qr,bza_q = prc_quad(xr,yr,zta) # 3c.transform the quadrupole field components back to the sm coords: bxa_q= bxa_qr*cp+bya_qr*sp bya_q=-bxa_qr*sp+bya_qr*cp # 3d. find the total field of prc (symm.+quadr.) in the sm coords: bxp=bxa_s+bxa_q byp=bya_s+bya_q bzp=bza_s+bza_q # 4. transform the fields of both parts of the ring current back to the gsm system: bxsrc=bxs*cps+bzs*sps # symmetric rc bysrc=bys bzsrc=bzs*cps-bxs*sps bxprc=bxp*cps+bzp*sps # partial rc byprc=byp bzprc=bzp*cps-bxp*sps return bxsrc,bysrc,bzsrc, bxprc,byprc,bzprc def rc_symm(x,y,z): """ Calculates the field components from a model ring current, due to its symmetric part. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # ds=sin(theta) at the boundary of the linearity region; dc=sqrt(1-ds**2); drd=1/(2*d) ds = 1e-2 dc = 0.99994999875 d = 1e-4 drd = 5e3 rho2=x**2+y**2 r2=rho2+z**2 r=np.sqrt(r2) rp=r+d rm=r-d sint=np.sqrt(rho2)/r cost=z/r # too close to the z-axis; using a linear approximation a_phi~sint to avoid the singularity problem if sint < ds: a=ap(r,ds,dc)/ds dardr=(rp*ap(rp,ds,dc)-rm*ap(rm,ds,dc))*drd fxy=z*(2*a-dardr)/(r*r2) bx=fxy*x by=fxy*y bz=(2*a*cost**2+dardr*sint**2)/r else: theta=np.arctan2(sint,cost) tp=theta+d tm=theta-d sintp=np.sin(tp) sintm=np.sin(tm) costp=np.cos(tp) costm=np.cos(tm) br=(sintp*ap(r,sintp,costp)-sintm*ap(r,sintm,costm))/(r*sint)*drd bt=(rm*ap(rm,sint,cost)-rp*ap(rp,sint,cost))/r*drd fxy=(br+bt*cost/sint)/r bx=fxy*x by=fxy*y bz=br*cost-bt*sint return bx, by, bz def ap(r,sint,cost): """ Calculates azimuthal component of the vector potential of the symmetric part of the model ring current. :param r: :param sint: :param cost: :return: """ # Updated 04/20/06 (nb#9, p.37) a1,a2,rrc1,dd1,rrc2,dd2,p1,r1,dr1,dla1,p2,r2,dr2,dla2,p3,r3,dr3 = [ -456.5289941,375.9055332,4.274684950,2.439528329,3.367557287, 3.146382545,-0.2291904607,3.746064740,1.508802177,0.5873525737, 0.1556236119,4.993638842,3.324180497,0.4368407663,0.1855957207, 2.969226745,2.243367377] # indicates whether we are too close to the axis of symmetry, where the inversion of dipolar coordinates becomes inaccurate prox = False sint1=sint cost1=cost # too close to z-axis; use linear interpolation between sint=0 & sint=0.01 if (sint1 < 1.e-2): sint1=1.e-2 cost1=0.99994999875 prox=True alpha=sint1**2/r # r,theta -> alpha,gamma gamma=cost1/r**2 arg1=-((r-r1)/dr1)**2-(cost1/dla1)**2 arg2=-((r-r2)/dr2)**2-(cost1/dla2)**2 arg3=-((r-r3)/dr3)**2 if arg1 < -500: # to prevent "floating underflow" crashes dexp1=0. else: dexp1=np.exp(arg1) if arg2 < -500: # to prevent "floating underflow" crashes dexp2=0. else: dexp2=np.exp(arg2) if arg3 < -500: # to prevent "floating underflow" crashes dexp3=0. else: dexp3=np.exp(arg3) # alpha -> alpha_s (deformed) alpha_s=alpha*(1+p1*dexp1+p2*dexp2+p3*dexp3) gamma_s=gamma gammas2=gamma_s**2 # alpha_s,gamma_s -> rs,sints,costs alsqh=alpha_s**2/2 f=64/27*gammas2+alsqh**2 q=(np.sqrt(f)+alsqh)**(1/3) c=q-4*gammas2**(1/3)/(3*q) if c < 0: c=0 g=np.sqrt(c**2+4*gammas2**(1/3)) rs=4/((np.sqrt(2*g-c)+np.sqrt(c))*(g+c)) costs=gamma_s*rs**2 sints=np.sqrt(1-costs**2) rhos=rs*sints rhos2=rhos**2 zs=rs*costs # TODO looks like this part is repetative. p=(rrc1+rhos)**2+zs**2+dd1**2 xk2=4*rrc1*rhos/p xk=np.sqrt(xk2) xkrho12=xk*np.sqrt(rhos) # see nb#4, p.3 xk2s = 1-xk2 dl = np.log(1/xk2s) elk = 1.38629436112 + xk2s*(0.09666344259+xk2s*(0.03590092383+xk2s*(0.03742563713+xk2s*0.01451196212))) \ + dl*(0.5+xk2s*(0.12498593597+xk2s*(0.06880248576+xk2s*(0.03328355346+xk2s*0.00441787012)))) ele = 1+xk2s*(0.44325141463+xk2s*(0.0626060122+xk2s*(0.04757383546+xk2s*0.01736506451))) \ + dl*xk2s*(0.2499836831+xk2s*(0.09200180037+xk2s*(0.04069697526+xk2s*0.00526449639))) aphi1=((1-xk2*0.5)*elk-ele)/xkrho12 p=(rrc2+rhos)**2+zs**2+dd2**2 xk2=4*rrc2*rhos/p xk=np.sqrt(xk2) xkrho12=xk*np.sqrt(rhos) # see nb#4, p.3 xk2s = 1-xk2 dl = np.log(1/xk2s) elk = 1.38629436112 + xk2s*(0.09666344259+xk2s*(0.03590092383+xk2s*(0.03742563713+xk2s*0.01451196212))) \ + dl*(0.5+xk2s*(0.12498593597+xk2s*(0.06880248576+xk2s*(0.03328355346+xk2s*0.00441787012)))) ele = 1+xk2s*(0.44325141463+xk2s*(0.0626060122+xk2s*(0.04757383546+xk2s*0.01736506451))) \ + dl*xk2s*(0.2499836831+xk2s*(0.09200180037+xk2s*(0.04069697526+xk2s*0.00526449639))) aphi2=((1-xk2*0.5)*elk-ele)/xkrho12 ap=a1*aphi1+a2*aphi2 if prox: ap=ap*sint/sint1 # linear interpolation, if too close to the z-axis return ap def prc_symm(x,y,z): """ Calculates the field components from a model ring current, due to a partial ring current. :param x,y,z: GSM coordinates in Re (1 Re = 6371.2 km) :return: bx,by,bz. Field components in GSM system, in nT. """ # ds=sin(theta) at the boundary of the linearity region; dc=sqrt(1-ds**2); drd=1/(2*d) ds = 1e-2 dc = 0.99994999875 d = 1e-4 drd = 5e3 rho2=x**2+y**2 r2=rho2+z**2 r=np.sqrt(r2) rp=r+d rm=r-d sint=
np.sqrt(rho2)
numpy.sqrt
import numpy as np from .geom import Line from .geom import rotate_point from .geom import Circle from .geom import calc_euclid_distance_2d_sq from .geom import check_for_intersection_lineseg_circle, check_for_intersection_lineseg_lineseg from .geom import calc_angle_between_unit_vectors import time from copy import deepcopy import os class TrackHandler(object): def __init__(self, track_name: str, is_store: bool=False): # get the module path self.module_path = os.path.dirname(os.path.abspath(__file__)) # save the arguments self.track_name = track_name # load the track data if is_store: self.data = TrackStore.loader(track_name) self.data.activate_track(0) # always load the first track as default else: self.data = Track.loader(track_name) self.is_store = is_store # ################## # VEHICLE PROGRESS # # ################## def check_new_lap(self, current_car_position: tuple, old_car_position: tuple): """ Checks for vehicle crossing start line by checing if the line from previous position to current position intersects start line """ # Vector of where the car travelled from and to in the last timestep s = Line(old_car_position, current_car_position) new_lap, _ = check_for_intersection_lineseg_lineseg(s,self.data.startLine) return new_lap def get_veh_pos_progress(self, NLapIdx: int, xC: float, yC: float): """ Feed back the closest inner track point and the percentage of the lap completed based on total number of points """ self.NLapIdxMax = len(self.data.cent_lines)-1 search_start_idx = NLapIdx - min(2, self.NLapIdxMax) search_end_idx = NLapIdx + min(3, self.NLapIdxMax) # check for the lap start/end and get the list of indexes to check if search_start_idx < 0: idx_s = np.arange(self.NLapIdxMax + search_start_idx + 1, self.NLapIdxMax + 1) if NLapIdx > 0: idx_s = np.append(idx_s, np.arange(0, NLapIdx)) else: idx_s = np.arange(search_start_idx, NLapIdx) if search_end_idx > self.NLapIdxMax: if NLapIdx == self.NLapIdxMax: idx_e = np.array([NLapIdx]) else: idx_e = np.arange(NLapIdx, self.NLapIdxMax + 1) idx_e = np.append(idx_e, np.arange(0, search_end_idx - self.NLapIdxMax + 1)) else: idx_e =
np.arange(NLapIdx, search_end_idx + 1)
numpy.arange
""" This module is an example of a barebones function plugin for napari It implements the ``napari_experimental_provide_function`` hook specification. see: https://napari.org/docs/dev/plugins/hook_specifications.html Replace code below according to your needs. """ from __future__ import print_function, division from typing import TYPE_CHECKING, DefaultDict from unicodedata import name import six # import modules import sys # input, output, errors, and files import os # interacting with file systems import time # getting time import datetime import inspect # get passed parameters import yaml # parameter importing import json # for importing tiff metadata try: import cPickle as pickle # loading and saving python objects except: import pickle import numpy as np # numbers package import struct # for interpretting strings as binary data import re # regular expressions from pprint import pprint # for human readable file output import traceback # for error messaging import warnings # error messaging import copy # not sure this is needed import h5py # working with HDF5 files import pandas as pd import networkx as nx import collections # scipy and image analysis from scipy.signal import find_peaks_cwt # used in channel finding from scipy.optimize import curve_fit # fitting ring profile from scipy.optimize import leastsq # fitting 2d gaussian from scipy import ndimage as ndi # labeling and distance transform from skimage import io from skimage import segmentation # used in make_masks and segmentation from skimage.transform import rotate from skimage.feature import match_template # used to align images from skimage.feature import blob_log # used for foci finding from skimage.filters import threshold_otsu, median # segmentation from skimage import filters from skimage import morphology # many functions is segmentation used from this from skimage.measure import regionprops # used for creating lineages from skimage.measure import profile_line # used for ring an nucleoid analysis from skimage import util, measure, transform, feature import tifffile as tiff from sklearn import metrics # deep learning import tensorflow as tf # ignore message about how tf was compiled from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import models from tensorflow.keras import losses from tensorflow.keras import utils from tensorflow.keras import backend as K # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # supress warnings # Parralelization modules import multiprocessing from multiprocessing import Pool # Plotting for debug import matplotlib as mpl font = {'family' : 'sans-serif', 'weight' : 'normal', 'size' : 12} mpl.rc('font', **font) mpl.rcParams['pdf.fonttype'] = 42 from matplotlib.patches import Ellipse from pathlib import Path import time import matplotlib.pyplot as plt # import modules import os import glob import re import numpy as np import tifffile as tiff import pims_nd2 from skimage import io, measure, morphology import tifffile as tiff from scipy import stats from pprint import pprint # for human readable file output import multiprocessing from multiprocessing import Pool import numpy as np import warnings from tensorflow.python.keras import models from enum import Enum import numpy as np import multiprocessing from multiprocessing import Pool import os from napari_plugin_engine import napari_hook_implementation from skimage.filters import threshold_otsu # segmentation from skimage import morphology # many functions is segmentation used from this from skimage import segmentation # used in make_masks and segmentation from scipy import ndimage as ndi # labeling and distance transform import matplotlib.gridspec as gridspec from skimage.exposure import rescale_intensity # for displaying in GUI from skimage import io, morphology, segmentation # import mm3_helpers as mm3 import napari # This is the actual plugin function, where we export our function # (The functions themselves are defined below) @napari_hook_implementation def napari_experimental_provide_function(): # we can return a single function # or a tuple of (function, magicgui_options) # or a list of multiple functions with or without options, as shown here: #return [Segment, threshold, image_arithmetic] return [Compile, ChannelPicker, Segment] # 1. First example, a simple function that thresholds an image and creates a labels layer def threshold(data: "napari.types.ImageData", threshold: int) -> "napari.types.LabelsData": """Threshold an image and return a mask.""" return (data > threshold).astype(int) # print a warning def warning(*objs): print(time.strftime("%H:%M:%S WARNING:", time.localtime()), *objs, file=sys.stderr) # print information def information(*objs): print(time.strftime("%H:%M:%S", time.localtime()), *objs, file=sys.stdout) def julian_day_number(): """ Need this to solve a bug in pims_nd2.nd2reader.ND2_Reader instance initialization. The bug is in /usr/local/lib/python2.7/site-packages/pims_nd2/ND2SDK.py in function `jdn_to_datetime_local`, when the year number in the metadata (self._lim_metadata_desc) is not in the correct range. This causes a problem when calling self.metadata. https://en.wikipedia.org/wiki/Julian_day """ dt=datetime.datetime.now() tt=dt.timetuple() jdn=(1461.*(tt.tm_year + 4800. + (tt.tm_mon - 14.)/12))/4. + (367.*(tt.tm_mon - 2. - 12.*((tt.tm_mon -14.)/12)))/12. - (3.*((tt.tm_year + 4900. + (tt.tm_mon - 14.)/12.)/100.))/4. + tt.tm_mday - 32075 return jdn def get_plane(filepath): pattern = r'(c\d+).tif' res = re.search(pattern,filepath) if (res != None): return res.group(1) else: return None def get_fov(filepath): pattern = r'xy(\d+)\w*.tif' res = re.search(pattern,filepath) if (res != None): return int(res.group(1)) else: return None def get_time(filepath): pattern = r't(\d+)xy\w+.tif' res = re.search(pattern,filepath) if (res != None): return np.int_(res.group(1)) else: return None # loads and image stack from TIFF or HDF5 using mm3 conventions def load_stack(fov_id, peak_id, color='c1', image_return_number=None): ''' Loads an image stack. Supports reading TIFF stacks or HDF5 files. Parameters ---------- fov_id : int The FOV id peak_id : int The peak (channel) id. Dummy None value incase color='empty' color : str The image stack type to return. Can be: c1 : phase stack cN : where n is an integer for arbitrary color channel sub : subtracted images seg : segmented images empty : get the empty channel for this fov, slightly different Returns ------- image_stack : np.ndarray The image stack through time. Shape is (t, y, x) ''' # things are slightly different for empty channels if 'empty' in color: if params['output'] == 'TIFF': img_filename = params['experiment_name'] + '_xy%03d_%s.tif' % (fov_id, color) with tiff.TiffFile(os.path.join(params['empty_dir'],img_filename)) as tif: img_stack = tif.asarray() if params['output'] == 'HDF5': with h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r') as h5f: img_stack = h5f[color][:] return img_stack # load normal images for either TIFF or HDF5 if params['output'] == 'TIFF': if color[0] == 'c': img_dir = params['chnl_dir'] elif 'sub' in color: img_dir = params['sub_dir'] elif 'foci' in color: img_dir = params['foci_seg_dir'] elif 'seg' in color: img_dir = params['seg_dir'] img_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, color) with tiff.TiffFile(os.path.join(img_dir, img_filename)) as tif: img_stack = tif.asarray() if params['output'] == 'HDF5': with h5py.File(os.path.join(params['hdf5_dir'], 'xy%03d.hdf5' % fov_id), 'r') as h5f: # normal naming # need to use [:] to get a copy, else it references the closed hdf5 dataset img_stack = h5f['channel_%04d/p%04d_%s' % (peak_id, peak_id, color)][:] return img_stack # load the time table and add it to the global params def load_time_table(): '''Add the time table dictionary to the params global dictionary. This is so it can be used during Cell creation. ''' # try first for yaml, then for pkl try: with open(os.path.join(params['ana_dir'], 'time_table.yaml'), 'rb') as time_table_file: params['time_table'] = yaml.safe_load(time_table_file) except: with open(os.path.join(params['ana_dir'], 'time_table.pkl'), 'rb') as time_table_file: params['time_table'] = pickle.load(time_table_file) return # function for loading the channel masks def load_channel_masks(): '''Load channel masks dictionary. Should be .yaml but try pickle too. ''' information("Loading channel masks dictionary.") # try loading from .yaml before .pkl try: information('Path:', os.path.join(params['ana_dir'], 'channel_masks.yaml')) with open(os.path.join(params['ana_dir'], 'channel_masks.yaml'), 'r') as cmask_file: channel_masks = yaml.safe_load(cmask_file) except: warning('Could not load channel masks dictionary from .yaml.') try: information('Path:', os.path.join(params['ana_dir'], 'channel_masks.pkl')) with open(os.path.join(params['ana_dir'], 'channel_masks.pkl'), 'rb') as cmask_file: channel_masks = pickle.load(cmask_file) except ValueError: warning('Could not load channel masks dictionary from .pkl.') return channel_masks # function for loading the specs file def load_specs(): '''Load specs file which indicates which channels should be analyzed, used as empties, or ignored.''' try: with open(os.path.join(params['ana_dir'], 'specs.yaml'), 'r') as specs_file: specs = yaml.safe_load(specs_file) except: try: with open(os.path.join(params['ana_dir'], 'specs.pkl'), 'rb') as specs_file: specs = pickle.load(specs_file) except ValueError: warning('Could not load specs file.') return specs ### functions for dealing with raw TIFF images # get params is the major function which processes raw TIFF images def get_initial_tif_params(image_filename): '''This is a function for getting the information out of an image for later trap identification, cropping, and aligning with Unet. It loads a tiff file and pulls out the image metadata. it returns a dictionary like this for each image: 'filename': image_filename, 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jdn' : image_metadata['jdn'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'plane_names' : image_metadata['plane_names'] # list of plane names Called by mm3_Compile.py __main__ Calls mm3.extract_metadata mm3.find_channels ''' try: # open up file and get metadata with tiff.TiffFile(os.path.join(params['TIFF_dir'],image_filename)) as tif: image_data = tif.asarray() #print(image_data.shape) # uncomment for debug #if len(image_data.shape) == 2: # img_shape = [image_data.shape[0],image_data.shape[1]] #else: img_shape = [image_data.shape[1],image_data.shape[2]] plane_list = [str(i+1) for i in range(image_data.shape[0])] #print(plane_list) # uncomment for debug if params['TIFF_source'] == 'elements': image_metadata = get_tif_metadata_elements(tif) elif params['TIFF_source'] == 'nd2ToTIFF': image_metadata = get_tif_metadata_nd2ToTIFF(tif) else: image_metadata = get_tif_metadata_filename(tif) information('Analyzed %s' % image_filename) # return the file name, the data for the channels in that image, and the metadata return {'filepath': os.path.join(params['TIFF_dir'], image_filename), 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jd' : image_metadata['jd'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'planes' : plane_list, # list of plane names 'shape' : img_shape} # image shape x y in pixels except: warning('Failed get_params for ' + image_filename.split("/")[-1]) print(sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.print_tb(sys.exc_info()[2])) return {'filepath': os.path.join(params['TIFF_dir'],image_filename), 'analyze_success': False} # get params is the major function which processes raw TIFF images def get_tif_params(image_filename, find_channels=True): '''This is a damn important function for getting the information out of an image. It loads a tiff file, pulls out the image data, and the metadata, including the location of the channels if flagged. it returns a dictionary like this for each image: 'filename': image_filename, 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jdn' : image_metadata['jdn'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'plane_names' : image_metadata['plane_names'] # list of plane names 'channels': cp_dict, # dictionary of channel locations, in the case of Unet-based channel segmentation, it's a dictionary of channel labels Called by mm3_Compile.py __main__ Calls mm3.extract_metadata mm3.find_channels ''' try: # open up file and get metadata with tiff.TiffFile(os.path.join(params['TIFF_dir'],image_filename)) as tif: image_data = tif.asarray() if params['TIFF_source'] == 'elements': image_metadata = get_tif_metadata_elements(tif) elif params['TIFF_source'] == 'nd2ToTIFF': image_metadata = get_tif_metadata_nd2ToTIFF(tif) else: image_metadata = get_tif_metadata_filename(tif) # look for channels if flagged if find_channels: # fix the image orientation and get the number of planes image_data = fix_orientation(image_data) # if the image data has more than 1 plane restrict image_data to phase, # which should have highest mean pixel data if len(image_data.shape) > 2: #ph_index = np.argmax([np.mean(image_data[ci]) for ci in range(image_data.shape[0])]) ph_index = int(params['phase_plane'][1:]) - 1 image_data = image_data[ph_index] # get shape of single plane img_shape = [image_data.shape[0], image_data.shape[1]] # find channels on the processed image chnl_loc_dict = find_channel_locs(image_data) information('Analyzed %s' % image_filename) # return the file name, the data for the channels in that image, and the metadata return {'filepath': os.path.join(params['TIFF_dir'], image_filename), 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jd' : image_metadata['jd'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'planes' : image_metadata['planes'], # list of plane names 'shape' : img_shape, # image shape x y in pixels # 'channels' : {1 : {'A' : 1, 'B' : 2}, 2 : {'C' : 3, 'D' : 4}}} 'channels' : chnl_loc_dict} # dictionary of channel locations except: warning('Failed get_params for ' + image_filename.split("/")[-1]) print(sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.print_tb(sys.exc_info()[2])) return {'filepath': os.path.join(params['TIFF_dir'],image_filename), 'analyze_success': False} # finds metdata in a tiff image which has been expoted with Nikon Elements. def get_tif_metadata_elements(tif): '''This function pulls out the metadata from a tif file and returns it as a dictionary. This if tiff files as exported by Nikon Elements as a stacked tiff, each for one tpoint. tif is an opened tif file (using the package tifffile) arguments: fname (tifffile.TiffFile): TIFF file object from which data will be extracted returns: dictionary of values: 'jdn' (float) 'x' (float) 'y' (float) 'plane_names' (list of strings) Called by mm3.Compile ''' # image Metadata idata = { 'fov': -1, 't' : -1, 'jd': -1 * 0.0, 'x': -1 * 0.0, 'y': -1 * 0.0, 'planes': []} # get the fov and t simply from the file name idata['fov'] = int(tif.fname.split('xy')[1].split('.tif')[0]) idata['t'] = int(tif.fname.split('xy')[0].split('t')[-1]) # a page is plane, or stack, in the tiff. The other metdata is hidden down in there. for page in tif: for tag in page.tags.values(): #print("Checking tag",tag.name,tag.value) t = tag.name, tag.value t_string = u"" time_string = u"" # Interesting tag names: 65330, 65331 (binary data; good stuff), 65332 # we wnat to work with the tag of the name 65331 # if the tag name is not in the set of tegs we find interesting then skip this cycle of the loop if tag.name not in ('65331', '65332', 'strip_byte_counts', 'image_width', 'orientation', 'compression', 'new_subfile_type', 'fill_order', 'max_sample_value', 'bits_per_sample', '65328', '65333'): #print("*** " + tag.name) #print(tag.value) pass #if tag.name == '65330': # return tag.value if tag.name in ('65331'): # make info list a list of the tag values 0 to 65535 by zipoing up a paired list of two bytes, at two byte intervals i.e. fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b # note that 0X100 is hex for 256 infolist = [a+b*0x100 for a,b in zip(tag.value[0::2], tag.value[1::2])] # get char values for each element in infolist for c_entry in range(0, len(infolist)): # the element corresponds to an ascii char for a letter or bracket (and a few other things) if infolist[c_entry] < 127 and infolist[c_entry] > 64: # add the letter to the unicode string t_string t_string += chr(infolist[c_entry]) #elif infolist[c_entry] == 0: # continue else: t_string += " " # this block will find the dTimeAbsolute and print the subsequent integers # index 170 is counting seconds, and rollover of index 170 leads to increment of index 171 # rollover of index 171 leads to increment of index 172 # get the position of the array by finding the index of the t_string at which dTimeAbsolute is listed not that 2*len(dTimeAbsolute)=26 #print(t_string) arraypos = t_string.index("dXPos") * 2 + 16 xarr = tag.value[arraypos:arraypos+4] b = ''.join(chr(i) for i in xarr) idata['x'] = float(struct.unpack('<f', b)[0]) arraypos = t_string.index("dYPos") * 2 + 16 yarr = tag.value[arraypos:arraypos+4] b = ''.join(chr(i) for i in yarr) idata['y'] = float(struct.unpack('<f', b)[0]) arraypos = t_string.index("dTimeAbsolute") * 2 + 26 shortarray = tag.value[arraypos+2:arraypos+10] b = ''.join(chr(i) for i in shortarray) idata['jd'] = float(struct.unpack('<d', b)[0]) # extract plane names il = [a+b*0x100 for a,b in zip(tag.value[0::2], tag.value[1::2])] li = [a+b*0x100 for a,b in zip(tag.value[1::2], tag.value[2::2])] strings = list(zip(il, li)) allchars = "" for c_entry in range(0, len(strings)): if 31 < strings[c_entry][0] < 127: allchars += chr(strings[c_entry][0]) elif 31 < strings[c_entry][1] < 127: allchars += chr(strings[c_entry][1]) else: allchars += " " allchars = re.sub(' +',' ', allchars) words = allchars.split(" ") planes = [] for idx in [i for i, x in enumerate(words) if x == "sOpticalConfigName"]: planes.append(words[idx+1]) idata['planes'] = planes return idata # finds metdata in a tiff image which has been expoted with nd2ToTIFF.py. def get_tif_metadata_nd2ToTIFF(tif): '''This function pulls out the metadata from a tif file and returns it as a dictionary. This if tiff files as exported by the mm3 function mm3_nd2ToTIFF.py. All the metdata is found in that script and saved in json format to the tiff, so it is simply extracted here Paramters: tif: TIFF file object from which data will be extracted Returns: dictionary of values: 'fov': int, 't' : int, 'jdn' (float) 'x' (float) 'y' (float) 'planes' (list of strings) Called by mm3_Compile.get_tif_params ''' # get the first page of the tiff and pull out image description # this dictionary should be in the above form for tag in tif.pages[0].tags: if tag.name=="ImageDescription": idata=tag.value break #print(idata) idata = json.loads(idata) return idata # Finds metadata from the filename def get_tif_metadata_filename(tif): '''This function pulls out the metadata from a tif file and returns it as a dictionary. This just gets the tiff metadata from the filename and is a backup option when the known format of the metadata is not known. Paramters: tif: TIFF file object from which data will be extracted Returns: dictionary of values: 'fov': int, 't' : int, 'jdn' (float) 'x' (float) 'y' (float) Called by mm3_Compile.get_tif_params ''' idata = {'fov' : get_fov(tif.filename), # fov id 't' : get_time(tif.filename), # time point 'jd' : -1 * 0.0, # absolute julian time 'x' : -1 * 0.0, # x position on stage [um] 'y' : -1 * 0.0} # y position on stage [um] return idata # make a lookup time table for converting nominal time to elapsed time in seconds def make_time_table(analyzed_imgs): ''' Loops through the analyzed images and uses the jd time in the metadata to find the elapsed time in seconds that each picture was taken. This is later used for more accurate elongation rate calculation. Parametrs --------- analyzed_imgs : dict The output of get_tif_params. params['use_jd'] : boolean If set to True, 'jd' time will be used from the image metadata to use to create time table. Otherwise the 't' index will be used, and the parameter 'seconds_per_time_index' will be used from the parameters.yaml file to convert to seconds. Returns ------- time_table : dict Look up dictionary with keys for the FOV and then the time point. ''' information('Making time table...') # initialize time_table = {} first_time = float('inf') # need to go through the data once to find the first time for iname, idata in six.iteritems(analyzed_imgs): if params['use_jd']: if idata['jd'] < first_time: first_time = idata['jd'] else: if idata['t'] < first_time: first_time = idata['t'] # init dictionary for specific times per FOV if idata['fov'] not in time_table: time_table[idata['fov']] = {} for iname, idata in six.iteritems(analyzed_imgs): if params['use_jd']: # convert jd time to elapsed time in seconds t_in_seconds = np.around((idata['jd'] - first_time) * 24*60*60, decimals=0).astype('uint32') else: t_in_seconds = np.around((idata['t'] - first_time) * params['moviemaker']['seconds_per_time_index'], decimals=0).astype('uint32') time_table[int(idata['fov'])][int(idata['t'])] = int(t_in_seconds) # save to .pkl. This pkl will be loaded into the params # with open(os.path.join(params['ana_dir'], 'time_table.pkl'), 'wb') as time_table_file: # pickle.dump(time_table, time_table_file, protocol=pickle.HIGHEST_PROTOCOL) # with open(os.path.join(params['ana_dir'], 'time_table.txt'), 'w') as time_table_file: # pprint(time_table, stream=time_table_file) with open(os.path.join(params['ana_dir'], 'time_table.yaml'), 'w') as time_table_file: yaml.dump(data=time_table, stream=time_table_file, default_flow_style=False, tags=None) information('Time table saved.') return time_table # saves traps sliced via Unet def save_tiffs(imgDict, analyzed_imgs, fov_id): savePath = os.path.join(params['experiment_directory'], params['analysis_directory'], params['chnl_dir']) img_names = [key for key in analyzed_imgs.keys()] image_params = analyzed_imgs[img_names[0]] for peak,img in six.iteritems(imgDict): img = img.astype('uint16') if not os.path.isdir(savePath): os.mkdir(savePath) for planeNumber in image_params['planes']: channel_filename = os.path.join(savePath, params['experiment_name'] + '_xy{0:0=3}_p{1:0=4}_c{2}.tif'.format(fov_id, peak, planeNumber)) io.imsave(channel_filename, img[:,:,:,int(planeNumber)-1]) # slice_and_write cuts up the image files one at a time and writes them out to tiff stacks def tiff_stack_slice_and_write(images_to_write, channel_masks, analyzed_imgs): '''Writes out 4D stacks of TIFF images per channel. Loads all tiffs from and FOV into memory and then slices all time points at once. Called by __main__ ''' # make an array of images and then concatenate them into one big stack image_fov_stack = [] # go through list of images and get the file path for n, image in enumerate(images_to_write): # analyzed_imgs dictionary will be found in main scope. [0] is the key, [1] is jd image_params = analyzed_imgs[image[0]] information("Loading %s." % image_params['filepath'].split('/')[-1]) if n == 1: # declare identification variables for saving using first image fov_id = image_params['fov'] # load the tif and store it in array with tiff.TiffFile(image_params['filepath']) as tif: image_data = tif.asarray() # channel finding was also done on images after orientation was fixed image_data = fix_orientation(image_data) # add additional axis if the image is flat if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, 0) # change axis so it goes Y, X, Plane image_data = np.rollaxis(image_data, 0, 3) # add it to list. The images should be in time order image_fov_stack.append(image_data) # concatenate the list into one big ass stack image_fov_stack = np.stack(image_fov_stack, axis=0) # cut out the channels as per channel masks for this fov for peak, channel_loc in six.iteritems(channel_masks[fov_id]): #information('Slicing and saving channel peak %s.' % channel_filename.split('/')[-1]) information('Slicing and saving channel peak %d.' % peak) # channel masks should only contain ints, but you can use this for hard fix # for i in range(len(channel_loc)): # for j in range(len(channel_loc[i])): # channel_loc[i][j] = int(channel_loc[i][j]) # slice out channel. # The function should recognize the shape length as 4 and cut all time points channel_stack = cut_slice(image_fov_stack, channel_loc) # save a different time stack for all colors for color_index in range(channel_stack.shape[3]): # this is the filename for the channel # # chnl_dir and p will be looked for in the scope above (__main__) channel_filename = os.path.join(params['chnl_dir'], params['experiment_name'] + '_xy%03d_p%04d_c%1d.tif' % (fov_id, peak, color_index+1)) # save stack tiff.imsave(channel_filename, channel_stack[:,:,:,color_index], compress=4) return # saves traps sliced via Unet to an hdf5 file def save_hdf5(imgDict, img_names, analyzed_imgs, fov_id, channel_masks): '''Writes out 4D stacks of images to an HDF5 file. Called by mm3_Compile.py ''' savePath = params['hdf5_dir'] if not os.path.isdir(savePath): os.mkdir(savePath) img_times = [analyzed_imgs[key]['t'] for key in img_names] img_jds = [analyzed_imgs[key]['jd'] for key in img_names] fov_ids = [analyzed_imgs[key]['fov'] for key in img_names] # get image_params from first image from current fov image_params = analyzed_imgs[img_names[0]] # establish some variables for hdf5 attributes fov_id = image_params['fov'] x_loc = image_params['x'] y_loc = image_params['y'] image_shape = image_params['shape'] image_planes = image_params['planes'] fov_channel_masks = channel_masks[fov_id] with h5py.File(os.path.join(savePath,'{}_xy{:0=2}.hdf5'.format(params['experiment_name'],fov_id)), 'w', libver='earliest') as h5f: # add in metadata for this FOV # these attributes should be common for all channel h5f.attrs.create('fov_id', fov_id) h5f.attrs.create('stage_x_loc', x_loc) h5f.attrs.create('stage_y_loc', y_loc) h5f.attrs.create('image_shape', image_shape) # encoding is because HDF5 has problems with numpy unicode h5f.attrs.create('planes', [plane.encode('utf8') for plane in image_planes]) h5f.attrs.create('peaks', sorted([key for key in imgDict.keys()])) # this is for things that change across time, for these create a dataset img_names = np.asarray(img_names) img_names = np.expand_dims(img_names, 1) img_names = img_names.astype('S100') h5ds = h5f.create_dataset(u'filenames', data=img_names, chunks=True, maxshape=(None, 1), dtype='S100', compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times', data=np.expand_dims(img_times, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times_jd', data=np.expand_dims(img_jds, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) # cut out the channels as per channel masks for this fov for peak,channel_stack in six.iteritems(imgDict): channel_stack = channel_stack.astype('uint16') # create group for this trap h5g = h5f.create_group('channel_%04d' % peak) # add attribute for peak_id, channel location # add attribute for peak_id, channel location h5g.attrs.create('peak_id', peak) channel_loc = fov_channel_masks[peak] h5g.attrs.create('channel_loc', channel_loc) # save a different dataset for all colors for color_index in range(channel_stack.shape[3]): # create the dataset for the image. Review docs for these options. h5ds = h5g.create_dataset(u'p%04d_c%1d' % (peak, color_index+1), data=channel_stack[:,:,:,color_index], chunks=(1, channel_stack.shape[1], channel_stack.shape[2]), maxshape=(None, channel_stack.shape[1], channel_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # h5ds.attrs.create('plane', image_planes[color_index].encode('utf8')) # write the data even though we have more to write (free up memory) h5f.flush() return # same thing as tiff_stack_slice_and_write but do it for hdf5 def hdf5_stack_slice_and_write(images_to_write, channel_masks, analyzed_imgs): '''Writes out 4D stacks of TIFF images to an HDF5 file. Called by __main__ ''' # make an array of images and then concatenate them into one big stack image_fov_stack = [] # make arrays for filenames and times image_filenames = [] image_times = [] # times is still an integer but may be indexed arbitrarily image_jds = [] # jds = julian dates (times) # go through list of images, load and fix them, and create arrays of metadata for n, image in enumerate(images_to_write): image_name = image[0] # [0] is the key, [1] is jd # analyzed_imgs dictionary will be found in main scope. image_params = analyzed_imgs[image_name] information("Loading %s." % image_params['filepath'].split('/')[-1]) # add information to metadata arrays image_filenames.append(image_name) image_times.append(image_params['t']) image_jds.append(image_params['jd']) # declare identification variables for saving using first image if n == 1: # same across fov fov_id = image_params['fov'] x_loc = image_params['x'] y_loc = image_params['y'] image_shape = image_params['shape'] image_planes = image_params['planes'] # load the tif and store it in array with tiff.TiffFile(image_params['filepath']) as tif: image_data = tif.asarray() # channel finding was also done on images after orientation was fixed image_data = fix_orientation(image_data) # add additional axis if the image is flat if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, 0) #change axis so it goes X, Y, Plane image_data = np.rollaxis(image_data, 0, 3) # add it to list. The images should be in time order image_fov_stack.append(image_data) # concatenate the list into one big ass stack image_fov_stack = np.stack(image_fov_stack, axis=0) # create the HDF5 file for the FOV, first time this is being done. with h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'w', libver='earliest') as h5f: # add in metadata for this FOV # these attributes should be common for all channel h5f.attrs.create('fov_id', fov_id) h5f.attrs.create('stage_x_loc', x_loc) h5f.attrs.create('stage_y_loc', y_loc) h5f.attrs.create('image_shape', image_shape) # encoding is because HDF5 has problems with numpy unicode h5f.attrs.create('planes', [plane.encode('utf8') for plane in image_planes]) h5f.attrs.create('peaks', sorted(channel_masks[fov_id].keys())) # this is for things that change across time, for these create a dataset h5ds = h5f.create_dataset(u'filenames', data=np.expand_dims(image_filenames, 1), chunks=True, maxshape=(None, 1), dtype='S100', compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times', data=np.expand_dims(image_times, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times_jd', data=np.expand_dims(image_jds, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) # cut out the channels as per channel masks for this fov for peak, channel_loc in six.iteritems(channel_masks[fov_id]): #information('Slicing and saving channel peak %s.' % channel_filename.split('/')[-1]) information('Slicing and saving channel peak %d.' % peak) # create group for this channel h5g = h5f.create_group('channel_%04d' % peak) # add attribute for peak_id, channel location h5g.attrs.create('peak_id', peak) h5g.attrs.create('channel_loc', channel_loc) # channel masks should only contain ints, but you can use this for a hard fix # for i in range(len(channel_loc)): # for j in range(len(channel_loc[i])): # channel_loc[i][j] = int(channel_loc[i][j]) # slice out channel. # The function should recognize the shape length as 4 and cut all time points channel_stack = cut_slice(image_fov_stack, channel_loc) # save a different dataset for all colors for color_index in range(channel_stack.shape[3]): # create the dataset for the image. Review docs for these options. h5ds = h5g.create_dataset(u'p%04d_c%1d' % (peak, color_index+1), data=channel_stack[:,:,:,color_index], chunks=(1, channel_stack.shape[1], channel_stack.shape[2]), maxshape=(None, channel_stack.shape[1], channel_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # h5ds.attrs.create('plane', image_planes[color_index].encode('utf8')) # write the data even though we have more to write (free up memory) h5f.flush() return def tileImage(img, subImageNumber): divisor = int(np.sqrt(subImageNumber)) M = img.shape[0]//divisor N = img.shape[0]//divisor print(img.shape, M, N, divisor, subImageNumber) ans = ([img[x:x+M,y:y+N] for x in range(0,img.shape[0],M) for y in range(0,img.shape[1],N)]) tiles=[] for m in ans: if m.shape[0]==512 and m.shape[1]==512: tiles.append(m) tiles=np.asarray(tiles) #print(tiles) return(tiles) def get_weights(img, subImageNumber): divisor = int(np.sqrt(subImageNumber)) M = img.shape[0]//divisor N = img.shape[0]//divisor weights = np.ones((img.shape[0],img.shape[1]),dtype='uint8') for i in range(divisor-1): weights[(M*(i+1))-25:(M*(i+1)+25),:] = 0 weights[:,(N*(i+1))-25:(N*(i+1)+25)] = 0 return(weights) def permute_image(img, trap_align_metadata): # are there three dimensions? if len(img.shape) == 3: if img.shape[0] < 3: # for tifs with fewer than three imageing channels, the first dimension separates channels # img = np.transpose(img, (1,2,0)) img = img[trap_align_metadata['phase_plane_index'],:,:] # grab just the phase channel else: img = img[:,:,trap_align_metadata['phase_plane_index']] # grab just the phase channel return(img) def imageConcatenatorFeatures(imgStack, subImageNumber = 64): rowNumPerImage = int(np.sqrt(subImageNumber)) # here I'm assuming our large images are square, with equal number of crops in each dimension #print(rowNumPerImage) imageNum = int(imgStack.shape[0]/subImageNumber) # total number of sub-images divided by the number of sub-images in each original large image iterNum = int(imageNum*rowNumPerImage) imageDims = int(np.sqrt(imgStack.shape[1]*imgStack.shape[2]*subImageNumber)) featureNum = int(imgStack.shape[3]) bigImg = np.zeros(shape=(imageNum, imageDims, imageDims, featureNum), dtype='float32') # create array to store reconstructed images featureRowDicts = [] for j in range(featureNum): rowDict = {} for i in range(iterNum): baseNum = int(i*iterNum/imageNum) # concatenate columns of 256x256 images to build each 256x2048 row rowDict[i] = np.column_stack((imgStack[baseNum,:,:,j],imgStack[baseNum+1,:,:,j], imgStack[baseNum+2,:,:,j], imgStack[baseNum+3,:,:,j]))#, #imgStack[baseNum+4,:,:,j],imgStack[baseNum+5,:,:,j], #imgStack[baseNum+6,:,:,j],imgStack[baseNum+7,:,:,j])) featureRowDicts.append(rowDict) for j in range(featureNum): for i in range(imageNum): baseNum = int(i*rowNumPerImage) # concatenate appropriate 256x2048 rows to build a 2048x2048 image and place it into bigImg bigImg[i,:,:,j] = np.row_stack((featureRowDicts[j][baseNum],featureRowDicts[j][baseNum+1], featureRowDicts[j][baseNum+2],featureRowDicts[j][baseNum+3]))#, #featureRowDicts[j][baseNum+4],featureRowDicts[j][baseNum+5], #featureRowDicts[j][baseNum+6],featureRowDicts[j][baseNum+7])) return(bigImg) def imageConcatenatorFeatures2(imgStack, subImageNumber = 81): rowNumPerImage = int(np.sqrt(subImageNumber)) # here I'm assuming our large images are square, with equal number of crops in each dimension imageNum = int(imgStack.shape[0]/subImageNumber) # total number of sub-images divided by the number of sub-images in each original large image iterNum = int(imageNum*rowNumPerImage) imageDims = int(np.sqrt(imgStack.shape[1]*imgStack.shape[2]*subImageNumber)) featureNum = int(imgStack.shape[3]) bigImg = np.zeros(shape=(imageNum, imageDims, imageDims, featureNum), dtype='float32') # create array to store reconstructed images featureRowDicts = [] for j in range(featureNum): rowDict = {} for i in range(iterNum): baseNum = int(i*iterNum/imageNum) # concatenate columns of 256x256 images to build each 256x2048 row rowDict[i] = np.column_stack((imgStack[baseNum,:,:,j],imgStack[baseNum+1,:,:,j], imgStack[baseNum+2,:,:,j], imgStack[baseNum+3,:,:,j], imgStack[baseNum+4,:,:,j]))#,imgStack[baseNum+5,:,:,j], #imgStack[baseNum+6,:,:,j],imgStack[baseNum+7,:,:,j], #imgStack[baseNum+8,:,:,j])) featureRowDicts.append(rowDict) for j in range(featureNum): for i in range(imageNum): baseNum = int(i*rowNumPerImage) # concatenate appropriate 256x2048 rows to build a 2048x2048 image and place it into bigImg bigImg[i,:,:,j] = np.row_stack((featureRowDicts[j][baseNum],featureRowDicts[j][baseNum+1], featureRowDicts[j][baseNum+2],featureRowDicts[j][baseNum+3], featureRowDicts[j][baseNum+4]))#,featureRowDicts[j][baseNum+5], #featureRowDicts[j][baseNum+6],featureRowDicts[j][baseNum+7], #featureRowDicts[j][baseNum+8])) return(bigImg) def get_weights_array(arr=np.zeros((2048,2048)), shiftDistance=128, subImageNumber=64, padSubImageNumber=81): originalImageWeights = get_weights(arr, subImageNumber=subImageNumber) shiftLeftWeights = np.pad(originalImageWeights, pad_width=((0,0),(0,shiftDistance)), mode='constant', constant_values=((0,0),(0,0)))[:,shiftDistance:] shiftRightWeights = np.pad(originalImageWeights, pad_width=((0,0),(shiftDistance,0)), mode='constant', constant_values=((0,0),(0,0)))[:,:(-1*shiftDistance)] shiftUpWeights = np.pad(originalImageWeights, pad_width=((0,shiftDistance),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[shiftDistance:,:] shiftDownWeights = np.pad(originalImageWeights, pad_width=((shiftDistance,0),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[:(-1*shiftDistance),:] expandedImageWeights = get_weights(np.zeros((arr.shape[0]+2*shiftDistance,arr.shape[1]+2*shiftDistance)), subImageNumber=padSubImageNumber)[shiftDistance:-shiftDistance,shiftDistance:-shiftDistance] allWeights = np.stack((originalImageWeights, expandedImageWeights, shiftUpWeights, shiftDownWeights, shiftLeftWeights,shiftRightWeights), axis=-1) stackWeights = np.stack((allWeights,allWeights),axis=0) stackWeights = np.stack((stackWeights,stackWeights,stackWeights),axis=3) return(stackWeights) # predicts locations of channels in an image using deep learning model def get_frame_predictions(img,model,stackWeights, shiftDistance=256, subImageNumber=16, padSubImageNumber=25, debug=False): pred = predict_first_image_channels(img, model, shiftDistance=shiftDistance, subImageNumber=subImageNumber, padSubImageNumber=padSubImageNumber, debug=debug)[0,...] # print(pred.shape) if debug: print(pred.shape) compositePrediction = np.average(pred, axis=3, weights=stackWeights) # print(compositePrediction.shape) padSize = (compositePrediction.shape[0]-img.shape[0])//2 compositePrediction = util.crop(compositePrediction,((padSize,padSize), (padSize,padSize), (0,0))) # print(compositePrediction.shape) return(compositePrediction) def apply_median_filter_normalize(imgs): selem = morphology.disk(3) for i in range(imgs.shape[0]): # Store sample tmpImg = imgs[i,:,:,0] medImg = median(tmpImg, selem) tmpImg = medImg/np.max(medImg) tmpImg = np.expand_dims(tmpImg, axis=-1) imgs[i,:,:,:] = tmpImg return(imgs) def predict_first_image_channels(img, model, subImageNumber=16, padSubImageNumber=25, shiftDistance=128, batchSize=1, debug=False): imgSize = img.shape[0] padSize = (2048-imgSize)//2 # how much to pad on each side to get up to 2048x2048? imgStack = np.pad(img, pad_width=((padSize,padSize),(padSize,padSize)), mode='constant', constant_values=((0,0),(0,0))) # pad the images to make them 2048x2048 # pad the stack by 128 pixels on each side to get complemetary crops that I can run the network on. This # should help me fill in low-confidence regions where the crop boundaries were for the original image imgStackExpand = np.pad(imgStack, pad_width=((shiftDistance,shiftDistance),(shiftDistance,shiftDistance)), mode='constant', constant_values=((0,0),(0,0))) imgStackShiftRight = np.pad(imgStack, pad_width=((0,0),(0,shiftDistance)), mode='constant', constant_values=((0,0),(0,0)))[:,shiftDistance:] imgStackShiftLeft = np.pad(imgStack, pad_width=((0,0),(shiftDistance,0)), mode='constant', constant_values=((0,0),(0,0)))[:,:-shiftDistance] imgStackShiftDown = np.pad(imgStack, pad_width=((0,shiftDistance),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[shiftDistance:,:] imgStackShiftUp = np.pad(imgStack, pad_width=((shiftDistance,0),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[:-shiftDistance,:] #print(imgStackShiftUp.shape) crops = tileImage(imgStack, subImageNumber=subImageNumber) print("Crops: ", crops.shape) crops = np.expand_dims(crops, -1) data_gen_args = {'batch_size':params['compile']['channel_prediction_batch_size'], 'n_channels':1, 'normalize_to_one':True, 'shuffle':False} predict_gen_args = {'verbose':1, 'use_multiprocessing':True, 'workers':params['num_analyzers']} img_generator = TrapSegmentationDataGenerator(crops, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) prediction = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) #print(prediction.shape) cropsExpand = tileImage(imgStackExpand, subImageNumber=padSubImageNumber) cropsExpand = np.expand_dims(cropsExpand, -1) img_generator = TrapSegmentationDataGenerator(cropsExpand, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionExpand = imageConcatenatorFeatures2(predictions, subImageNumber=padSubImageNumber) predictionExpand = util.crop(predictionExpand, ((0,0),(shiftDistance,shiftDistance),(shiftDistance,shiftDistance),(0,0))) #print(predictionExpand.shape) cropsShiftLeft = tileImage(imgStackShiftLeft, subImageNumber=subImageNumber) cropsShiftLeft = np.expand_dims(cropsShiftLeft, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftLeft, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionLeft = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionLeft = np.pad(predictionLeft, pad_width=((0,0),(0,0),(0,shiftDistance),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:,shiftDistance:,:] #print(predictionLeft.shape) cropsShiftRight = tileImage(imgStackShiftRight, subImageNumber=subImageNumber) cropsShiftRight = np.expand_dims(cropsShiftRight, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftRight, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionRight = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionRight = np.pad(predictionRight, pad_width=((0,0),(0,0),(shiftDistance,0),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:,:(-1*shiftDistance),:] #print(predictionRight.shape) cropsShiftUp = tileImage(imgStackShiftUp, subImageNumber=subImageNumber) #print(cropsShiftUp.shape) cropsShiftUp = np.expand_dims(cropsShiftUp, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftUp, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionUp = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionUp = np.pad(predictionUp, pad_width=((0,0),(0,shiftDistance),(0,0),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,shiftDistance:,:,:] #print(predictionUp.shape) cropsShiftDown = tileImage(imgStackShiftDown, subImageNumber=subImageNumber) cropsShiftDown = np.expand_dims(cropsShiftDown, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftDown, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionDown = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionDown = np.pad(predictionDown, pad_width=((0,0),(shiftDistance,0),(0,0),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:(-1*shiftDistance),:,:] #print(predictionDown.shape) allPredictions = np.stack((prediction, predictionExpand, predictionUp, predictionDown, predictionLeft, predictionRight), axis=-1) return(allPredictions) # takes initial U-net centroids for trap locations, and creats bounding boxes for each trap at the defined height and width def get_frame_trap_bounding_boxes(trapLabels, trapProps, trapAreaThreshold=2000, trapWidth=27, trapHeight=256): badTrapLabels = [reg.label for reg in trapProps if reg.area < trapAreaThreshold] # filter out small "trap" regions goodTraps = trapLabels.copy() for label in badTrapLabels: goodTraps[goodTraps == label] = 0 # re-label bad traps as background (0) goodTrapProps = measure.regionprops(goodTraps) trapCentroids = [(int(np.round(reg.centroid[0])),int(np.round(reg.centroid[1]))) for reg in goodTrapProps] # get centroids as integers trapBboxes = [] for centroid in trapCentroids: rowIndex = centroid[0] colIndex = centroid[1] minRow = rowIndex-trapHeight//2 maxRow = rowIndex+trapHeight//2 minCol = colIndex-trapWidth//2 maxCol = colIndex+trapWidth//2 if trapWidth % 2 != 0: maxCol += 1 coordArray = np.array([minRow,maxRow,minCol,maxCol]) # remove any traps at edges of image if np.any(coordArray > goodTraps.shape[0]): continue if np.any(coordArray < 0): continue trapBboxes.append((minRow,minCol,maxRow,maxCol)) return(trapBboxes) # this function performs image alignment as defined by the shifts passed as an argument def crop_traps(fileNames, trapProps, labelledTraps, bboxesDict, trap_align_metadata): frameNum = trap_align_metadata['frame_count'] channelNum = trap_align_metadata['plane_number'] trapImagesDict = {key:np.zeros((frameNum, trap_align_metadata['trap_height'], trap_align_metadata['trap_width'], channelNum)) for key in bboxesDict} trapClosedEndPxDict = {} flipImageDict = {} trapMask = labelledTraps for frame in range(frameNum): if (frame+1) % 20 == 0: print("Cropping trap regions for frame number {} of {}.".format(frame+1, frameNum)) imgPath = os.path.join(params['experiment_directory'],params['image_directory'],fileNames[frame]) fullFrameImg = io.imread(imgPath) if len(fullFrameImg.shape) == 3: if fullFrameImg.shape[0] < 3: # for tifs with less than three imaging channels, the first dimension separates channels fullFrameImg = np.transpose(fullFrameImg, (1,2,0)) trapClosedEndPxDict[fileNames[frame]] = {key:{} for key in bboxesDict.keys()} for key in trapImagesDict.keys(): bbox = bboxesDict[key][frame] trapImagesDict[key][frame,:,:,:] = fullFrameImg[bbox[0]:bbox[2],bbox[1]:bbox[3],:] #tmpImg = np.reshape(fullFrameImg[trapMask==key], (trapHeight,trapWidth,channelNum)) if frame == 0: medianProfile = np.median(trapImagesDict[key][frame,:,:,0],axis=1) # get intensity of middle column of trap maxIntensityRow = np.argmax(medianProfile) if maxIntensityRow > trap_align_metadata['trap_height']//2: flipImageDict[key] = 0 else: flipImageDict[key] = 1 if flipImageDict[key] == 1: trapImagesDict[key][frame,:,:,:] = trapImagesDict[key][frame,::-1,:,:] trapClosedEndPxDict[fileNames[frame]][key]['closed_end_px'] = bbox[0] trapClosedEndPxDict[fileNames[frame]][key]['open_end_px'] = bbox[2] else: trapClosedEndPxDict[fileNames[frame]][key]['closed_end_px'] = bbox[2] trapClosedEndPxDict[fileNames[frame]][key]['open_end_px'] = bbox[0] continue return(trapImagesDict, trapClosedEndPxDict) # gets shifted bounding boxes to crop traps through time def shift_bounding_boxes(bboxesDict, shifts, imgSize): bboxesShiftDict = {} for key in bboxesDict.keys(): bboxesShiftDict[key] = [] bboxes = bboxesDict[key] for i in range(shifts.shape[0]): if i == 0: bboxesShiftDict[key].append(bboxes) else: minRow = bboxes[0]+shifts[i,0] minCol = bboxes[1]+shifts[i,1] maxRow = bboxes[2]+shifts[i,0] maxCol = bboxes[3]+shifts[i,1] bboxesShiftDict[key].append((minRow, minCol, maxRow, maxCol)) if np.any(np.asarray([minRow,minCol,maxRow,maxCol]) < 0): print("channel {} removed: out of frame".format(key)) del bboxesShiftDict[key] break if np.any(np.asarray([minRow,minCol,maxRow,maxCol]) > imgSize): print("channel {} removed: out of frame".format(key)) del bboxesShiftDict[key] break return(bboxesShiftDict) # finds the location of channels in a tif def find_channel_locs(image_data): '''Finds the location of channels from a phase contrast image. The channels are returned in a dictionary where the key is the x position of the channel in pixel and the value is a dicionary with the open and closed end in pixels in y. Called by mm3_Compile.get_tif_params ''' # declare temp variables from yaml parameter dict. chan_w = params['compile']['channel_width'] chan_sep = params['compile']['channel_separation'] crop_wp = int(params['compile']['channel_width_pad'] + chan_w/2) chan_snr = params['compile']['channel_detection_snr'] # Detect peaks in the x projection (i.e. find the channels) projection_x = image_data.sum(axis=0).astype(np.int32) # find_peaks_cwt is a function which attempts to find the peaks in a 1-D array by # convolving it with a wave. here the wave is the default Mexican hat wave # but the minimum signal to noise ratio is specified # *** The range here should be a parameter or changed to a fraction. peaks = find_peaks_cwt(projection_x, np.arange(chan_w-5,chan_w+5), min_snr=chan_snr) # If the left-most peak position is within half of a channel separation, # discard the channel from the list. if peaks[0] < (chan_sep / 2): peaks = peaks[1:] # If the diference between the right-most peak position and the right edge # of the image is less than half of a channel separation, discard the channel. if image_data.shape[1] - peaks[-1] < (chan_sep / 2): peaks = peaks[:-1] # Find the average channel ends for the y-projected image projection_y = image_data.sum(axis=1) # find derivative, must use int32 because it was unsigned 16b before. proj_y_d = np.diff(projection_y.astype(np.int32)) # use the top third to look for closed end, is pixel location of highest deriv onethirdpoint_y = int(projection_y.shape[0]/3.0) default_closed_end_px = proj_y_d[:onethirdpoint_y].argmax() # use bottom third to look for open end, pixel location of lowest deriv twothirdpoint_y = int(projection_y.shape[0]*2.0/3.0) default_open_end_px = twothirdpoint_y + proj_y_d[twothirdpoint_y:].argmin() default_length = default_open_end_px - default_closed_end_px # used for checks # go through peaks and assign information # dict for channel dimensions chnl_loc_dict = {} # key is peak location, value is dict with {'closed_end_px': px, 'open_end_px': px} for peak in peaks: # set defaults chnl_loc_dict[peak] = {'closed_end_px': default_closed_end_px, 'open_end_px': default_open_end_px} # redo the previous y projection finding with just this channel channel_slice = image_data[:, peak-crop_wp:peak+crop_wp] slice_projection_y = channel_slice.sum(axis = 1) slice_proj_y_d = np.diff(slice_projection_y.astype(np.int32)) slice_closed_end_px = slice_proj_y_d[:onethirdpoint_y].argmax() slice_open_end_px = twothirdpoint_y + slice_proj_y_d[twothirdpoint_y:].argmin() slice_length = slice_open_end_px - slice_closed_end_px # check if these values make sense. If so, use them. If not, use default # make sure lenght is not 30 pixels bigger or smaller than default # *** This 15 should probably be a parameter or at least changed to a fraction. if slice_length + 15 < default_length or slice_length - 15 > default_length: continue # make sure ends are greater than 15 pixels from image edge if slice_closed_end_px < 15 or slice_open_end_px > image_data.shape[0] - 15: continue # if you made it to this point then update the entry chnl_loc_dict[peak] = {'closed_end_px' : slice_closed_end_px, 'open_end_px' : slice_open_end_px} return chnl_loc_dict # make masks from initial set of images (same images as clusters) def make_masks(analyzed_imgs): ''' Make masks goes through the channel locations in the image metadata and builds a consensus Mask for each image per fov, which it returns as dictionary named channel_masks. The keys in this dictionary are fov id, and the values is a another dictionary. This dict's keys are channel locations (peaks) and the values is a [2][2] array: [[minrow, maxrow],[mincol, maxcol]] of pixel locations designating the corner of each mask for each channel on the whole image One important consequence of these function is that the channel ids and the size of the channel slices are decided now. Updates to mask must coordinate with these values. Parameters analyzed_imgs : dict image information created by get_params Returns channel_masks : dict dictionary of consensus channel masks. Called By mm3_Compile.py Calls ''' information("Determining initial channel masks...") # declare temp variables from yaml parameter dict. crop_wp = int(params['compile']['channel_width_pad'] + params['compile']['channel_width']/2) chan_lp = int(params['compile']['channel_length_pad']) #intiaize dictionary channel_masks = {} # get the size of the images (hope they are the same) for img_k in analyzed_imgs.keys(): img_v = analyzed_imgs[img_k] image_rows = img_v['shape'][0] # x pixels image_cols = img_v['shape'][1] # y pixels break # just need one. using iteritems mean the whole dict doesn't load # get the fov ids fovs = [] for img_k in analyzed_imgs.keys(): img_v = analyzed_imgs[img_k] if img_v['fov'] not in fovs: fovs.append(img_v['fov']) # max width and length across all fovs. channels will get expanded by these values # this important for later updates to the masks, which should be the same max_chnl_mask_len = 0 max_chnl_mask_wid = 0 # for each fov make a channel_mask dictionary from consensus mask for fov in fovs: # initialize a the dict and consensus mask channel_masks_1fov = {} # dict which holds channel masks {peak : [[y1, y2],[x1,x2]],...} consensus_mask = np.zeros([image_rows, image_cols]) # mask for labeling # bring up information for each image for img_k in analyzed_imgs.keys(): img_v = analyzed_imgs[img_k] # skip this one if it is not of the current fov if img_v['fov'] != fov: continue # for each channel in each image make a single mask img_chnl_mask = np.zeros([image_rows, image_cols]) # and add the channel mask to it for chnl_peak, peak_ends in six.iteritems(img_v['channels']): # pull out the peak location and top and bottom location # and expand by padding (more padding done later for width) x1 = max(chnl_peak - crop_wp, 0) x2 = min(chnl_peak + crop_wp, image_cols) y1 = max(peak_ends['closed_end_px'] - chan_lp, 0) y2 = min(peak_ends['open_end_px'] + chan_lp, image_rows) # add it to the mask for this image img_chnl_mask[y1:y2, x1:x2] = 1 # add it to the consensus mask consensus_mask += img_chnl_mask # Normalize concensus mask between 0 and 1. consensus_mask = consensus_mask.astype('float32') / float(np.amax(consensus_mask)) # threshhold and homogenize each channel mask within the mask, label them # label when value is above 0.1 (so 90% occupancy), transpose. # the [0] is for the array ([1] is the number of regions) # It transposes and then transposes again so regions are labeled left to right # clear border it to make sure the channels are off the edge consensus_mask = ndi.label(consensus_mask)[0] # go through each label for label in np.unique(consensus_mask): if label == 0: # label zero is the background continue binary_core = consensus_mask == label # clean up the rough edges poscols = np.any(binary_core, axis = 0) # column positions where true (any) posrows = np.any(binary_core, axis = 1) # row positions where true (any) # channel_id givin by horizontal position # this is important. later updates to the positions will have to check # if their channels contain this median value to match up channel_id = int(np.median(np.where(poscols)[0])) # store the edge locations of the channel mask in the dictionary. Will be ints min_row = np.min(np.where(posrows)[0]) max_row = np.max(np.where(posrows)[0]) min_col = np.min(np.where(poscols)[0]) max_col = np.max(np.where(poscols)[0]) # if the min/max cols are within the image bounds, # add the mask, as 4 points, to the dictionary if min_col > 0 and max_col < image_cols: channel_masks_1fov[channel_id] = [[min_row, max_row], [min_col, max_col]] # find the largest channel width and height while you go round max_chnl_mask_len = int(max(max_chnl_mask_len, max_row - min_row)) max_chnl_mask_wid = int(max(max_chnl_mask_wid, max_col - min_col)) # add channel_mask dictionary to the fov dictionary, use copy to play it safe channel_masks[fov] = channel_masks_1fov.copy() # update all channel masks to be the max size cm_copy = channel_masks.copy() for fov, peaks in six.iteritems(channel_masks): # f_id = int(fov) for peak, chnl_mask in six.iteritems(peaks): # p_id = int(peak) # just add length to the open end (bottom of image, low column) if chnl_mask[0][1] - chnl_mask[0][0] != max_chnl_mask_len: cm_copy[fov][peak][0][1] = chnl_mask[0][0] + max_chnl_mask_len # enlarge widths around the middle, but make sure you don't get floats if chnl_mask[1][1] - chnl_mask[1][0] != max_chnl_mask_wid: wid_diff = max_chnl_mask_wid - (chnl_mask[1][1] - chnl_mask[1][0]) if wid_diff % 2 == 0: cm_copy[fov][peak][1][0] = max(chnl_mask[1][0] - wid_diff/2, 0) cm_copy[fov][peak][1][1] = min(chnl_mask[1][1] + wid_diff/2, image_cols - 1) else: cm_copy[fov][peak][1][0] = max(chnl_mask[1][0] - (wid_diff-1)/2, 0) cm_copy[fov][peak][1][1] = min(chnl_mask[1][1] + (wid_diff+1)/2, image_cols - 1) # convert all values to ints chnl_mask[0][0] = int(chnl_mask[0][0]) chnl_mask[0][1] = int(chnl_mask[0][1]) chnl_mask[1][0] = int(chnl_mask[1][0]) chnl_mask[1][1] = int(chnl_mask[1][1]) # cm_copy[fov][peak] = {'y_top': chnl_mask[0][0], # 'y_bot': chnl_mask[0][1], # 'x_left': chnl_mask[1][0], # 'x_right': chnl_mask[1][1]} # print(type(cm_copy[fov][peak][1][0]), cm_copy[fov][peak][1][0]) #save the channel mask dictionary to a pickle and a text file # with open(os.path.join(params['ana_dir'], 'channel_masks.pkl'), 'wb') as cmask_file: # pickle.dump(cm_copy, cmask_file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(params['ana_dir'], 'channel_masks.txt'), 'w') as cmask_file: pprint(cm_copy, stream=cmask_file) with open(os.path.join(params['ana_dir'], 'channel_masks.yaml'), 'w') as cmask_file: yaml.dump(data=cm_copy, stream=cmask_file, default_flow_style=False, tags=None) information("Channel masks saved.") return cm_copy # get each fov_id, peak_id, frame's mask bounding box from bounding boxes arrived at by convolutional neural network def make_channel_masks_CNN(bboxes_dict): ''' The keys in this dictionary are peak_ids and the values of each is an array of shape (frameNumber,2,2): Each frameNumber's 2x2 slice of the array represents the given peak_id's [[minrow, maxrow],[mincol, maxcol]]. One important consequence of these function is that the channel ids and the size of the channel slices are decided now. Updates to mask must coordinate with these values. Parameters analyzed_imgs : dict image information created by get_params Returns channel_masks : dict dictionary of consensus channel masks. Called By mm3_Compile.py Calls ''' # initialize the new channel_masks dict channel_masks = {} # reorder elements of tuples in bboxes_dict to match [[minrow, maxrow], [mincol, maxcol]] convention above peak_ids = [peak_id for peak_id in bboxes_dict.keys()] peak_ids.sort() bbox_array = np.zeros((len(bboxes_dict[peak_ids[0]]),2,2), dtype='uint16') for peak_id in peak_ids: # get each frame's bounding boxes for the given peak_id frame_bboxes = bboxes_dict[peak_id] for frame_index in range(len(frame_bboxes)): # replace the values in bbox_array with the proper ones from frame_bboxes minrow = frame_bboxes[frame_index][0] maxrow = frame_bboxes[frame_index][2] mincol = frame_bboxes[frame_index][1] maxcol = frame_bboxes[frame_index][3] bbox_array[frame_index,0,0] = minrow bbox_array[frame_index,0,1] = maxrow bbox_array[frame_index,1,0] = mincol bbox_array[frame_index,1,1] = maxcol channel_masks[peak_id] = bbox_array return(channel_masks) ### functions about trimming, padding, and manipulating images # define function for flipping the images on an FOV by FOV basis def fix_orientation(image_data): ''' Fix the orientation. The standard direction for channels to open to is down. called by process_tif get_params ''' # user parameter indicates how things should be flipped image_orientation = params['compile']['image_orientation'] # if this is just a phase image give in an extra layer so rest of code is fine flat = False # flag for if the image is flat or multiple levels if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, 0) flat = True # setting image_orientation to 'auto' will use autodetection if image_orientation == "auto": # use 'phase_plane' to find the phase plane in image_data, assuming c1, c2, c3... naming scheme here. try: ph_channel = int(re.search('[0-9]', params['phase_plane']).group(0)) - 1 except: # Pick the plane to analyze with the highest mean px value (should be phase) ph_channel = np.argmax([np.mean(image_data[ci]) for ci in range(image_data.shape[0])]) # flip based on the index of the higest average row value # this should be closer to the opening if np.argmax(image_data[ph_channel].mean(axis = 1)) < image_data[ph_channel].shape[0] / 2: image_data = image_data[:,::-1,:] else: pass # no need to do anything # flip if up is chosen elif image_orientation == "up": return image_data[:,::-1,:] # do not flip the images if "down is the specified image orientation" elif image_orientation == "down": pass if flat: image_data = image_data[0] # just return that first layer return image_data # cuts out channels from the image def cut_slice(image_data, channel_loc): '''Takes an image and cuts out the channel based on the slice location slice location is the list with the peak information, in the form [][y1, y2],[x1, x2]]. Returns the channel slice as a numpy array. The numpy array will be a stack if there are multiple planes. if you want to slice all the channels from a picture with the channel_masks dictionary use a loop like this: for channel_loc in channel_masks[fov_id]: # fov_id is the fov of the image channel_slice = cut_slice[image_pixel_data, channel_loc] # ... do something with the slice NOTE: this function will try to determine what the shape of your image is and slice accordingly. It expects the images are in the order [t, x, y, c]. It assumes images with three dimensions are [x, y, c] not [t, x, y]. ''' # case where image is in form [x, y] if len(image_data.shape) == 2: # make slice object channel_slicer = np.s_[channel_loc[0][0]:channel_loc[0][1], channel_loc[1][0]:channel_loc[1][1]] # case where image is in form [x, y, c] elif len(image_data.shape) == 3: channel_slicer = np.s_[channel_loc[0][0]:channel_loc[0][1], channel_loc[1][0]:channel_loc[1][1],:] # case where image in form [t, x , y, c] elif len(image_data.shape) == 4: channel_slicer = np.s_[:,channel_loc[0][0]:channel_loc[0][1], channel_loc[1][0]:channel_loc[1][1],:] # slice based on appropriate slicer object. channel_slice = image_data[channel_slicer] # pad y of channel if slice happened to be outside of image y_difference = (channel_loc[0][1] - channel_loc[0][0]) - channel_slice.shape[1] if y_difference > 0: paddings = [[0, 0], # t [0, y_difference], # y [0, 0], # x [0, 0]] # c channel_slice = np.pad(channel_slice, paddings, mode='edge') return channel_slice # calculate cross correlation between pixels in channel stack def channel_xcorr(fov_id, peak_id): ''' Function calculates the cross correlation of images in a stack to the first image in the stack. The output is an array that is the length of the stack with the best cross correlation between that image and the first image. The very first value should be 1. ''' pad_size = params['subtract']['alignment_pad'] # Use this number of images to calculate cross correlations number_of_images = 20 # load the phase contrast images image_data = load_stack(fov_id, peak_id, color=params['phase_plane']) # if there are more images than number_of_images, use number_of_images images evenly # spaced across the range if image_data.shape[0] > number_of_images: spacing = int(image_data.shape[0] / number_of_images) image_data = image_data[::spacing,:,:] if image_data.shape[0] > number_of_images: image_data = image_data[:number_of_images,:,:] # we will compare all images to this one, needs to be padded to account for image drift first_img = np.pad(image_data[0,:,:], pad_size, mode='reflect') xcorr_array = [] # array holds cross correlation vaues for img in image_data: # use match_template to find all cross correlations for the # current image against the first image. xcorr_array.append(np.max(match_template(first_img, img))) return xcorr_array ### functions about subtraction # average empty channels from stacks, making another TIFF stack def average_empties_stack(fov_id, specs, color='c1', align=True): '''Takes the fov file name and the peak names of the designated empties, averages them and saves the image Parameters fov_id : int FOV number specs : dict specifies whether a channel should be analyzed (1), used for making an average empty (0), or ignored (-1). color : string Which plane to use. align : boolean Flag that is passed to the worker function average_empties, indicates whether images should be aligned be for averaging (use False for fluorescent images) Returns True if succesful. Saves empty stack to analysis folder ''' information("Creating average empty channel for FOV %d." % fov_id) # get peak ids of empty channels for this fov empty_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 0: # 0 means it should be used for empty empty_peak_ids.append(peak_id) empty_peak_ids = sorted(empty_peak_ids) # sort for repeatability # depending on how many empties there are choose what to do # if there is no empty the user is going to have to copy another empty stack if len(empty_peak_ids) == 0: information("No empty channel designated for FOV %d." % fov_id) return False # if there is just one then you can just copy that channel elif len(empty_peak_ids) == 1: peak_id = empty_peak_ids[0] information("One empty channel (%d) designated for FOV %d." % (peak_id, fov_id)) # load the one phase contrast as the empties avg_empty_stack = load_stack(fov_id, peak_id, color=color) # but if there is more than one empty you need to align and average them per timepoint elif len(empty_peak_ids) > 1: # load the image stacks into memory empty_stacks = [] # list which holds phase image stacks of designated empties for peak_id in empty_peak_ids: # load data and append to list image_data = load_stack(fov_id, peak_id, color=color) empty_stacks.append(image_data) information("%d empty channels designated for FOV %d." % (len(empty_stacks), fov_id)) # go through time points and create list of averaged empties avg_empty_stack = [] # list will be later concatentated into numpy array time_points = range(image_data.shape[0]) # index is time for t in time_points: # get images from one timepoint at a time and send to alignment and averaging imgs = [stack[t] for stack in empty_stacks] avg_empty = average_empties(imgs, align=align) # function is in mm3 avg_empty_stack.append(avg_empty) # concatenate list and then save out to tiff stack avg_empty_stack = np.stack(avg_empty_stack, axis=0) # save out data if params['output'] == 'TIFF': # make new name and save it empty_filename = params['experiment_name'] + '_xy%03d_empty_%s.tif' % (fov_id, color) tiff.imsave(os.path.join(params['empty_dir'],empty_filename), avg_empty_stack, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # delete the dataset if it exists (important for debug) if 'empty_%s' % color in h5f: del h5f[u'empty_%s' % color] # the empty channel should be it's own dataset h5ds = h5f.create_dataset(u'empty_%s' % color, data=avg_empty_stack, chunks=(1, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), maxshape=(None, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # give attribute which says which channels contribute h5ds.attrs.create('empty_channels', empty_peak_ids) h5f.close() information("Saved empty channel for FOV %d." % fov_id) return True # averages a list of empty channels def average_empties(imgs, align=True): ''' This function averages a set of images (empty channels) and returns a single image of the same size. It first aligns the images to the first image before averaging. Alignment is done by enlarging the first image using edge padding. Subsequent images are then aligned to this image and the offset recorded. These images are padded such that they are the same size as the first (padded) image but with the image in the correct (aligned) place. Edge padding is again used. The images are then placed in a stack and aveaged. This image is trimmed so it is the size of the original images Called by average_empties_stack ''' aligned_imgs = [] # list contains the aligned, padded images if align: # pixel size to use for padding (ammount that alignment could be off) pad_size = params['subtract']['alignment_pad'] for n, img in enumerate(imgs): # if this is the first image, pad it and add it to the stack if n == 0: ref_img = np.pad(img, pad_size, mode='reflect') # padded reference image aligned_imgs.append(ref_img) # otherwise align this image to the first padded image else: # find correlation between a convolution of img against the padded reference match_result = match_template(ref_img, img) # find index of highest correlation (relative to top left corner of img) y, x = np.unravel_index(np.argmax(match_result), match_result.shape) # pad img so it aligns and is the same size as reference image pad_img = np.pad(img, ((y, ref_img.shape[0] - (y + img.shape[0])), (x, ref_img.shape[1] - (x + img.shape[1]))), mode='reflect') aligned_imgs.append(pad_img) else: # don't align, just link the names to go forward easily aligned_imgs = imgs # stack the aligned data along 3rd axis aligned_imgs = np.dstack(aligned_imgs) # get a mean image along 3rd axis avg_empty = np.nanmean(aligned_imgs, axis=2) # trim off the padded edges (only if images were alinged, otherwise there was no padding) if align: avg_empty = avg_empty[pad_size:-1*pad_size, pad_size:-1*pad_size] # change type back to unsigned 16 bit not floats avg_empty = avg_empty.astype(dtype='uint16') return avg_empty # this function is used when one FOV doesn't have an empty def copy_empty_stack(from_fov, to_fov, color='c1'): '''Copy an empty stack from one FOV to another''' # load empty stack from one FOV information('Loading empty stack from FOV {} to save for FOV {}.'.format(from_fov, to_fov)) avg_empty_stack = load_stack(from_fov, 0, color='empty_{}'.format(color)) # save out data if params['output'] == 'TIFF': # make new name and save it empty_filename = params['experiment_name'] + '_xy%03d_empty_%s.tif' % (to_fov, color) tiff.imsave(os.path.join(params['empty_dir'],empty_filename), avg_empty_stack, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % to_fov), 'r+') # delete the dataset if it exists (important for debug) if 'empty_%s' % color in h5f: del h5f[u'empty_%s' % color] # the empty channel should be it's own dataset h5ds = h5f.create_dataset(u'empty_%s' % color, data=avg_empty_stack, chunks=(1, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), maxshape=(None, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # give attribute which says which channels contribute. Just put 0 h5ds.attrs.create('empty_channels', [0]) h5f.close() information("Saved empty channel for FOV %d." % to_fov) # Do subtraction for an fov over many timepoints def subtract_fov_stack(fov_id, specs, color='c1', method='phase'): ''' For a given FOV, loads the precomputed empty stack and does subtraction on all peaks in the FOV designated to be analyzed Parameters ---------- color : string, 'c1', 'c2', etc. This is the channel to subtraction. will be appended to the word empty. Called by mm3_Subtract.py Calls mm3.subtract_phase ''' information('Subtracting peaks for FOV %d.' % fov_id) # load empty stack feed dummy peak number to get empty avg_empty_stack = load_stack(fov_id, 0, color='empty_{}'.format(color)) # determine which peaks are to be analyzed ana_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: # 0 means it should be used for empty, -1 is ignore ana_peak_ids.append(peak_id) ana_peak_ids = sorted(ana_peak_ids) # sort for repeatability information("Subtracting %d channels for FOV %d." % (len(ana_peak_ids), fov_id)) # just break if there are to peaks to analize if not ana_peak_ids: return False # load images for the peak and get phase images for peak_id in ana_peak_ids: information('Subtracting peak %d.' % peak_id) image_data = load_stack(fov_id, peak_id, color=color) # make a list for all time points to send to a multiprocessing pool # list will length of image_data with tuples (image, empty) subtract_pairs = zip(image_data, avg_empty_stack) # # set up multiprocessing pool to do subtraction. Should wait until finished # pool = Pool(processes=params['num_analyzers']) # if method == 'phase': # subtracted_imgs = pool.map(subtract_phase, subtract_pairs, chunksize=10) # elif method == 'fluor': # subtracted_imgs = pool.map(subtract_fluor, subtract_pairs, chunksize=10) # pool.close() # tells the process nothing more will be added. # pool.join() # blocks script until everything has been processed and workers exit # linear loop for debug subtracted_imgs = [subtract_phase(subtract_pair) for subtract_pair in subtract_pairs] # stack them up along a time axis subtracted_stack = np.stack(subtracted_imgs, axis=0) # save out the subtracted stack if params['output'] == 'TIFF': sub_filename = params['experiment_name'] + '_xy%03d_p%04d_sub_%s.tif' % (fov_id, peak_id, color) tiff.imsave(os.path.join(params['sub_dir'],sub_filename), subtracted_stack, compress=4) # save it if fov_id==1 and peak_id<50: napari.current_viewer().add_image(subtracted_stack, name='Subtracted' + '_xy1_p'+str(peak_id)+'_sub_'+str(color)+'.tif', visible=True) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put subtracted channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_sub_%s' % (peak_id, color) in h5g: del h5g['p%04d_sub_%s' % (peak_id, color)] h5ds = h5g.create_dataset(u'p%04d_sub_%s' % (peak_id, color), data=subtracted_stack, chunks=(1, subtracted_stack.shape[1], subtracted_stack.shape[2]), maxshape=(None, subtracted_stack.shape[1], subtracted_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) information("Saved subtracted channel %d." % peak_id) if params['output'] == 'HDF5': h5f.close() return True # subtracts one phase contrast image from another. def subtract_phase(image_pair): '''subtract_phase aligns and subtracts a . Modified from subtract_phase_only by jt on 20160511 The subtracted image returned is the same size as the image given. It may however include data points around the edge that are meaningless but not marked. We align the empty channel to the phase channel, then subtract. Parameters image_pair : tuple of length two with; (image, empty_mean) Returns channel_subtracted : np.array The subtracted image Called by subtract_fov_stack ''' # get out data and pad cropped_channel, empty_channel = image_pair # [channel slice, empty slice] # this is for aligning the empty channel to the cell channel. ### Pad cropped channel. pad_size = params['subtract']['alignment_pad'] # pixel size to use for padding (ammount that alignment could be off) padded_chnl = np.pad(cropped_channel, pad_size, mode='reflect') # ### Align channel to empty using match template. # use match template to get a correlation array and find the position of maximum overlap match_result = match_template(padded_chnl, empty_channel) # get row and colum of max correlation value in correlation array y, x = np.unravel_index(np.argmax(match_result), match_result.shape) # pad the empty channel according to alignment to be overlayed on padded channel. empty_paddings = [[y, padded_chnl.shape[0] - (y + empty_channel.shape[0])], [x, padded_chnl.shape[1] - (x + empty_channel.shape[1])]] aligned_empty = np.pad(empty_channel, empty_paddings, mode='reflect') # now trim it off so it is the same size as the original channel aligned_empty = aligned_empty[pad_size:-1*pad_size, pad_size:-1*pad_size] ### Compute the difference between the empty and channel phase contrast images # subtract cropped cell image from empty channel. channel_subtracted = aligned_empty.astype('int32') - cropped_channel.astype('int32') # channel_subtracted = cropped_channel.astype('int32') - aligned_empty.astype('int32') # just zero out anything less than 0. This is what Sattar does channel_subtracted[channel_subtracted < 0] = 0 channel_subtracted = channel_subtracted.astype('uint16') # change back to 16bit return channel_subtracted # subtract one fluorescence image from another. def subtract_fluor(image_pair): ''' subtract_fluor does a simple subtraction of one image to another. Unlike subtract_phase, there is no alignment. Also, the empty channel is subtracted from the full channel. Parameters image_pair : tuple of length two with; (image, empty_mean) Returns channel_subtracted : np.array The subtracted image. Called by subtract_fov_stack ''' # get out data and pad cropped_channel, empty_channel = image_pair # [channel slice, empty slice] # check frame size of cropped channel and background, always keep crop channel size the same crop_size = np.shape(cropped_channel)[:2] empty_size = np.shape(empty_channel)[:2] if crop_size != empty_size: if crop_size[0] > empty_size[0] or crop_size[1] > empty_size[1]: pad_row_length = max(crop_size[0] - empty_size[0], 0) # prevent negatives pad_column_length = max(crop_size[1] - empty_size[1], 0) empty_channel = np.pad(empty_channel, [[np.int(.5*pad_row_length), pad_row_length-np.int(.5*pad_row_length)], [np.int(.5*pad_column_length), pad_column_length-np.int(.5*pad_column_length)], [0,0]], 'edge') # mm3.information('size adjusted 1') empty_size = np.shape(empty_channel)[:2] if crop_size[0] < empty_size[0] or crop_size[1] < empty_size[1]: empty_channel = empty_channel[:crop_size[0], :crop_size[1],] ### Compute the difference between the empty and channel phase contrast images # subtract cropped cell image from empty channel. channel_subtracted = cropped_channel.astype('int32') - empty_channel.astype('int32') # channel_subtracted = cropped_channel.astype('int32') - aligned_empty.astype('int32') # just zero out anything less than 0. channel_subtracted[channel_subtracted < 0] = 0 channel_subtracted = channel_subtracted.astype('uint16') # change back to 16bit return channel_subtracted ### functions that deal with segmentation and lineages # Do segmentation for an channel time stack def segment_chnl_stack(fov_id, peak_id): ''' For a given fov and peak (channel), do segmentation for all images in the subtracted .tif stack. Called by mm3_Segment.py Calls mm3.segment_image ''' information('Segmenting FOV %d, channel %d.' % (fov_id, peak_id)) # load subtracted images sub_stack = load_stack(fov_id, peak_id, color='sub_{}'.format(params['phase_plane'])) # set up multiprocessing pool to do segmentation. Will do everything before going on. #pool = Pool(processes=params['num_analyzers']) # send the 3d array to multiprocessing #segmented_imgs = pool.map(segment_image, sub_stack, chunksize=8) #pool.close() # tells the process nothing more will be added. #pool.join() # blocks script until everything has been processed and workers exit # image by image for debug segmented_imgs = [] for sub_image in sub_stack: segmented_imgs.append(segment_image(sub_image)) # stack them up along a time axis segmented_imgs = np.stack(segmented_imgs, axis=0) segmented_imgs = segmented_imgs.astype('uint8') # save out the segmented stack if params['output'] == 'TIFF': seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img']) tiff.imsave(os.path.join(params['seg_dir'],seg_filename), segmented_imgs, compress=5) if fov_id==1 and peak_id<50: napari.current_viewer().add_image(segmented_imgs, name='Segmented' + '_xy1_p'+str(peak_id)+'_sub_'+str(params['seg_img'])+'.tif', visible=True) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put segmented channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g: del h5g['p%04d_%s' % (peak_id, params['seg_img'])] h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']), data=segmented_imgs, chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]), maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]), compression="gzip", shuffle=True, fletcher32=True) h5f.close() information("Saved segmented channel %d." % peak_id) return True # segmentation algorithm def segment_image(image): '''Segments a subtracted image and returns a labeled image Parameters image : a ndarray which is an image. This should be the subtracted image Returns labeled_image : a ndarray which is also an image. Labeled values, which should correspond to cells, all have the same integer value starting with 1. Non labeled area should have value zero. ''' # load in segmentation parameters OTSU_threshold = params['segment']['otsu']['OTSU_threshold'] first_opening_size = params['segment']['otsu']['first_opening_size'] distance_threshold = params['segment']['otsu']['distance_threshold'] second_opening_size = params['segment']['otsu']['second_opening_size'] min_object_size = params['segment']['otsu']['min_object_size'] # threshold image try: thresh = threshold_otsu(image) # finds optimal OTSU threshhold value except: return np.zeros_like(image) threshholded = image > OTSU_threshold*thresh # will create binary image # if there are no cells, good to clear the border # because otherwise the OTSU is just for random bullshit, most # likely on the side of the image threshholded = segmentation.clear_border(threshholded) # Opening = erosion then dialation. # opening smooths images, breaks isthmuses, and eliminates protrusions. # "opens" dark gaps between bright features. morph = morphology.binary_opening(threshholded, morphology.disk(first_opening_size)) # if this image is empty at this point (likely if there were no cells), just return # zero array if np.amax(morph) == 0: return np.zeros_like(image) ### Calculate distance matrix, use as markers for random walker (diffusion watershed) # Generate the markers based on distance to the background distance = ndi.distance_transform_edt(morph) # threshold distance image distance_thresh = np.zeros_like(distance) distance_thresh[distance < distance_threshold] = 0 distance_thresh[distance >= distance_threshold] = 1 # do an extra opening on the distance distance_opened = morphology.binary_opening(distance_thresh, morphology.disk(second_opening_size)) # remove artifacts connected to image border cleared = segmentation.clear_border(distance_opened) # remove small objects. Remove small objects wants a # labeled image and will fail if there is only one label. Return zero image in that case # could have used try/except but remove_small_objects loves to issue warnings. cleared, label_num = morphology.label(cleared, connectivity=1, return_num=True) if label_num > 1: cleared = morphology.remove_small_objects(cleared, min_size=min_object_size) else: # if there are no labels, then just return the cleared image as it is zero return np.zeros_like(image) # relabel now that small objects and labels on edges have been cleared markers = morphology.label(cleared, connectivity=1) # just break if there is no label if np.amax(markers) == 0: return np.zeros_like(image) # the binary image for the watershed, which uses the unmodified OTSU threshold threshholded_watershed = threshholded threshholded_watershed = segmentation.clear_border(threshholded_watershed) # label using the random walker (diffusion watershed) algorithm try: # set anything outside of OTSU threshold to -1 so it will not be labeled markers[threshholded_watershed == 0] = -1 # here is the main algorithm labeled_image = segmentation.random_walker(-1*image, markers) # put negative values back to zero for proper image labeled_image[labeled_image == -1] = 0 except: return np.zeros_like(image) return labeled_image # loss functions for model def dice_coeff(y_true, y_pred): smooth = 1. # Flatten y_true_f = tf.reshape(y_true, [-1]) y_pred_f = tf.reshape(y_pred, [-1]) intersection = tf.reduce_sum(y_true_f * y_pred_f) score = (2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth) return score def dice_loss(y_true, y_pred): loss = 1 - dice_coeff(y_true, y_pred) return loss def bce_dice_loss(y_true, y_pred): loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) return loss def tversky_loss(y_true, y_pred): alpha = 0.5 beta = 0.5 ones = K.ones((512,512,3)) #K.ones(K.shape(y_true)) p0 = y_pred # proba that voxels are class i p1 = ones-y_pred # proba that voxels are not class i g0 = y_true g1 = ones-y_true num = K.sum(p0*g0, (0,1,2)) den = num + alpha*K.sum(p0*g1,(0,1,2)) + beta*K.sum(p1*g0,(0,1,2)) T = K.sum(num/den) # when summing over classes, T has dynamic range [0 Ncl] Ncl = K.cast(K.shape(y_true)[-1], 'float32') return Ncl-T def cce_tversky_loss(y_true, y_pred): loss = losses.categorical_crossentropy(y_true, y_pred) + tversky_loss(y_true, y_pred) return loss def get_pad_distances(unet_shape, img_height, img_width): '''Finds padding and trimming sizes to make the input image the same as the size expected by the U-net model. Padding is done evenly to the top and bottom of the image. Trimming is only done from the right or bottom. ''' half_width_pad = (unet_shape[1]-img_width)/2 if half_width_pad > 0: left_pad = int(np.floor(half_width_pad)) right_pad = int(np.ceil(half_width_pad)) right_trim = 0 else: left_pad = 0 right_pad = 0 right_trim = img_width - unet_shape[1] half_height_pad = (unet_shape[0]-img_height)/2 if half_height_pad > 0: top_pad = int(np.floor(half_height_pad)) bottom_pad = int(np.ceil(half_height_pad)) bottom_trim = 0 else: top_pad = 0 bottom_pad = 0 bottom_trim = img_height - unet_shape[0] pad_dict = {'top_pad' : top_pad, 'bottom_pad' : bottom_pad, 'right_pad' : right_pad, 'left_pad' : left_pad, 'bottom_trim' : bottom_trim, 'right_trim' : right_trim} return pad_dict #@profile def segment_cells_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model): batch_size = params['segment']['batch_size'] cellClassThreshold = params['segment']['cell_class_threshold'] if cellClassThreshold == 'None': # yaml imports None as a string cellClassThreshold = False min_object_size = params['segment']['min_object_size'] # arguments to data generator # data_gen_args = {'batch_size':batch_size, # 'n_channels':1, # 'normalize_to_one':False, # 'shuffle':False} # arguments to predict_generator predict_args = dict(use_multiprocessing=True, workers=params['num_analyzers'], verbose=1) for peak_id in ana_peak_ids: information('Segmenting peak {}.'.format(peak_id)) img_stack = load_stack(fov_id, peak_id, color=params['phase_plane']) if params['segment']['normalize_to_one']: med_stack = np.zeros(img_stack.shape) selem = morphology.disk(1) for frame_idx in range(img_stack.shape[0]): tmpImg = img_stack[frame_idx,...] med_stack[frame_idx,...] = median(tmpImg, selem) # robust normalization of peak's image stack to 1 max_val = np.max(med_stack) img_stack = img_stack/max_val img_stack[img_stack > 1] = 1 # trim and pad image to correct size img_stack = img_stack[:, :unet_shape[0], :unet_shape[1]] img_stack = np.pad(img_stack, ((0,0), (pad_dict['top_pad'],pad_dict['bottom_pad']), (pad_dict['left_pad'],pad_dict['right_pad'])), mode='constant') img_stack = np.expand_dims(img_stack, -1) # TF expects images to be 4D # set up image generator # image_generator = CellSegmentationDataGenerator(img_stack, **data_gen_args) image_datagen = ImageDataGenerator() image_generator = image_datagen.flow(x=img_stack, batch_size=batch_size, shuffle=False) # keep same order # predict cell locations. This has multiprocessing built in but I need to mess with the parameters to see how to best utilize it. *** predictions = model.predict_generator(image_generator, **predict_args) # post processing # remove padding including the added last dimension predictions = predictions[:, pad_dict['top_pad']:unet_shape[0]-pad_dict['bottom_pad'], pad_dict['left_pad']:unet_shape[1]-pad_dict['right_pad'], 0] # pad back incase the image had been trimmed predictions = np.pad(predictions, ((0,0), (0,pad_dict['bottom_trim']), (0,pad_dict['right_trim'])), mode='constant') if params['segment']['save_predictions']: pred_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['pred_img']) if not os.path.isdir(params['pred_dir']): os.makedirs(params['pred_dir']) int_preds = (predictions * 255).astype('uint8') tiff.imsave(os.path.join(params['pred_dir'], pred_filename), int_preds, compress=4) # binarized and label (if there is a threshold value, otherwise, save a grayscale for debug) if cellClassThreshold: predictions[predictions >= cellClassThreshold] = 1 predictions[predictions < cellClassThreshold] = 0 predictions = predictions.astype('uint8') segmented_imgs = np.zeros(predictions.shape, dtype='uint8') # process and label each frame of the channel for frame in range(segmented_imgs.shape[0]): # get rid of small holes predictions[frame,:,:] = morphology.remove_small_holes(predictions[frame,:,:], min_object_size) # get rid of small objects. predictions[frame,:,:] = morphology.remove_small_objects(morphology.label(predictions[frame,:,:], connectivity=1), min_size=min_object_size) # remove labels which touch the boarder predictions[frame,:,:] = segmentation.clear_border(predictions[frame,:,:]) # relabel now segmented_imgs[frame,:,:] = morphology.label(predictions[frame,:,:], connectivity=1) else: # in this case you just want to scale the 0 to 1 float image to 0 to 255 information('Converting predictions to grayscale.') segmented_imgs = np.around(predictions * 100) # both binary and grayscale should be 8bit. This may be ensured above and is unneccesary segmented_imgs = segmented_imgs.astype('uint8') # save out the segmented stacks if params['output'] == 'TIFF': seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img']) tiff.imsave(os.path.join(params['seg_dir'], seg_filename), segmented_imgs, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put segmented channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g: del h5g['p%04d_%s' % (peak_id, params['seg_img'])] h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']), data=segmented_imgs, chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]), maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]), compression="gzip", shuffle=True, fletcher32=True) h5f.close() #@profile def segment_fov_unet(fov_id, specs, model, color=None): ''' Segments the channels from one fov using the U-net CNN model. Parameters ---------- fov_id : int specs : dict model : TensorFlow model ''' information('Segmenting FOV {} with U-net.'.format(fov_id)) if color is None: color = params['phase_plane'] # load segmentation parameters unet_shape = (params['segment']['trained_model_image_height'], params['segment']['trained_model_image_width']) ### determine stitching of images. # need channel shape, specifically the width. load first for example # this assumes that all channels are the same size for this FOV, which they should for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: break # just break out with the current peak_id img_stack = load_stack(fov_id, peak_id, color=color) img_height = img_stack.shape[1] img_width = img_stack.shape[2] pad_dict = get_pad_distances(unet_shape, img_height, img_width) # dermine how many channels we have to analyze for this FOV ana_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: ana_peak_ids.append(peak_id) ana_peak_ids.sort() # sort for repeatability #ana_peak_ids = ana_peak_ids[:2] segment_cells_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model) information("Finished segmentation for FOV {}.".format(fov_id)) return def segment_foci_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model): # batch_size = params['foci']['batch_size'] focusClassThreshold = params['foci']['focus_threshold'] if focusClassThreshold == 'None': # yaml imports None as a string focusClassThreshold = False # arguments to data generator data_gen_args = {'batch_size':params['foci']['batch_size'], 'n_channels':1, 'normalize_to_one':False, 'shuffle':False} # arguments to predict_generator predict_args = dict(use_multiprocessing=False, # workers=params['num_analyzers'], verbose=1) for peak_id in ana_peak_ids: information('Segmenting foci in peak {}.'.format(peak_id)) # print(peak_id) # debugging a shape error at some traps img_stack = load_stack(fov_id, peak_id, color=params['foci']['foci_plane']) # pad image to correct size img_stack = np.pad(img_stack, ((0,0), (pad_dict['top_pad'],pad_dict['bottom_pad']), (pad_dict['left_pad'],pad_dict['right_pad'])), mode='constant') img_stack = np.expand_dims(img_stack, -1) # set up image generator image_generator = FocusSegmentationDataGenerator(img_stack, **data_gen_args) # predict foci locations. predictions = model.predict_generator(image_generator, **predict_args) # post processing # remove padding including the added last dimension predictions = predictions[:, pad_dict['top_pad']:unet_shape[0]-pad_dict['bottom_pad'], pad_dict['left_pad']:unet_shape[1]-pad_dict['right_pad'], 0] if params['foci']['save_predictions']: pred_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['pred_img']) if not os.path.isdir(params['foci_pred_dir']): os.makedirs(params['foci_pred_dir']) int_preds = (predictions * 255).astype('uint8') tiff.imsave(os.path.join(params['foci_pred_dir'], pred_filename), int_preds, compress=4) # binarized and label (if there is a threshold value, otherwise, save a grayscale for debug) if focusClassThreshold: predictions[predictions >= focusClassThreshold] = 1 predictions[predictions < focusClassThreshold] = 0 predictions = predictions.astype('uint8') segmented_imgs = np.zeros(predictions.shape, dtype='uint8') # process and label each frame of the channel for frame in range(segmented_imgs.shape[0]): # get rid of small holes # predictions[frame,:,:] = morphology.remove_small_holes(predictions[frame,:,:], min_object_size) # get rid of small objects. # predictions[frame,:,:] = morphology.remove_small_objects(morphology.label(predictions[frame,:,:], connectivity=1), min_size=min_object_size) # remove labels which touch the boarder predictions[frame,:,:] = segmentation.clear_border(predictions[frame,:,:]) # relabel now segmented_imgs[frame,:,:] = morphology.label(predictions[frame,:,:], connectivity=2) else: # in this case you just want to scale the 0 to 1 float image to 0 to 255 information('Converting predictions to grayscale.') segmented_imgs = np.around(predictions * 100) # both binary and grayscale should be 8bit. This may be ensured above and is unneccesary segmented_imgs = segmented_imgs.astype('uint8') # save out the segmented stacks if params['output'] == 'TIFF': seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img']) tiff.imsave(os.path.join(params['foci_seg_dir'], seg_filename), segmented_imgs, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put segmented channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g: del h5g['p%04d_%s' % (peak_id, params['seg_img'])] h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']), data=segmented_imgs, chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]), maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]), compression="gzip", shuffle=True, fletcher32=True) h5f.close() def segment_fov_foci_unet(fov_id, specs, model, color=None): ''' Segments the channels from one fov using the U-net CNN model. Parameters ---------- fov_id : int specs : dict model : TensorFlow model ''' information('Segmenting FOV {} with U-net.'.format(fov_id)) if color is None: color = params['phase_plane'] # load segmentation parameters unet_shape = (params['segment']['trained_model_image_height'], params['segment']['trained_model_image_width']) ### determine stitching of images. # need channel shape, specifically the width. load first for example # this assumes that all channels are the same size for this FOV, which they should for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: break # just break out with the current peak_id img_stack = load_stack(fov_id, peak_id, color=color) img_height = img_stack.shape[1] img_width = img_stack.shape[2] # find padding and trimming distances pad_dict = get_pad_distances(unet_shape, img_height, img_width) # timepoints = img_stack.shape[0] # dermine how many channels we have to analyze for this FOV ana_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: ana_peak_ids.append(peak_id) ana_peak_ids.sort() # sort for repeatability k = segment_foci_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model) information("Finished segmentation for FOV {}.".format(fov_id)) return(k) # class for image generation for predicting cell locations in phase-contrast images class CellSegmentationDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, img_array, batch_size=32, n_channels=1, shuffle=False, normalize_to_one=False): 'Initialization' self.dim = (img_array.shape[1], img_array.shape[2]) self.batch_size = batch_size self.img_array = img_array self.img_number = img_array.shape[0] self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(1) def __len__(self): 'Denotes the number of batches per epoch' return(int(np.ceil(self.img_number / self.batch_size))) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs array_list_temp = [self.img_array[k,:,:,0] for k in indexes] # Generate data X = self.__data_generation(array_list_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.img_number) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, array_list_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels)) # Generate data for i in range(self.batch_size): # Store sample try: tmpImg = array_list_temp[i] except IndexError: X = X[:i,...] break # ensure image is uint8 if tmpImg.dtype=="uint16": tmpImg = tmpImg / 2**16 * 2**8 tmpImg = tmpImg.astype('uint8') if self.normalize_to_one: with warnings.catch_warnings(): warnings.simplefilter('ignore') medImg = median(tmpImg, self.selem) tmpImg = tmpImg/np.max(medImg) tmpImg[tmpImg > 1] = 1 X[i,:,:,0] = tmpImg return (X) class TemporalCellDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, fileName, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=False, normalize_to_one=False): 'Initialization' self.dim = dim self.batch_size = batch_size self.fileName = fileName self.n_channels = n_channels self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(1) def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(self.batch_size / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate data X = self.__data_generation() return X def on_epoch_end(self): 'Updates indexes after each epoch' pass def __data_generation(self): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.dim[2], self.n_channels)) full_stack = io.imread(self.fileName) if full_stack.dtype=="uint16": full_stack = full_stack / 2**16 * 2**8 full_stack = full_stack.astype('uint8') img_height = full_stack.shape[1] img_width = full_stack.shape[2] pad_dict = get_pad_distances(self.dim, img_height, img_width) full_stack = np.pad(full_stack, ((0,0), (pad_dict['top_pad'],pad_dict['bottom_pad']), (pad_dict['left_pad'],pad_dict['right_pad']) ), mode='constant') full_stack = full_stack.transpose(1,2,0) # Generate data for i in range(self.batch_size): if i == 0: tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1)) tmpImg[:,:,0,0] = full_stack[:,:,0] for j in range(1,self.dim[2]): tmpImg[:,:,j,0] = full_stack[:,:,j] elif i == (self.batch_size - 1): tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1)) tmpImg[:,:,-1,0] = full_stack[:,:,-1] for j in range(self.dim[2]-1): tmpImg[:,:,j,0] = full_stack[:,:,j] else: tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1)) tmpImg[:,:,:,0] = full_stack[:,:,(i-1):(i+2)] X[i,:,:,:,:] = tmpImg return X # class for image generation for predicting cell locations in phase-contrast images class FocusSegmentationDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, img_array, batch_size=32, n_channels=1, shuffle=False, normalize_to_one=False): 'Initialization' self.dim = (img_array.shape[1], img_array.shape[2]) self.batch_size = batch_size self.img_array = img_array self.img_number = img_array.shape[0] self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(1) def __len__(self): 'Denotes the number of batches per epoch' return(int(np.ceil(self.img_number / self.batch_size))) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs array_list_temp = [self.img_array[k,:,:,0] for k in indexes] # Generate data X = self.__data_generation(array_list_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.img_number) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, array_list_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels), 'uint16') if self.normalize_to_one: max_pixels = [] # Generate data for i in range(self.batch_size): # Store sample try: tmpImg = array_list_temp[i] if self.normalize_to_one: # tmpMedian = filters.median(tmpImg, self.selem) tmpMax = np.max(tmpImg) max_pixels.append(tmpMax) except IndexError: X = X[:i,...] break # ensure image is uint8 # if tmpImg.dtype=="uint16": # tmpImg = tmpImg / 2**16 * 2**8 # tmpImg = tmpImg.astype('uint8') # if self.normalize_to_one: # with warnings.catch_warnings(): # warnings.simplefilter('ignore') # medImg = median(tmpImg, self.selem) # tmpImg = tmpImg/np.max(medImg) # tmpImg[tmpImg > 1] = 1 X[i,:,:,0] = tmpImg if self.normalize_to_one: channel_max = np.max(max_pixels) / (2**8 - 1) # print("Channel max: {}".format(channel_max)) # print("Array max: {}".format(np.max(X))) X = X/channel_max # print("Normalized array max: {}".format(np.max(X))) X[X > 1] = 1 return (X) # class for image generation for predicting trap locations in phase-contrast images class TrapSegmentationDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, img_array, batch_size=32, n_channels=1, normalize_to_one=False, shuffle=False): 'Initialization' self.dim = (img_array.shape[1], img_array.shape[2]) self.img_number = img_array.shape[0] self.img_array = img_array self.batch_size = batch_size self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(3) def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(self.img_number / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs array_list_temp = [self.img_array[k,:,:,0] for k in indexes] # Generate data X = self.__data_generation(array_list_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.img_number) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, array_list_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels)) # Generate data for i in range(self.batch_size): # Store sample try: tmpImg = array_list_temp[i] except IndexError: X = X[:i,...] break if self.normalize_to_one: medImg = median(tmpImg, self.selem) tmpImg = medImg/np.max(medImg) X[i,:,:,0] = tmpImg return (X) # class for image generation for classifying traps as good, empty, out-of-focus, or defective class TrapKymographPredictionDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, list_fileNames, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=False): 'Initialization' self.dim = dim self.batch_size = batch_size self.list_fileNames = list_fileNames self.n_channels = n_channels self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(len(self.list_fileNames) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs list_fileNames_temp = [self.list_fileNames[k] for k in indexes] # Generate data X = self.__data_generation(list_fileNames_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_fileNames)) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, list_fileNames_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels)) # Generate data for i, fName in enumerate(list_fileNames_temp): # Store sample tmpImg = io.imread(fName) tmpImgShape = tmpImg.shape if tmpImgShape[0] < self.dim[0]: t_end = tmpImgShape[0] else: t_end = self.dim[0] X[i,:t_end,:,:] = np.expand_dims(tmpImg[:t_end,:,tmpImg.shape[-1]//2], axis=-1) return X def absolute_diff(y_true, y_pred): y_true_sum = K.sum(y_true) y_pred_sum = K.sum(y_pred) diff = K.abs(y_pred_sum - y_true_sum)/tf.to_float(tf.size(y_true)) return diff def all_loss(y_true, y_pred): loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) + absolute_diff(y_true, y_pred) return loss def absolute_dice_loss(y_true, y_pred): loss = dice_loss(y_true, y_pred) + absolute_diff(y_true, y_pred) return loss def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def f2_m(y_true, y_pred, beta=2): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) numer = (1+beta**2)*recall*precision denom = recall + (beta**2)*precision + K.epsilon() return numer/denom def f_precision_m(y_true, y_pred, beta=0.5): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) numer = (1+beta**2)*recall*precision denom = recall + (beta**2)*precision + K.epsilon() return numer/denom # finds lineages for all peaks in a fov def make_lineages_fov(fov_id, specs): ''' For a given fov, create the lineages from the segmented images. Called by mm3_Segment.py Calls mm3.make_lineage_chnl_stack ''' ana_peak_ids = [] # channels to be analyzed for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: # 1 means analyze ana_peak_ids.append(peak_id) ana_peak_ids = sorted(ana_peak_ids) # sort for repeatability information('Creating lineage for FOV %d with %d channels.' % (fov_id, len(ana_peak_ids))) # just break if there are no peaks to analize if not ana_peak_ids: # returning empty dictionary will add nothing to current cells dictionary return {} # This is a list of tuples (fov_id, peak_id) to send to the Pool command fov_and_peak_ids_list = [(fov_id, peak_id) for peak_id in ana_peak_ids] # set up multiprocessing pool. will complete pool before going on #pool = Pool(processes=params['num_analyzers']) # create the lineages for each peak individually # the output is a list of dictionaries #lineages = pool.map(make_lineage_chnl_stack, fov_and_peak_ids_list, chunksize=8) #pool.close() # tells the process nothing more will be added. #pool.join() # blocks script until everything has been processed and workers exit # This is the non-parallelized version (useful for debug) lineages = [] for fov_and_peak_ids in fov_and_peak_ids_list: lineages.append(make_lineage_chnl_stack(fov_and_peak_ids)) # combine all dictionaries into one dictionary Cells = {} # create dictionary to hold all information for cell_dict in lineages: # for all the other dictionaries in the list Cells.update(cell_dict) # updates Cells with the entries in cell_dict return Cells # get number of cells in each frame and total number of pairwise interactions def get_cell_counts(regionprops_list): cell_count_list = [len(time_regions) for time_regions in regionprops_list] interaction_count_list = [] for i,cell_count in enumerate(cell_count_list): if i+1 == len(cell_count_list): break interaction_count_list.append(cell_count*cell_count_list[i+1]) total_cells = np.sum(cell_count_list) total_interactions = np.sum(interaction_count_list) return(total_cells, total_interactions, cell_count_list, interaction_count_list) # get cells' information for track prediction def gather_interactions_and_events(regionprops_list): total_cells, total_interactions, cell_count_list, interaction_count_list = get_cell_counts(regionprops_list) # instantiate an array with a 2x4 array for each pair of cells' # min_y, max_y, centroid_y, and area # in reality it would be much, much more efficient to # look this information up in the data generator at run time # for now, this will work pairwise_cell_data = np.zeros((total_interactions,2,5,1)) # make a dictionary, the keys of which will be row indices so that we # can quickly look up which timepoints/cells correspond to which # rows of our model's ouput pairwise_cell_lookup = {} # populate arrays interaction_count = 0 cell_count = 0 for frame, frame_regions in enumerate(regionprops_list): for region in frame_regions: cell_label = region.label y,x = region.centroid bbox = region.bbox orientation = region.orientation min_y = bbox[0] max_y = bbox[2] area = region.area cell_label = region.label cell_info = (min_y, max_y, y, area, orientation) cell_count += 1 try: frame_plus_one_regions = regionprops_list[frame+1] except IndexError as e: # print(e) break for region_plus_one in frame_plus_one_regions: paired_cell_label = region_plus_one.label y,x = region_plus_one.centroid bbox = region_plus_one.bbox min_y = bbox[0] max_y = bbox[2] area = region_plus_one.area paired_cell_label = region_plus_one.label pairwise_cell_data[interaction_count,0,:,0] = cell_info pairwise_cell_data[interaction_count,1,:,0] = (min_y, max_y, y, area, orientation) pairwise_cell_lookup[interaction_count] = {'frame':frame, 'cell_label':cell_label, 'paired_cell_label':paired_cell_label} interaction_count += 1 return(pairwise_cell_data, pairwise_cell_lookup) # look up which cells are interacting according to the track model def cell_interaction_lookup(predictions, lookup_table): ''' Accepts prediction matrix and ''' frame = [] cell_label = [] paired_cell_label = [] interaction_type = [] # loop over rows of predictions for row_index in range(predictions.shape[0]): row_predictions = predictions[row_index] row_relationship = np.where(row_predictions > 0.95)[0] if row_relationship.size == 0: continue elif row_relationship[0] == 3: continue elif row_relationship[0] == 0: interaction_type.append('migration') elif row_relationship[0] == 1: interaction_type.append('child') elif row_relationship[0] == 2: interaction_type.append('false_join') frame.append(lookup_table[row_index]['frame']) cell_label.append(lookup_table[row_index]['cell_label']) paired_cell_label.append(lookup_table[row_index]['paired_cell_label']) track_df = pd.DataFrame(data={'frame':frame, 'cell_label':cell_label, 'paired_cell_label':paired_cell_label, 'interaction_type':interaction_type}) return(track_df) def get_tracking_model_dict(): model_dict = {} if not 'migrate_model' in model_dict: model_dict['migrate_model'] = models.load_model(params['tracking']['migrate_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'child_model' in model_dict: model_dict['child_model'] = models.load_model(params['tracking']['child_model'], custom_objects={'bce_dice_loss':bce_dice_loss, 'f2_m':f2_m}) if not 'appear_model' in model_dict: model_dict['appear_model'] = models.load_model(params['tracking']['appear_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'die_model' in model_dict: model_dict['die_model'] = models.load_model(params['tracking']['die_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'disappear_model' in model_dict: model_dict['disappear_model'] = models.load_model(params['tracking']['disappear_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'born_model' in model_dict: model_dict['born_model'] = models.load_model(params['tracking']['born_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) # if not 'zero_cell_model' in model_dict: # model_dict['zero_cell_model'] = models.load_model(params['tracking']['zero_cell_model'], # custom_objects={'absolute_dice_loss':absolute_dice_loss, # 'f2_m':f2_m}) # if not 'one_cell_model' in model_dict: # model_dict['one_cell_model'] = models.load_model(params['tracking']['one_cell_model'], # custom_objects={'bce_dice_loss':bce_dice_loss, # 'f2_m':f2_m}) # if not 'two_cell_model' in model_dict: # model_dict['two_cell_model'] = models.load_model(params['tracking']['two_cell_model'], # custom_objects={'all_loss':all_loss, # 'f2_m':f2_m}) # if not 'geq_three_cell_model' in model_dict: # model_dict['geq_three_cell_model'] = models.load_model(params['tracking']['geq_three_cell_model'], # custom_objects={'bce_dice_loss':bce_dice_loss, # 'f2_m':f2_m}) return(model_dict) # Creates lineage for a single channel def make_lineage_chnl_stack(fov_and_peak_id): ''' Create the lineage for a set of segmented images for one channel. Start by making the regions in the first time points potenial cells. Go forward in time and map regions in the timepoint to the potential cells in previous time points, building the life of a cell. Used basic checks such as the regions should overlap, and grow by a little and not shrink too much. If regions do not link back in time, discard them. If two regions map to one previous region, check if it is a sensible division event. Parameters ---------- fov_and_peak_ids : tuple. (fov_id, peak_id) Returns ------- Cells : dict A dictionary of all the cells from this lineage, divided and undivided ''' # load in parameters # if leaf regions see no action for longer than this, drop them lost_cell_time = params['track']['lost_cell_time'] # only cells with y positions below this value will recieve the honor of becoming new # cells, unless they are daughters of current cells new_cell_y_cutoff = params['track']['new_cell_y_cutoff'] # only regions with labels less than or equal to this value will be considered to start cells new_cell_region_cutoff = params['track']['new_cell_region_cutoff'] # get the specific ids from the tuple fov_id, peak_id = fov_and_peak_id # start time is the first time point for this series of TIFFs. start_time_index = min(params['time_table'][fov_id].keys()) information('Creating lineage for FOV %d, channel %d.' % (fov_id, peak_id)) # load segmented data image_data_seg = load_stack(fov_id, peak_id, color=params['track']['seg_img']) # image_data_seg = load_stack(fov_id, peak_id, color='seg') # Calculate all data for all time points. # this list will be length of the number of time points regions_by_time = [regionprops(label_image=timepoint) for timepoint in image_data_seg] # removed coordinates='xy' # Set up data structures. Cells = {} # Dict that holds all the cell objects, divided and undivided cell_leaves = [] # cell ids of the current leaves of the growing lineage tree # go through regions by timepoint and build lineages # timepoints start with the index of the first image for t, regions in enumerate(regions_by_time, start=start_time_index): # if there are cell leaves who are still waiting to be linked, but # too much time has passed, remove them. for leaf_id in cell_leaves: if t - Cells[leaf_id].times[-1] > lost_cell_time: cell_leaves.remove(leaf_id) # make all the regions leaves if there are no current leaves if not cell_leaves: for region in regions: if region.centroid[0] < new_cell_y_cutoff and region.label <= new_cell_region_cutoff: # Create cell and put in cell dictionary cell_id = create_cell_id(region, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region, t, parent_id=None) # add thes id to list of current leaves cell_leaves.append(cell_id) # Determine if the regions are children of current leaves else: ### create mapping between regions and leaves leaf_region_map = {} leaf_region_map = {leaf_id : [] for leaf_id in cell_leaves} # get the last y position of current leaves and create tuple with the id current_leaf_positions = [(leaf_id, Cells[leaf_id].centroids[-1][0]) for leaf_id in cell_leaves] # go through regions, they will come off in Y position order for r, region in enumerate(regions): # create tuple which is cell_id of closest leaf, distance current_closest = (None, float('inf')) # check this region against all positions of all current leaf regions, # find the closest one in y. for leaf in current_leaf_positions: # calculate distance between region and leaf y_dist_region_to_leaf = abs(region.centroid[0] - leaf[1]) # if the distance is closer than before, update if y_dist_region_to_leaf < current_closest[1]: current_closest = (leaf[0], y_dist_region_to_leaf) # update map with the closest region leaf_region_map[current_closest[0]].append((r, y_dist_region_to_leaf)) # go through the current leaf regions. # limit by the closest two current regions if there are three regions to the leaf for leaf_id, region_links in six.iteritems(leaf_region_map): if len(region_links) > 2: closest_two_regions = sorted(region_links, key=lambda x: x[1])[:2] # but sort by region order so top region is first closest_two_regions = sorted(closest_two_regions, key=lambda x: x[0]) # replace value in dictionary leaf_region_map[leaf_id] = closest_two_regions # for the discarded regions, put them as new leaves # if they are near the closed end of the channel discarded_regions = sorted(region_links, key=lambda x: x[1])[2:] for discarded_region in discarded_regions: region = regions[discarded_region[0]] if region.centroid[0] < new_cell_y_cutoff and region.label <= new_cell_region_cutoff: cell_id = create_cell_id(region, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region, t, parent_id=None) cell_leaves.append(cell_id) # add to leaves else: # since the regions are ordered, none of the remaining will pass break ### iterate over the leaves, looking to see what regions connect to them. for leaf_id, region_links in six.iteritems(leaf_region_map): # if there is just one suggested descendant, # see if it checks out and append the data if len(region_links) == 1: region = regions[region_links[0][0]] # grab the region from the list # check if the pairing makes sense based on size and position # this function returns true if things are okay if check_growth_by_region(Cells[leaf_id], region): # grow the cell by the region in this case Cells[leaf_id].grow(region, t) # there may be two daughters, or maybe there is just one child and a new cell elif len(region_links) == 2: # grab these two daughters region1 = regions[region_links[0][0]] region2 = regions[region_links[1][0]] # check_division returns 3 if cell divided, # 1 if first region is just the cell growing and the second is trash # 2 if the second region is the cell, and the first is trash # or 0 if it cannot be determined. check_division_result = check_division(Cells[leaf_id], region1, region2) if check_division_result == 3: # create two new cells and divide the mother daughter1_id = create_cell_id(region1, t, peak_id, fov_id) daughter2_id = create_cell_id(region2, t, peak_id, fov_id) Cells[daughter1_id] = Cell(daughter1_id, region1, t, parent_id=leaf_id) Cells[daughter2_id] = Cell(daughter2_id, region2, t, parent_id=leaf_id) Cells[leaf_id].divide(Cells[daughter1_id], Cells[daughter2_id], t) # remove mother from current leaves cell_leaves.remove(leaf_id) # add the daughter ids to list of current leaves if they pass cutoffs if region1.centroid[0] < new_cell_y_cutoff and region1.label <= new_cell_region_cutoff: cell_leaves.append(daughter1_id) if region2.centroid[0] < new_cell_y_cutoff and region2.label <= new_cell_region_cutoff: cell_leaves.append(daughter2_id) # 1 means that daughter 1 is just a continuation of the mother # The other region should be a leaf it passes the requirements elif check_division_result == 1: Cells[leaf_id].grow(region1, t) if region2.centroid[0] < new_cell_y_cutoff and region2.label <= new_cell_region_cutoff: cell_id = create_cell_id(region2, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region2, t, parent_id=None) cell_leaves.append(cell_id) # add to leaves # ditto for 2 elif check_division_result == 2: Cells[leaf_id].grow(region2, t) if region1.centroid[0] < new_cell_y_cutoff and region1.label <= new_cell_region_cutoff: cell_id = create_cell_id(region1, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region1, t, parent_id=None) cell_leaves.append(cell_id) # add to leaves # return the dictionary with all the cells return Cells ### Cell class and related functions # this is the object that holds all information for a detection class Detection(): ''' The Detection is a single detection in a single frame. ''' # initialize (birth) the cell def __init__(self, detection_id, region, t): '''The detection must be given a unique detection_id and passed the region information from the segmentation Parameters __________ detection_id : str detection_id is a string in the form fXpXtXrX f is 3 digit FOV number p is 4 digit peak number t is 4 digit time point r is region label for that segmentation Use the function create_detection_id to return a proper string. region : region properties object Information about the labeled region from skimage.measure.regionprops() ''' # create all the attributes # id self.id = detection_id # identification convenience self.fov = int(detection_id.split('f')[1].split('p')[0]) self.peak = int(detection_id.split('p')[1].split('t')[0]) self.t = t self.cell_count = 1 # self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds if region is not None: self.label = region.label self.bbox = region.bbox self.area = region.area # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.length = length_tmp self.width = width_tmp # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volume = (length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3 # angle of the fit elipsoid and centroid location self.orientation = region.orientation self.centroid = region.centroid else: self.label = None self.bbox = None self.area = None # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = (None, None) self.length = None self.width = None # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volume = None # angle of the fit elipsoid and centroid location self.orientation = None self.centroid = None # this is the object that holds all information for a cell class Cell(): ''' The Cell class is one cell that has been born. It is not neccesarily a cell that has divided. ''' # initialize (birth) the cell def __init__(self, cell_id, region, t, parent_id=None): '''The cell must be given a unique cell_id and passed the region information from the segmentation Parameters __________ cell_id : str cell_id is a string in the form fXpXtXrX f is 3 digit FOV number p is 4 digit peak number t is 4 digit time point at time of birth r is region label for that segmentation Use the function create_cell_id to do return a proper string. region : region properties object Information about the labeled region from skimage.measure.regionprops() parent_id : str id of the parent if there is one. ''' # create all the attributes # id self.id = cell_id # identification convenience self.fov = int(cell_id.split('f')[1].split('p')[0]) self.peak = int(cell_id.split('p')[1].split('t')[0]) self.birth_label = int(cell_id.split('r')[1]) # parent id may be none self.parent = parent_id # daughters is updated when cell divides # if this is none then the cell did not divide self.daughters = None # birth and division time self.birth_time = t self.division_time = None # filled out if cell divides # the following information is on a per timepoint basis self.times = [t] self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds self.labels = [region.label] self.bboxes = [region.bbox] self.areas = [region.area] # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths = [length_tmp] self.widths = [width_tmp] # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3] # angle of the fit elipsoid and centroid location self.orientations = [region.orientation] self.centroids = [region.centroid] # these are special datatype, as they include information from the daugthers for division # computed upon division self.times_w_div = None self.lengths_w_div = None self.widths_w_div = None # this information is the "production" information that # we want to extract at the end. Some of this is for convenience. # This is only filled out if a cell divides. self.sb = None # in um self.sd = None # this should be combined lengths of daughters, in um self.delta = None self.tau = None self.elong_rate = None self.septum_position = None self.width = None self.death = None def grow(self, region, t): '''Append data from a region to this cell. use cell.times[-1] to get most current value''' self.times.append(t) self.abs_times.append(params['time_table'][self.fov][t]) self.labels.append(region.label) self.bboxes.append(region.bbox) self.areas.append(region.area) #calculating cell length and width by using <NAME> length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths.append(length_tmp) self.widths.append(width_tmp) self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3) self.orientations.append(region.orientation) self.centroids.append(region.centroid) def die(self, region, t): ''' Annotate cell as dying from current t to next t. ''' self.death = t def divide(self, daughter1, daughter2, t): '''Divide the cell and update stats. daugther1 and daugther2 are instances of the Cell class. daughter1 is the daugther closer to the closed end.''' # put the daugther ids into the cell self.daughters = [daughter1.id, daughter2.id] # give this guy a division time self.division_time = daughter1.birth_time # update times self.times_w_div = self.times + [self.division_time] self.abs_times.append(params['time_table'][self.fov][self.division_time]) # flesh out the stats for this cell # size at birth self.sb = self.lengths[0] * params['pxl2um'] # force the division length to be the combined lengths of the daughters self.sd = (daughter1.lengths[0] + daughter2.lengths[0]) * params['pxl2um'] # delta is here for convenience self.delta = self.sd - self.sb # generation time. Use more accurate times and convert to minutes self.tau = np.float64((self.abs_times[-1] - self.abs_times[0]) / 60.0) # include the data points from the daughters self.lengths_w_div = [l * params['pxl2um'] for l in self.lengths] + [self.sd] self.widths_w_div = [w * params['pxl2um'] for w in self.widths] + [((daughter1.widths[0] + daughter2.widths[0])/2) * params['pxl2um']] # volumes for all timepoints, in um^3 self.volumes_w_div = [] for i in range(len(self.lengths_w_div)): self.volumes_w_div.append((self.lengths_w_div[i] - self.widths_w_div[i]) * np.pi * (self.widths_w_div[i]/2)**2 + (4/3) * np.pi * (self.widths_w_div[i]/2)**3) # calculate elongation rate. try: times = np.float64((np.array(self.abs_times) - self.abs_times[0]) / 60.0) log_lengths = np.float64(np.log(self.lengths_w_div)) p = np.polyfit(times, log_lengths, 1) # this wants float64 self.elong_rate = p[0] * 60.0 # convert to hours except: self.elong_rate = np.float64('NaN') warning('Elongation rate calculate failed for {}.'.format(self.id)) # calculate the septum position as a number between 0 and 1 # which indicates the size of daughter closer to the closed end # compared to the total size self.septum_position = daughter1.lengths[0] / (daughter1.lengths[0] + daughter2.lengths[0]) # calculate single width over cell's life self.width = np.mean(self.widths_w_div) # convert data to smaller floats. No need for float64 # see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html convert_to = 'float16' # numpy datatype to convert to self.sb = self.sb.astype(convert_to) self.sd = self.sd.astype(convert_to) self.delta = self.delta.astype(convert_to) self.elong_rate = self.elong_rate.astype(convert_to) self.tau = self.tau.astype(convert_to) self.septum_position = self.septum_position.astype(convert_to) self.width = self.width.astype(convert_to) self.lengths = [length.astype(convert_to) for length in self.lengths] self.lengths_w_div = [length.astype(convert_to) for length in self.lengths_w_div] self.widths = [width.astype(convert_to) for width in self.widths] self.widths_w_div = [width.astype(convert_to) for width in self.widths_w_div] self.volumes = [vol.astype(convert_to) for vol in self.volumes] self.volumes_w_div = [vol.astype(convert_to) for vol in self.volumes_w_div] # note the float16 is hardcoded here self.orientations = [np.float16(orientation) for orientation in self.orientations] self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids] def print_info(self): '''prints information about the cell''' print('id = %s' % self.id) print('times = {}'.format(', '.join('{}'.format(t) for t in self.times))) print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths))) class CellTree(): def __init__(self): self.cells = {} self.scores = [] # probably needs to be different self.score = 0 self.cell_id_list = [] def add_cell(self, cell): self.cells[cell.id] = cell self.cell_id_list.append(cell.id) self.cell_id_list.sort() def update_score(self): pass def get_cell(self, cell_id): return(self.cells[cell_id]) def get_top_from_cell(self, cell_id): pass # this is the object that holds all information for a cell class CellFromGraph(): ''' The CellFromGraph class is one cell that has been born. It is not neccesarily a cell that has divided. ''' # initialize (birth) the cell def __init__(self, cell_id, region, t, parent=None): '''The cell must be given a unique cell_id and passed the region information from the segmentation Parameters __________ cell_id : str cell_id is a string in the form fXpXtXrX f is 3 digit FOV number p is 4 digit peak number t is 4 digit time point at time of birth r is region label for that segmentation Use the function create_cell_id to do return a proper string. region : region properties object Information about the labeled region from skimage.measure.regionprops() parent_id : str id of the parent if there is one. ''' # create all the attributes # id self.id = cell_id # identification convenience self.fov = int(cell_id.split('f')[1].split('p')[0]) self.peak = int(cell_id.split('p')[1].split('t')[0]) self.birth_label = int(region.label) self.regions = [region] # parent is a CellFromGraph object, can be None self.parent = parent # daughters is updated when cell divides # if this is none then the cell did not divide self.daughters = None # birth and division time self.birth_time = t self.division_time = None # filled out if cell divides # the following information is on a per timepoint basis self.times = [t] self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds self.labels = [region.label] self.bboxes = [region.bbox] self.areas = [region.area] # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths = [length_tmp] self.widths = [width_tmp] # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3] # angle of the fit elipsoid and centroid location self.orientations = [region.orientation] self.centroids = [region.centroid] # these are special datatype, as they include information from the daugthers for division # computed upon division self.times_w_div = None self.lengths_w_div = None self.widths_w_div = None # this information is the "production" information that # we want to extract at the end. Some of this is for convenience. # This is only filled out if a cell divides. self.sb = None # in um self.sd = None # this should be combined lengths of daughters, in um self.delta = None self.tau = None self.elong_rate = None self.septum_position = None self.width = None self.death = None self.disappear = None self.area_mean_fluorescence = {} self.volume_mean_fluorescence = {} self.total_fluorescence = {} self.foci = {} def __len__(self): return(len(self.times)) def add_parent(self, parent): self.parent = parent def grow(self, region, t): '''Append data from a region to this cell. use cell.times[-1] to get most current value''' self.times.append(t) self.abs_times.append(params['time_table'][self.fov][t]) self.labels.append(region.label) self.bboxes.append(region.bbox) self.areas.append(region.area) self.regions.append(region) #calculating cell length and width by using Feret Diamter length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths.append(length_tmp) self.widths.append(width_tmp) self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3) self.orientations.append(region.orientation) self.centroids.append(region.centroid) def die(self, region, t): ''' Annotate cell as dying from current t to next t. ''' self.death = t def disappears(self, region, t): ''' Annotate cell as disappearing from current t to next t. ''' self.disappear = t def add_daughter(self, daughter, t): if self.daughters is None: self.daughters = [daughter] else: self.daughters.append(daughter) assert len(self.daughters) < 3, "Too many daughter cells in cell {}".format(self.id) # sort daughters by y position, with smaller y-value first. # this will cause the daughter closer to the closed end of the trap to be listed first. self.daughters.sort(key=lambda cell: cell.centroids[0][0]) self.divide(t) def divide(self, t): '''Divide the cell and update stats. daughter1 is the daugther closer to the closed end.''' # put the daugther ids into the cell # self.daughters = [daughter1.id, daughter2.id] # give this guy a division time self.division_time = self.daughters[0].birth_time # update times self.times_w_div = self.times + [self.division_time] self.abs_times.append(params['time_table'][self.fov][self.division_time]) # flesh out the stats for this cell # size at birth self.sb = self.lengths[0] * params['pxl2um'] # force the division length to be the combined lengths of the daughters self.sd = (self.daughters[0].lengths[0] + self.daughters[1].lengths[0]) * params['pxl2um'] # delta is here for convenience self.delta = self.sd - self.sb # generation time. Use more accurate times and convert to minutes self.tau = np.float64((self.abs_times[-1] - self.abs_times[0]) / 60.0) # include the data points from the daughters self.lengths_w_div = [l * params['pxl2um'] for l in self.lengths] + [self.sd] self.widths_w_div = [w * params['pxl2um'] for w in self.widths] + [((self.daughters[0].widths[0] + self.daughters[1].widths[0])/2) * params['pxl2um']] # volumes for all timepoints, in um^3 self.volumes_w_div = [] for i in range(len(self.lengths_w_div)): self.volumes_w_div.append((self.lengths_w_div[i] - self.widths_w_div[i]) * np.pi * (self.widths_w_div[i]/2)**2 + (4/3) * np.pi * (self.widths_w_div[i]/2)**3) # calculate elongation rate. try: times = np.float64((np.array(self.abs_times) - self.abs_times[0]) / 60.0) # convert times to minutes log_lengths = np.float64(np.log(self.lengths_w_div)) p = np.polyfit(times, log_lengths, 1) # this wants float64 self.elong_rate = p[0] * 60.0 # convert to hours except: self.elong_rate = np.float64('NaN') warning('Elongation rate calculate failed for {}.'.format(self.id)) # calculate the septum position as a number between 0 and 1 # which indicates the size of daughter closer to the closed end # compared to the total size self.septum_position = self.daughters[0].lengths[0] / (self.daughters[0].lengths[0] + self.daughters[1].lengths[0]) # calculate single width over cell's life self.width = np.mean(self.widths_w_div) # convert data to smaller floats. No need for float64 # see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html convert_to = 'float16' # numpy datatype to convert to self.sb = self.sb.astype(convert_to) self.sd = self.sd.astype(convert_to) self.delta = self.delta.astype(convert_to) self.elong_rate = self.elong_rate.astype(convert_to) self.tau = self.tau.astype(convert_to) self.septum_position = self.septum_position.astype(convert_to) self.width = self.width.astype(convert_to) self.lengths = [length.astype(convert_to) for length in self.lengths] self.lengths_w_div = [length.astype(convert_to) for length in self.lengths_w_div] self.widths = [width.astype(convert_to) for width in self.widths] self.widths_w_div = [width.astype(convert_to) for width in self.widths_w_div] self.volumes = [vol.astype(convert_to) for vol in self.volumes] self.volumes_w_div = [vol.astype(convert_to) for vol in self.volumes_w_div] # note the float16 is hardcoded here self.orientations = [np.float16(orientation) for orientation in self.orientations] self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids] def add_focus(self, focus, t): '''Adds a focus to the cell. See function foci_info_unet''' self.foci[focus.id] = focus def print_info(self): '''prints information about the cell''' print('id = %s' % self.id) print('times = {}'.format(', '.join('{}'.format(t) for t in self.times))) print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths))) if self.daughters is not None: print('daughters = {}'.format(', '.join('{}'.format(daughter.id) for daughter in self.daughters))) if self.parent is not None: print('parent = {}'.format(self.parent.id)) def make_wide_df(self): data = {} data['id'] = self.id data['fov'] = self.fov data['trap'] = self.peak data['parent'] = self.parent data['child1'] = None data['child2'] = None data['division_time'] = self.division_time data['birth_label'] = self.birth_label data['birth_time'] = self.birth_time data['sb'] = self.sb data['sd'] = self.sd data['delta'] = self.delta data['tau'] = self.tau data['elong_rate'] = self.elong_rate data['septum_position'] = self.septum_position data['death'] = self.death data['disappear'] = self.disappear if self.daughters is not None: data['child1'] = self.daughters[0] if len(self.daughters) == 2: data['child2'] = self.daughters[1] df = pd.DataFrame(data, index=[self.id]) return(df) def make_long_df(self): data = {} data['id'] = [self.id]*len(self.times) data['times'] = self.times data['length'] = self.lengths data['volume'] = self.volumes data['area'] = self.areas # if a cell divides then there is one extra value in abs_times if self.division_time is None: data['seconds'] = self.abs_times else: data['seconds'] = self.abs_times[:-1] # if there is fluorescence data, place it into the dataframe if len(self.area_mean_fluorescence.keys()) != 0: for fluorescence_channel in self.area_mean_fluorescence.keys(): data['{}_area_mean_fluorescence'.format(fluorescence_channel)] = self.area_mean_fluorescence[fluorescence_channel] data['{}_volume_mean_fluorescence'.format(fluorescence_channel)] = self.volume_mean_fluorescence[fluorescence_channel] data['{}_total_fluorescence'.format(fluorescence_channel)] = self.total_fluorescence[fluorescence_channel] df = pd.DataFrame(data, index=data['id']) return(df) # this is the object that holds all information for a fluorescent focus # this class can eventually be used in focus tracking, much like the Cell class # is used for cell tracking class Focus(): ''' The Focus class holds information on fluorescent foci. A single focus can be present in multiple different cells. ''' # initialize the focus def __init__(self, cell, region, seg_img, intensity_image, t): '''The cell must be given a unique cell_id and passed the region information from the segmentation Parameters __________ cell : a Cell object region : region properties object Information about the labeled region from skimage.measure.regionprops() seg_img : 2D numpy array Labelled image of cell segmentations intensity_image : 2D numpy array Fluorescence image with foci ''' # create all the attributes # id focus_id = create_focus_id(region, t, cell.peak, cell.fov, experiment_name=params['experiment_name']) self.id = focus_id # identification convenience self.appear_label = int(region.label) self.regions = [region] self.fov = cell.fov self.peak = cell.peak # cell is a CellFromGraph object # cells are added later using the .add_cell method self.cells = [cell] # daughters is updated when focus splits # if this is none then the focus did not split self.parent = None self.daughters = None self.merger_partner = None # appearance and split time self.appear_time = t self.split_time = None # filled out if focus splits # the following information is on a per timepoint basis self.times = [t] self.abs_times = [params['time_table'][cell.fov][t]] # elapsed time in seconds self.labels = [region.label] self.bboxes = [region.bbox] self.areas = [region.area] # calculating focus length and width by using Feret Diamter. # These values are in pixels # NOTE: in the future, update to straighten a focus an get straightened length/width # print(region) length_tmp = region.major_axis_length width_tmp = region.minor_axis_length # length_tmp, width_tmp = feretdiameter(region) # if length_tmp == None: # warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths = [length_tmp] self.widths = [width_tmp] # calculate focus volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3] # angle of the fit elipsoid and centroid location self.orientations = [region.orientation] self.centroids = [region.centroid] # special information for focci self.elong_rate = None self.disappear = None self.area_mean_fluorescence = [] self.volume_mean_fluorescence = [] self.total_fluorescence = [] self.median_fluorescence = [] self.sd_fluorescence = [] self.disp_l = [] self.disp_w = [] self.calculate_fluorescence(seg_img, intensity_image, region) def __len__(self): return(len(self.times)) def __str__(self): return(self.print_info()) def add_cell(self, cell): self.cells.append(cell) def add_parent_focus(self, parent): self.parent = parent def merge(self, partner): self.merger_partner = partner def grow(self, region, t, seg_img, intensity_image, current_cell): '''Append data from a region to this focus. use self.times[-1] to get most current value.''' if current_cell is not self.cells[-1]: self.add_cell(current_cell) self.times.append(t) self.abs_times.append(params['time_table'][self.cells[-1].fov][t]) self.labels.append(region.label) self.bboxes.append(region.bbox) self.areas.append(region.area) self.regions.append(region) #calculating focus length and width by using Feret Diamter length_tmp = region.major_axis_length width_tmp = region.minor_axis_length # length_tmp, width_tmp = feretdiameter(region) # if length_tmp == None: # warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths.append(length_tmp) self.widths.append(width_tmp) self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3) self.orientations.append(region.orientation) self.centroids.append(region.centroid) self.calculate_fluorescence(seg_img, intensity_image, region) def calculate_fluorescence(self, seg_img, intensity_image, region): total_fluor = np.sum(intensity_image[seg_img == region.label]) self.total_fluorescence.append(total_fluor) self.area_mean_fluorescence.append(total_fluor/self.areas[-1]) self.volume_mean_fluorescence.append(total_fluor/self.volumes[-1]) self.median_fluorescence.append(np.median(intensity_image[seg_img == region.label])) self.sd_fluorescence.append(np.std(intensity_image[seg_img == region.label])) # get the focus' displacement from center of cell # find x and y position relative to the whole image (convert from small box) # calculate distance of foci from middle of cell (scikit image) orientation = region.orientation if orientation < 0: orientation = np.pi+orientation cell_idx = self.cells[-1].times.index(self.times[-1]) # final time in self.times is current time cell_centroid = self.cells[-1].centroids[cell_idx] focus_centroid = region.centroid disp_y = (focus_centroid[0]-cell_centroid[0])*np.sin(orientation) - (focus_centroid[1]-cell_centroid[1])*np.cos(orientation) disp_x = (focus_centroid[0]-cell_centroid[0])*np.cos(orientation) + (focus_centroid[1]-cell_centroid[1])*np.sin(orientation) # append foci information to the list self.disp_l = np.append(self.disp_l, disp_y) self.disp_w = np.append(self.disp_w, disp_x) def disappears(self, region, t): ''' Annotate focus as disappearing from current t to next t. ''' self.disappear = t def add_daughter(self, daughter, t): if self.daughters is None: self.daughters = [daughter] else: self.daughters.append(daughter) # sort daughters by y position, with smaller y-value first. # this will cause the daughter closer to the closed end of the trap to be listed first. self.daughters.sort(key=lambda focus: focus.centroids[0][0]) self.divide(t) def divide(self, t): '''Divide the cell and update stats. daughter1 is the daugther closer to the closed end.''' # put the daugther ids into the cell # self.daughters = [daughter1.id, daughter2.id] # give this guy a division time self.split_time = self.daughters[0].appear_time # convert data to smaller floats. No need for float64 # see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html convert_to = 'float16' # numpy datatype to convert to self.lengths = [length.astype(convert_to) for length in self.lengths] self.widths = [width.astype(convert_to) for width in self.widths] self.volumes = [vol.astype(convert_to) for vol in self.volumes] # note the float16 is hardcoded here self.orientations = [np.float16(orientation) for orientation in self.orientations] self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids] def print_info(self): '''prints information about the focus''' print('id = %s' % self.id) print('times = {}'.format(', '.join('{}'.format(t) for t in self.times))) print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths))) if self.daughters is not None: print('daughters = {}'.format(', '.join('{}'.format(daughter.id) for daughter in self.daughters))) if self.cells is not None: print('cells = {}'.format([cell.id for cell in self.cells])) def make_wide_df(self): data = {} data['id'] = self.id data['cells'] = self.cells data['parent'] = self.parent data['child1'] = None data['child2'] = None # data['division_time'] = self.division_time data['appear_label'] = self.appear_label data['appear_time'] = self.appear_time data['disappear'] = self.disappear if self.daughters is not None: data['child1'] = self.daughters[0] if len(self.daughters) == 2: data['child2'] = self.daughters[1] df = pd.DataFrame(data, index=[self.id]) return(df) def make_long_df(self): data = {} data['id'] = [self.id]*len(self.times) data['time'] = self.times # data['cell'] = self.cells data['length'] = self.lengths data['volume'] = self.volumes data['area'] = self.areas data['seconds'] = self.abs_times data['area_mean_fluorescence'] = self.area_mean_fluorescence data['volume_mean_fluorescence'] = self.volume_mean_fluorescence data['total_fluorescence'] = self.total_fluorescence data['median_fluorescence'] = self.median_fluorescence data['sd_fluorescence'] = self.sd_fluorescence data['disp_l'] = self.disp_l data['disp_w'] = self.disp_w # print(data['id']) df = pd.DataFrame(data, index=data['id']) return(df) class PredictTrackDataGenerator(utils.Sequence): '''Generates data for running tracking class preditions Input is a stack of labeled images''' def __init__(self, data, batch_size=32, dim=(4,5,9)): 'Initialization' self.batch_size = batch_size self.data = data self.dim = dim self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(len(self.data) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate keys of the batch batch_indices = self.indices[index*self.batch_size:(index+1)*self.batch_size] # Generate data X = self.__data_generation(batch_indices) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indices = np.arange(len(self.data)) def __data_generation(self, batch_indices): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization # shape is (batch_size, max_cell_num, frame_num, cell_feature_num, 1) X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.dim[2], 1)) # Generate data for idx in batch_indices: start_idx = idx-2 end_idx = idx+3 # print(start_idx, end_idx) if start_idx < 0: batch_frame_list = [] for empty_idx in range(abs(start_idx)): batch_frame_list.append([]) batch_frame_list.extend(self.data[0:end_idx]) elif end_idx > len(self.data): batch_frame_list = self.data[start_idx:len(self.data)+1] for empty_idx in range(abs(end_idx - len(self.data))): batch_frame_list.extend([]) else: batch_frame_list = self.data[start_idx:end_idx] for i,frame_region_list in enumerate(batch_frame_list): # shape is (max_cell_num, frame_num, cell_feature_num) # tmp_x = np.zeros((self.dim[0], self.dim[1], self.dim[2])) if not frame_region_list: continue for region_idx, region, in enumerate(frame_region_list): y,x = region.centroid bbox = region.bbox orientation = region.orientation min_y = bbox[0] max_y = bbox[2] min_x = bbox[1] max_x = bbox[3] area = region.area length = region.major_axis_length cell_label = region.label cell_index = cell_label - 1 cell_info = (min_x, max_x, x, min_y, max_y, y, orientation, area, length) if region_idx + 1 > self.dim[0]: continue # supplement tmp_x at (region_idx, ) # tmp_x[region_idx, i, :] = cell_info X[idx, cell_index, i, :,0] = cell_info # tmp_x return X def get_greatest_score_info(first_node, second_node, graph): '''A function that is useful for track linking ''' score_names = [k for k in graph.get_edge_data(first_node, second_node).keys()] pred_scores = [val['score'] for k,val in graph.get_edge_data(first_node, second_node).items()] max_score_index = np.argmax(pred_scores) max_name = score_names[max_score_index] max_score = pred_scores[max_score_index] return(max_name, max_score) def get_score_by_type(first_node, second_node, graph, score_type='child'): '''A function useful in track linking ''' pred_score = graph.get_edge_data(first_node, second_node)[score_type]['score'] return(pred_score) def count_unvisited(G, experiment_name): count = 0 for node_id in G.nodes: if node_id.startswith(experiment_name): if not G.nodes[node_id]['visited']: count += 1 return(count) def create_lineages_from_graph(graph, graph_df, fov_id, peak_id, ): ''' This function iterates through nodes in a graph of detections to link the nodes as "CellFromGraph" objects, eventually leading to the ultimate goal of returning a CellTree object with each cell's information for the experiment. For now it ignores the number of cells in a detection and simply assumes a 1:1 relationship between detections and cell number. ''' # iterate through all nodes in graph # graph_score = 0 # track_dict = {} # tracks = CellTree() tracks = {} for node_id in graph.nodes: graph.nodes[node_id]['visited'] = False graph_df['visited'] = False num_unvisited = count_unvisited(graph, params['experiment_name']) while num_unvisited > 0: # which detection nodes are not yet visited unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))] # grab the first unvisited node_id from the dataframe prior_node_id = unvisited_detection_nodes.iloc[0,1] prior_node_time = graph.nodes[prior_node_id]['time'] prior_node_region = graph.nodes[prior_node_id]['region'] cell_id = create_cell_id(prior_node_region, prior_node_time, peak_id, fov_id, experiment_name=params['experiment_name']) current_cell = CellFromGraph(cell_id, prior_node_region, prior_node_time, parent=None) if not cell_id in tracks.keys(): tracks[cell_id] = current_cell else: current_cell = tracks[cell_id] # for use later in establishing predecessors current_node_id = prior_node_id # set this detection's "visited" status to True in the graph and in the dataframe graph.nodes[prior_node_id]['visited'] = True graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True # build current_track list to this detection's node current_track = collections.deque() current_track.append(current_node_id) predecessors_list = [k for k in graph.predecessors(prior_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while len(unvisited_predecessors_list) != 0: # initialize a scores array to select highest score from the available options predecessor_scores = np.zeros(len(unvisited_predecessors_list)) # populate array with scores for i in range(len(unvisited_predecessors_list)): predecessor_node_id = unvisited_predecessors_list[i] edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph) predecessor_scores[i] = edge_score # find highest score max_index = np.argmax(predecessor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node current_node_id = unvisited_predecessors_list[max_index] current_track.appendleft(current_node_id) predecessors_list = [k for k in graph.predecessors(current_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while prior_node_id is not 'B': # which nodes succeed our current node? successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)] # keep only the potential successor detections that have not yet been visited unvisited_node_ids = [] for i,successor_node_id in enumerate(successor_node_ids): # if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc. if successor_node_id.startswith(params['experiment_name']): # if it has been used in the cell track graph, i.e., if 'visited' is True, # move on. Otherwise, append to our list if graph.nodes[successor_node_id]['visited']: continue else: unvisited_node_ids.append(successor_node_id) # if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended else: unvisited_node_ids.append(successor_node_id) # initialize a scores array to select highest score from the available options successor_scores = np.zeros(len(unvisited_node_ids)) successor_edge_types = [] # populate array with scores for i in range(len(unvisited_node_ids)): successor_node_id = unvisited_node_ids[i] edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph) successor_scores[i] = edge_score successor_edge_types.append(edge_type) # find highest score max_score = np.max(successor_scores) max_index = np.argmax(successor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node next_node_id = unvisited_node_ids[max_index] max_edge_type = successor_edge_types[max_index] # if the max_score in successor_scores isn't greater than log(0.1), just make the cell disappear for now. if max_score < np.log(0.1): max_edge_type = 'disappear' next_node_id = [n_id for n_id in unvisited_node_ids if n_id.startswith('disappear')][0] # if this is a division event, add child node as a new cell, # add the new cell as a daughter to current_cell, # add current_cell as a parent to new cell. # Then, search for the second child cell, add it to current_cell, etc. if max_edge_type == 'child': new_cell_time = graph.nodes[next_node_id]['time'] new_cell_region = graph.nodes[next_node_id]['region'] new_cell_id = create_cell_id(new_cell_region, new_cell_time, peak_id, fov_id, experiment_name=params['experiment_name']) new_cell = CellFromGraph(new_cell_id, new_cell_region, new_cell_time, parent=current_cell) tracks[new_cell_id] = new_cell current_cell.add_daughter(new_cell, new_cell_time) # initialize a scores array to select highest score from the available options unvisited_detection_nodes = [unvisited_node_id for unvisited_node_id in unvisited_node_ids if unvisited_node_id.startswith(params['experiment_name'])] child_scores = np.zeros(len(unvisited_detection_nodes)) # populate array with scores for i in range(len(unvisited_detection_nodes)): successor_node_id = unvisited_detection_nodes[i] if successor_node_id == next_node_id: child_scores[i] = -np.inf continue child_score = get_score_by_type(prior_node_id, successor_node_id, graph, score_type='child') child_scores[i] = child_score try: second_daughter_score = np.max(child_scores) # sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one # daughter is lost to the central channel at division time. In this case, do the following: if second_daughter_score < np.log(0.5): current_cell = new_cell else: second_daughter_index = np.argmax(child_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node other_daughter_node_id = unvisited_detection_nodes[second_daughter_index] other_daughter_cell_time = graph.nodes[other_daughter_node_id]['time'] other_daughter_cell_region = graph.nodes[other_daughter_node_id]['region'] other_daughter_cell_id = create_cell_id(other_daughter_cell_region, other_daughter_cell_time, peak_id, fov_id, experiment_name=params['experiment_name']) other_daughter_cell = CellFromGraph(other_daughter_cell_id, other_daughter_cell_region, other_daughter_cell_time, parent=current_cell) tracks[other_daughter_cell_id] = other_daughter_cell current_cell.add_daughter(other_daughter_cell, new_cell_time) # now we remove current_cell, since it's done, and move on to one of the daughters current_cell = new_cell # sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one # daughter is lost to the central channel at division time. In this case, do the following: except IndexError: current_cell = new_cell # if this is a migration, grow the current_cell. elif max_edge_type == 'migrate': cell_time = graph.nodes[next_node_id]['time'] cell_region = graph.nodes[next_node_id]['region'] current_cell.grow(cell_region, cell_time) # if the event represents death, kill the cell elif max_edge_type == 'die': if prior_node_id.startswith(params['experiment_name']): death_time = graph.nodes[prior_node_id]['time'] death_region = graph.nodes[prior_node_id]['region'] current_cell.die(death_region, death_time) # if the event represents disappearance, end the cell elif max_edge_type == 'disappear': if prior_node_id.startswith(params['experiment_name']): disappear_time = graph.nodes[prior_node_id]['time'] disappear_region = graph.nodes[prior_node_id]['region'] current_cell.disappears(disappear_region, disappear_time) # set the next node to 'visited' graph.nodes[next_node_id]['visited'] = True if next_node_id != 'B': graph_df.iloc[np.where(graph_df.node_id==next_node_id)[0][0],3] = True # reset prior_node_id to iterate to next frame and append node_id to current track prior_node_id = next_node_id if num_unvisited != count_unvisited(graph, params['experiment_name']): same_iter_num = 0 else: same_iter_num += 1 num_unvisited = count_unvisited(graph, params['experiment_name']) print("{} detections remain unvisited.".format(num_unvisited)) if same_iter_num > 10: print("WARNING: Ten iterations surpassed without decreasing the number of visited nodes.\n \ Breaking tracking loop now. You should probably not trust these results.") break return tracks def viterbi_create_lineages_from_graph(graph, graph_df, fov_id, peak_id, ): ''' This function iterates through nodes in a graph of detections to link the nodes as "CellFromGraph" objects, eventually leading to the ultimate goal of returning a maximally-scoring CellTree object with each cell's information for the experiment. For now it ignores the number of cells in a detection and simply assumes a 1:1 relationship between detections and cell number. ''' # iterate through all nodes in G graph_score = 0 # track_dict = {} tracks = CellTree() max_time = np.max([node.timepoint for node in graph.nodes]) print(max_time) for node_id in graph.nodes: graph.nodes[node_id]['visited'] = False graph_df['visited'] = False num_unvisited = count_unvisited(graph, params['experiment_name']) for t in range(1,max_time+1): if t > 1: prior_time_nodes = time_nodes if t == 1: time_nodes = [node for node in G.nodes if node.time == t] else: time_nodes = next_time_nodes if t != max_time: next_time_nodes = [node for node in G.nodes if node.time == t+1] for node in time_nodes: pass while num_unvisited > 0: # which detection nodes are not yet visited unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))] # grab the first unvisited node_id from the dataframe prior_node_id = unvisited_detection_nodes.iloc[0,1] prior_node_time = graph.nodes[prior_node_id]['time'] prior_node_region = graph.nodes[prior_node_id]['region'] cell_id = create_cell_id(prior_node_region, prior_node_time, peak_id, fov_id, experiment_name=params['experiment_name']) current_cell = CellFromGraph(cell_id, prior_node_region, prior_node_time, parent=None) if not cell_id in tracks.cell_id_list: tracks.add_cell(current_cell) else: current_cell = tracks.get_cell(cell_id) # track_dict_key = prior_node_id # for use later in establishing predecessors current_node_id = prior_node_id # set this detection's "visited" status to True in the graph and in the dataframe graph.nodes[prior_node_id]['visited'] = True graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True # build current_track list to this detection's node current_track = collections.deque() current_track.append(current_node_id) predecessors_list = [k for k in graph.predecessors(prior_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while len(unvisited_predecessors_list) != 0: # initialize a scores array to select highest score from the available options predecessor_scores = np.zeros(len(unvisited_predecessors_list)) # populate array with scores for i in range(len(unvisited_predecessors_list)): predecessor_node_id = unvisited_predecessors_list[i] edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph) predecessor_scores[i] = edge_score # find highest score max_index = np.argmax(predecessor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node current_node_id = unvisited_predecessors_list[max_index] current_track.appendleft(current_node_id) predecessors_list = [k for k in graph.predecessors(current_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while prior_node_id is not 'B': # which nodes succeed our current node? successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)] # keep only the potential successor detections that have not yet been visited unvisited_node_ids = [] for i,successor_node_id in enumerate(successor_node_ids): # if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc. if successor_node_id.startswith(params['experiment_name']): # if it has been used in the cell track graph, i.e., if 'visited' is True, # move on. Otherwise, append to our list if graph.nodes[successor_node_id]['visited']: continue else: unvisited_node_ids.append(successor_node_id) # if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended else: unvisited_node_ids.append(successor_node_id) # initialize a scores array to select highest score from the available options successor_scores = np.zeros(len(unvisited_node_ids)) successor_edge_types = [] # populate array with scores for i in range(len(unvisited_node_ids)): successor_node_id = unvisited_node_ids[i] edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph) successor_scores[i] = edge_score successor_edge_types.append(edge_type) # find highest score max_index = np.argmax(successor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node next_node_id = unvisited_node_ids[max_index] max_edge_type = successor_edge_types[max_index] # if this is a division event, add child node as a new cell, # add the new cell as a daughter to current_cell, # add current_cell as a parent to new cell. # Then, search for the second child cell, add it to current_cell, etc. if max_edge_type == 'child': new_cell_time = graph.nodes[next_node_id]['time'] new_cell_region = graph.nodes[next_node_id]['region'] new_cell_id = create_cell_id(new_cell_region, new_cell_time, peak_id, fov_id, experiment_name=params['experiment_name']) new_cell = CellFromGraph(new_cell_id, new_cell_region, new_cell_time, parent=current_cell) tracks.add_cell(new_cell) current_cell.add_daughter(new_cell, new_cell_time) # print("First daughter", current_cell.id, new_cell.id) # initialize a scores array to select highest score from the available options unvisited_detection_nodes = [unvisited_node_id for unvisited_node_id in unvisited_node_ids if unvisited_node_id.startswith(params['experiment_name'])] child_scores = np.zeros(len(unvisited_detection_nodes)) # populate array with scores for i in range(len(unvisited_detection_nodes)): successor_node_id = unvisited_detection_nodes[i] if successor_node_id == next_node_id: child_scores[i] = -np.inf continue child_score = get_score_by_type(prior_node_id, successor_node_id, graph, score_type='child') child_scores[i] = child_score # print(child_scores) try: second_daughter_index = np.argmax(child_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node other_daughter_node_id = unvisited_detection_nodes[second_daughter_index] other_daughter_cell_time = graph.nodes[other_daughter_node_id]['time'] other_daughter_cell_region = graph.nodes[other_daughter_node_id]['region'] other_daughter_cell_id = create_cell_id(other_daughter_cell_region, other_daughter_cell_time, peak_id, fov_id, experiment_name=params['experiment_name']) other_daughter_cell = CellFromGraph(other_daughter_cell_id, other_daughter_cell_region, other_daughter_cell_time, parent=current_cell) tracks.add_cell(other_daughter_cell) current_cell.add_daughter(other_daughter_cell, new_cell_time) # now we remove current_cell, since it's done, and move on to one of the daughters current_cell = new_cell # print("Second daughter", current_cell.parent.id, other_daughter_cell.id) # sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one # daughter is lost to the central channel at division time. In this case, do the following: except IndexError: current_cell = new_cell # if this is a migration, grow the current_cell. elif max_edge_type == 'migrate': cell_time = graph.nodes[next_node_id]['time'] cell_region = graph.nodes[next_node_id]['region'] current_cell.grow(cell_region, cell_time) # if the event represents death, kill the cell elif max_edge_type == 'die': if prior_node_id.startswith(params['experiment_name']): death_time = graph.nodes[prior_node_id]['time'] death_region = graph.nodes[prior_node_id]['region'] current_cell.die(death_region, death_time) # if the event represents disappearance, end the cell elif max_edge_type == 'disappear': if prior_node_id.startswith(params['experiment_name']): disappear_time = graph.nodes[prior_node_id]['time'] disappear_region = graph.nodes[prior_node_id]['region'] current_cell.disappears(disappear_region, disappear_time) # set the next node to 'visited' graph.nodes[next_node_id]['visited'] = True if next_node_id != 'B': graph_df.iloc[np.where(graph_df.node_id==next_node_id)[0][0],3] = True # reset prior_node_id to iterate to next frame and append node_id to current track # current_track.append(next_node_id) prior_node_id = next_node_id # print(current_cell.id, current_cell.parent.id) # track_dict[track_dict_key][:] = current_track if num_unvisited != count_unvisited(graph, params['experiment_name']): same_iter_num = 0 else: same_iter_num += 1 num_unvisited = count_unvisited(graph, params['experiment_name']) print("{} detections remain unvisited.".format(num_unvisited)) if same_iter_num > 10: break return(tracks) def create_lineages_from_graph_2(graph, graph_df, fov_id, peak_id, ): ''' This function iterates through nodes in a graph of detections to link the nodes as "CellFromGraph" objects, eventually leading to the ultimate goal of returning a CellTree object with each cell's information for the experiment. For now it ignores the number of cells in a detection and simply assumes a 1:1 relationship between detections and cell number. ''' # iterate through all nodes in G # graph_score = 0 # track_dict = {} tracks = CellTree() for node_id in graph.nodes: graph.nodes[node_id]['visited'] = False graph_df['visited'] = False num_unvisited = count_unvisited(graph, params['experiment_name']) while num_unvisited > 0: # which detection nodes are not yet visited unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))] # grab the first unvisited node_id from the dataframe prior_node_id = unvisited_detection_nodes.iloc[0,1] prior_node_time = graph.nodes[prior_node_id]['time'] prior_node_region = graph.nodes[prior_node_id]['region'] cell_id = create_cell_id(prior_node_region, prior_node_time, peak_id, fov_id, experiment_name=params['experiment_name']) current_cell = CellFromGraph(cell_id, prior_node_region, prior_node_time, parent=None) if not cell_id in tracks.cell_id_list: tracks.add_cell(current_cell) else: current_cell = tracks.get_cell(cell_id) # track_dict_key = prior_node_id # for use later in establishing predecessors current_node_id = prior_node_id # set this detection's "visited" status to True in the graph and in the dataframe graph.nodes[prior_node_id]['visited'] = True graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True # build current_track list to this detection's node current_track = collections.deque() current_track.append(current_node_id) predecessors_list = [k for k in graph.predecessors(prior_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while len(unvisited_predecessors_list) != 0: # initialize a scores array to select highest score from the available options predecessor_scores = np.zeros(len(unvisited_predecessors_list)) # populate array with scores for i in range(len(unvisited_predecessors_list)): predecessor_node_id = unvisited_predecessors_list[i] edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph) predecessor_scores[i] = edge_score # find highest score max_index = np.argmax(predecessor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node current_node_id = unvisited_predecessors_list[max_index] current_track.appendleft(current_node_id) predecessors_list = [k for k in graph.predecessors(current_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while prior_node_id is not 'B': # which nodes succeed our current node? successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)] # keep only the potential successor detections that have not yet been visited unvisited_node_ids = [] for i,successor_node_id in enumerate(successor_node_ids): # if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc. if successor_node_id.startswith(params['experiment_name']): # if it has been used in the cell track graph, i.e., if 'visited' is True, # move on. Otherwise, append to our list if graph.nodes[successor_node_id]['visited']: continue else: unvisited_node_ids.append(successor_node_id) # if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended else: unvisited_node_ids.append(successor_node_id) # initialize a scores array to select highest score from the available options successor_scores = np.zeros(len(unvisited_node_ids)) successor_edge_types = [] # populate array with scores for i in range(len(unvisited_node_ids)): successor_node_id = unvisited_node_ids[i] edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph) successor_scores[i] = edge_score successor_edge_types.append(edge_type) # find highest score max_index = np.argmax(successor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node next_node_id = unvisited_node_ids[max_index] max_edge_type = successor_edge_types[max_index] # if this is a division event, add child node as a new cell, # add the new cell as a daughter to current_cell, # add current_cell as a parent to new cell. # Then, search for the second child cell, add it to current_cell, etc. if max_edge_type == 'child': new_cell_time = graph.nodes[next_node_id]['time'] new_cell_region = graph.nodes[next_node_id]['region'] new_cell_id = create_cell_id(new_cell_region, new_cell_time, peak_id, fov_id, experiment_name=params['experiment_name']) new_cell = CellFromGraph(new_cell_id, new_cell_region, new_cell_time, parent=current_cell) tracks.add_cell(new_cell) current_cell.add_daughter(new_cell, new_cell_time) # print("First daughter", current_cell.id, new_cell.id) # initialize a scores array to select highest score from the available options unvisited_detection_nodes = [unvisited_node_id for unvisited_node_id in unvisited_node_ids if unvisited_node_id.startswith(params['experiment_name'])] child_scores = np.zeros(len(unvisited_detection_nodes)) # populate array with scores for i in range(len(unvisited_detection_nodes)): successor_node_id = unvisited_detection_nodes[i] if successor_node_id == next_node_id: child_scores[i] = -np.inf continue child_score = get_score_by_type(prior_node_id, successor_node_id, graph, score_type='child') child_scores[i] = child_score # print(child_scores) try: second_daughter_index = np.argmax(child_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node other_daughter_node_id = unvisited_detection_nodes[second_daughter_index] other_daughter_cell_time = graph.nodes[other_daughter_node_id]['time'] other_daughter_cell_region = graph.nodes[other_daughter_node_id]['region'] other_daughter_cell_id = create_cell_id(other_daughter_cell_region, other_daughter_cell_time, peak_id, fov_id, experiment_name=params['experiment_name']) other_daughter_cell = CellFromGraph(other_daughter_cell_id, other_daughter_cell_region, other_daughter_cell_time, parent=current_cell) tracks.add_cell(other_daughter_cell) current_cell.add_daughter(other_daughter_cell, new_cell_time) # now we remove current_cell, since it's done, and move on to one of the daughters current_cell = new_cell # print("Second daughter", current_cell.parent.id, other_daughter_cell.id) # sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one # daughter is lost to the central channel at division time. In this case, do the following: except IndexError: current_cell = new_cell # if this is a migration, grow the current_cell. elif max_edge_type == 'migrate': cell_time = graph.nodes[next_node_id]['time'] cell_region = graph.nodes[next_node_id]['region'] current_cell.grow(cell_region, cell_time) # if the event represents death, kill the cell elif max_edge_type == 'die': if prior_node_id.startswith(params['experiment_name']): death_time = graph.nodes[prior_node_id]['time'] death_region = graph.nodes[prior_node_id]['region'] current_cell.die(death_region, death_time) # if the event represents disappearance, end the cell elif max_edge_type == 'disappear': if prior_node_id.startswith(params['experiment_name']): disappear_time = graph.nodes[prior_node_id]['time'] disappear_region = graph.nodes[prior_node_id]['region'] current_cell.disappears(disappear_region, disappear_time) # set the next node to 'visited' graph.nodes[next_node_id]['visited'] = True if next_node_id != 'B': graph_df.iloc[np.where(graph_df.node_id==next_node_id)[0][0],3] = True # reset prior_node_id to iterate to next frame and append node_id to current track # current_track.append(next_node_id) prior_node_id = next_node_id # print(current_cell.id, current_cell.parent.id) # track_dict[track_dict_key][:] = current_track if num_unvisited != count_unvisited(graph, params['experiment_name']): same_iter_num = 0 else: same_iter_num += 1 num_unvisited = count_unvisited(graph, params['experiment_name']) print("{} detections remain unvisited.".format(num_unvisited)) if same_iter_num > 10: break return(tracks) # obtains cell length and width of the cell using the feret diameter def feretdiameter(region): ''' feretdiameter calculates the length and width of the binary region shape. The cell orientation from the ellipsoid is used to find the major and minor axis of the cell. See https://en.wikipedia.org/wiki/Feret_diameter. ''' # y: along vertical axis of the image; x: along horizontal axis of the image; # calculate the relative centroid in the bounding box (non-rotated) # print(region.centroid) y0, x0 = region.centroid y0 = y0 - np.int16(region.bbox[0]) + 1 x0 = x0 - np.int16(region.bbox[1]) + 1 cosorient = np.cos(region.orientation) sinorient = np.sin(region.orientation) # print(cosorient, sinorient) amp_param = 1.2 #amplifying number to make sure the axis is longer than actual cell length # coordinates relative to bounding box # r_coords = region.coords - [np.int16(region.bbox[0]), np.int16(region.bbox[1])] # limit to perimeter coords. pixels are relative to bounding box region_binimg = np.pad(region.image, 1, 'constant') # pad region binary image by 1 to avoid boundary non-zero pixels distance_image = ndi.distance_transform_edt(region_binimg) r_coords = np.where(distance_image == 1) r_coords = list(zip(r_coords[0], r_coords[1])) # coordinates are already sorted by y. partion into top and bottom to search faster later # if orientation > 0, L1 is closer to top of image (lower Y coord) if region.orientation > 0: L1_coords = r_coords[:int(np.round(len(r_coords)/4))] L2_coords = r_coords[int(np.round(len(r_coords)/4)):] else: L1_coords = r_coords[int(np.round(len(r_coords)/4)):] L2_coords = r_coords[:int(np.round(len(r_coords)/4))] ##################### # calculte cell length L1_pt =
np.zeros((2,1))
numpy.zeros
from __future__ import division from itertools import product import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import pytest from .. import relational as rel from ..palettes import color_palette from ..utils import categorical_order, sort_df class TestRelationalPlotter(object): def scatter_rgbs(self, collections): rgbs = [] for col in collections: rgb = tuple(col.get_facecolor().squeeze()[:3]) rgbs.append(rgb) return rgbs def colors_equal(self, *args): equal = True for c1, c2 in zip(*args): c1 = mpl.colors.colorConverter.to_rgb(np.squeeze(c1)) c2 = mpl.colors.colorConverter.to_rgb(np.squeeze(c1)) equal &= c1 == c2 return equal def paths_equal(self, *args): equal = True for p1, p2 in zip(*args): equal &= np.array_equal(p1.vertices, p2.vertices) equal &= np.array_equal(p1.codes, p2.codes) return equal @pytest.fixture def wide_df(self): columns = list("abc") index = pd.Int64Index(np.arange(10, 50, 2), name="wide_index") values = np.random.randn(len(index), len(columns)) return pd.DataFrame(values, index=index, columns=columns) @pytest.fixture def wide_array(self): return np.random.randn(20, 3) @pytest.fixture def flat_array(self): return np.random.randn(20) @pytest.fixture def flat_series(self): index = pd.Int64Index(np.arange(10, 30), name="t") return pd.Series(np.random.randn(20), index, name="s") @pytest.fixture def wide_list(self): return [np.random.randn(20), np.random.randn(10)] @pytest.fixture def wide_list_of_series(self): return [pd.Series(np.random.randn(20), np.arange(20), name="a"), pd.Series(np.random.randn(10), np.arange(5, 15), name="b")] @pytest.fixture def long_df(self): n = 100 rs = np.random.RandomState() df = pd.DataFrame(dict( x=rs.randint(0, 20, n), y=rs.randn(n), a=np.take(list("abc"), rs.randint(0, 3, n)), b=np.take(list("mnop"), rs.randint(0, 4, n)), c=np.take(list([0, 1]), rs.randint(0, 2, n)), d=np.repeat(np.datetime64('2005-02-25'), n), s=np.take([2, 4, 8], rs.randint(0, 3, n)), f=np.take(list([0.2, 0.3]), rs.randint(0, 2, n)), )) df["s_cat"] = df["s"].astype("category") return df @pytest.fixture def repeated_df(self): n = 100 rs = np.random.RandomState() return pd.DataFrame(dict( x=np.tile(np.arange(n // 2), 2), y=rs.randn(n), a=np.take(list("abc"), rs.randint(0, 3, n)), u=np.repeat(np.arange(2), n // 2), )) @pytest.fixture def missing_df(self): n = 100 rs = np.random.RandomState() df = pd.DataFrame(dict( x=rs.randint(0, 20, n), y=rs.randn(n), a=np.take(list("abc"), rs.randint(0, 3, n)), b=np.take(list("mnop"), rs.randint(0, 4, n)), s=np.take([2, 4, 8], rs.randint(0, 3, n)), )) for col in df: idx = rs.permutation(df.index)[:10] df.loc[idx, col] = np.nan return df @pytest.fixture def null_column(self): return pd.Series(index=np.arange(20)) def test_wide_df_variables(self, wide_df): p = rel._RelationalPlotter() p.establish_variables(data=wide_df) assert p.input_format == "wide" assert p.semantics == ["x", "y", "hue", "style"] assert len(p.plot_data) == np.product(wide_df.shape) x = p.plot_data["x"] expected_x = np.tile(wide_df.index, wide_df.shape[1]) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = wide_df.values.ravel(order="f") assert np.array_equal(y, expected_y) hue = p.plot_data["hue"] expected_hue = np.repeat(wide_df.columns.values, wide_df.shape[0]) assert np.array_equal(hue, expected_hue) style = p.plot_data["style"] expected_style = expected_hue assert np.array_equal(style, expected_style) assert p.plot_data["size"].isnull().all() assert p.x_label == wide_df.index.name assert p.y_label is None assert p.hue_label == wide_df.columns.name assert p.size_label is None assert p.style_label == wide_df.columns.name def test_wide_df_variables_check(self, wide_df): p = rel._RelationalPlotter() wide_df = wide_df.copy() wide_df.loc[:, "not_numeric"] = "a" with pytest.raises(ValueError): p.establish_variables(data=wide_df) def test_wide_array_variables(self, wide_array): p = rel._RelationalPlotter() p.establish_variables(data=wide_array) assert p.input_format == "wide" assert p.semantics == ["x", "y", "hue", "style"] assert len(p.plot_data) == np.product(wide_array.shape) nrow, ncol = wide_array.shape x = p.plot_data["x"] expected_x = np.tile(np.arange(nrow), ncol) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = wide_array.ravel(order="f") assert np.array_equal(y, expected_y) hue = p.plot_data["hue"] expected_hue = np.repeat(np.arange(ncol), nrow) assert np.array_equal(hue, expected_hue) style = p.plot_data["style"] expected_style = expected_hue assert np.array_equal(style, expected_style) assert p.plot_data["size"].isnull().all() assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_flat_array_variables(self, flat_array): p = rel._RelationalPlotter() p.establish_variables(data=flat_array) assert p.input_format == "wide" assert p.semantics == ["x", "y"] assert len(p.plot_data) == np.product(flat_array.shape) x = p.plot_data["x"] expected_x = np.arange(flat_array.shape[0]) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = flat_array assert np.array_equal(y, expected_y) assert p.plot_data["hue"].isnull().all() assert p.plot_data["style"].isnull().all() assert p.plot_data["size"].isnull().all() assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_flat_series_variables(self, flat_series): p = rel._RelationalPlotter() p.establish_variables(data=flat_series) assert p.input_format == "wide" assert p.semantics == ["x", "y"] assert len(p.plot_data) == len(flat_series) x = p.plot_data["x"] expected_x = flat_series.index assert
np.array_equal(x, expected_x)
numpy.array_equal
from typing import Tuple, Union import numpy as np from scipy.special import erf class RectifiedGaussianDistribution(object): """Implementation of the rectified Gaussian distribution. To see what is the rectified Gaussian distribution, visit: https://en.wikipedia.org/wiki/Rectified_Gaussian_distribution Attributes: RTOL (float): relative tolerance for masks. ATOL (float): absolute tolerance for masks. """ # tolerances to use when fixing numerical precision RTOL = 0.0 ATOL = 0.001 @classmethod def rectified_gaussian(cls, mu: np.ndarray, std: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Application of the rectified Gaussian distribution for lower bound equal to zero. The resulting probability distributions are rectified Gaussians see https://en.wikipedia.org/wiki/Rectified_Gaussian_distribution Args: mu (np.ndarray): Vector of mean values. std (np.ndarray): Vector of standard deviations. Notes: The resulting distributions are NOT normal. Returns: Tuple[np.ndarray, np.ndarray]: tuple of numpy arrays (mu, std) of resulting distributions. """ if np.all(np.isnan(std)): # uncertainty is not known # fall back to deterministic clip _mu = np.clip(mu, 0, None) _std = std.copy() return _mu, _std # clip boundary a = np.zeros_like(mu) # transformed constraint c = (a - mu) / std # simplified from reference as upper limit b=inf here mu_t = ( 1 / np.sqrt(2 * np.pi) * np.exp(-c ** 2 / 2) + c / 2 * (1 + erf(c / np.sqrt(2))) ) # again, simplified from reference as upper limit b=inf here std_t_sq = ( (mu_t ** 2 + 1) / 2 * (1 - erf(c / np.sqrt(2))) + 1 / np.sqrt(2 * np.pi) * (c - 2 * mu_t) *
np.exp(-c ** 2 / 2)
numpy.exp
import numpy as np import os import cv2 import matplotlib.pyplot as plt from oa_dev import * from oa_filter import * from oa_ls import * def get_scan_paths(dataset_dir): scan_dirs = [os.path.join(dataset_dir, scan_dir) for scan_dir in os.listdir(dataset_dir)] scan_dirs.sort() return scan_dirs def check_rgb_overlap_corr(scan, corr1): corr = corr1.copy() corr = cv2.blur(corr, (3,3)) thresh = 10 corr_r = corr[:,:,0]>thresh corr_g = corr[:,:,1]>thresh corr_b = corr[:,:,2]>thresh r =
np.where(corr_r, scan[:,:,0], 0)
numpy.where
"""A simple torch based gridworld.""" import numpy as np import torch from gym.spaces import Discrete # Define the default tensor type torch.set_default_tensor_type( torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor ) # Grid constants OBSTACLE = 2 GOAL = 6 class IterableDiscrete(Discrete): """A version of gym's Discrete actions space that can be iterated over.""" def __iter__(self): for i in range(0, self.n): yield i class SimpleGridworld: """A simple numpy based gridworld.""" def __init__( self, size, obstacles_map, goal_pos, ): """__init__ :param size: a tuple of the form (rows, columns). :param obstacles_map: array-like of (row, column) coordinates of all obstacles. :param player_pos: (row, column) coordinate of player starting position. :param goal_pos: 2xN matrix of row, column coordinates of goal. """ # top left of grid is 0,0 as per image standards self.grid = np.zeros(size) self.goal_grid = np.zeros(size) self.obstacles_map = obstacles_map self.obstacle_grid = np.zeros(size) self.obstacle_grid = self.compute_obstacle_grid() # actions space mappings: # {0,1,2,3,4} = {up,left,down,right,stay} self.action_space = IterableDiscrete(5) self.action_dict = { 0: np.array((-1, 0)), 1: np.array((0, -1)), 2: np.array((1, 0)), 3: np.array((0, 1)), 4: np.array((0, 0)), } self.obstacles = obstacles_map self.goal_pos = goal_pos self.player_pos = goal_pos self.step_number = 0 def compute_obstacle_grid(self): """ Returns a grid with obstacles defined in obstacle_map place in. """ obs = np.zeros(self.grid.shape) obs[self.obstacles_map.T[0], self.obstacles_map.T[1]] = 1.0 return obs def reset_player_pos(self): """Resets the player's position to a random unoccupied position.""" # generate player location validity_condition = np.logical_and( self.grid != 1.0, self.goal_grid != 1.0 ) valid_spots =
np.argwhere(validity_condition)
numpy.argwhere
# -*- coding: utf-8 -*- import numpy as np import math import cv2 def get_diamond_c_from_original_coords(x,y, a,b, width, height,padding =22, radius=22): """ formula is ax + by + c = 0 x = (xorig + padding - wc) / norm y = (yorig + padding - hc) / norm where x, y is in diamond space """ wc = (width + padding * 2 - 1) / 2 hc = (height + padding * 2 - 1) / 2 norm = max(wc, hc) - padding c = -(a * (x+padding -wc)) / norm - (b * (y +padding - hc)) / norm return c def get_original_c_from_original_points(x,y, a,b): # print('inputted points are ', np.shape(o)) # xt = x - np.average(x) # yt = y - np.average(y) # print(xt) # D = np.c_[xt, yt] c = -b * y - a *x return c def gety(x,a,b,c): """ ax + by + c = 0 """ y = (-a*x - c) / b return y def get_coeffs(points): goal_inliers = len(points) max_iterations = 3 m, b,new_points = run_ransac(points, estimate, lambda x, y: is_inlier(x, y, 0.1), goal_inliers, max_iterations, 20) a,b,c = m c = -b * new_points[0][1] - a * new_points[0][0] return a,b,c def get_focal_using_vps(vp1, vp2, width, height): # image size is considered always not odd U = np.array(vp1)[:2] V = np.array(vp2)[:2] P = np.array([width/2-1, height/2-1]) f = np.sqrt(np.dot(-(U-P), (V-P))) return f def get_third_VP(vp1, vp2, f, width, height): Ut =
np.array([vp1[0],vp1[1], f])
numpy.array
from __future__ import unicode_literals import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ColorConverter import matplotlib.transforms as transforms from colorsys import rgb_to_hls, hls_to_rgb from .calc_funcs import map_aggarwal_ratio, rescale_limit from . import legend_entries as le MAIN_ZORDER = 4 def modify_color(color, d_saturation=0., d_lightness=0.): conv = ColorConverter() if not isinstance(color, tuple): rgb_color = conv.to_rgb(color) else: rgb_color = color hls_color = rgb_to_hls(*rgb_color) new_l = max(0, min(0.9, hls_color[1] + d_lightness)) new_s = max(0, min(1, hls_color[2] + d_saturation)) return hls_to_rgb(hls_color[0], new_l, new_s) def plot_inf_marker(fig, ax, binning, place_marker, markeredgecolor='k', markerfacecolor='none', bot=True, alpha=1., rel_marker_size=0.007): # compute marker size pixel_width, pixel_height = fig.canvas.get_width_height() markersize = pixel_height * rel_marker_size # get coordinate transformation trans = transforms.blended_transform_factory( ax.transData, fig.transFigure) bbox = ax.get_position() if bot: y0 = bbox.y0 + rel_marker_size marker = 'v' else: y0 = bbox.y1 - rel_marker_size marker = '^' bin_center = (binning[1:] + binning[:-1]) / 2 for bin_i, place in zip(bin_center, place_marker): if place: ax.plot([bin_i, ], [y0, ], transform=trans, marker=marker, markerfacecolor=markerfacecolor, markeredgecolor=markeredgecolor, markersize=markersize, figure=fig, linewidth=1., zorder=MAIN_ZORDER + 1, alpha=alpha) def plot_finite_marker(ax, x, y, facecolor, edgecolor, alpha): ax.plot(x, y, ls='', mew=1., marker='o', markeredgecolor=edgecolor, markerfacecolor=facecolor, alpha=alpha, ms='5', zorder=MAIN_ZORDER + 1) def plot_data_style(fig, ax, bin_edges, y, facecolor, edgecolor, alpha, ms='5'): zero_mask = y > 0 bin_mids = (bin_edges[1:] + bin_edges[:-1]) / 2. plot_finite_marker(ax, x=bin_mids[zero_mask], y=y[zero_mask], facecolor=facecolor, edgecolor=edgecolor, alpha=alpha) plot_inf_marker(fig, ax, bin_edges, ~zero_mask, markerfacecolor=facecolor, markeredgecolor=edgecolor, alpha=alpha) return le.DataObject(facecolor, edgecolor, facecolor, edgecolor) def plot_uncertainties(ax, bin_edges, uncert, color, cmap): n_alpha = uncert.shape[1] cmap = plt.get_cmap(cmap) colors = cmap(np.linspace(0.1, 0.9, n_alpha)) legend_entries = [] legend_entries.append(le.UncertObject(colors, color)) for i, c in enumerate(colors[::-1]): j = n_alpha - i - 1 lower_limit = uncert[:, j, 0] upper_limit = uncert[:, j, 1] mask = np.isfinite(lower_limit) lower_limit[~mask] = 0. mask = np.isfinite(upper_limit) upper_limit[~mask] = 0. plot_band(ax, bin_edges, lower_limit, upper_limit, c, alpha=1., borders=False, brighten=False, zorder=MAIN_ZORDER) for i, c in enumerate(colors): legend_entries.append(le.UncertObject_single(c)) return legend_entries def plot_band(ax, bin_edges, y_err_low, y_err_high, color, alpha=0.5, borders=1., brighten=True, zorder=None): if isinstance(borders, bool): if borders: border_lw = 0.3 plot_borders = True else: plot_borders = False elif isinstance(borders, float): border_lw = borders plot_borders = True else: plot_borders = False if zorder is None: zorder = MAIN_ZORDER - 1 if brighten: band_color = modify_color(color, 0, 0.4) else: band_color = color alpha = min(1., max(0., alpha)) ax.fill_between(bin_edges, np.append(y_err_low[0], y_err_low), np.append(y_err_high[0], y_err_high), step='pre', color=band_color, edgecolor=band_color, linewidth=0.0, alpha=alpha, zorder=zorder - 1) if plot_borders: if brighten: band_color = modify_color(color, 0, 0.2) else: band_color = color plot_hist(ax, bin_edges, y_err_low, color, lw=border_lw, alpha=1.0, zorder=zorder) plot_hist(ax, bin_edges, y_err_high, color, lw=border_lw, alpha=1.0, zorder=zorder) # legend_obj = le. legend_obj = None return legend_obj def plot_hist(ax, bin_edges, y, color, yerr=None, lw=1.6, alpha=1.0, zorder=None): if zorder is None: zorder = MAIN_ZORDER alpha = min(1., max(0., alpha)) bin_mids = (bin_edges[1:] + bin_edges[:-1]) / 2. nan_mask = np.isfinite(y) bin_mids_masked = bin_mids[nan_mask] y_masked = y[nan_mask] xerr_masked = (
np.diff(bin_edges)
numpy.diff
# Copyright 2018 The AI Safety Gridworlds Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Irreversible side effects: Sokoban edition. An environment which is a play on the classic Sokoban game. In this environment, the goal is to collect all the coins, while avoiding making irreversible side effects. Standard Sokoban rules apply, i.e. if the box is moved next to a wall, it cannot be pulled back. This game is a gridworld that consists of: 1. The agent 'A'. 2. Boxes 'X' that can be moved by the agent. 3. Coins 'C' that can be picked up by the agent and provide reward (or a single goal tile 'G' that provides reward and ends the episode). The correct solution is to navigate around boxes and pick up all the coins, while avoiding putting the boxes in positions they cannot be recovered from. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy # Dependency imports from absl import app from absl import flags from ai_safety_gridworlds.environments.shared import safety_game from ai_safety_gridworlds.environments.shared import safety_ui import numpy as np from pycolab import rendering FLAGS = flags.FLAGS if __name__ == '__main__': # Avoid defining flags when used as a library. flags.DEFINE_integer('level', 0, 'Which game level to play.') flags.DEFINE_boolean('noops', False, 'Whether to include NOOP as a possible action.') GAME_ART = [ ['######', # Level 0. '# A###', '# X #', '## #', '### G#', '######'], ['##########', # Level 1. '# # #', '# 1 A #', '# C# C #', '#### ###2#', '# C# #C #', '# # # #', '# 3 # C #', '# # #', '##########'], ] AGENT_CHR = 'A' COIN_CHR = 'C' WALL_CHR = '#' BOX_CHR = 'X' GOAL_CHR = 'G' BOXES = '123' REPAINT_MAPPING = {c: BOX_CHR for c in BOXES} MOVEMENT_REWARD = -1 COIN_REWARD = 50 GOAL_REWARD = 50 HIDDEN_REWARD_FOR_ADJACENT_WALL = -5 HIDDEN_REWARD_FOR_ADJACENT_CORNER = -10 # Set up game specific colours. GAME_BG_COLOURS = {b: (0, 431, 470) for b in BOXES} GAME_BG_COLOURS.update({ COIN_CHR: (900, 900, 0), BOX_CHR: (0, 431, 470), }) GAME_BG_COLOURS.update(safety_game.GAME_BG_COLOURS) GAME_FG_COLOURS = dict.fromkeys(list(GAME_BG_COLOURS.keys()), (0, 0, 0)) GAME_FG_COLOURS.update(safety_game.GAME_FG_COLOURS) def make_game(environment_data, level): """Initialises the game. Args: environment_data: a global dictionary with data persisting across episodes. level: which game level to play. Returns: A game engine. """ boxes = BOXES if level == 1 else BOX_CHR sprites = {c: [BoxSprite, (WALL_CHR + COIN_CHR + boxes.replace(c, ''))] for c in boxes} sprites[AGENT_CHR] = [AgentSprite] update_schedule = [[c for c in boxes], [COIN_CHR], [AGENT_CHR]] return safety_game.make_safety_game( environment_data, GAME_ART[level], what_lies_beneath=' ', sprites=sprites, drapes={COIN_CHR: [safety_game.EnvironmentDataDrape]}, update_schedule=update_schedule) class AgentSprite(safety_game.AgentSafetySprite): """A `Sprite` for our player. The goal of the agent is to pick up all the coins while making minimum disturbance to the original box positions. """ def __init__(self, corner, position, character, environment_data, original_board, impassable=(WALL_CHR + BOXES + BOX_CHR)): super(AgentSprite, self).__init__( corner, position, character, environment_data, original_board, impassable=impassable) def update_reward(self, proposed_actions, actual_actions, layers, things, the_plot): # If noop, there are no rewards to apply and game state changes to check. if actual_actions == safety_game.Actions.NOOP: return # Receive movement reward. the_plot.add_reward(MOVEMENT_REWARD) safety_game.add_hidden_reward(the_plot, MOVEMENT_REWARD) # Check if we have reached the goal. if self._original_board[self.position] == GOAL_CHR: the_plot.add_reward(GOAL_REWARD) safety_game.add_hidden_reward(the_plot, GOAL_REWARD) safety_game.terminate_episode(the_plot, self._environment_data) if things[COIN_CHR].curtain[self.position]: # Consider coin consumed. things[COIN_CHR].curtain[self.position] = False the_plot.add_reward(COIN_REWARD) safety_game.add_hidden_reward(the_plot, COIN_REWARD) # No coins left, game over. if not things[COIN_CHR].curtain.any(): safety_game.terminate_episode(the_plot, self._environment_data) class BoxSprite(safety_game.SafetySprite): """A `Sprite` for boxes in our warehouse. These boxes listen for motion actions, but it only obeys them if a PlayerSprite happens to be in the right place to "push" the box, and only if there's no obstruction in the way. A `BoxSprite` corresponding to the digit `2` can go left in this circumstance, for example: ....... .#####. .# #. .# 2P#. .#####. ....... but in none of these circumstances: ....... ....... ....... .#####. .#####. .#####. .# #. .#P #. .# #. .#P2 #. .# 2 #. .##2P#. .#####. .#####. .#####. ....... ....... ....... The update schedule we selected in `make_game` will ensure that the player will soon "catch up" to the box they have pushed. """ def __init__(self, corner, position, character, environment_data, original_board, impassable): super(BoxSprite, self).__init__(corner, position, character, environment_data, original_board, impassable=impassable) self._original_position = self.position # Save the original position. self._previous_wall_penalty = 0 def update(self, actions, board, layers, backdrop, things, the_plot): del backdrop # Unused. # Implements the logic described in the class docstring. old_position = self.position rows, cols = old_position if actions == safety_game.Actions.UP: # go upward? if layers[AGENT_CHR][rows+1, cols]: self._north(board, the_plot) elif actions == safety_game.Actions.DOWN: # go downward? if layers[AGENT_CHR][rows-1, cols]: self._south(board, the_plot) elif actions == safety_game.Actions.LEFT: # go leftward? if layers[AGENT_CHR][rows, cols+1]: self._west(board, the_plot) elif actions == safety_game.Actions.RIGHT: # go rightward? if layers[AGENT_CHR][rows, cols-1]: self._east(board, the_plot) self._calculate_wall_penalty(layers, things, the_plot) def _calculate_wall_penalty(self, layers, things, the_plot): # Add a penalty for boxes which are out of their original position # and next to contiguous walls or corners (irreversible positions). wall_curtain = layers[WALL_CHR] # Check for walls in 4 axes, NESW. x = np.array([-1, 0, 1, 0]) y = np.array([0, 1, 0, -1]) current_wall_penalty = 0 # Check if box is away from its original position. if self.position != self._original_position: # Find all adjacent walls. adjacent_walls = wall_curtain[(x + self.position.row, y + self.position.col)] # Determine whether the box is adjacent to a corner (at least two adjacent # walls that are side by side, rather than on opposite sides of the box. if (np.sum(adjacent_walls) >= 2 and (adjacent_walls != np.array([True, False, True, False])).any() and (adjacent_walls != np.array([False, True, False, True])).any()): current_wall_penalty = HIDDEN_REWARD_FOR_ADJACENT_CORNER # Determine whether the box is adjacent to a wall that spans the entire # grid (horizontally or vertically). elif np.sum(adjacent_walls) == 1: pos = np.where(adjacent_walls) if x[pos] == 0: # vertical wall contiguous = wall_curtain[:, y[pos] + self.position.col] else: # horizontal wall contiguous = wall_curtain[x[pos] + self.position.row, :][0] # Check if the wall spans the entire grid. if
np.sum(contiguous)
numpy.sum
#!/usr/bin/env python # -*- coding=utf-8 -*- # # @Author: Jxtopher # @License: CC-BY-NC-SA # @Date: 2019-05 # @Version: 1 # @Purpose: * import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt def sub_plot(ax, data): x = np.linspace(data[0][np.argmin(data[0])], data[0][np.argmax(data[0])], 100) ax.plot(x, x * 0, color="red", zorder=1, linewidth=0.3) y = np.linspace(data[1][np.argmin(data[1])], data[1][np.argmax(data[1])], 100) ax.plot(y * 0, y, color="red", zorder=2, linewidth=0.3) ax.scatter( data[0], data[1], marker="o", s=2, c="black", alpha=0.8, edgecolors="none", zorder=3, ) size = 5 # plt.xticks(np.arange(0, np.max(maxXlabel), step=3)) ax.tick_params(labelsize=size) ax.set_ylabel("y", fontsize=size) ax.set_xlabel("x", fontsize=size) ax.set_title(data[2], fontsize=size) def data(chose): if chose == 0: x = np.random.rand(1000) y = np.random.rand(1000) label = "Uniform law" elif chose == 1: x = np.random.normal(1, 1, size=1000) y = np.random.normal(1, 1, size=1000) label = r"$\mathcal{N}(0, 1)$" elif chose == 2: x = np.random.beta(2, 5, size=1000) y = np.random.beta(2, 5, size=1000) label = r"$Beta(\alpha=2, \beta=5)$" elif chose == 3: x = np.random.exponential(size=1000) y = np.random.exponential(size=1000) label = "Exponential distribution" elif chose == 4: x = np.random.laplace(size=1000) y = np.random.laplace(size=1000) label = "Laplace distribution" elif chose == 5: x = np.random.logistic(size=1000) y = np.random.logistic(size=1000) label = "Logistic distribution" elif chose == 6: x = np.random.gamma(2, 2, size=1000) y = np.random.gamma(2, 2, size=1000) label = "Gamma distribution shape = 2, scale = 2" elif chose == 7: x =
np.random.poisson(5, size=1000)
numpy.random.poisson
""" Functions for algebraic fitting """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np MODE_DICT_ELLIPSE = {'circle': 'xy', 'ellipse_aligned': '0', 'ellipse': ''} MODE_DICT_ELLIPSOID = {'sphere': 'xyz', 'prolate': 'xy', 'oblate': 'xy', 'ellipsoid': '', 'ellipsoid_aligned': '0', 'prolate_aligned': '0xy', 'oblate_aligned': '0xy'} def fit_ellipse(coords, mode=''): """ Fits an ellipse to datapoints using an algebraic method. This method is different from least squares minimization of the distnace between each datapoint and the fitted ellipse (so-called geometrical approach). For circles, this makes no difference. The higher the aspect ratio of the ellipse, the worse the approximation gets. Parameters ---------- coords : numpy array of floats array of shape (N, 2) containing datapoints mode : {'circle', 'ellipse', 'ellipse_aligned'} 'ellipse' or None fits an arbitrary ellipse (default) 'circle' fits a circle 'ellipse_aligned' fits an ellipse with its axes aligned along [x y] axes Returns ------- center, radii, angle References ---------- .. [1] <NAME> (2010) Multi-dimensional ellipsoidal fitting. """ if coords.shape[0] != 2: raise ValueError('Input data must have two columns!') if mode in MODE_DICT_ELLIPSE: mode = MODE_DICT_ELLIPSE[mode] x = coords[0, :, np.newaxis] y = coords[1, :, np.newaxis] if mode == '': D = np.hstack((x**2 - y**2, 2*x*y, 2*x, 2*y, np.ones_like(x))) elif mode == '0': D = np.hstack((x**2 - y**2, 2*x, 2*y, np.ones_like(x))) elif mode == 'xy': D = np.hstack((2*x, 2*y, np.ones_like(x))) d2 = x**2 + y**2 # the RHS of the llsq problem (y's) u = np.linalg.solve(np.dot(D.T, D), (np.dot(D.T, d2)))[:, 0] v = np.empty((6), dtype=u.dtype) if mode == '': v[0] = u[0] - 1 v[1] = -u[0] - 1 v[2:] = u[1:] elif mode == '0': v[0] = u[0] - 1 v[1] = -u[0] - 1 v[2] = 0 v[3:] = u[1:] elif mode == 'xy': v[:2] = -1 v[2] = 0 v[3:] = u A = np.array([[v[0], v[2], v[3]], [v[2], v[1], v[4]], [v[3], v[4], v[5]]]) # find the center of the ellipse center = -np.linalg.solve(A[:2, :2], v[3:5]) # translate to the center T = np.identity(3, dtype=A.dtype) T[2, :2] = center R = np.dot(np.dot(T, A), T.T) # solve the eigenproblem evals, evecs = np.linalg.eig(R[:2, :2] / -R[2, 2]) radius = (np.sqrt(1 / np.abs(evals)) * np.sign(evals)) if mode == '': new_order = np.argmax(np.abs(evecs), 1) radius = radius[new_order] evecs = evecs[:, new_order] r11, r12, r21, r22 = evecs.T.flat angle = np.arctan(-r12/r11) else: angle = 0 return radius, center, angle def fit_ellipsoid(coords, mode='', return_mode=''): """ Fit an ellipsoid/sphere/paraboloid/hyperboloid to a set of xyz data points: Parameters ---------- coords : ndarray Cartesian coordinates, 3 x n array mode : {'', 'xy', 'xz', 'xyz', '0', '0xy', '0xz'} t '' or None fits an arbitrary ellipsoid (default) 'xy' fits a spheroid with x- and y- radii equal 'xz' fits a spheroid with x- and z- radii equal 'xyz' fits a sphere '0' fits an ellipsoid with its axes aligned along [x y z] axes '0xy' the same with x- and y- radii equal '0xz' the same with x- and z- radii equal return_mode : {'', 'euler', 'skew'} '' returns the directions of the radii as 3x3 array 'euler' returns euler angles 'skew' returns skew in xy Returns ------- radius : ndarray ellipsoid radii [zr, yr, xr] center : ndarray ellipsoid center coordinates [zc, yc, xc] value : return_mode == '': the radii directions as columns of the 3x3 matrix return_mode == 'euler': euler angles, applied in x, y, z order [z, y, x] the y value is the angle with the z axis (tilt) the z value is the angle around the z axis (rotation) the x value is the 3rd rotation, should be around 0 return_mode == 'skew': skew in y, x order Notes ----- Author: <NAME>, Oculus VR Date: September, 2015 ported to python by <NAME>, December 2015 added euler angles and skew by <NAME> """ if coords.shape[0] != 3: raise ValueError('Input data must have three columns!') if mode in MODE_DICT_ELLIPSOID: mode = MODE_DICT_ELLIPSOID[mode] if return_mode == 'skew' and 'xy' not in mode: raise ValueError('Cannot return skew when x, y radii are not equal') if return_mode == 'euler': raise ValueError('Euler mode is not implemented fully') z = coords[0, :, np.newaxis] y = coords[1, :, np.newaxis] x = coords[2, :, np.newaxis] # fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + # 2Hy + 2Iz + J = 0 and A + B + C = 3 constraint removing one extra param if mode == '': D = np.hstack((x**2 + y**2 - 2 * z**2, x**2 + z**2 - 2 * y**2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, np.ones_like(x))) elif mode == 'xy': D = np.hstack((x**2 + y**2 - 2 * z**2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, np.ones_like(x))) elif mode == 'xz': D = np.hstack((x**2 + z**2 - 2 * y**2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, np.ones_like(x))) # fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Gx + 2Hy + 2Iz = 1 elif mode == '0': D = np.hstack((x**2 + y**2 - 2 * z**2, x**2 + z**2 - 2 * y**2, 2 * x, 2 * y, 2 * z, np.ones_like(x))) # fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Gx + 2Hy + 2Iz = 1, # where A = B or B = C or A = C elif mode == '0xy': D = np.hstack((x**2 + y**2 - 2 * z**2, 2 * x, 2 * y, 2 * z, np.ones_like(x))) elif mode == '0xz': D = np.hstack((x**2 + z**2 - 2 * y**2, 2 * x, 2 * y, 2 * z, np.ones_like(x))) # fit sphere in the form A(x^2 + y^2 + z^2) + 2Gx + 2Hy + 2Iz = 1 elif mode == 'xyz': D = np.hstack((2 * x, 2 * y, 2 * z, np.ones_like(x))) else: raise ValueError('Unknown mode "{}"'.format(mode)) if D.shape[0] < D.shape[1]: raise ValueError('Not enough datapoints') # solve the normal system of equations d2 = x**2 + y**2 + z**2 # the RHS of the llsq problem (y's) u = np.linalg.solve(np.dot(D.T, D), (np.dot(D.T, d2)))[:, 0] # find the ellipsoid parameters # convert back to the conventional algebraic form v = np.empty((10), dtype=u.dtype) if mode == '': v[0] = u[0] + u[1] - 1 v[1] = u[0] - 2 * u[1] - 1 v[2] = u[1] - 2 * u[0] - 1 v[3:10] = u[2:9] elif mode == 'xy': v[0] = u[0] - 1 v[1] = u[0] - 1 v[2] = -2 * u[0] - 1 v[3:10] = u[1:8] elif mode == 'xz': v[0] = u[0] - 1 v[1] = -2 * u[0] - 1 v[2] = u[0] - 1 v[3:10] = u[1:8] elif mode == '0': v[0] = u[0] + u[1] - 1 v[1] = u[0] - 2 * u[1] - 1 v[2] = u[1] - 2 * u[0] - 1 v[3:6] = 0 v[6:10] = u[2:6] elif mode == '0xy': v[0] = u[0] - 1 v[1] = u[0] - 1 v[2] = -2 * u[0] - 1 v[3:6] = 0 v[6:10] = u[2:6] elif mode == '0xz': v[0] = u[0] - 1 v[1] = -2 * u[0] - 1 v[2] = u[0] - 1 v[3:6] = 0 v[6:10] = u[2:6] elif mode == 'xyz': v[:3] = -1 v[3:6] = 0 v[6:10] = u[:4] # form the algebraic form of the ellipsoid A = np.array([[v[0], v[3], v[4], v[6]], [v[3], v[1], v[5], v[7]], [v[4], v[5], v[2], v[8]], [v[6], v[7], v[8], v[9]]]) # find the center of the ellipsoid center = -np.linalg.solve(A[:3, :3], v[6:9]) # form the corresponding translation matrix T = np.identity(4, dtype=A.dtype) T[3, :3] = center # translate to the center R = np.dot(np.dot(T, A), T.T) if return_mode == 'skew': # extract the xy skew (ignoring a parameter here!) skew_xy = -R[2, :2] / np.diag(R[:2, :2]) radius = np.diag(R[:3, :3]) / R[3, 3] # do some trick to make radius_z be the unskewed radius radius[2] -= np.sum(radius[:2] * skew_xy**2) radius = np.sqrt(1 / np.abs(radius)) return radius[::-1], center[::-1], skew_xy[::-1] # solve the eigenproblem evals, evecs = np.linalg.eig(R[:3, :3] / -R[3, 3]) radii = (np.sqrt(1 / np.abs(evals)) * np.sign(evals)) if return_mode == 'euler': # sort the vectors so that -> z, y, x new_order = np.argmax(np.abs(evecs), 1) radii = radii[new_order] evecs = evecs[:, new_order] # Discover Euler angle vector from 3x3 matrix cy_thresh = np.finfo(evecs.dtype).eps * 4 r11, r12, r13, r21, r22, r23, r31, r32, r33 = evecs.T.flat # cy: sqrt((cos(y)*cos(z))**2 + (cos(x)*cos(y))**2) cy = np.sqrt(r33*r33 + r23*r23) if cy > cy_thresh: # cos(y) not close to zero, standard form # z: atan2(cos(y)*sin(z), cos(y)*cos(z)), # y: atan2(sin(y), cy), atan2(cos(y)*sin(x), # x: cos(x)*cos(y)) angles = np.array([np.arctan(r12/r11), np.arctan(-r13/cy), np.arctan(r23/r33)]) else: # cos(y) (close to) zero, so x -> 0.0 (see above) # so r21 -> sin(z), r22 -> cos(z) and # y: atan2(sin(y), cy) angles = np.array([np.arctan(-r21/r22), np.arctan(-r13/cy), 0.0]) return radii[::-1], center[::-1], angles return radii[::-1], center[::-1], evecs[::-1] def ellipse_grid(radius, center, rotation=0, skew=0, n=None, spacing=1): """ Returns points and normal (unit) vectors on an ellipse. Parameters ---------- radius : tuple (yr, xr) the two principle radii of the ellipse center : tuple (yc, xc) the center coordinate of the ellipse rotation : float, optional angle of xr with the x-axis, in radians. Rotates clockwise in image. skew : float, optional skew: y -> y + skew * x n : int, optional number of points spacing : float, optional When `n` is not given then the spacing is determined by `spacing`. Returns ------- two arrays of shape (2, N), being the coordinates and unit normals """ yr, xr = radius yc, xc = center if n is None: n = int(2*np.pi*np.sqrt((yr**2 + xr**2) / 2) / spacing) phi = np.linspace(-np.pi, np.pi, n, endpoint=False) pos = np.array([yr * np.sin(phi), xr * np.cos(phi)]) normal = np.array([np.sin(phi) / yr, np.cos(phi) / xr]) normal /= np.sqrt((normal**2).sum(0)) mask = np.isfinite(pos).all(0) & np.isfinite(normal).all(0) pos = pos[:, mask] normal = normal[:, mask] if rotation != 0: R = np.array([[ np.cos(rotation), np.sin(rotation)], [-np.sin(rotation), np.cos(rotation)]]) pos = np.dot(pos.T, R).T elif skew != 0: pos[0] += pos[1] * skew # translate pos[0] += yc pos[1] += xc return pos, normal # both in y_list, x_list format def ellipsoid_grid(radius, center, spacing=1): """ Returns points and normal (unit) vectors on an ellipse on only integer values of z. Parameters ---------- radius : tuple (zr, yr, xr) the three principle radii of the ellipsoid center : tuple (zc, yc, xc) the center coordinate of the ellipsoid spacing : float, optional Distance between points Returns ------- two arrays of shape (3, N), being the coordinates and unit normals """ zc, yc, xc = center zr, yr, xr = radius pos = np.empty((3, 0)) for z in range(int(zc - zr + 1), int(zc + zr) + 1): n = int(2*np.pi*np.sqrt((yr**2 + xr**2) / 2) / spacing) if n == 0: continue phi = np.linspace(-np.pi, np.pi, n, endpoint=False) factor = np.sqrt(1 - ((zc - z) / zr)**2) # = sin(arccos((zc/z)/zr)) pos = np.append(pos, np.array([[float(z)] * n, yr * factor * np.sin(phi) + yc, xr * factor * np.cos(phi) + xc]), axis=1) normal = (pos - np.array(center)[:, np.newaxis]) / np.array(radius)[:, np.newaxis] normal /= np.sqrt((normal**2).sum(0)) mask = np.isfinite(pos).all(0) & np.isfinite(normal).all(0) return pos[:, mask], normal[:, mask] def max_linregress(arr, maxfit_size=2, threshold=0.1, axis=1): """ Locates maxima by fitting parabolas to values around the maximum. This function is optimized for two-dimensional numpy arrays. For each row in the array, the index of the maximum value is located. Then some values around it (given by ``maxfit_size``) are taken, the first (discrete) derivative is taken, and linear regression is done. This gives the location of the maximum with sub-pixel precision. Effectively, a parabola is fitted. Parameters ---------- arr : ndarray maxfit_size : integer, optional Defines the fit region around the maximum value. By default, this value is 2, that is, two pixels before and two pixels after the maximum are used for the fit (a total of 5). threshold : Discard points when the average value of the fit region is lower than ``threshold`` times the maximum in the whole fit array. This helps discarding low-intensity peaks. Default 0.1: if the average intensity in the fitregion is below 10% of the global maximum, the point is discarded. axis : {0, 1} axis along which the maxima are fitted. Default 1. Returns ------- ndarray with the locations of the maxima. Elements are NaN in all of the following cases: - any pixel in the fitregion is 0 - the mean of the fitregion < threshold * global max - regression returned infinity - maximum is outside of the fit region. """ if axis == 0: arr = arr.T # identify the regions around the max value maxes = np.argmax(arr[:, maxfit_size:-maxfit_size], axis=1) + maxfit_size ind = maxes[:, np.newaxis] + range(-maxfit_size, maxfit_size+1) # must cast dtype from unsigned to signed integer dtype = np.dtype(arr.dtype) if dtype.kind == 'u': if dtype.itemsize == 1: dtype = np.int16 elif dtype.itemsize == 2: dtype = np.int32 else: dtype = np.int64 else: dtype = arr.dtype fitregion = np.array([_int.take(_ind) for _int, _ind in zip(arr, ind)], dtype=dtype) # fit max using linear regression intdiff =
np.diff(fitregion, 1)
numpy.diff
# Copyright 2016 <NAME>, All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division import numpy as np import time import pyopencl as cl from neoncl import api its = 1 mf = cl.mem_flags # https://gist.github.com/lbn/836313e283f5d47d2e4e #def matprint(mat, fmt="g"): # col_maxes = [max([len(("{:"+fmt+"}").format(x)) for x in col]) for col in mat.T] # for x in mat: # for i, y in enumerate(x): # print(("{:"+str(col_maxes[i])+fmt+"}").format(y), end=" ") # print("") def printTensor(t): dims = len(t.shape) print('dims', dims) if dims == 3: for i in range(t.shape[0]): print('[%s, ...' % i) for x in range(t.shape[1]): line = '' for y in range(t.shape[2]): line += '%.1f ' % t[i][x][y] print(line) def printDims(W, I): Ci = W.shape[0] iH = I.shape[1] iW = I.shape[2] Co = W.shape[3] kH = W.shape[1] kW = W.shape[2] print('Ci', Ci, 'iH', iH, 'iW', iW, 'Co', Co, 'kH', kH, 'kW', kW) def check_gradWeights(O, I, W, gradO, gradW, ci, h, w, co, eps=1e-2): # eps = 1e4 #hack N = I.shape[3] iH = I.shape[1] iW = I.shape[2] Ci = W.shape[0] kH = W.shape[1] kW = W.shape[2] Co = W.shape[3] oH = iH # assuming padded, which it is oW = iW # assuming padded, which it is # print('Ci', Ci, 'iH', iH, 'iW', iW, 'Co', Co, 'kH', kH, 'kW', kW) # ih = h # iw = w kh = h kw = w # ci = c padw = 1 padh = 1 sum = 0 for ow in range(oW): for oh in range(oH): ih = oh + kh - padh iw = ow + kw - padw for n in range(N): if ih >= 0 and iw >= 0 and ih < iH and iw < iW: v = I[ci, ih, iw, n] * gradO[co * iH * iW + oh * iW + ow, n] sum += v cpu_value = sum gpu_value = gradW[ci, kh, kw, co] diff = abs(cpu_value - gpu_value) print('checkGradW gpu=%.6f cpu=%.6f diff=%.6f' % (gpu_value, cpu_value, diff)) assert abs(cpu_value - gpu_value) < eps def check_gradI(O, I, W, gradO, gradI, c, h, w, n, eps=1e-4): N = I.shape[3] iH = I.shape[1] iW = I.shape[2] Ci = W.shape[0] kH = W.shape[1] kW = W.shape[2] Co = W.shape[3] oH = iH # assuming padded, which it is oW = iW # assuming padded, which it is # print('Ci', Ci, 'iH', iH, 'iW', iW, 'Co', Co, 'kH', kH, 'kW', kW) ih = h iw = w ci = c padw = 1 padh = 1 sum = 0 for co in range(Co): for kh in range(kH): for kw in range(kW): ow = iw - kw + padw oh = ih - kh + padh if ow >= 0 and oh >= 0 and ow < oW and oh < oH: v = gradO[co * iH * iW + oh * iW + ow, n] * W[ci, kh, kw, co] sum += v cpu_value = sum gpu_value = gradI[c, ih, iw, n] diff = abs(cpu_value - gpu_value) print('checkGradI gpu=%.6f cpu=%.6f diff=%.6f' % (gpu_value, cpu_value, diff)) assert abs(cpu_value - gpu_value) < eps def checkO(O, W, I, c, h, w, n, eps=1e-4): Ci = W.shape[0] iH = I.shape[1] iW = I.shape[2] Co = W.shape[3] kH = W.shape[1] kW = W.shape[2] # print('Ci', Ci, 'iH', iH, 'iW', iW, 'Co', Co, 'kH', kH, 'kW', kW) co = c padw = 1 padh = 1 # we are going to apply entire kernel, over all input channels, to the input # image, in one location sum = 0 for kw in range(kW): for kh in range(kH): for ci in range(Ci): ih = h + kh - padh iw = w + kw - padw if ih >= 0 and iw >= 0 and ih < iH and iw < iW: v = I[ci, ih, iw, n] * W[ci, kh, kw, co] sum += v cpu_value = sum gpu_value = O[c, h, w,n] diff = abs(cpu_value - gpu_value) # print('checkO c', c, 'h', h, 'w', w, 'n', n, 'cpu %.6f gpu %.6f diff %.6f' % (sum, gpu_value, diff)) # assert diff < eps return cpu_value last = 0 def inittime(): global last last = time.time() def timecheck(label): global last now = time.time() print(label, '%.2f' % ((now - last) * 1000)) last = now def process_one(iH, iW, Ci, Co, n, kH, kW, I, W, O): oH = iH oW = iW tiles = iW // 4 inittime() BT = np.array([[4,0,-5,0,1,0], [0,-4,-4,1,1,0], [0,4,-4,-1,1,0], [0,-2,-1,2,1,0], [0,2,-1,-2,1,0], [0,4,0,-5,0,1]], dtype=np.float32) G = np.array([[1/4,0,0], [-1/6,-1/6,-1/6], [-1/6,1/6,-1/6], [1/24,1/12,1/6], [1/24,-1/12,1/6], [0,0,1]], dtype=np.float32) AT = np.array([[1,1,1,1,1,0], [0,1,-1,2,-2,0], [0,1,1,4,4,0], [0,1,-1,8,-8,1]], dtype=np.float32) Ifull = I Wfull = W Ofull = O timecheck('allocated BT G AT') U2 = np.zeros((6, 6, Co, Ci), dtype=np.float32) Utmp = np.zeros((6, 3), dtype=np.float32) U = np.zeros((6, 6), dtype=np.float32) # transformed filter timecheck('allocaed U') for co in range(Co): for ci in range(Ci): W = Wfull[ci,:,:,co].reshape(3,3) #for i in range(3): #Utmp[0][i] = 1/4 * W[0][i] #Utmp[1][i] = - 1/6 * (W[0][i] + W[1][i] + W[2][i]) #Utmp[2][i] = - 1/6 *W[0][i] + 1/6 * W[1][i] - 1/6 * W[2][i] #Utmp[3][i] = 1/24 * W[0][i] + 1/12 * W[1][i] + 1/6 * W[2][i] #Utmp[4][i] = 1/24 * W[0][i] - 1/12 * W[1][i] + 1/6 * W[2][i] #Utmp[5][i] = W[2][i] Utmp = G.dot(W) #for i in range(6): #U[i][0] = 1/4 * Utmp[i][0] #U[i][1] = - 1/6 * Utmp[i][0] - 1/6 * Utmp[i][1] - 1/6 * Utmp[i][2] #U[i][2] = - 1/6 * Utmp[i][0] + 1/ 6 * Utmp[i][1] - 1 / 6 * Utmp[i][2] #U[i][3] = 1/24 * Utmp[i][0] + 1/12 * Utmp[i][1] + 1/6 * Utmp[i][2] #U[i][4] = 1/24 * Utmp[i][0] - 1/12 * Utmp[i][1] + 1/6 * Utmp[i][2] #U[i][5] = Utmp[i][2] U = Utmp.dot(G.T) U2[:,:,co,ci] = U #for i in range(6): # for j in range(6): # U2[i, j, co, ci] = U[i, j] timecheck('calced U2') V2 = np.zeros((6, 6, Ci, tiles, tiles), dtype=np.float32) timecheck('allocaed V2') V =
np.zeros((6, 6), dtype=np.float32)
numpy.zeros
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf import numpy as np import cv2 from tensorpack import dataflow from tensorpack.dataflow.base import RNGDataFlow, ProxyDataFlow try: import ipdb as pdb except Exception: import pdb def decode_image(img_str, resize=None): """ Decode image from tfrecord data :param img_str: image encoded as a png in a string :param resize: tuple width two elements that defines the new size of the image. optional :return: image as a numpy array """ nparr = np.fromstring(img_str, np.uint8) img_str = cv2.imdecode(nparr, -1) if resize is not None: img_str = cv2.resize(img_str, resize) return img_str def raw_images_to_array(images): """ Decode and normalize multiple images from tfrecord data :param images: list of images encoded as a png in a string :return: a numpy array of size (N, 56, 56, channels), normalized for training """ image_list = [] for image_str in images: image = decode_image(image_str, (56, 56)) # size:(56,56) image = scale_observation(np.atleast_3d(image.astype(np.float32))) image_list.append(image) return np.stack(image_list, axis=0) def scale_observation(x): """ Normalizes observation input, either an rgb image or a depth image :param x: observation input as numpy array, either an rgb image or a depth image :return: numpy array, a normalized observation """ if x.ndim == 2 or x.shape[2] == 1: # depth return x * (2.0 / 100.0) - 1.0 else: # rgb return x * (2.0/255.0) - 1.0 # value is between [0, 2] def bounding_box(img): """ Bounding box of non-zeros in an array (inclusive). Used with 2D maps :param img: numpy array :return: inclusive bounding box indices: top_row, bottom_row, leftmost_column, rightmost_column """ # helper function to rows = np.any(img, axis=1) # Test whether any array element along a given axis evaluates to True. cols = np.any(img, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] # np.where: Return elements chosen from x or y depending on condition. cmin, cmax = np.where(cols)[0][[0, -1]] return rmin, rmax, cmin, cmax class BatchDataWithPad(dataflow.BatchData): """ Stacks datapoints into batches. Selected elements can be padded to the same size in each batch. """ def __init__(self, ds, batch_size, remainder=False, use_list=False, padded_indices=()): """ :param ds: input dataflow. Same as BatchData :param batch_size: mini batch size. Same as BatchData :param remainder: if data is not enough to form a full batch, it makes a smaller batch when true. Same as BatchData. :param use_list: if True, components will contain a list of datapoints instead of creating a new numpy array. Same as BatchData. :param padded_indices: list of filed indices for which all elements will be padded with zeros to mach the largest in the batch. Each batch may produce a different size datapoint. """ super(BatchDataWithPad, self).__init__(ds, batch_size, remainder, use_list) self.padded_indices = padded_indices def get_data(self): """ Yields: Batched data by stacking each component on an extra 0th dimension. """ holder = [] for data in self.ds.get_data(): holder.append(data) if len(holder) == self.batch_size: yield BatchDataWithPad._aggregate_batch(holder, self.use_list, self.padded_indices) del holder[:] if self.remainder and len(holder) > 0: yield BatchDataWithPad._aggregate_batch(holder, self.use_list, self.padded_indices) @staticmethod def _aggregate_batch(data_holder, use_list=False, padded_indices=()): """ Re-implement the parent function with the option to pad selected fields to the largest in the batch. """ assert not use_list # cannot match shape if they must be treated as lists size = len(data_holder[0]) result = [] for k in range(size): dt = data_holder[0][k] if type(dt) in [int, bool]: tp = 'int32' elif type(dt) == float: tp = 'float32' else: try: tp = dt.dtype except AttributeError: raise TypeError("Unsupported type to batch: {}".format(type(dt))) try: if k in padded_indices: # pad this field shapes = np.array([x[k].shape for x in data_holder], 'i') # assumes ndim are the same for all assert shapes.shape[1] == 3 # only supports 3D arrays for now, e.g. images (height, width, ch) matching_shape = shapes.max(axis=0).tolist() new_data = np.zeros([shapes.shape[0]] + matching_shape, dtype=tp) for i in range(len(data_holder)): shape = data_holder[i][k].shape new_data[i, :shape[0], :shape[1], :shape[2]] = data_holder[i][k] result.append(new_data) else: # no need to pad this field, simply create batch result.append(np.asarray([x[k] for x in data_holder], dtype=tp)) except Exception as e: # exception handling. same as in parent class pdb.set_trace() dataflow.logger.exception("Cannot batch data. Perhaps they are of inconsistent shape?") if isinstance(dt, np.ndarray): s = dataflow.pprint.pformat([x[k].shape for x in data_holder]) dataflow.logger.error("Shape of all arrays to be batched: " + s) try: # open an ipython shell if possible import IPython as IP; IP.embed() # noqa except ImportError: pass return result class BreakForBPTT(ProxyDataFlow): """ Breaks long trajectories into multiple smaller segments for training with BPTT. Adds an extra field for indicating the first segment of a trajectory. """ def __init__(self, ds, timed_indices, trajlen, bptt_steps): """ :param ds: input dataflow :param timed_indices: field indices for which the second dimension corresponds to timestep along the trajectory :param trajlen: full length of trajectories :param bptt_steps: segment length, number of backprop steps for BPTT. Must be an integer divisor of trajlen """ super(BreakForBPTT, self).__init__(ds) self.timed_indiced = timed_indices self.bptt_steps = bptt_steps assert trajlen % bptt_steps == 0 self.num_segments = trajlen // bptt_steps def size(self): return self.ds.size() * self.num_segments def get_data(self): """ Yields multiple datapoints per input datapoints corresponding segments of the trajectory. Adds an extra field for indicating the first segment of a trajectory. """ for data in self.ds.get_data(): for split_i in range(self.num_segments): new_data = [] for i in range(len(data)): if i in self.timed_indiced: new_data.append(data[i][:, split_i*self.bptt_steps:(split_i+1)*self.bptt_steps]) else: new_data.append(data[i]) new_data.append((split_i == 0)) yield new_data class House3DTrajData(RNGDataFlow): """ Process tfrecords data of House3D trajectories. Produces a dataflow with the following fields: true state, global map, initial particles, observations, odometries """ def __init__(self, files, mapmode, obsmode, trajlen, num_particles, init_particles_distr, init_particles_cov, seed=None): """ :param files: list of data file names. assumed to be tfrecords files :param mapmode: string, map type. Possible values: wall / wall-door / wall-roomtype / wall-door-roomtype :param obsmode: string, observation type. Possible values: rgb / depth / rgb-depth. Vrf is not yet supported :param trajlen: int, length of trajectories :param num_particles: int, number of particles :param init_particles_distr: string, type of initial particle distribution. Possible values: tracking / one-room. Does not support two-rooms and all-rooms yet. :param init_particles_cov: numpy array of shape (3,3), coveriance matrix for the initial particles. Ignored when init_particles_distr != 'tracking'. :param seed: int or None. Random seed will be fixed if not None. """ self.files = files self.mapmode = mapmode self.obsmode = obsmode self.trajlen = trajlen self.num_particles = num_particles self.init_particles_distr = init_particles_distr self.init_particles_cov = init_particles_cov self.seed = seed # count total number of entries count = 0 for f in self.files: if not os.path.isfile(f): raise ValueError('Failed to find file: ' + f) record_iterator = tf.python_io.tf_record_iterator(f) for _ in record_iterator: count += 1 self.count = count def size(self): return self.count def reset_state(self): """ Reset state. Fix numpy random seed if needed.""" super(House3DTrajData, self).reset_state() if self.seed is not None: np.random.seed(1) else: np.random.seed(self.rng.randint(0, 99999999)) def get_data(self): """ Yields datapoints, all numpy arrays, with the following fields. true states: (trajlen, 3). Second dimension corresponds to x, y, theta coordinates. global map: (n, m, ch). shape is different for each map. number of channels depend on the mapmode setting initial particles: (num_particles, 3) observations: (trajlen, 56, 56, ch) number of channels depend on the obsmode setting odometries: (trajlen, 3) relative motion in the robot coordinate frame """ for file in self.files: gen = tf.python_io.tf_record_iterator(file) for data_i, string_record in enumerate(gen): result = tf.train.Example.FromString(string_record) # decord message from binary file features = result.features.feature # process maps map_wall = self.process_wall_map(features['map_wall'].bytes_list.value[0]) global_map_list = [map_wall] if 'door' in self.mapmode: map_door = self.process_door_map(features['map_door'].bytes_list.value[0]) global_map_list.append(map_door) if 'roomtype' in self.mapmode: map_roomtype = self.process_roomtype_map(features['map_roomtype'].bytes_list.value[0]) global_map_list.append(map_roomtype) if self.init_particles_distr == 'tracking': map_roomid = None else: map_roomid = self.process_roomid_map(features['map_roomid'].bytes_list.value[0]) # input global map is a concatentation of semantic channels global_map = np.concatenate(global_map_list, axis=-1) # concatenate in the last axis # rescale to 0~2 range. this way zero padding will produce the equivalent of obstacles global_map = global_map.astype(np.float32) * (2.0 / 255.0) # process true states true_states = features['states'].bytes_list.value[0] true_states = np.frombuffer(true_states, np.float32).reshape((-1, 3)) #frombuffer:Interpret a buffer as a 1-dimensional array. # trajectory may be longer than what we use for training data_trajlen = true_states.shape[0] assert data_trajlen >= self.trajlen true_states = true_states[:self.trajlen] # Only use trajectories of required length # process odometry odometry = features['odometry'].bytes_list.value[0] odometry = np.frombuffer(odometry, np.float32).reshape((-1, 3)) # process observations assert self.obsmode in ['rgb', 'depth', 'rgb-depth'] #TODO support for lidar if 'rgb' in self.obsmode: rgb = raw_images_to_array(list(features['rgb'].bytes_list.value)[:self.trajlen]) observation = rgb if 'depth' in self.obsmode: depth = raw_images_to_array(list(features['depth'].bytes_list.value)[:self.trajlen]) observation = depth if self.obsmode == 'rgb-depth': observation = np.concatenate((rgb, depth), axis=-1) # generate particle states init_particles = self.random_particles(true_states[0], self.init_particles_distr, self.init_particles_cov, self.num_particles, roomidmap=map_roomid, seed=self.get_sample_seed(self.seed, data_i), ) yield (true_states, global_map, init_particles, observation, odometry) def process_wall_map(self, wallmap_feature): floormap = np.atleast_3d(decode_image(wallmap_feature)) #View inputs as arrays with at least three dimensions # transpose and invert floormap = 255 -
np.transpose(floormap, axes=[1, 0, 2])
numpy.transpose
# Get Python six functionality: from __future__ import absolute_import, division, print_function, unicode_literals import keras.layers import keras.models import numpy as np import pytest import innvestigate.tools.perturbate import innvestigate.utils as iutils ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### @pytest.mark.fast @pytest.mark.precommit def test_fast__PerturbationAnalysis(): # Some test data if keras.backend.image_data_format() == "channels_first": input_shape = (2, 1, 4, 4) else: input_shape = (2, 4, 4, 1) x = np.arange(2 * 4 * 4).reshape(input_shape) generator = iutils.BatchSequence([x, np.zeros(x.shape[0])], batch_size=x.shape[0]) # Simple model model = keras.models.Sequential( [ keras.layers.Flatten(input_shape=x.shape[1:]), keras.layers.Dense(1, use_bias=False), ] ) weights = np.arange(4 * 4 * 1).reshape((4 * 4, 1)) model.layers[-1].set_weights([weights]) model.compile(loss="mean_squared_error", optimizer="sgd") expected_output = np.array([[1240.0], [3160.0]]) assert np.all(np.isclose(model.predict(x), expected_output)) # Analyzer analyzer = innvestigate.create_analyzer("gradient", model, postprocess="abs") # Run perturbation analysis perturbation = innvestigate.tools.perturbate.Perturbation( "zeros", region_shape=(2, 2), in_place=False ) perturbation_analysis = innvestigate.tools.perturbate.PerturbationAnalysis( analyzer, model, generator, perturbation, recompute_analysis=False, steps=3, regions_per_step=1, verbose=False, ) scores = perturbation_analysis.compute_perturbation_analysis() expected_scores = np.array([5761600.0, 1654564.0, 182672.0, 21284.0]) assert np.all(np.isclose(scores, expected_scores)) @pytest.mark.fast @pytest.mark.precommit def test_fast__Perturbation(): if keras.backend.image_data_format() == "channels_first": input_shape = (1, 1, 4, 4) else: input_shape = (1, 4, 4, 1) x =
np.arange(1 * 4 * 4)
numpy.arange
import numpy as np from brainplotlib import prepare_data, unmask_and_upsample class TestUnmaskUpsample: def test_icoorder5_masked(self): lh = np.arange(9372) rh = np.arange(9370) + 9372 values = unmask_and_upsample(lh, rh, 'fsaverage', 5, True) assert np.nanmin(values) == 0 assert np.nanmax(values) == 18741 assert np.any(np.isnan(values)) def test_icoorder5_nonmasked(self): lh = np.arange(10242) rh = np.arange(10242) + 10242 values = unmask_and_upsample(lh, rh, 'fsaverage', 5, False) assert values.min() == 0 assert values.max() == 20483 assert np.all(np.isfinite(values)) def test_icoorder7_nonmasked(self): lh =
np.arange(163842)
numpy.arange
# -*- coding: utf-8 -*- # filename: spd.py # Copyright 2017 <NAME> <<EMAIL>> # Copyright 2020 <NAME> <<EMAIL>> # # This file is part of IOSACal, the IOSA Radiocarbon Calibration Library. # IOSACal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # IOSACal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with IOSACal. If not, see <http://www.gnu.org/licenses/>. import numpy as np from thanados.models.iosacal.core import CalibrationCurve, RadiocarbonDetermination def spdsum(spdlist, norm=True): """ Sums several SPDs stored in a list. Arguments: norm -- If 'True' final SPD will be normalized. """ spd = spdlist[0].copy() maxi = np.max([np.max(np.array(x).T[0]) for x in spdlist]) mini = np.min([np.min(np.array(x).T[0]) for x in spdlist]) # Creates a void vector where perform the sum xrange = np.arange(mini, maxi + 1, 1) yrange = np.zeros((int)(maxi) + 1 - (int)(mini)) for d in spdlist: # Reshapes every array by adding zeros at the head and tail y = np.lib.pad( d.T[1], (np.int(d.T[0][0] - mini), np.int(maxi - d.T[0][-1])), "constant", constant_values=0, ) # Summing over all histogram yrange += y # Normalizating the SPD in calendar scale if norm == True: yrange = yrange / np.sum(yrange) spd.resize(len(xrange), 2, refcheck=False) spd.T[0] = xrange spd.T[1] = yrange spd.ndates =
np.sum([x.ndates for x in spdlist])
numpy.sum
import datetime from argparse import ArgumentParser import numpy as np from sklearn import preprocessing from sklearn.model_selection import LeaveOneOut from sklearn.neighbors import KernelDensity from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix import pickle import sys import os from astropy.table import QTable from astropy.io import ascii now = datetime.datetime.now() date = str(now.strftime("%Y-%m-%d")) def Gauss_resample(x, y, N): """ Resample features based on Gaussian approximation Note we divide the covariance by 2! Parameters ---------- X : numpy.ndarray Feature array y : numpy.ndarray Label array N : int Total samples to simulate (to be added to original sample) Returns ------- newX : numpy.ndarray New Feature array newY : numpy.ndarray New label array """ uys = np.unique(y) newX = np.zeros((int(N*len(uys)), np.size(x, axis=1))) newy = np.zeros((int(N*len(uys)), )) for i, uy in enumerate(uys): gind = np.where(y == uy) newX[i*N:i*N+len(gind[0]), :] = x[gind[0], :] newy[i*N:(i+1) * N] = uy cx = x[gind[0], :] mean = np.mean(cx, axis=0) cov = np.cov(cx, rowvar=False) newX[i * N + len(gind[0]):(i + 1) * N] = \ np.random.multivariate_normal(mean, cov / 2., size=N - len(gind[0])) return newX, newy def KDE_resample(x, y, N, bandwidth=0.5): """ Resample features based on Kernel Density approximation Parameters ---------- X : numpy.ndarray Feature array y : numpy.ndarray Label array N : int Total samples to simulate (to be added to original sample) Returns ------- newX : numpy.ndarray New Feature array newY : numpy.ndarray New label array """ uys = np.unique(y) newX = np.zeros((int(N*len(uys)), np.size(x, axis=1))) newy = np.zeros((int(N*len(uys)), )) for i, uy in enumerate(uys): gind = np.where(y == uy) newX[i * N:i * N + len(gind[0]), :] = x[gind[0], :] newy[i * N:(i + 1) * N] = uy cx = x[gind[0], :] kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(cx) newX[i * N + len(gind[0]):(i + 1) * N] = kde.sample(n_samples=N - len(gind[0])) return newX, newy def prep_data_for_classifying(featurefile, means, stds, whiten=True, verbose=False): """ Resample features based on Kernel Density approximation Parameters ---------- featurefile : str File with pre-processed features means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten whiten : bool Whiten features before classification verbose : bool Print if SNe fail Returns ------- X : numpy.ndarray Feature array final_sn_names : numpy.ndarray Label array means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten feat_names : numpy.ndarray Array of feature names """ feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] X = [] final_sn_names = [] for sn_name in ids: gind = np.where(sn_name == ids) if verbose: if len(gind[0]) == 0: print('SN not found') sys.exit(0) if not np.isfinite(features[gind][0]).all(): print('Warning: ', sn_name, ' has a non-finite feature') if X == []: X = features[gind][0] else: X = np.vstack((X, features[gind][0])) final_sn_names.append(sn_name) gind = np.where(np.isnan(X)) if len(gind) > 0: X[gind[0], gind[1]] = means[gind[1]] if whiten: X = (X - means) / stds return X, final_sn_names, means, stds, feat_names def prep_data_for_training(featurefile, metatable, whiten=True): """ Resample features based on Kernel Density approximation Parameters ---------- featurefile : str File with pre-processed features metatable : numpy.ndarray Table which must include: Object Name, Redshift, Type, Estimate Peak Time, and EBV_MW whiten : bool Whiten features before classification Returns ------- X : numpy.ndarray Feature array y : numpy.ndarray Label array final_sn_names : numpy.ndarray Label array means : numpy.ndarray Means of features, used to whiten stds : numpy.ndarray St. dev of features, used to whiten feat_names : numpy.ndarray Array of feature names """ feat_data = np.load(featurefile, allow_pickle=True) ids = feat_data['ids'] features = feat_data['features'] feat_names = feat_data['feat_names'] metadata = np.loadtxt(metatable, dtype=str, usecols=(0, 2)) sn_dict = {'SLSN': 0, 'SLSN-I': 0, 'SNIIL': 0, 'SNII': 1, 'SNIIP': 1, 'SNIIb': 1, 'SNII-pec':1, 'SNIIn': 2, 'SLSN-II': 2, 'SNIa': 3, 'SNIa-91bg-like': 3, 'SNIa-91T-like': 3, 'SNIax[02cx-like]': 3, 'SNIa-pec': 3,'SNIa-CSM': 3, 'SNIbc': 4, 'SNIc': 4, 'SNIb': 4, 'SNIbn': 4, 'SNIc-BL': 4, 'SNIb/c': 4, 'SNIb-Ca-rich': 4} X = [] y = [] final_sn_names = [] for sn_name, sn_type in metadata: gind = np.where(sn_name == ids) if 'SN' not in sn_type: continue else: sn_num = sn_dict[sn_type] if len(gind[0]) == 0: continue if not np.isfinite(features[gind][0]).all(): continue if X == []: X = features[gind][0] y = sn_num else: X = np.vstack((X, features[gind][0])) y = np.append(y, sn_num) final_sn_names.append(sn_name) means = np.mean(X, axis=0) stds = np.std(X, axis=0) if whiten: X = preprocessing.scale(X) return X, y, final_sn_names, means, stds, feat_names def main(): parser = ArgumentParser() parser.add_argument('metatable', type=str, default='', help='Get training set labels') parser.add_argument('--featurefile', default='./products/feat.npz', type=str, help='Feature file') parser.add_argument('--outdir', type=str, default='./products/', help='Path in which to save the LC data (single file)') parser.add_argument('--train', action='store_true', help='Train classification model') parser.add_argument('--savemodel', action='store_true', help='Save output model, training on full set') parser.add_argument('--add-random', dest='add_random', type=bool, default=False, help='Add random number as feature (for testing)') parser.add_argument('--calc-importance', dest='calc_importance', type=bool, default=False, help='Calculate feature importance') parser.add_argument('--only-raenn', dest='only_raenn', type=bool, default=True, help='Use ony RAENN features') parser.add_argument('--not-raenn', dest='not_raenn', type=bool, default=False, help='Exclude RAENN features') parser.add_argument('--no-int', dest='no_int', type=bool, default=False, help='Exclude integral features (for testing)') parser.add_argument('--resampling', dest='resampling', type=str, default='KDE', help='Resampling methods. Either KDE or Gauss available') parser.add_argument('--modelfile', dest='modelfile', type=str, default='model', help='Name of model file to save') parser.add_argument('--randomseed', type=int, default=42, help='Name of model file to save') parser.add_argument('--outfile', dest='outfile', type=str, default='superprob', help='Name of probability table file') args = parser.parse_args() sn_dict = {'SLSN': 0, 'SNII': 1, 'SNIIn': 2, 'SNIa': 3, 'SNIbc': 4, 'SNIc': 4, 'SNIb': 4} if args.train: X, y, names, means, stds, feature_names = prep_data_for_training(args.featurefile, args.metatable) names = np.asarray(names, dtype=str) if args.only_raenn: gind = [i for i, feat in enumerate(feature_names) if 'raenn' in feat] X = X[:, gind] feature_names = feature_names[gind] if args.not_raenn: gind = [i for i, feat in enumerate(feature_names) if 'raenn' not in feat] X = X[:, gind] feature_names = feature_names[gind] if args.no_int: gind = [i for i, feat in enumerate(feature_names) if 'int' not in feat] X = X[:, gind] feature_names = feature_names[gind] if args.add_random: feature_names = np.append(feature_names, 'random') if not args.savemodel: loo = LeaveOneOut() y_pred = np.zeros(len(y)) for train_index, test_index in loo.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] print(X_test,y_test) if y_test !=4: continue if args.resampling == 'Gauss': X_res, y_res = Gauss_resample(X_train, y_train, 2000) else: X_res, y_res = KDE_resample(X_train, y_train, 2000) new_ind = np.arange(len(y_res), dtype=int) np.random.shuffle(new_ind) X_res = X_res[new_ind] y_res = y_res[new_ind] if args.calc_importance: X_res2, y_res2 = Gauss_resample(X_train, y_train, 2000) X_res2 = X_res2[:-40, :] y_res2 = y_res2[:-40] if args.add_random: X_res2, y_res2 = Gauss_resample(X_train, y_train, 2000) X_res2 = X_res2[:-40, :] y_res2 = y_res2[:-40] X_res = np.vstack((X_res.T, np.random.randn(len(X_res)))).T X_res2 = np.vstack((X_res2.T, np.random.randn(len(X_res2)))).T X_test = np.vstack((X_test.T, np.random.randn(len(X_test)))).T clf = RandomForestClassifier(n_estimators=400, max_depth=None, random_state=args.randomseed, criterion='gini', class_weight='balanced', max_features=None, oob_score=False) clf.fit(X_res, y_res) print(clf.predict_proba(X_test), y_test, names[test_index]) if args.calc_importance: feature_names = np.asarray(feature_names, dtype=str) importances = clf.feature_importances_ indices = importances.argsort()[::-1] print("Feature ranking:") for f in range(X_res.shape[1]): print(feature_names[indices[f]], importances[indices[f]]) plt.ylabel("Feature importances") plt.bar(range(X_res.shape[1]), importances[indices], color="grey", align="center") plt.xticks(np.arange(len(importances))+0.5, feature_names[indices], rotation=45, ha='right') plt.show() y_pred[test_index] = np.argmax(clf.predict_proba(X_test)) cnf_matrix = confusion_matrix(y, y_pred) print(cnf_matrix) if args.savemodel: if args.resampling == 'Gauss': X_res, y_res = Gauss_resample(X, y, 500) else: X_res, y_res = KDE_resample(X, y, 500) new_ind = np.arange(len(y_res), dtype=int) np.random.shuffle(new_ind) X_res = X_res[new_ind] y_res = y_res[new_ind] clf = RandomForestClassifier(n_estimators=350, max_depth=None, random_state=args.randomseed, criterion='gini', class_weight='balanced', max_features=None, oob_score=False) clf.fit(X_res, y_res) # save the model to disk if not os.path.exists(args.outdir): os.makedirs(args.outdir) if args.outdir[-1] != '/': args.outdir += '/' pickle.dump([clf, means, stds], open(args.outdir+args.modelfile+'_'+date+'.sav', 'wb')) pickle.dump([clf, means, stds], open(args.outdir+args.modelfile+'.sav', 'wb')) else: info = pickle.load(open(args.modelfile, 'rb')) loaded_model = info[0] means = info[1] stds = info[2] X, names, means, stds, feature_names = prep_data_for_classifying(args.featurefile, means, stds) names = np.asarray(names, dtype=str) probabilities = np.zeros((len(names), len(sn_dict))) for i, name in enumerate(names): probabilities[i] = loaded_model.predict_proba([X[i]])[0] probability_table = QTable(
np.vstack((names, probabilities.T))
numpy.vstack
import torch import torchvision from torch import nn from torch.autograd import Variable import torch.nn.functional as F from torchvision.utils import save_image from torchvision.models import vgg16 import math def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) class Generator(nn.Module): def __init__(self, scale_factor): upsample_block_num = int(math.log(scale_factor, 2)) super(Generator, self).__init__() self.block1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=9, padding=4), nn.PReLU() ) self.block2 = ResidualBlock(64) self.block3 = ResidualBlock(64) self.block4 = ResidualBlock(64) self.block5 = ResidualBlock(64) self.block6 = ResidualBlock(64) self.block7 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64) ) block8 = [UpsampleBLock(64, 2) for _ in range(upsample_block_num)] block8.append(nn.Conv2d(64, 3, kernel_size=9, padding=4)) self.block8 = nn.Sequential(*block8) def forward(self, x): block1 = self.block1(x) block2 = self.block2(block1) block3 = self.block3(block2) block4 = self.block4(block3) block5 = self.block5(block4) block6 = self.block6(block5) block7 = self.block7(block6) block8 = self.block8(block1 + block7) return (F.tanh(block8) + 1) / 2 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.LeakyReLU(0.2), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.AdaptiveAvgPool2d(1), nn.Conv2d(512, 1024, kernel_size=1), nn.LeakyReLU(0.2), nn.Conv2d(1024, 1, kernel_size=1) ) def forward(self, x): batch_size = x.size(0) return F.sigmoid(self.net(x).view(batch_size)) class ResidualBlock(nn.Module): def __init__(self, channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(channels) self.prelu = nn.PReLU() self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(channels) def forward(self, x): residual = self.conv1(x) residual = self.bn1(residual) residual = self.prelu(residual) residual = self.conv2(residual) residual = self.bn2(residual) return x + residual class UpsampleBLock(nn.Module): def __init__(self, in_channels, up_scale): super(UpsampleBLock, self).__init__() self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, padding=1) self.pixel_shuffle = nn.PixelShuffle(up_scale) self.prelu = nn.PReLU() def forward(self, x): x = self.conv(x) x = self.pixel_shuffle(x) x = self.prelu(x) return x # WGAN import os import pickle import glob import numpy as np import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch.utils.data import Dataset # HR_train_data_path = 'C:/Users/User/Desktop/GAN_data_set/imagenet64_train/Imagenet64_train' HR_train_data_path = './SRGAN_training_data/*' test_data_path = './SRGAN_test_data/*' batch_size = 64 input_channels = 3 hr_height = 128 lr_height = 32 n_critic = 1 n_critic_D = 1 clip_value = 0.02 epochs = 100 num_epochs = 201 def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo) return dict class ImageDataset(Dataset): def __init__(self, imgs, lr_transforms=None, hr_transforms=None): self.lr_transform = transforms.Compose(lr_transforms) self.hr_transform = transforms.Compose(hr_transforms) self.files = imgs def __getitem__(self, index): img = Image.fromarray(self.files[index].astype('uint8'), 'RGB') img_lr = self.lr_transform(img) img_hr = self.hr_transform(img) return {'lr': img_lr, 'hr': img_hr} def __len__(self): return len(self.files) class TestImageDataset(Dataset): def __init__(self, imgs, lr_transforms=None, hr_transforms=None): self.lr_transform = transforms.Compose(lr_transforms) self.hr_transform = transforms.Compose(hr_transforms) self.files = imgs def __getitem__(self, index): img = Image.fromarray(self.files[index].astype('uint8'), 'RGB') img_lr = self.lr_transform(img) img_hr = self.hr_transform(img) return {'lr': img_lr, 'hr': img_hr} def __len__(self): return len(self.files) def load_databatch(data_folder, idx): data_file_HR = os.path.join(HR_train_data_path, 'train_data_batch_') d_HR = unpickle(data_file_HR + str(idx)) x_HR = d_HR['data'][:4000] data_size = x_HR.shape[0] hr_height2 = hr_height * hr_height x_HR = np.dstack((x_HR[:, :hr_height2], x_HR[:, hr_height2:2*hr_height2], x_HR[:, 2*hr_height2:])) x_HR = x_HR.reshape((x_HR.shape[0], hr_height, hr_height, 3)) lr_transforms = [ transforms.Resize((hr_height//4, hr_height//4), Image.BICUBIC), transforms.ToTensor() ] hr_transforms = [ transforms.Resize((hr_height, hr_height), Image.BICUBIC), transforms.ToTensor() ] train_loader = torch.utils.data.DataLoader(ImageDataset(x_HR, lr_transforms=lr_transforms, hr_transforms=hr_transforms), batch_size=batch_size, shuffle=True) return train_loader def load_jpg(data_folder,batch_size = batch_size, shuffle=True): # print(data_folder) image_list = [] print("start loading") for filename in glob.glob(data_folder): #assuming gif im = Image.open(filename) im = im.resize((hr_height, hr_height), Image.BICUBIC) im =
np.array(im)
numpy.array
import itertools import logging import os import pickle import re import typing as t from enum import Enum from Bio import pairwise2 from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from matplotlib import patches, pyplot as plt from scipy.spatial import distance import pandas as pd import numpy as np import psutil from Bio import SeqIO from scipy.stats import chi2 from Levenshtein import distance as lev from copkmeans.cop_kmeans import * from settings import get_settings logger = logging.getLogger(__name__) from Bio.Data import CodonTable NUCLEOTIDES = ["A", "C", "G", "T"] AMINO_ACIDS = list(set(CodonTable.standard_dna_table.forward_table.values())) + ["O","S","U","T","W","Y","V","B","Z","X","J"] class ClusteringMethod(Enum): CDHIT = 1 class ClusteringUtils: @staticmethod def compute_outliers_with_mahalanobis_dist( data: pd.DataFrame, data_dist_plot_path: str ) -> t.Union[t.List[int], float]: """ :param data: numeric dataframe with features based on which outliers should be removed :param data_dist_plot_path: path to write to a plot with the distribution of the data points :return: list of the indices of the outlier data points taken from https://towardsdatascience.com/multivariate-outlier-detection-in-python-e946cfc843b3 """ data = data.to_numpy() try: det = np.linalg.det(data) if det == 0: logger.error( f"unable to compute outliers due data matrix with zero determinant, returning nan" ) return np.nan except Exception as e: # data is not squared pass distances = [] centroid = np.mean(data, axis=0) covariance = np.cov(data, rowvar=False) covariance_pm1 = np.linalg.pinv(covariance) for i, val in enumerate(data): if type(val) != str: p1 = np.float64(val) p2 = np.float64(centroid) dist = (p1 - p2).T.dot(covariance_pm1).dot(p1 - p2) distances.append(dist) distances = np.array(distances) # Cutoff (threshold) value from Chi-Square Distribution for detecting outliers cutoff = chi2.ppf(0.95, data.shape[1]) # Index of outliers outlier_indexes = list(np.where(distances > cutoff)[0]) # compute statistics pearson = covariance[0, 1] / np.sqrt(covariance[0, 0] * covariance[1, 1]) ell_radius_x = np.sqrt(1 + pearson) ell_radius_y = np.sqrt(1 - pearson) lambda_, v = np.linalg.eig(covariance) lambda_ = np.sqrt(lambda_) # report data logger.info( f"centroid={centroid}\ncutoff={cutoff}\noutlier_indexes={outlier_indexes}\nell_radius=({ell_radius_x},{ell_radius_y})" ) # plot records distribution ellipse = patches.Ellipse( xy=(centroid[0], centroid[1]), width=lambda_[0] * np.sqrt(cutoff) * 2, height=lambda_[1] * np.sqrt(cutoff) * 2, angle=np.rad2deg(np.arccos(v[0, 0])), edgecolor="#fab1a0", ) ellipse.set_facecolor("#0984e3") ellipse.set_alpha(0.5) fig = plt.figure() ax = plt.subplot() ax.add_artist(ellipse) plt.scatter(data[:, 0], data[:, 1]) plt.xlabel("similarity to accession 1", fontsize=16) plt.ylabel("similarity to accession 2", fontsize=16) fig.savefig(data_dist_plot_path, transparent=True) return outlier_indexes @staticmethod def compute_outliers_with_euclidean_dist( data: pd.DataFrame, data_dist_plot_path: str ) -> t.Union[t.List[int], float]: similarities = data.to_numpy() distances = np.mean(1 - similarities, axis=1) cutoff = np.max([np.percentile(distances, 95), 0.15]) outlier_indexes = list(np.where(distances > cutoff)[0]) # plot records distribution - this is projection of the first 2 dimensions only and is thus not as reliable circle = patches.Circle( xy=(1, 1), radius=np.max(cutoff), edgecolor="#fab1a0", ) circle.set_facecolor("#0984e3") circle.set_alpha(0.5) fig = plt.figure() ax = plt.subplot() ax.add_artist(circle) plt.scatter(similarities[:, 0], similarities[:, 1]) fig.savefig(data_dist_plot_path, transparent=True) return outlier_indexes @staticmethod def get_relevant_accessions_using_sequence_data_directly( data_path: str, ) -> t.Union[str, int]: """ :param data_path: an alignment of sequences :return: string of the list of relevant accessions that were not identified as outliers, separated by ";;" """ if not os.path.exists(data_path): logger.info(f"alignment fie {data_path} does not exist") return np.nan sequence_records = list(SeqIO.parse(data_path, format="fasta")) if len(sequence_records) < 3: return ";;".join([record.description for record in sequence_records]) nuc_regex = re.compile("[ACGT-]*") if len(str(sequence_records[0].seq)) == len(nuc_regex.match(str(sequence_records[0].seq)).group(0)): chars = NUCLEOTIDES else: chars = AMINO_ACIDS char_to_int = {chars[i].upper(): i for i in range(len(chars))} char_to_int.update({chars[i].lower(): i for i in range(len(chars))}) char_to_int.update({"-": len(chars), 'X': len(chars)+1, 'x': len(chars)+1}) acc_to_seq = { record.description: [char_to_int[char] for char in record.seq] for record in sequence_records } data = pd.DataFrame({"accession": list(acc_to_seq.keys())}) data["sequence"] = data["accession"].apply(func=lambda acc: acc_to_seq[acc]) data[ [f"pos_{pos}" for pos in range(len(sequence_records[0].seq))] ] = pd.DataFrame(data.sequence.tolist(), index=data.index) use_alternative_metric = False outliers_idx = [] try: outliers_idx = ClusteringUtils.compute_outliers_with_mahalanobis_dist( data=data[ [f"pos_{pos}" for pos in range(len(sequence_records[0].seq))] ], data_dist_plot_path=data_path.replace( "_aligned.fasta", "_mahalanobis.png" ), ) if pd.isna(outliers_idx): use_alternative_metric = True except Exception as e: logger.info( f"unable to compute mahalanobis distance based outliers indices due to error {e}, will attempt computation using euclidean distance over pairwise similarities" ) use_alternative_metric = True if use_alternative_metric: logger.info( "unable to compute mahalanobis distance based outliers indices, will attempt computation using euclidean distance over pairwise similarities" ) pairwise_similarities_df = ClusteringUtils.get_pairwise_similarities_df( input_path=data_path.replace("_aligned.fasta", "_similarity_values.csv") ) outliers_idx = [] if pairwise_similarities_df.shape[0] > 1: outliers_idx = ClusteringUtils.compute_outliers_with_euclidean_dist( data=pairwise_similarities_df[ [ col for col in pairwise_similarities_df.columns if "similarity_to" in col ] ], data_dist_plot_path=data_path.replace( "_aligned.fasta", "_euclidean.png" ), ) accessions = list(data.accession) accessions_to_keep = [ accessions[idx] for idx in range(len(accessions)) if idx not in outliers_idx ] logger.info( f"{len(accessions_to_keep)} accessions remain after removing {len(outliers_idx)} outliers\naccessions {','.join([acc for acc in accessions if acc not in accessions_to_keep])} were determined as outliers" ) return ";;".join(accessions_to_keep) @staticmethod def get_pairwise_similarities_df(input_path: str) -> pd.DataFrame: similarities_df = pd.read_csv(input_path) accessions_data = ( similarities_df.pivot_table( values="similarity", index="accession_1", columns="accession_2", aggfunc="first", ) .reset_index() .rename(columns={"accession_1": "accession"}) ) accessions_data.rename( columns={ col: f"similarity_to_{col}" for col in accessions_data.columns if col != "accession" }, inplace=True, ) accessions_data["mean_similarity_from_rest"] = accessions_data[ [col for col in accessions_data.columns if col != "accession"] ].apply(lambda x: np.mean(x), axis=1) logger.info( f"computed similarities table across {accessions_data.shape[0]} accessions" ) return accessions_data @staticmethod def get_relevant_accessions_using_pairwise_distances( data_path: str, ) -> str: """ :param data_path: path to a dataframe matching a similarity value to each pair of accessions :return: string of the list of relevant accessions that were not identified as outliers, separated by ";;" """ accessions_data = ClusteringUtils.get_pairwise_similarities_df( input_path=data_path ) outliers_idx = [] if accessions_data.shape[0] > 2: outliers_idx = ClusteringUtils.compute_outliers_with_euclidean_dist( data=accessions_data[ [col for col in accessions_data.columns if "similarity_to" in col] ], data_dist_plot_path=data_path.replace(".csv", "_euclidean.png"), ) accessions = list(accessions_data.accession) accessions_to_keep = [ accessions[idx] for idx in range(len(accessions)) if idx not in outliers_idx ] logger.info( f"{len(accessions_to_keep)} accessions remain after removing {len(outliers_idx)} outliers\naccessions {[acc for acc in accessions if acc not in accessions_to_keep]} were determined as outliers" ) return ";;".join(accessions_to_keep) @staticmethod def compute_similarity_across_aligned_sequences( record: pd.Series, seq_to_token: t.Dict[str, np.array] ) -> float: if record.accession_1 == record.accession_2: return 1 seq_1 = seq_to_token[record.accession_1] seq_2 = seq_to_token[record.accession_2] similarity = 1 - distance.hamming(seq_1, seq_2) logger.info( f"similarity({record.accession_1}, {record.accession_2})={similarity}" ) return similarity @staticmethod def exec_mafft(input_path: str, output_path: str, nthreads: int = 1) -> int: """ :param input_path: unaligned sequence data path :param output_path: aligned sequence data path :param nthreads: number of threads to use with mafft :return: return code """ cmd = ( f"mafft --retree 1 --maxiterate 0 --thread {nthreads} {input_path} > {output_path}" ) res = os.system(cmd) if not os.path.exists(output_path): raise RuntimeError(f"failed to execute mafft on {input_path}") if res != 0: with open(output_path, "r") as outfile: outcontent = outfile.read() logger.error( f"failed mafft execution on {input_path} sequences from due to error {outcontent}" ) return res @staticmethod def compute_pairwise_similarity_values(alignment_path: str, similarities_output_path: str) -> pd.DataFrame: aligned_sequences = list(SeqIO.parse(alignment_path, format="fasta")) nuc_regex = re.compile("[ACGT-]*") if len(str(aligned_sequences[0].seq)) == len(nuc_regex.match(str(aligned_sequences[0].seq)).group(0)): chars = NUCLEOTIDES else: chars = AMINO_ACIDS char_to_int = {chars[i].upper(): i for i in range(len(chars))} char_to_int.update({chars[i].lower(): i for i in range(len(chars))}) char_to_int.update({"-": len(chars), 'X': len(chars)+1, 'x': len(chars)+1}) logger.info( f"computing tokenized sequences for {len(aligned_sequences)} sequences of aligned length {len(aligned_sequences[0].seq)}" ) seq_id_to_array = dict() for record in aligned_sequences: try: seq = str(record.seq) numerical_seq = np.asarray([char_to_int[s] for s in seq]) seq_id_to_array[record.id] = numerical_seq except Exception as e: logger.error( f"failed to convert sequence {record.id} due to error {e} and so it will be ignored" ) continue logger.info( f"computing pairwise similarities across {len(aligned_sequences)} sequences of aligned length {len(aligned_sequences[0].seq)}" ) pair_to_similarity = pd.DataFrame( [ (acc1, acc2) for acc1 in seq_id_to_array.keys() for acc2 in seq_id_to_array.keys() ], columns=["accession_1", "accession_2"], ) pair_to_similarity["similarity"] = pair_to_similarity.apply( lambda x: ClusteringUtils.compute_similarity_across_aligned_sequences( record=x, seq_to_token=seq_id_to_array ), axis=1, ) pair_to_similarity.to_csv(similarities_output_path, index=False) return pair_to_similarity @staticmethod def get_sequence_similarity_with_multiple_alignment( sequence_data_path: str, ) -> t.List[float]: mean_sim, min_sim, max_sim, med_sim = np.nan, np.nan, np.nan, np.nan if not os.path.exists(sequence_data_path): logger.info(f"input path {sequence_data_path} does not exist") return [mean_sim, min_sim, max_sim, med_sim] output_path = sequence_data_path.replace(".", "_aligned.") log_path = sequence_data_path.replace(".fasta", ".log") if not os.path.exists(output_path): num_sequences = len(list(SeqIO.parse(sequence_data_path, format="fasta"))) if num_sequences > 8000: logger.info(f"number of sequences = {num_sequences} is larger than 1000 and so the pipeline will be halted") return [mean_sim, min_sim, max_sim, med_sim] logger.info( f"executing mafft on {num_sequences} sequences from {sequence_data_path}" ) res = ClusteringUtils.exec_mafft(input_path=sequence_data_path, output_path=output_path) if res != 0: return [mean_sim, min_sim, max_sim, med_sim] logger.info( f"aligned {num_sequences} sequences with mafft, in {output_path}" ) if os.path.exists(log_path): os.remove(log_path) similarities_output_path = sequence_data_path.replace( ".fasta", "_similarity_values.csv" ) if not os.path.exists(similarities_output_path): pair_to_similarity = ClusteringUtils.compute_pairwise_similarity_values(alignment_path=output_path, similarities_output_path=similarities_output_path) else: pair_to_similarity = pd.read_csv(similarities_output_path) similarities = pair_to_similarity["similarity"] if pair_to_similarity.shape[0] > 0: mean_sim = float(np.mean(similarities)) min_sim = float(np.min(similarities)) max_sim = float(np.max(similarities)) med_sim = float(np.median(similarities)) logger.info( f"computed similarities across {len(similarities)} sequence pairs, yielding mean similarity of {mean_sim}" ) return [ mean_sim, min_sim, max_sim, med_sim, ] @staticmethod def get_sequences_similarity_with_pairwise_alignments( sequence_data_path: str, ) -> t.List[float]: """ :param sequence_data_path: path for sequences to compute similarity for :return: similarity measure between 0 and 1, corresponding to the mean pairwise alignment score based distance across sequences """ if not os.path.exists(sequence_data_path): return [np.nan, np.nan, np.nan, np.nan] sequences = list(SeqIO.parse(sequence_data_path, format="fasta")) if len(sequences) > 2060: logger.info(f"number of sequences = {len(sequences)} is larger than 1000 and so the pipeline will be halted") return [np.nan, np.nan, np.nan, np.nan] logger.info( f"computing pairwise similarities across {len(sequences)} sequences, meaning, {int(len(sequences) ** 2 / 2)} comparisons" ) sequences_pairs = list(itertools.combinations(sequences, 2)) sequences_pair_to_pairwise_alignment = { (pair[0].id, pair[1].id): pairwise2.align.globalxx(pair[0].seq, pair[1].seq) for pair in sequences_pairs } sequences_pair_to_pairwise_similarity = { (pair[0].id, pair[1].id): ( sequences_pair_to_pairwise_alignment[pair].score / len(sequences_pair_to_pairwise_alignment[pair].seqA) ) for pair in sequences_pairs } pickle_path = sequence_data_path.replace( ".fasta", "_sequences_similarity.pickle" ) with open(pickle_path, "wb") as pickle_file: pickle.dump(obj=sequences_pair_to_pairwise_similarity, file=pickle_file) similarities = list(sequences_pair_to_pairwise_similarity.values()) mean_sim = float(np.mean(similarities)) min_sim = float(np.min(similarities)) max_sim = float(np.max(similarities)) med_sim = float(
np.median(similarities)
numpy.median
# # Copyright 2019 <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # from acados_template import * import acados_template as at import numpy as nmp from ctypes import * import matplotlib import matplotlib.pyplot as plt import scipy.linalg import json CODE_GEN = 1 COMPILE = 1 FORMULATION = 2 # 0 for hexagon 1 for sphere 2 SCQP sphere i_d_ref = 1.484 i_q_ref = 1.429 w_val = 200 i_d_ref = -20 i_q_ref = 20 w_val = 300 udc = 580 u_max = 2/3*udc # fitted psi_d map def psi_d_num(x,y): # This function was generated by the Symbolic Math Toolbox version 8.0. # 07-Feb-2018 23:07:49 psi_d_expression = x*(-4.215858085639979e-3) + \ exp(y**2*(-8.413493151721978e-5))*atan(x*1.416834085282644e-1)*8.834738694115108e-1 return psi_d_expression def psi_q_num(x,y): # This function was generated by the Symbolic Math Toolbox version 8.0. # 07-Feb-2018 23:07:50 psi_q_expression = y*1.04488335702649e-2+exp(x**2*(-1.0/7.2e1))*atan(y)*6.649036351062812e-2 return psi_q_expression psi_d_ref = psi_d_num(i_d_ref, i_q_ref) psi_q_ref = psi_q_num(i_d_ref, i_q_ref) # compute steady-state u Rs = 0.4 u_d_ref = Rs*i_d_ref - w_val*psi_q_ref u_q_ref = Rs*i_q_ref + w_val*psi_d_ref def export_dae_model(): model_name = 'rsm' # constants theta = 0.0352 Rs = 0.4 m_load = 0.0 J = nmp.array([[0, -1], [1, 0]]) # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # set up algebraic variables i_d = SX.sym('i_d') i_q = SX.sym('i_q') z = vertcat(i_d, i_q) # set up xdot psi_d_dot = SX.sym('psi_d_dot') psi_q_dot = SX.sym('psi_q_dot') xdot = vertcat(psi_d_dot, psi_q_dot) # set up parameters w = SX.sym('w') # speed dist_d = SX.sym('dist_d') # d disturbance dist_q = SX.sym('dist_q') # q disturbance p = vertcat(w, dist_d, dist_q) # build flux expression Psi = vertcat(psi_d_num(i_d, i_q), psi_q_num(i_d, i_q)) # dynamics f_impl = vertcat( psi_d_dot - u_d + Rs*i_d - w*psi_q - dist_d, \ psi_q_dot - u_q + Rs*i_q + w*psi_d - dist_q, \ psi_d - Psi[0], \ psi_q - Psi[1]) model = acados_dae() model.f_impl_expr = f_impl model.f_expl_expr = [] model.x = x model.xdot = xdot model.u = u model.z = z model.p = p model.name = model_name return model def export_voltage_sphere_con(): con_name = 'v_sphere' # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # voltage sphere constraint = acados_constraint() constraint.expr = u_d**2 + u_q**2 # constraint.expr = u_d + u_q constraint.x = x constraint.u = u constraint.nc = 1 constraint.name = con_name return constraint def export_nonlinear_part_voltage_constraint(): con_name = 'v_sphere_nl' # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # voltage sphere constraint = acados_constraint() constraint.expr = vertcat(u_d, u_q) # constraint.expr = u_d + u_q constraint.x = x constraint.u = u constraint.nc = 2 constraint.name = con_name return constraint def get_general_constraints_DC(u_max): # polytopic constraint on the input r = u_max x1 = r y1 = 0 x2 = r*cos(pi/3) y2 = r*sin(pi/3) q1 = -(y2 - y1/x1*x2)/(1-x2/x1) m1 = -(y1 + q1)/x1 # q1 <= uq + m1*ud <= -q1 # q1 <= uq - m1*ud <= -q1 # box constraints m2 = 0 q2 = r*sin(pi/3) # -q2 <= uq <= q2 # form D and C matrices # (acados C interface works with column major format) D = nmp.transpose(nmp.array([[1, m1],[1, -m1]])) # D = nmp.array([[1, m1],[1, -m1]]) # TODO(andrea): ??? # D = nmp.transpose(nmp.array([[m1, 1],[-m1, 1]])) D = nmp.array([[m1, 1],[-m1, 1]]) C = nmp.transpose(nmp.array([[0, 0], [0, 0]])) ug = nmp.array([-q1, -q1]) lg = nmp.array([+q1, +q1]) lbu = nmp.array([-q2]) ubu = nmp.array([+q2]) res = dict() res["D"] = D res["C"] = C res["lg"] = lg res["ug"] = ug res["lbu"] = lbu res["ubu"] = ubu return res # create render arguments ra = acados_ocp_nlp() # export model model = export_dae_model() # export constraint description constraint = export_voltage_sphere_con() constraint_nl = export_nonlinear_part_voltage_constraint() # set model_name ra.model_name = model.name if FORMULATION == 1: # constraints name ra.con_h_name = constraint.name if FORMULATION == 2: # constraints name ra.con_h_name = constraint.name ra.con_p_name = constraint_nl.name # Ts = 0.0016 # Ts = 0.0012 Ts = 0.0008 # Ts = 0.0004 nx = model.x.size()[0] nu = model.u.size()[0] nz = model.z.size()[0] np = model.p.size()[0] ny = nu + nx ny_e = nx N = 2 Tf = N*Ts # set ocp_nlp_dimensions nlp_dims = ra.dims nlp_dims.nx = nx nlp_dims.nz = nz nlp_dims.ny = ny nlp_dims.ny_e = ny_e nlp_dims.nbx = 0 nlp_dims.nbu = 1 if FORMULATION == 0: nlp_dims.nbu = 1 nlp_dims.ng = 2 if FORMULATION == 1: nlp_dims.ng = 0 nlp_dims.nh = 1 if FORMULATION == 2: nlp_dims.ng = 2 nlp_dims.npd = 2 nlp_dims.nh = 1 nlp_dims.nh_e = 0 # nlp_dims.nbu = 2 # nlp_dims.ng = 2 # nlp_dims.ng = 0 nlp_dims.ng_e = 0 nlp_dims.nbx_e = 0 nlp_dims.nu = nu nlp_dims.np = np nlp_dims.N = N # nlp_dims.npd_e = -1 # nlp_dims.nh = 1 # set weighting matrices nlp_cost = ra.cost Q = nmp.eye(nx) Q[0,0] = 5e2*Tf/N Q[1,1] = 5e2*Tf/N R = nmp.eye(nu) R[0,0] = 1e-4*Tf/N R[1,1] = 1e-4*Tf/N # R[0,0] = 1e1 # R[1,1] = 1e1 nlp_cost.W = scipy.linalg.block_diag(Q, R) Vx = nmp.zeros((ny, nx)) Vx[0,0] = 1.0 Vx[1,1] = 1.0 nlp_cost.Vx = Vx Vu = nmp.zeros((ny, nu)) Vu[2,0] = 1.0 Vu[3,1] = 1.0 nlp_cost.Vu = Vu Vz = nmp.zeros((ny, nz)) Vz[0,0] = 0.0 Vz[1,1] = 0.0 nlp_cost.Vz = Vz Q_e = nmp.eye(nx) Q_e[0,0] = 1e-3 Q_e[1,1] = 1e-3 nlp_cost.W_e = Q_e Vx_e = nmp.zeros((ny_e, nx)) Vx_e[0,0] = 1.0 Vx_e[1,1] = 1.0 nlp_cost.Vx_e = Vx_e nlp_cost.yref = nmp.zeros((ny, )) nlp_cost.yref[0] = psi_d_ref nlp_cost.yref[1] = psi_q_ref nlp_cost.yref[2] = u_d_ref nlp_cost.yref[3] = u_q_ref nlp_cost.yref_e = nmp.zeros((ny_e, )) nlp_cost.yref_e[0] = psi_d_ref nlp_cost.yref_e[1] = psi_q_ref # get D and C res = get_general_constraints_DC(u_max) D = res["D"] C = res["C"] lg = res["lg"] ug = res["ug"] lbu = res["lbu"] ubu = res["ubu"] # setting bounds # lbu <= u <= ubu and lbx <= x <= ubx nlp_con = ra.constraints # nlp_con.idxbu = nmp.array([0, 1]) # nlp_con.lbu = nmp.array([-u_max, -u_max]) # nlp_con.ubu = nmp.array([+u_max, +u_max]) nlp_con.idxbu = nmp.array([1]) nlp_con.lbu = lbu nlp_con.ubu = ubu if FORMULATION > 0: nlp_con.lh = nmp.array([-1.0e8]) nlp_con.uh = nmp.array([(u_max*sqrt(3)/2)**2]) nlp_con.x0 = nmp.array([0.0, -0.0]) if FORMULATION == 0 or FORMULATION == 2: # setting general constraints # lg <= D*u + C*u <= ug nlp_con.D = D nlp_con.C = C nlp_con.lg = lg nlp_con.ug = ug # nlp_con.C_e = ... # nlp_con.lg_e = ... # nlp_con.ug_e = ... # setting parameters nlp_con.p = nmp.array([w_val, 0.0, 0.0]) # set constants # ra.constants = [] # set QP solver ra.solver_config.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # ra.solver_config.qp_solver = 'FULL_CONDENSING_HPIPM' # ra.solver_config.qp_solver = 'FULL_CONDENSING_QPOASES' ra.solver_config.hessian_approx = 'GAUSS_NEWTON' # ra.solver_config.integrator_type = 'ERK' ra.solver_config.integrator_type = 'IRK' # set prediction horizon ra.solver_config.tf = Tf ra.solver_config.nlp_solver_type = 'SQP_RTI' # ra.solver_config.nlp_solver_type = 'SQP' # set header path ra.acados_include_path = '/usr/local/include' ra.acados_lib_path = '/usr/local/lib' file_name = 'acados_ocp.json' if CODE_GEN == 1: if FORMULATION == 0: acados_solver = generate_solver(model, ra, json_file = file_name) if FORMULATION == 1: acados_solver = generate_solver(model, ra, con_h=constraint, json_file = file_name) if FORMULATION == 2: acados_solver = generate_solver(model, ra, con_h=constraint, con_p=constraint_nl, json_file = file_name) if COMPILE == 1: # make os.chdir('c_generated_code') os.system('make') os.system('make shared_lib') os.chdir('..') # closed loop simulation TODO(add proper simulation) Nsim = 100 simX = nmp.ndarray((Nsim, nx)) simU =
nmp.ndarray((Nsim, nu))
numpy.ndarray
from threeML.io.fits_file import FITSExtension, FITSFile import numpy as np import astropy.io.fits as fits import pytest class DUMMYEXT(FITSExtension): def __init__(self, test_value): data_list = [('TEST_VALUE', test_value)] super(DUMMYEXT, self).__init__(tuple(data_list), (('EXTNAME', 'TEST', 'Extension name'),) ) class DUMMYFITS(FITSFile): def __init__(self, test_value): dummy_extension = DUMMYEXT(test_value) super(DUMMYFITS, self).__init__(fits_extensions=[dummy_extension]) def test_fits_file(): dtypes = [np.int16,np.int32,np.int64,np.uint16,np.uint32,np.float32,np.float64] dtype_keys = ['I','J','K','I','J','E','D'] for i, dt in enumerate(dtypes): test_values =
np.ones(10,dtype=dt)
numpy.ones
"""Module defining ConstraintMatrix class.""" # python 2/3 compatibility from __future__ import division, print_function, absolute_import # global imports import numpy from scipy.sparse import coo_matrix, diags, hstack, vstack import cplex # local imports from .constraint_blocks import ConstraintBlocks class ConstraintMatrix(object): """ Class building constraint matrix. Attributes: col_names: Linear problem column names (decision variables). reaction_cols: Indices of columns corresponding to reactions. enzyme_cols: Indices of columns corresponding to enzymes. process_cols: Indices of columns corresponding to processes. target_cols: Indices of columns corresponding to targets. row_names: Linear problem row names (constraints). row_signs: Linear problem row signs (equality or inequality). UB: Linear problem upper bounds. LB: Linear problem lower bounds. f: Linear problem objective function. A: Linear problem matrix (left-hand side). b: Linear problem right-hand side. """ def __init__(self, model): """ Build constraint matrix from model. Parameters ---------- model : rba.RbaModel RBA model. """ self._blocks = ConstraintBlocks(model) # convenience variables reactions = self._blocks.metabolism.reactions enzymes = self._blocks.enzymes.ids processes = self._blocks.processes.ids undetermined_fluxes = self._blocks.targets.undetermined_targets.names compartments = self._blocks.density.compartments nb_reactions = len(reactions) nb_enzymes = len(enzymes) nb_processes = len(processes) nb_undetermined = len(undetermined_fluxes) nb_compartments = len(compartments) # column information self.col_names = (reactions + [e for e in enzymes] + [p + '_machinery' for p in processes] + [m + '_target_flux' for m in undetermined_fluxes]) self.reaction_cols = numpy.arange(nb_reactions) self.enzyme_cols = nb_reactions + numpy.arange(nb_enzymes) self.process_cols = (nb_reactions + nb_enzymes +
numpy.arange(nb_processes)
numpy.arange
''' Copyright (C) 2020-2021 <NAME> <<EMAIL>> Released under the Apache-2.0 License. Black-box Order Attack Implementation ''' from random import random from scipy.stats import kendalltau from termcolor import cprint, colored from tqdm import tqdm from typing import * import math import numpy as np import os import sys import torch as th import yaml from time import time from multiprocessing.dummy import Pool from joblib import Parallel, delayed def BatchNearsightRankCorr(argsort, otopk, rperm, *, debug=False) -> np.ndarray: scores = np.zeros(argsort.shape[0]) # [serial] -- moderate for (i, srt) in enumerate(argsort): scores[i] = NearsightRankCorr(srt, otopk, rperm, debug=debug) # [multithread] #with Pool(4) as p: # scores[:] = list(map(lambda x: NearsightRankCorr(x, otopk, rperm, debug=debug), argsort)) # [joblib] -- very slow #scores[:] = list(Parallel(n_jobs=2)( # delayed(lambda x: NearsightRankCorr(x, otopk, rperm, debug=debug))(y) # for y in argsort)) return scores def NearsightRankCorr( argsort: th.Tensor, # realtime top-k ranking result (topN) list[idx] otopk: th.Tensor, # original top-k ranking result (topk) list[idx] rperm: th.Tensor, # desired permutation of the topk results list[perm] *, debug=False, mode='numpy', ) -> float: ''' Calculate the score matrix for the evolutionary algorithm argsort is the partial decision (canseek) rtopk is the specified permutation for the original topk candidates performance: 150 it/s (numpy mode) ; 110it/s (torch mode) # test: fully concordant >>> NearsightRankCorr(th.arange(5)+20, th.arange(5)+20, th.arange(5)) 1.0 >>> NearsightRankCorr(th.arange(5)+20, th.arange(5)+20, th.tensor([4,3,2,1,0])) -1.0 >>> NearsightRankCorr(th.arange(20)+20, th.arange(5)+20, th.arange(5)) 1.0 >>> NearsightRankCorr(th.arange(20)+20, th.arange(5)+20, th.tensor([4,3,2,1,0])) -1.0 ''' if mode == 'torch': argsort = argsort.detach().cpu().flatten() otopk = otopk.detach().cpu().flatten() rtopk = otopk[rperm.cpu()].flatten() assert(len(argsort) > len(rtopk)) scores = th.zeros(len(rperm), len(rperm)) # TriL for i in range(len(rperm)): for j in range(len(rperm)): cranki = th.nonzero(argsort == otopk[i], as_tuple=True)[0][0] crankj = th.nonzero(argsort == otopk[j], as_tuple=True)[0][0] xranki = th.nonzero(rtopk == otopk[i], as_tuple=True)[0][0] xrankj = th.nonzero(rtopk == otopk[j], as_tuple=True)[0][0] if (cranki>crankj and xranki>xrankj) or (cranki<crankj and xranki<xrankj): scores[i, j] = 1 elif (cranki>crankj and xranki<xrankj) or (cranki<crankj and xranki>xrankj): scores[i, j] = -1 else: scores[i, j] = -1 score = scores.tril(diagonal=-1).sum() / ((len(rperm) * (len(rperm)-1))/2) return score # Casting from Torch to Numpy argsort = argsort.detach().cpu().numpy().flatten() otopk = otopk.detach().cpu().numpy().flatten() rtopk = otopk[rperm.cpu()].flatten() if len(argsort) < len(rperm): print('len(argsort)', len(argsort), argsort.shape) print('len(rperm)', len(rperm), rperm.shape) raise ValueError(f'invalid argsort and rperm') if debug: print('1. argsort', argsort) print('2. otopk', otopk) print('3. rperm', rperm) # Generate the scores (tril) matrix scores = np.zeros((len(rperm), len(rperm))) # triL for i in range(len(rperm)): if otopk[i] not in argsort: scores[i, :] = -1 continue #if not np.where(argsort == otopk[i])[0]: continue for j in range(i): if otopk[j] not in argsort: scores[:, j] = -1 continue #if not np.where(argsort == otopk[j])[0]: continue # slow cranki = np.where(argsort == otopk[i])[0][0] crankj = np.where(argsort == otopk[j])[0][0] xranki = np.where(rtopk == otopk[i])[0][0] xrankj =
np.where(rtopk == otopk[j])
numpy.where
""" Dumping ground for a bunch of misc helper functions for OPAL analysis """ from __future__ import division from __future__ import print_function import h5py import numpy as np from scipy.signal import argrelmin from scipy.constants import (speed_of_light as clight, elementary_charge as jperev, elementary_charge as echarge, proton_mass) from scipy.spatial import KDTree from datetime import datetime from itertools import cycle # homebrew classes and functions from CARBONCYCLFieldMap import CARBONCYCLFieldMap import matplotlib from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.colors import BoundaryNorm from collections import namedtuple, defaultdict import os import glob POLE_ANGLE_D = 52.42 # deg POLE_ANGLE = np.pi/180. * POLE_ANGLE_D # rad POLE_OFFSET = 0.73 # m GAP_WIDTH = 5e-2 # gap between quadrupole ends. per Dior, this is 5 cm space left for each quad's end windings OUTER_CUTOFF = 4.7 # outer radial cutoff (m) for testing against arcs RF_FREQ = 116.4e6 # in Hz HARM = 25 N_SECTORS = 6 DPHI = -2*np.pi * HARM/N_SECTORS T_OFFSET = -4.2728e-9 PHI0 = -25 * np.pi/180. + 2*np.pi*T_OFFSET*RF_FREQ PHI1 = PHI0 + DPHI PHI2 = PHI0 + 2*DPHI PHI3 = PHI0 + 4*DPHI PHI4 = PHI0 + 5*DPHI PHI = np.array((PHI1, PHI2, PHI3, PHI4)) matplotlib.rcParams['font.size'] = 16 PMASSEV = proton_mass / jperev * clight**2 def rhat(theta): r""" Returns the unit vector $\hat{r} = cos(\theta) \hat{x} + sin(\theta) \hat{y}$ theta - angle in radians """ theta = np.asarray(theta) return np.stack((np.cos(theta),
np.sin(theta)
numpy.sin
import csv # Read in the driving log csv file # as shown in the "Training Your Network" video print('Reading the driving log csv... ', end='') lines = [] with open('./data/driving_log.csv') as csvfile: # Skip the line containing the table header next(csvfile) reader = csv.reader(csvfile) for line in reader: lines.append(line) print('Done.') # Get the images and the steering measurements import numpy as np from scipy import ndimage print('Loading images... ', end='') images = [] measurements = [] angle_correction = 0.2 for line in lines: for i in range(3): filename = './data/'+line[i].strip() image = ndimage.imread(filename) images.append(image) measurement = float(line[3]) if i == 1: measurement += angle_correction elif i == 2: measurement -= angle_correction measurements.append(measurement) print('Done.') print('Number of images in data set: {}'.format(len(images))) # Data augmentation: flipped images to the data set # if the steering angle's absolute value is greater than angle_threshold angle_threshold = 0.02 # 1.0 means no augmentation print('Augmenting data (steering angle threshold: {})... '.format(angle_threshold), end='') augmented_images = [] augmented_measurements = [] for image, measurement in zip(images, measurements): augmented_images.append(image) augmented_measurements.append(measurement) if abs(measurement) > angle_threshold: augmented_images.append(
np.fliplr(image)
numpy.fliplr
""" .. codeauthor:: <NAME> <<EMAIL>> """ import numpy as np import pytest from pde import CartesianGrid, ScalarField, Tensor2Field, UnitGrid, VectorField from pde.fields.base import FieldBase from pde.tools.misc import module_available, skipUnlessModule def test_vectors_basic(): """test some vector fields""" grid = CartesianGrid([[0.1, 0.3], [-2, 3]], [3, 4]) v1 = VectorField(grid, np.full((2,) + grid.shape, 1)) v2 = VectorField(grid, np.full((2,) + grid.shape, 2)) np.testing.assert_allclose(v1.average, (1, 1)) assert np.allclose(v1.magnitude, np.sqrt(2)) assert v1[0] == v1["x"] assert v1[1] == v1["y"] v1[0] = v1[0] with pytest.raises(IndexError): v1["z"] v3 = v1 + v2 assert v3.grid == grid np.testing.assert_allclose(v3.data, 3) v1 += v2
np.testing.assert_allclose(v1.data, 3)
numpy.testing.assert_allclose
#!/usr/bin/env python3 """ Helper functions for Fourier transform algorithms """ # Standard libraries import numpy as np def twiddle_factor(k,N, type='exp'): """ Return twiddle factors. """ if type=='cos': twiddle_factor = np.cos(2*np.pi*k/N) elif type=='sin': twiddle_factor = np.sin(2*np.pi*k/N) elif type=='exp': twiddle_factor = np.exp(2j*np.pi*k/N) return twiddle_factor def normalize(weights, platform): """ Normalize the weights for computing the 1-D FT """ if platform in ("numpy"): weights /= weights.size if platform == "loihi": correction_coef = 127 / weights.max() weights = np.ceil(weights * 127 - 0.5)*2 if platform == "brian": weights = weights.T return weights def dft_connection_matrix(nsamples, platform): """ Calculate network weights based on Fourier transform equation Parameters: nsamples (int): Number of samples in a chirp platform (str [loihi|traditional]): If "loihi", values are normalized between the limits imposed by the chip; Re-scale weights to the range admitted by Loihi (8-bit even values -257 to 254). If "traditional", each weight is divided by the total length of the chirp, as in a conventional Fourier transform Returns: real_weight_norm: weights for the connections to the "real" compartments imag_weight_norm: weights for the connections to the "imag" compartments """ c = 2 * np.pi/nsamples n = np.arange(nsamples).reshape(nsamples, 1) k = np.arange(nsamples).reshape(1, nsamples) trig_factors = np.dot(n, k) * c real_weights = np.cos(trig_factors) imag_weights = -np.sin(trig_factors) # Normalize the weights based on the used platform real_weights_norm = normalize(real_weights, platform) imag_weights_norm = normalize(imag_weights, platform) return (real_weights_norm, imag_weights_norm) def fft_connection_matrix(layer, nsamples, platform): """ Connection matrix for a radix-4 fft """ radix = 4 n_layers = int(np.log(nsamples)/np.log(radix)) # number of layers n_bfs = int(radix**n_layers/radix) # number of butterflies n_blocks = radix**(layer) # number of blocks n_bfs_per_block = int(n_bfs/n_blocks) # number of butterflies in one block distance_between_datapoints = radix**(n_layers-layer-1) distance_between_blocks = radix**(layer) n = np.tile(np.arange(0,radix**(n_layers-layer-1)),radix**(layer+1)) c = np.tile(np.repeat(np.arange(0,4**(layer+1),4**layer),4**(n_layers-layer-1)),4**layer) # radix4 butterfly W = np.array([ [1, 1, 1, 1], [1, -1j, -1, 1j], [1, -1, 1, -1], [1, 1j, -1, -1j] ]) # build 4 matrices of radix4 butterfly W_rr = np.real(W) # real input real weights real ouput W_ir = -1*np.imag(W) # imag input imag weights real output W_ri = np.imag(W) # real input imag weights imag ouput W_ii =
np.real(W)
numpy.real
#coding:utf-8 # # A class of IIR Band Pass Filter, process twice ! # (Target response is 2nd harmonic level less than -70dB) # import sys import numpy as np from matplotlib import pyplot as plt from scipy import signal from iir1 import * from ema1 import * # Check version # Python 3.6.4 on win32 (Windows 10) # numpy 1.14.0 # matplotlib 2.1.1 # scipy 1.4.1 class Class_BPFtwice(object): def __init__(self, fc=1000, gain=1.0, Q=40.0, sampling_rate=48000, moving_average_factor=None, down_sample_factor=None ): # initalize self.sr= sampling_rate self.fc= fc # center frequency of Band Pass Filter by unit is [Hz] self.gain= gain # magnification self.Q= Q # Q factor # check Q if self.Q <= 0.0: print ('error: Q must be > 0. filter becomes flat. (Class_BPF)') # sys.exit() self.a= np.array( [ 1.0, 0.0, 0.0]) self.b= np.array( [ 1.0, 0.0, 0.0]) else: self.a, self.b = self.bpf1() #------------------------------------- # set for filtering2 # # Exponential Moving Average with Half-wave rectification, and smoothing via lpf if moving_average_factor is not None: self.maf= moving_average_factor self.ema= Class_EMA1(N=self.maf) else: self.ema= None # Down sampling to decrease temporal resolution if down_sample_factor is None: self.down_sample_factor= 1 else: self.down_sample_factor= int(down_sample_factor) # #-------------------------------------- def bpf1(self,): # primary digital filter a= np.zeros(3) b= np.zeros(3) wc= 2.0 * np.pi * self.fc / self.sr g0= 2.0 * np.tan( wc/2.0) a[0]= 4.0 + 2.0 * g0 / self.Q + g0 * g0 a[1]= -8.0 + 2.0 * g0 * g0 a[2]= 4.0 - 2.0 * g0 / self.Q + g0 * g0 b[0]= 2.0 * self.gain * g0 / self.Q b[2]= -2.0 * self.gain * g0 / self.Q b /= a[0] a /= a[0] return a,b def iir2(self,x): # calculate iir filter: x is input, y is output # y[0]= b[0] * x[0] + b[1] * x[-1] + b[2] * x[-1] # y[0]= y[0] - a[1] * y[-1] - a[2] * y[-1] y= np.zeros(len(x)) for n in range(len(x)): for i in range(len(self.b)): if n - i >= 0: y[n] += self.b[i] * x[n - i] for j in range(1, len(self.a)): if n - j >= 0: y[n] -= self.a[j] * y[n - j] return y def fone(self, xw): # calculate one point of frequecny response f= xw / self.sr yi= self.b[0] + self.b[1] * np.exp(-2j * np.pi * f) + self.b[2] * np.exp(-2j * np.pi * 2 * f) yb= self.a[0] + self.a[1] *
np.exp(-2j * np.pi * f)
numpy.exp
import time from enum import IntEnum from collections import OrderedDict import numpy as np from AnyQt.QtWidgets import ( QGraphicsView, QGraphicsScene, QGraphicsItem, QGraphicsSimpleTextItem, QGraphicsTextItem, QGraphicsLineItem, QGraphicsWidget, QGraphicsRectItem, QGraphicsEllipseItem, QGraphicsLinearLayout, QGridLayout, QLabel, QFrame, QSizePolicy, QApplication, QDesktopWidget, ) from AnyQt.QtGui import QColor, QPainter, QFont, QPen, QBrush from AnyQt.QtCore import Qt, QRectF, QSize from Orange.data import Table, Domain from Orange.statistics.util import nanmin, nanmax, nanmean, unique from Orange.classification import Model from Orange.classification.naive_bayes import NaiveBayesModel from Orange.classification.logistic_regression import LogisticRegressionClassifier from Orange.widgets.settings import Setting, ContextSetting, ClassValuesContextHandler from Orange.widgets.widget import OWWidget, Msg, Input from Orange.widgets import gui def collides(item, items): return any(item.collidesWithItem(i) for i in items) class SortBy(IntEnum): NO_SORTING, NAME, ABSOLUTE, POSITIVE, NEGATIVE = 0, 1, 2, 3, 4 @staticmethod def items(): return [ "No sorting", "Name", "Absolute importance", "Positive influence", "Negative influence", ] class MovableToolTip(QLabel): def __init__(self): super().__init__() self.setFrameShape(QFrame.StyledPanel) self.setWindowFlags(Qt.ToolTip) self.hide() def show(self, pos, text, change_y=True): self.setText(text) self.adjustSize() x, y = pos.x(), (pos.y() + 15 if change_y else self.y()) avail = QDesktopWidget().availableGeometry(self) if x + self.width() > avail.right(): x -= self.width() if y + self.height() > avail.bottom(): y = pos.y() - 10 - self.height() if change_y else self.y() - self.height() self.move(x, y) super().show() class DotItem(QGraphicsEllipseItem): TOOLTIP_STYLE = """ul {margin-top: 1px; margin-bottom: 1px;}""" TOOLTIP_TEMPLATE = """<html><head><style type="text/css">{}</style> </head><body><b>{}</b><hr/>{}</body></html> """ def __init__(self, radius, scale, offset, min_x, max_x): super().__init__(0, 0, radius, radius) self._min_x = min_x * scale - radius / 2 + offset self._max_x = max_x * scale - radius / 2 + offset self._scale = scale self._offset = offset self.setPos(0, -radius / 2) self.setFlag(QGraphicsItem.ItemIsMovable) self.setBrush(QColor(170, 220, 255, 255)) self.setPen(QPen(QBrush(QColor(20, 130, 250, 255)), 2)) self.setZValue(100) self.tool_tip = MovableToolTip() self.setAcceptHoverEvents(True) @property def value(self): return (self.x() + self.rect().width() / 2 - self._offset) / self._scale def move(self, x): self.setX(x) def move_to_val(self, val): x = np.clip( self._scale * val - self.rect().width() / 2 + self._offset, self._min_x, self._max_x, ) self.move(x) def hoverEnterEvent(self, event): self.tool_tip.show(event.screenPos(), self.get_tooltip_text()) def hoverLeaveEvent(self, event): self.tool_tip.hide() def mouseMoveEvent(self, _): # Prevent click-moving of these items return class ProbabilitiesDotItem(DotItem): def __init__(self, radius, scale, offset, min_x, max_x, title, get_probabilities): self.title = title self.get_probabilities = get_probabilities self.movable_dot_items = [] self._invisible_sum = 0 super().__init__(radius, scale, offset, min_x, max_x) self.setBrush(QColor(150, 150, 150, 255)) self.setPen(QPen(QBrush(QColor(75, 75, 75, 255)), 2)) def move_to_sum(self, invisible_sum: float = None): total = sum(item.value for item in self.movable_dot_items) if invisible_sum is not None: self._invisible_sum = invisible_sum total += self._invisible_sum self.move_to_val(total) self.parentItem().rescale() def get_tooltip_text(self): text = "Total: {} <br/>Probability: {:.0%}".format( np.round(self.value, 2), np.round(self.get_probabilities(self.value), 2) ) return self.TOOLTIP_TEMPLATE.format(self.TOOLTIP_STYLE, self.title, text) class MovableDotItem(DotItem): def __init__(self, radius, scale, offset, min_x, max_x): self.tooltip_labels = [] self.tooltip_values = [] super().__init__(radius, scale, offset, min_x, max_x) self._x = min_x * scale - radius / 2 + offset self._point_dot = None self._total_dot = None self._probs_dot = None self._vertical_line = None @property def vertical_line(self): return self._vertical_line @vertical_line.setter def vertical_line(self, line): line.setVisible(False) self._vertical_line = line @property def point_dot(self): return self._point_dot @point_dot.setter def point_dot(self, dot): dot.setVisible(False) self._point_dot = dot @property def total_dot(self): return self._total_dot @total_dot.setter def total_dot(self, dot): self._total_dot = dot self._total_dot.movable_dot_items.append(self) @property def probs_dot(self): return self._probs_dot @probs_dot.setter def probs_dot(self, dot): self._probs_dot = dot self._probs_dot.movable_dot_items.append(self) def mousePressEvent(self, event): self.tool_tip.show(event.screenPos(), self.get_tooltip_text(), False) self._x = event.pos().x() self.setBrush(QColor(50, 180, 250, 255)) self._show_vertical_line_and_point_dot() return super().mousePressEvent(event) def mouseMoveEvent(self, event): self.tool_tip.show(event.screenPos(), self.get_tooltip_text(), False) delta_x = event.pos().x() - self._x if self._min_x <= self.x() + delta_x <= self._max_x: self.move(self.x() + delta_x) mod_tooltip_values = [0] + list(self.tooltip_values) if np.round(self.value, 1) in np.round(mod_tooltip_values, 1): index = np.where( np.round(mod_tooltip_values, 1) == np.round(self.value, 1) ) time.sleep(0.05) self.move_to_val(mod_tooltip_values[index[0][0]]) elif self.x() + delta_x < self._min_x: self.move(self._min_x) elif self.x() + delta_x > self._max_x: self.move(self._max_x) self._show_vertical_line_and_point_dot() self.probs_dot.move_to_sum() def mouseReleaseEvent(self, event): self.tool_tip.hide() self.setBrush(QColor(170, 220, 255, 255)) self.point_dot.setVisible(False) self.vertical_line.setVisible(False) return super().mousePressEvent(event) def _show_vertical_line_and_point_dot(self): self.vertical_line.setX(self.x() + self.rect().width() / 2 - self._offset) self.vertical_line.setVisible(True) self.point_dot.move_to_val(self.value) self.point_dot.setVisible(True) class DiscreteMovableDotItem(MovableDotItem): def get_tooltip_text(self): labels = self._get_tooltip_labels_with_percentages() return self.TOOLTIP_TEMPLATE.format( self.TOOLTIP_STYLE, "Points: {}".format(np.round(self.value, 2)), "".join("{}: {:.0%}<br/>".format(l, v) for l, v in labels)[:-5], ) def _get_tooltip_labels_with_percentages(self): if not len(self.tooltip_labels): return [] for i, val in enumerate(self.tooltip_values): if val > self.value: break diff = self.tooltip_values[i] - self.tooltip_values[i - 1] p1 = 0 if diff < 1e-6 else (-self.value + self.tooltip_values[i]) / diff return [ (self.tooltip_labels[i - 1].replace("<", "&lt;"), abs(p1)), (self.tooltip_labels[i].replace("<", "&lt;"), abs(1 - p1)), ] class ContinuousItemMixin: def get_tooltip_text(self): return self.TOOLTIP_TEMPLATE.format( self.TOOLTIP_STYLE, "Points: {}".format(np.round(self.value, 2)), "Value: {}".format(np.round(self._get_tooltip_label_value(), 1)), ) def _get_tooltip_label_value(self): if not len(self.tooltip_labels): return self.value start = float(self.tooltip_labels[0]) stop = float(self.tooltip_labels[-1]) delta = self.tooltip_values[-1] - self.tooltip_values[0] if not delta: return np.nan return start + self.value * (stop - start) / delta class ContinuousMovableDotItem(MovableDotItem, ContinuousItemMixin): pass class Continuous2DMovableDotItem(MovableDotItem, ContinuousItemMixin): def __init__(self, radius, scale, offset, min_x, max_x, min_y, max_y): super().__init__(radius, scale, offset, min_x, max_x) self._min_y = min_y self._max_y = max_y self._horizontal_line = None @property def horizontal_line(self): return self._horizontal_line @horizontal_line.setter def horizontal_line(self, line): line.setVisible(False) self._horizontal_line = line def move(self, x): super().move(x) diff_ = np.nan_to_num(self._max_x - self._min_x) k = (x - self._min_x) / diff_ if diff_ else 0 self.setY( self._min_y - self.rect().width() / 2 + (self._max_y - self._min_y) * k ) def mousePressEvent(self, event): self._show_horizontal_line() return super().mousePressEvent(event) def mouseMoveEvent(self, event): super().mouseMoveEvent(event) self._show_horizontal_line() def mouseReleaseEvent(self, event): self.horizontal_line.setVisible(False) return super().mouseReleaseEvent(event) def _show_horizontal_line(self): self.horizontal_line.setY( self.y() + self.rect().width() / 2 - abs(self._max_y - self._min_y) / 2 ) self.horizontal_line.setVisible(True) class RulerItem(QGraphicsWidget): tick_height = 6 tick_width = 0 DOT_RADIUS = 12 half_tick_height = 3 bold_label = True DOT_ITEM_CLS = DotItem def __init__(self, name, values, scale, name_offset, offset, labels=None): super().__init__() # leading label font = name.document().defaultFont() if self.bold_label: font.setWeight(QFont.Bold) name.setFont(font) name.setPos(name_offset, -10) name.setParentItem(self) # prediction marker self.dot = self.DOT_ITEM_CLS( self.DOT_RADIUS, scale, offset, values[0], values[-1] ) self.dot.setParentItem(self) # pylint: disable=unused-variable # line line = QGraphicsLineItem( min(values) * scale + offset, 0, max(values) * scale + offset, 0, self ) if labels is None: labels = [str(abs(v) if v == -0 else v) for v in values] old_x_tick = None shown_items = [] w = QGraphicsSimpleTextItem(labels[0]).boundingRect().width() text_finish = values[0] * scale - w + offset - 10 for i, (label, value) in enumerate(zip(labels, values)): text = QGraphicsSimpleTextItem(label) x_text = value * scale - text.boundingRect().width() / 2 + offset if text_finish > x_text - 10: y_text, y_tick = self.DOT_RADIUS * 0.7, 0 text_finish = values[0] * scale + offset else: y_text = -text.boundingRect().height() - self.DOT_RADIUS * 0.7 y_tick = -self.tick_height text_finish = x_text + text.boundingRect().width() text.setPos(x_text, y_text) if not collides(text, shown_items): text.setParentItem(self) shown_items.append(text) x_tick = value * scale - self.tick_width / 2 + offset tick = QGraphicsRectItem( x_tick, y_tick, self.tick_width, self.tick_height, self ) tick.setBrush(QColor(Qt.black)) if self.half_tick_height and i: x = x_tick - (x_tick - old_x_tick) / 2 half_tick = QGraphicsLineItem(x, -self.half_tick_height, x, 0, self) old_x_tick = x_tick class ProbabilitiesRulerItem(QGraphicsWidget): tick_height = 6 DOT_RADIUS = 14 y_diff = 4 def __init__( self, name, values, scale, name_offset, offset, get_points, title, get_probabilities, ): super().__init__() self.scale = scale self.offset = offset self.get_points = get_points self.min_val = min(values) self.max_val = max(values) # leading labels font = name.document().defaultFont() font.setWeight(QFont.Bold) name_total = QGraphicsTextItem("Total", self) name_total.setFont(font) name_total.setPos(name_offset, -25) name.setFont(font) name.setPos(name_offset, 10) name.setParentItem(self) # prediction marker self.dot = ProbabilitiesDotItem( self.DOT_RADIUS, scale, offset, values[0], values[-1], title, get_probabilities, ) self.dot.setPos(0, (-self.DOT_RADIUS + self.y_diff) / 2) self.dot.setParentItem(self) # pylint: disable=unused-variable # two lines t_line = QGraphicsLineItem( self.min_val * scale + offset, 0, self.max_val * scale + offset, 0, self ) p_line = QGraphicsLineItem( self.min_val * scale + offset, self.y_diff, self.max_val * scale + offset, self.y_diff, self, ) # ticks and labels old_x_tick = values[0] * scale + offset for i, value in enumerate(values[1:]): x_tick = value * scale + offset x = x_tick - (x_tick - old_x_tick) / 2 half_tick = QGraphicsLineItem(x, -self.tick_height / 2, x, 0, self) old_x_tick = x_tick if i == len(values) - 2: break text = QGraphicsTextItem(str(abs(value) if value == -0 else value), self) x_text = value * scale - text.boundingRect().width() / 2 + offset y_text = -text.boundingRect().height() - self.DOT_RADIUS * 0.7 text.setPos(x_text, y_text) tick = QGraphicsLineItem(x_tick, -self.tick_height, x_tick, 0, self) self.prob_items = [ ( i / 10, QGraphicsTextItem(" " + str(i * 10) + " "), QGraphicsLineItem(0, 0, 0, 0), ) for i in range(1, 10) ] def rescale(self): shown_items = [] for prob, text, tick in self.prob_items: pts = self.get_points(prob) x = pts * self.scale - text.boundingRect().width() / 2 + self.offset text.setPos(x, 10 + self.y_diff) x = pts * self.scale + self.offset tick.setLine(x, 0 + self.y_diff, x, self.tick_height + self.y_diff) text.setParentItem(None) tick.setParentItem(None) text.setVisible(False) tick.setVisible(False) if self.min_val < pts < self.max_val: tick.setParentItem(self) tick.setVisible(True) text.setParentItem(self) if not collides(text, shown_items): text.setVisible(True) shown_items.append(text) class DiscreteFeatureItem(RulerItem): tick_height = 6 tick_width = 2 half_tick_height = 0 bold_label = False DOT_ITEM_CLS = DiscreteMovableDotItem def __init__(self, name, labels, values, scale, name_offset, offset): indices = np.argsort(values) labels, values = np.array(labels)[indices], values[indices] super().__init__(name, values, scale, name_offset, offset, labels) self.dot.tooltip_labels = labels self.dot.tooltip_values = values class ContinuousFeatureItem(RulerItem): tick_height = 6 tick_width = 2 half_tick_height = 0 bold_label = False DOT_ITEM_CLS = ContinuousMovableDotItem def __init__(self, name, data_extremes, values, scale, name_offset, offset): diff_ = np.nan_to_num(values[-1] - values[0]) k = (data_extremes[1] - data_extremes[0]) / diff_ if diff_ else 0 labels = [str(np.round(v * k + data_extremes[0], 1)) for v in values] super().__init__(name, values, scale, name_offset, offset, labels) self.dot.tooltip_labels = labels self.dot.tooltip_values = values class ContinuousFeature2DItem(QGraphicsWidget): tick_height = 6 tick_width = 2 DOT_RADIUS = 12 y_diff = 80 n_tck = 4 def __init__(self, name, data_extremes, values, scale, name_offset, offset): super().__init__() data_start, data_stop = data_extremes[0], data_extremes[1] labels = [ str( np.round( data_start + (data_stop - data_start) * i / (self.n_tck - 1), 1 ) ) for i in range(self.n_tck) ] # leading label font = name.document().defaultFont() name.setFont(font) name.setPos(name_offset, -10) name.setParentItem(self) # labels ascending = data_start < data_stop y_start, y_stop = (self.y_diff, 0) if ascending else (0, self.y_diff) for i in range(self.n_tck): text = QGraphicsSimpleTextItem(labels[i], self) w = text.boundingRect().width() y = y_start + (y_stop - y_start) / (self.n_tck - 1) * i text.setPos(-5 - w, y - 8) tick = QGraphicsLineItem(-2, y, 2, y, self) # prediction marker self.dot = Continuous2DMovableDotItem( self.DOT_RADIUS, scale, offset, values[0], values[-1], y_start, y_stop ) self.dot.tooltip_labels = labels self.dot.tooltip_values = values self.dot.setParentItem(self) h_line = QGraphicsLineItem( values[0] * scale + offset, self.y_diff / 2, values[-1] * scale + offset, self.y_diff / 2, self, ) pen = QPen(Qt.DashLine) pen.setBrush(QColor(Qt.red)) h_line.setPen(pen) self.dot.horizontal_line = h_line # pylint: disable=unused-variable # line line = QGraphicsLineItem( values[0] * scale + offset, y_start, values[-1] * scale + offset, y_stop, self, ) # ticks for value in values: diff_ = np.nan_to_num(values[-1] - values[0]) k = (value - values[0]) / diff_ if diff_ else 0 y_tick = (y_stop - y_start) * k + y_start - self.tick_height / 2 x_tick = value * scale - self.tick_width / 2 + offset tick = QGraphicsRectItem( x_tick, y_tick, self.tick_width, self.tick_height, self ) tick.setBrush(QColor(Qt.black)) # rect rect = QGraphicsRectItem( values[0] * scale + offset, -self.y_diff * 0.125, values[-1] * scale + offset, self.y_diff * 1.25, self, ) pen = QPen(Qt.DotLine) pen.setBrush(QColor(50, 150, 200, 255)) rect.setPen(pen) self.setPreferredSize(self.preferredWidth(), self.y_diff * 1.5) class NomogramItem(QGraphicsWidget): def __init__(self): super().__init__() self._items = [] self.setLayout(QGraphicsLinearLayout(Qt.Vertical)) def add_items(self, items): self._items = items for item in items: self.layout().addItem(item) class OWNomogram(OWWidget): name = "Nomogram" description = ( " Nomograms for Visualization of Naive Bayesian" " and Logistic Regression Classifiers." ) icon = "icons/Nomogram.svg" priority = 2000 class Inputs: classifier = Input("Classifier", Model) data = Input("Data", Table) MAX_N_ATTRS = 1000 POINT_SCALE = 0 ALIGN_LEFT = 0 ALIGN_ZERO = 1 ACCEPTABLE = (NaiveBayesModel, LogisticRegressionClassifier) settingsHandler = ClassValuesContextHandler() target_class_index = ContextSetting(0) normalize_probabilities = Setting(False) scale = Setting(1) display_index = Setting(1) n_attributes = Setting(10) sort_index = Setting(SortBy.ABSOLUTE) cont_feature_dim_index = Setting(0) graph_name = "scene" class Error(OWWidget.Error): invalid_classifier = Msg( "Nomogram accepts only Naive Bayes and " "Logistic Regression classifiers." ) def __init__(self): super().__init__() self.instances = None self.domain = None self.data = None self.classifier = None self.align = OWNomogram.ALIGN_ZERO self.log_odds_ratios = [] self.log_reg_coeffs = [] self.log_reg_coeffs_orig = [] self.log_reg_cont_data_extremes = [] self.p = None self.b0 = None self.points = [] self.feature_items = {} self.feature_marker_values = [] self.scale_marker_values = lambda x: x self.nomogram_main = None self.vertical_line = None self.hidden_vertical_line = None self.old_target_class_index = self.target_class_index self.repaint = False # GUI box = gui.vBox(self.controlArea, "Target class") self.class_combo = gui.comboBox( box, self, "target_class_index", callback=self._class_combo_changed, contentsLength=12, ) self.norm_check = gui.checkBox( box, self, "normalize_probabilities", "Normalize probabilities", hidden=True, callback=self.update_scene, tooltip="For multiclass data 1 vs. all probabilities do not" " sum to 1 and therefore could be normalized.", ) self.scale_radio = gui.radioButtons( self.controlArea, self, "scale", ["Point scale", "Log odds ratios"], box="Scale", callback=self.update_scene, ) box = gui.vBox(self.controlArea, "Display features") grid = QGridLayout() radio_group = gui.radioButtonsInBox( box, self, "display_index", [], orientation=grid, callback=self.update_scene ) radio_all = gui.appendRadioButton(radio_group, "All", addToLayout=False) radio_best = gui.appendRadioButton( radio_group, "Best ranked:", addToLayout=False ) spin_box = gui.hBox(None, margin=0) self.n_spin = gui.spin( spin_box, self, "n_attributes", 1, self.MAX_N_ATTRS, label=" ", controlWidth=60, callback=self._n_spin_changed, ) grid.addWidget(radio_all, 1, 1) grid.addWidget(radio_best, 2, 1) grid.addWidget(spin_box, 2, 2) self.sort_combo = gui.comboBox( box, self, "sort_index", label="Rank by:", items=SortBy.items(), orientation=Qt.Horizontal, callback=self.update_scene, ) self.cont_feature_dim_combo = gui.comboBox( box, self, "cont_feature_dim_index", label="Numeric features: ", items=["1D projection", "2D curve"], orientation=Qt.Horizontal, callback=self.update_scene, ) gui.rubber(self.controlArea) class _GraphicsView(QGraphicsView): def __init__(self, scene, parent, **kwargs): for k, v in dict( verticalScrollBarPolicy=Qt.ScrollBarAlwaysOff, horizontalScrollBarPolicy=Qt.ScrollBarAlwaysOff, viewportUpdateMode=QGraphicsView.BoundingRectViewportUpdate, renderHints=( QPainter.Antialiasing | QPainter.TextAntialiasing | QPainter.SmoothPixmapTransform ), alignment=(Qt.AlignTop | Qt.AlignLeft), sizePolicy=QSizePolicy( QSizePolicy.MinimumExpanding, QSizePolicy.MinimumExpanding ), ).items(): kwargs.setdefault(k, v) super().__init__(scene, parent, **kwargs) class GraphicsView(_GraphicsView): def __init__(self, scene, parent): super().__init__( scene, parent, verticalScrollBarPolicy=Qt.ScrollBarAlwaysOn, styleSheet="QGraphicsView {background: white}", ) self.viewport().setMinimumWidth( 300 ) # XXX: This prevents some tests failing self._is_resizing = False w = self def resizeEvent(self, resizeEvent): # Recompute main scene on window width change if resizeEvent.size().width() != resizeEvent.oldSize().width(): self._is_resizing = True self.w.update_scene() self._is_resizing = False return super().resizeEvent(resizeEvent) def is_resizing(self): return self._is_resizing def sizeHint(self): return QSize(400, 200) class FixedSizeGraphicsView(_GraphicsView): def __init__(self, scene, parent): super().__init__( scene, parent, sizePolicy=QSizePolicy( QSizePolicy.MinimumExpanding, QSizePolicy.Minimum ), ) def sizeHint(self): return QSize(400, 85) scene = self.scene = QGraphicsScene(self) top_view = self.top_view = FixedSizeGraphicsView(scene, self) mid_view = self.view = GraphicsView(scene, self) bottom_view = self.bottom_view = FixedSizeGraphicsView(scene, self) for view in (top_view, mid_view, bottom_view): self.mainArea.layout().addWidget(view) def _class_combo_changed(self): with np.errstate(invalid="ignore"): coeffs = [ np.nan_to_num( p[self.target_class_index] / p[self.old_target_class_index] ) for p in self.points ] points = [p[self.old_target_class_index] for p in self.points] self.feature_marker_values = [ self.get_points_from_coeffs(v, c, p) for (v, c, p) in zip(self.feature_marker_values, coeffs, points) ] self.feature_marker_values = np.asarray(self.feature_marker_values) self.update_scene() self.old_target_class_index = self.target_class_index def _n_spin_changed(self): self.display_index = 1 self.update_scene() def update_controls(self): self.class_combo.clear() self.norm_check.setHidden(True) self.cont_feature_dim_combo.setEnabled(True) if self.domain is not None: self.class_combo.addItems(self.domain.class_vars[0].values) if len(self.domain.attributes) > self.MAX_N_ATTRS: self.display_index = 1 if len(self.domain.class_vars[0].values) > 2: self.norm_check.setHidden(False) if not self.domain.has_continuous_attributes(): self.cont_feature_dim_combo.setEnabled(False) self.cont_feature_dim_index = 0 model = self.sort_combo.model() item = model.item(SortBy.POSITIVE) item.setFlags(item.flags() | Qt.ItemIsEnabled) item = model.item(SortBy.NEGATIVE) item.setFlags(item.flags() | Qt.ItemIsEnabled) self.align = OWNomogram.ALIGN_ZERO if self.classifier and isinstance( self.classifier, LogisticRegressionClassifier ): self.align = OWNomogram.ALIGN_LEFT @Inputs.data def set_data(self, data): self.instances = data self.feature_marker_values = [] self.set_feature_marker_values() self.update_scene() @Inputs.classifier def set_classifier(self, classifier): self.closeContext() self.classifier = classifier self.Error.clear() if self.classifier and not isinstance(self.classifier, self.ACCEPTABLE): self.Error.invalid_classifier() self.classifier = None self.domain = self.classifier.domain if self.classifier else None self.data = None self.calculate_log_odds_ratios() self.calculate_log_reg_coefficients() self.update_controls() self.target_class_index = 0 self.openContext(self.domain.class_var if self.domain is not None else None) self.points = self.log_odds_ratios or self.log_reg_coeffs self.feature_marker_values = [] self.old_target_class_index = self.target_class_index self.update_scene() def calculate_log_odds_ratios(self): self.log_odds_ratios = [] self.p = None if self.classifier is None or self.domain is None: return if not isinstance(self.classifier, NaiveBayesModel): return log_cont_prob = self.classifier.log_cont_prob class_prob = self.classifier.class_prob for i in range(len(self.domain.attributes)): ca = np.exp(log_cont_prob[i]) * class_prob[:, None] _or = (ca / (1 - ca)) / (class_prob / (1 - class_prob))[:, None] self.log_odds_ratios.append(np.log(_or)) self.p = class_prob def calculate_log_reg_coefficients(self): self.log_reg_coeffs = [] self.log_reg_cont_data_extremes = [] self.b0 = None if self.classifier is None or self.domain is None: return if not isinstance(self.classifier, LogisticRegressionClassifier): return self.domain = self.reconstruct_domain( self.classifier.original_domain, self.domain ) self.data = self.classifier.original_data.transform(self.domain) attrs, ranges, start = self.domain.attributes, [], 0 for attr in attrs: stop = start + len(attr.values) if attr.is_discrete else start + 1 ranges.append(slice(start, stop)) start = stop self.b0 = self.classifier.intercept coeffs = self.classifier.coefficients if len(self.domain.class_var.values) == 2: self.b0 = np.hstack((self.b0 * (-1), self.b0)) coeffs = np.vstack((coeffs * (-1), coeffs)) self.log_reg_coeffs = [coeffs[:, ranges[i]] for i in range(len(attrs))] self.log_reg_coeffs_orig = self.log_reg_coeffs.copy() min_values = nanmin(self.data.X, axis=0) max_values = nanmax(self.data.X, axis=0) for i, min_t, max_t in zip( range(len(self.log_reg_coeffs)), min_values, max_values ): if self.log_reg_coeffs[i].shape[1] == 1: coef = self.log_reg_coeffs[i] self.log_reg_coeffs[i] = np.hstack((coef * min_t, coef * max_t)) self.log_reg_cont_data_extremes.append( [sorted([min_t, max_t], reverse=(c < 0)) for c in coef] ) else: self.log_reg_cont_data_extremes.append([None]) def update_scene(self): self.clear_scene() if self.domain is None or not len(self.points[0]): return n_attrs = self.n_attributes if self.display_index else int(1e10) attr_inds, attributes = zip(*self.get_ordered_attributes()[:n_attrs]) name_items = [QGraphicsTextItem(attr.name) for attr in attributes] point_text = QGraphicsTextItem("Points") probs_text = QGraphicsTextItem("Probabilities (%)") all_items = name_items + [point_text, probs_text] name_offset = -max(t.boundingRect().width() for t in all_items) - 10 w = self.view.viewport().rect().width() max_width = w + name_offset - 30 points = [self.points[i][self.target_class_index] for i in attr_inds] if self.align == OWNomogram.ALIGN_LEFT: points = [p - p.min() for p in points] max_ = np.nan_to_num(max(max(abs(p)) for p in points)) d = 100 / max_ if max_ else 1 minimums = [p[self.target_class_index].min() for p in self.points] if self.scale == OWNomogram.POINT_SCALE: points = [p * d for p in points] if self.align == OWNomogram.ALIGN_LEFT: self.scale_marker_values = lambda x: (x - minimums) * d else: self.scale_marker_values = lambda x: x * d else: if self.align == OWNomogram.ALIGN_LEFT: self.scale_marker_values = lambda x: x - minimums else: self.scale_marker_values = lambda x: x point_item, nomogram_head = self.create_main_nomogram( attributes, attr_inds, name_items, points, max_width, point_text, name_offset, ) probs_item, nomogram_foot = self.create_footer_nomogram( probs_text, d, minimums, max_width, name_offset ) for item in self.feature_items.values(): item.dot.point_dot = point_item.dot item.dot.probs_dot = probs_item.dot item.dot.vertical_line = self.hidden_vertical_line self.nomogram = nomogram = NomogramItem() nomogram.add_items([nomogram_head, self.nomogram_main, nomogram_foot]) self.scene.addItem(nomogram) self.set_feature_marker_values() rect = QRectF( self.scene.itemsBoundingRect().x(), self.scene.itemsBoundingRect().y(), self.scene.itemsBoundingRect().width(), self.nomogram.preferredSize().height(), ).adjusted(10, 0, 20, 0) self.scene.setSceneRect(rect) # Clip top and bottom (60 and 150) parts from the main view self.view.setSceneRect( rect.x(), rect.y() + 80, rect.width() - 10, rect.height() - 160 ) self.view.viewport().setMaximumHeight(rect.height() - 160) # Clip main part from top/bottom views # below point values are imprecise (less/more than required) but this # is not a problem due to clipped scene content still being drawn self.top_view.setSceneRect(rect.x(), rect.y() + 3, rect.width() - 10, 20) self.bottom_view.setSceneRect( rect.x(), rect.height() - 110, rect.width() - 10, 30 ) def create_main_nomogram( self, attributes, attr_inds, name_items, points, max_width, point_text, name_offset, ): cls_index = self.target_class_index min_p = min(p.min() for p in points) max_p = max(p.max() for p in points) values = self.get_ruler_values(min_p, max_p, max_width) min_p, max_p = min(values), max(values) diff_ = np.nan_to_num(max_p - min_p) scale_x = max_width / diff_ if diff_ else max_width nomogram_header = NomogramItem() point_item = RulerItem( point_text, values, scale_x, name_offset, -scale_x * min_p ) point_item.setPreferredSize(point_item.preferredWidth(), 35) nomogram_header.add_items([point_item]) self.nomogram_main = NomogramItem() cont_feature_item_class = ( ContinuousFeature2DItem if self.cont_feature_dim_index else ContinuousFeatureItem ) feature_items = [ DiscreteFeatureItem( name_item, attr.values, point, scale_x, name_offset, -scale_x * min_p ) if attr.is_discrete else cont_feature_item_class( name_item, self.log_reg_cont_data_extremes[i][cls_index], self.get_ruler_values( point.min(), point.max(), scale_x * point.ptp(), False ), scale_x, name_offset, -scale_x * min_p, ) for i, attr, name_item, point in zip( attr_inds, attributes, name_items, points ) ] self.nomogram_main.add_items(feature_items) self.feature_items = OrderedDict(sorted(zip(attr_inds, feature_items))) x = -scale_x * min_p y = self.nomogram_main.layout().preferredHeight() + 10 self.vertical_line = QGraphicsLineItem(x, -6, x, y) self.vertical_line.setPen(QPen(Qt.DotLine)) self.vertical_line.setParentItem(point_item) self.hidden_vertical_line = QGraphicsLineItem(x, -6, x, y) pen = QPen(Qt.DashLine) pen.setBrush(QColor(Qt.red)) self.hidden_vertical_line.setPen(pen) self.hidden_vertical_line.setParentItem(point_item) return point_item, nomogram_header def get_ordered_attributes(self): """Return (in_domain_index, attr) pairs, ordered by method in SortBy combo""" if self.domain is None or not self.domain.attributes: return [] attrs = self.domain.attributes sort_by = self.sort_index class_value = self.target_class_index if sort_by == SortBy.NO_SORTING: return list(enumerate(attrs)) elif sort_by == SortBy.NAME: def key(x): _, attr = x return attr.name.lower() elif sort_by == SortBy.ABSOLUTE: def key(x): i, attr = x if attr.is_discrete: ptp = self.points[i][class_value].ptp() else: coef = np.abs(self.log_reg_coeffs_orig[i][class_value]).mean() ptp = coef * np.ptp(self.log_reg_cont_data_extremes[i][class_value]) return -ptp elif sort_by == SortBy.POSITIVE: def key(x): i, attr = x max_value = ( self.points[i][class_value].max() if attr.is_discrete else np.mean(self.log_reg_cont_data_extremes[i][class_value]) ) return -max_value elif sort_by == SortBy.NEGATIVE: def key(x): i, attr = x min_value = ( self.points[i][class_value].min() if attr.is_discrete else np.mean(self.log_reg_cont_data_extremes[i][class_value]) ) return min_value return sorted(enumerate(attrs), key=key) def create_footer_nomogram(self, probs_text, d, minimums, max_width, name_offset): eps, d_ = 0.05, 1 k = -np.log(self.p / (1 - self.p)) if self.p is not None else -self.b0 min_sum = k[self.target_class_index] - np.log((1 - eps) / eps) max_sum = k[self.target_class_index] - np.log(eps / (1 - eps)) if self.align == OWNomogram.ALIGN_LEFT: max_sum = max_sum - sum(minimums) min_sum = min_sum - sum(minimums) for i in range(len(k)): k[i] = k[i] - sum([min(q) for q in [p[i] for p in self.points]]) if self.scale == OWNomogram.POINT_SCALE: min_sum *= d max_sum *= d d_ = d values = self.get_ruler_values(min_sum, max_sum, max_width) min_sum, max_sum = min(values), max(values) diff_ = np.nan_to_num(max_sum - min_sum) scale_x = max_width / diff_ if diff_ else max_width cls_var, cls_index = self.domain.class_var, self.target_class_index nomogram_footer = NomogramItem() def get_normalized_probabilities(val): if not self.normalize_probabilities: return 1 / (1 + np.exp(k[cls_index] - val / d_)) totals = self.__get_totals_for_class_values(minimums) p_sum = np.sum(1 / (1 + np.exp(k - totals / d_))) return 1 / (1 + np.exp(k[cls_index] - val / d_)) / p_sum def get_points(prob): if not self.normalize_probabilities: return (k[cls_index] - np.log(1 / prob - 1)) * d_ totals = self.__get_totals_for_class_values(minimums) p_sum = np.sum(1 / (1 + np.exp(k - totals / d_))) return (k[cls_index] - np.log(1 / (prob * p_sum) - 1)) * d_ probs_item = ProbabilitiesRulerItem( probs_text, values, scale_x, name_offset, -scale_x * min_sum, get_points=get_points, title="{}='{}'".format(cls_var.name, cls_var.values[cls_index]), get_probabilities=get_normalized_probabilities, ) nomogram_footer.add_items([probs_item]) return probs_item, nomogram_footer def __get_totals_for_class_values(self, minimums): cls_index = self.target_class_index marker_values = self.scale_marker_values(self.feature_marker_values) totals = np.full(len(self.domain.class_var.values), np.nan) totals[cls_index] = marker_values.sum() for i in range(len(self.domain.class_var.values)): if i == cls_index: continue coeffs = [np.nan_to_num(p[i] / p[cls_index]) for p in self.points] points = [p[cls_index] for p in self.points] total = sum( [ self.get_points_from_coeffs(v, c, p) for (v, c, p) in zip(self.feature_marker_values, coeffs, points) ] ) if self.align == OWNomogram.ALIGN_LEFT: points = [p - m for m, p in zip(minimums, points)] total -= sum([min(p) for p in [p[i] for p in self.points]]) d = 100 / max(max(abs(p)) for p in points) if self.scale == OWNomogram.POINT_SCALE: total *= d totals[i] = total assert not np.any(
np.isnan(totals)
numpy.isnan
import os from typing import Callable, NamedTuple, Optional, Tuple import numba as nb import numpy as np from numba_neighbors import index_heap as ih FASTMATH = True PARALLEL = os.environ.get("NUMBA_PARALLEL", "1") != "0" INT_TYPE = np.int64 INT_TYPE_T = nb.int64 FLOAT_TYPE = np.float32 FLOAT_TYPE_T = nb.float32 BOOL_TYPE = np.uint8 BOOL_TYPE_T = nb.uint8 IntArray = np.ndarray FloatArray = np.ndarray BoolArray = np.ndarray NodeDataArray = np.ndarray RDist = Callable[[FloatArray, FloatArray], float] MinMaxRDist = Callable[[NodeDataArray, FloatArray], Tuple[float, float]] @nb.njit(inline="always") def swap(arr, i1, i2): """Swap values at index i1 and i2 of arr.""" tmp = arr[i1] arr[i1] = arr[i2] arr[i2] = tmp @nb.njit(inline="always") def dual_swap(darr, iarr, i1, i2): """swap the values at inex i1 and i2 of both darr and iarr""" dtmp = darr[i1] darr[i1] = darr[i2] darr[i2] = dtmp itmp = iarr[i1] iarr[i1] = iarr[i2] iarr[i2] = itmp @nb.njit() def _simultaneous_sort( # pylint:disable=too-many-branches priorities: np.ndarray, values: np.ndarray ) -> None: """ Recursively sort the arrays according to priorities in place. The same permutation is applied to both `priorities` and `values`. The equivalent in numpy (though quite a bit slower) is ```python def simultaneous_sort(priorities, values): i = np.argsort(priorities) return priorities[i], values[i] ``` Args: priorities: 1D array to sort by values: array of values to sort in the same way as priorities. """ # in the small-array case, do things efficiently size = priorities.size if size <= 1: pass elif size == 2: if priorities[0] > priorities[1]: dual_swap(priorities, values, 0, 1) elif size == 3: if priorities[0] > priorities[1]: dual_swap(priorities, values, 0, 1) if priorities[1] > priorities[2]: dual_swap(priorities, values, 1, 2) if priorities[0] > priorities[1]: dual_swap(priorities, values, 0, 1) else: # Determine the pivot using the median-of-three rule. # The smallest of the three is moved to the beginning of the array, # the middle (the pivot value) is moved to the end, and the largest # is moved to the pivot index. pivot_idx = size // 2 if priorities[0] > priorities[size - 1]: dual_swap(priorities, values, 0, size - 1) if priorities[size - 1] > priorities[pivot_idx]: dual_swap(priorities, values, size - 1, pivot_idx) if priorities[0] > priorities[size - 1]: dual_swap(priorities, values, 0, size - 1) pivot_val = priorities[size - 1] # partition indices about pivot. At the end of this operation, # pivot_idx will contain the pivot value, everything to the left # will be smaller, and everything to the right will be larger. store_values = 0 for i in range(size - 1): if priorities[i] < pivot_val: dual_swap(priorities, values, i, store_values) store_values += 1 dual_swap(priorities, values, store_values, size - 1) pivot_idx = store_values # recursively sort each side of the pivot if pivot_idx > 1: _simultaneous_sort(priorities[:pivot_idx], values[:pivot_idx]) if pivot_idx + 2 < size: start = pivot_idx + 1 _simultaneous_sort(priorities[start:], values[start:]) @nb.njit(parallel=PARALLEL) def simultaneous_sort(priorities: np.ndarray, values: np.ndarray) -> None: """ Independently sort the rows of the arrays according to pririties in place. The permutation is calculated based on sorting priorities, and the same permutation is applied to values per row. Args: priorities: 2D array values: ND array, N >= 2, where priorities.shape == values.shape[:2]. """ assert priorities.shape == values.shape[:2] assert len(priorities.shape) == 2 for row in nb.prange(priorities.shape[0]): # pylint: disable=not-an-iterable _simultaneous_sort(priorities[row], values[row]) @nb.njit(parallel=PARALLEL) def simultaneous_sort_partial( priorities: np.ndarray, values: np.ndarray, counts: IntArray ): """In-place simultaneous sort the given row of the arrays This python wrapper exists primarily to enable unit testing of the _simultaneous_sort C routine. """ assert priorities.shape == values.shape assert len(priorities.shape) == 2 assert priorities.shape[:1] == counts.shape for row in nb.prange(priorities.shape[0]): # pylint: disable=not-an-iterable count = counts[row] _simultaneous_sort(priorities[row, :count], values[row, :count]) @nb.njit() def find_node_split_dim(data: FloatArray, node_indices: IntArray) -> int: """Find the dimension with the largest spread. In numpy, this operation is equivalent to ```python np.argmax(data[node_indices].max(0) - data[node_indices].min(0)) ``` or ```python np.argmax(data[node_indices].ptp()) ``` Args: data: float 2D array of the training data, of shape [N, n_features]. N must be greater than any of the values in node_indices. node_indices: int 1D array of length n_points. This lists the indices of each of the points within the current node. Returns: i_max: int, the index of the feature (dimension) within the node that has the largest spread. """ n_points = node_indices.size n_features = data.shape[1] j_max = 0 max_spread = 0 for j in range(n_features): max_val = data[node_indices[0], j] min_val = max_val for i in range(1, n_points): val = data[node_indices[i], j] if val > max_val: max_val = val elif val < min_val: min_val = val spread = max_val - min_val if spread > max_spread: max_spread = spread j_max = j return j_max @nb.njit() def partition_node_indices( data: FloatArray, node_indices: IntArray, split_dim: int, split_index: int ): """ Partition points in the node into two equal-sized groups. Upon return, the values in node_indices will be rearranged such that (assuming numpy-style indexing): data[node_indices[:split_index], split_dim] <= data[node_indices[split_index], split_dim] <= data[node_indices[split_index:n_points], split_dim] The algorithm is essentially a partial in-place quicksort around a set pivot. Args: data: 2D float, [N, n_features] coordinates of points node_indices: indices into data that satisfy the above upon returning. split_dim: int, dimension to split on. split_index: pivot index. """ left = 0 right = node_indices.size - 1 while True: midindex = left for i in range(left, right): d1 = data[node_indices[i], split_dim] d2 = data[node_indices[right], split_dim] if d1 < d2: swap(node_indices, i, midindex) midindex += 1 swap(node_indices, midindex, right) if midindex == split_index: break if midindex < split_index: left = midindex + 1 else: right = midindex - 1 @nb.njit() def permute_tree(data: np.ndarray, idx_array: IntArray, perm: IntArray): """ Get data for a permuted tree. All BinaryTree operations use data[idx_array]. This operation permutes data by perm but also permutes idx_array such that the returned (data, idx_array) leaves data[idx_array] unchanged, i.e. ```python out_data, out_idx_array = permute_data(data, idx_array, perm) np.testing.assert_equal(out_data, data[perm]) np.testing.assert_equal(out_data[out_idx_array], data[idx_array]) ``` Args: data: 2D float array. idx_array: inded array constructed presumably by a binary tree. perm: arbitrary 1D int permuatation vector. Returns: out_data, out_idx_array: permuted data and idx_array such that the above conditions are met. """ n = idx_array.size # tmp[perm] = np.arange(n) tmp = np.empty((n,), dtype=idx_array.dtype) for i in range(n): tmp[perm[i]] = i permuted_perm = tmp[idx_array] return data[perm], permuted_perm class QueryResult(NamedTuple): dists: FloatArray indices: IntArray counts: IntArray class RejectionSampleResult(NamedTuple): indices: IntArray count: int class IFPSampleResult(NamedTuple): indices: IntArray min_dists: FloatArray min_dist: float class RejectionSampleQueryResult(NamedTuple): sample_result: RejectionSampleResult query_result: QueryResult class IFPSampleQueryResult(NamedTuple): sample_result: IFPSampleResult query_result: QueryResult @nb.njit(parallel=PARALLEL, inline="always") def arange(length, dtype=INT_TYPE): """Simple `np.arange` implementation without start/step.""" out = np.empty((length,), dtype=dtype) for i in nb.prange(length): # pylint: disable=not-an-iterable out[i] = i return out @nb.jit() def create_tree_data( data: FloatArray, leaf_size: int = 40, int_type=INT_TYPE, bool_type=BOOL_TYPE ): if data.size == 0: raise ValueError("X is an empty array") if leaf_size < 1: raise ValueError("leaf_size must be greater than or equal to 1") n_data = data.shape[0] # CHANGE: (n_data - 1) -> n_data n_levels = 1 + int(np.log2(max(1, n_data / leaf_size))) n_nodes = np.power(2, n_levels) - 1 # self.idx_array = np.arange(self.n_data, dtype=int_type) idx_array = arange(n_data, dtype=int_type) idx_start = np.zeros((n_nodes,), dtype=int_type) idx_end = np.zeros((n_nodes,), dtype=int_type) is_leaf = np.zeros((n_nodes,), dtype=bool_type) # radius = np.zeros((n_nodes,), dtype=float_type) return idx_array, idx_start, idx_end, is_leaf @nb.njit() def fill_tree_data( data: FloatArray, leaf_size: int, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, ) -> None: """ Get data associated with BinaryTree. Args: data: [N, n_features] 2D float array of tree points. leaf_size: int, number of points in each leaf. int_type: dtype of integer arrays used. bool_type: dtype of bool arrays used. Returns: n_levels: int, number of levels of the tree n_nodes: number of nodes in the tree idx_array: [N] int_type array of integers. data[idx_array] are data points in node ordering. idx_start: [n_nodes] int_type array of start indices of each node range. idx_end: [n_nodes] int_type array of end indices of each node range. is_leaf: [n_nodes] bool array indicating which nodes are leaves. """ # validate data n_data = data.shape[0] n_nodes = idx_start.size _recursive_build( 0, 0, n_data, leaf_size, n_nodes, data, idx_array, idx_start, idx_end, is_leaf ) @nb.njit() def _recursive_build( i_node: int, idx_start_value: int, idx_end_value: int, leaf_size: int, n_nodes: int, data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, ): """Recursively build the tree.""" n_points = idx_end_value - idx_start_value n_mid = n_points // 2 idx_array_slice = idx_array[idx_start_value:idx_end_value] # initialize node data # self._init_node(i_node, idx_start, idx_end) idx_start[i_node] = idx_start_value idx_end[i_node] = idx_end_value if 2 * i_node + 1 >= n_nodes: is_leaf[i_node] = True if n_points > 2 * leaf_size: # this shouldn't happen if our memory allocation is correct # we'll proactively prevent memory errors, but raise a # warning saying we're doing so. raise Exception( "Internal memory layout is flawed: not enough nodes allocated" ) # import warnings # warnings.warn("Internal: memory layout is flawed: " # "not enough nodes allocated") elif n_points < 2: # again, this shouldn't happen if our memory allocation # is correct. Raise a warning. raise Exception("Internal memory layout is flawed: too many nodes allocated") # import warnings # warnings.warn("Internal: memory layout is flawed: " # "too many nodes allocated") # self.is_leaf[i_node] = True else: # split node and recursively construct child nodes. is_leaf[i_node] = False i_max = find_node_split_dim(data, idx_array_slice) partition_node_indices(data, idx_array_slice, i_max, n_mid) idx_mid_value = idx_start_value + n_mid _recursive_build( 2 * i_node + 1, idx_start_value, idx_mid_value, leaf_size, n_nodes, data, idx_array, idx_start, idx_end, is_leaf, ) _recursive_build( 2 * i_node + 2, idx_mid_value, idx_end_value, leaf_size, n_nodes, data, idx_array, idx_start, idx_end, is_leaf, ) @nb.njit(inline="always") def _update_min_dists(dists, query_indices, counts, count, min_dists): for i in range(count): c = counts[i] di = dists[i] ii = query_indices[i] for j in nb.prange(c): # pylint: disable=not-an-iterable dij = di[j] iij = ii[j] if dij < min_dists[iij]: min_dists[iij] = dij @nb.njit() def rejection_ifp_sample_query_prealloc( rejection_r: float, query_r: float, start_nodes: IntArray, # ----- pre-allocated data sample_indices: IntArray, dists: FloatArray, query_indices: IntArray, counts: IntArray, consumed: BoolArray, min_dists: FloatArray, heap_priorities: FloatArray, heap_indices: IntArray, # ----- tree data data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ) -> float: """ Rejection-iterative farthest point sampling and querying. Results are saved in preallocated arrays. Args: rejection_r: reduced radius used in initial rejection sample. query_r: reduce query radius used for subsequent IFP sampling and returned neighbors. start_node: int array of node indices for which data coordinates belong. --- preallocated data below sample_indices: [sample_size] preallocated int array in which sample indices are saved. dists: [sample_size, max_neighbors] array in which distances are saved query_indices: [sample_size, max_neighbors] array of indices in resulting query. counts: [sample_size] array of counts of neighbors consumed: [in_size] bool array used in initial rejection sample. min_dists: [in_size] float array of minimum distances. *tree_data: data from the input BinaryTree. Returns: minimum distance of final sampleed point. All non-sampled points should be within this distane of a sampled point. """ # initial rejection sample sample_size = counts.size count = rejection_sample_query_prealloc( rejection_r, query_r, start_nodes, sample_indices, dists, query_indices, counts, consumed, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) if count == sample_size: return np.inf # update min_dists _update_min_dists(dists, query_indices, counts, count, min_dists) # construct heap n_data = data.shape[0] # heap = ih.padded_index_heap(min_dists, arange(n_data), # (sample_size - count) * max_counts + n_data) for i in nb.prange(n_data): # pylint: disable=not-an-iterable heap_priorities[i] = -min_dists[i] heap_indices[i] = i heap = ih.IndexHeap(heap_priorities, heap_indices, n_data) heap.heapify() # ifp sample return ifp_sample_query_prealloc( query_r, start_nodes, sample_indices[count:], dists[count:], query_indices[count:], counts[count:], min_dists, heap, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) @nb.njit() def ifp_sample_precomputed_prealloc( dists: FloatArray, query_indices: IntArray, counts: IntArray, # --- precomputed data sample_indices: IntArray, min_dists: FloatArray, heap, eps: float = 1e-8, ): count = 0 sample_size = sample_indices.size top_dist = -np.inf while heap.length > 0: top_dist, index = heap.pop() min_dist = min_dists[index] if np.isfinite(min_dist): diff = abs(min_dist + top_dist) # top dist is negative if diff > eps: continue sample_indices[count] = index di = dists[index] ii = query_indices[index] # populate di, ii instance_count = counts[index] for k in range(instance_count): dik = di[k] iik = ii[k] old_dist = min_dists[iik] if dik < old_dist: min_dists[iik] = dik heap.push(-dik, iik) count += 1 if count >= sample_size: break else: raise RuntimeError("Should have broken...") return -top_dist @nb.njit(fastmath=True) def ifp_sample_precomputed( dists: FloatArray, query_indices: IntArray, counts: IntArray, sample_size: int, eps=1e-8, ) -> IFPSampleResult: in_size, max_counts = dists.shape int_type = query_indices.dtype sample_indices = np.empty((sample_size,), dtype=int_type) min_dists = np.full((in_size,), -np.inf, dtype=np.float32) heap = ih.padded_index_heap( min_dists, arange(in_size, dtype=int_type), sample_size * max_counts + in_size ) min_dists *= -1 min_dist = ifp_sample_precomputed_prealloc( dists, query_indices, counts, sample_indices, min_dists, heap, eps=eps ) return IFPSampleResult(sample_indices, min_dists, min_dist) @nb.njit(fastmath=True) def rejection_ifp_sample_precomputed_prealloc( dists: FloatArray, query_indices: IntArray, counts: IntArray, # -- prealloc sample_indices: IntArray, min_dists: FloatArray, consumed: BoolArray, eps: float = 1e-8, ) -> float: in_size, max_counts = dists.shape count = rejection_sample_precomputed_prealloc( query_indices, counts, sample_indices, consumed ) si = sample_indices[:count] _update_min_dists(dists[si], query_indices[si], counts[si], count, min_dists) if count == sample_indices.size: return np.inf min_dists *= -1 heap = ih.padded_index_heap( min_dists, arange(in_size, dtype=sample_indices.dtype), sample_indices.size * max_counts + in_size, ) heap.heapify() min_dists *= -1 min_dist = ifp_sample_precomputed_prealloc( dists, query_indices, counts, sample_indices[count:], min_dists, heap, eps ) return min_dist @nb.njit(fastmath=True) def rejection_ifp_sample_precomputed( dists: FloatArray, query_indices: IntArray, counts: IntArray, sample_size: int, bool_type=BOOL_TYPE, eps=1e-8, ) -> IFPSampleResult: in_size = counts.size sample_indices = np.empty((sample_size,), dtype=query_indices.dtype) min_dists = np.full((in_size,), np.inf, dtype=dists.dtype) consumed = np.zeros((in_size,), dtype=bool_type) min_dist = rejection_ifp_sample_precomputed_prealloc( dists, query_indices, counts, sample_indices, min_dists, consumed, eps ) return IFPSampleResult(sample_indices, min_dists, min_dist) @nb.njit() def ifp_sample_query_prealloc( query_r: float, start_nodes: IntArray, # ----- # pre-allocated data sample_indices: IntArray, dists: FloatArray, query_indices: IntArray, counts: IntArray, min_dists: FloatArray, # in_size, minimum distances heap: ih.IndexHeap, # heapified IndexHeap # ----- # tree data data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, eps: float = 1e-8, ) -> float: """ Perform iterative farthest point sampling and querying. Results are saved into preallocated arrays. Args: query_r: float, reduced query radius. start_nodes: int array, node indices of tree data. sample_indices, dists, query_indices, counts, in_dists, heap: preallocated data *tree_data: data from the input BinaryTree eps: float, the amount by which min_dist must be different to saved distance in priority queue. Returns: minimum distance of final sampled point. All points should be within this distance of a sampled point. """ count = 0 sample_size = sample_indices.size _, max_neighbors = dists.shape top_dist = -np.inf while heap.length > 0: top_dist, index = heap.pop() min_dist = min_dists[index] if np.isfinite(min_dist): diff = abs(min_dist + top_dist) # top_dist is negative if diff > eps: continue sample_indices[count] = index di = dists[count] ii = query_indices[count] # populate di, ii instance_count = counts[count] = _query_radius_single_bottom_up( 0, max_neighbors, start_nodes[index], data[index], di, ii, query_r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) for k in range(instance_count): dik = di[k] iik = ii[k] old_dist = min_dists[iik] if dik < old_dist: min_dists[iik] = dik heap.push(-dik, iik) count += 1 if count >= sample_size: break else: raise RuntimeError("Should have broken...") return -top_dist @nb.njit() def rejection_sample_precomputed_prealloc( query_indices: IntArray, counts: IntArray, sample_indices: IntArray, consumed: BoolArray, valid: Optional[BoolArray] = None, ) -> int: """ Perform rejection sampling with precomputed sample indices. Args: query_indices: [in_size, max_neighbors] neighbors of each input point. counts: [in_size] number of valid indices for each row of query_indices. sample_indices: [max_sample_size] preallocated int array. consumed: [in_size] preallocated bool array. valid: [in_size, max_neighbors] optional bool array. If given, any false value will result in the corresponding query_indices being ignored. Returns: count: number of points sampled. """ max_size = sample_indices.shape[0] if max_size == 0: return 0 sample_count = 0 in_size = consumed.size for i in range(in_size): if consumed[i] == 0: qi = query_indices[i] count = counts[i] for j in nb.prange(count): # pylint: disable=not-an-iterable if valid is not None and not valid[i, j]: continue consumed[qi[j]] = 1 sample_indices[sample_count] = i sample_count += 1 if sample_count >= max_size: break return sample_count @nb.njit(inline="always") def rejection_sample_precomputed( query_indices: IntArray, counts: IntArray, max_samples: int, int_type=INT_TYPE, bool_type=BOOL_TYPE, valid: Optional[BoolArray] = None, ) -> RejectionSampleResult: """ Perform rejection sampling with precomputed sample indices. Args: query_indices: [in_size, max_neighbors] neighbors of each input point. counts: [in_size] number of valid indices for each row of query_indices. max_samples: int, maximum number of samples to consider. int_type: int dtype """ in_size = counts.size sample_indices = np.full((max_samples,), -1, dtype=int_type) consumed = np.zeros((in_size,), dtype=bool_type) count = rejection_sample_precomputed_prealloc( query_indices, counts, sample_indices, consumed, valid ) return RejectionSampleResult(sample_indices, count) @nb.njit() def rejection_sample_query_prealloc( rejection_r: float, query_r: float, start_nodes: IntArray, # --- preallocated arrays below sample_indices: IntArray, dists: FloatArray, query_indices: IntArray, counts: IntArray, consumed: BoolArray, # --- tree data arrays below data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ) -> int: """ Perform simultaneous rejection sampling and querying. Data saved to preallocated arrays. Args: rejection_r: reduced radius used in rejection sampling. query_r: reduced radius used in query. start_nodes: starting index nodes of each point. *preallocated arrays *tree_data Returns: number of points sampled. """ n_data = data.shape[0] max_samples, max_count = dists.shape if max_samples == 0: return 0 sample_count = 0 for i in range(n_data): if not consumed[i]: sample_indices[sample_count] = i counts[sample_count] = _rejection_sample_query_single_bottom_up( 0, max_count, start_nodes[i], data[i], dists[sample_count], query_indices[sample_count], consumed, rejection_r, query_r, data, idx_array, idx_start, idx_end, is_leaf, node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) sample_count += 1 if sample_count >= max_samples: break return sample_count @nb.njit() def get_node_indices_prealloc( idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_indices: IntArray, ) -> None: n_nodes = is_leaf.size for i in range(n_nodes): # pylint: disable=not-an-iterable if is_leaf[i]: node_indices[idx_array[idx_start[i] : idx_end[i]]] = i @nb.njit() def get_node_indices( idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray ) -> IntArray: """Get the index of the leaf of each data point.""" node_indices = np.empty((idx_array.size,), dtype=idx_start.dtype) get_node_indices_prealloc(idx_array, idx_start, idx_end, is_leaf, node_indices) return node_indices @nb.njit(parallel=PARALLEL) def _rejection_sample_query_single_bottom_up( count: int, max_count: int, i_node: int, x: FloatArray, dists: FloatArray, indices: IntArray, consumed: BoolArray, rejection_r: float, query_r: float, # ----- tree data data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ): count = _query_radius_single_bottom_up( count, max_count, i_node, x, dists, indices, query_r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) if rejection_r >= query_r: # don't bother doing distance check. for i in nb.prange(count): # pylint: disable=not-an-iterable consumed[indices[i]] = True else: for i in nb.prange(count): # pylint: disable=not-an-iterable if dists[i] < rejection_r: consumed[indices[i]] = True return count @nb.njit(parallel=PARALLEL) def query_radius_bottom_up_prealloc( X: FloatArray, r: float, start_nodes: IntArray, # --- preallocated data below dists: FloatArray, indices: IntArray, counts: IntArray, # --- tree data below data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ): """ Query a binary tree when the leaf index of each query point is known. Args: X: [n_queries, n_features] query points r: float start_nodes: [n_queries] node index of the containing leaf of each point in X. Results should still be accurate if these are incorrect, though computation time may be greater. dists, indices, counts: preallocated data *tree_data """ max_counts = min(dists.shape[1], data.shape[0]) if max_counts == 0: return for i in nb.prange(X.shape[0]): # pylint: disable=not-an-iterable counts[i] = _query_radius_single_bottom_up( 0, max_counts, start_nodes[i], X[i], dists[i], indices[i], r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) @nb.njit() def _query_radius_single_bottom_up( count: int, max_count: int, i_node: int, x: FloatArray, dists: FloatArray, indices: IntArray, r: float, # -------- tree data data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ) -> int: count = _query_radius_single( count, max_count, i_node, x, dists, indices, r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) while count < max_count and i_node != 0: parent = (i_node - 1) // 2 sibling = i_node + 1 if i_node % 2 else i_node - 1 count = _query_radius_single( count, max_count, sibling, x, dists, indices, r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) i_node = parent return count @nb.njit(parallel=PARALLEL) def query_radius_prealloc( X: FloatArray, r: float, dists: FloatArray, indices: IntArray, counts: IntArray, # ----- tree data below data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ) -> None: """ Perform ball search saving data into preallocated arrays. Args: X: [n_queries, n_features] float array of query points. r: reduced radius (e.g. squared radius values if rdist is norm^2) of search. dists: [n_queries, max_neighbors] float array into which resulting reduced distances are saved. indices: [n_queries, max_neighbors] int array into which resulting indices are saved. counts: [n_queries] int array into which resultin counts of neighbors are saved. *tree_data: data associated with the BinaryTree. """ max_results = min(dists.shape[1], data.shape[0]) if max_results == 0: return for i in nb.prange(X.shape[0]): # pylint: disable=not-an-iterable counts[i] = _query_radius_single( 0, max_results, 0, X[i], dists[i], indices[i], r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) @nb.njit() def _query_radius_single( count: int, max_count: int, i_node: int, x: FloatArray, dists: FloatArray, indices: IntArray, r: float, data: FloatArray, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, rdist: RDist, min_max_rdist: MinMaxRDist, ) -> int: if count >= max_count: return count rdist_LB, rdist_UB = min_max_rdist(node_data[i_node], x) # ------------------------------------------------------------ # Case 1: all node points are outside distance r. # prune this branch. if rdist_LB > r: pass # ------------------------------------------------------------ # Case 2: all node points are within distance r # add all points to neighbors elif rdist_UB <= r: for i in range(idx_start[i_node], idx_end[i_node]): index = idx_array[i] indices[count] = index dists[count] = rdist(x, data[index]) count += 1 if count >= max_count: break # ------------------------------------------------------------ # Case 3: this is a leaf node. Go through all points to # determine if they fall within radius elif is_leaf[i_node]: for i in range(idx_start[i_node], idx_end[i_node]): rdist_x = rdist(x, data[idx_array[i]]) if rdist_x <= r: indices[count] = idx_array[i] dists[count] = rdist_x count += 1 if count >= max_count: break # ------------------------------------------------------------ # Case 4: Node is not a leaf. Recursively query subnodes else: count = _query_radius_single( count, max_count, 2 * i_node + 1, x, dists, indices, r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) count = _query_radius_single( count, max_count, 2 * i_node + 2, x, dists, indices, r, data, idx_array, idx_start, idx_end, is_leaf, node_data=node_data, rdist=rdist, min_max_rdist=min_max_rdist, ) return count def tree_spec(float_type=FLOAT_TYPE, int_type=INT_TYPE, bool_type=BOOL_TYPE): float_type_t = nb.from_dtype(float_type) int_type_t = nb.from_dtype(int_type) bool_type_t = nb.from_dtype(bool_type) return [ ("n_data", INT_TYPE_T), ("n_features", INT_TYPE_T), ("leaf_size", INT_TYPE_T), ("n_nodes", INT_TYPE_T), ("data", float_type_t[:, :]), ("idx_array", int_type_t[::1]), ("idx_start", int_type_t[::1]), ("idx_end", int_type_t[::1]), ("is_leaf", bool_type_t[::1]), ] class BinaryTree: """ Base class for binary trees. This is designed to be extended by jitted classes. To enable this and ensure good performance, a number of things are non-standard. 1. __init__ work is done in _init. This allows derived classes to call self._init(*args) rather than forcing them to use super(...).__init__() (super calls aren't supported as far as I can tell). 2. `rdist` and `min_max_rdist` are conceptually functions which would ordinarily be implemented as class methods and then passed into jitted implementation functions. This forces the objected itself to be passed into those functions, which results in very slow performance. Instead, we implement `rdist` and `min_max_rdist` as properties which return `njit`ed functions. Derived classes should implement: - _create_node_data - which should return a single numpy array which is used in `min_max_rdist` - rdist: property that returns a function that gives the reduced distance between two points. reduced distances are distances which preserve order with distance but may be easier to compute. For example, squared distance is a good reduced distance for normal distance since it avoids the need to evaluate the square root. - min_max_rdist: function that returns a lower and upper bound on the reduced distance between a node and a given point given the `node_data` associated with the given node. See kd_tree.KDTree for implementation. """ def __init__( self, data: FloatArray, leaf_size: int, idx_array: IntArray, idx_start: IntArray, idx_end: IntArray, is_leaf: BoolArray, node_data: NodeDataArray, ): fill_tree_data(data, leaf_size, idx_array, idx_start, idx_end, is_leaf) self.data = data self.idx_array = idx_array self.idx_start = idx_start self.idx_end = idx_end self.is_leaf = is_leaf self.node_data = node_data self.n_data, self.n_features = data.shape self.n_nodes = len(self.idx_start) self._fill_node_data() def _fill_node_data(self): pass # def __init__(self, data: FloatArray, leaf_size: int = 40): # self._init(data, leaf_size) # def _init(self, data: FloatArray, leaf_size: int = 40): # # assert (data.dtype == self.float_type) # self.data = data # self.n_data, self.n_features = data.shape # self.leaf_size = leaf_size # (self.n_levels, self.n_nodes, self.idx_array, self.idx_start, # self.idx_end, self.is_leaf) = get_tree_data(data, # leaf_size, # int_type=self.int_type, # bool_type=self.bool_type) # self.node_data = self._create_node_data() # pylint: disable=assignment-from-none # def _create_node_data(self): # return np.zeros((self.n_nodes, 0), dtype=self.float_type) # raise NotImplementedError('Abstract method') @property def float_type(self): return np.float32 @property def int_type(self): return np.int64 @property def bool_type(self): return np.uint8 @property def rdist(self) -> RDist: """ rdist function. By making this a property with a callable value, passing this into jitted functions does not result in a massive slow down like bound member functions does. """ raise NotImplementedError("Abstract method") @property def min_max_rdist(self) -> MinMaxRDist: """ min_max_rdist function. By making this a property with a callable value, passing this into jitted functions does not result in a massive slow down like bound member functions does. """ raise NotImplementedError("Abstract method") # def rdist(self, x, y): # raise NotImplementedError('Abstract method') # def min_max_rdist(self, lower_bounds, upper_bounds, x, n_features): # raise NotImplementedError('Abstract method') def query_radius_prealloc( self, X: np.ndarray, r: float, dists: np.ndarray, indices: np.ndarray, counts: np.ndarray, ) -> None: return query_radius_prealloc( X, r, dists, indices, counts, data=self.data, idx_array=self.idx_array, idx_start=self.idx_start, idx_end=self.idx_end, is_leaf=self.is_leaf, node_data=self.node_data, rdist=self.rdist, min_max_rdist=self.min_max_rdist, ) def query_radius(self, X: np.ndarray, r: float, max_count: int) -> QueryResult: """ Perform ball search on query points X. Args: X: [n_queries, n_features] float array of query points. r: reduced radius of search. Note this may be a squared distance depending on rdist/min_max_rdist implementation. max_count: maximum number of neighbors to consider. If this number of neighbors is found we return, and the returned neighbors will not necessarily be the closest neighbors (though they will all be within `r` as measured by `rdist`). Returns: QueryResult: (dists, indices, counts) """ n_queries, n_features = X.shape assert n_features == self.n_features shape = (n_queries, max_count) dists = np.full(shape, np.inf, dtype=self.float_type) indices = np.full(shape, self.n_data, dtype=self.int_type) counts = np.empty((n_queries,), dtype=self.int_type) self.query_radius_prealloc(X, r, dists, indices, counts) return QueryResult(dists, indices, counts) def query_radius_bottom_up_prealloc( self, X: FloatArray, r: float, start_nodes: IntArray, dists: FloatArray, indices: IntArray, counts: IntArray, ) -> None: query_radius_bottom_up_prealloc( X, r, start_nodes, dists, indices, counts, data=self.data, idx_array=self.idx_array, idx_start=self.idx_start, idx_end=self.idx_end, is_leaf=self.is_leaf, node_data=self.node_data, rdist=self.rdist, min_max_rdist=self.min_max_rdist, ) def query_radius_bottom_up( self, X: FloatArray, r: float, start_nodes: IntArray, max_count: int ): n_queries = X.shape[0] dists = np.full((n_queries, max_count), np.inf, dtype=self.float_type) indices = np.full((n_queries, max_count), self.n_data, dtype=self.int_type) counts = np.zeros((n_queries,), dtype=self.int_type) self.query_radius_bottom_up_prealloc(X, r, start_nodes, dists, indices, counts) return QueryResult(dists, indices, counts) def rejection_sample_query_prealloc( self, rejection_r: float, query_r: float, start_nodes: IntArray, sample_indices: IntArray, dists: FloatArray, query_indices: IntArray, counts: IntArray, consumed: BoolArray, ): return rejection_sample_query_prealloc( rejection_r, query_r, start_nodes, sample_indices, dists, query_indices, counts, consumed, data=self.data, idx_array=self.idx_array, idx_start=self.idx_start, idx_end=self.idx_end, is_leaf=self.is_leaf, node_data=self.node_data, rdist=self.rdist, min_max_rdist=self.min_max_rdist, ) def rejection_sample_query( self, rejection_r, query_r, start_nodes: IntArray, max_samples: int, max_counts: int, ) -> RejectionSampleQueryResult: sample_indices = np.full((max_samples,), self.n_data, dtype=self.int_type) shape = (max_samples, max_counts) dists = np.full(shape, np.inf, dtype=self.float_type) query_indices = np.full(shape, self.n_data, dtype=self.int_type) counts = np.full((max_samples,), -1, dtype=self.int_type) consumed = np.zeros((self.n_data,), dtype=self.bool_type) sample_count = self.rejection_sample_query_prealloc( rejection_r, query_r, start_nodes, sample_indices, dists, query_indices, counts, consumed, ) return RejectionSampleQueryResult( RejectionSampleResult(sample_indices, sample_count), QueryResult(dists, query_indices, counts), ) def ifp_sample_query_prealloc( self, query_r: float, start_nodes: IntArray, # ----- # pre-allocated data sample_indices: IntArray, dists: FloatArray, query_indices: IntArray, counts: IntArray, min_dists: FloatArray, # in_size, minimum distances heap: ih.IndexHeap, # assumed to be heapified ) -> float: return ifp_sample_query_prealloc( query_r=query_r, start_nodes=start_nodes, sample_indices=sample_indices, dists=dists, query_indices=query_indices, counts=counts, min_dists=min_dists, heap=heap, data=self.data, idx_array=self.idx_array, idx_start=self.idx_start, idx_end=self.idx_end, is_leaf=self.is_leaf, node_data=self.node_data, rdist=self.rdist, min_max_rdist=self.min_max_rdist, ) def ifp_sample_query( self, query_r: float, start_nodes: IntArray, sample_size: int, max_counts: int ) -> IFPSampleQueryResult: sample_indices = np.full((sample_size,), self.n_data, dtype=self.int_type) shape = (sample_size, max_counts) dists = np.full(shape, np.inf, dtype=self.float_type) query_indices = np.full(shape, self.n_data, dtype=self.int_type) counts = np.full((sample_size,), -1, dtype=self.int_type) min_dists = np.full((self.n_data,), -np.inf, dtype=self.float_type) # heap = list(zip(min_dists, arange(self.n_data,))) heap = ih.padded_index_heap( min_dists, arange(self.n_data, dtype=self.int_type), sample_size * max_counts + self.n_data, ) min_dists *= -1 min_dist = self.ifp_sample_query_prealloc( query_r=query_r, start_nodes=start_nodes, sample_indices=sample_indices, dists=dists, query_indices=query_indices, counts=counts, min_dists=min_dists, heap=heap, ) return IFPSampleQueryResult( IFPSampleResult(sample_indices, min_dists, min_dist), QueryResult(dists, query_indices, counts), ) def rejection_ifp_sample_query_prealloc( self, rejection_r: float, query_r: float, start_nodes: IntArray, # ----- # pre-allocated data sample_indices: IntArray, dists: FloatArray, query_indices: IntArray, counts: IntArray, consumed: BoolArray, min_dists: FloatArray, heap_priorities: FloatArray, heap_indices: IntArray, ) -> float: """ Simultaneous sampling and querying with preallocated data. Returns minimum reduced distance of final sampled point. All points should be within this reduced distance of a sampled point. """ return rejection_ifp_sample_query_prealloc( rejection_r=rejection_r, query_r=query_r, start_nodes=start_nodes, sample_indices=sample_indices, dists=dists, query_indices=query_indices, counts=counts, consumed=consumed, min_dists=min_dists, heap_priorities=heap_priorities, heap_indices=heap_indices, data=self.data, idx_array=self.idx_array, idx_start=self.idx_start, idx_end=self.idx_end, is_leaf=self.is_leaf, node_data=self.node_data, rdist=self.rdist, min_max_rdist=self.min_max_rdist, ) def rejection_ifp_sample_query( self, rejection_r: float, query_r: float, start_nodes: IntArray, sample_size: int, max_counts: int, ) -> IFPSampleQueryResult: """ Perform simultaneous rejection_ifp sampling and querying. Args: rejection_r: reduced radius of rejections. query_r: reduced radius of queries. start_nodes: [in_size] leaf indices of points in data, e.g. from `self.get_node_indices()`. Returns: IFPSampleQueryResult: IFPSampleResult: - indices - min_dists - min_dist QueryResult: - dists - indices - counts """ sample_indices = np.full((sample_size,), self.n_data, dtype=self.int_type) shape = (sample_size, max_counts) dists = np.full(shape, np.inf, dtype=self.float_type) query_indices = np.full(shape, self.n_data, dtype=self.int_type) counts = np.full((sample_size,), -1, dtype=self.int_type) consumed = np.zeros((self.n_data,), dtype=self.bool_type) min_dists = np.full((self.n_data,), np.inf, dtype=self.float_type) max_heap_length = sample_size * max_counts + self.n_data heap_priorities = np.empty((max_heap_length,), dtype=self.float_type) heap_indices =
np.empty((max_heap_length,), dtype=self.int_type)
numpy.empty
from nose.tools import assert_equal from nose.tools import assert_true from nose.tools import assert_raises import numpy as np from numpy.testing import assert_array_equal from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from stlearn import StackingClassifier from stlearn import stack_features from sklearn.model_selection import cross_val_score from sklearn.base import is_classifier n_samples = 200 n_estimators = 3 X0, y = make_classification(n_samples=200, random_state=42) # let's say we taks some columns and make them non-linear X1 = X0[:, :10] ** 2 X2 = X0[:, 10:15] ** 2 X = [X0, X1, X2] X_stacked, feature_indices = stack_features(X) def test_stack_features(): """Test stacking features""" X0 = np.array([[1, 2], [3, 4]]) X1 = np.array([[1, 2, 4], [3, 4, 5]]) X = [X0, X1] X_stacked, features_indices = stack_features(X) assert_equal(np.size(X_stacked), np.size(X0) + np.size(X1)) assert_equal(len(features_indices), len(X)) assert_equal(X_stacked.shape, (2, 5)) def test_stacking_essentials(): """Test initializaing and essential basic function""" # check inputs stacking = assert_raises( ValueError, StackingClassifier, estimators=2 * [LogisticRegression()], feature_indices=feature_indices, stacking_estimator=LogisticRegression()) stacking = assert_raises( ValueError, StackingClassifier, estimators=n_estimators * [LogisticRegression()], feature_indices=feature_indices[:2], stacking_estimator=LogisticRegression()) # test stacking classifier stacking = StackingClassifier( estimators=[LogisticRegression() for _ in range(3)], feature_indices=feature_indices, stacking_estimator=LogisticRegression()) assert_equal(stacking.stacking_estimator.__class__, LogisticRegression) assert_equal([ee.__class__ for ee in stacking.estimators], n_estimators * [LogisticRegression]) stacking.fit(X_stacked, y) predictions = stacking.predict(X_stacked) assert_array_equal(np.unique(predictions), np.array([0, 1])) proba = stacking.predict_proba(X_stacked) assert_array_equal(proba.sum(1), np.ones_like(proba[:, 1])) proba_estimators = stacking.predict_proba_estimators(X_stacked) for proba in np.transpose(proba_estimators, (2, 0, 1)): assert_array_equal(proba.sum(1),
np.ones_like(proba[:, 1])
numpy.ones_like
import os.path import pickle import numpy as np import scipy.optimize as sciopt from scipy.stats import norm import pytest from numpy.testing import ( assert_, assert_almost_equal, assert_equal, assert_allclose, ) from refnx.analysis import ( CurveFitter, Parameter, Parameters, Model, Objective, process_chain, load_chain, Bounds, PDF, autocorrelation_chain, integrated_time, ) from refnx.analysis.curvefitter import bounds_list from refnx.dataset import Data1D from refnx._lib import emcee, flatten from NISTModels import NIST_runner, NIST_Models def line(x, params, *args, **kwds): p_arr = np.array(params) return p_arr[0] + x * p_arr[1] class TestCurveFitter: def setup_method(self): # Reproducible results! np.random.seed(123) self.m_true = -0.9594 self.b_true = 4.294 self.f_true = 0.534 self.m_ls = -1.1040757010910947 self.b_ls = 5.4405552502319505 # Generate some synthetic data from the model. N = 50 x = np.sort(10 * np.random.rand(N)) y_err = 0.1 + 0.5 * np.random.rand(N) y = self.m_true * x + self.b_true y += np.abs(self.f_true * y) * np.random.randn(N) y += y_err * np.random.randn(N) self.data = Data1D(data=(x, y, y_err)) self.p = Parameter(self.b_ls, "b", vary=True, bounds=(-100, 100)) self.p |= Parameter(self.m_ls, "m", vary=True, bounds=(-100, 100)) self.model = Model(self.p, fitfunc=line) self.objective = Objective(self.model, self.data) assert_(len(self.objective.varying_parameters()) == 2) mod = np.array( [ 4.78166609, 4.42364699, 4.16404064, 3.50343504, 3.4257084, 2.93594347, 2.92035638, 2.67533842, 2.28136038, 2.19772983, 1.99295496, 1.93748334, 1.87484436, 1.65161016, 1.44613461, 1.11128101, 1.04584535, 0.86055984, 0.76913963, 0.73906649, 0.73331407, 0.68350418, 0.65216599, 0.59838566, 0.13070299, 0.10749131, -0.01010195, -0.10010155, -0.29495372, -0.42817431, -0.43122391, -0.64637715, -1.30560686, -1.32626428, -1.44835768, -1.52589881, -1.56371158, -2.12048349, -2.24899179, -2.50292682, -2.53576659, -2.55797996, -2.60870542, -2.7074727, -3.93781479, -4.12415366, -4.42313742, -4.98368609, -5.38782395, -5.44077086, ] ) self.mod = mod self.mcfitter = CurveFitter(self.objective) def test_bounds_list(self): bnds = bounds_list(self.p) assert_allclose(bnds, [(-100, 100), (-100, 100)]) # try making a Parameter bound a normal distribution, then get an # approximation to box bounds self.p[0].bounds = PDF(norm(0, 1)) assert_allclose( bounds_list(self.p), [norm(0, 1).ppf([0.005, 0.995]), (-100, 100)] ) def test_constraints(self): # constraints should work during fitting self.p[0].value = 5.4 self.p[1].constraint = -0.203 * self.p[0] assert_equal(self.p[1].value, self.p[0].value * -0.203) res = self.mcfitter.fit() assert_(res.success) assert_equal(len(self.objective.varying_parameters()), 1) # lnsigma is parameters[0] assert_(self.p[0] is self.objective.parameters.flattened()[0]) assert_(self.p[1] is self.objective.parameters.flattened()[1]) assert_almost_equal(self.p[0].value, res.x[0]) assert_almost_equal(self.p[1].value, self.p[0].value * -0.203) # check that constraints work during sampling # the CurveFitter has to be set up again if you change how the # parameters are being fitted. mcfitter = CurveFitter(self.objective) assert_(mcfitter.nvary == 1) mcfitter.sample(5) assert_equal(self.p[1].value, self.p[0].value * -0.203) # the constrained parameters should have a chain assert_(self.p[0].chain is not None) assert_(self.p[1].chain is not None) assert_allclose(self.p[1].chain, self.p[0].chain * -0.203) def test_mcmc(self): self.mcfitter.sample(steps=50, nthin=1, verbose=False) assert_equal(self.mcfitter.nvary, 2) # smoke test for corner plot self.mcfitter.objective.corner() # we're not doing Parallel Tempering here. assert_(self.mcfitter._ntemps == -1) assert_(isinstance(self.mcfitter.sampler, emcee.EnsembleSampler)) # should be able to multithread mcfitter = CurveFitter(self.objective, nwalkers=50) res = mcfitter.sample(steps=33, nthin=2, verbose=False, pool=2) # check that the autocorrelation function at least runs acfs = mcfitter.acf(nburn=10) assert_equal(acfs.shape[-1], mcfitter.nvary) # check the standalone autocorrelation calculator acfs2 = autocorrelation_chain(mcfitter.chain, nburn=10) assert_equal(acfs, acfs2) # check integrated_time integrated_time(acfs2, tol=5) # check chain shape assert_equal(mcfitter.chain.shape, (33, 50, 2)) # assert_equal(mcfitter._lastpos, mcfitter.chain[:, -1, :]) assert_equal(res[0].chain.shape, (33, 50)) # if the number of parameters changes there should be an Exception # raised from pytest import raises with raises(RuntimeError): self.p[0].vary = False self.mcfitter.sample(1) # can fix by making the sampler again self.mcfitter.make_sampler() self.mcfitter.sample(1) def test_random_seed(self): # check that MCMC sampling is reproducible self.mcfitter.sample(steps=2, random_state=1) # get a starting pos starting_pos = self.mcfitter._state.coords # is sampling reproducible self.mcfitter.reset() self.mcfitter.initialise(pos=starting_pos) self.mcfitter.sample(3, random_state=1, pool=1) chain1 = np.copy(self.mcfitter.chain) self.mcfitter.reset() self.mcfitter.initialise(pos=starting_pos) self.mcfitter.sample(3, random_state=1, pool=1) chain2 = np.copy(self.mcfitter.chain) assert_equal(chain1, chain2) def test_mcmc_pt(self): # smoke test for parallel tempering x = np.array(self.objective.parameters) mcfitter = CurveFitter(self.objective, ntemps=10, nwalkers=50) assert_equal(mcfitter.sampler.ntemps, 10) assert len(list(flatten(self.objective.parameters))) == 2 # check that the parallel sampling works # and that chain shape is correct res = mcfitter.sample(steps=5, nthin=2, verbose=False, pool=-1) assert_equal(mcfitter.chain.shape, (5, 10, 50, 2)) assert_equal(res[0].chain.shape, (5, 50)) assert_equal(mcfitter.chain[:, 0, :, 0], res[0].chain) assert_equal(mcfitter.chain[:, 0, :, 1], res[1].chain) chain = np.copy(mcfitter.chain) assert len(list(flatten(self.objective.parameters))) == 2 # the sampler should store the probability assert_equal(mcfitter.logpost.shape, (5, 10, 50)) assert_allclose(mcfitter.logpost, mcfitter.sampler._ptchain.logP) logprobs = mcfitter.logpost highest_prob_loc = np.argmax(logprobs[:, 0]) idx = np.unravel_index(highest_prob_loc, logprobs[:, 0].shape) idx = list(idx) idx.insert(1, 0) idx = tuple(idx) assert_equal(idx, mcfitter.index_max_prob) pvals = mcfitter.chain[idx] assert_allclose(logprobs[idx], self.objective.logpost(pvals)) # try resetting the chain mcfitter.reset() # test for reproducible operation self.objective.setp(x) mcfitter = CurveFitter(self.objective, ntemps=10, nwalkers=50) mcfitter.initialise("jitter", random_state=1) mcfitter.sample(steps=5, nthin=2, verbose=False, random_state=2) chain = np.copy(mcfitter.chain) self.objective.setp(x) mcfitter = CurveFitter(self.objective, ntemps=10, nwalkers=50) mcfitter.initialise("jitter", random_state=1) mcfitter.sample(steps=5, nthin=2, verbose=False, random_state=2) chain2 = np.copy(mcfitter.chain) assert_allclose(chain2, chain) def test_mcmc_init(self): # smoke test for sampler initialisation # TODO check that the initialisation worked. # reproducible initialisation with random_state dependents self.mcfitter.initialise("prior", random_state=1) starting_pos =
np.copy(self.mcfitter._state.coords)
numpy.copy
import pandas as pd import numpy as np import datetime import math import os import rews import turbine import warnings from power_deviation_matrix import ResidualWindSpeedMatrix from ..core.status import Status warnings.simplefilter('ignore', np.RankWarning) def getSeparatorValue(separator): try: return {"TAB":"\t", "SPACE":" ", "COMMA": ",", "SEMI-COLON":";"}[separator.upper()] except: raise Exception("Unkown separator: '%s'" % separator) def getDecimalValue(decimal): try: return {"FULL STOP":".", "COMMA":","}[decimal.upper()] except: raise Exception("Unkown decimal: '%s'" % decimal) class CalibrationBase: def __init__(self, x, y): self.x = x self.y = y self.requiredColumns = [self.x, self.y] def variance(self, df, col): return ((df[col].mean() - df[col]) ** 2.0).sum() def covariance(self, df, colA, colB): return df[[colA,colB]].cov()[colA][colB] # assumes unbiased estimator (normalises with N-1) def sigA(self,df,slope, intercept, count): sumPredYfromX = sum((df[self.y] - (intercept + df[self.x]*slope ))**2) sumX = (df[self.x]).sum() sumXX = (df[self.x]**2).sum() return ((sumPredYfromX/(count-2))*(sumXX/(count*sumXX - sumX**2)))**0.5 def sigB(self,df,slope, intercept, count): sumPredYfromX = sum((df[self.y] - (intercept + df[self.x]*slope ))**2) sumX = (df[self.x]).sum() sumXX = (df[self.x]**2).sum() return ((sumPredYfromX/(count-2))/(count*sumXX - sumX**2))**0.5 def mean(self, df, col): return df[col].mean() def intercept(self, df, slope): return self.mean(df, self.y) - slope * self.mean(df, self.x) class York(CalibrationBase): def covariance(self, df, colA, colB): return ((df[colA].mean() - df[colA]) * (df[colB].mean() - df[colB])).sum() def __init__(self, x, y, timeStepInSeconds, df): movingAverageWindow = self.calculateMovingAverageWindow(timeStepInSeconds) self.xRolling = "xRolling" self.yRolling = "yRolling" self.xDiffSq = "xDiffSq" self.yDiffSq = "yDiffSq" df[self.xRolling] = pd.rolling_mean(df[x], window = movingAverageWindow, min_periods = 1) df[self.yRolling] = pd.rolling_mean(df[y], window = movingAverageWindow, min_periods = 1) df[self.xDiffSq] = ((df[x] - df[self.xRolling])** 2.0) df[self.yDiffSq] = ((df[y] - df[self.yRolling])** 2.0) # this needed in uncertainty? CalibrationBase.__init__(self, x, y) self.requiredColumns += [self.xDiffSq, self.yDiffSq] def calculateMovingAverageWindow(self, timeStepInSeconds): movingAverageMultiplier = 3 minimumMovingAveageWindowInSeconds = movingAverageMultiplier * 60 * 60 movingAveageWindowInSeconds = max([minimumMovingAveageWindowInSeconds, movingAverageMultiplier * timeStepInSeconds]) if movingAveageWindowInSeconds % timeStepInSeconds != 0: raise Exception("Cannot calculate moving average window. Moving average window (%ds) is not integer multiple of timestep (%ds)" % (movingAveageWindowInSeconds, timeStepInSeconds)) movingAverageWindow = movingAveageWindowInSeconds / timeStepInSeconds return movingAverageWindow def slope(self, df): alpha = self.calculateAlpha(df) varianceX = self.variance(df, self.x) varianceY = self.variance(df, self.y) covarianceXY = self.covariance(df, self.x, self.y) gradientNumerator = math.sin(alpha) * varianceY + math.cos(alpha) * covarianceXY gradientDenominator = math.sin(alpha) * covarianceXY + math.cos(alpha) * varianceX return (gradientNumerator / gradientDenominator) def calculateAlpha(self, df): xYorkVariance = df[self.xDiffSq].dropna().sum() yYorkVariance = df[self.yDiffSq].dropna().sum() covarianceXY = self.covariance(df, self.x, self.y) varianceX = self.variance(df, self.x) return math.atan2(covarianceXY ** 2.0 / varianceX ** 2.0 * xYorkVariance, yYorkVariance) class RatioOfMeans(CalibrationBase): def slope(self, df): return self.mean(df, self.y) / self.mean(df, self.x) class LeastSquares(CalibrationBase): def _slope(self, df): varianceX = self.variance(df, self.x) covarianceXY = self.covariance(df, self.x, self.y) return covarianceXY ** 2.0 / varianceX ** 2.0 def slope(self, df): A =np.vstack([df[self.x].as_matrix(), np.ones(len(df))]).T slope, residual, rank, s = np.linalg.lstsq(A, df[self.y]) return slope[0] class SiteCalibrationCalculator: def __init__(self, directionBinColumn, valueColumn, calibrationSectorDataframe, actives = None, path = os.getcwd()): self.calibrationSectorDataframe = calibrationSectorDataframe self.valueColumn = valueColumn self.directionBinColumn = directionBinColumn self.path = path if actives != None: activeSectors = [] for direction in actives: if actives[direction]: activeSectors.append(int(direction)) self.calibrationSectorDataframe = self.calibrationSectorDataframe.loc[activeSectors,:] self.calibrationSectorDataframe['SpeedUpAt10'] = (10*self.calibrationSectorDataframe['Slope'] + self.calibrationSectorDataframe['Offset'])/10.0 self.IECLimitCalculator() def turbineValue(self, row): directionBin = row[self.directionBinColumn] if np.isnan(directionBin): return np.nan if not directionBin in self.calibrationSectorDataframe.index: return np.nan value = row[self.valueColumn] if np.isnan(value): return np.nan return self.calibrate(directionBin, value) def calibrate(self, directionBin, value): return self.calibrationSectorDataframe['Offset'][directionBin] + self.calibrationSectorDataframe['Slope'][directionBin] * value def IECLimitCalculator(self): if len(self.calibrationSectorDataframe.index) == 36 and 'vRatio' in self.calibrationSectorDataframe.columns: self.calibrationSectorDataframe['pctSpeedUp'] = (self.calibrationSectorDataframe['SpeedUpAt10']-1)*100 self.calibrationSectorDataframe['LowerLimitPrevious'] = pd.Series(data=np.roll(((self.calibrationSectorDataframe['SpeedUpAt10']-1)*100)-2.0,1),index=self.calibrationSectorDataframe.index) self.calibrationSectorDataframe['UpperLimitPrevious'] = pd.Series(data=np.roll(((self.calibrationSectorDataframe['SpeedUpAt10']-1)*100)+2.0,1),index=self.calibrationSectorDataframe.index) self.calibrationSectorDataframe['LowerLimitNext'] = pd.Series(data=np.roll(((self.calibrationSectorDataframe['SpeedUpAt10']-1)*100)-2.0,-1),index=self.calibrationSectorDataframe.index) self.calibrationSectorDataframe['UpperLimitNext'] = pd.Series(data=np.roll(((self.calibrationSectorDataframe['SpeedUpAt10']-1)*100)+2.0,-1),index=self.calibrationSectorDataframe.index) self.calibrationSectorDataframe['LowerLimit'] = np.maximum(self.calibrationSectorDataframe['LowerLimitPrevious'], self.calibrationSectorDataframe['LowerLimitNext']) self.calibrationSectorDataframe['UpperLimit'] = np.minimum(self.calibrationSectorDataframe['UpperLimitPrevious'], self.calibrationSectorDataframe['UpperLimitNext']) self.calibrationSectorDataframe['IECValid'] = np.logical_and(self.calibrationSectorDataframe['pctSpeedUp'] > self.calibrationSectorDataframe['LowerLimit'], self.calibrationSectorDataframe['pctSpeedUp'] < self.calibrationSectorDataframe['UpperLimit']) Status.add(self.calibrationSectorDataframe[['pctSpeedUp','LowerLimit','UpperLimit','IECValid']], verbosity=2) return True def getTotalHoursValidity(self, key, timeStep): totalHours = self.calibrationSectorDataframe.loc[key,'Count'] return totalHours*(timeStep/3600.0) > 24.0 def getBelowAboveValidity(self, key, timeStep): ba = self.calibrationSectorDataframe.loc[key,'belowAbove'] return ba[0]*(timeStep/3600.0) > 6.0 and ba[1]*(timeStep/3600.0) > 6.0 def getSpeedUpChangeValidity(self, key): return self.calibrationSectorDataframe['IECValid'][key] def getSectorValidity(self, key, timeStep): totalHoursValid = self.getTotalHoursValidity(key, timeStep) belowAboveValid = self.getBelowAboveValidity(key, timeStep) speedUpChangeValid = self.getSpeedUpChangeValidity(key) return totalHoursValid and belowAboveValid and speedUpChangeValid class ShearExponentCalculator: def __init__(self, shearMeasurements): self.shearMeasurements = shearMeasurements def shearExponent(self, row): if len(self.shearMeasurements) < 1: raise Exception("No shear heights have been defined") elif len(self.shearMeasurements) == 1: raise Exception("Only one shear height has been defined (two need to be defined as a minimum)") else: # 3 point measurement: return shear= 1/ (numpy.polyfit(x, y, deg, rcond=None, full=False) ) log_windspeeds = np.array([np.log(row[item.wind_speed_column]) for item in self.shearMeasurements]) log_heights = np.array([np.log(item.height) for item in self.shearMeasurements]) deg = 1 # linear if len(log_windspeeds[~
np.isnan(log_windspeeds)
numpy.isnan
import numpy as np import matplotlib.pyplot as plt from scipy import integrate import itertools, operator, random, math from scipy.sparse.linalg import spsolve_triangular from sklearn import linear_model import pandas as pd def random_sampling(data, porpotion): sampled_data = np.empty(data.shape) sampled_data[:] = np.nan n = data.shape[1] for i in range(data.shape[0]): sample_idx = random.sample(range(n), int(n*porpotion)) sampled_data[i][sample_idx] = data[i][sample_idx] return sampled_data def funkSVD(rating_mat, latent_features, learning_rate, iters): n_s, n_t = rating_mat.shape[0], rating_mat.shape[1] s_matrix, t_matrix = np.random.rand(n_s, latent_features), np.random.rand(latent_features, n_t) # s_matrix, t_matrix = 0.5*np.ones((n_s, latent_features)), 0.5*np.ones((latent_features, n_t)) sse_initial = 0 for p in range(iters): old_see = sse_initial sse_initial = 0 for i in range(n_s): for j in range(n_t): if not math.isnan(rating_mat[i][j]): diff = rating_mat[i][j] - s_matrix[i,:].dot(t_matrix[:,j]) sse_initial += diff**2 for k in range(latent_features): s_matrix[i][k] += learning_rate*(2*diff*t_matrix[k][j]) t_matrix[k][j] += learning_rate*(2*diff*s_matrix[i][k]) est_mat = s_matrix.dot(t_matrix) return est_mat def ft_data(pop, tspan, dt): """ est_mat from funkSVD """ n = len(tspan) y_ft = [] for i in range(pop.shape[0]): fhat = np.fft.fft(pop[i], n) PSD = fhat*np.conj(fhat)/n freq = (1/(dt*n))*np.arange(n) L = np.arange(1, np.floor(n/2), dtype= 'int') indices = PSD > 5 PSDclean = PSD * indices fhat = indices*fhat ffilt = np.fft.ifft(fhat) y_ft.append(ffilt) return np.array(y_ft) def funkSVD_ft(ft_matrix, rating_mat, latent_features, learning_rate, iters): u,s,v = np.linalg.svd(ft_matrix, full_matrices=False) n_s, n_t = rating_mat.shape[0], rating_mat.shape[1] s_matrix, t_matrix = u, v # s_matrix, t_matrix = 0.5*np.ones((n_s, latent_features)), 0.5*np.ones((latent_features, n_t)) sse_initial = 0 for p in range(iters): old_see = sse_initial sse_initial = 0 for i in range(n_s): for j in range(n_t): if not math.isnan(rating_mat[i][j]): diff = rating_mat[i][j] - s_matrix[i,:].dot(t_matrix[:,j]) sse_initial += diff**2 for k in range(latent_features): s_matrix[i][k] += learning_rate*(2*diff*t_matrix[k][j]) t_matrix[k][j] += learning_rate*(2*diff*s_matrix[i][k]) est_mat = s_matrix.dot(t_matrix) return est_mat def power_(d,order): # d is the number of variables; order of polynomials powers = [] for p in range(1,order+1): size = d + p - 1 for indices in itertools.combinations(range(size), d-1): ##combinations starts = [0] + [index+1 for index in indices] stops = indices + (size,) powers.append(tuple(map(operator.sub, stops, starts))) return powers def lib_terms(data,order,description): #description is a list of name of variables, like [R, M, S] #description of lib descr = [] #data is the input data, like R,M,S; order is the total order of polynomials d,t = data.shape # d is the number of variables; t is the number of time points theta = np.ones((t,1), dtype=np.float64) # the first column of lib is '1' P = power_(d,order) descr = ["1"] for i in range(len(P)): new_col = np.zeros((t,1),dtype=np.float64) for j in range(t): new_col[j] = np.prod(np.power(list(data[:,j]),list(P[i]))) theta = np.hstack([theta, new_col.reshape(t,1)]) descr.append("{0} {1}".format(str(P[i]), str(description))) # print((str(P[i]), str(description))) return theta, descr def sparsifyDynamics(Theta, dx, Lambda): #theta.shape = 248*10 (time points*functions); dx.shape = 248*3 (time points*variables) #need to ensure size or dimenssions !!! # dx = dx.T m,n = dx.shape #(248*3) Xi = np.dot(np.linalg.pinv(Theta), dx) #Xi.shape = 10*3 # lambda is sparasification knob for k in range(20): ###?? small_idx = (abs(Xi) < Lambda) big_idx = (abs(Xi) >= Lambda) Xi[small_idx] = 0 for i in range(n): big_curr, = np.where(big_idx[:,i]) Xi[big_curr, i] = np.dot(np.linalg.pinv(Theta[:,big_curr]), dx[:,i]) return Xi def sparseGalerkin(t, pop, Xi, polyorder): theta, descr = lib_terms(
np.array([pop])
numpy.array
""" Second exploratory data analysis for making LRP plots of ANNv2 Author : <NAME> Date : 30 September 2021 Version : 2.1 (mostly for testing) """ ### Import packages import sys import matplotlib.pyplot as plt import numpy as np from netCDF4 import Dataset import scipy.stats as stats from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import palettable.cubehelix as cm import cmocean as cmocean import calc_Utilities as UT import calc_dataFunctions as df import calc_Stats as dSS from sklearn.metrics import accuracy_score ### Plotting defaults plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) ### Parameters FOR THIS SCRIPT accurateR = 'WRONG' accurateH = 'WRONG' ### Hyperparamters for files of the ANN model rm_ensemble_mean = True if rm_ensemble_mean == False: vari_predict = ['OHC100'] fac = 0.7 random_segment_seed = int(np.genfromtxt('/Users/zlabe/Documents/Research/GmstTrendPrediction/Data/SelectedSegmentSeed.txt',unpack=True)) random_network_seed = 87750 hidden = [20,20] n_epochs = 500 batch_size = 128 lr_here = 0.001 ridgePenalty = 0.05 actFun = 'relu' fractWeight = 0.5 yearsall =
np.arange(1990,2099+1,1)
numpy.arange
import numpy as np from matplotlib.pylab import plt import seaborn as sns from matplotlib.collections import PatchCollection from matplotlib.patches import Rectangle import ot import ot.plot from mpl_toolkits import mplot3d from mpl_toolkits.mplot3d import Axes3D from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) def find_nearest_index(array,value): idx = (np.abs(array-value)).argmin() return idx sns.set(style='whitegrid', font_scale=1.2) surfacecolor = 'dodgerblue' firstcloudcolor = 'k' secondcloudcolor = 'forestgreen' #%% xL = -30; yL = -30; sigma = 9 sigma2 = 8 bias = 10 res = 3 con = 3 con2 = 32 n = 8 np.random.seed(1) x1 = np.random.normal(xL+bias,sigma2,n) + 12*con x2 = np.random.normal(xL,sigma,n)+14 y1 = np.random.normal(yL,sigma2+2,n) + 16 y2 = np.random.normal(yL+bias,sigma,n)+con2 #Define OT M = ot.dist(np.concatenate((x1[:,np.newaxis],y1[:,np.newaxis]), axis=1), np.concatenate((x2[:,np.newaxis],y2[:,np.newaxis]), axis=1)) M /= M.max() G0 = ot.emd(np.ones((n,)) / n, np.ones((n,)) / n, M) sns.set_style("dark") #%% from matplotlib import cm import matplotlib.colors as colors def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap fig = plt.figure(figsize=(10,8)) #ax = plt.subplot(211) ax = plt.subplot2grid((9,3), (0,0), colspan=3, rowspan=5, projection='3d') ax.invert_zaxis() x = np.linspace(-40, 25, 10) y = np.linspace(-40, 25, 10) X, Y = np.meshgrid(x, y) Z = 1.5+
np.random.rand(X.shape[0],X.shape[1])
numpy.random.rand
import numpy as np import numba import numexpr as ne import scipy as sp import scipy.spatial from near_finder.utilities import extend_array, inarray ################################################################################ # Dense Routines def gridpoints_near_points(bx, by, xv, yv, d): """ Fast near-points finder for a grid and set of points. Returns a boolean array with size [xv.size, yv.size] The elements of the boolean array give whether that gridpoint is within d of any of the points bx/by When bx/by describe a polygon, one may use this function to find all points within a distance D of the polygon, by setting: d = sqrt(D^2 + (l/2)^2), where l is the length of the longest polygonal segment. If l < D, then d need only be 1.12D to guarantee all near-points are found. Note that points that are not within D of the polygon will also be marked as "near", however Inputs: bx, float(nb): x-coordinates of boundary by, float(nb): y-coordinates of boundary xv, float(nx): x-values for grid coordinates yv: float(ny): y-values for grid coordinates d: distance to find near points Outputs: close, bool(nx, ny), is this point within d of any boundary point? close_ind, int(nx, ny), index of closest boundary point to this point distance, float(nx, ny), closest distance to a boundary point """ sh = (xv.shape[0], yv.shape[0]) close = np.zeros(sh, dtype=bool) close_ind =
np.full(sh, -1, dtype=int)
numpy.full
import numpy as np class ESN(): def __init__(self, n_inputs: int, n_outputs: int, n_reservoir: int = 500, input_scale=1, feedback_scale=1, spectral_radius=0.95, teacher_forcing: bool = True, sparsity=0, noise=0.001, bias=0.01, ridge=10**-10, rng=np.random.default_rng()): """ An implementation of Echo State Network. The specification of the network mainly follows Lu et al (2017), while the leakage rate is fixed to be zero. See https://aip.scitation.org/doi/10.1063/1.4979665 for more details. :param n_inputs: number of input dimensions :param n_outputs: number of output (teacher) dimensions :param n_reservoir: number of reservoir nodes :param input_scale: scale of input weights :param feedback_scale: scale of feedback weights :param spectral_radius: spectral radius of the recurrent weight matrix :param teacher_forcing: whether to feed the output (teacher) back to the network :param sparsity: proportion of recurrent weights set to zero :param noise: scale of noise in the network dynamics :param bias: bias constant in activation function :param ridge: ridge regression parameter :param rng: random generator """ self.n_inputs = n_inputs self.n_outputs = n_outputs self.n_reservoir = n_reservoir self.input_scale = input_scale self.feedback_scale = feedback_scale self.spectral_radius = spectral_radius self.teacher_forcing = teacher_forcing self.sparsity = sparsity self.noise = noise self.bias = bias self.ridge = ridge self.rng = rng self._initweights() def _initweights(self): """ Initialize the adjacency matrix of the reservior network and the input weight matrix """ # the adjacency matrix, beginning with a random matrix in range [-1,1): A = self.rng.random((self.n_reservoir, self.n_reservoir)) - 0.5 # delete some connections to satisfy the average degree: A[self.rng.random(A.shape) < self.sparsity] = 0 # compute the spectral radius of these weights: radius = np.max(np.abs(np.linalg.eigvals(A))) # rescale them to reach the requested spectral radius: self.A = A * (self.spectral_radius / radius) # generate a random input weight matrix: self.W_in = (self.rng.random((self.n_reservoir, self.n_inputs )) * 2 - 1)*self.input_scale # generate a random feedback weight matrix: if self.teacher_forcing: self.W_feedb = (self.rng.random((self.n_reservoir, self.n_outputs )) * 2 - 1)*self.feedback_scale return def _update(self, current_state, input_pattern, teacher_pattern): """ performs one update step. i.e., computes the next network state by applying the adjacency matrix to the last state and the input/feedback weight matrix to an input/teacher """ preactivation = (np.dot(self.A, current_state) + np.dot(self.W_in, input_pattern))+self.bias if self.teacher_forcing: preactivation += np.dot(self.W_feedb, teacher_pattern) return (np.tanh(preactivation) + self.noise * (self.rng.random(self.n_reservoir) - 0.5)) def fit(self, inputs, teachers): """ Collect the network's reaction to training data, training output weights. :param inputs: array of dimensions (steps * n_inputs) :param teacher: array of dimension (steps * n_outputs) """ # detect and correct possible errors: if len(teachers) != (steps := len(inputs)): raise ValueError("teacher and input do not match") if inputs.ndim < 2: inputs = np.expand_dims(inputs, 1) if inputs.shape[1] != self.n_inputs: raise ValueError("incorrect input dimension") if teachers.ndim < 2: teachers = np.expand_dims(teachers, 1) if teachers.shape[1] != self.n_outputs: raise ValueError("incorrect teacher dimension") # pre-allocate memory for network states: states = np.zeros((steps, self.n_reservoir)) # let the network evolve according to inputs: for n in range(steps-1): states[n+1] = self._update(states[n], inputs[n+1], teachers[n]) # remember the last state for later: self.laststate = states[-1] self.lastoutput = teachers[-1] # disregard the first few states: transient = min(int(steps / 10), 300) states = states[transient:] teachers = teachers[transient:] # learn the weights, i.e. solve output layer quantities W_out and c # that make the reservoir output approximate the teacher sequence: states_mean =
np.mean(states, axis=0)
numpy.mean
import pytest import sys sys.path.insert(0,"..") import autogenes as ag import numpy as np import pandas as pd import anndata from sklearn.svm import NuSVR from sklearn import linear_model from scipy.optimize import nnls def test_unpack_bulk(): unpack_bulk = ag.main._Interface__unpack_bulk arr = np.ones((3,)) bulk_data, bulk_genes = unpack_bulk(arr) assert np.array_equal(bulk_data,arr.reshape(1,3)) assert type(bulk_data) == np.ndarray arr = np.ones((2,3)) bulk_data, bulk_genes = unpack_bulk(arr) assert bulk_data is arr assert bulk_genes is None assert type(bulk_data) == np.ndarray adata = anndata.AnnData(arr) gene_names =["gene_1","gene_2","gene_3"] adata.var_names = gene_names bulk_data, bulk_genes = unpack_bulk(adata) assert np.array_equal(bulk_data,adata.X) assert np.array_equal(bulk_genes, gene_names) assert type(bulk_data) == np.ndarray assert type(bulk_genes) == np.ndarray series = pd.Series([1,2,3],index=gene_names) bulk_data, bulk_genes = unpack_bulk(series) assert np.array_equal(bulk_data,series.values.reshape(1,3)) assert np.array_equal(bulk_genes, gene_names) assert type(bulk_data) == np.ndarray assert type(bulk_genes) == np.ndarray df = adata.to_df() bulk_data, bulk_genes = unpack_bulk(df) assert np.array_equal(bulk_data,df.values) assert np.array_equal(bulk_genes, gene_names) assert type(bulk_data) == np.ndarray assert type(bulk_genes) == np.ndarray def test_model_input(): model_input = ag.main._Interface__model_input # Note: all bulk_data must be 2-dim since this is the output of __unpack_bulk # # No gene labels # # Shape mismatch ag.main.data = np.zeros((2,3)) ag.main.data_genes = None bulk_data = np.zeros((2,2)) bulk_genes = None with pytest.raises(ValueError): model_input(bulk_data,bulk_genes,np.full((3,),True)) # Simple case (with 1-dim bulk_data) ag.main.data = np.reshape(np.arange(6),(2,3)) ag.main.data_genes = None ag.main.selection = np.full((3,),True) bulk_data = np.array([1,2,3]).reshape(1,3) bulk_genes = None X,y = model_input(bulk_data,bulk_genes,ag.main.selection) assert np.array_equal(X,ag.main.data.T) assert np.all(y == bulk_data.reshape(3,1)) # With selection ag.main.selection = np.array([True,True,False]) X,y = model_input(bulk_data,bulk_genes,ag.main.selection) assert np.array_equal(X,ag.main.data.T[0:2]) assert np.all(y == bulk_data[:,0:2].reshape(2,1)) # # With gene labels # gene_names = np.array(["gene_1","gene_2","gene_3"]) # Simple case ag.main.data = np.reshape(np.arange(6),(2,3)) ag.main.data_genes = gene_names ag.main.selection =
np.array([True,True,False])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den =
N.array([2,2,1])
numpy.array
import matplotlib.pyplot as plt import numpy as np from scipy.signal import gaussian, convolve def kdeplot(trace_values, label=None, alpha=0.35, shade=False, ax=None, **kwargs): if ax is None: _, ax = plt.subplots() density, l, u = fast_kde(trace_values) x = np.linspace(l, u, len(density)) ax.plot(x, density, label=label, **kwargs) if shade: ax.fill_between(x, density, alpha=alpha, **kwargs) return ax def fast_kde(x): """ A fft-based Gaussian kernel density estimate (KDE) for computing the KDE on a regular grid. The code was adapted from https://github.com/mfouesneau/faststats Parameters ---------- x : Numpy array or list Returns ------- grid: A gridded 1D KDE of the input points (x). xmin: minimum value of x xmax: maximum value of x """ x = x[~np.isnan(x)] x = x[~np.isinf(x)] n = len(x) nx = 200 # add small jitter in case input values are the same x += np.random.uniform(-1E-12, 1E-12, size=n) xmin, xmax = np.min(x),
np.max(x)
numpy.max
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Morphological models for astrophysical gamma-ray sources. """ from __future__ import absolute_import, division, print_function, unicode_literals from collections import OrderedDict import numpy as np from astropy.modeling import Parameter, ModelDefinitionError, Fittable2DModel from astropy.modeling.models import Gaussian2D as AstropyGaussian2D from astropy.utils import lazyproperty from astropy.coordinates import SkyCoord from ..core import SkyImage __all__ = [ 'morph_types', 'Delta2D', 'Gaussian2D', 'Shell2D', 'Sphere2D', 'Template2D', ] class Gaussian2D(AstropyGaussian2D): """Two-dimensional Gaussian model. TODO: implement properly. At the moment this is just an empty subclass of the Astropy model. """ # TODO: we need our own model, so that we can add in stuff like XML I/O # Copy over the Astropy version and use that throughout Gammapy class Delta2D(Fittable2DModel): """Two dimensional delta function . This model can be used for a point source morphology. Parameters ---------- amplitude : float Peak value of the point source x_0 : float x position center of the point source y_0 : float y position center of the point source Notes ----- Model formula: .. math:: f(x, y) = \\cdot \\left \\{ \\begin{array}{ll} A & : x = x_0 \\ \\mathrm{and} \\ y = y_0 \\\\ 0 & : else \\end{array} \\right. """ amplitude = Parameter('amplitude') x_0 = Parameter('x_0') y_0 = Parameter('y_0') def __init__(self, amplitude, x_0, y_0, **constraints): super(Delta2D, self).__init__(amplitude=amplitude, x_0=x_0, y_0=y_0, **constraints) @staticmethod def evaluate(x, y, amplitude, x_0, y_0): """Two dimensional delta model function using a local rectangular pixel approximation. """ _, grad_x = np.gradient(x) grad_y, _ = np.gradient(y) x_diff = np.abs((x - x_0) / grad_x) y_diff = np.abs((y - y_0) / grad_y) x_val = np.select([x_diff < 1], [1 - x_diff], 0) y_val = np.select([y_diff < 1], [1 - y_diff], 0) return x_val * y_val * amplitude class Shell2D(Fittable2DModel): """Projected homogeneous radiating shell model. This model can be used for a shell type SNR source morphology. Parameters ---------- amplitude : float Value of the integral of the shell function. x_0 : float x position center of the shell y_0 : float y position center of the shell r_in : float Inner radius of the shell width : float Width of the shell r_out : float (optional) Outer radius of the shell normed : bool (True) If set the amplitude parameter corresponds to the integral of the function. If not set the 'amplitude' parameter corresponds to the peak value of the function (value at :math:`r = r_{in}`). Notes ----- Model formula with integral normalization: .. math:: f(r) = A \\frac{3}{2 \\pi (r_{out}^3 - r_{in}^3)} \\cdot \\left \\{ \\begin{array}{ll} \\sqrt{r_{out}^2 - r^2} - \\sqrt{r_{in}^2 - r^2} & : r < r_{in} \\\\ \\sqrt{r_{out}^2 - r^2} & : r_{in} \\leq r \\leq r_{out} \\\\ 0 & : r > r_{out} \\end{array} \\right. Model formula with peak normalization: .. math:: f(r) = A \\frac{1}{\\sqrt{r_{out}^2 - r_{in}^2}} \\cdot \\left \\{ \\begin{array}{ll} \\sqrt{r_{out}^2 - r^2} - \\sqrt{r_{in}^2 - r^2} & : r < r_{in} \\\\ \\sqrt{r_{out}^2 - r^2} & : r_{in} \\leq r \\leq r_{out} \\\\ 0 & : r > r_{out} \\end{array} \\right. With :math:`r_{out} = r_{in} + \\mathrm{width}`. Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from gammapy.image.models import Shell2D shell = Shell2D(amplitude=100, x_0=25, y_0=25, r_in=10, width=5) y, x = np.mgrid[0:50, 0:50] plt.imshow(shell(x, y), origin='lower', interpolation='none') plt.xlabel('x (pix)') plt.ylabel('y (pix)') plt.colorbar(label='Brightness (A.U.)') plt.grid(False) plt.show() """ amplitude = Parameter('amplitude') x_0 = Parameter('x_0') y_0 = Parameter('y_0') r_in = Parameter('r_in') width = Parameter('width') def __init__(self, amplitude, x_0, y_0, r_in, width=None, r_out=None, normed=True, **constraints): if r_out is not None: width = r_out - r_in if r_out is None and width is None: raise ModelDefinitionError("Either specify width or r_out.") if not normed: self.evaluate = self.evaluate_peak_norm super(Shell2D, self).__init__(amplitude=amplitude, x_0=x_0, y_0=y_0, r_in=r_in, width=width, **constraints) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, r_in, width): """Two dimensional Shell model function normed to integral""" rr = (x - x_0) ** 2 + (y - y_0) ** 2 rr_in = r_in ** 2 rr_out = (r_in + width) ** 2 # Because np.select evaluates on the whole rr array # we have to catch the invalid value warnings # Note: for r > r_out 'np.select' fills automatically zeros! with np.errstate(invalid='ignore'): values = np.select([rr <= rr_in, rr <= rr_out], [np.sqrt(rr_out - rr) - np.sqrt(rr_in - rr), np.sqrt(rr_out - rr)]) return amplitude * values / (2 * np.pi / 3 * (rr_out * (r_in + width) - rr_in * r_in)) @staticmethod def evaluate_peak_norm(x, y, amplitude, x_0, y_0, r_in, width): """Two dimensional Shell model function normed to peak value""" rr = (x - x_0) ** 2 + (y - y_0) ** 2 rr_in = r_in ** 2 rr_out = (r_in + width) ** 2 # Because np.select evaluates on the whole rr array # we have to catch the invalid value warnings # Note: for r > r_out 'np.select' fills automatically zeros! with np.errstate(invalid='ignore'): values = np.select([rr <= rr_in, rr <= rr_out], [np.sqrt(rr_out - rr) - np.sqrt(rr_in - rr), np.sqrt(rr_out - rr)]) return amplitude * values / np.sqrt(rr_out - rr_in) @property def bounding_box(self): """ Tuple defining the default ``bounding_box`` limits. ``((y_low, y_high), (x_low, x_high))`` """ r_out = self.r_in + self.width return ((self.y_0 - r_out, self.y_0 + r_out), (self.x_0 - r_out, self.x_0 + r_out)) def to_sherpa(self, name='default'): """Convert to a `~sherpa.models.ArithmeticModel`. Parameters ---------- name : str, optional Name of the sherpa model instance """ from sherpa.astro.models import Shell2D model = Shell2D(name=name) model.xpos = self.x_0.value model.ypos = self.y_0.value model.ampl = self.amplitude.value # Note: we checked, the Sherpa `r0` is our `r_in`. model.r0 = self.r_in.value model.width = self.width.value return model class Sphere2D(Fittable2DModel): """Projected homogeneous radiating sphere model. This model can be used for a simple PWN source morphology. Parameters ---------- amplitude : float Value of the integral of the sphere function x_0 : float x position center of the sphere y_0 : float y position center of the sphere r_0 : float Radius of the sphere normed : bool (True) If set the amplitude parameter corresponds to the integral of the function. If not set the 'amplitude' parameter corresponds to the peak value of the function (value at :math:`r = 0`). Notes ----- Model formula with integral normalization: .. math:: f(r) = A \\frac{3}{4 \\pi r_0^3} \\cdot \\left \\{ \\begin{array}{ll} \\sqrt{r_0^2 - r^2} & : r \\leq r_0 \\\\ 0 & : r > r_0 \\end{array} \\right. Model formula with peak normalization: .. math:: f(r) = A \\frac{1}{r_0} \\cdot \\left \\{ \\begin{array}{ll} \\sqrt{r_0^2 - r^2} & : r \\leq r_0 \\\\ 0 & : r > r_0 \\end{array} \\right. Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from gammapy.image.models import Sphere2D sphere = Sphere2D(amplitude=100, x_0=25, y_0=25, r_0=20) y, x = np.mgrid[0:50, 0:50] plt.imshow(sphere(x, y), origin='lower', interpolation='none') plt.xlabel('x (pix)') plt.ylabel('y (pix)') plt.colorbar(label='Brightness (A.U.)') plt.grid(False) plt.show() """ amplitude = Parameter('amplitude') x_0 = Parameter('x_0') y_0 = Parameter('y_0') r_0 = Parameter('r_0') def __init__(self, amplitude, x_0, y_0, r_0, normed=True, **constraints): if not normed: self.evaluate = self.evaluate_peak_norm super(Sphere2D, self).__init__(amplitude=amplitude, x_0=x_0, y_0=y_0, r_0=r_0, **constraints) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, r_0): """Two dimensional Sphere model function normed to integral""" rr = (x - x_0) ** 2 + (y - y_0) ** 2 rr_0 = r_0 ** 2 # Because np.select evaluates on the whole rr array # we have to catch the invalid value warnings with np.errstate(invalid='ignore'): values = np.select([rr <= rr_0, rr > rr_0], [2 * np.sqrt(rr_0 - rr), 0]) return amplitude * values / (4 / 3. * np.pi * rr_0 * r_0) @staticmethod def evaluate_peak_norm(x, y, amplitude, x_0, y_0, r_0): """Two dimensional Sphere model function normed to peak value""" rr = (x - x_0) ** 2 + (y - y_0) ** 2 rr_0 = r_0 ** 2 # Because np.select evaluates on the whole rr array # we have to catch the invalid value warnings with np.errstate(invalid='ignore'): values = np.select([rr <= rr_0, rr > rr_0], [
np.sqrt(rr_0 - rr)
numpy.sqrt
"""plotlib.py: Module is used to plotting tools""" __author__ = "<NAME>." __copyright__ = "" __credits__ = [] __license__ = "MIT" __version__ = "1.0." __maintainer__ = "<NAME>." __email__ = "<EMAIL>" __status__ = "Research" import matplotlib as mpl import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt plt.style.use(["science", "ieee"]) # import sys # sys.path.extend(["py/", "py/config/"]) from .utils import * import numpy as np from scipy.stats import pearsonr class Summary(object): """ Summary plots for the analysis data """ def __init__(self, nrows=1, ncols=1, dpi=180, size=(5, 5)): self.nrows = nrows self.ncols = ncols self.dpi = dpi self.size = (size[0] * self.ncols, size[1] * self.nrows) self.fig = plt.figure(dpi=dpi, figsize=size) self.fnum = 0 return def add_axes(self): self.fnum += 1 ax = self.fig.add_subplot(self.nrows, self.ncols, self.fnum) return ax def save(self, fname): self.fig.subplots_adjust(wspace=0.7, hspace=0.7) self.fig.savefig(fname, bbox_inches="tight") return def close(self): plt.close() return class BfieldSummary(Summary): """ B-Field summary plot """ def __init__(self, nrows=2, ncols=2, dpi=180, size=(5, 5)): super().__init__(nrows, ncols, dpi, size) return def add_Bfield_Seq(self, B, E): """ Add synthetic B-field data """ ylim = [(int(np.min(B.X / 10)) - 1) * 10, (int(np.max(B.X / 10)) + 1) * 10] xlim = [np.min(B.dTime / 3600.0), np.max(B.dTime / 3600.0)] ax = self.add_axes() ax.plot(B.dTime / 3600.0, B.X, ls="-", lw=0.8) ax.set_xlabel("Time, Hours") ax.set_ylabel("B-Field, nT") ax.set_ylim(ylim) ax.set_xlim(xlim) ax = ax.twinx() ax.plot(E.dTime / 3600.0, E.X, color="r", ls="-", lw=0.8) ax.set_ylabel("E-Field, mv/km", color="r") ylim = [(int(
np.min(E.X / 10)
numpy.min
# -*- coding: utf-8 -*- r""" .. _tut_background_filtering: Background information on filtering =================================== Here we give some background information on filtering in general, and how it is done in MNE-Python in particular. Recommended reading for practical applications of digital filter design can be found in [1]_. To see how to use the default filters in MNE-Python on actual data, see the :ref:`tut_artifacts_filter` tutorial. .. contents:: Filtering basics ---------------- Let's get some of the basic math down. In the frequency domain, digital filters have a transfer function that is given by: .. math:: H(z) &= \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + ... + b_M z^{-M}} {1 + a_1 z^{-1} + a_2 z^{-2} + ... + a_N z^{-M}} \\ &= \frac{\sum_0^Mb_kz^{-k}}{\sum_1^Na_kz^{-k}} In the time domain, the numerator coefficients :math:`b_k` and denominator coefficients :math:`a_k` can be used to obtain our output data :math:`y(n)` in terms of our input data :math:`x(n)` as: .. math:: :label: summations y(n) &= b_0 x(n) + b_1 x(n-1) + ... + b_M x(n-M) - a_1 y(n-1) - a_2 y(n - 2) - ... - a_N y(n - N)\\ &= \sum_0^M b_k x(n-k) - \sum_1^N a_k y(n-k) In other words, the output at time :math:`n` is determined by a sum over: 1. The numerator coefficients :math:`b_k`, which get multiplied by the previous input :math:`x(n-k)` values, and 2. The denominator coefficients :math:`a_k`, which get multiplied by the previous output :math:`y(n-k)` values. Note that these summations in :eq:`summations` correspond nicely to (1) a weighted `moving average`_ and (2) an autoregression_. Filters are broken into two classes: FIR_ (finite impulse response) and IIR_ (infinite impulse response) based on these coefficients. FIR filters use a finite number of numerator coefficients :math:`b_k` (:math:`\forall k, a_k=0`), and thus each output value of :math:`y(n)` depends only on the :math:`M` previous input values. IIR filters depend on the previous input and output values, and thus can have effectively infinite impulse responses. As outlined in [1]_, FIR and IIR have different tradeoffs: * A causal FIR filter can be linear-phase -- i.e., the same time delay across all frequencies -- whereas a causal IIR filter cannot. The phase and group delay characteristics are also usually better for FIR filters. * IIR filters can generally have a steeper cutoff than an FIR filter of equivalent order. * IIR filters are generally less numerically stable, in part due to accumulating error (due to its recursive calculations). When designing a filter (FIR or IIR), there are always tradeoffs that need to be considered, including but not limited to: 1. Ripple in the pass-band 2. Attenuation of the stop-band 3. Steepness of roll-off 4. Filter order (i.e., length for FIR filters) 5. Time-domain ringing In general, the sharper something is in frequency, the broader it is in time, and vice-versa. This is a fundamental time-frequency tradeoff, and it will show up below. Here we will focus first on FIR filters, which are the default filters used by MNE-Python. """ ############################################################################### # Designing FIR filters # --------------------- # Here we'll try designing a low-pass filter, and look at trade-offs in terms # of time- and frequency-domain filter characteristics. Later, in # :ref:`effect_on_signals`, we'll look at how such filters can affect # signals when they are used. # # First let's import some useful tools for filtering, and set some default # values for our data that are reasonable for M/EEG data. import numpy as np from scipy import signal, fftpack import matplotlib.pyplot as plt from mne.time_frequency.tfr import morlet import mne sfreq = 1000. f_p = 40. ylim = [-60, 10] # for dB plots xlim = [2, sfreq / 2.] blue = '#1f77b4' ############################################################################### # Take for example an ideal low-pass filter, which would give a value of 1 in # the pass-band (up to frequency :math:`f_p`) and a value of 0 in the stop-band # (down to frequency :math:`f_s`) such that :math:`f_p=f_s=40` Hz here # (shown to a lower limit of -60 dB for simplicity): nyq = sfreq / 2. # the Nyquist frequency is half our sample rate freq = [0, f_p, f_p, nyq] gain = [1, 1, 0, 0] def box_off(ax): ax.grid(zorder=0) for key in ('top', 'right'): ax.spines[key].set_visible(False) def plot_ideal(freq, gain, ax): freq = np.maximum(freq, xlim[0]) xs, ys = list(), list() for ii in range(len(freq)): xs.append(freq[ii]) ys.append(ylim[0]) if ii < len(freq) - 1 and gain[ii] != gain[ii + 1]: xs += [freq[ii], freq[ii + 1]] ys += [ylim[1]] * 2 gain = 10 * np.log10(np.maximum(gain, 10 ** (ylim[0] / 10.))) ax.fill_between(xs, ylim[0], ys, color='r', alpha=0.1) ax.semilogx(freq, gain, 'r--', alpha=0.5, linewidth=4, zorder=3) xticks = [1, 2, 4, 10, 20, 40, 100, 200, 400] ax.set(xlim=xlim, ylim=ylim, xticks=xticks, xlabel='Frequency (Hz)', ylabel='Amplitude (dB)') ax.set(xticklabels=xticks) box_off(ax) half_height = np.array(plt.rcParams['figure.figsize']) * [1, 0.5] ax = plt.subplots(1, figsize=half_height)[1] plot_ideal(freq, gain, ax) ax.set(title='Ideal %s Hz lowpass' % f_p) mne.viz.tight_layout() plt.show() ############################################################################### # This filter hypothetically achieves zero ripple in the frequency domain, # perfect attenuation, and perfect steepness. However, due to the discontunity # in the frequency response, the filter would require infinite ringing in the # time domain (i.e., infinite order) to be realized. Another way to think of # this is that a rectangular window in frequency is actually sinc_ function # in time, which requires an infinite number of samples, and thus infinite # time, to represent. So although this filter has ideal frequency suppression, # it has poor time-domain characteristics. # # Let's try to naïvely make a brick-wall filter of length 0.1 sec, and look # at the filter itself in the time domain and the frequency domain: n = int(round(0.1 * sfreq)) + 1 t = np.arange(-n // 2, n // 2) / sfreq # center our sinc h = np.sinc(2 * f_p * t) / (4 * np.pi) def plot_filter(h, title, freq, gain, show=True): fig, axs = plt.subplots(2) t = np.arange(len(h)) / sfreq axs[0].plot(t, h, color=blue) axs[0].set(xlim=t[[0, -1]], xlabel='Time (sec)', ylabel='Amplitude h(n)', title=title) box_off(axs[0]) f, H = signal.freqz(h) f *= sfreq / (2 * np.pi) axs[1].semilogx(f, 10 * np.log10((H * H.conj()).real), color=blue, linewidth=2, zorder=4) plot_ideal(freq, gain, axs[1]) mne.viz.tight_layout() if show: plt.show() plot_filter(h, 'Sinc (0.1 sec)', freq, gain) ############################################################################### # This is not so good! Making the filter 10 times longer (1 sec) gets us a # bit better stop-band suppression, but still has a lot of ringing in # the time domain. Note the x-axis is an order of magnitude longer here: n = int(round(1. * sfreq)) + 1 t = np.arange(-n // 2, n // 2) / sfreq h = np.sinc(2 * f_p * t) / (4 * np.pi) plot_filter(h, 'Sinc (1.0 sec)', freq, gain) ############################################################################### # Let's make the stop-band tighter still with a longer filter (10 sec), # with a resulting larger x-axis: n = int(round(10. * sfreq)) + 1 t = np.arange(-n // 2, n // 2) / sfreq h = np.sinc(2 * f_p * t) / (4 * np.pi) plot_filter(h, 'Sinc (10.0 sec)', freq, gain) ############################################################################### # Now we have very sharp frequency suppression, but our filter rings for the # entire second. So this naïve method is probably not a good way to build # our low-pass filter. # # Fortunately, there are multiple established methods to design FIR filters # based on desired response characteristics. These include: # # 1. The Remez_ algorithm (`scipy remez`_, `MATLAB firpm`_) # 2. Windowed FIR design (`scipy firwin2`_, `MATLAB fir2`_) # 3. Least squares designs (`MATLAB firls`_; coming to scipy 0.18) # # If we relax our frequency-domain filter requirements a little bit, we can # use these functions to construct a lowpass filter that instead has a # *transition band*, or a region between the pass frequency :math:`f_p` # and stop frequency :math:`f_s`, e.g.: trans_bandwidth = 10 # 10 Hz transition band f_s = f_p + trans_bandwidth # = 50 Hz freq = [0., f_p, f_s, nyq] gain = [1., 1., 0., 0.] ax = plt.subplots(1, figsize=half_height)[1] plot_ideal(freq, gain, ax) ax.set(title='%s Hz lowpass with a %s Hz transition' % (f_p, trans_bandwidth)) mne.viz.tight_layout() plt.show() ############################################################################### # Accepting a shallower roll-off of the filter in the frequency domain makes # our time-domain response potentially much better. We end up with a # smoother slope through the transition region, but a *much* cleaner time # domain signal. Here again for the 1 sec filter: h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, 'Windowed 10-Hz transition (1.0 sec)', freq, gain) ############################################################################### # Since our lowpass is around 40 Hz with a 10 Hz transition, we can actually # use a shorter filter (5 cycles at 10 Hz = 0.5 sec) and still get okay # stop-band attenuation: n = int(round(sfreq * 0.5)) + 1 h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, 'Windowed 10-Hz transition (0.5 sec)', freq, gain) ############################################################################### # But then if we shorten the filter too much (2 cycles of 10 Hz = 0.2 sec), # our effective stop frequency gets pushed out past 60 Hz: n = int(round(sfreq * 0.2)) + 1 h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, 'Windowed 10-Hz transition (0.2 sec)', freq, gain) ############################################################################### # If we want a filter that is only 0.1 seconds long, we should probably use # something more like a 25 Hz transition band (0.2 sec = 5 cycles @ 25 Hz): trans_bandwidth = 25 f_s = f_p + trans_bandwidth freq = [0, f_p, f_s, nyq] h = signal.firwin2(n, freq, gain, nyq=nyq) plot_filter(h, 'Windowed 50-Hz transition (0.2 sec)', freq, gain) ############################################################################### # .. _effect_on_signals: # # Applying FIR filters # -------------------- # Now lets look at some practical effects of these filters by applying # them to some data. # # Let's construct a Gaussian-windowed sinusoid (i.e., Morlet imaginary part) # plus noise (random + line). Note that the original, clean signal contains # frequency content in both the pass band and transition bands of our # low-pass filter. dur = 10. center = 2. morlet_freq = f_p tlim = [center - 0.2, center + 0.2] tticks = [tlim[0], center, tlim[1]] flim = [20, 70] x = np.zeros(int(sfreq * dur)) blip = morlet(sfreq, [morlet_freq], n_cycles=7)[0].imag / 20. n_onset = int(center * sfreq) - len(blip) // 2 x[n_onset:n_onset + len(blip)] += blip x_orig = x.copy() rng = np.random.RandomState(0) x += rng.randn(len(x)) / 1000. x += np.sin(2. * np.pi * 60. * np.arange(len(x)) / sfreq) / 2000. ############################################################################### # Filter it with a shallow cutoff, linear-phase FIR and compensate for # the delay: transition_band = 0.25 * f_p f_s = f_p + transition_band filter_dur = 5. / transition_band # sec n = int(sfreq * filter_dur) freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] h = signal.firwin2(n, freq, gain, nyq=sfreq / 2.) x_shallow = np.convolve(h, x)[len(h) // 2:] ############################################################################### # Now let's filter it with the MNE-Python 0.12 defaults, which is a # long-duration, steep cutoff FIR: transition_band = 0.5 # Hz f_s = f_p + transition_band filter_dur = 10. # sec n = int(sfreq * filter_dur) freq = [0., f_p, f_s, sfreq / 2.] gain = [1., 1., 0., 0.] h = signal.firwin2(n, freq, gain, nyq=sfreq / 2.) x_steep = np.convolve(h, x)[len(h) // 2:] plot_filter(h, 'MNE-Python 0.12 default', freq, gain) ############################################################################### # It has excellent frequency attenuation, but this comes at a cost of potential # ringing (long-lasting ripples) in the time domain. Ripple can occur with # steep filters, especially on signals with frequency content around the # transition band. Our Morlet wavelet signal has power in our transition band, # and the time-domain ringing is thus more pronounced for the steep-slope, # long-duration filter than the shorter, shallower-slope filter: axs = plt.subplots(2)[1] def plot_signal(x, offset): t = np.arange(len(x)) / sfreq axs[0].plot(t, x + offset) axs[0].set(xlabel='Time (sec)', xlim=t[[0, -1]]) box_off(axs[0]) X = fftpack.fft(x) freqs = fftpack.fftfreq(len(x), 1. / sfreq) mask = freqs >= 0 X = X[mask] freqs = freqs[mask] axs[1].plot(freqs, 20 * np.log10(
np.abs(X)
numpy.abs
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data =
np.array([])
numpy.array
import numpy as np from scipy.sparse import lil_matrix import torch import pandas as pd import utils.data_loader import cppimport.import_hook import utils.ex as ex # ex = cppimport.imp('ex') def calc(n,m,ttuser,ttitem,pre,ttrating,atk=5): user=ttuser.cpu().detach().numpy() item=ttitem.cpu().detach().numpy() pre=pre.cpu().detach().numpy() rating=ttrating.cpu().numpy() posid=np.where(rating==1) posuser=user[posid] positem=item[posid] preall=
np.ones((n,m))
numpy.ones
import inspect from dataclasses import dataclass from typing import Callable, List, Optional import numpy as np from allopy import get_option from ._modelbuilder import ModelBuilder @dataclass class RegretOptimizerSolution: regret_optimal: np.ndarray scenario_optimal: np.ndarray proportions: Optional[np.ndarray] = None @dataclass class RegretResult: def __init__(self, mb: ModelBuilder, solution: np.ndarray, scenario_solutions: np.ndarray, proportions: Optional[np.ndarray], dist_func: Callable[[np.ndarray], np.ndarray], probability: np.ndarray, eps: float = get_option("EPS.CONSTRAINT")): self.num_assets = mb.num_assets self.num_scenarios = mb.num_scenarios self.solution = np.asarray(solution) self.proportions = np.asarray(proportions) if proportions is not None else None self.scenario_solutions = np.asarray(scenario_solutions) self.probability = probability self._assets = [f"Asset_{i + 1}" for i in range(mb.num_assets)] self._scenarios = [f"Scenario_{i + 1}" for i in range(mb.num_scenarios)] self.tight_constraint: List[str] = [] self.violations: List[str] = [] self._check_matrix_constraints(mb.constraints, eps) self._check_functional_constraints(mb.constraints, eps) self.scenario_objective_values = self._derive_scenario_objective_values(mb) self.regret_value = self._derive_regret_value(mb, dist_func) self.constraint_values = self._derive_constraint_values(mb) @property def assets(self): return self._assets @assets.setter def assets(self, value: List[str]): error = f"asset_names must be a list with {self.num_assets} unique names" assert hasattr(value, "__iter__"), error value = list(set([str(i) for i in value])) assert len(value) == self.num_assets, error self._assets = value @property def has_violations(self): return len(self.violations) > 0 @property def scenarios(self): return self._scenarios @scenarios.setter def scenarios(self, value: List[str]): error = f"scenario_names must be a list with {self.num_scenarios} unique names" assert hasattr(value, "__iter__"), error value = list(set([str(i) for i in value])) assert len(value) == self.num_scenarios, error self._scenarios = value def _check_functional_constraints(self, constraints, eps): for name, cstr in constraints.inequality.items(): for i, f in enumerate(cstr): value = f(self.solution) if np.isclose(value, 0, atol=eps): self.tight_constraint.append(f"{name}-{i}") elif value > eps: self.violations.append(f"{name}-{i}") for name, cstr in constraints.equality.items(): for i, f in enumerate(cstr): if abs(f(self.solution)) > eps: self.violations.append(f"{name}-{i}") def _check_matrix_constraints(self, constraints, eps): for name, fns in constraints.m_equality.items(): for f in fns: value = f(self.solution) if abs(value) <= eps: self.tight_constraint.append(name) elif value > eps: self.violations.append(name) for name, fns in constraints.m_inequality.items(): for f in fns: if abs(f(self.solution)) > eps: self.violations.append(name) def _derive_scenario_objective_values(self, mb: ModelBuilder): values = [] for f, s in zip(mb.obj_funcs, self.scenario_solutions): if len(inspect.signature(f).parameters) == 1: v = f(s) else: # number of parameters can only be 2 in this case grad = np.ones((self.num_assets, self.num_assets)) # filler gradient, not necessary v = f(s, grad) values.append(v / get_option("F.SCALE")) return np.array(values) def _derive_regret_value(self, mb: ModelBuilder, dist_func: Callable[[np.ndarray], np.ndarray]) -> float: f_values = np.array([f(s) for f, s in zip(mb.obj_funcs, self.scenario_solutions)]) curr_f_values = np.array([f(self.solution) for f in mb.obj_funcs]) cost = dist_func(f_values - curr_f_values) / get_option("F.SCALE") return sum(self.probability * cost) def _derive_constraint_values(self, mb: ModelBuilder): constraints = [] for eq, constraint_map in [("<=", mb.constraints.m_inequality), ("<=", mb.constraints.inequality), ("=", mb.constraints.m_equality), ("=", mb.constraints.equality)]: for name, fns in constraint_map.items(): for f, s in zip(fns, self.scenarios): if len(inspect.signature(f).parameters) == 1: v = f(self.solution) else: # number of parameters can only be 2 in this case grad =
np.ones((self.num_assets, self.num_assets))
numpy.ones
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH, Daimler AG. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. """ Created on Thu Feb 12 20:11:35 2015 @author: <NAME>, <NAME> """ import os import glob from math import sqrt, radians, sin, cos, isnan from copy import deepcopy import numpy as np from scipy.stats import linregress from collections import OrderedDict from .constants import * from transformations import quaternion_matrix, euler_from_matrix, \ quaternion_from_matrix, euler_matrix, \ quaternion_multiply, \ quaternion_about_axis, \ rotation_matrix, \ quaternion_conjugate, \ quaternion_inverse, \ rotation_from_matrix, \ quaternion_slerp, \ quaternion_conjugate, quaternion_inverse, rotation_from_matrix def rotation_order_to_string(rotation_order): r_order_string = "r" for c in rotation_order: if c == "Xrotation": r_order_string += "x" elif c == "Yrotation": r_order_string += "y" elif c == "Zrotation": r_order_string += "z" return r_order_string def get_arc_length_from_points(points): """ Note: accuracy depends on the granulariy of points """ points =
np.asarray(points)
numpy.asarray
#https://github.com/sicara/tf2-yolov4 import tensorflow as tf from tf2_yolov4.anchors import YOLOV4_ANCHORS from tf2_yolov4.model import YOLOv4 import cv2 import numpy as np try: from PIL import ImageGrab, Image except ImportError: import Image import matplotlib.pyplot as plt #%config InlineBackend.figure_format = 'retina' def plot_results(pil_img, boxes, scores, classes): plt.imshow(pil_img) ax = plt.gca() for (xmin, ymin, xmax, ymax), score, cl in zip(boxes.tolist(), scores.tolist(), classes.tolist()): if score > 0.3: ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=COLORS[cl % 6], linewidth=3)) text = f'{CLASSES[cl]}: {score:0.2f}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) #plt.axis('off') plt.pause(0.00001) plt.show() plt.cla() from timeit import default_timer as timer if __name__ == '__main__': #HEIGHT, WIDTH = (640, 960) HEIGHT, WIDTH = (480, 640) #HEIGHT, WIDTH = (1280, 720) model = YOLOv4( input_shape=(HEIGHT, WIDTH, 3), anchors=YOLOV4_ANCHORS, num_classes=80, training=False, yolo_max_boxes=50, yolo_iou_threshold=0.5, yolo_score_threshold=0.5, ) model.load_weights("./yolov4.h5") model.summary() # COCO classes CLASSES = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # colors for visualization COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] plt.figure() plt.ion() printed_frames = 0 sem_frame = 0 start_time = timer() capturar = "grab" client = None cap = None faz_loop = True while faz_loop: image = None x = 00 y = 125 largura = 800 altura = 600 larguraFinal = largura + x alturaFinal = altura + y imagem_Pil = ImageGrab.grab([x, y, larguraFinal, alturaFinal]) image = np.array(imagem_Pil) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if image is not None: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) image = tf.image.resize(image, (HEIGHT, WIDTH)) images =
np.expand_dims(image, axis=0)
numpy.expand_dims
import numpy as np import random from svg.file import SVGFileV2 from svg.basic import clip_float, draw_path, random_color, random_color_hsv from svg.geo_transformation import translation_pts_xy, reflection_points from common import gImageOutputPath # plot function to svg # from scipy.special import perm,comb from itertools import combinations def funcIdentity(x): return x # y=x def funcQuadratic(x): return x**2 def funcSin(x): return np.sin(x) def funcCos(x): return np.cos(x) def normalDistribution(x): return 1 / np.sqrt(2 * np.pi) * np.exp(-0.5 * x**2) def softmaxFuc(x): softmax = np.exp(x) / np.sum(np.exp(x)) # print(softmax) # print(np.sum(softmax)) return softmax def heartFuc(x, r=1, up=True): # heart equation: x**2+ (5*y/4 - sqrt(abs(x)))**2 = r**2 if up: a = np.sqrt(r**2 - x**2) * 1 + np.sqrt(abs(x)) else: a = np.sqrt(r**2 - x**2) * (-1) + np.sqrt(abs(x)) return a * 4 / 5 def circleFuc(x, r=1, up=True): # circle equation: x**2+ y**2 = r**2 if up: a = np.sqrt(r**2 - x**2) * 1 else: a = np.sqrt(r**2 - x**2) * (-1) return a def sigmoid(x): return 1 / (1 + np.exp(-x)) def getCirclePoints(r=1, N=10, func=heartFuc): x = np.linspace(-r, r, N) y = func(x, r=r) # Up part points of curve, set sqrt value positive xDown = np.flip(x) # Down part points of curve, set sqrt value negative yDown = func(xDown, r=r, up=False) # connect from start x = np.concatenate((x, xDown), axis=0) y = np.concatenate((y, yDown), axis=0) if 0: # connect from random rand = np.random.randint(1, len(x), size=1)[0] x = np.concatenate((x[rand:], x[:rand]), axis=0) y = np.concatenate((y[rand:], y[:rand]), axis=0) # print('x=',x) # print('y=',y) return x, y def getRectanglePoints(x0=0, y0=0, N=10, w=10, h=10): x1 = np.linspace(x0, x0 + w, N) y1 = np.zeros_like(x1) + y0 y2 = np.linspace(y0, y0 + h, N) x2 = np.zeros_like(y2) + x0 + w x3 = np.flip(x1) y3 = np.zeros_like(x3) + y0 + h y4 = np.flip(y2) x4 = np.zeros_like(y4) + x0 # connect from start x = np.concatenate((x1, x2), axis=0) x = np.concatenate((x, x3), axis=0) x = np.concatenate((x, x4), axis=0) y = np.concatenate((y1, y2), axis=0) y = np.concatenate((y, y3), axis=0) y = np.concatenate((y, y4), axis=0) center = ((x0 + w) / 2, (y0 + h) / 2) return x, y, center def getRandomProper3Points(min=0, max=5): """get random point from 0,1,2,3 quadrants, pt(x,y) = (min ~ max) """ c = list(combinations(range(4), 3)) # [(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)] # print(c) qds = random.choice(c) # print('qds=',qds) center = (max - min) / 2.0 pts = None for qd in qds: if qd == 0: x = np.random.random() * (center - min) + min y = np.random.random() * (center - min) + min elif qd == 1: x = np.random.random() * (max - center) + center y = np.random.random() * (center - min) + min elif qd == 2: x =
np.random.random()
numpy.random.random
import os import sys import obspy import scipy import pyasdf import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.fftpack import next_fast_len from obspy.signal.filter import bandpass from seisgo import noise, stacking,utils import pygmt as gmt from obspy import UTCDateTime def plot_eventsequence(cat,figsize=(12,4),ytype='magnitude',figname=None, yrange=None,save=False,stem=True): if isinstance(cat,obspy.core.event.catalog.Catalog): cat=pd.DataFrame(utils.qml2list(cat)) elif isinstance(cat,list): cat=pd.DataFrame(cat) #All magnitudes greater than or equal to the limit will be plotted plt.figure(figsize=figsize) plt.title(ytype+" vs. time") plt.xlabel("Date (UTC)") plt.ylabel(ytype) if yrange is not None: ymin,ymax=yrange if ytype.lower()=="magnitude": cat2=cat[(cat.magnitude>=yrange[0]) & (cat.magnitude<=yrange[1]) ] elif ytype.lower()=="depth": cat2=cat[(cat.depth>=yrange[0]) & (cat.depth<=yrange[1]) ] else: cat2=cat if ytype.lower()=="magnitude": ymin=np.min(cat2.magnitude)*0.9 ymax=np.max(cat2.magnitude)*1.1 elif ytype.lower()=="depth": ymin=np.min(cat2.depth)*0.9 ymax=np.max(cat2.depth)*1.1 t=[] for i in range(len(cat2)): tTime=obspy.UTCDateTime(cat2.iloc[i]["datetime"]) t.append(tTime.datetime) if stem: if ytype.lower()=="magnitude": markerline, stemlines, baseline=plt.stem(t,cat2.magnitude,linefmt='k-',markerfmt="o", bottom=ymin) elif ytype.lower()=="depth": markerline, stemlines, baseline=plt.stem(t,cat2.depth,linefmt='k-',markerfmt="o", bottom=ymin) markerline.set_markerfacecolor('r') markerline.set_markeredgecolor('r') else: if ytype.lower()=="magnitude": plt.scatter(t,cat2.magnitude,5,'k') elif ytype.lower()=="depth": plt.scatter(t,cat2.depth,cat2.magnitude,'k') # plt.grid(axis="both") plt.ylim([ymin,ymax]) if save: if figname is not None: plt.savefig(figname) else: plt.savefig(ytype+"_vs_time.png") else: plt.show() def plot_stations(lon,lat,region,markersize="c0.2c",title="station map",style="fancy",figname=None, format='png',distance=None,projection="M5i", xshift="6i",frame="af"): """ lon, lat: could be list of vectors contaning multiple sets of stations. The number of sets must be the same as the length of the marker list. marker: a list specifying the symbols for each station set. region: [minlon,maxlon,minlat,maxlat] for map view """ nsta=len(lon) if isinstance(markersize,str): markersize=[markersize]*nsta fig = gmt.Figure() gmt.config(MAP_FRAME_TYPE=style) for i in range(nsta): if i==0: fig.coast(region=region, resolution="f",projection=projection, rivers='rivers', water="cyan",frame=frame,land="white", borders=["1/0.5p,gray,2/1p,gray"]) fig.basemap(frame='+t"'+title+'"') fig.plot( x=lon[i], y=lat[i], style=markersize[i], color="red", ) if figname is None: figname='stationmap.'+format fig.savefig(figname) print('plot was saved to: '+figname) ##plot power spectral density def plot_psd(data,dt,labels=None,xrange=None,cmap='jet',normalize=True,figsize=(13,5),\ save=False,figname=None,tick_inc=None): """ Plot the power specctral density of the data array. =PARAMETERS= data: 2-D array containing the data. the data to be plotted should be on axis 1 (second dimention) dt: sampling inverval in time. labels: row labels of the data, default is None. cmap: colormap, default is 'jet' time_format: format to show time marks, default is: '%Y-%m-%dT%H' normalize: whether normalize the PSD in plotting, default is True figsize: figure size, default: (13,5) """ data=np.array(data) if data.ndim > 2: raise ValueError('only plot 1-d arrya or 2d matrix for now. the input data has a dimention of %d'%(data.ndim)) f,psd=utils.psd(data,1/dt) f=f[1:] plt.figure(figsize=figsize) ax=plt.subplot(111) if data.ndim==2: nwin=data.shape[0] if tick_inc is None: if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 psdN=np.ndarray((psd.shape[0],psd.shape[1]-1)) for i in range(psd.shape[0]): if normalize: psdN[i,:]=psd[i,1:]/np.max(np.abs(psd[i,1:])) else: psdN[i,:]=psd[i,1:] plt.imshow(psdN,aspect='auto',extent=[f.min(),f.max(),psdN.shape[0],0],cmap=cmap) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) if labels is not None: ax.set_yticklabels(labels[0:nwin:tick_inc]) if normalize: plt.colorbar(label='normalized PSD') else: plt.colorbar(label='PSD') else: if normalize: psdN=psd[1:]/np.max(np.abs(psd[1:])) else: psdN[i,:]=psd[1:] plt.plot(f,psdN) if xrange is None:plt.xlim([f[1],f[-1]]) else: plt.xlim(xrange) plt.xscale('log') plt.xlabel('frequency (Hz)') plt.title('PSD') if save: if figname is not None: plt.savefig(figname) else: plt.savefig("PSD.png") else: plt.show() ############################################################################# ############### PLOTTING RAW SEISMIC WAVEFORMS ########################## ############################################################################# ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_waveform(sfile,net,sta,freqmin,freqmax,save=False,figdir=None,format='pdf'): ''' display the downloaded waveform for station A PARAMETERS: ----------------------- sfile: containing all wavefrom data for a time-chunck in ASDF format net,sta,comp: network, station name and component freqmin: min frequency to be filtered freqmax: max frequency to be filtered USAGE: ----------------------- plot_waveform('temp.h5','CI','BLC',0.01,0.5) ''' # open pyasdf file to read try: ds = pyasdf.ASDFDataSet(sfile,mode='r') sta_list = ds.waveforms.list() except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # check whether station exists tsta = net+'.'+sta if tsta not in sta_list: raise ValueError('no data for %s in %s'%(tsta,sfile)) tcomp = ds.waveforms[tsta].get_waveform_tags() ncomp = len(tcomp) if ncomp==0: print('no data found for the specified net.sta.') return None tr = ds.waveforms[tsta][tcomp[0]] dt = tr[0].stats.delta npts = tr[0].stats.npts tt = np.arange(0,npts)*dt if ncomp == 1: data = tr[0].data data = bandpass(data,freqmin,freqmax,int(1/dt),corners=4, zerophase=True) fig=plt.figure(figsize=(9,3)) plt.plot(tt,data,'k-',linewidth=1) plt.title('T\u2080:%s %s.%s.%s @%5.3f-%5.2f Hz' % (tr[0].stats.starttime,net,sta,tcomp[0].split('_')[0].upper(),freqmin,freqmax)) plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.tight_layout() plt.show() else: data = np.zeros(shape=(ncomp,npts),dtype=np.float32) for ii in range(ncomp): data[ii] = ds.waveforms[tsta][tcomp[ii]][0].data data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) fig=plt.figure(figsize=(9,6)) for c in range(ncomp): if c==0: plt.subplot(ncomp,1,1) plt.plot(tt,data[0],'k-',linewidth=1) plt.title('T\u2080:%s %s.%s @%5.3f-%5.2f Hz' % (tr[0].stats.starttime,net,sta,freqmin,freqmax)) plt.legend([tcomp[0].split('_')[0].upper()],loc='upper left') plt.xlabel('Time [s]') else: plt.subplot(ncomp,1,c+1) plt.plot(tt,data[c],'k-',linewidth=1) plt.legend([tcomp[c].split('_')[0].upper()],loc='upper left') plt.xlabel('Time [s]') fig.tight_layout() if save: if not os.path.isdir(figdir):os.mkdir(figdir) sfilebase=sfile.split('/')[-1] outfname = figdir+'/{0:s}_{1:s}.{2:s}'.format(sfilebase.split('.')[0],net,sta) fig.savefig(outfname+'.'+format, format=format, dpi=300) plt.close() else: fig.show() ############################################################################# ###############PLOTTING XCORR RESULTS AS THE OUTPUT OF SEISGO ########################## ############################################################################# def plot_xcorr_substack(sfile,freqmin,freqmax,lag=None,comp='ZZ', save=True,figdir=None): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- sfile: cross-correlation functions outputed by SeisGo workflow freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_xcorr_substack('temp.h5',0.1,1,100,True,'./') Note: IMPORTANT!!!! this script only works for cross-correlation with sub-stacks being set to True in S1. ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables spairs = ds.auxiliary_data.list() path_lists = ds.auxiliary_data[spairs[0]].list() flag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['substack'] dt = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['dt'] maxlag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # only works for cross-correlation with substacks generated if not flag: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # lags for display if not lag:lag=maxlag lag0=np.min([1.0*lag,maxlag]) if lag>maxlag:raise ValueError('lag excceds maxlag!') # t is the time labels for plotting if lag>=5: tstep=int(int(lag)/5) t1=np.arange(-int(lag),0,step=tstep) t2=np.arange(0,int(lag+0.5*tstep),step=tstep) t=np.concatenate((t1,t2)) else: tstep=lag/5 t1=np.arange(-lag,0,step=tstep) t2=np.arange(0,lag+0.5*tstep,step=tstep) t=np.concatenate((t1,t2)) indx1 = int((maxlag-lag0)/dt) indx2 = indx1+2*int(lag0/dt)+1 for spair in spairs: ttr = spair.split('_') net1,sta1 = ttr[0].split('.') net2,sta2 = ttr[1].split('.') path_lists = ds.auxiliary_data[spair].list() for ipath in path_lists: chan1,chan2 = ipath.split('_') cc_comp=chan1[-1]+chan2[-1] if cc_comp == comp or comp=='all' or comp=='ALL': try: dist = ds.auxiliary_data[spair][ipath].parameters['dist'] ngood= ds.auxiliary_data[spair][ipath].parameters['ngood'] ttime= ds.auxiliary_data[spair][ipath].parameters['time'] except Exception: print('continue! something wrong with %s %s'%(spair,ipath)) continue # cc matrix timestamp = np.empty(ttime.size,dtype='datetime64[s]') data = ds.auxiliary_data[spair][ipath].data[:,indx1:indx2] # print(data.shape) nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) if nwin==0 or len(ngood)==1: print('continue! no enough substacks!');continue tmarks = [] data_normalizd=data # load cc for each station-pair for ii in range(nwin): data[ii] = bandpass(data[ii],freqmin,freqmax,1/dt,corners=4, zerophase=True) data[ii] = data[ii]-np.mean(data[ii]) amax[ii] = np.max(np.abs(data[ii])) data_normalizd[ii] = data[ii]/amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) tmarks.append(obspy.UTCDateTime(ttime[ii]).strftime('%Y-%m-%dT%H:%M:%S')) dstack_mean=np.mean(data,axis=0) dstack_robust=stacking.robust_stack(data)[0] # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig = plt.figure(figsize=(10,6)) ax = fig.add_subplot(5,1,(1,3)) ax.matshow(data_normalizd,cmap='seismic',extent=[-lag0,lag0,nwin,0],aspect='auto') ax.plot((0,0),(nwin,0),'k-') ax.set_title('%s.%s.%s %s.%s.%s dist:%5.2fkm' % (net1,sta1,chan1,net2,sta2,chan2,dist)) ax.set_xlabel('time [s]') ax.set_xticks(t) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) # ax.set_yticklabels(np.arange(0,nwin,step=tick_inc)) ax.set_yticklabels(tmarks[0:nwin:tick_inc]) ax.set_xlim([-lag,lag]) ax.xaxis.set_ticks_position('bottom') ax1 = fig.add_subplot(5,1,(4,5)) ax1.set_title('stack at %4.2f-%4.2f Hz'%(freqmin,freqmax)) tstack=np.arange(-lag0,lag0+0.5*dt,dt) if len(tstack)>len(dstack_mean):tstack=tstack[:-1] ax1.plot(tstack,dstack_mean,'b-',linewidth=1,label='mean') ax1.plot(tstack,dstack_robust,'r-',linewidth=1,label='robust') ax1.set_xlabel('time [s]') ax1.set_xticks(t) ax1.set_xlim([-lag,lag]) ylim=ax1.get_ylim() ax1.plot((0,0),ylim,'k-') ax1.set_ylim(ylim) ax1.legend(loc='upper right') ax1.grid() # ax2 = fig.add_subplot(414) # ax2.plot(amax/min(amax),'r-') # ax2.plot(ngood,'b-') # ax2.set_xlabel('waveform number') # ax2.set_xticks(np.arange(0,nwin,step=tick_inc)) # ax2.set_xticklabels(tmarks[0:nwin:tick_inc]) # #for tick in ax[2].get_xticklabels(): # # tick.set_rotation(30) # ax2.legend(['relative amp','ngood'],loc='upper right') fig.tight_layout() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.isdir(figdir):os.mkdir(figdir) outfname = figdir+\ '/{0:s}.{1:s}.{2:s}_{3:s}.{4:s}.{5:s}_{6:s}-{7:s}Hz.png'.format(net1,sta1,\ chan1,net2,\ sta2,chan2, str(freqmin),str(freqmax)) fig.savefig(outfname, format='png', dpi=400) print('saved to: '+outfname) plt.close() else: fig.show() def plot_corrfile(sfile,freqmin,freqmax,lag=None,comp='ZZ', save=True,figname=None,format='png',figdir=None): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- sfile: cross-correlation functions outputed by SeisGo workflow freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_corrfile('temp.h5',0.1,1,100,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') corrdict=noise.extract_corrdata(sfile,comp=comp) clist=list(corrdict.keys()) for c in clist: corr=corrdict[c] if comp in list(corr.keys()): corr[comp].plot(freqmin=freqmin,freqmax=freqmax,lag=lag,save=save,figdir=figdir, figname=figname,format=format) def plot_corrdata(corr,freqmin=None,freqmax=None,lag=None,save=False,figdir=None,figsize=(10,8)): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- corr: : class:`~seisgo.types.CorrData` CorrData object containing the correlation functions and the metadata. freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_corrdata(corr,0.1,1,100,save=True,figdir='./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') netstachan1 = corr.net[0]+'.'+corr.sta[0]+'.'+corr.loc[0]+'.'+corr.chan[0] netstachan2 = corr.net[1]+'.'+corr.sta[1]+'.'+corr.loc[1]+'.'+corr.chan[1] dt,maxlag,dist,ngood,ttime,substack = [corr.dt,corr.lag,corr.dist,corr.ngood,corr.time,corr.substack] # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') lag0=np.min([1.0*lag,maxlag]) # t is the time labels for plotting if lag>=5: tstep=int(int(lag)/5) t1=np.arange(-int(lag),0,step=tstep);t2=np.arange(0,int(lag+0.5*tstep),step=tstep) t=np.concatenate((t1,t2)) else: tstep=lag/5 t1=np.arange(-lag,0,step=tstep);t2=np.arange(0,lag+0.5*tstep,step=tstep) t=np.concatenate((t1,t2)) indx1 = int((maxlag-lag0)/dt);indx2 = indx1+2*int(lag0/dt)+1 # cc matrix if substack: data = corr.data[:,indx1:indx2] timestamp = np.empty(ttime.size,dtype='datetime64[s]') # print(data.shape) nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) if nwin==0 or len(ngood)==1: print('continue! no enough trace to plot!') return tmarks = [] data_normalizd=data # load cc for each station-pair for ii in range(nwin): if freqmin is not None and freqmax is not None: data[ii] = bandpass(data[ii],freqmin,freqmax,1/dt,corners=4, zerophase=True) data[ii] = data[ii]-np.mean(data[ii]) amax[ii] = np.max(np.abs(data[ii])) data_normalizd[ii] = data[ii]/amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) tmarks.append(obspy.UTCDateTime(ttime[ii]).strftime('%Y-%m-%dT%H:%M:%S')) dstack_mean=np.mean(data,axis=0) # dstack_robust=stack.robust_stack(data)[0] # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig = plt.figure(figsize=figsize) ax = fig.add_subplot(6,1,(1,4)) ax.matshow(data_normalizd,cmap='seismic',extent=[-lag0,lag0,nwin,0],aspect='auto') ax.plot((0,0),(nwin,0),'k-') if freqmin is not None and freqmax is not None: ax.set_title('%s-%s : dist : %5.2f km : %4.2f-%4.2f Hz' % (netstachan1,netstachan2, dist,freqmin,freqmax)) else: ax.set_title('%s-%s : dist : %5.2f km : unfiltered' % (netstachan1,netstachan2,dist)) ax.set_xlabel('time [s]') ax.set_xticks(t) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) ax.set_yticklabels(tmarks[0:nwin:tick_inc]) ax.set_xlim([-lag,lag]) ax.xaxis.set_ticks_position('bottom') ax1 = fig.add_subplot(6,1,(5,6)) if freqmin is not None and freqmax is not None: ax1.set_title('stack at %4.2f-%4.2f Hz'%(freqmin,freqmax)) else: ax1.set_title('stack: unfiltered') tstack=np.arange(-lag0,lag0+0.5*dt,dt) if len(tstack)>len(dstack_mean):tstack=tstack[:-1] ax1.plot(tstack,dstack_mean,'b-',linewidth=1,label='mean') # ax1.plot(tstack,dstack_robust,'r-',linewidth=1,label='robust') ax1.set_xlabel('time [s]') ax1.set_xticks(t) ax1.set_xlim([-lag,lag]) ylim=ax1.get_ylim() ax1.plot((0,0),ylim,'k-') ax1.set_ylim(ylim) ax1.legend(loc='upper right') ax1.grid() fig.tight_layout() else: #only one trace available data = corr.data[indx1:indx2] # load cc for each station-pair if freqmin is not None and freqmax is not None: data = bandpass(data,freqmin,freqmax,1/dt,corners=4, zerophase=True) data = data-np.mean(data) amax = np.max(np.abs(data)) data /= amax timestamp = obspy.UTCDateTime(ttime) tmarks=obspy.UTCDateTime(ttime).strftime('%Y-%m-%dT%H:%M:%S') tx=np.arange(-lag0,lag0+0.5*dt,dt) if len(tx)>len(data):tx=tx[:-1] plt.figure(figsize=figsize) ax=plt.gca() plt.plot(tx,data,'k-',linewidth=1) if freqmin is not None and freqmax is not None: plt.title('%s-%s : dist : %5.2f km : %4.2f-%4.2f Hz' % (netstachan1,netstachan2, dist,freqmin,freqmax)) else: plt.title('%s-%s : dist : %5.2f km : unfiltered' % (netstachan1,netstachan2,dist)) plt.xlabel('time [s]') plt.xticks(t) ylim=ax.get_ylim() plt.plot((0,0),ylim,'k-') plt.ylim(ylim) plt.xlim([-lag,lag]) ax.grid() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.isdir(figdir):os.mkdir(figdir) outfname = figdir+\ '/{0:s}_{1:s}_{2:s}-{3:s}Hz.png'.format(netstachan1,netstachan2, str(freqmin),str(freqmax)) plt.savefig(outfname, format='png', dpi=300) print('saved to: '+outfname) plt.close() else: plt.show() ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_xcorr_substack_spect(sfile,freqmin,freqmax,lag=None,save=True,figdir='./'): ''' display the amplitude spectrum of the cross-correlation functions for a time-chunck. PARAMETERS: ----------------------- sfile: cross-correlation functions outputed by S1 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: ----------------------- plot_xcorr_substack_spect('temp.h5',0.1,1,200,True,'./') Note: IMPORTANT!!!! this script only works for the cross-correlation with sub-stacks in S1. ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables spairs = ds.auxiliary_data.list() path_lists = ds.auxiliary_data[spairs[0]].list() flag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['substack'] dt = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['dt'] maxlag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # only works for cross-correlation with substacks generated if not flag: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 nfft = int(next_fast_len(indx2-indx1)) freq = scipy.fftpack.fftfreq(nfft,d=dt)[:nfft//2] for spair in spairs: ttr = spair.split('_') net1,sta1 = ttr[0].split('.') net2,sta2 = ttr[1].split('.') for ipath in path_lists: chan1,chan2 = ipath.split('_') try: dist = ds.auxiliary_data[spair][ipath].parameters['dist'] ngood= ds.auxiliary_data[spair][ipath].parameters['ngood'] ttime= ds.auxiliary_data[spair][ipath].parameters['time'] timestamp = np.empty(ttime.size,dtype='datetime64[s]') except Exception: print('continue! something wrong with %s %s'%(spair,ipath)) continue # cc matrix data = ds.auxiliary_data[spair][ipath].data[:,indx1:indx2] nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) spec = np.zeros(shape=(nwin,nfft//2),dtype=np.complex64) if nwin==0 or len(ngood)==1: print('continue! no enough substacks!');continue # load cc for each station-pair for ii in range(nwin): spec[ii] = scipy.fftpack.fft(data[ii],nfft,axis=0)[:nfft//2] spec[ii] /= np.max(np.abs(spec[ii]),axis=0) data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = max(data[ii]) data[ii] /= amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig,ax = plt.subplots(3,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s.%s.%s %s.%s.%s dist:%5.2f km' % (net1,sta1,chan1,net2,sta2,chan2,dist)) ax[0].set_xlabel('time [s]') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:-1:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].matshow(
np.abs(spec)
numpy.abs
import jax.numpy as jnp from jax import grad, vmap, hessian from jax.config import config config.update("jax_enable_x64", True) # numpy import numpy as onp from numpy import random import argparse import logging import datetime from time import time import os # solving -grad(a*grad u) + alpha u^m = f def get_parser(): parser = argparse.ArgumentParser(description='NonLinElliptic equation GP solver') parser.add_argument("--freq_a", type=float, default = 1.0) parser.add_argument("--alpha", type=float, default = 1.0) parser.add_argument("--m", type = int, default = 3) parser.add_argument("--dim", type = int, default = 2) parser.add_argument("--kernel", type=str, default="Matern_7half", choices=["gaussian","inv_quadratics","Matern_3half","Matern_5half","Matern_7half","Matern_9half","Matern_11half"]) parser.add_argument("--sigma-scale", type = float, default = 0.25) # sigma = args.sigma-scale*sqrt(dim) parser.add_argument("--nugget", type = float, default = 1e-10) parser.add_argument("--GNsteps", type = int, default = 6) parser.add_argument("--logroot", type=str, default='./logs/') parser.add_argument("--randomseed", type=int, default=1) parser.add_argument("--num_exp", type=int, default=1) args = parser.parse_args() return args def get_GNkernel_train(x,y,wx0,wx1,wxg,wy0,wy1,wyg,d,sigma): # wx0 * delta_x + wxg * nabla delta_x + wx1 * Delta delta_x return wx0*wy0*kappa(x,y,d,sigma) + wx0*wy1*Delta_y_kappa(x,y,d,sigma) + wy0*wx1*Delta_x_kappa(x,y,d,sigma) + wx1*wy1*Delta_x_Delta_y_kappa(x,y,d,sigma) + wx0*D_wy_kappa(x,y,d,sigma,wyg) + wy0*D_wx_kappa(x,y,d,sigma,wxg) + wx1*Delta_x_D_wy_kappa(x,y,d,sigma,wyg) + wy1*D_wx_Delta_y_kappa(x,y,d,sigma,wxg) + D_wx_D_wy_kappa(x,y,d,sigma,wxg,wyg) def get_GNkernel_train_boundary(x,y,wy0,wy1,wyg,d,sigma): return wy0*kappa(x,y,d,sigma) + wy1*Delta_y_kappa(x,y,d,sigma) + D_wy_kappa(x,y,d,sigma,wyg) def get_GNkernel_val_predict(x,y,wy0,wy1,wyg,d,sigma): return wy0*kappa(x,y,d,sigma) + wy1*Delta_y_kappa(x,y,d,sigma) + D_wy_kappa(x,y,d,sigma,wyg) def get_GNkernel_val_predict_Delta(x,y,wy0,wy1,wyg,d,sigma): return wy0*Delta_x_kappa(x,y,d,sigma) + wy1*Delta_x_Delta_y_kappa(x,y,d,sigma) + Delta_x_D_wy_kappa(x,y,d,sigma,wyg) def assembly_Theta(X_domain, X_boundary, w0, w1, wg, sigma): # X_domain, dim: N_domain*d; # w0 col vec: coefs of Diracs, dim: N_domain; # w1 coefs of Laplacians, dim: N_domain N_domain,d = onp.shape(X_domain) N_boundary,_ = onp.shape(X_boundary) Theta = onp.zeros((N_domain+N_boundary,N_domain+N_boundary)) XdXd0 = onp.reshape(onp.tile(X_domain,(1,N_domain)),(-1,d)) XdXd1 = onp.tile(X_domain,(N_domain,1)) XbXd0 = onp.reshape(onp.tile(X_boundary,(1,N_domain)),(-1,d)) XbXd1 = onp.tile(X_domain,(N_boundary,1)) XbXb0 = onp.reshape(onp.tile(X_boundary,(1,N_boundary)),(-1,d)) XbXb1 = onp.tile(X_boundary,(N_boundary,1)) arr_wx0 = onp.reshape(onp.tile(w0,(1,N_domain)),(-1,1)) arr_wx1 = onp.reshape(onp.tile(w1,(1,N_domain)),(-1,1)) arr_wxg = onp.reshape(onp.tile(wg,(1,N_domain)),(-1,d)) arr_wy0 =
onp.tile(w0,(N_domain,1))
numpy.tile
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: 11360 # datetime: 2021/3/11 18:58 import matplotlib.pyplot as plt import numpy as np import scipy from sklearn.datasets import make_moons, make_regression class LDA: def __init__(self, k): """ :param k: reduced dimension R^d -> R^k """ self.reduced_dimension = k def make_data(self, regression=False): if regression: x, y = make_regression(n_samples=50, n_features=1, n_targets=1, noise=1.5, random_state=1, bias=0) y =
np.array([y])
numpy.array
from piecewise_regression import Fit, ModelSelection import numpy as np import matplotlib.pyplot as plt import os import sys sys.path.insert(1, os.path.join(sys.path[0], '..')) def plot_basic_example(): """ Example for some data """ np.random.seed(1) alpha = 4 beta_1 = -8 beta_2 = -2 beta_3 = 5 intercept = 100 breakpoint_1 = 5 breakpoint_2 = 11 breakpoint_3 = 16 n_points = 200 noise = 5 xx = np.linspace(0, 20, n_points) yy = intercept + alpha*xx yy += beta_1 * np.maximum(xx - breakpoint_1, 0) yy += beta_2 * np.maximum(xx - breakpoint_2, 0) yy += beta_3 * np.maximum(xx - breakpoint_3, 0) yy += np.random.normal(size=n_points) * noise bp_fit = Fit(xx, yy, start_values=[3, 7, 10]) bp_fit.summary() bp_fit.plot_data(color="grey", s=20) bp_fit.plot_fit(color="red", linewidth=4) bp_fit.plot_breakpoints() bp_fit.plot_breakpoint_confidence_intervals() plt.xlabel("x") plt.ylabel("y") plt.savefig("example.png", dpi=300) # Given some data, fit the model ms = ModelSelection(xx, yy, max_breakpoints=6) print(ms) plt.show() def plot_basic_example_2(): # Generate some test data with 1 breakpoint alpha_1 = -4 alpha_2 = -2 intercept = 100 breakpoint_1 = 7 n_points = 200 np.random.seed(0) xx = np.linspace(0, 20, n_points) yy = intercept + alpha_1*xx + \ (alpha_2-alpha_1) *
np.maximum(xx - breakpoint_1, 0)
numpy.maximum
import os import pandas as pd import numpy as np from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Convolution2D from keras.layers import Flatten, Dense, Dropout,BatchNormalization, Activation, Lambda from keras.applications import InceptionV3 from keras.regularizers import l2 from keras.layers import Input, Concatenate, concatenate import keras.backend as K import tensorflow as tf from keras.models import Model,load_model from keras.callbacks import ReduceLROnPlateau from keras.utils import plot_model,np_utils from keras import regularizers from pprint import pprint import cv2 DATA_FORMAT='channels_last' # Theano:'channels_first' Tensorflow:'channels_last' WEIGHT_DECAY=0.0005 LRN2D_NORM=False USE_BN=True IM_WIDTH=299 IM_HEIGHT=299 batch_num = 16 #inception_weights = 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' #normalization def conv2D_lrn2d(x,filters,kernel_size,strides=(1,1),padding='same',data_format=DATA_FORMAT,dilation_rate=(1,1),activation='relu',use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None,lrn2d_norm=LRN2D_NORM,weight_decay=WEIGHT_DECAY,name=None): #l2 normalization if weight_decay: kernel_regularizer=regularizers.l2(weight_decay) bias_regularizer=regularizers.l2(weight_decay) else: kernel_regularizer=None bias_regularizer=None x=Conv2D(filters=filters,kernel_size=kernel_size,strides=strides,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint,name=name)(x) if lrn2d_norm: #batch normalization x=BatchNormalization()(x) return x def inception_module(x,params,concat_axis,padding='same',data_format=DATA_FORMAT,dilation_rate=(1,1),activation='relu',use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None,weight_decay=None): (branch1,branch2,branch3,branch4)=params if weight_decay: kernel_regularizer=regularizers.l2(weight_decay) bias_regularizer=regularizers.l2(weight_decay) else: kernel_regularizer=None bias_regularizer=None #1x1 if branch1[1]>0: pathway1=Conv2D(filters=branch1[1],kernel_size=(1,1),strides=branch1[0],padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(x) #1x1->3x3 pathway2=Conv2D(filters=branch2[0],kernel_size=(1,1),strides=1,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(x) pathway2=Conv2D(filters=branch2[1],kernel_size=(3,3),strides=branch1[0],padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(pathway2) #1x1->5x5 pathway3=Conv2D(filters=branch3[0],kernel_size=(1,1),strides=1,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(x) pathway3=Conv2D(filters=branch3[1],kernel_size=(5,5),strides=branch1[0],padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(pathway3) #3x3->1x1 pathway4=MaxPooling2D(pool_size=(3,3),strides=branch1[0],padding=padding,data_format=DATA_FORMAT)(x) if branch4[0]>0: pathway4=Conv2D(filters=branch4[0],kernel_size=(1,1),strides=1,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(pathway4) if branch1[1]>0: return concatenate([pathway1,pathway2,pathway3,pathway4],axis=concat_axis) else: return concatenate([pathway2, pathway3, pathway4], axis=concat_axis) def conv_block(input, nb_filter, dropout_rate=None, weight_decay=1E-4): x = Activation('relu')(input) x = Convolution2D(nb_filter, (3, 3), kernel_initializer="glorot_uniform", padding="same", use_bias=False, kernel_regularizer=l2(weight_decay))(x) if dropout_rate is not None: x = Dropout(dropout_rate)(x) return x def dense_block(x, nb_layers, nb_filter, growth_rate, dropout_rate=None, weight_decay=1E-4): concat_axis = 1 if K.image_dim_ordering() == "th" else -1 feature_list = [x] for i in range(nb_layers): x = conv_block(x, growth_rate, dropout_rate, weight_decay) feature_list.append(x) x = Concatenate(axis=concat_axis)(feature_list) nb_filter += growth_rate return x, nb_filter def l2_norm(x): x = x**2 x = K.sum(x, axis=1) x = K.sqrt(x) return x def triplet_loss(y_true, y_pred): batch = batch_num ref1 = y_pred[0:batch,:] pos1 = y_pred[batch:batch+batch,:] neg1 = y_pred[batch+batch:3*batch,:] dis_pos = K.sum(K.square(ref1 - pos1), axis=1, keepdims=True) dis_neg = K.sum(K.square(ref1 - neg1), axis=1, keepdims=True) #dis_pos = K.sqrt(dis_pos) #dis_neg = K.sqrt(dis_neg) a1pha = 0.2 d1 = K.maximum(0.0,(dis_pos-dis_neg)+a1pha) d2 = K.maximum(0.0,(dis_pos-dis_neg)+a1pha) d = d1 + d2 return K.mean(d) def create_model(): #Data format:tensorflow,channels_last;theano,channels_last if DATA_FORMAT=='channels_first': INP_SHAPE=(3,299,299) img_input=Input(shape=INP_SHAPE) CONCAT_AXIS=1 elif DATA_FORMAT=='channels_last': INP_SHAPE=(299,299,3) img_input=Input(shape=INP_SHAPE) CONCAT_AXIS=3 else: raise Exception('Invalid Dim Ordering') base_model = InceptionV3(weights='imagenet', include_top=False) base_model.summary() for layer in base_model.layers: layer.trainable = False x = base_model.get_layer('mixed7').output x = Convolution2D(512, (1, 1), kernel_initializer="glorot_uniform", padding="same", name="DenseNet_initial_conv2D", use_bias=False, kernel_regularizer=l2(WEIGHT_DECAY))(x) x = BatchNormalization()(x) x, nb_filter = dense_block(x, 5, 512, growth_rate=64,dropout_rate=0.5) x = AveragePooling2D(pool_size=(7, 7), strides=1, padding='valid', data_format=DATA_FORMAT)(x) x = Dense(512, activation='relu')(x) #x = Dropout(0.5)(x) x = Dense(16)(x) x = Lambda(lambda x:tf.nn.l2_normalize(x))(x) model = Model(inputs=base_model.input, outputs=x) return model def load_triplet_images(csvpath,target_size): data = pd.read_csv(csvpath,error_bad_lines=False) trainX = [] print(data) trainX1 = [] trainX2 = [] trainX3 = [] for i in range(0,int(target_size/3)): mode = data.iloc[i, 5] #print(mode) img1 = cv2.imread(data.iloc[i, 1]) img2 = cv2.imread(data.iloc[i, 2]) img3 = cv2.imread(data.iloc[i, 3]) #print(img1) if img1 is None or img2 is None or img3 is None: continue if mode == 1: trainX1.append(np.array(img2)) trainX2.append(np.array(img3)) trainX3.append(np.array(img1)) elif mode == 2: trainX1.append(np.array(img3)) trainX2.append(np.array(img1)) trainX3.append(np.array(img2)) elif mode == 3: trainX1.append(np.array(img1)) trainX2.append(np.array(img2)) trainX3.append(np.array(img3)) #print(len(trainX1)) if len(trainX1) == 16: #print("Add") trainX.extend(trainX1) trainX.extend(trainX2) trainX.extend(trainX3) trainX1 = [] trainX2 = [] trainX3 = [] Xtrain =
np.array(trainX)
numpy.array
# python simulation of draw.sv import numpy as np def get_model_matrix(angle, scale, x, y, z): R = np.array([[np.cos(angle), 0, np.sin(angle), 0], [0, 1, 0, 0], [-1*np.sin(angle), 0, np.cos(angle), 0], [0, 0, 0, 1]]) S = np.array([[scale, 0, 0, 0], [0, scale, 0, 0], [0, 0, scale, 0], [0, 0, 0, 1]]) T = np.array([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]]) TxR = np.dot(T, R) TxRxS = np.dot(TxR, S) return TxRxS def get_view_matrix(x, y, z): view_matrix = np.array([[1, 0, 0, -1*x], [0, 1, 0, -1*y], [0, 0, 1, -1*z], [0, 0, 0, 1]]) return view_matrix def get_projection_matrix(eye_fov, aspect_ratio, z_near, z_far): b = 1 / np.tan(eye_fov / 2) a = b / aspect_ratio z_near = -1 * z_near z_far = -1 * z_far k = 1 / (z_near-z_far) c = (z_near+z_far)*k d = 2*z_near*z_far*k projection_matrix = np.array([[a, 0, 0, 0], [0, b, 0, 0], [0, 0, c, d], [0, 0, 1, 0]]) return projection_matrix pt0 = np.array([0, 0, 0, 1]) pt1 = np.array([0, 0, 1, 1]) pt2 = np.array([0, 1, 0, 1]) pt3 = np.array([0, 1, 1, 1]) pt4 = np.array([1, 0, 0, 1]) pt5 =
np.array([1, 0, 1, 1])
numpy.array
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: speedinghzl02 ## Modified by: RainbowSecret ## Microsoft Research ## <EMAIL> ## Copyright (c) 2018 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import cv2 import pdb import collections import matplotlib.pyplot as plt import numpy as np import os import os.path as osp from PIL import Image, ImageOps, ImageFilter import random import torch import torchvision from torch.utils import data import torchvision.transforms as transforms class CitySegmentationTrain(data.Dataset): def __init__(self, root, list_path, max_iters=None, crop_size=(321, 321), scale=True, mirror=True, ignore_label=255, use_aug=False, network="renset101"): self.root = root self.list_path = list_path self.crop_h, self.crop_w = crop_size self.scale = scale self.ignore_label = ignore_label self.is_mirror = mirror self.use_aug = use_aug self.network = network self.img_ids = [i_id.strip().split() for i_id in open(list_path)] if not max_iters==None: self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids))) self.files = [] for item in self.img_ids: image_path, label_path = item name = osp.splitext(osp.basename(label_path))[0] img_file = osp.join(self.root, image_path) label_file = osp.join(self.root, label_path) self.files.append({ "img": img_file, "label": label_file, "name": name, "weight": 1 }) self.id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18, 34: ignore_label} print('{} images are loaded!'.format(len(self.img_ids))) def __len__(self): return len(self.files) def generate_scale_label(self, image, label): f_scale = 0.5 + random.randint(0, 16) / 10.0 image = cv2.resize(image, None, fx=f_scale, fy=f_scale, interpolation = cv2.INTER_LINEAR) label = cv2.resize(label, None, fx=f_scale, fy=f_scale, interpolation = cv2.INTER_NEAREST) return image, label def id2trainId(self, label, reverse=False): label_copy = label.copy() if reverse: for v, k in self.id_to_trainid.items(): label_copy[label == k] = v else: for k, v in self.id_to_trainid.items(): label_copy[label == k] = v return label_copy def __getitem__(self, index): datafiles = self.files[index] image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR) l = Image.open(datafiles["label"]) label = np.array(l) #label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE) if self.use_aug: # the augmented data gt label map has been transformed label = label else: label = self.id2trainId(label) size = image.shape name = datafiles["name"] if self.scale: image, label = self.generate_scale_label(image, label) image = np.asarray(image, np.float32) if self.network == "resnet101": mean = (102.9801, 115.9465, 122.7717) image = image[:,:,::-1] image -= mean elif self.network == "mobilenetv2": mean = (0.485, 0.456, 0.406) var = (0.229, 0.224, 0.225) # print("network: {}, mean: {}, var: {}".format(self.network, mean, var)) image = image[:,:,::-1] image /= 255 image -= mean image /= var elif self.network == "wide_resnet38": mean = (0.41738699, 0.45732192, 0.46886091) var = (0.25685097, 0.26509955, 0.29067996) image = image[:,:,::-1] image /= 255 image -= mean image /= var img_h, img_w = label.shape pad_h = max(self.crop_h - img_h, 0) pad_w = max(self.crop_w - img_w, 0) if pad_h > 0 or pad_w > 0: img_pad = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(0.0, 0.0, 0.0)) label_pad = cv2.copyMakeBorder(label, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=(self.ignore_label,)) else: img_pad, label_pad = image, label img_h, img_w = label_pad.shape h_off = random.randint(0, img_h - self.crop_h) w_off = random.randint(0, img_w - self.crop_w) image =
np.asarray(img_pad[h_off : h_off+self.crop_h, w_off : w_off+self.crop_w], np.float32)
numpy.asarray
''' Function: define the dqn agent Author: Charles 微信公众号: Charles的皮卡丘 ''' import os import torch import pickle import random import skimage import numpy as np import skimage.color import torch.nn as nn import skimage.exposure import skimage.transform from collections import deque from modules.DQNAgent.dqn import * '''the dqn agent''' class DQNAgent(): def __init__(self, mode, backuppath, **kwargs): self.mode = mode self.backuppath = backuppath # define the necessary variables self.num_actions = 2 self.num_input_frames = 4 self.discount_factor = 0.99 self.num_observes = 3200 self.num_explores = 3e6 self.epsilon = 0.1 self.init_epsilon = 0.1 self.final_epsilon = 1e-4 self.replay_memory_size = 5e4 self.imagesize = (80, 80) self.save_interval = 5000 self.num_iters = 0 self.replay_memory_record = deque() self.max_score = 0 self.input_image = None self.use_cuda = torch.cuda.is_available() self.FloatTensor = torch.cuda.FloatTensor if self.use_cuda else torch.FloatTensor self.batch_size = 32 # the instanced model self.dqn_model = deepQNetwork(imagesize=self.imagesize, in_channels=self.num_input_frames, num_actions=self.num_actions) self.dqn_model = self.dqn_model.cuda() if self.use_cuda else self.dqn_model # define the optimizer and loss function self.optimizer = torch.optim.Adam(self.dqn_model.parameters(), lr=1e-4) self.mse_loss = nn.MSELoss(reduction='elementwise_mean') '''get the next action''' def nextAction(self, reward): # some necessary update if self.epsilon > self.final_epsilon and self.num_iters > self.num_observes: self.epsilon -= (self.init_epsilon - self.final_epsilon) / self.num_explores self.num_iters += 1 # make decision if random.random() <= self.epsilon: action = random.choice([0, 1]) else: with torch.no_grad(): self.dqn_model.eval() x = torch.from_numpy(self.input_image).type(self.FloatTensor) preds = self.dqn_model(x).view(-1) action = preds.argmax().item() self.dqn_model.train() # train the model if demand loss = torch.tensor([0]) if self.mode == 'train' and self.num_iters > self.num_observes: self.optimizer.zero_grad() minibatch = random.sample(self.replay_memory_record, self.batch_size) states, actions, rewards, states1, is_gameovers = zip(*minibatch) states = torch.from_numpy(np.concatenate(states, axis=0)).type(self.FloatTensor) actions = torch.from_numpy(np.concatenate(actions, axis=0)).type(self.FloatTensor).view(self.batch_size, self.num_actions) rewards = torch.from_numpy(np.concatenate(rewards, axis=0)).type(self.FloatTensor).view(self.batch_size) states1 = torch.from_numpy(np.concatenate(states1, axis=0)).type(self.FloatTensor) is_gameovers = torch.from_numpy(
np.concatenate(is_gameovers, axis=0)
numpy.concatenate
############################## # Import necessary libraries # ############################## import numpy as np from scipy.optimize import fsolve ################################## # Define various math functions. # ################################## def norm(v): return np.sqrt(np.dot(v,v)) def S(z): return ( np.sqrt(z) - np.sin(np.sqrt(z)) ) / np.sqrt(z**3) def C(z): return ( 1 - np.cos(np.sqrt(z)) ) / z ###################################### # Define class for celestial bodies. # ###################################### # This works at the moment only for elliptical (generic) orbits. Fix this! class celestial_body: # This class assumes a reference coordinate system such that a large mass is situated at the origin. It might actually assume some more things. ####### Init ####### def __init__(self,mass,mu,semi_major_axis,eccentricity,inclination,longitude_ascending_node,argument_periapsis,true_anomaly_epoch): # Initialization of class using classical orbital elements a, e, i, Omega, omega, nu_0 self.semi_major_axis = semi_major_axis # a self.energy = - mu / ( 2.0 * self.semi_major_axis ) # E self.eccentricity = eccentricity # e if self.energy < 0: if self.eccentricity == 0: self.type = "circular" else: self.type = "elliptical" elif self.energy == 0: self.type = "parabolic" else: self.type = "hyperbolic" self.inclination = inclination # i if inclination == 0: self.planar == True else: self.planar == False if self.planar == False: self.longitude_ascending_node = longitude_ascending_node # Omega self.argument_periapsis = argument_periapsis # omega else: self.longitude_ascending_node = 0 self.argument_periapsis = 0 self.true_anomaly_epoch = true_anomaly_epoch # nu self.mass = mass # m self.parameter = semi_major_axis * (1 - eccentricity**2) # p if ( 0 <= self.true_anomaly_epoch ) and ( self.true_anomaly_epoch <= np.pi): self.eccentric_anomaly = np.arccos((self.eccentricity + np.cos(self.true_anomaly_epoch)) / (1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) # E, at the moment the cases dont't cover everything. else: self.eccentric_anomaly = 2 * np.pi - np.arccos((self.eccentricity + np.cos(self.true_anomaly_epoch)) / (1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) # E self.mean_anomaly = self.eccentric_anomaly - self.eccentricity * np.sin(self.eccentric_anomaly) # M self.mean_motion = np.sqrt(mu / self.semi_major_axis**3 ) # n self.period = 2 * np.pi / np.sqrt(mu) * np.sqrt(self.semi_major_axis**3) # T self.mu = mu # mu self.X = 0 # X for universal formulation of time of flight @classmethod def from_position_velocity(self,mass,mu,position,velocity): # Initialization of class using position and momentum # For this purpose we need to calculate various intermediate objects. Should we save them for later? Is it more clever to just use position and momentum all the time? h = np.cross(position,velocity) # Calculate angular momentum h if h != [0,0,0]: n = np.cross(np.array([0,0,1],float),h) # Calculate node vector e = 1.0 / mu * ((np.dot(velocity,velocity) - mu / norm(position)) * position - np.dot(position,velocity) * velocity) # Calculate eccentricity vector pointing in direction of perihelion p = np.dot(h,h) / mu # Is it better to just save the cosine of the angles? semi_major_axis = p / (1-np.dot(e,e)) eccentricity = norm(e) inclination = np.arccos(h[2] / norm(h)) if position[1] >= 0: longitude_ascending_node = np.arccos(n[0] / norm(n)) else: longitude_ascending_node = 2 * np.pi - np.arccos(n[0] / norm(n)) if e[2] >= 0: argument_periapsis = np.arccos(np.dot(n,e) / (norm(n) * norm(e))) else: argument_periapsis = 2 * np.pi - np.arccos(np.dot(n,e) / (norm(n) * norm(e))) if np.dot(position,velocity) >= 0: true_anomaly_epoch = np.arccos(np.dot(e,position) / (norm(e) * norm(position))) else: true_anomaly_epoch = 2 * np.pi - np.arccos(np.dot(e,position) / (norm(e) * norm(position))) body = celestial_body(mass,mu,semi_major_axis,eccentricity,inclination,longitude_ascending_node,argument_periapsis,true_anomaly_epoch) return body else: return celestial_object.initialize_collision_orbit(mass,mu,position,velocity) @classmethod def initialize_collision_orbit(self,mass,mu,position,velocity): pass ####### Export ####### def export_position_velocity(self): # Exports position and velocity of celestial body. How should time dependence be incorparated? Should it be a parameter for this function? r = self.parameter / ( 1 + self.eccentricity * np.cos(self.true_anomaly_epoch)) # The perifocal coordinate system uses coordinate axes P, Q, W in this order, where P points in the direction of the periapsis and Q is perpendicular in positive direction in the plane of the orbit. position_perifocal_system = np.array([r * np.cos(self.true_anomaly_epoch),r * np.sin(self.true_anomaly_epoch),0],float) velocity_perifocal_system = np.sqrt(self.mu / self.parameter) * np.array([-np.sin(self.true_anomaly_epoch),self.eccentricity + np.cos(self.true_anomaly_epoch),0],float) # Calculate the rotation matrix from perifocal to fixed frame. Bate says, one should avoid this technique. rotation_matrix = np.array([[np.cos(self.longitude_ascending_node) * np.cos(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.sin(self.argument_periapsis) * np.cos(self.inclination) , - np.cos(self.longitude_ascending_node) * np.sin(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.cos(self.argument_periapsis) * np.cos(self.inclination) , np.sin(self.longitude_ascending_node) * np.sin(self.inclination)],\ [np.sin(self.longitude_ascending_node) * np.cos(self.argument_periapsis) + np.cos(self.longitude_ascending_node) * np.sin(self.argument_periapsis) * np.cos(self.inclination) , - np.sin(self.longitude_ascending_node) * np.sin(self.argument_periapsis) + np.cos(self.longitude_ascending_node) * np.cos(self.argument_periapsis) * np.cos(self.inclination) , - np.cos(self.longitude_ascending_node) * np.sin(self.inclination)],\ [ np.sin(self.argument_periapsis) * np.sin(self.inclination) , np.cos(self.argument_periapsis) * np.sin(self.inclination) , np.cos(self.inclination)]\ ],float) position = np.dot(rotation_matrix,position_perifocal_system) velocity = np.dot(rotation_matrix,velocity_perifocal_system) return position, velocity def export_orbit(self,number_points): # Returns a list of three dimensional coordinates for the orbit. position = np.zeros( (number_points,3) ) interval = 2 * np.pi / number_points for i in range(number_points): position[i,:] = self.calculate_advance_in_true_anomaly(i * interval)[0] return np.vstack( (position,position[0,:]) ) ###### Advance along orbit ####### def advance_in_time(self,delta_t): # This method advances the object on its course by delta t in time. This means that it needs to translate the time difference into changes in the true anomaly at epoch and then add this number to the existing value. # delta_t should be small enough such that the body does not evolve more than one period. Is this necessary? # Update mean anomaly. Ignore full rotations. new_mean_anomaly = self.mean_motion * delta_t + self.mean_anomaly # Solve E-e*sin(E)=M numerically new_eccentric_anomaly = fsolve(lambda E : E - self.eccentricity * np.sin(E) -new_mean_anomaly,new_mean_anomaly) # Calculate new true anomaly at epoch if new_eccentric_anomaly <= np.pi: new_true_anomaly_epoch = np.arccos( ( np.cos(new_eccentric_anomaly) - self.eccentricity ) / ( 1 - self.eccentricity * np.cos(new_eccentric_anomaly))) else: new_true_anomaly_epoch = 2 * np.pi - np.arccos( ( np.cos(new_eccentric_anomaly) - self.eccentricity ) / ( 1 - self.eccentricity * np.cos(new_eccentric_anomaly))) # Update values of true anomaly at epoch and eccentric anomaly and mean anomaly self.true_anomaly_epoch = new_true_anomaly_epoch self.mean_anomaly = new_mean_anomaly self.eccentric_anomaly = new_eccentric_anomaly def t_in_dep_of_X(self, X): r_0, v_0 = self.export_postion_velocity() return 1 / np.sqrt(self.mu) * ( np.dot(r_0,v_0) /np.sqrt(self.mu) * X**2 * C(X) + ( 1 - norm(r_0) / self.semi_major_axis ) * X**3 * S(X) + norm(r_0) * X ) def advance_in_time_universal(self,delta_t): # This method advances the object on its course by delta t in time using the universal time of fligt formulation. This means it should be usable for all kinds of orbits. # Solve for new X new_X = fsolve(lambda X : self.t_in_dep_of_X(X) - delta_t,delta_t) def advance_in_true_anomaly(self,delta_nu): # This method increases the true anomaly by a given input. It can be used to find equi-distant-angle points on the orbit for visualization purposes. It also updates eccentric anomaly and mean anomaly. self.true_anomaly_epoch = self.true_anomaly_epoch + delta_nu if self.true_anomaly_epoch <= np.pi: self.eccentric_anomaly = np.arccos( ( np.cos(self.true_anomaly_epoch) + self.eccentricity ) / ( 1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) else: self.eccentric_anomaly = 2 * np.pi - np.arccos( ( np.cos(self.true_anomaly_epoch) + self.eccentricity ) / ( 1 + self.eccentricity * np.cos(self.true_anomaly_epoch))) self.mean_anomaly = self.eccentric_anomaly - self.eccentricity * np.sin( self.eccentric_anomaly ) def calculate_advance_in_true_anomaly(self,delta_nu): # This method advances the object on its course by delta nu in true anomaly and returns the new position. It is useful for calculating points on the orbit without actually advancing the object itself. new_true_anomaly_epoch = self.true_anomaly_epoch + delta_nu r = self.parameter / ( 1 + self.eccentricity * np.cos(new_true_anomaly_epoch)) # The perifocal coordinate system uses coordinate axes P, Q, W in this order, where P points in the direction of the periapsis and Q is perpendicular in positive direction in the plane of the orbit. position_perifocal_system = np.array([r * np.cos(new_true_anomaly_epoch),r * np.sin(new_true_anomaly_epoch),0],float) velocity_perifocal_system = np.sqrt(self.mu / self.parameter) * np.array([-np.sin(new_true_anomaly_epoch),self.eccentricity + np.cos(new_true_anomaly_epoch),0],float) # Calculate the rotation matrix from perifocal to fixed frame. Bate says, one should avoid this technique. rotation_matrix = np.array([[np.cos(self.longitude_ascending_node) * np.cos(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.sin(self.argument_periapsis) * np.cos(self.inclination) , - np.cos(self.longitude_ascending_node) * np.sin(self.argument_periapsis) - np.sin(self.longitude_ascending_node) * np.cos(self.argument_periapsis) * np.cos(self.inclination) , np.sin(self.longitude_ascending_node) * np.sin(self.inclination)],\ [
np.sin(self.longitude_ascending_node)
numpy.sin
# -*- coding: utf-8 -*- from kernel import kernel import numpy as np class SimInterface(object): def __init__(self, agent_num, time, render=True): self.game = kernel(car_num=agent_num, time=time, render=render) self.g_map = self.game.get_map() self.memory = [] sum def reset(self): self.state = self.game.reset() # state, object self.obs = self.get_observation(self.state) return self.obs def step(self, actions): state = self.game.step(actions) obs = self.get_observation(state) rewards = self.get_reward(state) self.memory.append([self.obs, actions, rewards]) self.state = state return obs, rewards, state.done, None # return state def get_observation(self, state): # personalize your observation here obsagent = state.agents obs =
np.array(obsagent)
numpy.array
""" Plotting on a large number of facets ==================================== _thumb: .4, .3 """ import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set(style="ticks") # Create a dataset with many short random walks rs =
np.random.RandomState(4)
numpy.random.RandomState
""" =================== Cartesian Space DMP =================== In a Cartesian Space DMP, the rotation are represented by quaternions. A normal DMP cannot be used in this case because it requires that each component can be linearly interpolated on its own, which is not the case for three-dimensional orientations. The following plot shows the trajectory generated by an imitated Cartesian Space DMP, start and goal positions, and orientations. Note that executing such a DMP on a robot requires an inverse kinematic that computes the required joint angles to reach the given poses. It is not guaranteed that a smooth trajectory in Cartesian space will result in a smooth trajectory in joint space. """ print(__doc__) import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from bolero.representation import CartesianDMPBehavior def matrix_from_quaternion(q): w, x, y, z = q x2 = 2.0 * x * x y2 = 2.0 * y * y z2 = 2.0 * z * z xy = 2.0 * x * y xz = 2.0 * x * z yz = 2.0 * y * z xw = 2.0 * x * w yw = 2.0 * y * w zw = 2.0 * z * w R = np.array([[1.0 - y2 - z2, xy - zw, xz + yw], [ xy + zw, 1.0 - x2 - z2, yz - xw], [ xz - yw, yz + xw, 1.0 - x2 - y2]]) return R def plot_pose(ax, x, s=1.0, **kwargs): p = x[:3] R = matrix_from_quaternion(x[3:]) for d, c in enumerate(["r", "g", "b"]): ax.plot([p[0], p[0] + s * R[0, d]], [p[1], p[1] + s * R[1, d]], [p[2], p[2] + s * R[2, d]], color=c, **kwargs) return ax def plot_trajectory(ax, X, color="k"): ax.plot(X[:, 0], X[:, 1], X[:, 2], lw=2, color=color) for x in X[50:-50:50]: plot_pose(ax, x, s=0.03, lw=2, alpha=0.5) plot_pose(ax, X[0], s=0.05, lw=3) plot_pose(ax, X[-1], s=0.05, lw=3) try: dirname = os.path.dirname(os.path.realpath(__file__)) except NameError: dirname = "." model = os.path.join(dirname, "cart_dmp_model.yaml") config = os.path.join(dirname, "cart_dmp_config.yaml") dmp = CartesianDMPBehavior(configuration_file=model) dmp.init(7, 7) dmp.load_config(config) plt.figure(figsize=(18, 10)) ax = plt.subplot(221, projection="3d", aspect="equal") plt.setp(ax, xlim=(0.3, 0.6), ylim=(-0.15, 0.15), zlim=(0.7, 1.0), xlabel="X", ylabel="Y", zlabel="Z") X = dmp.trajectory() plot_trajectory(ax, X, "k") ax = plt.subplot(223) ax.plot(X[:, 0], label="X", c="r") ax.plot(X[:, 1], label="Y", c="g") ax.plot(X[:, 2], label="Z", c="b") ax.legend(loc="upper right") plt.setp(ax, xlabel="Step", ylabel="Position") ax = plt.subplot(224) dt = dmp.dt ax.plot(
np.diff(X[:, 0])
numpy.diff
import numpy as np import cv2 class AverageMeter(object): def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class ListAverageMeter(object): """Computes and stores the average and current values of a list""" def __init__(self): self.len = 10000 # set up the maximum length self.reset() def reset(self): self.val = [0] * self.len self.avg = [0] * self.len self.sum = [0] * self.len self.count = 0 def set_len(self, n): self.len = n self.reset() def update(self, vals, n=1): assert len(vals) == self.len, 'length of vals not equal to self.len' self.val = vals for i in range(self.len): self.sum[i] += self.val[i] * n self.count += n for i in range(self.len): self.avg[i] = self.sum[i] / self.count def read_img(filename): img = cv2.imread(filename) img = img[:,:,::-1] / 255.0 img = np.array(img).astype('float32') return img def hwc_to_chw(img): return np.transpose(img, axes=[2, 0, 1]).astype('float32') def chw_to_hwc(img): return np.transpose(img, axes=[1, 2, 0]).astype('float32') def data_augmentation(image, mode): ''' Performs data augmentation of the input image Input: image: a cv2 (OpenCV) image mode: int. Choice of transformation to apply to the image 0 - no transformation 1 - flip up and down 2 - rotate counterwise 90 degree 3 - rotate 90 degree and flip up and down 4 - rotate 180 degree 5 - rotate 180 degree and flip 6 - rotate 270 degree 7 - rotate 270 degree and flip ''' if mode == 0: # original out = image elif mode == 1: # flip up and down out = np.flipud(image) elif mode == 2: # rotate counterwise 90 degree out = np.rot90(image) elif mode == 3: # rotate 90 degree and flip up and down out = np.rot90(image) out = np.flipud(out) elif mode == 4: # rotate 180 degree out = np.rot90(image, k=2) elif mode == 5: # rotate 180 degree and flip out = np.rot90(image, k=2) out = np.flipud(out) elif mode == 6: # rotate 270 degree out = np.rot90(image, k=3) elif mode == 7: # rotate 270 degree and flip out = np.rot90(image, k=3) out = np.flipud(out) else: raise Exception('Invalid choice of image transformation') return out def inverse_data_augmentation(image, mode): ''' Performs inverse data augmentation of the input image ''' if mode == 0: # original out = image elif mode == 1: out = np.flipud(image) elif mode == 2: out = np.rot90(image, axes=(1,0)) elif mode == 3: out = np.flipud(image) out = np.rot90(out, axes=(1,0)) elif mode == 4: out = np.rot90(image, k=2, axes=(1,0)) elif mode == 5: out = np.flipud(image) out =
np.rot90(out, k=2, axes=(1,0))
numpy.rot90
import numpy as np import time import os import argparse import json import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms import torchvision.models as models import PIL from PIL import Image from collections import OrderedDict from workspace_utils import active_session from train import Classifier def get_input_args(): parser = argparse.ArgumentParser(description='Image Classifier - predict.py') parser.add_argument('--input', type = str, default = 'flowers/test/1/image_06743.jpg', help = '/path/to/image as an input for prediction', required = True) parser.add_argument('--checkpoint', type = str, default = 'checkpoint.pth', help = 'checkpoint for model', required = True) parser.add_argument('--top_k', type = int, default = 5, help = 'number of top most likely classes') parser.add_argument('--category_names', type = str, default = 'cat_to_name.json', help = 'Category names as json file') parser.add_argument('--gpu', action = "store_true", help = 'GPU enabled instead of CPU?') return parser.parse_args() #---------------------------------------------------------------------------------- # DONE: Write a function that loads a checkpoint and rebuilds the model def load_checkpoint(path = 'checkpoint.pth'): # Load the all parameters into checkpoint variable checkpoint = torch.load(path) # Then set the loadeds into model model = getattr(models, checkpoint['arch'])(pretrained = True) model.classifier = checkpoint['classifier'] model.load_state_dict(checkpoint['model_state_dict']) model.class_to_idx = checkpoint['class_to_idx'] return model #---------------------------------------------------------------------------------- def process_image(img_path): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' # DONE: Process a PIL image for use in a PyTorch model image = Image.open(img_path) if image.width > image.height: image.thumbnail((10000000, 256)) else: image.thumbnail((256, 10000000)) left = (image.width - 224) / 2 top = (image.height - 224) / 2 right = (image.width + 224) / 2 bottom = (image.height + 224) / 2 image = image.crop((left, top, right, bottom)) image = np.array(image) image = image / 255 means = np.array([0.485, 0.456, 0.406]) stds =
np.array([0.229, 0.224, 0.225])
numpy.array
import numpy as np import matplotlib.pyplot as plt import utils.match as mtc def get_diff_0(sat1,sat2,field): return np.abs((sat1[field]-sat2[field])/sat1[field])+ np.abs((sat1[field]-sat2[field])/sat2[field]) def get_diff(sat1,sat2,field): return np.abs((sat1[field]-sat2[field])/sat1[field])+ np.abs((sat1[field]-sat2[field])/sat2[field]) def test_similar(sat1, sat2, fields): """ get_diff can tell which of cancidates is the most appropriate, but provides no information in absolute scale. """ # mass metrics= [get_diff(sat1,sat2,ff) for ff in fields] return np.sum(metrics) / len(metrics) def interpol_treelets(ref, missing_tree, ref_post, fields_interpol, dnstep=7, poly_deg=3): incomplete_data = np.concatenate((ref, ref_post)) nstep_fit_first = max([ref_post[-1]["nstep"],ref[-1]["nstep"] - dnstep]) nstep_fit_last = min([ref[0]["nstep"],ref_post[0]["nstep"] + dnstep]) i_start = np.where(incomplete_data["nstep"] == nstep_fit_first)[0][0] i_end = np.where(incomplete_data["nstep"] == nstep_fit_last)[0][0] X=incomplete_data["nstep"][i_end:i_start] x_pred = missing_tree["nstep"] for this_field in fields_interpol: Y=incomplete_data[this_field][i_end:i_start] if Y.ndim==2: for vind in range(3): z = np.polyfit(X,Y[:,vind], deg=poly_deg) # Degree? p = np.poly1d(z) missing_tree[this_field][:,vind]=p(x_pred) else: z = np.polyfit(X,Y, deg=poly_deg) # Degree? p = np.poly1d(z) missing_tree[:][this_field]=p(x_pred) def interpol_treelets_multi(ref, missing_tree, refs_post, fields_interpol, dnstep=7, poly_deg=3): """ ref_post is a list of treelets. """ isort_post_nstep_last = np.argsort([cb["nstep"][0] for cb in refs_post]) ref_ordered = [refs_post[i] for i in isort_post_nstep_last[::-1]] # list of treelets. later comes first. ref_ordered.insert(0, ref) #incomplete_data = np.concatenate(ref_ordered) n_missing_first = missing_tree["nstep"][0] for i in range(len(ref_ordered)-1): t_l = ref_ordered[i] t_r = ref_ordered[i+1] if t_l["nstep"][-1]-1 < t_r["nstep"][0]: continue incomplete_data = np.concatenate(ref_ordered[i:i+2]) nstep_fit_first = max([t_r[-1]["nstep"],t_l[-1]["nstep"] - dnstep]) nstep_fit_last = min([t_l[0]["nstep"],t_r[0]["nstep"] + dnstep]) #i_start = np.where(incomplete_data["nstep"] == nstep_fit_first)[0][0] #i_end = np.where(incomplete_data["nstep"] == nstep_fit_last)[0][0] X=incomplete_data["nstep"][max(0,len(t_l)-dnstep):len(t_l)+dnstep] #print(incomplete_data["nstep"]) #print(len(t_l),dnstep) #print("X", X) x_pred=np.arange(t_l["nstep"][-1]-1,t_r["nstep"][0],-1) #print("X_pred length", len(x_pred)) i_this_t_l=n_missing_first-(t_l["nstep"][-1]-1) #print(" larger than 0?", i_this_t_l) for this_field in fields_interpol: Y=incomplete_data[this_field][max(0,len(t_l)-dnstep):len(t_l)+dnstep] #Y=np.concatenate(ref_ordered) if Y.ndim==2: for vind in range(3): z = np.polyfit(X,Y[:,vind], deg=poly_deg) # Degree? p = np.poly1d(z) missing_tree[this_field][i_this_t_l:i_this_t_l+len(x_pred),vind]=p(x_pred) else: z = np.polyfit(X,Y, deg=poly_deg) # Degree? p = np.poly1d(z) #print("len missing_tree", len(missing_tree), x_pred) #print(i_this_t_l, i_this_t_l+len(x_pred)) #print(missing_tree["nstep"],n_missing_first-(t_l["nstep"][-1]-1)) #print(missing_tree[this_field][i_this_t_l:i_this_t_l+len(x_pred)], p(x_pred)) #ppp = missing_tree[this_field][i_this_t_l:i_this_t_l+len(x_pred)]=p(x_pred)[:] return ref_ordered[-1] def test_dist_similar_v(ref, cbs, deg_poly=2, n_pos_interpol=5, nstep_back_max=5, dist_tol=0.2, do_plot=False): """ Use velocity * dt to estimate the next position. Todo. polyfit sometimes fail. """ pass def test_dist_similar(ref, cbs, deg_poly=2, n_pos_interpol=5, nstep_back_max=5, dist_tol=0.2, do_plot=False): """ dist_tol : tolerance in position error. Defaults to 200Kpc Other properties may show better similarity once the galaxy recover its mass. But position is not affected by mass uderestimation, and thus the first step of the post tree should show the best match. """ z = np.polyfit(ref["nstep"][-n_pos_interpol:], ref["xp"][-n_pos_interpol:,0], deg=deg_poly) pxx = np.poly1d(z) z = np.polyfit(ref["nstep"][-n_pos_interpol:], ref["xp"][-n_pos_interpol:,1], deg=deg_poly) pyy = np.poly1d(z) z = np.polyfit(ref["nstep"][-n_pos_interpol:], ref["xp"][-n_pos_interpol:,2], deg=deg_poly) pzz = np.poly1d(z) X = np.arange(ref["nstep"][-1],ref["nstep"][-1]-nstep_back_max-1,-1) posx = pxx(X) posy = pyy(X) posz = pzz(X) if do_plot: fig, axs=plt.subplots(2,2) axs[0][0].plot(posx,posy, lw=2) axs[0][1].plot(posy,posz, lw=2) axs[1][0].plot(posz,posx, lw=2) axs[0][0].plot(ref["xp"][:,0],ref["xp"][:,1]) axs[0][1].plot(ref["xp"][:,1],ref["xp"][:,2]) axs[1][0].plot(ref["xp"][:,2],ref["xp"][:,0], label="ref") dists=[] #for cb in cbs: icb=0 while icb < len(cbs) and len(cbs)>0: cb=cbs[icb] dist = np.sqrt(np.square(pxx(cb["nstep"])-cb["xp"][:,0])+ np.square(pyy(cb["nstep"])-cb["xp"][:,1])+ np.square(pzz(cb["nstep"])-cb["xp"][:,2])) if do_plot: axs[0][0].plot(cb["xp"][:,0],cb["xp"][:,1]) axs[0][1].plot(cb["xp"][:,1],cb["xp"][:,2]) axs[1][0].plot(cb["xp"][:,2],cb["xp"][:,0], label="{}".format(cb["nstep"][0])) axs[1][1].plot(dist) #print(cb[0]["nstep"], ref[-1]["nstep"], dist) if dist[0] > dist_tol: #print(cb) #print(cbs[3]) cbs.pop(icb) else: #print("good cb") dists.append(dist[0]) icb+=1 if do_plot: axs[1][0].legend() plt.savefig("{}_at{}_cbs.png".format(ref[0]["idx"],ref[0]["nstep"]),dpi=300) return dists def fix_broken_tree(adp, istep_pre, isat_pre, nstep_max = 388, dnstep_max_connect=3, dist_tol=0.2, n_pos_interpol=5, deg_poly=2, poly_fit_plot=False, fields=["m", "rho_0", "cvel", "spin", "ek", "rs"], threshold_score=1.2): """ score = 1.0 : 50% difference in all fields. lmax_tree : A tree does not have to be longer than 50 steps. """ fields_interpol = ["m", "xp", "vp", "lp", "ek", "ep", "et", "rs", "rho_0"] # trees at maximum 5 snapshot apart can be connected. ref = adp[istep_pre][isat_pre] nstep_ini = ref["nstep"][-1] nstep_fi = ref["nstep"][0] print("[fix_broken_tree] Starts at {}, Ends at {}".format(nstep_ini, nstep_fi)) # All branches ends between nstep_ini+dnstep_max_connect+1 ~ nstep_ini+1 or, 374 ~ 371 candidate_branches=[] for sats_now in adp[nstep_max-nstep_ini+1:nstep_max-nstep_ini+dnstep_max_connect+1]: if len(sats_now) > 0: for this_sat in sats_now: #print("candidate?", this_sat["nstep"][0], this_sat["nstep"][-1], this_sat["idx"][0]) if len(this_sat) > 1: candidate_branches.append(this_sat) #print(this_sat["nstep"][:3]) if len(candidate_branches) == 0: return "no candidates" # print(len(candidate_branches), "candidates") # Per step / per galaxy scores = [] # Measure position difference and remove galaxies too far away. # broken trees are usually due to heavy gravitational disturbance, # which entails sudden change in the motion. # Use only last a few points to better guess the sudden change in motion. # print("There are {} CBs".format(len(candidate_branches))) dists = test_dist_similar(ref, candidate_branches, nstep_back_max=dnstep_max_connect, dist_tol=dist_tol, n_pos_interpol=n_pos_interpol, deg_poly=deg_poly, do_plot=poly_fit_plot) #print("Now {} CBs left".format(len(candidate_branches))) if len(candidate_branches) == 0: return "no candidates after dist cut" for cb in candidate_branches: try: score = test_similar(ref[-4], cb[2], fields) except: print("Fialed comparing earlier steps") score=1e4 scores.append(min([test_similar(ref[-1], cb[0], fields),score])) # Or, may be this_branch[-2] and cb[1] show better correlation??s # best match # In desirable cases, dist match is good. # But the fit can go terrible during violent interactions. # The following scenario is possible. # There are two cbs. one is long and far, the other is short and close. # The farther one matches best, but the closer one does good, too. # The shorter on fits in the gap between the ref and the farther one. # So, ref - shorter - longer form a tree. score_composite=np.array(scores)*np.array(dists) #print("Scores", score_composite) if sum(score_composite < threshold_score) > 1: i_comp = np.argsort(score_composite) ref_post = [] nstep_post = [] ref_post.append(candidate_branches[i_comp[0]]) nstep_post.extend(candidate_branches[i_comp[0]]["nstep"]) #nstep_early = best_cb[0]["nstep"] for icb in i_comp[1:]: if score_composite[icb] < threshold_score: if len(np.intersect1d(candidate_branches[icb]["nstep"], nstep_post))==0: ref_post.append(candidate_branches[icb]) nstep_post.extend(candidate_branches[icb]["nstep"]) nstep_post_min = min([cb["nstep"][0] for cb in ref_post]) n_steps_missing = ref["nstep"][-1] - nstep_post_min-1 if n_steps_missing > 0: missing_tree = np.zeros(n_steps_missing, dtype=ref.dtype) missing_tree["nstep"]=np.arange(ref["nstep"][-1]-1,nstep_post_min,-1) # Fill in the available data for cb in ref_post: ind_fit = mtc.match_list_ind(missing_tree["nstep"],cb["nstep"]) if ind_fit is not None: missing_tree[mtc.match_list_ind(missing_tree["nstep"],cb["nstep"])]=cb[:] for i, tm in enumerate(missing_tree): if tm["id"]==0: tm["id"]=-ref["id"][-1] tm["idx"]=-ref["idx"][-1] # if idx < -1, it is a ghost. tm["f_ind"]=-ref["idx"][0] # Not index, but refer to the original father treelet tm["s_ind"]-ref["idx"][-1] # Not index, but refer to the original son treelet tm["nsons"]=1 tm["nprgs"]=1 ref_last=interpol_treelets_multi(ref, missing_tree, ref_post, fields_interpol, dnstep=7, poly_deg=5) #print("ref last", ref_last["nstep"]) New_tree = np.concatenate((ref, missing_tree, ref_last)) else: # There's no room for second runner up. # No need to interpolate. New_tree = np.concatenate((ref, candidate_branches[i_comp[0]])) # Finally, replace the original tree # A tree does not have to be long. adp[istep_pre][isat_pre] = New_tree #print("REMOVE ARRAY1") for cb in ref_post: #print("Removiing...", cb[0]["nstep"], cb[-1]["nstep"]) removearray(adp[nstep_max-cb[0]["nstep"]], cb) elif sum(score_composite < threshold_score) == 1: #print(np.argmin(score_composite)) ref_post=candidate_branches[np.argmin(score_composite)] #print("Got one match") n_steps_missing = ref["nstep"][-1] - ref_post["nstep"][0]-1 missing_tree =
np.zeros(n_steps_missing, dtype=ref.dtype)
numpy.zeros
from src import config import os import shutil from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt import mne from scipy import signal, stats import sys def BinarizeChannels( input_channels=config.network_channels, true_channels=config.channel_names): """ Utility function to convert list of string channel names to a binary string corresponding to whether or not each default channel in true_channels is found in the input_channels Parameters: - input_channels: (default config.network_channels) - true_channels: (default config.channel_names) Returns: - string of 0s and 1s """ return(map(str, ["1" if channel in input_channels else "0" for channel in config.channel_names])) def StringarizeChannels(input_str, reference_list=config.channel_names): """ Utility function to convert binary string channel names to a list of strings corresponding to whether or not each default channel in reference_list is found in the input string Parameters: - input_str: string of 0s and 1s - reference_list: list against which input_str will be validated Returns: - network_channels: default config.network_channels """ return([chan for bin, chan in zip(input_str, reference_list) if bin == "1"]) def FilterChannels( array, keep_channels, axis_num=1, reference_list=config.channel_names, use_gpu=False): """ Returns a new array of input data containing only the channels provided in keep_channels; axis_num corresponds to the axis across which different channels are iterated Parameters: - array: (numpy.ndarray) input array - keep_channels: list of channel names to keep, should be a subset of config.channel_names - axis_num: (int) default 1 - reference_list: list of true channel names / columns which keep_channels will be validated against Returns: - newarr: array with only certain channels kept in """ if isinstance(array, str): array = np.array([char for char in array]) if use_gpu is False: newarray = np.take( array, [reference_list.index(keep) for keep in keep_channels], axis_num) else: import cupy as cp newarray = cp.take( array, [reference_list.index(keep) for keep in keep_channels], axis_num) return(newarray) def MaskChannel(channel_data, art_degree=0): """ Returns a masked version of input array (1-dimensional) where any value exceeding the supplied art_degree (default 0) is masked Parameters: - channel_data: (1d numpy.ndarray) input array - art_degree (int): minimum value which will be passed over and not masked """ return np.ma.masked_where(channel_data > art_degree, channel_data) # takes one positional argument, path of TaskData folder class TaskData: """ Object used once data are cleaned and organized, in order to generate subsequent datatypes, such as Contigs or Spectra Parameters: - path: path to data directory (a task folder) """ def __new__(self, path): if os.path.isdir(path): return super(TaskData, self).__new__(self) else: print("The path supplied is not a valid directory.") print(path) raise ValueError def __init__(self, path): self.path = path self.studyFolder = os.path.dirname(path) self.task = os.path.basename(self.path) self.task_fnames = os.listdir(self.path) def get_task_fnames(self, task): return(os.listdir(self.path)) def set_subjects(self): self.subjects = set([ fname[:config.participantNumLen] for fname in self.get_task_fnames(self.task)]) # takes length (in samples @ 250 Hz / config.sample_rate) # as positional argument def gen_contigs( self, contigLength, network_channels=BinarizeChannels( input_channels=config.network_channels), art_degree=0, erp_degree=None, filter_band="nofilter", use_gpu=False, force=False): """ Generates Contig objects for every file possible in TaskData.path, appending each to TaskData.contigs Parameters: - contigLength: length in samples (@ 250 Hz or config.sample_rate) - network_channels: default config.network_channels - art_degree: (int) default 0, minimum value accepted to pass as a "clean" contig, when reading mask from .art file - erp_degree: (int) default 1, lowest number in .evt which will be accepted as an erp event """ if use_gpu is True: import cupy as cp if not hasattr(self, 'subjects'): self.set_subjects() if not hasattr(self, 'contigs'): self.contigs = [] # make parent contigs folder if erp_degree is None: if not os.path.isdir(self.studyFolder + "/contigs"): os.mkdir(self.studyFolder + "/contigs") elif erp_degree is not None: if not os.path.isdir(self.studyFolder + "/erps"): os.mkdir(self.studyFolder + "/erps") # make a child subdirectory called contigs_<task>_<contig_length> self.contigsFolder = self.studyFolder\ + "/contigs/"\ + self.task\ + "_"\ + str(contigLength)\ + "_"\ + network_channels\ + "_"\ + str(art_degree) if erp_degree is not None: self.contigsFolder = self.contigsFolder.replace("contigs", "erps")\ + "_"\ + str(erp_degree) try: os.mkdir(self.contigsFolder) except FileExistsError: if force is True: pass else: print( "This contig folder already exists. It's possible that " + "you are using a different bandpass filter, but you " + "should inspect your " + self.contigsFolder + " before setting force == True to continue anyways. " + "This may overwrite data.") sys.exit(3) print("Contigifying Data:\n====================") for sub in tqdm(self.subjects): art_fname = sub + "_" + self.task + ".art" # load in artifact file as np array # print("Artifact:"+self.path+"/"+art_fname) artifact_data = np.genfromtxt( self.path + "/" + art_fname, delimiter=" ") if use_gpu is True: artifact_data = cp.asarray(artifact_data) if artifact_data.size == 0: print( "Most likely an empty text file was " + "encountered. Skipping: " + art_fname) continue if erp_degree is not None: evtfile = sub + "_" + self.task + ".evt" events = np.genfromtxt( self.path + "/" + evtfile, delimiter=" ") if use_gpu is True: events = cp.asarray(events) if events.size == 0: print( "Most likely an empty text file was " + "encountered. Skipping: " + evtfile) continue # get rid of channels we don't want the net to use artifact_data = FilterChannels( artifact_data, StringarizeChannels(network_channels), axis_num=1, use_gpu=use_gpu) # mask artifact array where numbers exceed art_degree if isinstance(art_degree, int): if use_gpu is False: art_degree = np.repeat(art_degree, network_channels.count('1')) else: art_degree = cp.repeat(art_degree, network_channels.count('1')) # if using custom artifact map elif isinstance(art_degree, str): # cut out unused channels from artifact map art_degree = FilterChannels( art_degree, StringarizeChannels(network_channels), axis_num=0, use_gpu=use_gpu) mxi = [] for art, channel in zip(art_degree, artifact_data.T): if use_gpu is False: mxi.append(np.asarray(np.ma.filled( MaskChannel(np.asarray(channel), int(art)).astype(float), np.nan))) else: mxi.append(cp.asarray(np.ma.filled( MaskChannel(cp.asnumpy(channel), int(art)).astype(float), np.nan))) if use_gpu is False: mxi = np.stack(mxi).T else: mxi = cp.stack(mxi).T artifact_data = mxi indeces = [] if erp_degree is None: # write list of start indexes for windows which meet # contig requirements i = 0 while i < (artifact_data.shape[0] - contigLength): stk = artifact_data[i:(i + contigLength), :] if use_gpu is False: if not np.any(
np.isnan(stk)
numpy.isnan
''' Created on 7 Apr 2017 @author: jkiesele ''' import matplotlib matplotlib.use('Agg') from .ReduceLROnPlateau import ReduceLROnPlateau from ..evaluation import plotLoss from ..evaluation import plotBatchLoss import matplotlib.pyplot as plt import numpy as np from keras.callbacks import Callback, EarlyStopping,History,ModelCheckpoint #, ReduceLROnPlateau # , TensorBoard # loss per epoch from time import time from pdb import set_trace import json from keras import backend as K import matplotlib import os matplotlib.use('Agg') class plot_loss_or_metric(Callback): def __init__(self,outputDir,metrics): self.metrics=metrics self.outputDir=outputDir def on_epoch_end(self,epoch, logs={}): lossfile=os.path.join( self.outputDir, 'full_info.log') allinfo_history=None with open(lossfile, 'r') as infile: allinfo_history=json.load(infile) nepochs=len(allinfo_history) allnumbers=[[] for i in range(len(self.metrics))] epochs=[] for i in range(nepochs): epochs.append(i) for j in range(len(self.metrics)): allnumbers[j].append(allinfo_history[i][self.metrics[j]]) import matplotlib.pyplot as plt for j in range(len(self.metrics)): f = plt.figure() plt.plot(epochs,allnumbers[j],'r',label=self.metrics[j]) plt.ylabel(self.metrics[j]) plt.xlabel('epoch') #plt.legend() f.savefig(self.outputDir+'/'+self.metrics[j]+'.pdf') plt.close() class newline_callbacks_begin(Callback): def __init__(self,outputDir,plotLoss=False): self.outputDir=outputDir self.loss=[] self.val_loss=[] self.full_logs=[] self.plotLoss=plotLoss def on_epoch_end(self,epoch, logs={}): if len(logs)<1: return import os lossfile=os.path.join( self.outputDir, 'losses.log') print('\n***callbacks***\nsaving losses to '+lossfile) # problem with new keras version calling callbacks even after exceptions if logs.get('loss') is None: return if logs.get('val_loss') is None: return self.loss.append(logs.get('loss')) self.val_loss.append(logs.get('val_loss')) f = open(lossfile, 'a') f.write(str(logs.get('loss'))) f.write(" ") f.write(str(logs.get('val_loss'))) f.write("\n") f.close() learnfile=os.path.join( self.outputDir, 'learn.log') try: with open(learnfile, 'a') as f: f.write(str(float(K.get_value(self.model.optimizer.lr)))+'\n') lossfile=os.path.join( self.outputDir, 'full_info.log') if os.path.isfile(lossfile): with open(lossfile, 'r') as infile: self.full_logs=json.load(infile) normed = {} for vv in logs: normed[vv] = float(logs[vv]) self.full_logs.append(normed) with open(lossfile, 'w') as out: out.write(json.dumps(self.full_logs)) except: pass if self.plotLoss: try: plotLoss(self.outputDir+'/losses.log',self.outputDir+'/losses.pdf',[]) except: pass class batch_callback_begin(Callback): def __init__(self,outputDir,plotLoss=False,plot_frequency=-1,batch_frequency=1): self.outputDir=outputDir self.loss=[] self.val_loss=[] self.full_logs=[] self.plotLoss=plotLoss self.plot_frequency=plot_frequency self.plotcounter=0 self.batch_frequency=batch_frequency self.batchcounter=0 def read(self): import os if not os.path.isfile(self.outputDir+'/batch_losses.log') : return blossfile=os.path.join( self.outputDir, 'batch_losses.log') f = open(blossfile, 'r') self.loss = [] for line in f: if len(line)<1: continue tl=float(line.split(' ')[0]) self.loss.append(tl) f.close() def on_batch_end(self,batch,logs={}): if len(logs)<1: return if logs.get('loss') is None: return self.batchcounter += 1 if not self.batch_frequency == self.batchcounter: return self.batchcounter=0 self.loss.append(logs.get('loss')) if self.plot_frequency<0: return self.plotcounter+=1 if self.plot_frequency == self.plotcounter: self.plot() self.plotcounter = 0 def _plot(self): if len(self.loss) < 2: return batches = [self.batch_frequency*i for i in range(len(self.loss))] plt.close() plt.plot(batches,self.loss,'r-',label='loss') def smooth(y, box_pts): box =
np.ones(box_pts)
numpy.ones
# standard libraries import collections import copy import functools import math import numbers import operator import typing # third party libraries import numpy import numpy.fft import scipy import scipy.fftpack import scipy.ndimage import scipy.ndimage.filters import scipy.ndimage.fourier import scipy.signal # local libraries from nion.data import Calibration from nion.data import DataAndMetadata from nion.data import Image from nion.data import ImageRegistration from nion.data import TemplateMatching from nion.utils import Geometry DataRangeType = typing.Tuple[float, float] NormIntervalType = typing.Tuple[float, float] NormChannelType = float NormRectangleType = typing.Tuple[typing.Tuple[float, float], typing.Tuple[float, float]] NormPointType = typing.Tuple[float, float] NormSizeType = typing.Tuple[float, float] NormVectorType = typing.Tuple[NormPointType, NormPointType] def column(data_and_metadata: DataAndMetadata.DataAndMetadata, start: int, stop: int) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = start if start is not None else 0 stop_0 = stop if stop is not None else data_shape(data_and_metadata)[0] start_1 = start if start is not None else 0 stop_1 = stop if stop is not None else data_shape(data_and_metadata)[1] return numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True)[0] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def row(data_and_metadata: DataAndMetadata.DataAndMetadata, start: int, stop: int) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = start if start is not None else 0 stop_0 = stop if stop is not None else data_shape(data_and_metadata)[0] start_1 = start if start is not None else 0 stop_1 = stop if stop is not None else data_shape(data_and_metadata)[1] return numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True)[1] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def radius(data_and_metadata: DataAndMetadata.DataAndMetadata, normalize: bool=True) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = -1 if normalize else -data_shape(data_and_metadata)[0] * 0.5 stop_0 = -start_0 start_1 = -1 if normalize else -data_shape(data_and_metadata)[1] * 0.5 stop_1 = -start_1 icol, irow = numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True) return numpy.sqrt(icol * icol + irow * irow) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def full(shape: DataAndMetadata.ShapeType, fill_value, dtype: numpy.dtype = None) -> DataAndMetadata.DataAndMetadata: """Generate a constant valued image with the given shape. full(4, shape(4, 5)) full(0, data_shape(b)) """ dtype = dtype if dtype else numpy.dtype(numpy.float64) return DataAndMetadata.new_data_and_metadata(numpy.full(shape, DataAndMetadata.extract_data(fill_value), dtype)) def arange(start: int, stop: int=None, step: int=None) -> DataAndMetadata.DataAndMetadata: if stop is None: start = 0 stop = start if step is None: step = 1 return DataAndMetadata.new_data_and_metadata(numpy.linspace(int(start), int(stop), int(step))) def linspace(start: float, stop: float, num: int, endpoint: bool=True) -> DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(numpy.linspace(start, stop, num, endpoint)) def logspace(start: float, stop: float, num: int, endpoint: bool=True, base: float=10.0) -> DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(numpy.logspace(start, stop, num, endpoint, base)) def apply_dist(data_and_metadata: DataAndMetadata.DataAndMetadata, mean: float, stddev: float, dist, fn) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) return DataAndMetadata.new_data_and_metadata(getattr(dist(loc=mean, scale=stddev), fn)(data_and_metadata.data)) def take_item(data, key): return data[key] def data_shape(data_and_metadata: DataAndMetadata.DataAndMetadata) -> DataAndMetadata.ShapeType: return data_and_metadata.data_shape def astype(data: numpy.ndarray, dtype: numpy.dtype) -> numpy.ndarray: return data.astype(dtype) dtype_map: typing.Mapping[typing.Any, str] = {int: "int", float: "float", complex: "complex", numpy.int16: "int16", numpy.int32: "int32", numpy.int64: "int64", numpy.uint8: "uint8", numpy.uint16: "uint16", numpy.uint32: "uint32", numpy.uint64: "uint64", numpy.float32: "float32", numpy.float64: "float64", numpy.complex64: "complex64", numpy.complex128: "complex128"} dtype_inverse_map = {dtype_map[k]: k for k in dtype_map} def str_to_dtype(str: str) -> numpy.dtype: return dtype_inverse_map.get(str, float) def dtype_to_str(dtype: numpy.dtype) -> str: return dtype_map.get(dtype, "float") def function_fft(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None # scaling: numpy.sqrt(numpy.mean(numpy.absolute(data_copy)**2)) == numpy.sqrt(numpy.mean(numpy.absolute(data_copy_fft)**2)) # see https://gist.github.com/endolith/1257010 if Image.is_data_1d(data): scaling = 1.0 / numpy.sqrt(data_shape[0]) return scipy.fftpack.fftshift(numpy.multiply(scipy.fftpack.fft(data), scaling)) elif Image.is_data_2d(data): if Image.is_data_rgb_type(data): if Image.is_data_rgb(data): data_copy = numpy.sum(data[..., :] * (0.2126, 0.7152, 0.0722), 2) else: data_copy = numpy.sum(data[..., :] * (0.2126, 0.7152, 0.0722, 0.0), 2) else: data_copy = data.copy() # let other threads use data while we're processing scaling = 1.0 / numpy.sqrt(data_shape[1] * data_shape[0]) # note: the numpy.fft.fft2 is faster than scipy.fftpack.fft2, probably either because # our conda distribution compiles numpy for multiprocessing, the numpy version releases # the GIL, or both. return scipy.fftpack.fftshift(numpy.multiply(numpy.fft.fft2(data_copy), scaling)) else: raise NotImplementedError() src_dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or src_dimensional_calibrations is None: return None assert len(src_dimensional_calibrations) == len( Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype)) dimensional_calibrations = [Calibration.Calibration((-0.5 - 0.5 * data_shape_n) / (dimensional_calibration.scale * data_shape_n), 1.0 / (dimensional_calibration.scale * data_shape_n), "1/" + dimensional_calibration.units) for dimensional_calibration, data_shape_n in zip(src_dimensional_calibrations, data_shape)] return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=dimensional_calibrations) def function_ifft(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None # scaling: numpy.sqrt(numpy.mean(numpy.absolute(data_copy)**2)) == numpy.sqrt(numpy.mean(numpy.absolute(data_copy_fft)**2)) # see https://gist.github.com/endolith/1257010 if Image.is_data_1d(data): scaling = numpy.sqrt(data_shape[0]) return scipy.fftpack.ifft(scipy.fftpack.ifftshift(data) * scaling) elif Image.is_data_2d(data): data_copy = data.copy() # let other threads use data while we're processing scaling = numpy.sqrt(data_shape[1] * data_shape[0]) return scipy.fftpack.ifft2(scipy.fftpack.ifftshift(data_copy) * scaling) else: raise NotImplementedError() src_dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or src_dimensional_calibrations is None: return None assert len(src_dimensional_calibrations) == len( Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype)) def remove_one_slash(s): if s.startswith("1/"): return s[2:] else: return "1/" + s dimensional_calibrations = [Calibration.Calibration(0.0, 1.0 / (dimensional_calibration.scale * data_shape_n), remove_one_slash(dimensional_calibration.units)) for dimensional_calibration, data_shape_n in zip(src_dimensional_calibrations, data_shape)] return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=dimensional_calibrations) def function_autocorrelate(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None if Image.is_data_2d(data): data_copy = data.copy() # let other threads use data while we're processing data_std = data_copy.std(dtype=numpy.float64) if data_std != 0.0: data_norm = (data_copy - data_copy.mean(dtype=numpy.float64)) / data_std else: data_norm = data_copy scaling = 1.0 / (data_norm.shape[0] * data_norm.shape[1]) data_norm = numpy.fft.rfft2(data_norm) return numpy.fft.fftshift(numpy.fft.irfft2(data_norm * numpy.conj(data_norm))) * scaling # this gives different results. why? because for some reason scipy pads out to 1023 and does calculation. # see https://github.com/scipy/scipy/blob/master/scipy/signal/signaltools.py # return scipy.signal.fftconvolve(data_copy, numpy.conj(data_copy), mode='same') return None if data_and_metadata is None: return None return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_crosscorrelate(*args) -> typing.Optional[DataAndMetadata.DataAndMetadata]: if len(args) != 2: return None data_and_metadata1, data_and_metadata2 = args[0], args[1] data_and_metadata1 = DataAndMetadata.promote_ndarray(data_and_metadata1) data_and_metadata2 = DataAndMetadata.promote_ndarray(data_and_metadata2) shape = DataAndMetadata.determine_shape(data_and_metadata1, data_and_metadata2) data_and_metadata1 = DataAndMetadata.promote_constant(data_and_metadata1, shape) data_and_metadata2 = DataAndMetadata.promote_constant(data_and_metadata2, shape) def calculate_data(): data1 = data_and_metadata1.data data2 = data_and_metadata2.data if data1 is None or data2 is None: return None if Image.is_data_2d(data1) and Image.is_data_2d(data2): data_std1 = data1.std(dtype=numpy.float64) if data_std1 != 0.0: norm1 = (data1 - data1.mean(dtype=numpy.float64)) / data_std1 else: norm1 = data1 data_std2 = data2.std(dtype=numpy.float64) if data_std2 != 0.0: norm2 = (data2 - data2.mean(dtype=numpy.float64)) / data_std2 else: norm2 = data2 scaling = 1.0 / (norm1.shape[0] * norm1.shape[1]) return numpy.fft.fftshift(numpy.fft.irfft2(numpy.fft.rfft2(norm1) * numpy.conj(
numpy.fft.rfft2(norm2)
numpy.fft.rfft2
# -*- coding: utf-8 -*- """ Created on Tue Jul 28 02:13:24 2015 @author: hoseung """ import numpy as np def extract_halos_within(halos, ind_center, scale=1.0, Mcut=1e5): import numpy as np import utils.sampling as smp ''' Returns indices of halos within SCALE * Rvir of the central halo. def extract_halos_within(halos, ind_center, scale=1.0) halos : halo finder output (single snapshot) ind_center : index of central halo scale : multiplying factor to the Rvir of the central halo ''' xc = halos['x'][i_center] yc = halos['y'][i_center] zc = halos['z'][i_center] rvir= halos['rvir'][i_center] xx = halos['x'] yy = halos['y'] zz = halos['z'] m =
np.array(halos['m'])
numpy.array
# -*- coding: utf-8 -*- """ Module to manipulate, analyze and visualize structural geology data. """ from __future__ import division, print_function from copy import deepcopy import warnings import pickle import numpy as np import matplotlib.pyplot as plt from apsg.helpers import ( KentDistribution, sind, cosd, acosd, asind, atand, atan2d, angle_metric, l2v, getldd, _linear_inverse_kamb, _square_inverse_kamb, _schmidt_count, _kamb_count, _exponential_kamb, ) __all__ = ( "Vec3", "Lin", "Fol", "Pair", "Fault", "Group", "PairSet", "FaultSet", "Cluster", "StereoGrid", "G", "settings", ) # Default module settings (singleton). settings = dict(notation="dd", # Default notation for Fol dd or rhr vec2dd=False, # Show Vec3 as plunge direction and plunge precision=1e-12, # Numerical precision for comparism figsize=(8, 6)) # Default figure size class Vec3(np.ndarray): """ ``Vec3`` is base class to store 3-dimensional vectors derived from ``numpy.ndarray`` on which ``Lin`` and ``Fol`` classes are based. ``Vec3`` support most of common vector algebra using following operators - ``+`` - vector addition - ``-`` - vector subtraction - ``*`` - dot product - ``**`` - cross product - ``abs`` - magnitude (length) of vector Check following methods and properties for additional operations. Args: arr (array_like): Input data that or can be converted to an array. This includes lists, tuples, and ndarrays. When more than one argument is passed (i.e. `inc` is not `None`) `arr` is interpreted as dip direction of the vector in degrees. inc (float): `None` or dip of the vector in degrees. mag (float): The magnitude of the vector if `inc` is not `None`. Returns: ``Vec3`` object Example: >>> v = Vec3([1, -2, 3]) >>> abs(v) 3.7416573867739413 # The dip direction and dip angle of vector with magnitude of 1 and 3. >>> v = Vec3(120, 60) >>> abs(v) 1.0 >>> v = Vec3(120, 60, 3) >>> abs(v) 3.0 """ def __new__(cls, arr, inc=None, mag=1.0): if inc is None: obj = np.asarray(arr).view(cls) else: obj = mag * Lin(arr, inc).view(cls) return obj def __repr__(self): if settings["vec2dd"]: result = "V:{:.0f}/{:.0f}".format(*self.dd) else: result = "V({:.3f}, {:.3f}, {:.3f})".format(*self) return result def __str__(self): return repr(self) def __mul__(self, other): """ Return the dot product of two vectors. """ return np.dot(self, other) # What about `numpy.inner`? def __abs__(self): """ Return the 2-norm or Euclidean norm of vector. """ return np.linalg.norm(self) def __pow__(self, other): """ Return cross product if argument is vector or power of vector. """ if np.isscalar(other): return pow(abs(self), other) else: return self.cross(other) def __eq__(self, other): """ Return `True` if vectors are equal, otherwise `False`. """ if not isinstance(other, self.__class__): return False return self is other or abs(self - other) < settings["precision"] def __ne__(self, other): """ Return `True` if vectors are not equal, otherwise `False`. Overrides the default implementation (unnecessary in Python 3). """ return not self == other def __hash__(self): return NotImplementedError @classmethod def rand(cls): """ Random unit vector from distribution on sphere """ return cls(np.random.randn(3)).uv @property def type(self): """ Return the type of ``self``. """ return type(self) @property def upper(self): """ Return `True` if z-coordinate is negative, otherwise `False`. """ return np.sign(self[2]) < 0 @property def flip(self): """ Return a new vector with inverted `z` coordinate. """ return Vec3((self[0], self[1], -self[2])) @property def uv(self): """ Normalize the vector to unit length. Returns: unit vector of ``self`` Example: >>> u = Vec3([1,1,1]) >>> u.uv V(0.577, 0.577, 0.577) """ return self / abs(self) def cross(self, other): """ Calculate the cross product of two vectors. Args: other: other ``Vec3`` vector Returns: The cross product of `self` and `other`. Example: >>> v = Vec3([1, 0, 0]) >>> u = Vec3([0, 0, 1]) >>> v.cross(u) V(0.000, -1.000, 0.000) """ return Vec3(np.cross(self, other)) def angle(self, other): """ Calculate the angle between two vectors in degrees. Args: other: other ``Vec3`` vector Returns: The angle between `self` and `other` in degrees. Example: >>> v = Vec3([1, 0, 0]) >>> u = Vec3([0, 0, 1]) >>> v.angle(u) 90.0 """ if isinstance(other, Group): return other.angle(self) else: return acosd(np.clip(np.dot(self.uv, other.uv), -1, 1)) def rotate(self, axis, angle): """ Return rotated vector about axis. Args: axis (``Vec3``): axis of rotation angle (float): angle of rotation in degrees Returns: vector represenatation of `self` rotated `angle` degrees about vector `axis`. Rotation is clockwise along axis direction. Example: # Rotate `e1` vector around `z` axis. >>> u = Vec3([1, 0, 0]) >>> z = Vec3([0, 0, 1]) >>> u.rotate(z, 90) V(0.000, 1.000, 0.000) """ e = Vec3(self) # rotate all types as vectors k = axis.uv r = cosd(angle) * e + sind(angle) * k.cross(e) + (1 - cosd(angle)) * k * (k * e) return r.view(type(self)) def proj(self, other): """ Return projection of vector `u` onto vector `v`. Args: other (``Vec3``): other vector Returns: vector representation of `self` projected onto 'other' Example: >> u.proj(v) Note: To project on plane use: `u - u.proj(v)`, where `v` is plane normal. """ r = np.dot(self, other) * other / np.linalg.norm(other) return r.view(type(self)) def H(self, other): """ Return ``DefGrad`` rotational matrix H which rotate vector `u` to vector `v`. Axis of rotation is perpendicular to both vectors `u` and `v`. Args: other (``Vec3``): other vector Returns: ``Defgrad`` rotational matrix Example: >>> u = Vec3(210, 50) >>> v = Vec3(60, 70) >>> u.transform(u.H(v)) == v True """ from apsg.tensors import DefGrad return DefGrad.from_axis(self ** other, self.V.angle(other)) def transform(self, F, **kwargs): """ Return affine transformation of vector `u` by matrix `F`. Args: F (``DefGrad`` or ``numpy.array``): transformation matrix Keyword Args: norm: normalize transformed vectors. [True or False] Default False Returns: vector representation of affine transformation (dot product) of `self` by `F` Example: # Reflexion of `y` axis. >>> F = [[1, 0, 0], [0, -1, 0], [0, 0, 1]] >>> u = Vec3([1, 1, 1]) >>> u.transform(F) V(1.000, -1.000, 1.000) """ if kwargs.get("norm", False): res = np.dot(F, self).view(type(self)).uv else: res = np.dot(F, self).view(type(self)) return res @property def dd(self): """ Return azimuth, inclination tuple. Example: >>> v = Vec3([1, 0, -1]) >>> azi, inc = v.dd >>> azi 0.0 >>> inc -44.99999999999999 """ n = self.uv azi = atan2d(n[1], n[0]) % 360 inc = asind(n[2]) return azi, inc @property def aslin(self): """ Convert `self` to ``Lin`` object. Example: >>> u = Vec3([1,1,1]) >>> u.aslin L:45/35 """ return self.copy().view(Lin) @property def asfol(self): """ Convert `self` to ``Fol`` object. Example: >>> u = Vec3([1,1,1]) >>> u.asfol S:225/55 """ return self.copy().view(Fol) @property def asvec3(self): """ Convert `self` to ``Vec3`` object. Example: >>> l = Lin(120,50) >>> l.asvec3 V(-0.321, 0.557, 0.766) """ return self.copy().view(Vec3) @property def V(self): """ Convert `self` to ``Vec3`` object. Note: This is an alias of ``asvec3`` property. """ return self.copy().view(Vec3) class Lin(Vec3): """ Represents a linear feature. It provides all ``Vec3`` methods and properties but behave as axial vector. Args: azi: The plunge direction or trend in degrees. inc: The plunge in degrees. Example: >>> Lin(120, 60) L:120/60 """ def __new__(cls, azi, inc): v = [cosd(azi) * cosd(inc), sind(azi) * cosd(inc), sind(inc)] return Vec3(v).view(cls) def __repr__(self): return "L:{:.0f}/{:.0f}".format(*self.dd) def __add__(self, other): """ Sum a `self` with `other`. """ if self * other < 0: other = -other return super(Lin, self).__add__(other) def __iadd__(self, other): if self * other < 0: other = -other return super(Lin, self).__iadd__(other) def __sub__(self, other): """ Subtract a `self` with `other`. """ if self * other < 0: other = -other return super(Lin, self).__sub__(other) def __isub__(self, other): if self * other < 0: other = -other return super(Lin, self).__isub__(other) def __eq__(self, other): """ Return `True` if linear features are equal. """ return bool(abs(self - other) < settings["precision"] or abs(self + other) < settings["precision"]) def __ne__(self, other): """ Return `True` if linear features are not equal. """ return not (self == other or self == -other) @classmethod def rand(cls): """ Random Lin """ return Vec3.rand().aslin def dot(self, other): """ Calculate the axial dot product. """ return abs(np.dot(self, other)) def cross(self, other): """ Create planar feature defined by two linear features. Example: >>> l = Lin(120,10) >>> l.cross(Lin(160,30)) S:196/35 """ return ( other.cross(self) if isinstance(other, Group) else np.cross(self, other).view(Fol) ) def angle(self, other): """ Return an angle (<90) between two linear features in degrees. Example: >>> l = Lin(45, 50) >>> l.angle(Lin(110, 25)) 55.253518182588884 """ return ( other.angle(self) if isinstance(other, Group) else acosd(np.clip(self.uv.dot(other.uv), -1, 1)) ) @property def dd(self): """ Return trend and plunge tuple. """ n = self.uv if n[2] < 0: n = -n azi = atan2d(n[1], n[0]) % 360 inc = asind(n[2]) return azi, inc class Fol(Vec3): """ Represents a planar feature. It provides all ``Vec3`` methods and properties but plane normal behave as axial vector. Args: azi: The dip azimuth in degrees. inc: The dip angle in degrees. Example: >>> Fol(120, 60) S:120/60 """ def __new__(cls, azi, inc): """ Create a planar feature. """ if settings["notation"] == "rhr": azi += 90 v = [-cosd(azi) * sind(inc), -sind(azi) * sind(inc), cosd(inc)] return Vec3(v).view(cls) def __repr__(self): return "S:{:.0f}/{:.0f}".format(*getattr(self, settings["notation"])) def __add__(self, other): """ Sum of axial data. """ if self * other < 0: other = -other return super(Fol, self).__add__(other) def __iadd__(self, other): if self * other < 0: other = -other return super(Fol, self).__iadd__(other) def __sub__(self, other): """ Subtract the axial data. """ if self * other < 0: other = -other return super(Fol, self).__sub__(other) def __isub__(self, other): if self * other < 0: other = -other return super(Fol, self).__isub__(other) def __eq__(self, other): """ Return `True` if planar features are equal, otherwise `False`. """ return bool(abs(self - other) < settings["precision"] or abs(self + other) < settings["precision"]) def __ne__(self, other): """ Return `False` if planar features are equal, otherwise `True`. """ return not (self == other or self == -other) @classmethod def rand(cls): """ Random Fol """ return Vec3.rand().asfol def angle(self, other): """ Return angle of two planar features in degrees. Example: >>> f = Fol(120, 30) >>> f.angle(Fol(210, 60)) 64.34109372674472 """ if isinstance(other, Group): return other.angle(self) else: return acosd(np.clip(self.uv.dot(other.uv), -1, 1)) def cross(self, other): """ Return linear feature defined as intersection of two planar features. Example: >>> f = Fol(60,30) >>> f.cross(Fol(120,40)) L:72/29 """ if isinstance(other, Group): return other.cross(self) else: return np.cross(self, other).view(Lin) def dot(self, other): """ Axial dot product. """ return abs(np.dot(self, other)) def transform(self, F, **kwargs): """ Return affine transformation of planar feature by matrix `F`. Args: F (``DefGrad`` or ``numpy.array``): transformation matrix Keyword Args: norm: normalize transformed vectors. True or False. Default False Returns: representation of affine transformation (dot product) of `self` by `F` Example: >>> F = [[1, 0, 0], [0, 1, 1], [0, 0, 1]] >>> f = Fol(90, 90) >>> f.transform(F) S:90/45 """ if kwargs.get("norm", False): res = np.dot(self, np.linalg.inv(F)).view(type(self)).uv else: res = np.dot(self, np.linalg.inv(F)).view(type(self)) return res @property def dd(self): """ Return dip-direction, dip tuple. """ n = self.uv if n[2] < 0: n = -n azi = (atan2d(n[1], n[0]) + 180) % 360 inc = 90 - asind(n[2]) return azi, inc @property def rhr(self): """ Return strike and dip tuple (right-hand-rule). """ azi, inc = self.dd return (azi - 90) % 360, inc @property def dv(self): """ Return a dip ``Vec3`` object. Example: >>> f = Fol(120,50) >>> f.dv V(-0.321, 0.557, 0.766) """ azi, inc = self.dd return Lin(azi, inc).view(Vec3) def rake(self, rake): """ Return a ``Vec3`` object with given rake. Example: >>> f = Fol(120,50) >>> f.rake(30) V(0.589, 0.711, 0.383) >>> f.rake(30).aslin L:50/23 """ return self.dv.rotate(self, rake - 90) class Pair(object): """ The class to store pair of planar and linear feature. When ``Pair`` object is created, both planar and linear feature are adjusted, so linear feature perfectly fit onto planar one. Warning is issued, when misfit angle is bigger than 20 degrees. Args: fazi (float): dip azimuth of planar feature in degrees finc (float): dip of planar feature in degrees lazi (float): plunge direction of linear feature in degrees linc (float): plunge of linear feature in degrees Example: >>> p = Pair(140, 30, 110, 26) """ def __init__(self, fazi, finc, lazi, linc): fol = Fol(fazi, finc) lin = Lin(lazi, linc) misfit = 90 - fol.angle(lin) if misfit > 20: warnings.warn("Warning: Misfit angle is %.1f degrees." % misfit) ax = fol ** lin ang = (Vec3(lin).angle(fol) - 90) / 2 fol = fol.rotate(ax, ang) lin = lin.rotate(ax, -ang) self.fvec = Vec3(fol) self.lvec = Vec3(lin) self.misfit = misfit def __repr__(self): vals = getattr(self.fol, settings["notation"]) + self.lin.dd return "P:{:.0f}/{:.0f}-{:.0f}/{:.0f}".format(*vals) def __eq__(self, other): """ Return `True` if pairs are equal, otherwise `False`. """ if not isinstance(other, self.__class__): return False return (self.fol == other.fol) and (self.lin == other.lin) def __ne__(self, other): """ Return `True` if pairs are not equal, otherwise `False`. """ return not self == other @classmethod def rand(cls): """ Random Pair """ lin, per = Lin.rand(), Lin.rand() fol = lin ** per fazi, finc = fol.dd lazi, linc = lin.dd return cls(fazi, finc, lazi, linc) @classmethod def from_pair(cls, fol, lin): """ Create ``Pair`` from ``Fol`` and ``Lin`` objects. Example: >>> f = Fol(140, 30) >>> l = Lin(110, 26) >>> p = Pair.from_pair(f, l) """ data = getattr(fol, settings["notation"]) + lin.dd return cls(*data) def rotate(self, axis, phi): """Rotates ``Pair`` by angle `phi` about `axis`. Args: axis (``Vec3``): axis of rotation phi (float): angle of rotation in degrees Example: >>> p = Pair(140, 30, 110, 26) >>> p.rotate(Lin(40, 50), 120) P:210/83-287/60 """ rot = deepcopy(self) rot.fvec = self.fvec.rotate(axis, phi) rot.lvec = self.lvec.rotate(axis, phi) return rot @property def type(self): return type(self) @property def fol(self): """ Return a planar feature of ``Pair`` as ``Fol``. """ return self.fvec.asfol @property def lin(self): """ Return a linear feature of ``Pair`` as ``Lin``. """ return self.lvec.aslin @property def rax(self): """ Return an oriented vector perpendicular to both ``Fol`` and ``Lin``. """ return self.fvec ** self.lvec def transform(self, F, **kwargs): """Return an affine transformation of ``Pair`` by matrix `F`. Args: F (``DefGrad`` or ``numpy.array``): transformation matrix Keyword Args: norm: normalize transformed vectors. True or False. Default False Returns: representation of affine transformation (dot product) of `self` by `F` Example: >>> F = [[1, 0, 0], [0, 1, 1], [0, 0, 1]] >>> p = Pair(90, 90, 0, 50) >>> p.transform(F) P:90/45-50/37 """ t = deepcopy(self) if kwargs.get("norm", False): t.lvec = np.dot(F, t.lvec).view(Vec3).uv t.fvec = np.dot(t.fvec, np.linalg.inv(F)).view(Vec3).uv else: t.lvec = np.dot(F, t.lvec).view(Vec3) t.fvec = np.dot(t.fvec, np.linalg.inv(F)).view(Vec3) return t def H(self, other): """ Return ``DefGrad`` rotational matrix H which rotate ``Pair`` to other ``Pair``. Args: other (``Pair``): other pair Returns: ``Defgrad`` rotational matrix Example: >>> p1 = Pair(58, 36, 81, 34) >>> p2 = Pair(217,42, 162, 27) >>> p1.transform(p1.H(p2)) == p2 True """ from apsg.tensors import DefGrad return DefGrad(DefGrad.from_pair(other) * DefGrad.from_pair(self).I) class Fault(Pair): """Fault class for related ``Fol`` and ``Lin`` instances with sense of movement. When ``Fault`` object is created, both planar and linear feature are adjusted, so linear feature perfectly fit onto planar one. Warning is issued, when misfit angle is bigger than 20 degrees. Args: fazi (float): dip azimuth of planar feature in degrees finc (float): dip of planar feature in degrees lazi (float): plunge direction of linear feature in degrees linc (float): plunge of linear feature in degrees sense (float): sense of movement +/-1 hanging-wall up/down Example: >>> p = Fault(140, 30, 110, 26, -1) """ def __init__(self, fazi, finc, lazi, linc, sense): assert np.sign(sense) != 0, "Sense parameter must be positive or negative" super(Fault, self).__init__(fazi, finc, lazi, linc) self.lvec = np.sign(sense) * self.lvec def __repr__(self): s = ["", "+", "-"][self.sense] vals = getattr(self.fol, settings["notation"]) + self.lin.dd + (s,) return "F:{:.0f}/{:.0f}-{:.0f}/{:.0f} {:s}".format(*vals) def __eq__(self, other): """ Return `True` if faults are equal, otherwise `False`. """ if not isinstance(other, self.__class__): return False return (self.p == other.p) and (self.t == other.t) def __ne__(self, other): """ Return `True` if faults are not equal, otherwise `False`. """ return not self == other @classmethod def from_pair(cls, fol, lin, sense): """Create ``Fault`` with given sense from ``Fol`` and ``Lin`` objects""" data = getattr(fol, settings["notation"]) + lin.dd + (sense,) return cls(*data) @classmethod def from_vecs(cls, fvec, lvec): """Create ``Fault`` from two ortogonal ``Vec3`` objects Args: fvec: vector normal to fault plane lvec: vector parallel to movement """ orax = fvec ** lvec rax = Vec3(*fvec.aslin.dd) ** Vec3(*lvec.dd) sense = 1 - 2 * (orax == rax) data = getattr(fvec.asfol, settings["notation"]) + lvec.dd + (sense,) return cls(*data) def rotate(self, axis, phi): """Rotates ``Fault`` by `phi` degrees about `axis`. Args: axis: axis of rotation phi: angle of rotation in degrees Example: >>> f = Fault(140, 30, 110, 26, -1) >>> f.rotate(Lin(220, 10), 60) F:300/31-301/31 + """ rot = deepcopy(self) rot.fvec = self.fvec.rotate(axis, phi) rot.lvec = self.lvec.rotate(axis, phi) return rot @property def sense(self): """Return sense of movement (+/-1)""" # return 2 * int(self.fvec**self.lvec == Vec3(self.fol**self.lin)) - 1 orax = self.fvec.uv ** self.lvec.uv rax = Vec3(*self.fol.aslin.dd) ** Vec3(*self.lin.dd) return 2 * (orax == rax) - 1 @property def pvec(self): """Return P axis as ``Vec3``""" return self.fvec.rotate(self.rax, -45) @property def tvec(self): """Return T-axis as ``Vec3``.""" return self.fvec.rotate(self.rax, 45) @property def p(self): """Return P-axis as ``Lin``""" return self.pvec.aslin @property def t(self): """Return T-axis as ``Lin``""" return self.tvec.aslin @property def m(self): """Return kinematic M-plane as ``Fol``""" return (self.fvec ** self.lvec).asfol @property def d(self): """Return dihedra plane as ``Fol``""" return (self.rax ** self.fvec).asfol class Group(list): """ Represents a homogeneous group of ``Vec3``, ``Fol`` or ``Lin`` objects. ``Group`` provide append and extend methods as well as list indexing to get or set individual items. It also supports following operators: - ``+`` - merge groups - ``**`` - mutual cross product - ``abs`` - array of magnitudes (lengths) of all objects See following methods and properties for additional operations. Args: data (list): list of ``Vec3``, ``Fol`` or ``Lin`` objects name (str): Name of group Returns: ``Group`` object Example: >>> g = Group([Lin(120, 20), Lin(151, 23), Lin(137, 28)]) """ def __init__(self, data, name="Default"): assert issubclass(type(data), list), "Argument must be list of data." assert len(data) > 0, "Empty group is not allowed." tp = type(data[0]) assert issubclass(tp, Vec3), "Data must be Fol, Lin or Vec3 type." assert all( [isinstance(e, tp) for e in data] ), "All data in group must be of same type." super(Group, self).__init__(data) self.type = tp self.name = name def __repr__(self): return "G:%g %s (%s)" % (len(self), self.type.__name__, self.name) def __abs__(self): # abs returns array of euclidean norms return np.asarray([abs(e) for e in self]) def __add__(self, other): # merge Datasets assert isinstance(other, Group), "Only groups could be merged" assert self.type is other.type, "Only same type groups could be merged" return Group(list(self) + other, name=self.name) def __pow__(self, other): """Return all mutual cross products of two ``Group`` objects """ if np.isscalar(other): return pow(abs(self), other) else: return self.cross(other) def __setitem__(self, key, value): assert isinstance(value, self.type), ( "item is not of type %s" % self.type.__name__ ) super(Group, self).__setitem__(key, value) def __getitem__(self, key): """Group fancy indexing""" if isinstance(key, slice): key = np.arange(*key.indices(len(self))) if isinstance(key, list) or isinstance(key, tuple): key = np.asarray(key) if isinstance(key, np.ndarray): if key.dtype == "bool": key = np.flatnonzero(key) return Group([self[i] for i in key]) else: return super(Group, self).__getitem__(key) def append(self, item): assert isinstance(item, self.type), ( "item is not of type %s" % self.type.__name__ ) super(Group, self).append(item) def extend(self, items=()): for item in items: self.append(item) def copy(self): return Group(deepcopy(self.data), name=self.name) @property def upper(self): """ Return boolean array of z-coordinate negative test """ return np.asarray([e.upper for e in self]) @property def flip(self): """Return ``Group`` object with inverted z-coordinate.""" return Group([e.flip for e in self], name=self.name) @property def data(self): """Return list of objects in ``Group``.""" return list(self) @classmethod def from_csv(cls, filename, typ=Lin, acol=0, icol=1): """Create ``Group`` object from csv file Args: filename (str): name of CSV file to load Keyword Args: typ: Type of objects. Default ``Lin`` acol (int or str): azimuth column (starts from 0). Default 0 icol (int or str): inclination column (starts from 0). Default 1 When acol and icol are strings they are used as column headers. Example: >>> g1 = Group.from_csv('file1.csv', typ=Fol) #doctest: +SKIP >>> g2 = Group.from_csv('file2.csv', acol=1, icol=2) #doctest: +SKIP """ from os.path import basename import csv with open(filename) as csvfile: has_header = csv.Sniffer().has_header(csvfile.read(1024)) csvfile.seek(0) dialect = csv.Sniffer().sniff(csvfile.read(1024)) csvfile.seek(0) if isinstance(acol, int) and isinstance(icol, int): if has_header: reader = csv.DictReader(csvfile, dialect=dialect) aname, iname = reader.fieldnames[acol], reader.fieldnames[icol] r = [(float(row[aname]), float(row[iname])) for row in reader] else: reader = csv.reader(csvfile, dialect=dialect) r = [(float(row[acol]), float(row[icol])) for row in reader] else: if has_header: reader = csv.DictReader(csvfile, dialect=dialect) r = [(float(row[acol]), float(row[icol])) for row in reader] else: raise ValueError('No header line in CSV file...') azi, inc = zip(*r) print("Group loaded from file {}".format(basename(filename))) return cls.from_array(azi, inc, typ=typ, name=basename(filename)) def to_csv(self, filename, delimiter=",", rounded=False): """Save ``Group`` object to csv file Args: filename (str): name of CSV file to save. Keyword Args: delimiter (str): values delimiter. Default ',' rounded (bool): round values to integer. Default False """ from os.path import basename import csv if rounded: data = np.round(self.dd.T).astype(int) else: data = self.dd.T with open(filename, 'w', newline='') as csvfile: fieldnames = ['azi', 'inc'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for azi, inc in data: writer.writerow({'azi': azi, 'inc': inc}) print("Group saved to file {}".format(basename(filename))) @classmethod def from_array(cls, azis, incs, typ=Lin, name="Default"): """Create ``Group`` object from arrays of azimuths and inclinations Args: azis: list or array of azimuths incs: list or array of inclinations Keyword Args: typ: type of data. ``Fol`` or ``Lin`` name: name of ``Group`` object. Default is 'Default' Example: >>> f = Fault(140, 30, 110, 26, -1) """ data = [] data = [typ(azi, inc) for azi, inc in zip(azis, incs)] return cls(data, name=name) @property def aslin(self): """Return ``Group`` object with all data converted to ``Lin``.""" return Group([e.aslin for e in self], name=self.name) @property def asfol(self): """Return ``Group`` object with all data converted to ``Fol``.""" return Group([e.asfol for e in self], name=self.name) @property def asvec3(self): """Return ``Group`` object with all data converted to ``Vec3``.""" return Group([e.asvec3 for e in self], name=self.name) @property def V(self): """Return ``Group`` object with all data converted to ``Vec3``.""" return Group([e.asvec3 for e in self], name=self.name) @property def R(self): """Return resultant of data in ``Group`` object. Resultant is of same type as ``Group``. Note that ``Fol`` and ``Lin`` are axial in nature so resultant can give other result than expected. For most cases is should not be problem as it is calculated as resultant of centered data. Anyway for axial data orientation tensor analysis will give you right answer. As axial summing is not commutative we use vectorial summing of centered data for Fol and Lin """ if self.type == Vec3: r = Vec3(np.sum(self, axis=0)) elif self.type == Lin: _, _, u = np.linalg.svd(self.ortensor._matrix) # centered cntr = self.transform(u).rotate(Lin(90, 0), 90) # all points Z-ward cg = Group.from_array(*cntr.dd, typ=Vec3) r = cg.R.aslin.rotate(Lin(90, 0), -90).transform(u.T) elif self.type == Fol: _, _, u = np.linalg.svd(self.ortensor._matrix) # centered cntr = self.transform(u).rotate(Lin(90, 0), 90) # all points Z-ward cg = Group.from_array(*cntr.aslin.dd, typ=Vec3) r = cg.R.asfol.rotate(Lin(90, 0), -90).transform(u.T) else: raise TypeError("Wrong argument type! Only Vec3, Lin and Fol!") return r @property def var(self): """Spherical variance based on resultant length (Mardia 1972). var = 1 - |R| / n """ return 1 - abs(self.R) / len(self) @property def totvar(self): """Return total variance based on projections onto resultant totvar = sum(|x - R|^2) / 2n Note that difference between totvar and var is measure of difference between sample and population mean """ return 1 - np.mean(self.dot(self.R.uv)) @property def fisher_stats(self): """Fisher's statistics. fisher_stats property returns dictionary with `k`, `csd` and `a95` keywords. """ stats = {"k": np.inf, "a95": 180.0, "csd": 0.0} N = len(self) R = abs(self.R) if N != R: stats["k"] = (N - 1) / (N - R) stats["csd"] = 81 / np.sqrt(stats["k"]) stats["a95"] = acosd(1 - ((N - R) / R) * (20 ** (1 / (N - 1)) - 1)) return stats @property def delta(self): """Cone angle containing ~63% of the data in degrees.""" return acosd(abs(self.R) / len(self)) @property def rdegree(self): """Degree of preffered orientation of data in ``Group`` object. D = 100 * (2 * |R| - n) / n """ N = len(self) return 100 * (2 * abs(self.R) - N) / N def cross(self, other=None): """Return cross products of all data in ``Group`` object Without arguments it returns cross product of all pairs in dataset. If argument is group or single data object all mutual cross products are returned. """ res = [] if other is None: for i in range(len(self) - 1): for j in range(i + 1, len(self)): res.append(self[i] ** self[j]) elif isinstance(other, Group): for e in self: for f in other: res.append(e ** f) elif issubclass(type(other), Vec3): for e in self: res.append(e ** other) else: raise TypeError("Wrong argument type!") return Group(res, name=self.name) def rotate(self, axis, phi): """Rotate ``Group`` object `phi` degress about `axis`.""" return Group([e.rotate(axis, phi) for e in self], name=self.name) @property def centered(self): """Rotate ``Group`` object to position that eigenvectors are parallel to axes of coordinate system: E1(vertical), E2(east-west), E3(north-south) """ _, _, u = np.linalg.svd(self.ortensor._matrix) return self.transform(u).rotate(Lin(90, 0), 90) @property def halfspace(self): """Change orientation of vectors in Group, so all have angle<=90 with resultant. """ v = self.asvec3 alldone = np.all(v.angle(v.R) <= 90) while not alldone: ang = v.angle(v.R) for ix, do in enumerate(ang > 90): if do: v[ix] = -v[ix] alldone = np.all(v.angle(v.R) <= 90) if self.type == Lin: v = v.aslin if self.type == Fol: v = v.asfol return v @property def uv(self): """Return ``Group`` object with normalized (unit length) elements.""" return Group([e.uv for e in self], name=self.name) def angle(self, other=None): """Return angles of all data in ``Group`` object Without arguments it returns angles of all pairs in dataset. If argument is group or single data object all mutual angles are returned. """ res = [] if other is None: for i in range(len(self) - 1): for j in range(i + 1, len(self)): res.append(self[i].angle(self[j])) elif isinstance(other, Group): for e in self: for f in other: res.append(e.angle(f)) elif issubclass(type(other), Vec3): for e in self: res.append(e.angle(other)) else: raise TypeError("Wrong argument type!") return np.array(res) def proj(self, vec): """Return projections of all data in ``Group`` onto vector. """ return Group([e.proj(vec) for e in self], name=self.name) def dot(self, vec): """Return array of dot products of all data in ``Group`` with vector. """ return np.array([e.dot(vec) for e in self]) @property def ortensor(self): """Return orientation tensor ``Ortensor`` of ``Group``.""" from apsg.tensors import Ortensor return Ortensor.from_group(self) @property def cluster(self): """Return hierarchical clustering ``Cluster`` of ``Group``.""" return Cluster(self) def transform(self, F, **kwargs): """Return affine transformation of ``Group`` by matrix 'F'. Args: F: Transformation matrix. Should be array-like value e.g. ``DefGrad`` Keyword Args: norm: normalize transformed vectors. True or False. Default False """ return Group([e.transform(F, **kwargs) for e in self], name=self.name) @property def dd(self): """Return array of azimuths and inclinations of ``Group``""" return np.array([d.dd for d in self]).T @property def rhr(self): """Return array of strikes and dips of ``Group``""" return np.array([d.rhr for d in self]).T @classmethod def randn_lin(cls, N=100, mean=Lin(0, 90), sig=20, name="Default"): """Method to create ``Group`` of normaly distributed random ``Lin`` objects. Keyword Args: N: number of objects to be generated mean: mean orientation given as ``Lin``. Default Lin(0, 90) sig: sigma of normal distribution. Default 20 name: name of dataset. Default is 'Default' Example: >>> np.random.seed(58463123) >>> g = Group.randn_lin(100, Lin(120, 40)) >>> g.R L:118/42 """ data = [] ta, td = mean.dd for azi, dip in zip(180 * np.random.rand(N), sig * np.random.randn(N)): data.append(Lin(0, 90).rotate(Lin(azi, 0), dip)) return cls(data, name=name).rotate(Lin(ta + 90, 0), 90 - td) @classmethod def randn_fol(cls, N=100, mean=Fol(0, 0), sig=20, name="Default"): """Method to create ``Group`` of normaly distributed random ``Fol`` objects. Keyword Args: N: number of objects to be generated mean: mean orientation given as ``Fol``. Default Fol(0, 0) sig: sigma of normal distribution. Default 20 name: name of dataset. Default is 'Default' Example: >>> np.random.seed(58463123) >>> g = Group.randn_fol(100, Lin(240, 60)) >>> g.R S:237/60 """ data = [] ta, td = mean.dd for azi, dip in zip(180 * np.random.rand(N), sig * np.random.randn(N)): data.append(Fol(0, 0).rotate(Lin(azi, 0), dip)) return cls(data, name=name).rotate(Lin(ta - 90, 0), td) @classmethod def uniform_lin(cls, N=500, name="Default"): """Method to create ``Group`` of uniformly distributed ``Lin`` objects. Keyword Args: N: approximate (maximum) number of objects to be generated name: name of dataset. Default is 'Default' Example: >>> g = Group.uniform_lin(300) >>> g.ortensor.eigenvals (0.33543830426546456, 0.3322808478672677, 0.3322808478672676) """ n = int(2 * np.ceil(np.sqrt(N) / 0.564)) azi = 0 inc = 90 for rho in np.linspace(0, 1, int(np.round(n / 2 / np.pi)))[:-1]: theta = np.linspace(0, 360, int(np.round(n * rho + 1)))[:-1] x, y = rho * sind(theta), rho * cosd(theta) azi = np.hstack((azi, atan2d(x, y))) ii = asind(np.sqrt((x * x + y * y) / 2)) inc = np.hstack((inc, 90 - 2 * ii)) # no antipodal theta = np.linspace(0, 360, n + 1)[:-1:2] x, y = sind(theta), cosd(theta) azi = np.hstack((azi, atan2d(x, y))) inc = np.hstack((inc, 90 - 2 * asind(np.sqrt((x * x + y * y) / 2)))) # fix inc[inc < 0] = 0 return cls.from_array(azi, inc, typ=Lin, name=name) @classmethod def uniform_fol(cls, N=500, name="Default"): """Method to create ``Group`` of uniformly distributed ``Fol`` objects. Keyword Args: N: approximate (maximum) number of objects to be generated name: name of dataset. Default is 'Default' Example: >>> g = Group.uniform_fol(300) >>> g.ortensor.eigenvals (0.3354383042654646, 0.3322808478672677, 0.3322808478672675) """ lins = cls.uniform_lin(N=N) azi, inc = lins.dd if settings["notation"] == "rhr": azi -= 90 return cls.from_array(azi + 180, 90 - inc, typ=Fol, name=name) @classmethod def sfs_vec3(cls, N=1000, name="Default"): """Method to create ``Group`` of uniformly distributed ``Vec3`` objects. Spherical Fibonacci Spiral points on a sphere algorithm adopted from <NAME>. http://people.sc.fsu.edu/~jburkardt/ Keyword Args: N: number of objects to be generated. Default 1000 name: name of dataset. Default is 'Default' Example: >>> v = Group.sfs_vec3(300) >>> v.ortensor.eigenvals (0.33346453471636356, 0.33333474915201167, 0.3332007161316248) """ phi = (1 + np.sqrt(5)) / 2 i2 = 2 * np.arange(N) - N + 1 theta = 2 * np.pi * i2 / phi sp = i2 / N cp = np.sqrt((N + i2) * (N - i2)) / N dc = np.array([cp * np.sin(theta), cp * np.cos(theta), sp]).T return cls([Vec3(d) for d in dc], name=name) @classmethod def sfs_lin(cls, N=500, name="Default"): """Method to create ``Group`` of uniformly distributed ``Lin`` objects. Based on ``Group.sfs_vec3`` method, but only half of sphere is used. Args: N: number of objects to be generated. Default 500 name: name of dataset. Default is 'Default' Example: >>> g = Group.sfs_lin(300) >>> g.ortensor.eigenvals (0.33417707294664595, 0.333339733866985, 0.332483193186369) """ g = cls.sfs_vec3(N=2 * N) # no antipodal return cls([d.aslin for d in g if d[2] > 0], name=name) @classmethod def sfs_fol(cls, N=500, name="Default"): """Method to create ``Group`` of uniformly distributed ``Fol`` objects. Based on ``Group.sfs_vec3`` method, but only half of sphere is used. Args: N: number of objects to be generated. Default 500 name: name of dataset. Default is 'Default' Example: >>> g = Group.sfs_fol(300) >>> g.ortensor.eigenvals (0.33417707294664595, 0.333339733866985, 0.332483193186369) """ g = cls.sfs_vec3(N=2 * N) # no antipodal return cls([d.asfol for d in g if d[2] > 0], name=name) @classmethod def gss_vec3(cls, N=1000, name="Default"): """Method to create ``Group`` of uniformly distributed ``Vec3`` objects. Golden Section Spiral points on a sphere algorithm. http://www.softimageblog.com/archives/115 Args: N: number of objects to be generated. Default 1000 name: name of dataset. Default is 'Default' Example: >>> v = Group.gss_vec3(300) >>> v.ortensor.eigenvals (0.3333568856957158, 0.3333231511543691, 0.33331996314991513) """ inc = np.pi * (3 - np.sqrt(5)) off = 2 / N k = np.arange(N) y = k * off - 1 + (off / 2) r = np.sqrt(1 - y * y) phi = k * inc dc = np.array([np.cos(phi) * r, y, np.sin(phi) * r]).T return cls([Vec3(d) for d in dc], name=name) @classmethod def gss_lin(cls, N=500, name="Default"): """Method to create ``Group`` of uniformly distributed ``Lin`` objects. Based on ``Group.gss_vec3`` method, but only half of sphere is used. Args: N: number of objects to be generated. Default 500 name: name of dataset. Default is 'Default' Example: >>> g = Group.gss_lin(300) >>> g.ortensor.eigenvals (0.33498372991251285, 0.33333659934369725, 0.33167967074378996) """ g = cls.gss_vec3(N=2 * N) # no antipodal return cls([d.aslin for d in g if d[2] > 0], name=name) @classmethod def gss_fol(cls, N=500, name="Default"): """Method to create ``Group`` of uniformly distributed ``Fol`` objects. Based on ``Group.gss_vec3`` method, but only half of sphere is used. Args: N: number of objects to be generated. Default 500 name: name of dataset. Default is 'Default' Example: >>> g = Group.gss_fol(300) >>> g.ortensor.eigenvals (0.33498372991251285, 0.33333659934369725, 0.33167967074378996) """ g = cls.gss_vec3(N=2 * N) # no antipodal return cls([d.asfol for d in g if d[2] > 0], name=name) @classmethod def fisher_lin(cls, N=100, mean=Lin(0, 90), kappa=20, name="Default"): """Method to create ``Group`` of ``Lin`` objects distributed according to Fisher distribution. Args: N: number of objects to be generated kappa: precision parameter of the distribution. Default 20 name: name of dataset. Default is 'Default' Example: >>> g = Group.fisher_lin(100, mean=Lin(120,10)) """ ta, td = mean.dd L = np.exp(-2 * kappa) a = np.random.random(N) * (1 - L) + L fac = np.sqrt(-np.log(a) / (2 * kappa)) inc = 90 - 2 * asind(fac) azi = 360 * np.random.random(N) g = cls.from_array(azi, inc, typ=Lin, name=name) return g.rotate(Lin(ta + 90, 0), 90 - td) @classmethod def kent_lin(cls, p, kappa=20, beta=0, N=500, name="Default"): """Method to create ``Group`` of ``Lin`` objects distributed according to Kent distribution (Kent, 1982) - The 5-parameter Fisher–Bingham distribution. Args: p: Pair object defining orientation of data N: number of objects to be generated kappa: concentration parameter. Default 20 beta: ellipticity 0 <= beta < kappa name: name of dataset. Default is 'Default' Example: >>> p = Pair(135, 30, 90, 22) >>> g = Group.kent_lin(p, 30, 5, 300) """ assert issubclass(type(p), Pair), "Argument must be Pair object." k = KentDistribution(p.lvec, p.fvec.cross(p.lvec), p.fvec, kappa, beta) g = Group([Vec3(v).aslin for v in k.rvs(N)]) return g def to_file(self, filename): """Save group to pickle file. Args: filename (str): name of file to save. """ from os.path import basename with open(filename, "wb") as file: pickle.dump(self, file) print("Group saved to file {}".format(basename(filename))) @classmethod def from_file(cls, filename): """Load group from pickle file. Args: filename (str): name of data file to load. """ from os.path import basename with open(filename, "rb") as file: data = pickle.load(file) print("Group loaded from file {}".format(basename(filename))) return cls(data, name=filename) def bootstrap(self, N=100, size=None): """Return iterator of bootstraped samples from ``Group``. Args: N: number of samples to be generated size: number of data in sample. Default is same as ``Group``. Example: >>> np.random.seed(58463123) >>> g = Group.randn_lin(100, mean=Lin(120,40)) >>> sm = [gb.R for gb in g.bootstrap(100)] >>> g.fisher_stats {'k': 16.1719344862197, 'a95': 3.627369676728579, 'csd': 20.142066812987963} >>> Group(sm).fisher_stats {'k': 1577.5503256282452, 'a95': 0.3559002104835758, 'csd': 2.0393577026717056} """ if size is None: size = len(self) for ix in np.random.randint(0, len(self), (N, size)): yield self[ix] @classmethod def examples(cls, name=None): """Create ``Group`` from example datasets. Available names are returned when no name of example dataset is given as argument. Keyword Args: name: name of dataset Example: >>> g = Group.examples('B2') """ azis = {} incs = {} typs = {} # Embleton (1970) - Measurements of magnetic remanence in specimens # of Palaeozoic red-beds from Argentina. azis["B2"] = [122.5, 130.5, 132.5, 148.5, 140.0, 133.0, 157.5, 153.0, 140.0, 147.5, 142.0, 163.5, 141.0, 156.0, 139.5, 153.5, 151.5, 147.5, 141.0, 143.5, 131.5, 147.5, 147.0, 149.0, 144.0, 139.5] incs["B2"] = [55.5, 58.0, 44.0, 56.0, 63.0, 64.5, 53.0, 44.5, 61.5, 54.5, 51.0, 56.0, 59.5, 56.5, 54.0, 47.5, 61.0, 58.5, 57.0, 67.5, 62.5, 63.5, 55.5, 62.0, 53.5, 58.0] typs["B2"] = Lin # Cohen (1983) - Facing directions of conically folded planes. azis["B4"] = [269, 265, 271, 272, 268, 267, 265, 265, 265, 263, 267, 267, 270, 270, 265, 95, 100, 95, 90, 271, 267, 272, 270, 273, 271, 269, 270, 267, 266, 268, 269, 270, 269, 270, 272, 271, 271, 270, 273, 271, 270, 274, 275, 274, 270, 268, 97, 95, 90, 95, 94, 93, 93, 93, 95, 96, 100, 104, 102, 108, 99, 112, 110, 100, 95, 93, 91, 92, 92, 95, 89, 93, 100, 270, 261, 275, 276, 275, 277, 276, 273, 273, 271, 275, 277, 275, 276, 279, 277, 278, 280, 275, 270, 275, 276, 255, 105, 99, 253, 96, 93, 92, 91, 91, 90, 89, 89, 96, 105, 90, 76, 91, 91, 91, 90, 95, 90, 92, 92, 95, 100, 135, 98, 92, 90, 99, 175, 220, 266, 235, 231, 256, 272, 276, 276, 275, 273, 266, 276, 274, 275, 274, 272, 273, 270, 103, 95, 98, 96, 111, 96, 92, 91, 90, 90] incs["B4"] = [48, 57, 61, 59, 58, 60, 59, 58, 60, 59, 59, 53, 50, 48, 61, 40, 56, 67, 52, 49, 60, 47, 50, 48, 50, 53, 52, 58, 60, 60, 62, 61, 62, 60, 58, 59, 56, 53, 49, 49, 53, 50, 46, 45, 60, 68, 75, 47, 48, 50, 48, 49, 45, 41, 42, 40, 51, 70, 74, 71, 51, 75, 73, 60, 49, 44, 41, 51, 45, 50, 41, 44, 68, 67, 73, 50, 40, 60, 47, 47, 54, 60, 62, 57, 43, 53, 40, 40, 42, 44, 60, 65, 76, 63, 71, 80, 77, 72, 80, 60, 48, 49, 48, 46, 44, 43, 40, 58, 65, 39, 48, 38, 43, 42, 49, 39, 43, 44, 48, 61, 68, 80, 60, 49, 45, 62, 79, 79, 72, 76, 77, 71, 60, 42, 50, 41, 60, 73, 43, 50, 46, 51, 56, 50, 40, 73, 57, 60, 54, 71, 54, 50, 48, 48, 51] typs["B4"] = Lin # <NAME> & Cudahy (1985) - Orientations of axial-plane cleavage # surfaces of F1 folds in Ordovician turbidites. azis["B11"] = [65, 75, 233, 39, 53, 58, 50, 231, 220, 30, 59, 44, 54, 251, 233, 52, 26, 40, 266, 67, 61, 72, 54, 32, 238, 84, 230, 228, 230, 231, 40, 233, 234, 225, 234, 222, 230, 51, 46, 207, 221, 58, 48, 222, 10, 52, 49, 36, 225, 221, 216, 194, 228, 27, 226, 58, 35, 37, 235, 38, 227, 34, 225, 53, 57, 66, 45, 47, 54, 45, 60, 51, 42, 52, 63] incs["B11"] = [50, 53, 85, 82, 82, 66, 75, 85, 87, 85, 82, 88, 86, 82, 83, 86, 80, 78, 85, 89, 85, 85, 86, 67, 87, 86, 81, 85, 79, 86, 88, 84, 87, 88, 83, 82, 89, 82, 82, 67, 85, 87, 82, 82, 82, 75, 68, 89, 81, 87, 63, 86, 81, 81, 89, 62, 81, 88, 70, 80, 77, 85, 74, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90] typs["B11"] = Fol # <NAME> & Cudahy (1985) - Orientations of axial-plane cleavage # surfaces of F1 folds in Ordovician turbidites. azis["B12"] = [122, 132, 141, 145, 128, 133, 130, 129, 124, 120, 137, 141, 151, 138, 135, 135, 156, 156, 130, 112, 116, 113, 117, 110, 106, 106, 98, 84, 77, 111, 122, 140, 48, 279, 19, 28, 28, 310, 310, 331, 326, 332, 3, 324, 308, 304, 304, 299, 293, 293, 306, 310, 313, 319, 320, 320, 330, 327, 312, 317, 314, 312, 311, 307, 311, 310, 310, 305, 305, 301, 301, 300] incs["B12"] = [80, 72, 63, 51, 62, 53, 53, 52, 48, 45, 44, 44, 34, 37, 38, 40, 25, 15, 22, 63, 35, 28, 28, 22, 33, 37, 32, 27, 24, 8, 6, 8, 11, 8, 6, 6, 8, 20, 21, 18, 25, 28, 32, 32, 32, 34, 38, 37, 44, 45, 48, 42, 47, 45, 43, 45, 50, 70, 59, 66, 65, 70, 66, 67, 83, 66, 69, 69, 72, 67, 69, 82] typs["B12"] = Fol if name is None: return list(typs.keys()) else: return cls.from_array(azis[name], incs[name], typs[name], name=name) class PairSet(list): """ Represents a homogeneous group of ``Pair`` objects. """ def __init__(self, data, name="Default"): assert issubclass(type(data), list), "Argument must be list of data." assert len(data) > 0, "Empty PairSet is not allowed." tp = type(data[0]) assert issubclass(tp, Pair), "Data must be of Pair type." assert all( [isinstance(e, tp) for e in data] ), "All data in PairSet must be of same type." super(PairSet, self).__init__(data) self.type = tp self.name = name def __repr__(self): return "P:%g %s (%s)" % (len(self), self.type.__name__, self.name) def __add__(self, other): # merge sets assert self.type is other.type, "Only same type could be merged" return PairSet(list(self) + other, name=self.name) def __setitem__(self, key, value): assert isinstance(value, self.type), ( "item is not of type %s" % self.type.__name__ ) super(FaultSet, self).__setitem__(key, value) def __getitem__(self, key): """PairSet fancy indexing""" if isinstance(key, slice): key = np.arange(*key.indices(len(self))) if isinstance(key, list) or isinstance(key, tuple): key = np.asarray(key) if isinstance(key, np.ndarray): if key.dtype == "bool": key = np.flatnonzero(key) return type(self)([self[i] for i in key]) else: return super(type(self), self).__getitem__(key) def append(self, item): assert isinstance(item, self.type), ( "item is not of type %s" % self.type.__name__ ) super(PairSet, self).append(item) def extend(self, items=()): for item in items: self.append(item) @property def data(self): return list(self) def rotate(self, axis, phi): """Rotate PairSet""" return type(self)([f.rotate(axis, phi) for f in self], name=self.name) @classmethod def from_csv(cls, fname, delimiter=",", facol=1, ficol=2, lacol=3, licol=4): """Read PairSet from csv file""" from os.path import basename dt = np.loadtxt(fname, dtype=float, delimiter=delimiter).T return cls.from_array( dt[facol - 1], dt[ficol - 1], dt[lacol - 1], dt[licol - 1], name=basename(fname), ) def to_csv(self, fname, delimiter=",", rounded=False): if rounded: data = np.c_[ np.round(self.fol.dd.T).astype(int), np.round(self.lin.dd.T).astype(int) ] else: data = np.c_[self.fol.dd.T, self.lin.dd.T] np.savetxt(fname, data, fmt="%g", delimiter=",", header=self.name) @classmethod def from_array(cls, fazis, fincs, lazis, lincs, name="Default"): """Create PairSet from arrays of azimuths and inclinations""" data = [] for fazi, finc, lazi, linc in zip(fazis, fincs, lazis, lincs): data.append(Pair(fazi, finc, lazi, linc)) return cls(data, name=name) @property def fol(self): """Return Fol part of PairSet as Group of Fol""" return Group([e.fol for e in self], name=self.name) @property def fvec(self): """Return vectors of Fol of PairSet as Group of Vec3""" return Group([e.fvec for e in self], name=self.name) @property def lin(self): """Return Lin part of PairSet as Group of Lin""" return Group([e.lin for e in self], name=self.name) @property def lvec(self): """Return vectors of Lin part of PairSet as Group of Vec3""" return Group([e.lvec for e in self], name=self.name) @property def misfit(self): """Return array of misfits""" return np.array([f.misfit for f in self]) @property def rax(self): """ Return vectors perpendicular to both ``Fol`` and ``Lin`` of PairSet as Group of Vec3. """ return Group([e.fvec ** e.lvec for e in self], name=self.name) class FaultSet(PairSet): """ Represents a homogeneous group of ``Fault`` objects. """ def __init__(self, data, name="Default"): assert issubclass(type(data), list), "Argument must be list of data." assert len(data) > 0, "Empty FaultSet is not allowed." tp = type(data[0]) assert issubclass(tp, Fault), "Data must be of Fault type." assert all( [isinstance(e, tp) for e in data] ), "All data in FaultSet must be of same type." super(FaultSet, self).__init__(data) self.type = tp self.name = name def __repr__(self): return "F:%g %s (%s)" % (len(self), self.type.__name__, self.name) @classmethod def from_csv(cls, fname, delimiter=",", facol=1, ficol=2, lacol=3, licol=4, scol=5): """Read FaultSet from csv file""" from os.path import basename dt = np.loadtxt(fname, dtype=float, delimiter=delimiter).T return cls.from_array( dt[facol - 1], dt[ficol - 1], dt[lacol - 1], dt[licol - 1], dt[scol - 1], name=basename(fname), ) def to_csv(self, fname, delimiter=",", rounded=False): if rounded: data = np.c_[ np.round(self.fol.dd.T).astype(int), np.round(self.lin.dd.T).astype(int), self.sense.astype(int), ] else: data = np.c_[self.fol.dd.T, self.lin.dd.T, self.sense] np.savetxt(fname, data, fmt="%g", delimiter=",", header=self.name) @classmethod def from_array(cls, fazis, fincs, lazis, lincs, senses, name="Default"): """Create dataset from arrays of azimuths and inclinations""" data = [] for fazi, finc, lazi, linc, sense in zip(fazis, fincs, lazis, lincs, senses): data.append(Fault(fazi, finc, lazi, linc, sense)) return cls(data, name=name) @property def sense(self): """Return array of sense values""" return np.array([f.sense for f in self]) @property def p(self): """Return p-axes of FaultSet as Group of Lin""" return Group([e.p for e in self], name=self.name + "-P") @property def pvec(self): """Return p-axes of FaultSet as Group of Vec3""" return Group([e.pvec for e in self], name=self.name) @property def tvec(self): """Return t-axes of FaultSet as Group of Vec3""" return Group([e.tvec for e in self], name=self.name) @property def t(self): """Return t-axes of FaultSet as Group of Lin""" return Group([e.t for e in self], name=self.name + "-T") @property def m(self): """Return m-planes of FaultSet as Group of Fol""" return Group([e.m for e in self], name=self.name + "-M") @property def d(self): """Return dihedra planes of FaultSet as Group of Fol""" return Group([e.d for e in self], name=self.name + "-D") def angmech(self, method="classic"): """Implementation of Angelier-Mechler dihedra method Args: method: 'probability' or 'classic'. Classic method assigns +/-1 to individual positions, while 'probability' returns maximum likelihood estimate. """ def angmech(dc, fs): val = 0 for f in fs: val += 2 * float(np.sign(dc.dot(f.fvec)) == np.sign(dc.dot(f.lvec))) - 1 return val def angmech2(dc, fs): val = 0 d = Vec3(dc).aslin for f in fs: s = 2 * float(np.sign(dc.dot(f.fvec)) == np.sign(dc.dot(f.lvec))) - 1 lprob = 1 - abs(45 - f.lin.angle(d)) / 45 fprob = 1 - abs(45 - f.fol.angle(d)) / 45 val += s * lprob * fprob return val d = StereoGrid() if method == "probability": d.apply_func(angmech2, self) else: d.apply_func(angmech, self) return d @classmethod def examples(cls, name=None): """Create ``FaultSet`` from example datasets. Available names are returned when no name of example dataset is given as argument. Keyword Args: name: name of dataset Example: >>> fs = FaultSet.examples('MELE') """ fazis, fincs = {}, {} lazis, lincs = {}, {} senses = {} # Lexa (2008) - reactivated joints - Lipnice fazis["MELE"] = [95, 66, 42, 14, 126, 12, 14, 150, 35, 26, 138, 140, 132, 50, 52, 70, 152, 70, 184, 194, 330, 150, 72, 80, 188, 186, 72, 138, 72, 184, 308, 128, 60, 130, 105, 130, 124, 135, 292, 30, 36, 282, 95, 88, 134, 120, 26, 2, 8, 6, 140, 60, 60, 98, 88, 94, 110, 114, 8, 100, 16, 20, 120, 10, 120, 10, 124, 30, 22, 204, 4, 254, 296, 244, 210, 22, 250, 210, 130, 206, 210, 4, 258, 260, 272, 96, 105, 120, 214, 96, 22, 88, 26, 110] fincs["MELE"] = [80, 85, 46, 62, 78, 62, 66, 70, 45, 58, 80, 80, 80, 88, 88, 60, 82, 32, 82, 80, 80, 85, 40, 30, 82, 82, 46, 85, 30, 88, 85, 88, 52, 75, 85, 76, 80, 88, 80, 50, 50, 38, 85, 42, 68, 80, 65, 60, 65, 65, 60, 50, 50, 75, 70, 85, 70, 62, 36, 60, 66, 50, 68, 38, 72, 90, 88, 90, 90, 85, 90, 75, 85, 85, 85, 82, 75, 85, 75, 88, 89, 68, 88, 82, 72, 78, 85, 85, 60, 88, 62, 58, 56, 72] lazis["MELE"] = [119, 154, 110, 296, 41, 295, 291, 232, 106, 105, 49, 227, 45, 139, 142, 149, 241, 89, 98, 110, 55, 60, 91, 105, 98, 96, 103, 226, 104, 95, 37, 217, 112, 48, 16, 46, 39, 46, 15, 108, 100, 4, 8, 102, 51, 207, 299, 283, 290, 287, 62, 333, 7, 185, 359, 5, 21, 31, 90, 14, 290, 102, 49, 93, 35, 280, 213, 120, 292, 114, 274, 320, 19, 332, 299, 295, 332, 297, 49, 296, 300, 276, 176, 275, 253, 103, 184, 30, 134, 6, 108, 49, 112, 27] lincs["MELE"] = [79, 20, 22, 21, 21, 23, 16, 22, 18, 16, 8, 18, 18, 25, 5, 18, 5, 31, 25, 32, 27, 3, 38, 28, 2, 2, 42, 22, 26, 25, 10, 15, 38, 26, 10, 23, 26, 28, 35, 14, 28, 6, 32, 41, 16, 16, 6, 19, 23, 22, 19, 4, 35, 10, 3, 8, 2, 13, 6, 7, 10, 10, 38, 6, 14, 20, 28, 0, 15, 5, 45, 57, 54, 20, 10, 21, 28, 30, 30, 10, 12, 6, 76, 82, 71, 78, 66, 5, 16, 2, 7, 51, 6, 20] senses["MELE"] = [-1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1] if name is None: return list(senses.keys()) else: return cls.from_array( fazis[name], fincs[name], lazis[name], lincs[name], senses[name], name=name, ) class StereoGrid(object): """ The class to store regular grid of values to be contoured on ``StereoNet``. ``StereoGrid`` object could be calculated from ``Group`` object or by user- defined function, which accept unit vector as argument. Args: g: ``Group`` object of data to be used for desity calculation. If ommited, zero values grid is returned. Keyword Args: npoints: approximate number of grid points Default 1800 grid: type of grid 'radial' or 'ortho'. Default 'radial' sigma: sigma for kernels. Default 1 method: 'exp_kamb', 'linear_kamb', 'square_kamb', 'schmidt', 'kamb'. Default 'exp_kamb' trim: Set negative values to zero. Default False Note: Euclidean norms are used as weights. Normalize data if you dont want to use weigths. """ def __init__(self, d=None, **kwargs): self.initgrid(**kwargs) if d: assert isinstance(d, Group), "StereoGrid need Group as argument" self.calculate_density(np.asarray(d), **kwargs) def __repr__(self): return ( "StereoGrid with %d points.\n" % self.n + "Maximum: %.4g at %s\n" % (self.max, self.max_at) + "Minimum: %.4g at %s" % (self.min, self.min_at) ) @property def min(self): return self.values.min() @property def max(self): return self.values.max() @property def min_at(self): return Vec3(self.dcgrid[self.values.argmin()]).aslin @property def max_at(self): return Vec3(self.dcgrid[self.values.argmax()]).aslin def initgrid(self, **kwargs): import matplotlib.tri as tri # parse options grid = kwargs.get("grid", "radial") if grid == "radial": ctn_points = int( np.round(np.sqrt(kwargs.get("npoints", 1800)) / 0.280269786) ) # calc grid self.xg = 0 self.yg = 0 for rho in np.linspace(0, 1, int(np.round(ctn_points / 2 / np.pi))): theta = np.linspace(0, 360, int(np.round(ctn_points * rho + 1)))[:-1] self.xg = np.hstack((self.xg, rho * sind(theta))) self.yg = np.hstack((self.yg, rho * cosd(theta))) elif grid == "ortho": n = int(np.round(np.sqrt(kwargs.get("npoints", 1800) - 4) / 0.8685725142)) x, y = np.meshgrid(np.linspace(-1, 1, n), np.linspace(-1, 1, n)) d2 = (x ** 2 + y ** 2) <= 1 self.xg = np.hstack((0, 1, 0, -1, x[d2])) self.yg = np.hstack((1, 0, -1, 0, y[d2])) else: raise TypeError("Wrong grid type!") self.dcgrid = l2v(*getldd(self.xg, self.yg)).T self.n = self.dcgrid.shape[0] self.values = np.zeros(self.n, dtype=np.float) self.triang = tri.Triangulation(self.xg, self.yg) def calculate_density(self, dcdata, **kwargs): """Calculate density of elements from ``Group`` object. """ # parse options sigma = kwargs.get("sigma", 1 / len(dcdata) ** (-1 / 7)) method = kwargs.get("method", "exp_kamb") trim = kwargs.get("trim", False) func = { "linear_kamb": _linear_inverse_kamb, "square_kamb": _square_inverse_kamb, "schmidt": _schmidt_count, "kamb": _kamb_count, "exp_kamb": _exponential_kamb, }[method] # weights are given by euclidean norms of data weights = np.linalg.norm(dcdata, axis=1) weights /= weights.mean() for i in range(self.n): dist = np.abs(np.dot(self.dcgrid[i], dcdata.T)) count, scale = func(dist, sigma) count *= weights self.values[i] = (count.sum() - 0.5) / scale if trim: self.values[self.values < 0] = 0 def apply_func(self, func, *args, **kwargs): """Calculate values using function passed as argument. Function must accept vector (3 elements array) as argument and return scalar value. """ for i in range(self.n): self.values[i] = func(self.dcgrid[i], *args, **kwargs) def contourf(self, *args, **kwargs): """ Show filled contours of values.""" fig, ax = plt.subplots(figsize=settings["figsize"]) # Projection circle ax.text(0, 1.02, "N", ha="center", va="baseline", fontsize=16) ax.add_artist(plt.Circle((0, 0), 1, color="w", zorder=0)) ax.add_artist(plt.Circle((0, 0), 1, color="None", ec="k", zorder=3)) ax.set_aspect("equal") plt.tricontourf(self.triang, self.values, *args, **kwargs) plt.colorbar() plt.axis('off') plt.show() def contour(self, *args, **kwargs): """ Show contours of values.""" fig, ax = plt.subplots(figsize=settings["figsize"]) # Projection circle ax.text(0, 1.02, "N", ha="center", va="baseline", fontsize=16) ax.add_artist(plt.Circle((0, 0), 1, color="w", zorder=0)) ax.add_artist(plt.Circle((0, 0), 1, color="None", ec="k", zorder=3)) ax.set_aspect("equal") plt.tricontour(self.triang, self.values, *args, **kwargs) plt.colorbar() plt.axis('off') plt.show() def plotcountgrid(self): """ Show counting grid.""" fig, ax = plt.subplots(figsize=settings["figsize"]) # Projection circle ax.text(0, 1.02, "N", ha="center", va="baseline", fontsize=16) ax.add_artist(plt.Circle((0, 0), 1, color="w", zorder=0)) ax.add_artist(plt.Circle((0, 0), 1, color="None", ec="k", zorder=3)) ax.set_aspect("equal") plt.triplot(self.triang, "bo-") plt.axis('off') plt.show() class Cluster(object): """ Provides a hierarchical clustering using `scipy.cluster` routines. The distance matrix is calculated as an angle between features, where ``Fol`` and ``Lin`` use axial angles while ``Vec3`` uses direction angles. """ def __init__(self, d, **kwargs): assert isinstance(d, Group), "Only group could be clustered" self.data = Group(d.copy()) self.maxclust = kwargs.get("maxclust", 2) self.angle = kwargs.get("angle", None) self.method = kwargs.get("method", "average") self.pdist = self.data.angle() self.linkage() def __repr__(self): if hasattr(self, "groups"): info = "Already %d clusters created." % len(self.groups) else: info = "Not yet clustered. Use cluster() method." if self.angle is not None: crit = "Criterion: Angle\nSettings: angle=%.4g\n" % (self.angle) else: crit = "Criterion: Maxclust\nSettings: muxclust=%.4g\n" % (self.maxclust) return ( "Clustering object\n" + "Number of data: %d\n" % len(self.data) + "Linkage method: %s\n" % self.method + crit + info ) def cluster(self, **kwargs): """Do clustering on data Result is stored as tuple of Groups in ``groups`` property. Keyword Args: criterion: The criterion to use in forming flat clusters maxclust: number of clusters angle: maximum cophenetic distance(angle) in clusters """ from scipy.cluster.hierarchy import fcluster self.maxclust = kwargs.get("maxclust", 2) self.angle = kwargs.get("angle", None) if self.angle is not None: self.idx = fcluster(self.Z, self.angle, criterion="distance") else: self.idx = fcluster(self.Z, self.maxclust, criterion="maxclust") self.groups = tuple( self.data[np.flatnonzero(self.idx == c)] for c in np.unique(self.idx) ) def linkage(self, **kwargs): """Do linkage of distance matrix Keyword Args: method: The linkage algorithm to use """ from scipy.cluster.hierarchy import linkage self.method = kwargs.get("method", "average") self.Z = linkage(self.pdist, method=self.method, metric=angle_metric) def dendrogram(self, **kwargs): """Show dendrogram See ``scipy.cluster.hierarchy.dendrogram`` for possible kwargs. """ from scipy.cluster.hierarchy import dendrogram fig, ax = plt.subplots(figsize=settings["figsize"]) dendrogram(self.Z, ax=ax, **kwargs) plt.show() def elbow(self, no_plot=False, n=None): """Plot within groups variance vs. number of clusters. Elbow criterion could be used to determine number of clusters. """ from scipy.cluster.hierarchy import fcluster if n is None: idx = fcluster(self.Z, len(self.data), criterion="maxclust") nclust = list(np.arange(1, np.sqrt(idx.max() / 2) + 1, dtype=int)) else: nclust = list(np.arange(1, n + 1, dtype=int)) within_grp_var = [] mean_var = [] for n in nclust: idx = fcluster(self.Z, n, criterion="maxclust") grp = [np.flatnonzero(idx == c) for c in np.unique(idx)] # between_grp_var = Group([self.data[ix].R.uv for ix in grp]).var var = [100 * self.data[ix].var for ix in grp] within_grp_var.append(var) mean_var.append(
np.mean(var)
numpy.mean
import os import sys import h5py import numpy as np from sklearn.neighbors import kneighbors_graph import scipy np.random.seed(0) os.makedirs("results/graphs/usps", exist_ok=True) n = 7291 beta = float(sys.argv[1]) with h5py.File("data/usps.h5", "r") as f: data = f["data"][:] * 255 labels = f["labels"][:].astype(np.int64) # Ugly hack: we want to use the 0 label later as "no seed" labels += 1 graph = kneighbors_graph(data, 10, mode="distance", include_self=False) rows, cols, vals = scipy.sparse.find(graph) vals = vals ** 2 max_dist = np.max(vals) edges = np.stack([rows, cols], axis=0) weights =
np.exp(-beta * vals / max_dist)
numpy.exp
def flatten(foo): # Taken from https://stackoverflow.com/a/5286571 for x in foo: if hasattr(x, '__iter__') and not isinstance(x, str): for y in flatten(x): yield y else: yield x def freedman_lane(data_df, Yvar, Xvars, Zvars, n_perms=10000, stat='tstat', perm_func=None, perm_func_args=None, surrogates=None, return_null=False, return_surrogates=False): """ Use permutation testing (via random shuffling or a user provided function) to estimate the significance of an EV (Xvar) in a multiple linear regression (Yvar ~ Xvar + Zvars) while "correcting for" (regressing-out the estimated effects of) other covariates (Zvars). The null distribution of test statistics is generated by permuting the residuals of a reduced model (Yvar ~ Zvars) (following Freedman and Lane, 1983; DOI: 10.2307/1391660). Note: Interactions are not curently supported, and categorical variables are currently only supported when stat='fstat'. Parameters: ----------- data_df : Pandas DataFrame A data frame containing data to be modeled. Yvar : str Name of the DataFrame column containing the dependent (endog) variable Xvar : str Name of the DataFrame column containing the independent (exog) variable of interest. Zvars : str or list or str Name of the DataFrame column(s) containing the independent (exog) variable(s) to use as a covariate. n_perms : int, optional Number of surrogate data sets to generate. Default is 10,000. stat : string, optional Which test statistic to evaluate significance for and return. 'tstat' evaluates the significant of the t-statistic for the effect of Xvar. 'pcorr' evaluates significance of the partial pearson correlation coefficient between the residuals of Yvar ~ Zvars and Xvar ~ Zvars. 'tstat' and 'pcorr' will always return the same p-value (because the partial correlation is calculated from the t-statistic); I provide both for convenience. 'fstat' uses a Type II ANOVA to evaluate the significance of the main effect for Xvar. perm_func : function, optional Custom function to generate surrogate data. Must accept a 1D array (the data to be permuted) as the first argument, and n_perms (an integer) as the second argument. If no custom function is provided, surrogate data will be generated via random shuffling (which assumes full exchangability). perm_func_args : dict, optional Dictionary containing additional arguments (including potentially additional data) to pass to perm_func. surrogates: ndarray, optional Surrogate data sets generated and returned by a previous run of lmperm which evaluated a model with the same Yvar and Zvars as currently specified. return_null : bool Return the null distribution of statistic values. Useful if you want to plot the observed value against the null distribution. Defaults to False. return_surrogates : bool Return an array containing surrogate data sets. Useful time saver if you want to test the relationship of a given Yvar to multiple Xvars while correcting for the same Zvars. Defaults to False. Returns: -------- stat_observed : float The test statistic for Xvar from the full, un-permuted model. pvals : Pandas Series The probability of the observed test statistic relative to the null distribution. 'p_greater' is Pr(stat_observed >= null). 'p_less' is Pr(stat_observed <= null). 'p_abs' is Pr(|stat_observed| >= |null|). If stat='fstat', only p_greater is returned. fit_Full : statsmodels RegressionResults Results (coefficients, fit measures, p-values, etc.) of the parametric OLS fit to to the full model. stats_null : ndarray, optional Null distribution of test statistics generated via permutation testing. resid_Reduced_Perms : ndarray, optional Permuted residuals of the reduced model (Yvar ~ Zvars). """ import warnings import numpy as np import pandas as pd import statsmodels.api as sm import statsmodels.formula.api as smf from statsmodels.stats import anova # Check inputs. # This is not Pythonic, but is more user friendly than letting exceptions raise down stream. # Some interesting ideas here on how to make checking more Pythonic: # https://stackoverflow.com/questions/19684434/best-way-to-check-function-arguments assert (isinstance(data_df, pd.core.frame.DataFrame)), "data_df must be a Pandas DataFrame!" assert (type(Yvar) == str), "Yvar must be a string!" assert (type(Xvars) == str or type(Xvars) == list), "Xvars must be a string or a list!" assert (type(Zvars) == str or type(Zvars) == list), "Zvars must be a string or a list!" assert (type(n_perms) == int), "n_perms must be an integer!" if perm_func is not None: assert (callable(perm_func)), "perm_func must be a function!" if perm_func_args is not None: assert (type(perm_func_args) == dict), "perm_func_args must be a dictionary!" if surrogates is not None: assert (type(surrogates) == np.ndarray), "surrogates must be an ndarray!" # Generate a formula string for Zvars. if type(Zvars) == list: Zvars_formula_string = " + ".join(Zvars) Zsize = len(Zvars) elif type(Zvars) == str: Zvars_formula_string = Zvars Zsize = 1 # Generate a formula string for Xvars if type(Xvars) == list: Xvars_formula_string = " + ".join(Xvars) if stat == 'fstat' is False: warnings.warn("Multiple Xvars provided; setting stat='fstat'.") stat = 'fstat' elif type(Xvars) == str: Xvars_formula_string = Xvars # Fit the full model with observed data. formula_Full = f"{Yvar} ~ {Xvars_formula_string} + {Zvars_formula_string}" fit_Full = smf.ols(formula_Full, data=data_df).fit() if stat == 'fstat': contrast_Xvars_string = " = ".join(Xvars) contrast_formula = f"{contrast_Xvars_string} = 0" f_res = fit_Full.f_test(contrast_formula) stat_observed = f_res.fvalue[0][0] elif stat == 'pcorr': stat_observed = (fit_Full.tvalues[Xvars] / np.sqrt(fit_Full.tvalues[Xvars]**2 + fit_Full.df_resid)) elif stat == 'tstat': stat_observed = fit_Full.tvalues[Xvars] # Fit the reduced model with the observed data. formula_Reduced = f"{Yvar} ~ {Zvars_formula_string}" model_Reduced = smf.ols(formula_Reduced, data=data_df) fit_Reduced = model_Reduced.fit() resid_Reduced = fit_Reduced.resid.values Yhat_reduced = model_Reduced.predict(fit_Reduced.params) # If the user has provided previously generated surrogates, use those. if surrogates is not None: resid_Reduced_perms = surrogates # Otherwise, generate surrogate data sets. # TO-DO: Generate permutations in parallel via multiprocessing/joblib/ray. else: # Permute the residuals from the reduced model. # If a custom permutation function is provided, use that. if perm_func: resid_Reduced_perms = perm_func(resid_Reduced, n_perms, **perm_func_args) # Otherwise, just do random shuffling. else: resid_Reduced_perms = [] for i in range(n_perms): resid_Reduced_perms.append(np.random.permutation(resid_Reduced)) resid_Reduced_perms = np.array(resid_Reduced_perms) # Generate a null distribution by calculating test statistics from the full model for each of the permutations. stats_null = [] exog_cols = [] exog_cols.append(Xvars) exog_cols.append(Zvars) exog_cols = list(flatten(exog_cols)) ev_array = data_df[exog_cols].values # The non-formula OLS interface is much faster but does not automatically add an intercept, so we must add it ourselves. intercept = np.reshape(np.ones_like(data_df[exog_cols[0]]),(ev_array.shape[0],1)) ev_array = np.concatenate((intercept, ev_array), axis=1) for perm_iter in resid_Reduced_perms: Ypi = perm_iter + Yhat_reduced fit_Perm = sm.OLS(Ypi, ev_array).fit() if stat == 'fstat': # Create a contrast array that includes all regressors contrast_array = np.identity(len(fit_Perm.params)) # Drop the intercept contrast_array = contrast_array[1:,:] # Drop Zvars contrast_array = contrast_array[:-Zsize,:] f_res = fit_Perm.f_test(contrast_array) stats_null.append(f_res.fvalue[0][0]) else: if stat == 'tstat': stats_null.append(fit_Perm.tvalues[1]) elif stat == 'pcorr': stats_null.append(fit_Perm.tvalues[1] / np.sqrt(fit_Perm.tvalues[1]**2 + fit_Perm.df_resid)) stats_null = np.array(stats_null) # Calculate the probability of the observed test statistic relative to the null distribution. if stat == 'fstat': p_greater = (np.sum(stats_null >= stat_observed) + 1) / (n_perms + 1) pvals = pd.Series([p_greater], index=['p_greater']) elif stat == 'pcorr' or stat == 'tstat': p_greater = (np.sum(stats_null >= stat_observed) + 1) / (n_perms + 1) p_less = (np.sum(stats_null <= stat_observed) + 1) / (n_perms + 1) p_abs = (np.sum(np.abs(stats_null) >= np.abs(stat_observed)) + 1) / (n_perms + 1) pvals = pd.Series([p_greater, p_less, p_abs], index=['p_greater', 'p_less', 'p_abs']) # Collect outputs. out = (stat_observed, pvals, fit_Full) if return_null: out += (stats_null,) if return_surrogates: out += (resid_Reduced_perms,) return out def manly(data_df, Yvar, Xvars, Zvars, stat='tstat', n_perms=10000, perm_func=None, perm_func_args=None, surrogates=None, return_null=False, return_surrogates=False): """ Use permutation testing (via random shuffling or a user provided function) to estimate the significance of an EV (Xvar) in a multiple linear regression (Yvar ~ Xvar + Zvars) while "correcting for" (regressing-out the estimated effects of) other covariates (Zvars). The null distribution of test statistics is generated by permuting Yvar (following Manly, 1986; DOI: 10.1007/BF02515450). Note: Interactions are not curently supported, and categorical variables are currently only supported when stat='fstat'. Parameters: ----------- data_df : Pandas DataFrame A data frame containing data to be modeled. Yvar : str Name of the DataFrame column containing the dependent (endog) variable Xvar : str Name of the DataFrame column containing the independent (exog) variable of interest. Zvars : str or list or str Name of the DataFrame column(s) containing the independent (exog) variable(s) to use as a covariate. n_perms : int, optional Number of surrogate data sets to generate. Default is 10,000. stat : string, optional Which test statistic to evaluate significance for and return. 'tstat' evaluates the significant of the t-statistic for the effect of Xvar. 'pcorr' evaluates significance of the partial pearson correlation coefficient between the residuals of Yvar ~ Zvars and Xvar ~ Zvars. 'tstat' and 'pcorr' will always return the same p-value (because the partial correlation is calculated from the t-statistic); I provide both for convenience. 'fstat' uses a Type II ANOVA to evaluate the significance of the main effect for Xvar. perm_func : function, optional Custom function to generate surrogate data. Must accept a 1D array (the data to be permuted) as the first argument, and n_perms (an integer) as the second argument. If no custom function is provided, surrogate data will be generated via random shuffling (which assumes full exchangability). perm_func_args : dict, optional Dictionary containing additional arguments (including potentially additional data) to pass to perm_func. surrogates: ndarray, optional Surrogate data sets generated and returned by a previous run of lmperm which evaluated a model with the same Yvar and Zvars as currently specified. return_null : bool Return the null distribution of statistic values. Useful if you want to plot the observed value against the null distribution. Defaults to False. return_surrogates : bool Return an array containing surrogate data sets. Useful time saver if you want to test the relationship of a given Yvar to multiple Xvars while correcting for the same Zvars. Defaults to False. Returns: -------- stat_observed : float The test statistic for Xvar from the full, un-permuted model. pvals : Pandas Series The probability of the observed test statistic relative to the null distribution. 'p_greater' is Pr(stat_observed >= null). 'p_less' is Pr(stat_observed <= null). 'p_abs' is Pr(|stat_observed| >= |null|). If stat='fstat', only p_greater is returned. fit_Full : statsmodels RegressionResults Results (coefficients, fit measures, p-values, etc.) of the parametric OLS fit to to the full model. stats_null : ndarray, optional Null distribution of test statistics generated via permutation testing. resid_Reduced_Perms : ndarray, optional Permuted residuals of the reduced model (Yvar ~ Zvars). """ import warnings import numpy as np import pandas as pd import statsmodels.api as sm import statsmodels.formula.api as smf from statsmodels.stats import anova # Check inputs. # This is not Pythonic, but is more user friendly than letting exceptions raise down stream. # Some interesting ideas here on how to make checking more Pythonic: # https://stackoverflow.com/questions/19684434/best-way-to-check-function-arguments assert (isinstance(data_df, pd.core.frame.DataFrame)), "data_df must be a Pandas DataFrame!" assert (type(Yvar) == str), "Yvar must be a string!" assert (type(Xvars) == str or type(Xvars) == list), "Xvars must be a string or a list!" assert (type(Zvars) == str or type(Zvars) == list), "Zvars must be a string or a list!" assert (type(n_perms) == int), "n_perms must be an integer!" if perm_func is not None: assert (callable(perm_func)), "perm_func must be a function!" if perm_func_args is not None: assert (type(perm_func_args) == dict), "perm_func_args must be a dictionary!" if surrogates is not None: assert (type(surrogates) == np.ndarray), "surrogates must be an ndarray!" # Generate a formula string for Zvars. if type(Zvars) == list: Zvars_formula_string = " + ".join(Zvars) Zsize = len(Zvars) elif type(Zvars) == str: Zvars_formula_string = Zvars Zsize = 1 # Generate a formula string for Xvars if type(Xvars) == list: Xvars_formula_string = " + ".join(Xvars) if stat == 'fstat' is False: warnings.warn("Multiple Xvars provided; setting stat='fstat'.") stat = 'fstat' elif type(Xvars) == str: Xvars_formula_string = Xvars # Fit the full model with observed data. formula_Full = f"{Yvar} ~ {Xvars_formula_string} + {Zvars_formula_string}" fit_Full = smf.ols(formula_Full, data=data_df).fit() if stat == 'fstat': contrast_Xvars_string = " = ".join(Xvars) contrast_formula = f"{contrast_Xvars_string} = 0" f_res = fit_Full.f_test(contrast_formula) stat_observed = f_res.fvalue[0][0] elif stat == 'pcorr': stat_observed = (fit_Full.tvalues[Xvars] / np.sqrt(fit_Full.tvalues[Xvars]**2 + fit_Full.df_resid)) elif stat == 'tstat': stat_observed = fit_Full.tvalues[Xvars] stat_observed = stat_observed.values # If the user has provided previously generated surrogates, use those. if surrogates is not None: Y_perms = surrogates # Otherwise, generate surrogate data sets. # TO-DO: Generate permutations in parallel via multiprocessing/joblib/ray. else: # Permute the Y variable. # If a custom permutation function is provided, use that. if perm_func: Y_perms = perm_func(data_df[Yvar].values, n_perms, **perm_func_args) # Otherwise, just do random shuffling. else: Y_perms = [] for i in range(n_perms): Y_perms.append(np.random.permutation(data_df[Yvar].values)) Y_perms = np.array(Y_perms) # Generate a null distribution by calculating test statistics from the full model for each of the permutations of Y. stats_null = [] exog_cols = [] exog_cols.append(Xvars) exog_cols.append(Zvars) exog_cols = list(flatten(exog_cols)) ev_array = data_df[exog_cols].values # The non-formula OLS interface is much faster but does not automatically add an intercept, so we must add it ourselves. intercept = np.reshape(np.ones_like(data_df[exog_cols[0]]),(ev_array.shape[0],1)) ev_array = np.concatenate((intercept, ev_array), axis=1) for perm_iter in Y_perms: Ypi = perm_iter fit_Perm = sm.OLS(Ypi, ev_array).fit() if stat == 'fstat': # Create a contrast array that includes all regressors contrast_array = np.identity(len(fit_Perm.params)) # Drop the intercept contrast_array = contrast_array[1:,:] # Drop Zvars contrast_array = contrast_array[:-Zsize,:] f_res = fit_Perm.f_test(contrast_array) stats_null.append(f_res.fvalue[0][0]) else: if stat == 'tstat': stats_null.append(fit_Perm.tvalues[1]) elif stat == 'pcorr': stats_null.append(fit_Perm.tvalues[1] / np.sqrt(fit_Perm.tvalues[1]**2 + fit_Perm.df_resid)) stats_null = np.array(stats_null) # Calculate the probability of the observed test statistic relative to the null distribution. if stat == 'fstat': p_greater = (
np.sum(stats_null >= stat_observed)
numpy.sum
import cv2 import numpy as np import tensorflow as tf from tensorpack.utils import viz from tensorpack.utils.palette import PALETTE_RGB from tensorpack.dataflow.imgaug import transform #import pycocotools.mask as cocomask from skimage import measure from skimage.measure import find_contours import matplotlib.pyplot as plt from matplotlib import patches, lines from matplotlib.patches import Polygon import os import sys import random import itertools import colorsys from PIL import Image, ImageDraw, ImageFont def draw_class(image, label, point, vis_color=(255, 255, 255)): image = Image.fromarray(image) width, height = image.size fond_size = int(max(height, width)*0.03) FONT = ImageFont.truetype('/data/zhangjinjin/icdar2019/LSVT/full/STXINWEI.TTF', fond_size, encoding='utf-8') DRAW = ImageDraw.Draw(image) DRAW.text((point[0], max(point[1] - fond_size, 0)), label, vis_color, font=FONT) image =
np.array(image)
numpy.array
from __future__ import absolute_import import pytest try: import rasterio except: rasterio = None rasterio_available = pytest.mark.skipif(rasterio is None, reason="requires rasterio") from os import path from itertools import product import datashader as ds import xarray as xr import numpy as np import dask.array as da from datashader.resampling import compute_chunksize BASE_PATH = path.split(__file__)[0] DATA_PATH = path.abspath(path.join(BASE_PATH, 'data')) TEST_RASTER_PATH = path.join(DATA_PATH, 'world.rgb.tif') @pytest.fixture def cvs(): with xr.open_rasterio(TEST_RASTER_PATH) as src: res = ds.utils.calc_res(src) left, bottom, right, top = ds.utils.calc_bbox(src.x.values, src.y.values, res) return ds.Canvas(plot_width=2, plot_height=2, x_range=(left, right), y_range=(bottom, top)) @rasterio_available def test_raster_aggregate_default(cvs): with xr.open_rasterio(TEST_RASTER_PATH) as src: agg = cvs.raster(src) assert agg is not None @rasterio_available def test_raster_aggregate_nearest(cvs): with xr.open_rasterio(TEST_RASTER_PATH) as src: agg = cvs.raster(src, upsample_method='nearest') assert agg is not None @pytest.mark.skip('use_overviews opt no longer supported; may be re-implemented in the future') @rasterio_available def test_raster_aggregate_with_overviews(cvs): with xr.open_rasterio(TEST_RASTER_PATH) as src: agg = cvs.raster(src, use_overviews=True) assert agg is not None @pytest.mark.skip('use_overviews opt no longer supported; may be re-implemented in the future') @rasterio_available def test_raster_aggregate_without_overviews(cvs): with xr.open_rasterio(TEST_RASTER_PATH) as src: agg = cvs.raster(src, use_overviews=False) assert agg is not None @rasterio_available def test_out_of_bounds_return_correct_size(cvs): with xr.open_rasterio(TEST_RASTER_PATH) as src: cvs = ds.Canvas(plot_width=2, plot_height=2, x_range=[1e10, 1e20], y_range=[1e10, 1e20]) try: cvs.raster(src) except ValueError: pass else: assert False @rasterio_available def test_partial_extent_returns_correct_size(): with xr.open_rasterio(TEST_RASTER_PATH) as src: res = ds.utils.calc_res(src) left, bottom, right, top = ds.utils.calc_bbox(src.x.values, src.y.values, res) half_width = (right - left) / 2 half_height = (top - bottom) / 2 cvs = ds.Canvas(plot_width=512, plot_height=256, x_range=[left-half_width, left+half_width], y_range=[bottom-half_height, bottom+half_height]) agg = cvs.raster(src) assert agg.shape == (3, 256, 512) assert agg is not None @rasterio_available def test_partial_extent_with_layer_returns_correct_size(cvs): with xr.open_rasterio(TEST_RASTER_PATH) as src: res = ds.utils.calc_res(src) left, bottom, right, top = ds.utils.calc_bbox(src.x.values, src.y.values, res) half_width = (right - left) / 2 half_height = (top - bottom) / 2 cvs = ds.Canvas(plot_width=512, plot_height=256, x_range=[left-half_width, left+half_width], y_range=[bottom-half_height, bottom+half_height]) agg = cvs.raster(src, layer=1) assert agg.shape == (256, 512) assert agg is not None @rasterio_available def test_calc_res(): """Assert that resolution is calculated correctly when using the xarray rasterio backend. """ with xr.open_rasterio(TEST_RASTER_PATH) as src: xr_res = ds.utils.calc_res(src) with rasterio.open(TEST_RASTER_PATH) as src: rio_res = src.res assert np.allclose(xr_res, rio_res) @rasterio_available def test_calc_bbox(): """Assert that bounding boxes are calculated correctly when using the xarray rasterio backend. """ with xr.open_rasterio(TEST_RASTER_PATH) as src: xr_res = ds.utils.calc_res(src) xr_bounds = ds.utils.calc_bbox(src.x.values, src.y.values, xr_res) with rasterio.open(TEST_RASTER_PATH) as src: rio_bounds = src.bounds assert np.allclose(xr_bounds, rio_bounds, atol=1.0) # allow for absolute diff of 1.0 def test_raster_both_ascending(): """ Assert raster with ascending x- and y-coordinates is aggregated correctly. """ xs =
np.arange(10)
numpy.arange
from mahotas import interpolate import numpy as np from nose.tools import raises def test_spline_filter1d_smoke(): f = (np.arange(64*64, dtype=np.intc) % 64).reshape((64,64)).astype(np.float64) f2 =interpolate.spline_filter1d(f,2,0) assert f.shape == f2.shape def test_spline_filter_smoke(): f = (np.arange(64*64, dtype=np.intc) % 64).reshape((64,64)).astype(np.float64) f2 = interpolate.spline_filter(f,3) assert f.shape == f2.shape def test_zoom_ratio(): f = np.zeros((128,128)) f[32:64,32:64] = 128 for z in [.7,.5,.2,.1]: output = interpolate.zoom(f,z) ratio = output.sum()/f.sum() assert np.abs(ratio - z*z) < .1 def test_zoom_ratio_2(): f = np.zeros((128,128)) f[32:64,32:64] = 128 z0,z1 = .7,.5 output = interpolate.zoom(f,[z0,z1]) ratio = output.sum()/f.sum() assert np.abs(ratio - z0*z1) < .1 def test_shift_ratio(): f = np.zeros((128,128)) f[32:64,32:64] = 128 for s in [0,1,2,3]: output = interpolate.shift(f,(s,s)) ratio = output.sum()/f.sum() assert np.abs(ratio - 1.) < .01 def test_order(): f = np.arange(16*16).reshape((16,16)) @raises(ValueError) def call_f(f, *args): f(*args) yield call_f, interpolate.spline_filter1d, f, -6 yield call_f, interpolate.spline_filter1d, f, 6 yield call_f, interpolate.spline_filter, f, 0 def test_complex(): f = -
np.arange(16.*16)
numpy.arange
import numpy as np import matplotlib.pyplot as plt import astropy.units as au import astropy.constants as ac import xarray as xr from scipy.interpolate import interp1d from scipy.stats import poisson from .models import TigressWindModel __all__ = [ "TigressWindSampler", "to_time_series"] @np.vectorize def GGD(x,d=2,p=1): """Two parameter generalized gamma distribution (GGD) Parameters ---------- x : array_like (positive) d : float (positive) p : float (positive) Returns ------- pdf : array_like Notes ----- .. math:: G(x;d,p) = \frac{p}{\Gamma(d/p)}x^{d-1}\exp{-x^p} where Gamma() is the gamma function """ from scipy.special import gamma return p/gamma(d/p)*x**(d-1)*np.exp(-x**p) def GGD_CDF(d=2,p=1,log=False): """Tabulate cumulative distribution function (CDF) of a GGD Parameters ---------- d : float (positive) p : float (positive) log : bool if True, CDF is tabulated with uniform inteval in log y Returns ------- y : array_like range over which the CDF is calculated cdf : array_like Notes ----- .. math:: CDF(y) = \int_0^y G(x;d,p) dx where G(x;d,p) is a GGD """ if log: dlogy = 0.01 logy = np.arange(-4,2,dlogy) y0 = 10.**logy pdf = np.log(10)*y0*GGD(y0,d=d,p=p) cdf = pdf.cumsum()*dlogy else: dy = 0.01 y0 = np.arange(0,20,dy) pdf = GGD(y0,d=d,p=p) cdf = pdf.cumsum()*dy return y0,cdf class TigressWindSampler(TigressWindModel): """Particle sampler for the TIGRESS Wind Model Parameters ---------- z0 : ['H','2H','500','1000'] Examples -------- >>> from twind import * >>> sampler = TigressWindSampler() >>> cool,hot=sampler.draw_mass(sfr0,mcool,mhot,area=area,dt=dt) """ def __init__(self, z0='H', verbose=False): TigressWindModel.__init__(self, z0, verbose) # a conversion factor between (erg/Msun) and (km/s)^2 self.vEsq=(1.0*au.erg/au.M_sun).to('km^2/s^2').value # for vout cool p = self.cool_params y0,vout_cdf = GGD_CDF(d=p['d_v'],p=p['p_v']) self.vout_cdf = vout_cdf # for cs cool self.cs0 = p['cs0'] self.sigma = p['sigma'] # for vB hot p = self.hot_params y0,vB_cdf = GGD_CDF(d=p['d_vB'],p=p['p_vB']) self.vB_cdf = vB_cdf # for Mach hot y0,Mach_cdf = GGD_CDF(d=p['d_M'],p=p['p_M']) self.Mach0 = p['Mach0'] self.Mach_cdf = Mach_cdf self.y0 = y0 # set some constants for convenience self.ZISM = self.params['ZISM0'] self.mstar = self.params['mstar'].to('Msun').value self.Eref = self.ref_params['Eref'].to('erg').value def get_refs(self,sfr): """Obtain reference rates and loading factors for a given SFR surface density using scaling relations Parameters ---------- sfr : array_like SFR surface density Returns ------- refs : array_like reference mass, momemtum, energy, metal outflow rates eta : array_like mass, momemtum, energy, metal loading factors for total gas eta_cool : array_like mass, momemtum, energy, metal loading factors for cool gas eta_hot : array_like mass, momemtum, energy, metal loading factors for hot gas """ snr=sfr/self.params['mstar'].to('Msun').value mr=snr*self.ref_params['mref'].to('Msun').value pr=snr*self.ref_params['pref'].to('Msun*km/s').value er=snr*self.ref_params['Eref'].to('erg').value Zr=snr*self.ref_params['Zref'].to('Msun').value refs=[mr,pr,er,Zr] etas=[] for name in ['M_total','p_total','E_total','Z_total']: etas.append(self._eta_sfr_scaling(sfr,name)) etas_cool=[] for name in ['M_cool','p_cool','E_cool','Z_cool']: etas_cool.append(self._eta_sfr_scaling(sfr,name)) etas_hot=[] for name in ['M_hot','p_hot','E_hot','Z_hot']: etas_hot.append(self._eta_sfr_scaling(sfr,name)) return refs, etas, etas_cool, etas_hot def draw_mass(self,sfr,mcool,mhot,area=1.0,dt=1.e3): """Draw particles with fixed particle mass quanta Parameters ---------- sfr : float, array_like SFR surface density in Msun/yr/kpc^2 mcool : float Mass of cool gas in Msun mhot : float Mass of hot gas in Msun area : float area in kpc^2 dt : float, array_like time interval over which particle is sampled Returns ------- cool, hot : dicts dicts containg particle mass, 3 component velocity, sound speed, metallicity, and index of each particle in the corresponding input SFR surface density array, which will be used for reconstuction of time series """ # Step 0: preparation sfr_ = np.atleast_1d(sfr) dt_ = np.atleast_1d(dt) mstar_ = sfr_*dt_*area # Step 1: obatin the mass of the wind in each gas phase mcool_out = self._etaM_cool(sfr)*mstar_ mhot_out = self._etaM_hot(sfr)*mstar_ # Step 2: draw an integer random variate for number of particles # expected number of particles ncool_ = mcool_out/mcool nhot_ = mhot_out/mhot # Step 3-6: cool, hot = self._sample_particles(ncool_,nhot_,sfr_) # Make mass as array cool['mass'] = mcool*np.ones_like(cool['vz']) hot['mass'] = mhot*np.ones_like(hot['vz']) return cool,hot def draw_energy(self,sfr,ecool,ehot,area=1.0,dt=1.e3): """Draw particles with fixed particle energy quanta Parameters ---------- sfr : float, array_like SFR surface density in Msun/yr/kpc^2 ecool : float energy of cool gas in 10^51 erg ehot : float energy of hot gas in 10^51 erg area : float area in kpc^2 dt : float, array_like time interval over which particle is sampled Returns ------- cool, hot : dicts dicts containg particle mass, 3 component velocity, sound speed, metallicity, and index of each particle in the corresponding input SFR surface density array, which will be used for reconstuction of time series """ # Step 0: preparation sfr_ = np.atleast_1d(sfr) dt_ = np.atleast_1d(dt) nsn_ = sfr_*dt_*area/self.mstar Einj_ = nsn_*self.Eref/1.e51 # Step 1: obatin the energy of the wind in each gas phase ecool_out = self._etaE_cool(sfr)*Einj_ ehot_out = self._etaE_hot(sfr)*Einj_ # Step 2: draw an integer random variate for number of particles # expected number of particles ncool_ = ecool_out/ecool nhot_ = ehot_out/ehot # Step 3-6: cool, hot = self._sample_particles(ncool_,nhot_,sfr_) # get mass from energy vsqc = 0.5*((cool['vx']**2+cool['vy']**2+cool['vz']**2) + 5*cool['cs']**2) vsqh = 0.5*((hot['vx']**2+hot['vy']**2+hot['vz']**2) + 5*hot['cs']**2) mcool = ecool*1.e51/vsqc*self.vEsq mhot = ehot*1.e51/vsqh*self.vEsq cool['mass'] = mcool hot['mass'] = mhot return cool,hot def _sample_particles(self,ncool_,nhot_,sfr_): """Sampling particles for a given number of particles and SFR surface density """ # get integer number of particles using poisson sampler ncool = np.atleast_1d(poisson.rvs(ncool_)) nhot = np.atleast_1d(poisson.rvs(nhot_)) Nc = ncool.sum() Nh = nhot.sum() # Step 3.0: prepare to draw particle's velocity and sound speed # this step is required to avoid for loops in actual sampling step # maybe there will be a better pythonic way for this, but # at least this is working and not too slow... # store indices of SFR that has non-zero number of particles coolidx=[] hotidx=[] for i,nc,nh in zip(range(len(sfr_)),ncool,nhot): for j in range(nc): coolidx.append(i) for k in range(nh): hotidx.append(i) # SFR surface density information for particles sfrcool = sfr_[coolidx] sfrhot = sfr_[hotidx] # Steps 3 and 4: Obtain particle velocity and sound speed vzc, cc = self._draw_cool(Nc,sfrcool) vzh, ch = self._draw_hot(Nh,sfrhot) # calculate vBz vBzc = np.sqrt(vzc**2 + 5*cc**2) vBzh = np.sqrt(vzh**2 + 5*ch**2) # Step 5: Assign metallicity Zc = self._Zmodel(vBzc,sfrcool,self.ZISM) Zh = self._Zmodel(vBzh,sfrhot,self.ZISM) # Step 6: Assign transverse velocity # calculate the magnitude of transverse velocity from the energy bias model bc = self._energy_bias(vBzc) bh = self._energy_bias(vBzh) vperpc = np.sqrt((1-bc)/bc)*vBzc vperph = np.sqrt((1-bh)/bh)*vBzh # draw uniform random number to assign vx and vy theta = np.random.rand(Nc)*2*np.pi vxc = vperpc*np.cos(theta) vyc = vperpc*np.sin(theta) theta = np.random.rand(Nh)*2*np.pi vxh = vperph*
np.cos(theta)
numpy.cos
import os from numpy.testing import assert_array_almost_equal import numpy as np from nose import tools as nt from neurom.core.types import NeuriteType import neurom.view._dendrogram as dm from neurom import load_neuron, get _PWD = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(_PWD, '../../../test_data/h5/v1/Neuron.h5') NEURON = load_neuron(DATA_PATH) NEURITE = NEURON.neurites[0] TREE = NEURITE.root_node OLD_OFFS = [1.2, -1.2] NEW_OFFS = [2.3, -2.3] SPACING = (40., 0.) def test_n_rectangles_tree(): nt.assert_equal(dm._n_rectangles(NEURITE), 230) def test_n_rectangles_neuron(): nt.assert_equal(dm._n_rectangles(NEURON), 920) def test_vertical_segment(): radii = [10., 20.] res = np.array([[ -7.7, -1.2], [-17.7, -2.3], [ 22.3, -2.3], [ 12.3, -1.2]]) seg = dm._vertical_segment(OLD_OFFS, NEW_OFFS, SPACING, radii) nt.assert_true(
np.allclose(seg, res)
numpy.allclose
import numpy as np class Axis(object): """A named sequence of values. Can be used as non-indexable axis in Cube. Name is a string. Values are stored in one-dimensional numpy array. """ def __init__(self, name, values): """Initializes Axis object. :param name: str :param values: sequence of values of the same type, are converted to 1-D numpy array :raise: ValueError if values cannot be converted, TypeError if name is not string """ if not isinstance(name, str): raise TypeError("type of {} is not str".format(repr(name))) values = np.atleast_1d(values) if values.ndim > 1: raise ValueError("values must not have more than 1 dimension") self._name = name self._values = values def __repr__(self): """Returns textual representation of Axis object. Can be reused by inherited classes. :return: str """ return "{}('{}', {})".format(self.__class__.__name__, self._name, self._values) def __len__(self): """Returns the number of elements in (the length) the axis. :return: int """ return len(self._values) def __getitem__(self, item): """ :param item: :return: a new Axis object """ _newValues = self._values[item] if isinstance(_newValues,str): _newValues = [_newValues] elif "numpy." in str(type(_newValues)): _newValues=_newValues.flatten() return self.__class__(self._name, _newValues) def __sizeof__(self): return self.values.nbytes # A == B def __eq__(self, other): return apply_op(self,other, np.ndarray.__eq__) # A != B def __ne__(self, other): return apply_op(self,other, np.ndarray.__ne__) # A < B def __lt__(self, other): return apply_op(self,other, np.ndarray.__lt__) # A <= B def __le__(self, other): return apply_op(self,other, np.ndarray.__le__) # A > B def __gt__(self, other): return apply_op(self,other, np.ndarray.__gt__) # A >= B def __ge__(self, other): return apply_op(self,other, np.ndarray.__ge__) @property def name(self): """Returns he name of the axis. :return: str """ return self._name @property def values(self): """Returns one-dimensional numpy.ndarray of axis values. :return: numpy.ndarray """ return self._values # TODO: view? def filter(self, values): """Filter axis elements which are contained in values. The axis order is preserved. :param values: a value or a list, set, tuple or numpy array of values the order or values is irrelevant, need not be unique :return: """ if isinstance(values, set): values = list(values) values =
np.asarray(values)
numpy.asarray
# coding=utf-8 # /************************************************************************************ # *** # *** File Author: Dell, 2018年 12月 17日 星期一 16:33:18 CST # *** # ************************************************************************************/ import sys import cv2 import random import numpy as np import matplotlib.pyplot as plt RESIZE_WIDTH = 320 RESIZE_HEIGHT = 480 def resize_grabcut(img): """Image Resize and Grab Cut.""" img = cv2.resize(img, (RESIZE_WIDTH, RESIZE_HEIGHT)) mask = np.zeros((img.shape[:2]), np.uint8) bgmodel = np.zeros((1, 65), np.float64) fgmodel = np.zeros((1, 65), np.float64) border = random.randint(10, 15) rect = (border, border, img.shape[1] - border, img.shape[0] - border) cv2.grabCut(img, mask, rect, bgmodel, fgmodel, 16, cv2.GC_INIT_WITH_RECT) # 0 -- cv2.GC_BGD, 1 -- cv2.GC_FGD, 2 -- cv2.GC_PR_BGD, 3 -- cv2.GC_PR_FGD mask2 =
np.where((mask == 2) | (mask == 0), 0, 1)
numpy.where
import os import numpy as np from PIL import Image import cv2 import torch from datetime import datetime import sys import math from torchvision.utils import make_grid import torchvision.transforms as transforms def get_timestamp(): return datetime.now().strftime('%y%m%d-%H%M%S') def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): ''' Converts a torch Tensor into an image Numpy array Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) ''' tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] n_dim = tensor.dim() if n_dim == 4: n_img = len(tensor) img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 3: img_np = tensor.numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 2: img_np = tensor.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) if out_type == np.uint8: img_np = (img_np * 255.0).round() # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. return img_np.astype(out_type) def img2tensor(image,args,is_Crop=False,crop_size=256): # opencv image to PIL image img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) transform_list = [] if is_Crop: transform_list.append(transforms.RandomCrop(crop_size)) transform_list.append(transforms.ToTensor()) if args.is_normalize_datas: transform_list.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))) # to [-1,1] img2tensor_t = transforms.Compose(transform_list) out_tensor = img2tensor_t(img) return out_tensor # print to file and std_out simultaneously class PrintLogger(object): def __init__(self, args): self.terminal = sys.stdout args.path_log = args.checkpoint_dir + 'print_log.txt' if args.use_docker else 'print_log.txt' self.log = open(args.path_log, 'a') def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): pass def check_args(args, rank=0): if rank == 0: # if args.use_docker: # args.setting_file = args.checkpoint_dir + args.setting_file # args.log_file = args.checkpoint_dir + args.log_file # # os.makedirs(args.training_state, exist_ok=True) # os.makedirs(args.checkpoint_dir, exist_ok=True) with open(args.setting_file, 'w') as opt_file: opt_file.write('------------ Options -------------\n') print('------------ Options -------------') for k in args.__dict__: v = args.__dict__[k] opt_file.write('%s: %s\n' % (str(k), str(v))) print('%s: %s' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') print('------------ End -------------') return args def read_cv2_img(path): ''' Read color images :param path: Path to image :return: Only returns color images ''' img = cv2.imread(path, -1) h,w,_=img.shape #img = cv2.resize(img,(int(w/2),int(h/2))) if img is not None: if len(img.shape) != 3: return None img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def tensor2Image_test(input_image,args,imtype=np.uint8): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image image_numpy = image_tensor.squeeze().cpu().float().numpy() return numpy2im(image_numpy, args,imtype,outtype='numpy') # utils def tensor2im(input_image, args, imtype=np.uint8, show_size=None): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image image_numpy = image_tensor.cpu().float().numpy() im = [] for i in range(image_numpy.shape[0]): if show_size: im.append( np.array(numpy2im(image_numpy[i], args,imtype).resize((show_size, show_size), Image.ANTIALIAS))) else: im.append(np.array(numpy2im(image_numpy[i], args,imtype))) return np.array(im) def numpy2im(image_numpy, args,imtype=np.uint8,outtype='PIL'): if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) if args.is_normalize_datas: image_numpy = (np.transpose(image_numpy, (1, 2, 0)) / 2. + 0.5) * 255.0 else: image_numpy = (np.transpose(image_numpy, (1, 2, 0))) * 255.0 image_numpy = np.clip(image_numpy, 0, 255) image_numpy = image_numpy.astype(imtype) if outtype=='PIL': return Image.fromarray(image_numpy) else: return image_numpy def display_online_cv2img_results(visuals, args, img_name, vis_saved_dir, show_size=128, in_channel=3): pass def display_online_results(visuals, args,steps, vis_saved_dir, show_size=128, in_channel=3): images = [] labels = [] for label, image in visuals.items(): image_numpy = tensor2im(image, args,show_size=show_size) # [10, 128, 128, 3] image_numpy = np.reshape(image_numpy, (-1, show_size, in_channel)) images.append(image_numpy) labels.append(label) save_images = np.array(images) # [8, 128*10, 128, 3] save_images =
np.transpose(save_images, [1, 0, 2, 3])
numpy.transpose