prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import print_function from signal import signal import pandas as pd import numpy as np from tomlkit import boolean from myo.utils import TimeInterval import myo import sys from threading import Lock, Thread from matplotlib import pyplot as plt import myo import numpy as np from collections import deque import matplotlib._color_data as mcd import matplotlib.patches as mpatch from scipy.spatial.distance import pdist, squareform #scipy spatial distance import sklearn as sk import sklearn.metrics.pairwise import os import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D, LeakyReLU from keras import metrics from keras import backend as K import time from skimage.transform import resize from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from keras.utils import np_utils #Recurrence plot function def recurrence_plot(s, eps=None, steps=None): if eps==None: eps=0.1 if steps==None: steps=10 d = sk.metrics.pairwise.pairwise_distances(s) d = np.floor(d / eps) d[d > steps] = steps #Z = squareform(d)cd return d #Initial defitions samples =100 columns= samples + 1 rows = 8 totalSamples = samples*8 totalColumns = totalSamples+1 dimensions = (rows,columns) dimensions2 = (rows,columns-1) signal_header = np.zeros(801,dtype='object') #fill the signal header with its names for i in range(0, totalColumns): if(i == totalColumns-1): signal_header[i] = "gesture" else: signal_header[i]= "sample_ "+ str(i); data = [] #receives the signal from the emg, saves 100 samples from each plate on the array class EmgCollector(myo.DeviceListener): """ Collects EMG data in a queue with *n* maximum number of elements. """ def __init__(self, n): self.n = n self.lock = Lock() self.emg_data_queue = deque(maxlen=n) def get_emg_data(self): with self.lock: return list(self.emg_data_queue) # myo.DeviceListener def on_connected(self, event): event.device.stream_emg(True) def on_emg(self, event): with self.lock: self.emg_data_queue.append((event.timestamp, event.emg)) class Plot(object): def __init__(self, listener): self.n = listener.n self.listener = listener # self.fig = plt.figure() # self.axes = [self.fig.add_subplot('81' + str(i)) for i in range(1, 9)] # [(ax.set_ylim([-100, 100])) for ax in self.axes] # self.graphs = [ax.plot(np.arange(self.n), np.zeros(self.n))[0] for ax in self.axes] # plt.ion() def update_plot(self): emg_data = self.listener.get_emg_data() emg_data =
np.array([x[1] for x in emg_data])
numpy.array
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' data=np.genfromtxt(path,delimiter=",",skip_header=1) #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Code starts here new_record=np.asarray(new_record) census=np.concatenate((data,new_record),axis=0) # -------------- #Code starts here age=census[:,:1] max_age=np.max(age) min_age=np.min(age) age_mean=np.mean(age) age_std=np.std(age) # -------------- #Code starts here race=census[:,2] race=np.asarray(race) race_0=census[np.all([race==0],axis=0)] race_1=census[
np.all([race==1],axis=0)
numpy.all
import numpy as np import scipy.special as special def loopbrz( Ra, I0, Nturns, R, Z ): # Input # Ra [m] Loop radius # I0 [A] Loop current # Nturns Loop number of turns (windings) # R [m] Radial coordinate of the point # Z [m] Axial coordinate of the point # Output # Br, Bz [T] Radial and Axial components of B-field at (R,Z) # # (Note that singularities are not handled here) mu0 = 4.0e-7 * np.pi B0 = mu0/2.0/Ra * I0 * Nturns alfa = np.absolute(R)/Ra beta = Z/Ra gamma = (Z+1.0e-10)/(R+1.0e-10) Q = (1+alfa)**2 + beta**2 ksq = 4.0 * alfa / Q asq = alfa * alfa bsq = beta * beta Qsp = 1.0/np.pi/np.sqrt(Q) K = special.ellipk(ksq) E = special.ellipe(ksq) Br = gamma * B0*Qsp * ( E * (1+asq+bsq)/(Q-4.0*alfa) - K ) Bz = B0*Qsp * ( E * (1-asq-bsq)/(Q-4.0*alfa) + K ) return Br, Bz def roto(EulerAngles): # Classic (proper) Euler Angles (p,t,f) # with Z-X-Z rotation sequence: # (psi,z), (theta,x), (phi,z) # p=psi, t=theta, f=phi angles in [rad] p=EulerAngles[0] t=EulerAngles[1] f=EulerAngles[2] sp=np.sin(p) st=np.sin(t) sf=
np.sin(f)
numpy.sin
# -*- coding: utf-8 -*- """ Created on Tue Aug 25 14:35:26 2020 @author: cheritie """ import matplotlib.pyplot as plt import numpy as np import scipy.ndimage as sp from AO_modules.calibration.InteractionMatrix import interactionMatrix from AO_modules.MisRegistration import MisRegistration from AO_modules.mis_registration_identification_algorithm.computeMetaSensitivyMatrix import computeMetaSensitivityMatrix from AO_modules.mis_registration_identification_algorithm.applyMisRegistration import applyMisRegistration, apply_shift_wfs from AO_modules.tools.interpolateGeometricalTransformation import rotateImageMatrix,rotation,translationImageMatrix,translation,anamorphosis,anamorphosisImageMatrix import skimage.transform as sk """ def estimateMisRegistration(nameFolder, nameSystem, tel, atm, ngs, dm_0, wfs, basis, calib_in, misRegistrationZeroPoint, epsilonMisRegistration, param, precision = 3, gainEstimation = 1, return_all = False): Compute the set of sensitivity matrices required to identify the mis-registrations. %%%%%%%%%%%%%%%% -- INPUTS -- %%%%%%%%%%%%%%%% _ nameFolder : folder to store the sensitivity matrices. _ nameSystem : name of the AO system considered. For instance 'ELT_96x96_R_band' _ tel : telescope object _ atm : atmosphere object _ ngs : source object _ dm_0 : deformable mirror with reference configuration of mis-registrations _ pitch : pitch of the dm in [m] _ wfs : wfs object _ basis : basis to use to compute the sensitivity matrices. Basis should be an object with the following fields: basis.modes : [nActuator x nModes] matrix containing the commands to apply the modal basis on the dm basis.indexModes : indexes of the modes considered in the basis. This is used to name the sensitivity matrices basis.extra : extra name to name the sensitivity matrices for instance 'KL' _ precision : precision to round the parameter estimation. Equivalent to np.round(misReg_estimation,precision) _ gainEstimation : gain to apply after one estimation. eventually allows to avoid overshoots. _ return_all : if true, returns all the estimations at every step of the algorithm _ misRegistrationZeroPoint : mis-registration around which you want to compute the sensitivity matrices _ epsilonMisRegistration : epsilon value to apply _ param : dictionnary used as parameter file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The function returns the meta-sensitivity matrix that contains all the individual sensitivity matrices reshaped as a vector and concatenated. %%%%%%%%%%%%%%%% -- OUTPUTS -- %%%%%%%%%%%%%%%% _ misRegistration_out : mis-registration object corresponding to the convergence value _ scalingFactor_values : scaling factor (for each mode of the modal basis) for each iteration to take into consideration eventual gains variation between data and model _ misRegistration_values : mis-registration values for each iteration """ def estimateMisRegistration(nameFolder, nameSystem, tel, atm, ngs, dm_0, wfs, basis, calib_in, misRegistrationZeroPoint, epsilonMisRegistration, param, precision = 3, gainEstimation = 1, sensitivity_matrices = None, return_all = False, fast = False, wfs_mis_registrated = None, nIteration = 3): #%% ---------- LOAD/COMPUTE SENSITIVITY MATRICES -------------------- # compute the sensitivity matrices. if the data already exits, the files will be loaded # WARNING: The data are loaded only if the name of the requeste files matches the ones in argument of this function. # make sure that these files are well corresponding to the system you are working with. if sensitivity_matrices is None: [metaMatrix,calib_0] = computeMetaSensitivityMatrix(nameFolder = nameFolder,\ nameSystem = nameSystem,\ tel = tel,\ atm = atm,\ ngs = ngs,\ dm_0 = dm_0,\ pitch = dm_0.pitch,\ wfs = wfs,\ basis = basis,\ misRegistrationZeroPoint = misRegistrationZeroPoint,\ epsilonMisRegistration = epsilonMisRegistration,\ param = param,\ wfs_mis_registrated = wfs_mis_registrated) else: metaMatrix = sensitivity_matrices #%% ---------- ITERATIVE ESTIMATION OF THE PARAMETERS -------------------- stroke = 1e-12 criteria = 0 n_mis_reg = metaMatrix.M.shape[0] misRegEstBuffer = np.zeros(n_mis_reg) scalingFactor_values = [1] misRegistration_values = [np.zeros(n_mis_reg)] epsilonMisRegistration_field = ['shiftX','shiftY','rotationAngle','radialScaling','tangentialScaling'] i=0 tel.isPaired = False misRegistration_out = MisRegistration(misRegistrationZeroPoint) if fast: from AO_modules.calibration.InteractionMatrix import interactionMatrixFromPhaseScreen dm_0.coefs = np.squeeze(basis.modes) tel*dm_0 input_modes_0 = dm_0.OPD input_modes_cp = input_modes_0.copy() while criteria ==0: i=i+1 # temporary deformable mirror if np.ndim(input_modes_0)==2: if wfs_mis_registrated is not None: misRegistration_wfs = MisRegistration() misRegistration_wfs.shiftX = misRegistration_out.shiftX misRegistration_wfs.shiftY = misRegistration_out.shiftY misRegistration_dm = MisRegistration() misRegistration_dm.rotationAngle = misRegistration_out.rotationAngle apply_shift_wfs(wfs, misRegistration_wfs.shiftX / (wfs.nSubap/wfs.telescope.D), misRegistration_wfs.shiftY/ (wfs.nSubap/wfs.telescope.D)) input_modes_cp = tel.pupil*apply_mis_reg(tel,input_modes_0, misRegistration_dm) else: input_modes_cp = tel.pupil*apply_mis_reg(tel,input_modes_0, misRegistration_out) else: for i_modes in range(input_modes_0.shape[2]): if wfs_mis_registrated is not None: misRegistration_wfs = MisRegistration() misRegistration_wfs.shiftX = misRegistration_out.shiftX misRegistration_wfs.shiftY = misRegistration_out.shiftY misRegistration_dm = MisRegistration() misRegistration_dm.rotationAngle = misRegistration_out.rotationAngle apply_shift_wfs(wfs, misRegistration_wfs.shiftX / (wfs.nSubap/wfs.telescope.D), misRegistration_wfs.shiftY/ (wfs.nSubap/wfs.telescope.D)) input_modes_cp[:,:,i_modes] = tel.pupil*apply_mis_reg(tel,input_modes_0[:,:,i_modes], misRegistration_dm) else: input_modes_cp[:,:,i_modes] = tel.pupil*apply_mis_reg(tel,input_modes_0[:,:,i_modes], misRegistration_out) # temporary interaction matrix calib_tmp = interactionMatrixFromPhaseScreen(ngs,atm,tel,wfs,input_modes_cp,stroke,phaseOffset=0,nMeasurements=50,invert=False,print_time=False) # temporary scaling factor try: scalingFactor_tmp = np.round(np.diag(calib_tmp.D.T@calib_in.D)/ np.diag(calib_tmp.D.T@calib_tmp.D),precision) # temporary mis-registration misReg_tmp = gainEstimation*np.matmul(metaMatrix.M,np.reshape( [email protected](1/scalingFactor_tmp) - calib_tmp.D ,calib_in.D.shape[0]*calib_in.D.shape[1])) except: scalingFactor_tmp = np.round(np.sum(np.squeeze(calib_tmp.D)*np.squeeze(calib_in.D))/ np.sum(np.squeeze(calib_tmp.D)*np.squeeze(calib_tmp.D)),precision) # temporary mis-registration misReg_tmp = gainEstimation*np.matmul(metaMatrix.M,np.squeeze((np.squeeze(calib_in.D)*(1/scalingFactor_tmp)) - np.squeeze(calib_tmp.D))) # cumulative mis-registration misRegEstBuffer+= np.round(misReg_tmp,precision) # define the next working point to adjust the scaling factor for i_mis_reg in range(n_mis_reg): setattr(misRegistration_out, epsilonMisRegistration_field[i_mis_reg], getattr(misRegistration_out, epsilonMisRegistration_field[i_mis_reg]) + np.round(misReg_tmp[i_mis_reg],precision)) # save the data for each iteration scalingFactor_values.append(np.copy(scalingFactor_tmp)) misRegistration_values.append(np.copy(misRegEstBuffer)) if i==nIteration: criteria =1 else: while criteria ==0: i=i+1 # temporary deformable mirror dm_tmp = applyMisRegistration(tel,misRegistration_out,param, wfs = wfs_mis_registrated,print_dm_properties=False,floating_precision=dm_0.floating_precision) # temporary interaction matrix calib_tmp = interactionMatrix(ngs,atm,tel,dm_tmp,wfs,basis.modes,stroke,phaseOffset=0,nMeasurements=50,invert=False,print_time=False) # erase dm_tmp to free memory del dm_tmp # temporary scaling factor try: scalingFactor_tmp = np.round(np.diag(calib_tmp.D.T@calib_in.D)/ np.diag(calib_tmp.D.T@calib_tmp.D),precision) # temporary mis-registration misReg_tmp = gainEstimation*np.matmul(metaMatrix.M,np.reshape( [email protected](1/scalingFactor_tmp) - calib_tmp.D ,calib_in.D.shape[0]*calib_in.D.shape[1])) except: scalingFactor_tmp = np.round(np.sum(np.squeeze(calib_tmp.D)*np.squeeze(calib_in.D))/ np.sum(np.squeeze(calib_tmp.D)*np.squeeze(calib_tmp.D)),precision) # temporary mis-registration misReg_tmp = gainEstimation*np.matmul(metaMatrix.M,np.squeeze((np.squeeze(calib_in.D)*(1/scalingFactor_tmp)) - np.squeeze(calib_tmp.D))) # cumulative mis-registration misRegEstBuffer+= np.round(misReg_tmp,precision) # define the next working point to adjust the scaling factor for i_mis_reg in range(n_mis_reg): setattr(misRegistration_out, epsilonMisRegistration_field[i_mis_reg], getattr(misRegistration_out, epsilonMisRegistration_field[i_mis_reg]) + np.round(misReg_tmp[i_mis_reg],precision)) # save the data for each iteration scalingFactor_values.append(np.copy(scalingFactor_tmp)) misRegistration_values.append(np.copy(misRegEstBuffer)) if i==nIteration: criteria =1 misRegistration_out.shiftX = np.round(misRegistration_out.shiftX,precision) misRegistration_out.shiftY =
np.round(misRegistration_out.shiftY,precision)
numpy.round
import pandas as pd import numpy as np from collections import defaultdict from utils.save_models import Save from utils.functions import mean, total class PrsScreeningNoMRI(Save): """Build cohort of risk-tailored screening using biopsy-first approach to diagnosis, following pre-2019 NICE guidelines.""" def __init__(self, params, a_risk, od_by_risk:bool=False): self.cohort_list = [] self.outcomes_list = [] self.simulations = defaultdict(list) self.run_model = self._run_model(params, a_risk, od_by_risk) def _run_model(self, params, a_risk, od_by_risk): # Loop through age cohorts for year in np.arange(55, 70): pca_incidence_prs = params.pca_incidence.copy() pca_incidence_prs[:,10:25] = (pca_incidence_prs[:,10:25].T * params.rr_incidence[year-45,:]).T pca_incidence_prs[:,25:35] = pca_incidence_prs[:,25:35] * np.linspace(params.post_sc_incidence_drop,1,10) pca_incidence_prs = pca_incidence_prs[:, year-45:] # Death from PCa pca_mortality_prs = params.pca_death_baseline.copy() pca_mortality_prs[:,10:15] = pca_mortality_prs[:,10:15] * np.linspace(1,0.8,5) pca_mortality_prs[:,15:] = pca_mortality_prs[:,15:] * params.rr_death_screening[:,15:] pca_mortality_prs = pca_mortality_prs[:, year-45:] # Probability of being screened p_screened = np.array(params.uptake_prs * a_risk.loc[year,'p_above_threshold']) p_ns = np.array((1-params.uptake_prs) * a_risk.loc[year,'p_above_threshold']) p_nos = np.array(params.compliance * (1-a_risk.loc[year,'p_above_threshold'])) p_nos_screened = np.array((1-params.compliance) * (1-a_risk.loc[year,'p_above_threshold'])) if year < 55: # Yearly probability of PCa incidence p_pca_screened = params.pca_incidence[:, year-45:] p_pca_ns = params.pca_incidence[:, year-45:] p_pca_nos = params.pca_incidence[:, year-45:] p_pca_nos_screened = params.pca_incidence[:, year-45:] # Yearly probability of death from PCa p_pca_death_screened = params.pca_death_baseline[:, year-45:] p_pca_death_ns = params.pca_death_baseline[:, year-45:] p_pca_death_nos = params.pca_death_baseline[:, year-45:] p_pca_death_nos_screened = params.pca_death_baseline[:, year-45:] # Proportion of cancers detected by screening at a localised / advanced stage advanced_stage_sc = params.stage_adv_ns_psa[:, year-45:] advanced_stage_ns = params.stage_adv_ns_psa[:, year-45:] advanced_stage_nos_sc = params.stage_adv_ns_psa[:, year-45:] advanced_stage_nos = params.stage_adv_ns_psa[:, year-45:] localised_stage_sc = params.stage_local_ns_psa[:, year-45:] localised_stage_ns = params.stage_local_ns_psa[:, year-45:] localised_stage_nos_sc = params.stage_local_ns_psa[:, year-45:] localised_stage_nos = params.stage_local_ns_psa[:, year-45:] elif year > 54: # Yearly probability of PCa incidence p_pca_screened = pca_incidence_prs * a_risk.loc[year, 'rr_high'] p_pca_ns = params.pca_incidence[:, year-45:] * a_risk.loc[year,'rr_high'] p_pca_nos = params.pca_incidence[:, year-45:] * a_risk.loc[year,'rr_low'] p_pca_nos_screened = pca_incidence_prs * a_risk.loc[year,'rr_low'] # Yearly probability of death from PCa p_pca_death_screened = pca_mortality_prs * a_risk.loc[year,'rr_high'] p_pca_death_ns = params.pca_death_baseline[:, year-45:] * a_risk.loc[year,'rr_high'] p_pca_death_nos = params.pca_death_baseline[:, year-45:] * a_risk.loc[year,'rr_low'] p_pca_death_nos_screened = pca_mortality_prs * a_risk.loc[year,'rr_low'] # Proportion of cancers detected by screening at a localised / advanced stage advanced_stage_sc = params.stage_adv_screened_psa[:, year-45:] localised_stage_sc = params.stage_local_screened_psa[:, year-45:] advanced_stage_ns = params.stage_adv_ns_psa[:, year-45:] localised_stage_ns = params.stage_local_ns_psa[:, year-45:] advanced_stage_nos_sc = params.stage_adv_screened_psa[:, year-45:] localised_stage_nos_sc = params.stage_local_screened_psa[:, year-45:] advanced_stage_nos = params.stage_adv_ns_psa[:, year-45:] localised_stage_nos = params.stage_local_ns_psa[:, year-45:] mortality_other_causes = params.death_other_causes[:, year-45:] tx_costs_local = params.tx_costs * params.tx.localised.values tx_costs_adv = params.tx_costs * params.tx.advanced.values ##################### # Year 1 in the model ##################### age = np.arange(year,90) length_df = len(age) length_screen = len(np.arange(year,70)) # number of screening years depending on age cohort starting # Cohorts, numbers 'healthy', and incident cases cohort_sc = np.array([np.repeat(params.pop.loc[year, :], length_df)]*params.sims) * p_screened cohort_ns = np.array([np.repeat(params.pop.loc[year, :], length_df)]*params.sims) * p_ns cohort_nos = np.array([np.repeat(params.pop.loc[year, :], length_df)]*params.sims) * p_nos cohort_nos_sc = np.array([np.repeat(params.pop.loc[year, :], length_df)]*params.sims) * p_nos_screened pca_alive_sc = np.array([np.zeros(length_df)]*params.sims) pca_alive_ns = np.array([np.zeros(length_df)]*params.sims) pca_alive_nos = np.array([np.zeros(length_df)]*params.sims) pca_alive_nos_sc = np.array([np.zeros(length_df)]*params.sims) healthy_sc = cohort_sc - pca_alive_sc healthy_ns = cohort_ns - pca_alive_ns healthy_nos = cohort_nos - pca_alive_nos healthy_nos_sc = cohort_nos_sc - pca_alive_nos_sc pca_incidence_sc = healthy_sc * p_pca_screened pca_incidence_nos_sc = healthy_nos_sc * p_pca_nos_screened if year > 54: pca_incidence_screened = pca_incidence_sc.copy() # Screen-detected cancers pca_incidence_post_screening = np.array([np.zeros(length_df)]*params.sims) # Post-screening cancers - 0 until model reaches age 70. pca_incidence_nos_sc_screened = pca_incidence_nos_sc.copy() # Screen-detected cancers pca_incidence_nos_sc_post_screening = np.array([np.zeros(length_df)]*params.sims) # Post-screening cancers - 0 until model reaches age 70. elif year < 55: # Zero as no screening in any of these cohorts pca_incidence_screened = np.array([np.zeros(length_df)]*params.sims) pca_incidence_post_screening = np.array([np.zeros(length_df)]*params.sims) pca_incidence_nos_sc_screened = np.array([np.zeros(length_df)]*params.sims) pca_incidence_nos_sc_post_screening = np.array([np.zeros(length_df)]*params.sims) pca_incidence_ns = healthy_ns * p_pca_ns pca_incidence_nos = healthy_nos * p_pca_nos # Deaths pca_death_sc = ((pca_alive_sc * p_pca_death_screened) + (healthy_sc * p_pca_death_screened)) pca_death_ns = ((pca_alive_ns * p_pca_death_ns) + (healthy_ns * p_pca_death_ns)) pca_death_nos = ((pca_alive_nos * p_pca_death_nos) + (healthy_nos * p_pca_death_nos)) pca_death_nos_sc = ((pca_alive_nos_sc * p_pca_death_nos_screened) + (healthy_nos_sc * p_pca_death_nos_screened)) pca_death_other_sc = ((pca_incidence_sc + pca_alive_sc - pca_death_sc) * mortality_other_causes) pca_death_other_ns = ((pca_incidence_ns + pca_alive_ns - pca_death_ns) * mortality_other_causes) pca_death_other_nos = ((pca_incidence_nos + pca_alive_nos - pca_death_nos) * mortality_other_causes) pca_death_other_nos_sc = ((pca_incidence_nos_sc + pca_alive_nos_sc - pca_death_nos_sc) * mortality_other_causes) healthy_death_other_sc = (healthy_sc-pca_incidence_sc) * mortality_other_causes healthy_death_other_ns = (healthy_ns-pca_incidence_ns) * mortality_other_causes healthy_death_other_nos = (healthy_nos-pca_incidence_nos) * mortality_other_causes healthy_death_other_nos_sc = (healthy_nos_sc-pca_incidence_nos_sc) * mortality_other_causes total_death_sc = (pca_death_sc + pca_death_other_sc + healthy_death_other_sc) total_death_ns = (pca_death_ns + pca_death_other_ns + healthy_death_other_ns) total_death_nos = (pca_death_nos + pca_death_other_nos + healthy_death_other_nos) total_death_nos_sc = (pca_death_nos_sc + pca_death_other_nos_sc + healthy_death_other_nos_sc) total_death = (total_death_sc + total_death_ns + total_death_nos + total_death_nos_sc) # Prevalent cases & life-years pca_prevalence_sc = (pca_incidence_sc - pca_death_sc - pca_death_other_sc) pca_prevalence_ns = (pca_incidence_ns - pca_death_ns - pca_death_other_ns) pca_prevalence_nos = (pca_incidence_nos - pca_death_nos - pca_death_other_nos) pca_prevalence_nos_sc = (pca_incidence_nos_sc - pca_death_nos_sc - pca_death_other_nos_sc) lyrs_pca_sc_nodiscount = pca_prevalence_sc * 0.5 lyrs_pca_ns_nodiscount = pca_prevalence_ns * 0.5 lyrs_pca_nos_nodiscount = pca_prevalence_nos * 0.5 lyrs_pca_nos_sc_nodiscount = pca_prevalence_nos_sc * 0.5 # Costs if year > 54: costs_tx_sc = np.array([np.zeros(length_df)]*params.sims) costs_tx_screened = np.array([np.zeros(length_df)]*params.sims) costs_tx_post_screening = np.array([np.zeros(length_df)]*params.sims) costs_tx_screened[:, 0] = ((pca_incidence_screened[:, 0] * localised_stage_sc[:, 0].T * tx_costs_local.T).sum(axis=0) + (pca_incidence_screened[:, 0] * advanced_stage_sc[:, 0].T * tx_costs_adv.T).sum(axis=0)) # cost of screen-detected cancers costs_tx_post_screening[:, 0] = ((pca_incidence_post_screening[:, 0] * localised_stage_ns[:, 0].T * tx_costs_local.T).sum(axis=0) + (pca_incidence_post_screening[:, 0] * advanced_stage_ns[:, 0].T * tx_costs_adv.T).sum(axis=0) * params.relative_cost_clinically_detected[:, 0]) # cost of post-screening cancers costs_tx_sc[:, 0] = costs_tx_screened[:, 0] + costs_tx_post_screening[:, 0] # total cost in screened arms costs_tx_nos_sc = np.array([np.zeros(length_df)] * params.sims) costs_tx_nos_sc_screened = np.array([np.zeros(length_df)] * params.sims) costs_tx_nos_sc_post_screening = np.array([np.zeros(length_df)] * params.sims) costs_tx_nos_sc_screened[:, 0] = ((pca_incidence_nos_sc_screened[:, 0] * localised_stage_nos_sc[:, 0].T * tx_costs_local.T).sum(axis=0) + (pca_incidence_nos_sc_screened[:, 0] * advanced_stage_nos_sc[:, 0].T * tx_costs_adv.T).sum(axis=0)) # cost of screen-detected cancers costs_tx_nos_sc_post_screening[:, 0] = ((pca_incidence_nos_sc_post_screening[:, 0] * localised_stage_nos[:, 0].T * tx_costs_local.T).sum(axis=0) + (pca_incidence_nos_sc_post_screening[:, 0] * advanced_stage_nos[:, 0].T * tx_costs_adv.T).sum(axis=0) * params.relative_cost_clinically_detected[:, 0]) # cost of post-screening cancers costs_tx_nos_sc[:, 0] = costs_tx_nos_sc_screened[:, 0] + costs_tx_nos_sc_post_screening[:, 0] # total cost in screened arms elif year < 55: costs_tx_sc = np.array([np.zeros(length_df)] * params.sims) costs_tx_sc[:, 0] = ((pca_incidence_sc[:, 0] * localised_stage_ns[:, 0].T # rr_adv_scr shouldn't apply as no screening < 55 * tx_costs_local.T).sum(axis=0) + (pca_incidence_sc[:, 0] * advanced_stage_ns[:, 0].T * tx_costs_adv.T).sum(axis=0) * params.relative_cost_clinically_detected[:, 0]) costs_tx_nos_sc = np.array([
np.zeros(length_df)
numpy.zeros
import json import logging import os import sys import numpy as np import matplotlib.pyplot as plt from gensim import matutils from gensim.matutils import kullback_leibler, jensen_shannon from gensim.models import CoherenceModel from matplotlib.ticker import MaxNLocator from gensim.models.ldamulticore import LdaMulticore from tqdm.auto import tqdm from operator import itemgetter import itertools from octis.models.NeuralLDA import NeuralLDA import train_lda def diff(topic_model_1, topic_model_2, distance="jensen_shannon", normed=True): """Calculate the difference in topic distributions between two models. Parameters ---------- topic_model_1 : numpy.ndarray The probability for each word in each topic, shape (`num_topics`, `vocabulary_size`). topic_model_2 : numpy.ndarray The probability for each word in each topic, shape (`num_topics`, `vocabulary_size`). distance : {'kullback_leibler', 'jensen_shannon'} The distance metric to calculate the difference with. normed : bool, optional Whether the matrix should be normalized or not. Returns ------- numpy.ndarray A difference matrix. Each element corresponds to the difference between the two topics, shape (`self.num_topics`, `other.num_topics`) """ distances = { "kullback_leibler": kullback_leibler, "jensen_shannon": jensen_shannon } if distance not in distances: valid_keys = ", ".join("`{}`".format(x) for x in distances.keys()) raise ValueError("Incorrect distance, valid only {}".format(valid_keys)) distance_func = distances[distance] # retrieve topic-word distributions from topic models if isinstance(topic_model_1, LdaMulticore) and isinstance(topic_model_2, LdaMulticore): d1, d2 = topic_model_1.get_topics(), topic_model_2.get_topics() elif isinstance(topic_model_1, NeuralLDA) and isinstance(topic_model_2, NeuralLDA): d1, d2 = topic_model_1.model.get_topic_word_mat(), topic_model_2.model.get_topic_word_mat() else: raise ValueError(f">> Error: topic models are not the same instance") t1_size, t2_size = d1.shape[0], d2.shape[0] # initialize z z = np.zeros((t1_size, t2_size)) # iterate over each cell in the initialized z for topic in np.ndindex(z.shape): topic1 = topic[0] topic2 = topic[1] # calculate jensen-shannon distance z[topic] = distance_func(d1[topic1], d2[topic2]) if normed: if np.abs(np.max(z)) > 1e-8: z /= np.max(z) return z def score_by_topic_coherence(model, texts, corpus, dictionary, topn=20): """ Calculates c_v coherence score Note: This is not working stable if texts/corpus contains empty documents and if there are words that do not appear in the whole corpus. Solution: Remove all empty documents on load and edit log_ratio_measure() in direct_confirmation_measure.py and _cossim in indirect_confirmation_measure.py in gensim.topic_coherence as there could be division by zero! (add EPSILON to denominator) :param model: LdaModel or NeuralLDA model :param texts: corpus :param corpus: list of list of int :param dictionary: dictionary :param topn: int, optional Integer corresponding to the number of top words to be extracted from each topic. :return: int, the score """ # retrieve topic-word distributions from topic models if isinstance(model, LdaMulticore): topics = model.get_topics() elif isinstance(model, NeuralLDA): topics = model.model.get_topic_word_mat() else: raise ValueError(f">> Error: topic model instance not defined") topics_ = [matutils.argsort(topic, topn=topn, reverse=True) for topic in topics] # calculate coherence score score = CoherenceModel(processes=48, topics=topics_, texts=texts, corpus=corpus, dictionary=dictionary, coherence='c_v', topn=topn).get_coherence() return score def score_by_topic_corpus_probability(topic_model_1, topic_model_2, corpus_1=None, corpus_2=None, documents_1=None, documents_2=None, distance='jensen_shannon'): """ Calculates the score by 'distance' and weights the strongest similarities by their topic probability over the whole corpus. Note: 1. Is not stable for neural topic models as they are very sensitive on the change of the input value magnitude they are trained on. Meaning if they were trained on a word count of 1000 it is unstable to predict on a word count of 10000 2. The difference of using filtered documents vs unfiltered is less than 0.03 :param topic_model_1: LdaModel or NeuralLDA model :param topic_model_2: LdaModel or NeuralLDA model :param corpus_1: list of (int, int) :param corpus_2: list of (int, int) :param documents_1: list of str :param documents_2: list of str :param distance: str, distance, e.g. jensen_shannon :return: int, the tp score """ # calculate the difference matrix mdiff1 = diff(topic_model_1, topic_model_2, distance=distance) mdiff2 = diff(topic_model_2, topic_model_1, distance=distance) # select the best match min1 = np.amin(mdiff1, axis=1) # smaller ~ more similar, take the most similar score for each topic min2 = np.amin(mdiff2, axis=1) # smaller ~ more similar, take the most similar score for each topic if isinstance(topic_model_1, LdaMulticore) and isinstance(topic_model_2, LdaMulticore): assert topic_model_1.num_topics == topic_model_2.num_topics, ">> ERROR: Not the same amount of topics" assert corpus_1 is not None and corpus_2 is not None, ">> ERROR: At least one 'corpus' is None" num_topics = topic_model_1.num_topics topic_corpus_prob_1 = np.zeros(num_topics) topic_corpus_prob_2 = np.zeros(num_topics) # Get topic probability distribution for the whole corpus probas_1 = topic_model_1.get_document_topics(list(itertools.chain.from_iterable(corpus_1)), minimum_probability=0.0) probas_2 = topic_model_2.get_document_topics(list(itertools.chain.from_iterable(corpus_2)), minimum_probability=0.0) for key, val in probas_1: topic_corpus_prob_1[key] = val for key, val in probas_2: topic_corpus_prob_2[key] = val elif isinstance(topic_model_1, NeuralLDA) and isinstance(topic_model_2, NeuralLDA): assert topic_model_1.model.num_topics == topic_model_2.model.num_topics, ">> ERROR: Not the same amount of topics" assert documents_1 is not None and documents_2 is not None, ">> ERROR: At least one 'documents' is None" # Concatenate all documents and calculate topic probability distribution for the whole corpus data_corpus = [' '.join(list(itertools.chain.from_iterable(documents_1)))] x_train, input_size = topic_model_1.preprocess(topic_model_1.vocab, train=data_corpus) topic_corpus_prob_1 = topic_model_1.model.get_thetas(x_train).T data_corpus = [' '.join(list(itertools.chain.from_iterable(documents_2)))] x_train, input_size = topic_model_2.preprocess(topic_model_2.vocab, train=data_corpus) topic_corpus_prob_2 = topic_model_2.model.get_thetas(x_train).T else: raise ValueError(">> Error: topic models are not the same instance") # weigh the best matches by their probability and take the mean of both return (np.matmul(topic_corpus_prob_1, min1) + np.matmul(topic_corpus_prob_2, min2)) / 2 def score_by_top_topic_corpus_probability(topic_model_1, topic_model_2, corpus_1, corpus_2, distance='jensen_shannon'): """ Calculates the score by 'distance' and weights the strongest similarities by the respective normed sum of the most probable topic for each document over the whole corpus :param topic_model_1: LdaModel or NeuralLDA model :param topic_model_2: LdaModel or NeuralLDA model :param corpus_1: list of (int, int) :param corpus_2: list of (int, int) :param distance: str, distance, e.g. jensen_shannon :return: int, the tt score """ # calculate the difference matrix mdiff1 = diff(topic_model_1, topic_model_2, distance=distance) mdiff2 = diff(topic_model_2, topic_model_1, distance=distance) min1 = np.amin(mdiff1, axis=1) min2 = np.amin(mdiff2, axis=1) if isinstance(topic_model_1, LdaMulticore) and isinstance(topic_model_2, LdaMulticore): from pathos.multiprocessing import ProcessingPool as Pool def prob_list(topic_model, corpus): # helper function to retrieve the most probable topic per document cnt = np.zeros(topic_model.num_topics) for doc in corpus: topic_prob_list = topic_model.get_document_topics(doc, minimum_probability=0.0) topic_prob_tupel = max(topic_prob_list, key=itemgetter(1)) cnt[topic_prob_tupel[0]] += 1 return cnt workers = 8 pool = Pool(ncpus=workers) # retrieve the most probable topic per document logging.info("First split") cnt_split = pool.map(lambda x: prob_list(topic_model_1, x), list(train_lda.split(corpus_1, workers))) cnt1 = np.sum(cnt_split, axis=0) assert len(cnt1) == topic_model_1.num_topics, f">> ERROR: Count changed to {len(cnt1)}" logging.info("Second split") cnt_split = pool.map(lambda x: prob_list(topic_model_2, x), list(train_lda.split(corpus_2, workers))) cnt2 = np.sum(cnt_split, axis=0) assert len(cnt2) == topic_model_2.num_topics elif isinstance(topic_model_1, NeuralLDA) and isinstance(topic_model_2, NeuralLDA): num_topics = topic_model_1.model.num_topics cnt1 = np.zeros(num_topics) cnt2 = np.zeros(num_topics) # retrieve the most probable topic per document topic_prob_list = topic_model_1.model.get_thetas(topic_model_1.model.train_data) for i in topic_prob_list.argmax(axis=1): cnt1[i] += 1 topic_prob_list = topic_model_2.model.get_thetas(topic_model_2.model.train_data) for i in topic_prob_list.argmax(axis=1): cnt2[i] += 1 else: raise ValueError(">> Error: topic models are not the same instance") # norm the topic counts the maximum number of documents topic_corpus_prob_1 = cnt1 / np.sum(cnt1) topic_corpus_prob_2 = cnt2 / np.sum(cnt2) # weigh the best matches by their topic probability and take the mean of both return (
np.matmul(topic_corpus_prob_1, min1)
numpy.matmul
from env_common import get_screen from common import select_action_policy import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import RMSprop from itertools import count import numpy as np import gym import visdom device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters printout_freq = 1 num_episodes = 300 batch_size = 5 learning_rate_policy = 0.001 learning_rate_value = 0.001 gamma = 0.99 lam = 0.99 # lambda for GAE-lambda train_v_iters = 10 train_pi_iters = 10 clip_ratio=0.1 # how far can new policy deviate from old policy # Initialize visualization viz = visdom.Visdom() loss_window = viz.line( Y=torch.zeros((1)), X=torch.zeros((1)), opts=dict(xlabel='step', ylabel='Loss', title='Training loss')) episode_length_window = viz.line( Y=torch.zeros((1)), X=torch.zeros((1)), opts=dict(xlabel='step', ylabel='Episode length', title='Episode length')) # Initialize environment and replay buffer env = gym.make("CartPole-v0") env.reset() init_screen = get_screen(env) _, _, screen_height, screen_width = init_screen.shape num_actions = env.action_space.n class Buffer: def __init__(self, gamma, lam): self.buffer = [] self.advantages = [] self.discounted_rewards = [] self.gamma = gamma self.lam = lam def add(self, state, action, logp, value, reward): self.buffer.append((state, action, logp, value, reward)) def get(self, i): """Return state, action, log probability of action, discounted advantage and discounted reward at i. Requires that finalize() has been called previously to calculate discounted rewards. """ if i >= len(self.buffer) or i >= len(self.advantages) or i >= len(self.discounted_rewards): return None else: state, action, logp, _, _ = self.buffer[i] reward = self.discounted_rewards[i] advantage = self.advantages[i] return state, torch.FloatTensor([action]).to(device), logp, advantage, reward def finalize(self): """Call at end of sample collection to calculate advantages and discounted rewards. """ _, _, _, values, rewards = zip(*self.buffer) # Calculate advantages self.advantages = [0] * len(self.buffer) for i in range(len(self.advantages)-1): if rewards[i] != 0: # if reward is zero, we ended the episode delta = rewards[i] + self.gamma * values[i+1] - values[i] self.advantages[i] = delta.item() # Discount advantages running_add = 0 for i in reversed(range(len(self.advantages))): if self.advantages[i] == 0: running_add = 0 else: running_add = running_add * self.gamma * self.lam + self.advantages[i] self.advantages[i] = running_add # Normalize advantages adv_mean = np.mean(self.advantages) adv_std = np.std(self.advantages) for i in range(steps): self.advantages[i] = (self.advantages[i] - adv_mean) / adv_std # Calculate discounted rewards self.discounted_rewards = [0] * len(self.buffer) running_add = 0 for i in reversed(range(len(self.discounted_rewards))): if rewards[i] == 0: running_add = 0 else: running_add = running_add * self.gamma + rewards[i] self.discounted_rewards[i] = running_add def empty(self): self.buffer = [] self.advantages = [] self.discounted_rewards = [] buffer = Buffer(gamma, lam) class PolicyNet(nn.Module): def __init__(self, h, w, outputs): super().__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2) self.bn3 = nn.BatchNorm2d(32) def conv2d_size_out(size, kernel_size = 5, stride = 2): return (size - (kernel_size - 1) - 1) // stride + 1 convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w))) convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h))) linear_input_size = convw * convh * 32 self.head = nn.Linear(linear_input_size, outputs) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) return self.head(x.view(x.size(0), -1)) policy_network = PolicyNet(screen_height, screen_width, num_actions).to(device) value_network = PolicyNet(screen_height, screen_width, 1).to(device) optimizer_policy = RMSprop(policy_network.parameters(), lr=learning_rate_policy) optimizer_value = RMSprop(value_network.parameters(), lr=learning_rate_value) # Store duration of episodes to test performance episode_durations = [] # Training loop steps = 0 training_step = 0 for episode in range(num_episodes): env.reset() last_screen = get_screen(env) current_screen = get_screen(env) state = current_screen - last_screen state = state.to(device) for t in count(): action, logp, val = select_action_policy(state, policy_network, value_network) _, reward, done, _ = env.step(action) # Move to next state last_screen = current_screen current_screen = get_screen(env) next_state = current_screen - last_screen next_state = next_state.to(device) # To mark boundarys between episodes if done: reward = 0 buffer.add(state, float(action), logp, val, reward) state = next_state steps += 1 if done: episode_durations.append(t + 1) viz.line(X=torch.ones((1, 1))*episode, Y=torch.ones((1, 1)) * episode_durations[-1], win=episode_length_window, update='append', name='Episode durations') # Plot 50 episode averages if len(episode_durations) >= 50: mean =
np.mean(episode_durations[-50:])
numpy.mean
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Demo of using VoteNet 3D object detector to detect objects from a point cloud. """ import os import sys import numpy as np import argparse import importlib import time import glob import open3d as o3d import argparse import logging import torch import torch.nn as nn import torch.optim as optim BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(os.path.join(ROOT_DIR, 'utils')) sys.path.append(os.path.join(ROOT_DIR, 'models')) import pc_util from ap_helper import parse_predictions from dump_helper import softmax sys.path.append(os.path.join(ROOT_DIR, 'sunrgbd')) from sunrgbd_detection_dataset import DC class App: def __init__(self, args): if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.WARNING) self.flag_exit = False self.visualize = args.visualize self.save_data = args.save_data self.output_dir = args.output_dir self.kinect_setup(args) self.num_point = args.num_point self.DUMP_CONF_THRESH = args.threshold # Dump boxes with obj prob larger than that. self.fx, self.fy, self.cx, self.cy = [600.5037841796875, 600.29217529296875, 639.47564697265625, 365.94244384765625] self.eval_config_dict = {'remove_empty_box': True, 'use_3d_nms': True, 'nms_iou': 0.25, 'use_old_type_nms': False, 'cls_nms': False, 'per_class_proposal': False, 'conf_thresh': self.DUMP_CONF_THRESH, 'dataset_config': DC} demo_dir = os.path.join(BASE_DIR, 'demo_files') if args.pretrained_model == 'sunrgbd': checkpoint_path = os.path.join(demo_dir, 'pretrained_votenet_on_sunrgbd.tar') else: checkpoint_path = os.path.join(demo_dir, 'pretrained_votenet_on_scannet.tar') # Init the model and optimzier self.MODEL = importlib.import_module('votenet') # import network module self.torch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.net = self.MODEL.VoteNet(num_proposal=256, input_feature_dim=1, vote_factor=1, sampling='seed_fps', num_class=DC.num_class, num_heading_bin=DC.num_heading_bin, num_size_cluster=DC.num_size_cluster, mean_size_arr=DC.mean_size_arr).to(self.torch_device) logging.info('Constructed model.') # Load checkpoint optimizer = optim.Adam(self.net.parameters(), lr=0.001) checkpoint = torch.load(checkpoint_path) self.net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] logging.info("Loaded checkpoint %s (epoch: %d)"%(checkpoint_path, epoch)) self.net.eval() # set model to eval mode (for bn and dp) def preprocess_point_cloud(self, point_cloud): ''' Prepare the numpy point cloud (N,3) for forward pass ''' point_cloud = point_cloud[:,0:3] # do not use color for now floor_height =
np.percentile(point_cloud[:,2],0.99)
numpy.percentile
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import argparse, json import matplotlib.pyplot as plt import numpy as np from sklearn.manifold import TSNE from matplotlib.offsetbox import * from PIL import Image from utils.experiments import load_data def load_image(path): img = Image.open(path) img = img.resize((32, 32)) return np.array(img).squeeze() if __name__ == '__main__': arg_parser = argparse.ArgumentParser(description='tSNE Plot') arg_parser.add_argument('task', choices=['mnist', 'cifar', 'bam'], help='name of the task (mnist, cifar)') arg_parser.add_argument('data_path', help='path to data (not required for original MNIST)') arg_parser.add_argument('data_split', choices=['train', 'test'], default='test', help='data split (train, test (default))') arg_parser.add_argument('latent_path', help='path to numpy latent vectors') arg_parser.add_argument('out_path', help='path to output') arg_parser.add_argument('--num_points', type=int, default=1000, help='number of data points to plot (default: 1000)') arg_parser.add_argument('--remove_outliers', type=float, default=0., help='removes outliers outside of n times the standard deviation (default: False)') arg_parser.add_argument('--eval_task', default='', help='if path to eval JSON is provided, only data points from the task are plotted (default: None)') arg_parser.add_argument('--tsne_latents', default='', help='if path to tSNE latents is provided, repeated projection will be skipped (default: None)') args = arg_parser.parse_args() # load data images, labels, label_descs, num_labels = load_data(args.task, split=args.data_split, data_path=args.data_path) cls_idx_map = [i for i in range(num_labels)] latents = np.load(args.latent_path) print("Loaded %d latents with dimensionality %d." % (latents.shape[0], latents.shape[1])) # tSNE if len(args.tsne_latents) > 0: tsne_latents = np.load(args.tsne_latents) print("Loaded tSNE latents from '%s'." % args.tsne_latents) else: tsne_model = TSNE(n_components=2, verbose=True) tsne_latents = tsne_model.fit_transform(latents) # save transformation latents_name, latents_ext = os.path.splitext(os.path.basename(args.latent_path)) tsne_path = os.path.join(args.out_path, '%s_tsne%s' % (latents_name, latents_ext)) np.save(tsne_path, tsne_latents) print("Saved tSNE latents to '%s'." % tsne_path) # create subset if len(args.eval_task) > 0: eval_task = json.load(open(args.eval_task, 'r', encoding='utf8')) eval_idcs = eval_task['examples'] + [i for task in eval_task['tasks'] for i in task['options']] other_idcs = [i for i in range(tsne_latents.shape[0]) if i not in eval_idcs] other_idcs = np.random.choice(other_idcs, args.num_points - len(eval_idcs), replace=False) subset_idcs = np.concatenate((other_idcs, eval_idcs)) print("Loaded %d data points from eval task '%s'." % (len(eval_idcs), args.eval_task)) else: subset_idcs = np.random.choice(tsne_latents.shape[0], args.num_points, replace=False) print("Reduced data points to random subset of size %d." % args.num_points) tsne_latents = tsne_latents[subset_idcs] labels = labels[subset_idcs] # shorten class names for BAM if args.task == 'bam': dmap = {'emotion_gloomy': 'g', 'emotion_happy': 'h', 'emotion_peaceful': 'p', 'emotion_scary': 's', 'unspecified': 'u'} label_descs = [''.join([dmap[e] for e in d.split('+')]) for d in label_descs] eval_task['classes'] = [''.join([dmap[e] for e in d.split('+')]) for d in eval_task['classes']] # init alphas alphas = np.zeros(tsne_latents.shape[0]) # calculate means mean_latent = np.mean(tsne_latents, axis=0) std_latent = np.std(tsne_latents, axis=0) mean_latents = np.zeros([len(label_descs), tsne_latents.shape[1]]) for c in range(num_labels): lbl_idcs = np.where(labels == (cls_idx_map[c] * np.ones_like(labels))) mean_latents[c] = np.mean(tsne_latents[lbl_idcs], axis=0) # calculate alphas if len(lbl_idcs[0]) > 1: dists = np.abs(tsne_latents[lbl_idcs] - mean_latents[c]) dists = -np.sum(dists, axis=1) max_dist = np.max(dists) alphas[lbl_idcs] =
np.clip(dists * (1 / max_dist), .3, None)
numpy.clip
from __future__ import division from __future__ import print_function import numpy as np import scipy.sparse as sp import pickle as pkl import os import h5py import pandas as pd import pdb from data_utils import load_data, map_data, download_dataset def normalize_features(feat): sum= feat.sum(1) sum_flat=np.array(sum.flatten()) degree = np.asarray(feat.sum(1)).flatten() # set zeros to inf to avoid dividing by zero degree[degree == 0.] = np.inf degree_inv = 1. / degree degree_inv_mat = sp.diags([degree_inv], [0]) feat_norm = degree_inv_mat.dot(feat) if feat_norm.nnz == 0: print('ERROR: normalized adjacency matrix has only zero entries!!!!!') exit return feat_norm def normalize_edge_features_3D(feat): sum= feat.sum(2) degree=sum.reshape(-1) # set zeros to inf to avoid dividing by zero degree[degree == 0.] = np.inf degree_inv = 1. / degree degree_inv_mat = sp.diags([degree_inv], [0]) feat_r=np.reshape(feat,((feat.shape[0]*feat.shape[1]), feat.shape[2])) feat_norm = degree_inv_mat.dot(feat_r) if np.nonzero(feat_norm) == 0: print('ERROR: normalized adjacency matrix has only zero entries!!!!!') exit feat_norm=feat_norm.reshape(feat.shape[0],feat.shape[1],feat.shape[2]) return feat_norm def normalize_edge_features_2D(feat): sum= feat.sum(1) degree=sum.reshape(-1) # set zeros to inf to avoid dividing by zero degree[degree == 0.] = np.inf degree_inv = 1. / degree degree_inv_mat = sp.diags([degree_inv], [0]) feat_norm = degree_inv_mat.dot(feat) if np.nonzero(feat_norm) == 0: print('ERROR: normalized adjacency matrix has only zero entries!!!!!') exit return feat_norm def normalize_edge_features_3Dto_2D(feat): prob_r = [0.2, 0.3, 0.5, 0.7, 0.8] i=0 adj_tot = [np.sum(adj,axis=2) for adj in feat] adjacencies_prioritize = adj_tot for adj in adjacencies_prioritize: adj = adj * prob_r[i] i += 1 adj_sp = [sp.csr_matrix(adj) for adj in adjacencies_prioritize] adj_sp = globally_normalize_bipartite_adjacency(adj_sp) return adj_sp def load_matlab_file(path_file, name_field): """ load '.mat' files inputs: path_file, string containing the file path name_field, string containig the field name (default='shape') warning: '.mat' files should be saved in the '-v7.3' format """ db = h5py.File(path_file, 'r') ds = db[name_field] try: if 'ir' in ds.keys(): data = np.asarray(ds['data']) ir = np.asarray(ds['ir']) jc = np.asarray(ds['jc']) out = sp.csc_matrix((data, ir, jc)).astype(np.float32) except AttributeError: # Transpose in case is a dense matrix because of the row- vs column- major ordering between python and matlab out = np.asarray(ds).astype(np.float32).T db.close() return out def preprocess_user_item_features(u_features, v_features): """ Creates one big feature matrix out of user features and item features. Stacks item features under the user features. """ zero_csr_u = sp.csr_matrix((u_features.shape[0], v_features.shape[1]), dtype=u_features.dtype) #121 x 1232 zero_csr_v = sp.csr_matrix((v_features.shape[0], u_features.shape[1]), dtype=v_features.dtype) # 1232 x 121 u_features = sp.hstack([u_features, zero_csr_u], format='csr') # 121 x 121 stack 121 x 1232= 121 x [121 + 1232] v_features = sp.hstack([zero_csr_v, v_features], format='csr') # 1232 x 121 stack 1232 x 1232= 1232 x [121 + 1232] return u_features, v_features def globally_normalize_bipartite_adjacency(adjacencies, verbose=False, symmetric=True): """ Globally Normalizes set of bipartite adjacency matrices """ #a=isinstance(adjacencies,list) #true if verbose: print('Symmetrically normalizing bipartite adj') # degree_u and degree_v are row and column sums of adj+I adj_tot = np.sum(adj for adj in adjacencies) degree_u = np.asarray(adj_tot.sum(1)).flatten() degree_v = np.asarray(adj_tot.sum(0)).flatten() # set zeros to inf to avoid dividing by zero degree_u[degree_u == 0.] = np.inf degree_v[degree_v == 0.] = np.inf degree_u_inv_sqrt = 1. / np.sqrt(degree_u) # 1 /sqroot degree of u degree_v_inv_sqrt = 1. / np.sqrt(degree_v) # 1 /sqroot degree of v degree_u_inv_sqrt_mat = sp.diags([degree_u_inv_sqrt], [0]) degree_v_inv_sqrt_mat = sp.diags([degree_v_inv_sqrt], [0]) degree_u_inv = degree_u_inv_sqrt_mat.dot(degree_u_inv_sqrt_mat) if symmetric: #print("yes sym") called for ml _100k adj_norm = [degree_u_inv_sqrt_mat.dot(adj).dot(degree_v_inv_sqrt_mat) for adj in adjacencies] else: adj_norm = [degree_u_inv.dot(adj) for adj in adjacencies] return adj_norm def globally_normalize_tripartite_adjacency_matrix(adjacencies, verbose=False, symmetric=True): """ Globally Normalizes set of bipartite adjacency matrices """ # a=isinstance(adjacencies,list) #true if verbose: print('Symmetrically normalizing bipartite adj') # degree_u and degree_v are row and column sums of adj+I adjacencies_uv_c= [np.reshape(adj,(adj.shape[0]*adj.shape[1], adj.shape[2])) for adj in adjacencies] print(f"adjacencies_uv_c.shape[0] {adjacencies_uv_c[0].shape}") adj_tot = np.sum(adj for adj in adjacencies) adj_tot_uv_c=np.reshape(adj_tot, (adj_tot.shape[0]*adj_tot.shape[1], adj_tot.shape[2])) adj_tot_t=np.transpose(adj_tot, (1,0,2)) adj_tot_vu_c = np.reshape(adj_tot_t, (adj_tot_t.shape[0] * adj_tot_t.shape[1], adj_tot_t.shape[2])) degree_uv_c = np.asarray(adj_tot_uv_c.sum(1)).flatten() degree_vu_c = np.asarray(adj_tot_vu_c.sum(1)).flatten() # set zeros to inf to avoid dividing by zero degree_uv_c[degree_uv_c == 0.] = np.inf degree_vu_c[degree_vu_c == 0.] = np.inf degree_uv_inv_sqrt = 1. / np.sqrt(degree_uv_c) # 1 /sqroot degree of u degree_vu_inv_sqrt = 1. / np.sqrt(degree_vu_c) # 1 /sqroot degree of v degree_uv_inv_sqrt_mat = sp.diags([degree_uv_inv_sqrt], [0]) degree_vu_inv_sqrt_mat = sp.diags([degree_vu_inv_sqrt], [0]) degree_uv_inv = degree_uv_inv_sqrt_mat.dot(degree_uv_inv_sqrt_mat) degree_vu_inv = degree_vu_inv_sqrt_mat.dot(degree_vu_inv_sqrt_mat) if symmetric: # print("yes sym") called for ml _100k adj_norm_uv_c = [degree_uv_inv_sqrt_mat.dot(adj) for adj in adjacencies_uv_c] adj_norm_u_v_c=[np.reshape(adj, (adjacencies[0].shape[0],adjacencies[0].shape[1], adjacencies[0].shape[2])) for adj in adj_norm_uv_c] adj_norm_v_u_c = [np.transpose(adj, (1, 0, 2)) for adj in adj_norm_u_v_c] adj_norm_vu_c=[np.reshape(adj, (adj.shape[0]*adj.shape[1], adj.shape[2])) for adj in adj_norm_v_u_c] adj_norm_vu_c = [degree_vu_inv_sqrt_mat.dot(adj) for adj in adj_norm_vu_c] adj_norm = [np.reshape(adj,(adjacencies[0].shape[0], adjacencies[0].shape[1], adjacencies[0].shape[2])) for adj in adj_norm_vu_c] else: adj_norm = [degree_uv_inv.dot(adj) for adj in adjacencies] print(f"adj_normc {adj_norm[0].shape}") return adj_norm def user_context_adjacency(adjacencies): """ Find importance of context for users giving high probability to context with rating 5 """ print(f"I am user_context_adjacency {type(adjacencies)} adjacencies[0].shape {adjacencies[0].shape}") adj_tot = np.sum(adj for adj in adjacencies) deg_u=np.sum(adj_tot, axis = 1) deg_u = np.sum(deg_u, axis=1) print(f"degree_u {deg_u.shape}") # set zeros to inf to avoid dividing by zero deg_u[deg_u == 0.] = np.inf degree_u_inv_sqrt = 1. / np.sqrt(deg_u) degree_u_inv_sqrt_mat = sp.diags([degree_u_inv_sqrt], [0]) adju_c=[np.sum(adj, axis=1) for adj in adjacencies] adju_c_norm = [degree_u_inv_sqrt_mat.dot(adj) for adj in adju_c] #normalize this matrix by divisding squareroot of degtree #print(f"degree_u_inv_sqrt_mat shape {degree_u_inv_sqrt_mat.shape} {degree_u_inv_sqrt_mat}") prob_r=[0.2,0.3,0.5,0.7,0.8] i=0 adjacencies_prioritize=adju_c_norm for adj in adjacencies_prioritize: adj= adj * prob_r[i] i+=1 adju_c_imp=np.sum(adj for adj in adjacencies_prioritize) #adjacencies_temp_tot = np.sum(adj for adj in adjacencies_temp) return adju_c_imp def item_context_adjacency(adjacencies): """ Find importance of context for items giving high probability to context with rating 5 """ adj_tot = np.sum(adj for adj in adjacencies) deg_v = np.sum(adj_tot, axis=1) deg_v = np.sum(deg_v, axis=1) # set zeros to inf to avoid dividing by zero deg_v[deg_v == 0.] = np.inf degree_v_inv_sqrt = 1. / np.sqrt(deg_v) degree_v_inv_sqrt_mat = sp.diags([degree_v_inv_sqrt], [0]) adjv_c = [np.sum(adj, axis=1) for adj in adjacencies] adjv_c_norm = [degree_v_inv_sqrt_mat.dot(adj) for adj in adjv_c] # normalize this matrix by divisding squareroot of degtree prob_r = [0.2, 0.3, 0.5, 0.7, 0.8] i = 0 adjacencies_prioritize = adjv_c_norm for adj in adjacencies_prioritize: adj = adj * prob_r[i] i += 1 adjv_c_imp = np.sum(adj for adj in adjacencies_prioritize) # adjacencies_temp_tot = np.sum(adj for adj in adjacencies_temp) return adjv_c_imp def user_context_fromedge(adjacency): """ Find importance of context for users giving high probability to context with rating 5 """ deg_u = np.sum(adjacency, axis=1) deg_u = np.sum(deg_u, axis=1) print(f"degree_u {deg_u.shape}") # set zeros to inf to avoid dividing by zero deg_u[deg_u == 0.] = np.inf degree_u_inv_sqrt = 1. / np.sqrt(deg_u) degree_u_inv_sqrt_mat = sp.diags([degree_u_inv_sqrt], [0]) adju_c = np.sum(adjacency, axis=1) adju_c_norm = degree_u_inv_sqrt_mat.dot(adju_c) # normalize this matrix by divisding squareroot of degtree return adju_c_norm def item_context_fromedge(adjacency): """ Find importance of context for users giving high probability to context with rating 5 """ deg_v = np.sum(adjacency, axis=1) deg_v = np.sum(deg_v, axis=1) # set zeros to inf to avoid dividing by zero deg_v[deg_v == 0.] = np.inf degree_v_inv_sqrt = 1. / np.sqrt(deg_v) degree_v_inv_sqrt_mat = sp.diags([degree_v_inv_sqrt], [0]) adjv_c = np.sum(adjacency, axis=1) adjv_c_norm = degree_v_inv_sqrt_mat.dot(adjv_c) # adjacencies_temp_tot = np.sum(adj for adj in adjacencies_temp) return adjv_c_norm def sparse_to_tuple(sparse_mx): """ change of format for sparse matrix. This format is used for the feed_dict where sparse matrices need to be linked to placeholders representing sparse matrices. """ if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape def create_trainvaltest_split(dataset, seed=1234, testing=False, datasplit_path=None, datasplit_from_file=False, verbose=True, rating_map=None, post_rating_map=None, ratio=1.0): """ Splits data set into train/val/test sets from full bipartite adjacency matrix. Shuffling of dataset is done in load_data function. For each split computes 1-of-num_classes labels. Also computes training adjacency matrix. """ if datasplit_from_file and os.path.isfile(datasplit_path): print('Reading dataset splits from file...') with open(datasplit_path, 'rb') as f: num_users, num_items, u_nodes, v_nodes, ratings, u_features, v_features = pkl.load(f) if verbose: print('Number of users = %d' % num_users) print('Number of items = %d' % num_items) print('Number of links = %d' % ratings.shape[0]) print('Fraction of positive links = %.4f' % (float(ratings.shape[0]) / (num_users * num_items),)) else: print(f"I am preprocessing {dataset} ") num_users, num_items, u_nodes, v_nodes, ratings, u_features, v_features, edge_feactures,sim_users = load_data(dataset, seed=seed, verbose=verbose) with open(datasplit_path, 'wb') as f: pkl.dump([num_users, num_items, u_nodes, v_nodes, ratings, u_features, v_features], f) if rating_map is not None: for i, x in enumerate(ratings): ratings[i] = rating_map[x] neutral_rating = -1 rating_dict = {r: i for i, r in enumerate(np.sort(np.unique(ratings)).tolist())} labels = np.full((num_users, num_items), neutral_rating, dtype=np.int32) labels[u_nodes, v_nodes] = np.array([rating_dict[r] for r in ratings]) labels = labels.reshape([-1]) # number of test and validation edges num_test = int(np.ceil(ratings.shape[0] * 0.1)) if dataset == 'ml_100k': num_val = int(np.ceil(ratings.shape[0] * 0.9 * 0.05)) else: num_val = int(np.ceil(ratings.shape[0] * 0.9 * 0.05)) num_train = ratings.shape[0] - num_val - num_test pairs_nonzero = np.array([[u, v] for u, v in zip(u_nodes, v_nodes)]) idx_nonzero = np.array([u * num_items + v for u, v in pairs_nonzero]) train_idx = idx_nonzero[0:int(num_train * ratio)] val_idx = idx_nonzero[num_train:num_train + num_val] test_idx = idx_nonzero[num_train + num_val:] train_pairs_idx = pairs_nonzero[0:int(num_train * ratio)] val_pairs_idx = pairs_nonzero[num_train:num_train + num_val] test_pairs_idx = pairs_nonzero[num_train + num_val:] u_test_idx, v_test_idx = test_pairs_idx.transpose() u_val_idx, v_val_idx = val_pairs_idx.transpose() u_train_idx, v_train_idx = train_pairs_idx.transpose() # create labels train_labels = labels[train_idx] val_labels = labels[val_idx] test_labels = labels[test_idx] if testing: u_train_idx = np.hstack([u_train_idx, u_val_idx]) v_train_idx = np.hstack([v_train_idx, v_val_idx]) train_labels = np.hstack([train_labels, val_labels]) # for adjacency matrix construction train_idx =
np.hstack([train_idx, val_idx])
numpy.hstack
import os import numpy as np import ruamel.yaml as yaml import time def first_moment(data): """`first_moment` feature function :param data: data to evaluate feature function on :return: returns data as is """ return data def second_moment(data): """`second_moment` feature function :param data: data to evaluate feature function on :return: squared data """ return data**2 class MaximumEntropyModel(object): """Maximum entropyGenerative model based as discussed in https://arxiv.org/abs/1803.08823""" def __init__(self, features=(first_moment, second_moment), initial_weights=None, data=None, l1=0., l2=0., file=None): """Construct MaximumEntropyModel instance :param features: callable or list of callable representing features or list of features (will be concatenated) :param initial_weights: initial values for weights array, needs to be of same shape as concatenated features :param data: data to fit :param l1: l1 regularization strength, defaults to 0. :param l2: l2 regularization strength, defaults to 0. :param file: output file path for fit history (weights and losses, can be used to continue fit) """ self._features = features self._weights = np.asarray(initial_weights) if initial_weights is not None else None self._l1 = l1 self._l2 = l2 self._data = data self._positive_phase = None # <features_i>_data self._positive_negative = None # <features_i>_model self._batch_size = None self._data_batch = None self._model_batch = None self._max_steps = None self._step = 0 self._file = file self.history = self.load(file) def features(self, data): """ return features evaluated on data :param data: samples of data (2d array) :return: concatenated values of feature functions, evaluated on sample data """ data =
np.asarray(data)
numpy.asarray
# 14 July 2018 <NAME> # Python bootcamp, lesson 40: Image processing practice with Python # Import numerical modules import numpy as np import scipy.optimize # Import modules for plotting import matplotlib.pyplot as plt import seaborn as sns sns.set() # Modules for image processing import skimage.io import skimage.morphology import skimage.segmentation import skimage.measure # Modules for interacting with our file system import os import glob ##### Problem 5.2: Filter, extract, rinse, repeat # We first copy in the image segmentation functions from the previous # image processing practice session def cell_segmenter(im, thresh='otsu', radius=20.0, image_mode='phase', area_bounds=(0,1e7), ecc_bounds=(0, 1)): """ This function segments a given image via thresholding and returns a labeled segmentation mask. Parameters ---------- im : 2d-array Image to be segmented. This may be of either float or integer data type. thresh : int, float, or 'otsu' Value used during thresholding operation. This can either be a value (`int` or `float`) or 'otsu'. If 'otsu', the threshold value will be determined automatically using Otsu's thresholding method. radius : float Radius for gaussian blur for background subtraction. Default value is 20. image_mode : 'phase' or 'fluorescence' Mode of microscopy used to capture the image. If 'phase', objects with intensity values *lower* than the provided threshold will be selected. If `fluorescence`, values *greater* than the provided threshold will be selected. Default value is 'phase'. area_bounds : tuple of ints. Range of areas of acceptable objects. This should be provided in units of square pixels. ecc_bounds : tuple of floats Range of eccentricity values of acceptable objects. These values should range between 0.0 and 1.0. Returns ------- im_labeled : 2d-array, int Labeled segmentation mask. """ # Apply a median filter to remove hot pixels. med_selem = skimage.morphology.square(3) im_filt = skimage.filters.median(im, selem=med_selem) # Perform gaussian subtraction im_sub = bg_subtract(im_filt, radius) # Determine the thresholding method. if thresh is 'otsu': thresh = skimage.filters.threshold_otsu(im_sub) # Determine the image mode and apply threshold. if image_mode is 'phase': im_thresh = im_sub < thresh elif image_mode is 'fluorescence': im_thresh = im_sub > thresh else: raise ValueError("image mode not recognized. Must be 'phase' " + " or 'fluorescence'") # Label the objects. im_label = skimage.measure.label(im_thresh) # Apply the area and eccentricity bounds. im_filt = area_ecc_filter(im_label, area_bounds, ecc_bounds) # Remove objects touching the border. im_border = skimage.segmentation.clear_border(im_filt, buffer_size=5) # Relabel the image. im_border = im_border > 0 im_label = skimage.measure.label(im_border) return im_label def bg_subtract(im, radius): """ Subtracts a gaussian blurred image from itself smoothing uneven illumination. Parameters ---------- im : 2d-array Image to be subtracted radius : int or float Radius of gaussian blur Returns ------- im_sub : 2d-array, float Background subtracted image. """ # Apply the gaussian filter. im_filt = skimage.filters.gaussian(im, radius) # Ensure the original image is a float if
np.max(im)
numpy.max
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept = np.sum(image_aug == 255) nb_dropped = image.shape[2] - nb_kept assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.isclose(nb_dropped, image.shape[2]*0.75, atol=75) def test_force_nb_keep_channels(self): image = np.full((1, 1, 3), 255, dtype=np.uint8) images = np.array([image] * 1000) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) images_aug = aug(images=images) ids_kept = [np.nonzero(image[0, 0, :]) for image in images_aug] ids_kept_uq = np.unique(ids_kept) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name # on average, keep 1 of 3 channels # due to p=1.0 we expect to get exactly 2/3 dropped assert np.isclose(nb_dropped, (len(images)*images.shape[3])*(2/3), atol=1) # every channel dropped at least once, i.e. which one is kept is random assert sorted(ids_kept_uq.tolist()) == [0, 1, 2] def test_some_images_below_nb_keep_channels(self): image_2c = np.full((1, 1, 2), 255, dtype=np.uint8) image_3c = np.full((1, 1, 3), 255, dtype=np.uint8) images = [image_2c if i % 2 == 0 else image_3c for i in sm.xrange(100)] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=2) images_aug = aug(images=images) for i, image_aug in enumerate(images_aug): assert np.sum(image_aug == 255) == 2 if i % 2 == 0: assert np.sum(image_aug == 0) == 0 else: assert np.sum(image_aug == 0) == 1 def test_all_images_below_nb_keep_channels(self): image = np.full((1, 1, 2), 255, dtype=np.uint8) images = np.array([image] * 100) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert nb_dropped == 0 def test_get_parameters(self): aug = iaa.Dropout2d(p=0.7, nb_keep_channels=2) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert np.isclose(params[0].p.value, 0.3) assert params[1] == 2 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.full(shape, 255, dtype=np.uint8) aug = iaa.Dropout2d(1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if value == 0: assert np.sum(image_aug == value) == 10 else: assert np.sum(image_aug == value) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if _isclose(value, 0.0): assert np.sum(_isclose(image_aug, value)) == 10 else: assert ( np.sum(_isclose(image_aug, np.float128(value))) == 3) assert np.sum(image_aug == 0) == 7 def test_pickleable(self): aug = iaa.Dropout2d(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3, shape=(1, 1, 50)) class TestTotalDropout(unittest.TestCase): def setUp(self): reseed() def test___init___p(self): aug = iaa.TotalDropout(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.sum(images_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.TotalDropout(p=1.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.TotalDropout(p=1.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=1.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_heatmaps(self): aug = iaa.TotalDropout(p=0.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.TotalDropout(p=0.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=0.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075_multiple_images_list(self): images = [np.full((1, 1, 1), 255, dtype=np.uint8)] * 3000 aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum([np.sum(image_aug == 255) for image_aug in images_aug]) nb_dropped = len(images) - nb_kept for image_aug in images_aug: assert image_aug.shape == images[0].shape assert image_aug.dtype.name == images[0].dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_p_is_075_multiple_images_array(self): images = np.full((3000, 1, 1, 1), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = len(images) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_get_parameters(self): aug = iaa.TotalDropout(p=0.0) params = aug.get_parameters() assert params[0] is aug.p def test_unusual_channel_numbers(self): shapes = [ (5, 1, 1, 4), (5, 1, 1, 5), (5, 1, 1, 512), (5, 1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): images = np.zeros(shape, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert np.all(images_aug == 0) assert images_aug.dtype.name == "uint8" assert images_aug.shape == shape def test_zero_sized_axes(self): shapes = [ (5, 0, 0), (5, 0, 1), (5, 1, 0), (5, 0, 1, 0), (5, 1, 0, 0), (5, 0, 1, 1), (5, 1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): images = np.full(shape, 255, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert images_aug.dtype.name == "uint8" assert images_aug.shape == images.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 0 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0) or value == 0: assert np.sum(images_aug == 0) == 5*3 else: assert np.sum(images_aug == value) == 5*3 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images =
np.full((5, 1, 1, 3), value, dtype=dt)
numpy.full
# -*- coding: utf-8 -*- """ Source: https://www.solcore.solar/ This is mostly based on <NAME>' tmm package, with modifications to vectorize the code over wavelengths (by <NAME>), and to include depth-dependent absorption calculations in incoherent layers using the Beer-Lambert law (by <NAME>). All credit of the algorithm, testing, etc. goes to <NAME>. For more details, visit: - https://arxiv.org/abs/1603.02720 - http://sjbyrnes.com - For information see the docstring of each function, and also see manual.pdf The most two important functions are: coh_tmm(...) -- the transfer-matrix-method calculation in the coherent case (i.e. thin films) inc_tmm(...) -- the transfer-matrix-method calculation in the incoherent case (i.e. films tens or hundreds of wavelengths thick, or whose thickness is not very uniform. These functions are all imported into the main package (tmm) namespace, so you can call them with tmm.coh_tmm(...) etc. """ import scipy as sp import numpy as np import sys EPSILON = sys.float_info.epsilon # typical floating-point calculation error def make_2x2_array(a, b, c, d, dtype=float): """ Makes a 2x2 numpy array of [[a,b],[c,d]] Same as "numpy.array([[a,b],[c,d]], dtype=float)", but ten times faster """ my_array = np.empty((len(a), 2, 2), dtype=dtype) my_array[:, 0, 0] = a my_array[:, 0, 1] = b my_array[:, 1, 0] = c my_array[:, 1, 1] = d return my_array def snell(n_1, n_2, th_1): """ return angle theta in layer 2 with refractive index n_2, assuming it has angle th_1 in layer with refractive index n_1. Use Snell's law. Note that "angles" may be complex!! """ # Important that the arcsin here is scipy.arcsin, not numpy.arcsin!! (They # give different results e.g. for arcsin(2).) # Use real_if_close because e.g. arcsin(2 + 1e-17j) is very different from # arcsin(2) due to branch cut return sp.arcsin(np.real_if_close(n_1 * np.sin(th_1) / n_2)) def list_snell(n_list, th_0): """ return list of angle theta in each layer based on angle th_0 in layer 0, using Snell's law. n_list is index of refraction of each layer. Note that "angles" may be complex!! """ # Important that the arcsin here is scipy.arcsin, not numpy.arcsin!! (They # give different results e.g. for arcsin(2).) # Use real_if_close because e.g. arcsin(2 + 1e-17j) is very different from # arcsin(2) due to branch cut return sp.arcsin(np.real_if_close(n_list[0] * np.sin(th_0) / n_list)) def interface_r(polarization, n_i, n_f, th_i, th_f): """ reflection amplitude (from Fresnel equations) polarization is either "s" or "p" for polarization n_i, n_f are (complex) refractive index for incident and final th_i, th_f are (complex) propegation angle for incident and final (in radians, where 0=normal). "th" stands for "theta". """ if polarization == 's': # return 2 * n_i * np.cos(th_i) / (n_i * np.cos(th_i) + n_f * np.cos(th_f)) return ((n_i * np.cos(th_i) - n_f * np.cos(th_f)) / (n_i * np.cos(th_i) + n_f * np.cos(th_f))) elif polarization == 'p': return ((n_f * np.cos(th_i) - n_i * np.cos(th_f)) / (n_f *
np.cos(th_i)
numpy.cos
import time import os import numpy as np import scipy from npMatrix3d import * from npMatrix2d import * # ============================================================================ # # This file contains code for all Fisher Scoring based (univariate/"one- # model") parameter estimation methods developed during the course of the LMM # project. The methods given here are: # # - `FS`: Fisher Scoring # - `fFS`: Full-Fisher Scoring # - `SFS`: Simplified Fisher Scoring # - `fSFS`: Full-Simplified Fisher Scoring # - `cSFS`: Cholesky Simplified Fisher # # ---------------------------------------------------------------------------- # # Author: <NAME> (Last edited 07/04/2020) # # ============================================================================ # ============================================================================ # # This below function performs Cholesky Fisher Scoring for the Linear Mixed # Model. It is based on the update rules: # # beta = (X'V^(-1)X)^(-1)(X'V^(-1)Y) # # sigma2 = e'V^(-1)e/n # # for k in {1,...,r}; # vechTri(Chol_k) = \theta_f + lam*I(vechTri(Chol_k))^(-1) (dl/dvechTri(Chol_k)) # # Where: # - chol_k is the lower triangular cholesky factor of D_k # - vechTri(A) is the vector of lower triangular elements of A. # - lam is a scalar stepsize. # - I(vechTri(Chol_k)) is the Fisher Information matrix of vechTri(Chol_k). # - dl/dvechTri(Chol_k) is the derivative of the log likelihood of # (beta, sigma^2, vechTri(Chol_1),...vechTri(Chol_r)) with respect # to vechTri(Chol_k). # - e is the residual vector (e=Y-X\beta) # - V is the matrix (I+ZDZ'). # # ---------------------------------------------------------------------------- # # This function takes as input; # # ---------------------------------------------------------------------------- # # - `XtX`: X transpose multiplied by X. # - `XtY`: X transpose multiplied by Y. # - `XtZ`: X transpose multiplied by Z. # - `YtX`: Y transpose multiplied by X. # - `YtY`: Y transpose multiplied by Y. # - `YtZ`: Y transpose multiplied by Z. # - `ZtX`: Z transpose multiplied by X. # - `ZtY`: Z transpose multiplied by Y. # - `ZtZ`: Z transpose multiplied by Z. # - `nlevels`: A vector containing the number of levels for each factor, # e.g. `nlevels=[3,4]` would mean the first factor has 3 levels # and the second factor has 4 levels. # - `nraneffs`: A vector containing the number of random effects for each # factor, e.g. `nraneffs=[2,1]` would mean the first factor has # random effects and the second factor has 1 random effect. # - `tol`: A scalar tolerance value. Iteration stops once successive # log-likelihood values no longer exceed `tol`. # - `n`: The number of observations. # - `init_paramVector`: (Optional) initial estimates of the parameter vector. # # ---------------------------------------------------------------------------- # # And returns: # # ---------------------------------------------------------------------------- # # - `paramVector`: The parameter vector (beta,sigma2,vech(D_1),...,vech(D_r)) # - `bvals`: Estimates of the random effects vector, b. # - `nit`: The number of iterations taken to converge. # # ============================================================================ def cSFS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=False, init_paramVector=None): # ------------------------------------------------------------------------------ # Useful scalars # ------------------------------------------------------------------------------ # Number of factors, r r = len(nlevels) # Number of random effects, q q = np.sum(np.dot(nraneffs,nlevels)) # Number of fixed effects, p p = XtX.shape[0] # ------------------------------------------------------------------------------ # Index variables # ------------------------------------------------------------------------------ # Work out the total number of parameters tnp = np.int32(p + 1 + np.sum(nraneffs*(nraneffs+1)/2)) # Indices for submatrics corresponding to Dks FishIndsDk = np.int32(np.cumsum(nraneffs*(nraneffs+1)/2) + p + 1) FishIndsDk = np.insert(FishIndsDk,0,p+1) # ------------------------------------------------------------------------------ # Work out D indices (there is one block of D per level) # ------------------------------------------------------------------------------ Dinds = np.zeros(np.sum(nlevels)+1) counter = 0 # Loop through and add each index for k in np.arange(len(nraneffs)): for j in np.arange(nlevels[k]): Dinds[counter] = np.concatenate((np.array([0]), np.cumsum(nlevels*nraneffs)))[k] + nraneffs[k]*j counter = counter + 1 # Last index will be missing so add it Dinds[len(Dinds)-1]=Dinds[len(Dinds)-2]+nraneffs[-1] # Make sure indices are ints Dinds = np.int64(Dinds) # ------------------------------------------------------------------------------ # Duplication, Commutation and Elimination matrices # ------------------------------------------------------------------------------ dupMatTdict = dict() elimMatdict = dict() comMatdict = dict() for i in np.arange(len(nraneffs)): dupMatTdict[i] = dupMat2D(nraneffs[i]).transpose() comMatdict[i] = comMat2D(nraneffs[i],nraneffs[i]) elimMatdict[i] = elimMat2D(nraneffs[i]) # ------------------------------------------------------------------------------ # Initial estimates # ------------------------------------------------------------------------------ # If they have been specified as inputs use those. if init_paramVector is not None: # beta and sigma2 initial values beta = init_paramVector[0:p] sigma2 = init_paramVector[p:(p+1)][0,0] sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # Initial cholesky decomposition and D. Ddict = dict() cholDict = dict() for k in np.arange(len(nraneffs)): Ddict[k] = makeDpd2D(initDk2D(k, ZtZ, Zte, sigma2, nlevels, nraneffs, dupMatTdict)) cholDict[k] = np.linalg.cholesky(Ddict[k]) # Matrix version D = scipy.sparse.lil_matrix((q,q)) counter = 0 for k in np.arange(len(nraneffs)): for j in np.arange(nlevels[k]): D[Dinds[counter]:Dinds[counter+1], Dinds[counter]:Dinds[counter+1]] = Ddict[k] counter = counter + 1 D = D.toarray() # Work out e'e ete = ssr2D(YtX, YtY, XtX, beta) # Z'e, needed for first iteration Zte = ZtY - (ZtX @ beta) # Otherwise use the closed form initial estimates else: # Inital beta beta = initBeta2D(XtX, XtY) # Work out e'e ete = ssr2D(YtX, YtY, XtX, beta) # Initial sigma2 sigma2 = initSigma22D(ete, n) sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # Z'e Zte = ZtY - (ZtX @ beta) # Inital cholesky decomposition and D Ddict = dict() cholDict = dict() for k in np.arange(len(nraneffs)): # We just initialize to identity for cholesky. cholDict[k] = np.eye(nraneffs[k]) Ddict[k] = np.eye(nraneffs[k]) # Matrix version D = scipy.sparse.lil_matrix((q,q)) t1 = time.time() counter = 0 for k in np.arange(len(nraneffs)): for j in np.arange(nlevels[k]): D[Dinds[counter]:Dinds[counter+1], Dinds[counter]:Dinds[counter+1]] = Ddict[k] counter = counter + 1 D = D.toarray() # ------------------------------------------------------------------------------ # Obtain D(I+Z'ZD)^(-1) # ------------------------------------------------------------------------------ DinvIplusZtZD = forceSym2D(np.linalg.solve(np.eye(q) + D @ ZtZ, D)) # ------------------------------------------------------------------------------ # Initial lambda and likelihoods # ------------------------------------------------------------------------------ # Step size lambda lam = 1 # Initial log likelihoods llhprev = np.inf llhcurr = -np.inf # ------------------------------------------------------------------------------ # Dicts to save repeated computation. # ------------------------------------------------------------------------------ # This will hold the matrices: Sum_j^{l_k} Z_{i,j}'Z_{i,j} ZtZmatdict = dict() for k in np.arange(len(nraneffs)): ZtZmatdict[k] = None # This will hold the permutations needed for the covariance between the # derivatives with respect to k permdict = dict() for k in np.arange(len(nraneffs)): permdict[str(k)] = None # ------------------------------------------------------------------------------ # Iteration # ------------------------------------------------------------------------------ # Number of iterations nit = 0 while np.abs(llhprev-llhcurr)>tol: # Change current likelihood to previous llhprev = llhcurr # Update number of iterations nit = nit+1 #--------------------------------------------------------------------------- # Update beta #--------------------------------------------------------------------------- beta = np.linalg.solve(XtX - XtZ @ DinvIplusZtZD @ ZtX, XtY - XtZ @ DinvIplusZtZD @ ZtY) #--------------------------------------------------------------------------- # Update sigma2 #--------------------------------------------------------------------------- if reml==False: sigma2 = 1/n*(ete - Zte.transpose() @ DinvIplusZtZD @ Zte) else: sigma2 = 1/(n-p)*(ete - Zte.transpose() @ DinvIplusZtZD @ Zte) sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary #--------------------------------------------------------------------------- # Update Cholesky factor #--------------------------------------------------------------------------- counter = 0 # Loop though unique blocks of D updating one at a time for k in np.arange(len(nraneffs)): #----------------------------------------------------------------------- # Calculate derivative with respect to D_k #----------------------------------------------------------------------- # Work out derivative if ZtZmatdict[k] is None: dldD,ZtZmatdict[k] = get_dldDk2D(k, nlevels, nraneffs, ZtZ, Zte, sigma2, DinvIplusZtZD, None, reml, ZtX, XtX) else: dldD,_ = get_dldDk2D(k, nlevels, nraneffs, ZtZ, Zte, sigma2, DinvIplusZtZD,ZtZmatdict[k], reml, ZtX, XtX) #----------------------------------------------------------------------- # Calculate covariance of derivative with respect to D_k #----------------------------------------------------------------------- if permdict[str(k)] is None: covdldDk,permdict[str(k)] = get_covdldDk1Dk22D(k, k, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict, perm=None) else: covdldDk,_ = get_covdldDk1Dk22D(k, k, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict, perm=permdict[str(k)]) #----------------------------------------------------------------------- # Transform to derivative with respect to chol_k #----------------------------------------------------------------------- # We need to modify by multiplying by this matrix to obtain the cholesky derivative. chol_mod = elimMatdict[k] @ scipy.sparse.kron(cholDict[k],np.eye(nraneffs[k])).transpose() @ (scipy.sparse.identity(nraneffs[k]**2) + comMatdict[k]) @ dupMatTdict[k].transpose() # Transform to cholesky dldcholk = chol_mod @ dupMatTdict[k] @ mat2vec2D(dldD) #----------------------------------------------------------------------- # Transform to covariance of derivative with respect to chol_k #----------------------------------------------------------------------- covdldcholk = chol_mod @ covdldDk @ chol_mod.transpose() #----------------------------------------------------------------------- # Perform update #----------------------------------------------------------------------- update = lam*np.linalg.pinv(forceSym2D(covdldcholk)) @ dldcholk #lam*np.linalg.solve(forceSym2D(covdldcholk), dldcholk) #----------------------------------------------------------------------- # Update D_k and chol_k #----------------------------------------------------------------------- cholDict[k] = vechTri2mat2D(mat2vechTri2D(cholDict[k]) + update) Ddict[k] = cholDict[k] @ cholDict[k].transpose() # Add D_k back into D and recompute DinvIplusZtZD for j in np.arange(nlevels[k]): D[Dinds[counter]:Dinds[counter+1], Dinds[counter]:Dinds[counter+1]] = Ddict[k] counter = counter + 1 #----------------------------------------------------------------------- # Obtain D(I+Z'ZD)^(-1) #----------------------------------------------------------------------- DinvIplusZtZD = forceSym2D(np.linalg.solve(np.eye(q) + D @ ZtZ, D)) # -------------------------------------------------------------------------- # Matrices for next iteration # -------------------------------------------------------------------------- # Recalculate Zte and ete Zte = ZtY - (ZtX @ beta) # Sum of squared residuals ete = ssr2D(YtX, YtY, XtX, beta) # Check sigma2 hasn't hit a boundary if sigma2<0: sigma2=1e-10 #--------------------------------------------------------------------------- # Update the step size and log likelihood #--------------------------------------------------------------------------- llhcurr = llh2D(n, ZtZ, Zte, ete, sigma2, DinvIplusZtZD,D,reml,XtX,XtZ,ZtX)[0,0] if llhprev>llhcurr: lam = lam/2 #------------------------------------------------------------------------------- # Save parameter vector #------------------------------------------------------------------------------- paramVector = np.concatenate((beta, sigma2)) for k in np.arange(len(nraneffs)): paramVector = np.concatenate((paramVector, mat2vech2D(Ddict[k]))) #------------------------------------------------------------------------------- # Work out b values #------------------------------------------------------------------------------- bvals = DinvIplusZtZD @ Zte return(paramVector, bvals, nit, llhcurr) # ============================================================================ # # This below function performs Fisher Scoring for the Linear Mixed Model. It # is based on the update rule: # # \theta_h = \theta_h + lam*I(\theta_h)^(-1) (dl/d\theta_h) # # Where \theta_h is the vector (beta, sigma2, vech(D1),...vech(Dr)), lam is a # scalar stepsize, I(\theta_h) is the Fisher Information matrix of \theta_h # and dl/d\theta_h is the derivative of the log likelihood of \theta_h with # respect to \theta_h. # # ---------------------------------------------------------------------------- # # This function takes as input; # # ---------------------------------------------------------------------------- # # - `XtX`: X transpose multiplied by X. # - `XtY`: X transpose multiplied by Y. # - `XtZ`: X transpose multiplied by Z. # - `YtX`: Y transpose multiplied by X. # - `YtY`: Y transpose multiplied by Y. # - `YtZ`: Y transpose multiplied by Z. # - `ZtX`: Z transpose multiplied by X. # - `ZtY`: Z transpose multiplied by Y. # - `ZtZ`: Z transpose multiplied by Z. # - `nlevels`: A vector containing the number of levels for each factor, # e.g. `nlevels=[3,4]` would mean the first factor has 3 levels # and the second factor has 4 levels. # - `nraneffs`: A vector containing the number of random effects for each # factor, e.g. `nraneffs=[2,1]` would mean the first factor has # random effects and the second factor has 1 random effect. # - `tol`: A scalar tolerance value. Iteration stops once successive # log-likelihood values no longer exceed `tol`. # - `n`: The number of observations. # - `init_paramVector`: (Optional) initial estimates of the parameter vector. # # ---------------------------------------------------------------------------- # # And returns: # # ---------------------------------------------------------------------------- # # - `paramVector`: The parameter vector (beta,sigma2,vech(D_1),...,vech(D_r)) # - `bvals`: Estimates of the random effects vector, b. # - `nit`: The number of iterations taken to converge. # # ============================================================================ def FS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=False, init_paramVector=None): # ------------------------------------------------------------------------------ # Useful scalars # ------------------------------------------------------------------------------ # Number of factors, r r = len(nlevels) # Number of random effects, q q = np.sum(np.dot(nraneffs,nlevels)) # Number of fixed effects, p p = XtX.shape[0] # ------------------------------------------------------------------------------ # Index variables # ------------------------------------------------------------------------------ # Work out the total number of parameters tnp = np.int32(p + 1 + np.sum(nraneffs*(nraneffs+1)/2)) # Indices for submatrics corresponding to Dks FishIndsDk = np.int32(np.cumsum(nraneffs*(nraneffs+1)/2) + p + 1) FishIndsDk = np.insert(FishIndsDk,0,p+1) # ------------------------------------------------------------------------------ # Duplication matrices # ------------------------------------------------------------------------------ dupMatTdict = dict() for i in np.arange(len(nraneffs)): dupMatTdict[i] = dupMat2D(nraneffs[i]).transpose() # ------------------------------------------------------------------------------ # Initial estimates # ------------------------------------------------------------------------------ if init_paramVector is not None: # Initial beta and sigma2 beta = init_paramVector[0:p] sigma2 = init_paramVector[p:(p+1)][0,0] sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # Initial D (dictionary version) Ddict = dict() for k in np.arange(len(nraneffs)): Ddict[k] = makeDpd2D(vech2mat2D(init_paramVector[FishIndsDk[k]:FishIndsDk[k+1]])) # Initial D (matrix version) for i in np.arange(len(nraneffs)): for j in np.arange(nlevels[i]): # Add block if i == 0 and j == 0: D = Ddict[i] else: D = scipy.linalg.block_diag(D, Ddict[i]) D = D.toarray() # Work out e'e ete = ssr2D(YtX, YtY, XtX, beta) # Initial sigma2 sigma2 = initSigma22D(ete, n) sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # If we don't have initial values estimate them else: # Inital beta beta = initBeta2D(XtX, XtY) # Work out e'e ete = ssr2D(YtX, YtY, XtX, beta) # Initial sigma2 sigma2 = initSigma22D(ete, n) sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # Z'e, needed for first iteration Zte = ZtY - (ZtX @ beta) # Inital D (Dictionary version) Ddict = dict() for k in np.arange(len(nraneffs)): Ddict[k] = makeDpd2D(initDk2D(k, ZtZ, Zte, sigma2, nlevels, nraneffs, dupMatTdict)) # Matrix version D = np.array([]) for i in np.arange(len(nraneffs)): for j in np.arange(nlevels[i]): # Add block if i == 0 and j == 0: D = Ddict[i] else: D = scipy.linalg.block_diag(D, Ddict[i]) # ------------------------------------------------------------------------------ # Initial lambda and likelihoods # ------------------------------------------------------------------------------ # Step size lambda lam = 1 # Initial log likelihoods llhprev = np.inf llhcurr = -np.inf # ------------------------------------------------------------------------------ # Dicts to save repeated computation. # ------------------------------------------------------------------------------ # This will hold the matrices: Sum_j^{l_k} Z_{i,j}'Z_{i,j} ZtZmatdict = dict() for k in np.arange(len(nraneffs)): ZtZmatdict[k] = None # This will hold the permutations needed for the covariance between the # derivatives with respect to k1 and k2 permdict = dict() for k1 in np.arange(len(nraneffs)): for k2 in np.arange(len(nraneffs)): permdict[str(k1)+str(k2)] = None # ------------------------------------------------------------------------------ # Iteration # ------------------------------------------------------------------------------ # Number of iterations nit = 0 while np.abs(llhprev-llhcurr)>tol: # Update nit nit = nit+1 # Change current likelihood to previous llhprev = llhcurr # -------------------------------------------------------------------------- # Matrices needed later # -------------------------------------------------------------------------- # X transpose e and Z transpose e Xte = XtY - (XtX @ beta) # -------------------------------------------------------------------------- # Obtain D(I+Z'ZD)^(-1) # -------------------------------------------------------------------------- DinvIplusZtZD = forceSym2D(np.linalg.solve(np.eye(q) + D @ ZtZ, D)) # -------------------------------------------------------------------------- # Derivatives # -------------------------------------------------------------------------- # Derivative wrt beta dldB = get_dldB2D(sigma2, Xte, XtZ, DinvIplusZtZD, Zte) # Derivative wrt sigma^2 dldsigma2 = get_dldsigma22D(n, ete, Zte, sigma2, DinvIplusZtZD, reml, p) # For each factor, factor k, work out dl/dD_k dldDdict = dict() for k in np.arange(len(nraneffs)): # Store it in the dictionary# Store it in the dictionary if ZtZmatdict[k] is None: dldDdict[k],ZtZmatdict[k] = get_dldDk2D(k, nlevels, nraneffs, ZtZ, Zte, sigma2, DinvIplusZtZD,None, reml, ZtX, XtX) else: dldDdict[k],_ = get_dldDk2D(k, nlevels, nraneffs, ZtZ, Zte, sigma2, DinvIplusZtZD,ZtZmatdict[k], reml, ZtX, XtX) # -------------------------------------------------------------------------- # Covariance of dl/dsigma2 # -------------------------------------------------------------------------- covdldsigma2 = n/(2*(sigma2**2)) # -------------------------------------------------------------------------- # Construct the Fisher Information matrix # -------------------------------------------------------------------------- FisherInfoMat = np.zeros((tnp,tnp)) # Add dl/dbeta covariance FisherInfoMat[np.ix_(np.arange(p),np.arange(p))] = get_covdldbeta2D(XtZ, XtX, ZtZ, DinvIplusZtZD, sigma2) # Add dl/dsigma2 covariance FisherInfoMat[p,p] = covdldsigma2 # Add dl/dsigma2 dl/dD covariance for k in np.arange(len(nraneffs)): # Assign to the relevant block if ZtZmatdict[k] is None: covdldDksigma2,ZtZmatdict[k] = get_covdldDkdsigma22D(k, sigma2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict, ZtZmat=None) else: covdldDksigma2,_ = get_covdldDkdsigma22D(k, sigma2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict, ZtZmat=ZtZmatdict[k]) # Assign to the relevant block FisherInfoMat[p, FishIndsDk[k]:FishIndsDk[k+1]] = covdldDksigma2.reshape(FishIndsDk[k+1]-FishIndsDk[k]) FisherInfoMat[FishIndsDk[k]:FishIndsDk[k+1],p] = FisherInfoMat[p, FishIndsDk[k]:FishIndsDk[k+1]].transpose() # Add dl/dD covariance for each pair (k1,k2) of random factors for k1 in np.arange(len(nraneffs)): for k2 in np.arange(k1+1): # Work out the indices of random factor k1 and random factor k2 IndsDk1 = np.arange(FishIndsDk[k1],FishIndsDk[k1+1]) IndsDk2 = np.arange(FishIndsDk[k2],FishIndsDk[k2+1]) # Get covariance between D_k1 and D_k2 if permdict[str(k1)+str(k2)] is None: FisherInfoMat[np.ix_(IndsDk1, IndsDk2)],permdict[str(k1)+str(k2)] = get_covdldDk1Dk22D(k1, k2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict,perm=None) else: FisherInfoMat[np.ix_(IndsDk1, IndsDk2)],_ = get_covdldDk1Dk22D(k1, k2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict,perm=permdict[str(k1)+str(k2)]) # Get covariance between D_k1 and D_k2 FisherInfoMat[np.ix_(IndsDk2, IndsDk1)] = FisherInfoMat[np.ix_(IndsDk1, IndsDk2)].transpose() # Check Fisher Information matrix is symmetric FisherInfoMat = forceSym2D(FisherInfoMat) # ---------------------------------------------------------------------- # Concatenate paramaters and derivatives together # ---------------------------------------------------------------------- paramVector = np.concatenate((beta, np.array([[sigma2]]))) derivVector = np.concatenate((dldB, dldsigma2)) for k in np.arange(len(nraneffs)): paramVector = np.concatenate((paramVector, mat2vech2D(Ddict[k]))) derivVector = np.concatenate((derivVector, dupMatTdict[k] @ mat2vec2D(dldDdict[k]))) # ---------------------------------------------------------------------- # Update step # ---------------------------------------------------------------------- paramVector = paramVector + lam*(np.linalg.pinv(FisherInfoMat) @ derivVector)#lam*(np.linalg.solve(FisherInfoMat,derivVector)) # ---------------------------------------------------------------------- # Get the new parameters # ---------------------------------------------------------------------- beta = paramVector[0:p] sigma2 = paramVector[p:(p+1)][0,0] sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # D (dict version) for k in np.arange(len(nraneffs)): Ddict[k] = makeDpd2D(vech2mat2D(paramVector[FishIndsDk[k]:FishIndsDk[k+1]])) # D (matrix version) for i in np.arange(len(nraneffs)): for j in np.arange(nlevels[i]): if i == 0 and j == 0: D = Ddict[i] else: D = scipy.linalg.block_diag(D, Ddict[i]) # -------------------------------------------------------------------------- # Matrices for next iteration # -------------------------------------------------------------------------- # Recalculate Zte and ete Zte = ZtY - (ZtX @ beta) # Sum of squared residuals ete = ssr2D(YtX, YtY, XtX, beta) # Inverse of (I+Z'ZD) multiplied by D DinvIplusZtZD = forceSym2D(np.linalg.solve(np.eye(q) + D @ ZtZ, D)) # Check sigma2 hasn't hit a boundary if sigma2<0: sigma2=1e-10 # ---------------------------------------------------------------------- # Update the step size and log likelihood # ---------------------------------------------------------------------- llhcurr = llh2D(n, ZtZ, Zte, ete, sigma2, DinvIplusZtZD,D,reml,XtX,XtZ,ZtX)[0,0] if llhprev>llhcurr: lam = lam/2 # -------------------------------------------------------------------------- # Get b values # -------------------------------------------------------------------------- bvals = DinvIplusZtZD @ Zte return(paramVector, bvals, nit, llhcurr) # ============================================================================ # # This below function performs full Fisher Scoring for the Linear Mixed # Model. It is based on the update rule: # # \theta_f = \theta_f + lam*I(\theta_f)^+ (dl/d\theta_f) # # Where \theta_f is the vector (beta, sigma2, vec(D1),...vec(Dr)), lam is a # scalar stepsize, I(\theta_f) is the Fisher Information matrix of \theta_f # and dl/d\theta_f is the derivative of the log likelihood of \theta_f with # respect to \theta_f. # # Note that, as \theta_f is written in terms of 'vec', rather than 'vech', # (full vector, 'f', rather than half-vector, 'h'), the information matrix # will have repeated rows (due to \theta_f having repeated entries). # # ---------------------------------------------------------------------------- # # This function takes as input; # # ---------------------------------------------------------------------------- # # - `XtX`: X transpose multiplied by X. # - `XtY`: X transpose multiplied by Y. # - `XtZ`: X transpose multiplied by Z. # - `YtX`: Y transpose multiplied by X. # - `YtY`: Y transpose multiplied by Y. # - `YtZ`: Y transpose multiplied by Z. # - `ZtX`: Z transpose multiplied by X. # - `ZtY`: Z transpose multiplied by Y. # - `ZtZ`: Z transpose multiplied by Z. # - `nlevels`: A vector containing the number of levels for each factor, # e.g. `nlevels=[3,4]` would mean the first factor has 3 levels # and the second factor has 4 levels. # - `nraneffs`: A vector containing the number of random effects for each # factor, e.g. `nraneffs=[2,1]` would mean the first factor has # random effects and the second factor has 1 random effect. # - `tol`: A scalar tolerance value. Iteration stops once successive # log-likelihood values no longer exceed `tol`. # - `n`: The number of observations. # - `init_paramVector`: (Optional) initial estimates of the parameter vector. # # ---------------------------------------------------------------------------- # # And returns: # # ---------------------------------------------------------------------------- # # - `paramVector`: The parameter vector (beta,sigma2,vech(D_1),...,vech(D_r)) # - `bvals`: Estimates of the random effects vector, b. # - `nit`: The number of iterations taken to converge. # # ============================================================================ def fFS2D(XtX, XtY, ZtX, ZtY, ZtZ, XtZ, YtZ, YtY, YtX, nlevels, nraneffs, tol, n, reml=False, init_paramVector=None): # ------------------------------------------------------------------------------ # Useful scalars # ------------------------------------------------------------------------------ # Number of factors, r r = len(nlevels) # Number of random effects, q q = np.sum(np.dot(nraneffs,nlevels)) # Number of fixed effects, p p = XtX.shape[0] # ------------------------------------------------------------------------------ # Index variables # ------------------------------------------------------------------------------ # Work out the total number of parameters tnp = np.int32(p + 1 + np.sum(nraneffs**2)) # Indices for submatrics corresponding to Dks FishIndsDk = np.int32(np.cumsum(nraneffs**2) + p + 1) FishIndsDk = np.insert(FishIndsDk,0,p+1) # ------------------------------------------------------------------------------ # Duplication matrices # ------------------------------------------------------------------------------ dupMatTdict = dict() for i in np.arange(len(nraneffs)): dupMatTdict[i] = dupMat2D(nraneffs[i]).transpose() # ------------------------------------------------------------------------------ # Initial estimates # ------------------------------------------------------------------------------ # Read in initial estimates if we have any if init_paramVector is not None: # Initial beta and sigma2 beta = init_paramVector[0:p] sigma2 = init_paramVector[p:(p+1)][0,0] sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # Initial D (dictionary version) Ddict = dict() for k in np.arange(len(nraneffs)): Ddict[k] = makeDpd2D(vec2mat2D(init_paramVector[FishIndsDk[k]:FishIndsDk[k+1]])) # Initial D (matrix version) for i in np.arange(len(nraneffs)): for j in np.arange(nlevels[i]): if i == 0 and j == 0: D = Ddict[i] else: D = scipy.linalg.block_diag(D, Ddict[i]) # Work out e'e ete = ssr2D(YtX, YtY, XtX, beta) # Z'e, needed for first iteration Zte = ZtY - (ZtX @ beta) # Estimate initial values otherwise else: # Inital beta beta = initBeta2D(XtX, XtY) # Work out e'e ete = ssr2D(YtX, YtY, XtX, beta) # Initial sigma2 sigma2 = initSigma22D(ete, n) sigma2 = np.maximum(sigma2,1e-10) # Prevent hitting boundary # Z'e, needed for first iteration Zte = ZtY - (ZtX @ beta) # Inital D (Dictionary version) Ddict = dict() for k in np.arange(len(nraneffs)): Ddict[k] = makeDpd2D(initDk2D(k, ZtZ, Zte, sigma2, nlevels, nraneffs, dupMatTdict)) # Inital D (Matrix version) D = np.array([]) for i in np.arange(len(nraneffs)): for j in np.arange(nlevels[i]): if i == 0 and j == 0: D = Ddict[i] else: D = scipy.linalg.block_diag(D, Ddict[i]) # ------------------------------------------------------------------------------ # Obtain D(I+Z'ZD)^(-1) # ------------------------------------------------------------------------------ DinvIplusZtZD = forceSym2D(np.linalg.solve(np.eye(q) + D @ ZtZ, D)) # ------------------------------------------------------------------------------ # Initial lambda and likelihoods # ------------------------------------------------------------------------------ # Step size lambda lam = 1 # Initial log likelihoods llhprev = np.inf llhcurr = -np.inf # ------------------------------------------------------------------------------ # Dicts to save repeated computation. # ------------------------------------------------------------------------------ # This will hold the matrices: Sum_j^{l_k} Z_{i,j}'Z_{i,j} ZtZmatdict = dict() for k in np.arange(len(nraneffs)): ZtZmatdict[k] = None # This will hold the permutations needed for the covariance between the # derivatives with respect to k1 and k2 permdict = dict() for k1 in np.arange(len(nraneffs)): for k2 in np.arange(len(nraneffs)): permdict[str(k1)+str(k2)] = None # ------------------------------------------------------------------------------ # Iteration # ------------------------------------------------------------------------------ nit = 0 while np.abs(llhprev-llhcurr)>tol: # Update number of iterations nit = nit+1 # Change current likelihood to previous llhprev = llhcurr # ------------------------------------------------------------------------ # Matrices needed later by many calculations: # ------------------------------------------------------------------------ # X transpose e and Z transpose e Xte = XtY - (XtX @ beta) # ------------------------------------------------------------------------ # Derivatives # ------------------------------------------------------------------------ # Derivative wrt beta dldB = get_dldB2D(sigma2, Xte, XtZ, DinvIplusZtZD, Zte) # Derivative wrt sigma^2 dldsigma2 = get_dldsigma22D(n, ete, Zte, sigma2, DinvIplusZtZD, reml, p) # For each factor, factor k, work out dl/dD_k dldDdict = dict() for k in np.arange(len(nraneffs)): # Store it in the dictionary if ZtZmatdict[k] is None: dldDdict[k],ZtZmatdict[k] = get_dldDk2D(k, nlevels, nraneffs, ZtZ, Zte, sigma2, DinvIplusZtZD,None, reml, ZtX, XtX) else: dldDdict[k],_ = get_dldDk2D(k, nlevels, nraneffs, ZtZ, Zte, sigma2, DinvIplusZtZD, ZtZmatdict[k], reml, ZtX, XtX) # ------------------------------------------------------------------------ # Covariance of dl/dsigma2 # ------------------------------------------------------------------------ covdldsigma2 = n/(2*(sigma2**2)) # ------------------------------------------------------------------------ # Construct the Fisher Information matrix # ------------------------------------------------------------------------ FisherInfoMat = np.zeros((tnp,tnp)) # Add dl/dbeta covariance FisherInfoMat[np.ix_(np.arange(p),np.arange(p))] = get_covdldbeta2D(XtZ, XtX, ZtZ, DinvIplusZtZD, sigma2) # Add dl/dsigma2 covariance FisherInfoMat[p,p] = covdldsigma2 # Add dl/dsigma2 dl/dD covariance for k in np.arange(len(nraneffs)): # Assign to the relevant block if ZtZmatdict[k] is None: covdldDksigma2,ZtZmatdict[k] = get_covdldDkdsigma22D(k, sigma2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict, vec=True, ZtZmat=None) else: covdldDksigma2,_ = get_covdldDkdsigma22D(k, sigma2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict, vec=True, ZtZmat=ZtZmatdict[k]) # Assign to the relevant block FisherInfoMat[p, FishIndsDk[k]:FishIndsDk[k+1]] = covdldDksigma2.reshape(FishIndsDk[k+1]-FishIndsDk[k]) FisherInfoMat[FishIndsDk[k]:FishIndsDk[k+1],p] = FisherInfoMat[p, FishIndsDk[k]:FishIndsDk[k+1]].transpose() # Add dl/dD covariance for each pair (k1,k2) of random factors for k1 in np.arange(len(nraneffs)): for k2 in np.arange(k1+1): # Work out the indices of D_k1 and D_k2 IndsDk1 = np.arange(FishIndsDk[k1],FishIndsDk[k1+1]) IndsDk2 = np.arange(FishIndsDk[k2],FishIndsDk[k2+1]) # Get covariance between D_k1 and D_k2 if permdict[str(k1)+str(k2)] is None: FisherInfoMat[np.ix_(IndsDk1, IndsDk2)],permdict[str(k1)+str(k2)] = get_covdldDk1Dk22D(k1, k2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict,vec=True,perm=None) else: FisherInfoMat[np.ix_(IndsDk1, IndsDk2)],_ = get_covdldDk1Dk22D(k1, k2, nlevels, nraneffs, ZtZ, DinvIplusZtZD, dupMatTdict,vec=True,perm=permdict[str(k1)+str(k2)]) FisherInfoMat[np.ix_(IndsDk2, IndsDk1)] = FisherInfoMat[np.ix_(IndsDk1, IndsDk2)].transpose() # Check Fisher Information matrix is symmetric FisherInfoMat = forceSym2D(FisherInfoMat) # -------------------------------------------------------------------------- # Concatenate paramaters and derivatives together # -------------------------------------------------------------------------- paramVector = np.concatenate((beta,
np.array([[sigma2]])
numpy.array
import numpy as np import sys #read the data from the file data = open(sys.argv[1],'r').read() characters = list(set(data)) data_size, vocab_size = len(data),len(characters) print("Data has %d characters, %d unique characters."%(data_size,vocab_size)) #char to idx mapping char_to_idx = {ch:i for i,ch in enumerate(characters)} idx_to_char = {i:ch for i,ch in enumerate(characters)} #define some hyperparameters hidden_size = 100 seq_length = 25 learning_rate = 1e-2 #model parameters Wxi = np.random.randn(hidden_size,vocab_size)*0.01 Whi = np.random.randn(hidden_size,hidden_size)*0.01 bi = np.zeros((hidden_size,1)) Wxr = np.random.randn(hidden_size,vocab_size)*0.01 Whr = np.random.randn(hidden_size,hidden_size)*0.01 br = np.zeros((hidden_size,1)) Wxh = np.random.randn(hidden_size,vocab_size)*0.01 Whh = np.random.randn(hidden_size,hidden_size)*0.01 bh = np.zeros((hidden_size,1)) Why = np.random.randn(vocab_size,hidden_size)*0.01 by = np.zeros((vocab_size,1)) def sigmoid(x): return 1/(1+np.exp(-x)) def softmax(input): # Subtraction of max value improves numerical stability. e_input = np.exp(input - np.max(input)) return e_input / e_input.sum() def gru(inputs,targets,hprev): """ inputs and targets are both lists of integers. hprev is Hx1 array of initial hidden state returns the loss, gradients on model params and last hidden state """ x,r,i,h,h_hat,y,p = {},{},{},{},{},{},{} #copy the hprev to last element of hs dict h[-1] = np.copy(hprev) loss = 0 #forward pass for t in range(len(inputs)): x[t] = np.zeros((vocab_size,1)) #encode in 1-of-k representation x[t][inputs[t]]=1 r[t] = sigmoid(np.dot(Whr,h[t-1]) + np.dot(Wxr,x[t]) + br) i[t] = sigmoid(np.dot(Whi,h[t-1]) + np.dot(Wxi,x[t]) + bi) h_hat[t] = np.tanh(np.dot(Whh,np.multiply(r[t],h[t-1])) + np.dot(Wxh,x[t]) + bh) h[t] = np.multiply(i[t],h[t-1]) + np.multiply((1-i[t]), h_hat[t]) y[t] = np.dot(Why,h[t]) + by p[t] = softmax(y[t]) loss += -np.log(p[t][targets[t],0]) #backward pass dWhy,dWhi,dWhr,dWhh,dWxi,dWxr,dWxh = np.zeros_like(Why),np.zeros_like(Whi),np.zeros_like(Whr),np.zeros_like(Whh),np.zeros_like(Wxi),np.zeros_like(Wxr),np.zeros_like(Wxh) dby,dbi,dbr,dbh = np.zeros_like(by),np.zeros_like(bi),
np.zeros_like(br)
numpy.zeros_like
import numpy as np import unittest from pytest import importorskip cl = importorskip('pyopencl') import pysph.base.particle_array from pysph.base.device_helper import DeviceHelper # noqa: E402 from pysph.base.utils import get_particle_array # noqa: E402 from pysph.base.tree.point_tree import PointTree # noqa: E402 def _gen_uniform_dataset_2d(n, h, seed=None): if seed is not None: np.random.seed(seed) u = np.random.uniform pa = get_particle_array(x=u(size=n), y=u(size=n), h=h) h = DeviceHelper(pa, backend='opencl') pa.set_device_helper(h) return pa def _gen_uniform_dataset(n, h, seed=None): if seed is not None: np.random.seed(seed) u = np.random.uniform pa = get_particle_array(x=u(size=n), y=u(size=n), z=u(size=n), h=h) h = DeviceHelper(pa, backend='opencl') pa.set_device_helper(h) return pa def _dfs_find_leaf(tree): leaf_id_count = tree.allocate_leaf_prop(np.int32) dfs_find_leaf = tree.leaf_tree_traverse( "int *leaf_id_count", setup="leaf_id_count[i] = 0;", node_operation="if (cid_dst == cid_src) leaf_id_count[i]++", leaf_operation="if (cid_dst == cid_src) leaf_id_count[i]++", output_expr="" ) dfs_find_leaf(tree, tree, leaf_id_count.dev) return leaf_id_count.dev.get() def _check_children_overlap_2d(node_xmin, node_xmax, child_offset): for j in range(4): nxmin1 = node_xmin[child_offset + j] nxmax1 = node_xmax[child_offset + j] for k in range(4): nxmin2 = node_xmin[child_offset + k] nxmax2 = node_xmax[child_offset + k] if j != k: assert (nxmax1[0] <= nxmin2[0] or nxmax2[0] <= nxmin1[0] or nxmax1[1] <= nxmin2[1] or nxmax2[1] <= nxmin1[1]) def _check_children_overlap(node_xmin, node_xmax, child_offset): for j in range(8): nxmin1 = node_xmin[child_offset + j] nxmax1 = node_xmax[child_offset + j] for k in range(8): nxmin2 = node_xmin[child_offset + k] nxmax2 = node_xmax[child_offset + k] if j != k: assert (nxmax1[0] <= nxmin2[0] or nxmax2[0] <= nxmin1[0] or nxmax1[1] <= nxmin2[1] or nxmax2[1] <= nxmin1[1] or nxmax1[2] <= nxmin2[2] or nxmax2[2] <= nxmin1[2]) def _test_tree_structure(tree, k): # Traverse tree and check if max depth is correct # Additionally check if particle sets of siblings is disjoint # and union of particle sets of a nodes children = nodes own children # # This effectively also checks that no particle is present in two nodes of # the same level s = [0, ] d = [0, ] offsets = tree.offsets.dev.get() pbounds = tree.pbounds.dev.get() max_depth = tree.depth max_depth_here = 0 pids = set() while len(s) != 0: n = s[0] depth = d[0] max_depth_here = max(max_depth_here, depth) pbound = pbounds[n] assert (depth <= max_depth) del s[0] del d[0] if offsets[n] == -1: for i in range(pbound[0], pbound[1]): pids.add(i) continue # Particle ranges of children are contiguous # and are contained within parent's particle range start = pbound[0] for i in range(k): child_idx = offsets[n] + i assert (pbounds[child_idx][0] == start) assert (pbounds[child_idx][0] <= pbounds[child_idx][1]) start = pbounds[child_idx][1] assert (child_idx < len(offsets)) s.append(child_idx) d.append(depth + 1) assert (start == pbound[1]) class QuadtreeTestCase(unittest.TestCase): def setUp(self): use_double = False self.N = 3000 pa = _gen_uniform_dataset_2d(self.N, 0.2, seed=0) self.quadtree = PointTree(pa, radius_scale=1., use_double=use_double, leaf_size=32, dim=2) self.leaf_size = 32 self.quadtree.refresh(np.array([0., 0.]), np.array([1., 1.]), np.min(pa.h)) self.pa = pa def test_pids(self): pids = self.quadtree.pids.dev.get() s = set() for i in range(len(pids)): if 0 <= pids[i] < self.N: s.add(pids[i]) assert (len(s) == self.N) def test_depth_and_inclusiveness(self): _test_tree_structure(self.quadtree, 4) def test_node_bounds(self): self.quadtree.set_node_bounds() pids = self.quadtree.pids.dev.get() offsets = self.quadtree.offsets.dev.get() pbounds = self.quadtree.pbounds.dev.get() node_xmin = self.quadtree.node_xmin.dev.get() node_xmax = self.quadtree.node_xmax.dev.get() node_hmax = self.quadtree.node_hmax.dev.get() x = self.pa.x[pids] y = self.pa.y[pids] h = self.pa.h[pids] for i in range(len(offsets)): nxmin = node_xmin[i] nxmax = node_xmax[i] nhmax = node_hmax[i] for j in range(pbounds[i][0], pbounds[i][1]): assert (nxmin[0] <= np.float32(x[j]) <= nxmax[0]) assert (nxmin[1] <= np.float32(y[j]) <= nxmax[1]) assert (np.float32(h[j]) <= nhmax) # Check that children nodes don't overlap if offsets[i] != -1: _check_children_overlap_2d(node_xmin, node_xmax, offsets[i]) def test_dfs_traversal(self): leaf_id_count = _dfs_find_leaf(self.quadtree) np.testing.assert_array_equal(
np.ones(self.quadtree.unique_cid_count, dtype=np.int32)
numpy.ones
import numpy as np import logging from scipy.stats import truncnorm def selection(Z): """ Characterising selecting the top K Models from vector Z as a linear combination. input Z : "Feature vector" with a normal distribution. K : Number of selections. return ind_sel: Selected index. A,b : The linear combination of the selection event Az < b. """ N = np.shape(Z)[0] ## Sorted list of Z ind_sorted = np.argsort(Z) ## Pick top k ind_sel = ind_sorted[0] A = np.zeros((N-1,N)) for i in range(N-1): A[i, ind_sorted[0]] = 1 A[i, ind_sorted[i+1]] = -1 b = np.zeros((N-1)) assert np.sum(np.matmul(A,Z) > 0) ==0, "Assumption error" return ind_sel, A, b def psi_inf(A,b,eta, mu, cov, z): """ Returns the p-value of the truncated normal. The mean, variance, and truncated points [a,b] is determined by Lee et al 2016. """ l_thres, u_thres= calculate_threshold(z, A, b, eta, cov) sigma2 = np.matmul(eta,np.matmul(cov,eta)) scale = np.sqrt(sigma2) params = {"u_thres":u_thres, "l_thres":l_thres, "mean": np.matmul(eta,mu), "scale":scale, } ppf = lambda x: truncnorm_ppf(x, l_thres, u_thres, loc=np.matmul(eta,mu), scale=scale) sf = lambda x: truncnorm.sf(x, l_thres/scale, u_thres/scale, scale=scale) return ppf, sf def calculate_threshold(z, A, b, eta, cov): """ Calculates the respective threshold for the method PSI_Inf. """ etaz = eta.dot(z) Az = A.dot(z) Sigma_eta = cov.dot(eta) deno = Sigma_eta.dot(eta) alpha = A.dot(Sigma_eta)/deno assert(np.shape(A)[0] == np.shape(alpha)[0]) pos_alpha_ind = np.argwhere(alpha>0).flatten() neg_alpha_ind = np.argwhere(alpha<0).flatten() acc = (b - np.matmul(A,z))/alpha+np.matmul(eta,z) if (np.shape(neg_alpha_ind)[0] > 0): l_thres = np.max(acc[neg_alpha_ind]) else: l_thres = -10.0**10 if (np.shape(pos_alpha_ind)[0] > 0): u_thres = np.min(acc[pos_alpha_ind]) else: u_thres= 10**10 return l_thres, u_thres def test_significance(A, b, eta, mu, cov, z, alpha): """ Compute an p-value by testing a one-tail. Look at right tail or left tail? Returns "h_0 Reject """ ppf, sf = psi_inf(A, b, eta, mu, cov, z) stat = np.matmul(eta,z) ## Test statistic sigma = np.sqrt(np.matmul(eta,np.matmul(cov,eta))) ## If the std dev is < 0 or undefined, do not reject the hypothesis. if np.isnan(sigma) or not np.isreal(sigma): logging.warning("Scale is not real or negative, test reject") return False, 1. threshold = ppf(1.-alpha) pval = sf(stat) return stat > threshold, pval def generateEta(ind_sel, n_models): """ Generate multiple etas corresponding to testing within the selected indices. """ etas = np.zeros((n_models-1, n_models)) for i in range(n_models-1): index = i if i < ind_sel else i +1 etas[i,ind_sel] = -1 etas[i,index]=1 return etas def truncnorm_ppf(x, a, b,loc=0., scale=1.): """ Approximate Percentile function of the truncated normal. Particularly in the tail regions (where the standard SciPy function may be undefined. """ thres = truncnorm.ppf(x,(a-loc)/scale,(b-loc)/scale,loc=loc, scale=scale) if np.any(
np.isnan(thres)
numpy.isnan
import numpy as np from gym.spaces import Box from metaworld.envs import reward_utils from metaworld.envs.asset_path_utils import full_v2_path_for from metaworld.envs.mujoco.sawyer_xyz.sawyer_xyz_env import SawyerXYZEnv, _assert_task_is_set class SawyerBoxCloseEnvV2(SawyerXYZEnv): def __init__(self): hand_low = (-0.5, 0.40, 0.05) hand_high = (0.5, 1, 0.5) obj_low = (-0.05, 0.5, 0.02) obj_high = (0.05, 0.55, 0.02) goal_low = (-0.1, 0.7, 0.133) goal_high = (0.1, 0.8, 0.133) super().__init__( self.model_name, hand_low=hand_low, hand_high=hand_high, ) self.init_config = { 'obj_init_angle': .3, 'obj_init_pos': np.array([0, 0.55, 0.02], dtype=np.float32), 'hand_init_pos': np.array((0, 0.6, 0.2), dtype=np.float32), } self.goal = np.array([0.0, 0.75, 0.133]) self.obj_init_pos = self.init_config['obj_init_pos'] self.obj_init_angle = self.init_config['obj_init_angle'] self.hand_init_pos = self.init_config['hand_init_pos'] self._target_to_obj_init = None self.goal_space = Box(np.array(goal_low), np.array(goal_high)) self._random_reset_space = Box( np.hstack((obj_low, goal_low)), np.hstack((obj_high, goal_high)), ) @property def model_name(self): if self.use_franka: # franka return full_v2_path_for('franka_xyz/franka_box.xml') else: return full_v2_path_for('sawyer_xyz/sawyer_box.xml') @_assert_task_is_set def evaluate_state(self, obs, action): ( reward, reward_grab, reward_ready, reward_success, success ) = self.compute_reward(action, obs) info = { 'success': float(success), 'near_object': reward_ready, 'grasp_success': reward_grab >= 0.5, 'grasp_reward': reward_grab, 'in_place_reward': reward_success, 'obj_to_target': 0, 'unscaled_reward': reward, } return reward, info @property def _target_site_config(self): return [] def _get_id_main_object(self): return self.unwrapped.model.geom_name2id('BoxHandleGeom') def _get_pos_objects(self): return self.get_body_com('top_link') def _get_quat_objects(self): return self.sim.data.get_body_xquat('top_link') def reset_model(self): self._reset_hand() self._target_pos = self.goal.copy() self.obj_init_pos = self.init_config['obj_init_pos'] self.obj_init_angle = self.init_config['obj_init_angle'] box_height = self.get_body_com('boxbody')[2] if self.random_init: goal_pos = self._get_state_rand_vec() while np.linalg.norm(goal_pos[:2] - goal_pos[-3:-1]) < 0.25: goal_pos = self._get_state_rand_vec() self.obj_init_pos = np.concatenate((goal_pos[:2], [self.obj_init_pos[-1]])) self._target_pos = goal_pos[-3:] self.sim.model.body_pos[self.model.body_name2id('boxbody')] = np.concatenate((self._target_pos[:2], [box_height])) self._set_obj_xyz(self.obj_init_pos) return self._get_obs() @staticmethod def _reward_grab_effort(actions): return (np.clip(actions[3], -1, 1) + 1.0) / 2.0 @staticmethod def _reward_quat(obs): # Ideal upright lid has quat [.707, 0, 0, .707] # Rather than deal with an angle between quaternions, just approximate: ideal = np.array([0.707, 0, 0, 0.707]) error = np.linalg.norm(obs[7:11] - ideal) return max(1.0 - error/0.2, 0.0) @staticmethod def _reward_pos(obs, target_pos): hand = obs[:3] lid = obs[4:7] + np.array([.0, .0, .02]) threshold = 0.02 # floor is a 3D funnel centered on the lid's handle radius = np.linalg.norm(hand[:2] - lid[:2]) if radius <= threshold: floor = 0.0 else: floor = 0.04 * np.log(radius - threshold) + 0.4 # prevent the hand from running into the handle prematurely by keeping # it above the "floor" above_floor = 1.0 if hand[2] >= floor else reward_utils.tolerance( floor - hand[2], bounds=(0.0, 0.01), margin=floor / 2.0, sigmoid='long_tail', ) # grab the lid's handle in_place = reward_utils.tolerance( np.linalg.norm(hand - lid), bounds=(0, 0.02), margin=0.5, sigmoid='long_tail', ) ready_to_lift = reward_utils.hamacher_product(above_floor, in_place) # now actually put the lid on the box pos_error = target_pos - lid error_scale = np.array([1., 1., 3.]) # Emphasize Z error a = 0.2 # Relative importance of just *trying* to lift the lid at all b = 0.8 # Relative importance of placing the lid on the box lifted = a * float(lid[2] > 0.04) + b * reward_utils.tolerance( np.linalg.norm(pos_error * error_scale), bounds=(0, 0.05), margin=0.25, sigmoid='long_tail', ) return ready_to_lift, lifted def compute_reward(self, actions, obs): reward_grab = SawyerBoxCloseEnvV2._reward_grab_effort(actions) reward_quat = SawyerBoxCloseEnvV2._reward_quat(obs) reward_steps = SawyerBoxCloseEnvV2._reward_pos(obs, self._target_pos) reward = sum(( 2.0 * reward_utils.hamacher_product(reward_grab, reward_steps[0]), 8.0 * reward_steps[1], )) # Override reward on success success =
np.linalg.norm(obs[4:7] - self._target_pos)
numpy.linalg.norm
#!/usr/bin/env python import rospy from nav_msgs.msg import Odometry from sensor_msgs.msg import Range from geometry_msgs.msg import Pose from rfid_node.msg import TagData import math import tf import numpy as np import sklearn from sklearn import linear_model from threading import Lock from distutils.version import StrictVersion from datetime import datetime import sys def distance(poseA,poseB): ''' :param poseA: :param poseB: :return: euclidean distance between poses ''' dist = math.sqrt(pow(poseA.position.x - poseB.position.x, 2) + pow(poseA.position.y - poseB.position.y, 2) + pow(poseA.position.z - poseB.position.z, 2)) return dist def getYawFromPose(aPose): ''' :param aPose: :return: yaw angle of pose's orientation ''' quatA = ( aPose.orientation.x, aPose.orientation.y, aPose.orientation.z, aPose.orientation.w) euler = tf.transformations.euler_from_quaternion(quatA) # roll = euler[0] pitch = euler[1] yawA = euler[2] return yawA def yawBetweenPoses(poseA, poseB): ''' :param poseA: :param poseB: :return: yaw angle difference yawB-yawA ''' yawA=getYawFromPose(poseA) yawB = getYawFromPose(poseB) return yawB-yawA def buildDiffVector(vector,diffSize): ''' Calculates up to diffSize possible differences between elements of a vector :param vector: vector to be opperated :param diffSize: maximum size of differences vector (may be up to ( (vector.size-1) /2.0)*vector.size ) :return: ''' diffSize=min(diffSize, ( (vector.size-1) /2.0)*vector.size ) diffV = [] for i in range(0, vector.size - 1): diffV = np.concatenate((diffV, vector[i + 1:] - vector[i]), axis=1) if diffV.size>diffSize: break return diffV[:diffSize] def solvePhaseAmbiguity(X0,y0): X = X0.reshape(-1, 1) y = y0.reshape(-1, 1) # 1.- calculate average y at each X value xUnique = np.unique(X) yUnique = np.zeros(xUnique.size) for i in range(0, xUnique.size): yUnique[i] = np.mean(y[X == xUnique[i]]) # 2.-roughly filter before looking for sign changes yUnique2 = np.zeros(xUnique.size) yUnique2[0] = yUnique[0] for i in range(1, yUnique.size): yUnique2[i] = 0.5 * yUnique[i - 1] + 0.5 * yUnique[i] yUnique = yUnique2 #3.-find first derivate: negative values are descending trend yd = np.array([1]) yd = np.append(yd, np.sign(yUnique[1:] - yUnique[:-1])) indexes = (yd == -1) #4.-select relevant points to infer new phase addition xSel = xUnique[indexes] ySel = yUnique[indexes] #this means I couldn't find any desdendent trend if ySel.size==0: return y0 #5.-usinge these points, calculate extra phase vector prevY = ySel[0] extraPhase = 0 phaseVector = np.zeros(ySel.size) for i in range(0, ySel.size): if ySel[i] > prevY: extraPhase -= math.pi prevY = ySel[i] phaseVector[i] = extraPhase #6.-apply these changes to the hole vector found = False finalY = np.zeros(y.size) for i in range(0, X.size): for j in range(0, xSel.size): if X[i] == xSel[j]: finalY[i] = y[i] + phaseVector[j] found = True break if not found: finalY[i] = y[i] found = False return finalY # Node class. class TagLocatorNode(): def ransacEstimation(self): ''' Using tag stored readings, calls ransac to estimate radius :return: estimated radius ''' R=-1 numHip = min(self.numHipot, self.rssiVector.size) #sort both of them usind df as reference orderIndexs=np.argsort(self.freqVector) self.freqVector = self.freqVector[orderIndexs] self.phaseVector = self.phaseVector[orderIndexs] # create a set of frequency and phase differences df = buildDiffVector(self.freqVector, numHip) dp = buildDiffVector(self.phaseVector, numHip) dpUnwrapped=solvePhaseAmbiguity(df,dp) df = df.reshape(-1, 1) dpUnwrapped = dpUnwrapped.reshape(-1, 1) # feed into RANSAC Regressor... mr = sklearn.linear_model.RANSACRegressor(sklearn.linear_model.LinearRegression()) mr.fit(df, dpUnwrapped) R = -mr.estimator_.coef_ * self.C / (4.0 * math.pi) if 0: rospy.logerr("Using %d points",self.rssiVector.size) rospy.logerr("self.freqVector: %s",np.array_str(self.freqVector)) rospy.logerr("self.phaseVector: %s",np.array_str(self.phaseVector)) rospy.logerr("df: %s",np.array_str(df)) rospy.logerr("dpUnwrapped: %s",np.array_str(dpUnwrapped)) rospy.logerr("mr.estimator_.coef_ : %s",mr.estimator_.coef_ ) rospy.logerr("R: %s",R ) rospy.logerr("Deleting after ransac") return R def odomCallback(self,data): ''' Each time robot moves, we publish to clean tag data. Raises internal flag to request it :param data: :return: ''' newPose=data.pose.pose self.distInc=distance(newPose,self.prevPose) if (self.distInc>self.distThresh) or (yawBetweenPoses(newPose,self.prevPose)>self.angThresh) : self.singlePub() self.dataLock.acquire() try: #delete values, either we have used them or are too few self.rssiVector = np.array([]) self.phaseVector = np.array([]) self.freqVector = np.array([]) finally: self.dataLock.release() self.prevPose=newPose def tagCallback(self,data): ''' Stores received tag data into buffer. Handles new position flag :param data: :return: ''' #print("...newTag:", data.ID, data.stats[0].rssi, data.stats[0].phase, data.stats[0].frequency) if (data.ID.upper() == self.tagNAME.upper()): # some versions of RFID library return values in degs and KHz if 0: if data.stats[0].frequency<10e8: print("...newTag:", data.ID, data.stats[0].rssi, data.stats[0].phase*math.pi/180.0, data.stats[0].frequency*1000.0) else: print("...newTag:", data.ID, data.stats[0].rssi, data.stats[0].phase, data.stats[0].frequency) id = data.ID rssi = float(data.stats[0].rssi) # RFID library return values in degs and KHz phase = float(data.stats[0].phase)*math.pi/180.0 freq = float(data.stats[0].frequency)*1000.0 #add new entry to vectors self.dataLock.acquire() try: self.rssiVector = np.append(self.rssiVector, rssi) self.phaseVector =
np.append(self.phaseVector, phase)
numpy.append
import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler,MinMaxScaler from sklearn.model_selection import train_test_split import random import math import os import time from utils.VLSW import pad_all_cases # from VLSW import pad_all_cases # set the random seeds for reproducability SEED = 1234 random.seed(SEED) def preprocess_df(df): """ The training and testing data are manually selected. :param df: dataframe with raw data :return: """ df.set_index('date', inplace=True) # Imputation Target N0 = df['N0'].values.copy().reshape(-1, 1) # Standlization, use MinMaxScaler scaler_x = MinMaxScaler() scaler_x.fit( df[['N0', 'E0', 'S0', 'W0', 'N1', 'E1', 'S1', 'W1','N2', 'E2', 'S2', 'W2','N3', 'E3', 'S3', 'W3','N4', 'E4', 'S4', 'W4','N5', 'E5', 'S5', 'W5','N6', 'E6', 'S6', 'W6','N7', 'E7', 'S7', 'W7','N8', 'E8', 'S8', 'W8','N9', 'E9', 'S9', 'W9','N10', 'E10', 'S10', 'W10','N11', 'E11', 'S11', 'W11','N12', 'E12', 'S12', 'W12']]) df[['N0', 'E0', 'S0', 'W0', 'N1', 'E1', 'S1', 'W1','N2', 'E2', 'S2', 'W2','N3', 'E3', 'S3', 'W3','N4', 'E4', 'S4', 'W4','N5', 'E5', 'S5', 'W5','N6', 'E6', 'S6', 'W6','N7', 'E7', 'S7', 'W7','N8', 'E8', 'S8', 'W8','N9', 'E9', 'S9', 'W9','N10', 'E10', 'S10', 'W10','N11', 'E11', 'S11', 'W11','N12', 'E12', 'S12', 'W12']] = scaler_x.transform(df[['N0', 'E0', 'S0', 'W0', 'N1', 'E1', 'S1', 'W1','N2', 'E2', 'S2', 'W2','N3', 'E3', 'S3', 'W3','N4', 'E4', 'S4', 'W4','N5', 'E5', 'S5', 'W5','N6', 'E6', 'S6', 'W6','N7', 'E7', 'S7', 'W7','N8', 'E8', 'S8', 'W8','N9', 'E9', 'S9', 'W9','N10', 'E10', 'S10', 'W10','N11', 'E11', 'S11', 'W11','N12', 'E12', 'S12', 'W12']]) scaler_y = MinMaxScaler() scaler_y.fit(N0) y_all = scaler_y.transform(N0) df_train = df.loc['2008/1/1 7:00':'2008/1/10 23:45'].copy() df_test = df.loc['2008/1/11 0:00':'2008/1/13 6:45'].copy() return df_train, df_test, scaler_x, scaler_y def train_val_test_generate(dataframe, model_params): ''' :param dataframe: processed dataframe :param model_params: for input dim :return: train_x, train_y, test_x, test_y with the same length (by padding zero) ''' train_val_test_x, train_val_test_y, len_x_samples, len_before_x_samples = pad_all_cases( dataframe, dataframe['N0'].values, model_params, model_params['min_before'], model_params['max_before'], model_params['min_after'], model_params['max_after'], model_params['output_length']) train_val_test_y = np.expand_dims(train_val_test_y, axis=2) return train_val_test_x, train_val_test_y, len_x_samples, len_before_x_samples def train_test_split_SSIM(x, y, x_len, x_before_len, model_params, SEED): ''' :param x: all x samples :param y: all y samples :param model_params: parameters :param SEED: random SEED :return: train set, test set ''' # check and remove samples with NaN (just incase) index_list = [] for index, (x_s, y_s, len_s, len_before_s) in enumerate(zip(x, y, x_len, x_before_len)): if (np.isnan(x_s).any()) or (
np.isnan(y_s)
numpy.isnan
import numpy as np import cv2 import time import scipy Tr_velo_to_cam = np.array( [[7.533745000000e-03, -9.999714000000e-01, -6.166020000000e-04, -4.069766000000e-03], [1.480249000000e-02, 7.280733000000e-04, -9.998902000000e-01, -7.631618000000e-02], [9.998621000000e-01, 7.523790000000e-03, 1.480755000000e-02, -2.717806000000e-01], [0, 0, 0, 1]]) Tr_cam_to_velo = np.linalg.inv(Tr_velo_to_cam) caliv = np.array( [[9.786977e+02, 0.000000e+00, 6.900000e+02, 0], [0.000000e+00, 9.717435e+02, 2.497222e+02, 0], [0.000000e+00, 0.000000e+00, 1.000000e+00, 0], [0, 0, 0, 0]]) trans = np.array( [[0, 0, 0, 0], [0, 0, 0, 0.0], [0, 0, 0, 0], [0, 0, 0, 0]] ) caliv_trans = np.matmul(caliv, trans) P0 = np.array( [[7.215377000000e+02, 0.000000000000e+00, 6.095593000000e+02, 0.000000000000e+00], [0.000000000000e+00, 7.215377000000e+02, 1.728540000000e+02, 0.000000000000e+00], [0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 0.000000000000e+00], [0, 0, 0, 1]]) P1 = np.array( [[7.215377000000e+02, 0.000000000000e+00, 6.095593000000e+02, -3.875744000000e+02], [0.000000000000e+00, 7.215377000000e+02, 1.728540000000e+02, 0.000000000000e+00], [0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 0.000000000000e+00], [0, 0, 0, 1]]) P2 = np.array( [[7.215377000000e+02, 0.000000000000e+00, 6.095593000000e+02, 4.485728000000e+01], [0.000000000000e+00, 7.215377000000e+02, 1.728540000000e+02, 2.163791000000e-01], [0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 2.745884000000e-03], [0, 0, 0, 1]]) P3 = np.array( [[7.215377000000e+02, 0.000000000000e+00, 6.095593000000e+02, -3.395242000000e+02], [0.000000000000e+00, 7.215377000000e+02, 1.728540000000e+02, 2.199936000000e+00], [0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 2.729905000000e-03], [0, 0, 0, 1]]) kitti_proj_mat = P0 + caliv_trans kitti_proj_mat_inv = np.linalg.inv(kitti_proj_mat) offset = np.zeros((64,64,64,3)) for i in range(64): for j in range(64): for k in range(64): offset[i,j,k,:] = i,j,k def matmul3x3(a, b): c00 = a[0, 0] * b[0, 0] + a[0, 1] * b[1, 0] + a[0, 2] * b[2, 0] c01 = a[0, 0] * b[0, 1] + a[0, 1] * b[1, 1] + a[0, 2] * b[2, 1] c02 = a[0, 0] * b[0, 2] + a[0, 1] * b[1, 2] + a[0, 2] * b[2, 2] c10 = a[1, 0] * b[0, 0] + a[1, 1] * b[1, 0] + a[1, 2] * b[2, 0] c11 = a[1, 0] * b[0, 1] + a[1, 1] * b[1, 1] + a[1, 2] * b[2, 1] c12 = a[1, 0] * b[0, 2] + a[1, 1] * b[1, 2] + a[1, 2] * b[2, 2] c20 = a[2, 0] * b[0, 0] + a[2, 1] * b[1, 0] + a[2, 2] * b[2, 0] c21 = a[2, 0] * b[0, 1] + a[2, 1] * b[1, 1] + a[2, 2] * b[2, 1] c22 = a[2, 0] * b[0, 2] + a[2, 1] * b[1, 2] + a[2, 2] * b[2, 2] return np.array([[c00, c01, c02], [c10, c11, c12], [c20, c21, c22]]) def matmul4x4(a, b): c00 = a[0, 0] * b[0, 0] + a[0, 1] * b[1, 0] + a[0, 2] * b[2, 0] + a[0, 3] * b[3, 0] c01 = a[0, 0] * b[0, 1] + a[0, 1] * b[1, 1] + a[0, 2] * b[2, 1] + a[0, 3] * b[3, 1] c02 = a[0, 0] * b[0, 2] + a[0, 1] * b[1, 2] + a[0, 2] * b[2, 2] + a[0, 3] * b[3, 2] c03 = a[0, 0] * b[0, 3] + a[0, 1] * b[1, 3] + a[0, 2] * b[2, 3] + a[0, 3] * b[3, 3] c10 = a[1, 0] * b[0, 0] + a[1, 1] * b[1, 0] + a[1, 2] * b[2, 0] + a[1, 3] * b[3, 0] c11 = a[1, 0] * b[0, 1] + a[1, 1] * b[1, 1] + a[1, 2] * b[2, 1] + a[1, 3] * b[3, 1] c12 = a[1, 0] * b[0, 2] + a[1, 1] * b[1, 2] + a[1, 2] * b[2, 2] + a[1, 3] * b[3, 2] c13 = a[1, 0] * b[0, 3] + a[1, 1] * b[1, 3] + a[1, 2] * b[2, 3] + a[1, 3] * b[3, 3] c20 = a[2, 0] * b[0, 0] + a[2, 1] * b[1, 0] + a[2, 2] * b[2, 0] + a[2, 3] * b[3, 0] c21 = a[2, 0] * b[0, 1] + a[2, 1] * b[1, 1] + a[2, 2] * b[2, 1] + a[2, 3] * b[3, 1] c22 = a[2, 0] * b[0, 2] + a[2, 1] * b[1, 2] + a[2, 2] * b[2, 2] + a[2, 3] * b[3, 2] c23 = a[2, 0] * b[0, 3] + a[2, 1] * b[1, 3] + a[2, 2] * b[2, 3] + a[2, 3] * b[3, 3] c30 = a[3, 0] * b[0, 0] + a[3, 1] * b[1, 0] + a[3, 2] * b[2, 0] + a[3, 3] * b[3, 0] c31 = a[3, 0] * b[0, 1] + a[3, 1] * b[1, 1] + a[3, 2] * b[2, 1] + a[3, 3] * b[3, 1] c32 = a[3, 0] * b[0, 2] + a[3, 1] * b[1, 2] + a[3, 2] * b[2, 2] + a[3, 3] * b[3, 2] c33 = a[3, 0] * b[0, 3] + a[3, 1] * b[1, 3] + a[3, 2] * b[2, 3] + a[3, 3] * b[3, 3] return np.array([[c00, c01, c02, c03], [c10, c11, c12, c13], [c20, c21, c22, c23], [c30, c31, c32, c33]]) def matmul3x1(a,b): c0 = a[0,0] * b[0] + a[0,1] * b[1] + a[0,2] * b[2] c1 = a[1,0] * b[0] + a[1,1] * b[1] + a[1,2] * b[2] c2 = a[2,0] * b[0] + a[2,1] * b[1] + a[2,2] * b[2] return np.array([c0,c1,c2]) def matmul4x1(a, b): c0 = a[0,0] * b[0] + a[0,1] * b[1] + a[0,2] * b[2] + a[0,3] * b[3] c1 = a[1,0] * b[0] + a[1,1] * b[1] + a[1,2] * b[2] + a[1,3] * b[3] c2 = a[2,0] * b[0] + a[2,1] * b[1] + a[2,2] * b[2] + a[2,3] * b[3] c3 = a[3,0] * b[0] + a[3,1] * b[1] + a[3,2] * b[2] + a[3,3] * b[3] return np.array([c0,c1,c2,c3]) def getTranslation(proj_mat, R, bbox2D, bbox3D): x_min, y_min, x_max, y_max = bbox2D w, h, l = bbox3D dx, dy, dz = w / 2., l / 2., h / 2. measure_max = -9999. trans_final = np.zeros(4) xmin_set_list = [[[-dx, -dy, -dz], [-dx, -dy, dz]], [[-dx, dy, -dz], [-dx, dy, dz]]] xmax_set_list = [[[dx, dy, -dz], [dx, dy, dz]], [[dx, -dy, dz], [dx, -dy, -dz]]] # ymin_set_list = [[[-dx, -dy, dz], [dx, -dy, dz]], [[-dx, dy, dz], [dx, dy, dz]]] # ymax_set_list = [[[-dx, dy, -dz], [dx, dy, -dz]], [[-dx, -dy, -dz], [dx, -dy, -dz]]] ymin_set_list = [[[-dx, -dy, dz], [dx, -dy, dz], [-dx, dy, dz], [dx, dy, dz]]] ymax_set_list = [[[-dx, dy, -dz], [dx, dy, -dz], [-dx, -dy, -dz], [dx, -dy, -dz]]] A0_set_list, A1_set_list, A2_set_list, A3_set_list = [], [], [], [] B0_set_list, B1_set_list, B2_set_list, B3_set_list = [], [], [], [] for xmin_set in xmin_set_list + xmax_set_list: A0_set, B0_set = [], [] for d_xmin in xmin_set: A0 = np.concatenate([np.identity(3), np.reshape(matmul3x1(R, d_xmin), (3, 1))], axis=-1) A0 = np.concatenate([A0, np.reshape([0, 0, 0, 1], (1, 4))], axis=0) A0 = matmul4x4(proj_mat, A0) B0_set.append(A0) A0 = A0[0, :] - x_min * A0[2, :] A0_set.append(A0) A0_set_list.append(A0_set) B0_set_list.append(B0_set) for xmax_set in xmax_set_list + xmin_set_list: A2_set, B2_set = [], [] for d_xmax in xmax_set: A2 = np.concatenate([np.identity(3), np.reshape(matmul3x1(R, d_xmax), (3, 1))], axis=-1) A2 = np.concatenate([A2, np.reshape([0, 0, 0, 1], (1, 4))], axis=0) A2 = matmul4x4(proj_mat, A2) B2_set.append(A2) A2 = A2[0, :] - x_max * A2[2, :] A2_set.append(A2) A2_set_list.append(A2_set) B2_set_list.append(B2_set) for ymin_set in ymin_set_list: A1_set, B1_set = [], [] for d_ymin in ymin_set: A1 = np.concatenate([np.identity(3), np.reshape(matmul3x1(R, d_ymin), (3, 1))], axis=-1) A1 = np.concatenate([A1, np.reshape([0, 0, 0, 1], (1, 4))], axis=0) A1 = matmul4x4(proj_mat, A1) B1_set.append(A1) A1 = A1[1, :] - y_min * A1[2, :] A1_set.append(A1) A1_set_list.append(A1_set) B1_set_list.append(B1_set) for ymax_set in ymax_set_list: A3_set, B3_set = [], [] for d_ymax in ymax_set: A3 = np.concatenate([np.identity(3), np.reshape(matmul3x1(R, d_ymax), (3, 1))], axis=-1) A3 = np.concatenate([A3, np.reshape([0, 0, 0, 1], (1, 4))], axis=0) A3 = matmul4x4(proj_mat, A3) B3_set.append(A3) A3 = A3[1, :] - y_max * A3[2, :] A3_set.append(A3) A3_set_list.append(A3_set) B3_set_list.append(B3_set) for A0_set, B0_set, A2_set, B2_set in zip(A0_set_list, B0_set_list, A2_set_list, B2_set_list): for A1_set, B1_set, A3_set, B3_set in zip(A1_set_list, B1_set_list, A3_set_list, B3_set_list): for A0, B0 in zip(A0_set, B0_set): for A1, B1 in zip(A1_set, B1_set): for A2, B2 in zip(A2_set, B2_set): for A3, B3 in zip(A3_set, B3_set): A = np.stack([A0, A1, A2, A3], axis=0) # U, S, VH = scipy.linalg.svd(A) U, S, VH = np.linalg.svd(A, full_matrices=True) translation = VH[-1, :] # translation = np.array([1.0, 1.0, 1.0, 1.0]) if translation[-1] * translation[-2] > 0: translation = translation / translation[-1] x_min_pred0 = matmul4x1(B0_set[0], translation) x_min_pred0 = (x_min_pred0[:2] / x_min_pred0[2])[0] x_min_pred1 = matmul4x1(B0_set[1], translation) x_min_pred1 = (x_min_pred1[:2] / x_min_pred1[2])[0] x_min_pred = np.min((x_min_pred0, x_min_pred1)) y_min_pred0 = matmul4x1(B1_set[0], translation) y_min_pred0 = (y_min_pred0[:2] / y_min_pred0[2])[1] y_min_pred1 = matmul4x1(B1_set[1], translation) y_min_pred1 = (y_min_pred1[:2] / y_min_pred1[2])[1] # y_min_pred = np.min((y_min_pred0, y_min_pred1)) y_min_pred2 = matmul4x1(B1_set[2], translation) y_min_pred2 = (y_min_pred2[:2] / y_min_pred2[2])[1] y_min_pred3 = matmul4x1(B1_set[3], translation) y_min_pred3 = (y_min_pred3[:2] / y_min_pred3[2])[1] y_min_pred = np.min((y_min_pred0, y_min_pred1, y_min_pred2, y_min_pred3)) x_max_pred0 = matmul4x1(B2_set[0], translation) x_max_pred0 = (x_max_pred0[:2] / x_max_pred0[2])[0] x_max_pred1 = matmul4x1(B2_set[1], translation) x_max_pred1 = (x_max_pred1[:2] / x_max_pred1[2])[0] x_max_pred = np.max((x_max_pred0, x_max_pred1)) y_max_pred0 = matmul4x1(B3_set[0], translation) y_max_pred0 = (y_max_pred0[:2] / y_max_pred0[2])[1] y_max_pred1 = matmul4x1(B3_set[1], translation) y_max_pred1 = (y_max_pred1[:2] / y_max_pred1[2])[1] # y_max_pred = np.max((y_max_pred0, y_max_pred1)) y_max_pred2 = matmul4x1(B3_set[2], translation) y_max_pred2 = (y_max_pred2[:2] / y_max_pred2[2])[1] y_max_pred3 = matmul4x1(B3_set[3], translation) y_max_pred3 = (y_max_pred3[:2] / y_max_pred3[2])[1] y_max_pred = np.max((y_max_pred0, y_max_pred1, y_max_pred2, y_max_pred3)) # if y_min<y_min_pred and y_max>y_max_pred: if x_min_pred < x_max_pred and y_min_pred < y_max_pred: # if x_min_pred>=x_min and x_max_pred<=x_max: # if y_min_pred>=y_min and y_max_pred<=y_max: bbox2D_pred_area = (x_max_pred - x_min_pred) * (y_max_pred - y_min_pred) bbox2D_gt_area = (x_max - x_min) * (y_max - y_min) x_min_inter, x_max_inter =
np.max((x_min_pred, x_min))
numpy.max
# pylint: disable=missing-module-docstring import numpy as np import scipy.stats as ss from scipy import linalg class CampbellBacktesting: """ This class implements the Haircut Sharpe Ratios and Profit Hurdles algorithms described in the following paper: `<NAME> and <NAME>, Backtesting, (Fall 2015). Journal of Portfolio Management, 2015 <https://papers.ssrn.com/abstract_id=2345489>`_; The code is based on the code provided by the authors of the paper. The Haircut Sharpe Ratios algorithm lets the user adjust the observed Sharpe Ratios to take multiple testing into account and calculate the corresponding haircuts. The haircut is the percentage difference between the original Sharpe ratio and the new Sharpe ratio. The Profit Hurdle algorithm lets the user calculate the required mean return for a strategy at a given level of significance, taking multiple testing into account. """ def __init__(self, simulations=2000): """ Set the desired number of simulations to make in Haircut Sharpe Ratios or Profit Hurdle algorithms. :param simulations: (int) Number of simulations """ self.simulations = simulations @staticmethod def _sample_random_multest(rho, n_trails, prob_zero_mean, lambd, n_simulations, annual_vol=0.15, n_obs=240): """ Generates empirical p-value distributions. The algorithm is described in the paper and is based on the model estimated by `<NAME>., <NAME>, and <NAME>., … and the Cross-section of Expected Returns. Review of Financial Studies, forthcoming 2015`, referred to as the HLZ model. It provides a set of simulated t-statistics based on the parameters recieved from the _parameter_calculation method. Researchers propose a structural model to capture trading strategies’ underlying distribution. With probability p0 (prob_zero_mean), a strategy has a mean return of zero and therefore comes from the null distribution. With probability 1 – p0, a strategy has a nonzero mean and therefore comes from the alternative distribution - exponential. :param rho: (float) Average correlation among returns :param n_trails: (int) Total number of trials inside a simulation :param prob_zero_mean: (float) Probability for a random factor to have a zero mean :param lambd: (float) Average of monthly mean returns for true strategies :param n_simulations: (int) Number of rows (simulations) :param annual_vol: (float) HLZ assume that the innovations in returns follow a normal distribution with a mean of zero and a standard deviation of ma = 15% :param n_obs: (int) Number of observations of used for volatility estimation from HLZ :return: (np.ndarray) Array with distributions calculated """ # Assumed level of monthly volatility = adjusted yearly volatility monthly_volatility = annual_vol / 12 ** (1 / 2) # Creating a correlation matrix of simulated returns. All correlations are assumed to be the same as average # correlation among returns # The first row of the correlation matrix: [1, rho, rho, .., rho] correlation_vector = np.insert(rho * np.ones((1, n_trails - 1)), 0, 1) # Correlation matrix created from the vector by expanding it correlation_matrix = linalg.toeplitz(correlation_vector) # Vector with mean of simulated returns - zeros mean = np.zeros(n_trails) # Creating a sample from a multivariate normal distribution as returns simulations # Covariance matrix - Created from correlation matrix multiplied by monthly volatility and adjusted covariance_matrix = correlation_matrix * (monthly_volatility ** 2 / n_obs) # Result - n_simulations rows with n_trails inside shock_mat = np.random.multivariate_normal(mean, covariance_matrix, n_simulations) # Sample of uniform distribution with the same dimensions as shock_mat prob_vec = np.random.uniform(0, 1, (n_simulations, n_trails)) # Sample of exponential distribution with same dimensions ad shock_mat mean_vec = np.random.exponential(lambd, (n_simulations, n_trails)) # Taking the factors that have non-zero mean nonzero_mean = prob_vec > prob_zero_mean # Generating the null hypothesis - either zero mean or from an exponential distribution mu_null = np.multiply(nonzero_mean, mean_vec) # Matrix of p-value distributions tstat_matrix = abs(mu_null + shock_mat) / (monthly_volatility / n_obs ** (1 / 2)) return tstat_matrix @staticmethod def _parameter_calculation(rho): """ Estimates the parameters used to generate the distributions in _sample_random_multest - the HLZ model. Based on the work of HLZ, the pairwise correlation of returns is used to estimate the probability (prob_zero_mean), total number of trials (n_simulations) and (lambd) - parameter of the exponential distribution. Levels and parameters taken from the HLZ research. :param rho: (float) Average correlation coefficient between strategy returns :return: (np.array) Array of parameters """ # Levels of parameters based on rho. [rho, n_simulations, prob_zero_mean, lambd] parameter_levels = np.array([[0, 1295, 3.9660 * 0.1, 5.4995 * 0.001], [0.2, 1377, 4.4589 * 0.1, 5.5508 * 0.001], [0.4, 1476, 4.8604 * 0.1, 5.5413 * 0.001], [0.6, 1773, 5.9902 * 0.1, 5.5512 * 0.001], [0.8, 3109, 8.3901 * 0.1, 5.5956 * 0.001]]) # Linear interpolation for parameter estimates if (rho < 0): parameters = parameter_levels[1] # Set at the preferred level if rho is misspecified elif (rho < 0.2): parameters = ((0.2 - rho) / 0.2) * parameter_levels[0] + ((rho - 0) / 0.2) * parameter_levels[1] elif (rho < 0.4): parameters = ((0.4 - rho) / 0.2) * parameter_levels[1] + ((rho - 0.2) / 0.2) * parameter_levels[2] elif (rho < 0.6): parameters = ((0.6 - rho) / 0.2) * parameter_levels[2] + ((rho - 0.4) / 0.2) * parameter_levels[3] elif (rho < 0.8): parameters = ((0.8 - rho) / 0.2) * parameter_levels[3] + ((rho - 0.6) / 0.2) * parameter_levels[4] elif (rho < 1.0): # Interpolation based on the previous level here parameters = ((0.8 - rho) / 0.2) * parameter_levels[3] + ((rho - 0.6) / 0.2) * parameter_levels[4] else: parameters = parameter_levels[1] # Set at the preferred level if rho is misspecified return parameters @staticmethod def _annualized_sharpe_ratio(sharpe_ratio, sampling_frequency='A', rho=0, annualized=False, autocorr_adjusted=False): """ Calculate the equivalent annualized Sharpe ratio after taking the autocorrelation of returns into account. Adjustments are based on the work of `<NAME>., The Statistics of Sharpe Ratios. Financial Analysts Journal, 58 (2002), pp. 36-52` and are described there in more detail. :param sharpe_ratio: (float) Sharpe ratio of the strategy :param sampling_frequency: (str) Sampling frequency of returns ['D','W','M','Q','A'] = [Daily, Weekly, Monthly, Quarterly, Annual] :param rho: (float) Autocorrelation coefficient of returns at specified frequency :param annualized: (bool) Flag if annualized, 'ind_an' = 1, otherwise = 0 :param autocorr_adjusted: (bool) Flag if Sharpe ratio was adjusted for returns autocorrelation :return: (float) Adjusted annualized Sharpe ratio """ # If not annualized, calculating the appropriate multiplier for the Sharpe ratio if sampling_frequency == 'D': times_per_year = 360 elif sampling_frequency == 'W': times_per_year = 52 elif sampling_frequency == 'M': times_per_year = 12 elif sampling_frequency == 'Q': times_per_year = 4 elif sampling_frequency == 'A': times_per_year = 1 else: times_per_year = 1 # Misspecified if not annualized: annual_multiplier = times_per_year ** (1 / 2) else: annual_multiplier = 1 # If not adjusted for returns autocorrelation, another multiplier if not autocorr_adjusted: autocorr_multiplier = (1 + (2 * rho / (1 - rho)) * (1 - ((1 - rho ** (times_per_year)) / (times_per_year * (1 - rho))))) ** (-0.5) else: autocorr_multiplier = 1 # And calculating the adjusted Sharpe ratio adjusted_sr = sharpe_ratio * annual_multiplier * autocorr_multiplier return adjusted_sr @staticmethod def _monthly_observations(num_obs, sampling_frequency): """ Calculates the number of monthly observations based on sampling frequency and number of observations. :param num_obs: (int) Number of observations used for modelling :param sampling_frequency: (str) Sampling frequency of returns ['D','W','M','Q','A'] = [Daily, Weekly, Monthly, Quarterly, Annual] :return: (np.float64) Number of monthly observations """ # N - Number of monthly observations if sampling_frequency == 'D': monthly_obs = np.floor(num_obs * 12 / 360) elif sampling_frequency == 'W': monthly_obs = np.floor(num_obs * 12 / 52) elif sampling_frequency == 'M': monthly_obs = np.floor(num_obs * 12 / 12) elif sampling_frequency == 'Q': monthly_obs = np.floor(num_obs * 12 / 4) elif sampling_frequency == 'A': monthly_obs = np.floor(num_obs * 12 / 1) else: # If the frequency is misspecified monthly_obs = np.floor(num_obs) return monthly_obs @staticmethod def _holm_method_sharpe(all_p_values, num_mult_test, p_val): """ Runs one cycle of the Holm method for the Haircut Shape ratio algorithm. :param all_p_values: (np.array) Sorted p-values to adjust :param num_mult_test: (int) Number of multiple tests allowed :param p_val: (float) Significance level p-value :return: (np.float64) P-value adjusted at a significant level """ # Array for final p-values of the Holm method p_holm_values = np.array([]) # Iterating through multiple tests for i in range(1, (num_mult_test + 2)): # Creating array for Holm adjusted p-values (M-j+1)*p(j) in the paper p_adjusted_holm = np.array([]) # Iterating through the available subsets of Holm adjusted p-values for j in range(1, i + 1): # Holm adjusted p-values p_adjusted_holm = np.append(p_adjusted_holm, (num_mult_test + 1 - j + 1) * all_p_values[j - 1]) # Calculating the final p-values of the Holm method and adding to an array p_holm_values = np.append(p_holm_values, min(max(p_adjusted_holm), 1)) # Getting the Holm adjusted p-value that is significant at our p_val level p_holm_significant = p_holm_values[all_p_values == p_val] p_holm_result = p_holm_significant[0] return p_holm_result @staticmethod def _bhy_method_sharpe(all_p_values, num_mult_test, p_val): """ Runs one cycle of the BHY method for the Haircut Shape ratio algorithm. :param all_p_values: (np.array) Sorted p-values to adjust :param num_mult_test: (int) Number of multiple tests allowed :param p_val: (float) Significance level p-value :param c_constant: (float) Constant used in BHY method :return: (np.float64) P-value adjusted at a significant level """ # Array for final p-values of the BHY method p_bhy_values = np.array([]) # BHY constant index_vector = np.arange(1, num_mult_test + 1) c_constant = sum(1 / index_vector) # Iterating through multiple tests backwards for i in range(num_mult_test + 1, 0, -1): if i == (num_mult_test + 1): # If it's the last observation # The p-value stays the same p_adjusted_holm = all_p_values[-1] else: # If it's the previous observations # The p-value is adjusted according to the BHY method p_adjusted_holm = min(((num_mult_test + 1) * c_constant / i) * all_p_values[i - 1], p_previous) # Adding the final BHY method p-values to an array p_bhy_values = np.append(p_adjusted_holm, p_bhy_values) p_previous = p_adjusted_holm # Getting the BHY adjusted p-value that is significant at our p_val level p_bhy_significant = p_bhy_values[all_p_values == p_val] p_bhy_result = p_bhy_significant return p_bhy_result @staticmethod def _sharpe_ratio_haircut(p_val, monthly_obs, sr_annual): """ Calculates the adjusted Sharpe ratio and the haircut based on the final p-value of the method. :param p_val: (float) Adjusted p-value of the method :param monthly_obs: (int) Number of monthly observations :param sr_annual: (float) Annualized Sharpe ratio to compare to :return: (np.array) Elements (Adjusted annual Sharpe ratio, Haircut percentage) """ # Inverting to get z-score of the method z_score = ss.t.ppf(1 - p_val / 2, monthly_obs - 1) # Adjusted annualized Sharpe ratio of the method sr_adjusted = (z_score / monthly_obs ** (1 / 2)) * 12 ** (1 / 2) # Haircut of the Sharpe ratio of the method haircut = (sr_annual - sr_adjusted) / sr_annual * 100 return (sr_adjusted, haircut) @staticmethod def _holm_method_returns(p_values_simulation, num_mult_test, alpha_sig): """ Runs one cycle of the Holm method for the Profit Hurdle algorithm. :param p_values_simulation: (np.array) Sorted p-values to adjust :param num_mult_test: (int) Number of multiple tests allowed :param alpha_sig: (float) Significance level (e.g., 5%) :return: (np.float64) P-value adjusted at a significant level """ # Array for adjusted significance levels sign_levels =
np.zeros(num_mult_test)
numpy.zeros
# 1.0 IMPORTING LIBRARIES ------------------------------------------------------------------- #region import pandas as pd import numpy as np import os import re import glob import csv import shutil print('Libraries Imported.') #endregion # 2 READ DATA---------------------------------------------------------------------- #region # 2.1 Read a Single CSV file #region # Directory folder of the csv files you want to process filename = r'C:\FILES\Hansen-Data-Qualified8.csv' print('Data will load from: ', filename) # Can change to xlsx if needed, other changes will be nessesary to code Extension = 'csv' # Csv files seperator for input and output files..generally (,) or (|) DeLimiter = ',' print('Directories loaded.') print('Loading Data...') # Code df_data = pd.read_csv(filename, sep=DeLimiter, engine='python', dtype=str) print('-------------SHAPE--------------') print(df_data.shape) print('----------DATAFRAME-------------') print(df_data.head(1)) print('--------------------------------') print('Dataframe Loaded.') #End 2.1 #endregion # 2.2 Read a Single XLSX file #region #End 2.2 #endregion #End 2 #endregion # 3 VIEWING ITEMS IN COLUMNS ----------------------------------------------------------- #region # 3.1 Viewing a list of all the unique items in a column #region # Input Params Column_Name_To_Check3 = 'SPOTCODE' # Create Array of Unique Items # Swap the name of the column to rename df_data.rename(columns={Column_Name_To_Check3: 'coltocheck'}, inplace=True) # Check Data Unique_Array = df_data.coltocheck.unique() Unique_Array.sort() # Swap back the name of the column to rename df_data.rename(columns={'coltocheck': Column_Name_To_Check3}, inplace=True) #export the Unique Items Array Output_Loc_Filname = r'C:\FILES\UniqueCodes2.csv' pd.DataFrame(Unique_Array).to_csv(Output_Loc_Filname) np.savetxt(Output_Loc_Filname , Unique_Array, delimiter=',', fmt='%s') #End-3.1 #endregion # 3.2 Comparting Rows in a Column with items in a lookup table #region Data_Column_Name= 'SPOTCODE-E' Create_Unmapped_CSV = 'y' Lookup_Table_Dir = r'C:\FILES\Hansen-Methods-In-EnviroSys.xlsx' Sheet_To_Load = 'Data' Lookup_Column_Name_To_Check = 'Method Short Name' Output_Loc_Filname = r'C:\FILES\UniqueCodesUnmapped5.csv' #Load Lookup Table df_lookup = pd.read_excel(Lookup_Table_Dir , sheet_name = Sheet_To_Load, dtype=object) print('loaded lookup table.') print('Rows, Columns:') print(df_lookup.shape) # Delete All columns in lookup table except Cols_Dont_Delete = [Lookup_Column_Name_To_Check] df_lookup.drop(df_lookup.columns.difference(Cols_Dont_Delete), 1, inplace=True) print('Columns Deleted.') print('Rows, Columns:') print(df_lookup.shape) print('Generating Bools Filter...') Bools_Mapping_Series = df_data[Data_Column_Name].isin(df_lookup[Lookup_Column_Name_To_Check]) print('Bools Generated.') print('Creating dataframe with filtered data df_data2...') df_data2 = df_data[Bools_Mapping_Series] df_deleted = df_data[~Bools_Mapping_Series] print('Data Filtered and now in df_data2') df_deleted.rename(columns={Data_Column_Name: 'coltocheck'}, inplace=True) Unique_Array_Unmapped = df_deleted.coltocheck.unique() Unique_Array_Unmapped.sort() print('Created ndarray of unmapped items called: Unique_Array_Unmapped') df_data.rename(columns={'coltocheck': Data_Column_Name}, inplace=True) #export the Unique Items Array to a CSV if Create_Unmapped_CSV == 'y': print('Exporting Unmapped Items to a CSV...') pd.DataFrame(Unique_Array_Unmapped).to_csv(Output_Loc_Filname) np.savetxt(Output_Loc_Filname , Unique_Array_Unmapped, delimiter=',', fmt='%s') print('Unique Unmapped CSV created.') print('See Location: ', Output_Loc_Filname) print('DONE!') print('------------------------------------') #End-3.2 #endregion #End-3 #endregion # 5 DATA WRANGLING #region # 5.1 Deleting Rows #region # 5.1.1 Deleting Rows with everything missing in the row #region # Checking number of rows rows_count = df_data.shape[0] # Dropping rows df_data2 = df_data.dropna(axis='index', how='all') df_data = df_data2 # Checking number of rows removed rows_deleted = df_data.shape[0] - rows_count # Printing rows removed print("Number of Rows Deleted =", rows_deleted) #endregion # 5.1.2 Deleting Rows with missing info in certain columns #region # Input Parameters Cols_To_Check = ['WONO', 'SPOTVAL', 'ADDDTTM'] #note 'any' will delete a row if any of the columns is mssing data #note 'all' will only deleter a row if all the columns above are NA. How_to_delete = 'any' # Checking number of rows rows_count = df_data.shape[0] # Dropping rows df_data2 = df_data.dropna(axis='index', how = How_to_delete, subset = Cols_To_Check) df_data = df_data2 df_var_checker = df_data.head(5) # Checking number of rows removed rows_deleted = df_data.shape[0] - rows_count # Printing rows removed print("Number of Rows Deleted =", rows_deleted) #endregion # 5.1.3 Deleting Rows matching a certain string in a certain column #region Column_Name_To_Check = "SPOTVAL" String_To_Check = ' ' # Bools_With_String = df_data[Column_Name_To_Check].str.contains(String_To_Check) # Bools_With_String = df_data[Column_Name_To_Check].str.startswith(String_To_Check) Bools_With_String = df_data[Column_Name_To_Check].str.match(String_To_Check) Bools_Without_String = ~Bools_With_String df_data2 = df_data[Bools_Without_String] Row_Difference = df_data.shape[0] - df_data2.shape[0] df_data = df_data2 print('Rows Deleted: ', Row_Difference) '''Working progress... Strings_To_Check = [' ', ' '] Columns_To_Check = ['WONO'] df_data2 = df_data.filter(axis='index', items = Columns_To_Check, regex=' ') ''' #endregion # 5.1.4 Deleting and/or Checking Rows that don't map to items in a lookup table #region Delete_Unmapped = 'n' Create_Unmapped_CSV = 'y' Lookup_Table_Dir = r'C:\FILES\Hansen-Methods-In-EnviroSys.xlsx' Output_Loc_Filname = r'C:\FILES\UniqueCodesUnmapped5.csv' Sheet_To_Load = 'Data' Lookup_Column_Name_To_Check = 'Method Short Name' Column_Name_To_Apply_Deletions = 'SPOTCODE-E' #Load Lookup Table df_lookup = pd.read_excel(Lookup_Table_Dir , sheet_name = Sheet_To_Load, dtype=object) print('loaded lookup table.') print('Rows, Columns:') print(df_lookup.shape) # Delete All columns except Cols_Dont_Delete = [Lookup_Column_Name_To_Check] df_lookup.drop(df_lookup.columns.difference(Cols_Dont_Delete), 1, inplace=True) print('Columns Deleted.') print('Rows, Columns:') print(df_lookup.shape) print('Generating Bools Filter...') Bools_Mapping_Series = df_data[Column_Name_To_Apply_Deletions].isin(df_lookup[Lookup_Column_Name_To_Check]) print('Bools Generated.') df_data2 = df_data[Bools_Mapping_Series] df_deleted = df_data[~Bools_Mapping_Series] print('Data Filtered and now in df_data2') df_deleted.rename(columns={Column_Name_To_Apply_Deletions: 'coltocheck'}, inplace=True) Unique_Array_Unmapped = df_deleted.coltocheck.unique() Unique_Array_Unmapped.sort() print('Created ndarray of unmapped items called: Unique_Array_Unmapped') df_data.rename(columns={'coltocheck': Column_Name_To_Apply_Deletions}, inplace=True) #export the Unique Items Array to a CSV if Create_Unmapped_CSV == 'y': print('Exporting Unmapped Items to a CSV...') pd.DataFrame(Unique_Array_Unmapped).to_csv(Output_Loc_Filname) np.savetxt(Output_Loc_Filname , Unique_Array_Unmapped, delimiter=',', fmt='%s') print('Unique Unmapped CSV created.') print('See Location: ', Output_Loc_Filname) # Effectively Deleting Unmapped Items if requested if Delete_Unmapped == 'y': print('deleting Unmapped Items from df_data') df_data = df_data2 else: print('Original Data is untouched in df_data and filtered data is stored in df_data2') #End 5.1.4 #endregion #End 5.1 #endregion # 5.2 Delete Columns #region Cols_To_Delete = [ 'WONO', 'SPOTCODE', ] df_data.drop(Cols_To_Delete, axis=1, inplace=True) df_data.head() #endregion # 5.3 Concatenate Columns to Create Keys #region Name_of_New_Col = 'KEY' Cols_To_Join = ['SPOTCODE', 'UM', 'DESCRIPT'] df_data = df_data.astype(str) df_data[Name_of_New_Col] = df_data[Cols_To_Join].apply(lambda x: '-'.join(x.map(str)), axis=1) df_data.head() #endregion # 5.4 Swapping Data in a Column based on a csv lookup table #region # Input Params #region # Column to apply the Swapping to ColName = 'WONO' # Directory file of Lookup Table for swapping # Note: have to columns named 'FIND' and 'REPLACE' Input_path_Lookup = 'C:/FILES/find-replace.csv' #endregion # Read and process the lookup table #region df_lookup = pd.read_csv(Input_path_Lookup, dtype={'FIND': object, 'REPLACE': object}) # Delete Rows with everything missing in the row df_lookup = df_lookup.dropna(axis='index', how='all') # Delete non Unique (duplicate) FIND rows df_lookup.drop_duplicates(subset='FIND', keep=False, inplace=True) # Create a list of Unique Find items List_Subs = df_lookup['FIND'].tolist() # Change index to FIND df_lookup.set_index('FIND', inplace = True) dict_Subs = df_lookup.to_dict() dict_Subs = dict_Subs.get('REPLACE') print('SUBSTITUTIONS...') print(dict_Subs) #endregion # Apply swap changes to dataframe #region # Swap the name of the column to rename df_data.rename(columns={ColName: 'coltoswapxy'}, inplace=True) # Make the replacements df_data2 = df_data.coltoswapxy.replace(dict_Subs) # Swap back the name of the column to rename df_data2.rename(columns={'coltoswapxy': ColName}, inplace=True) df_data = df_data2 print(df_data.head()) print('DONE SWAPPING') #endregion #endregion # 5.5 Sorting the Table #region Columns_Sort_Order = ['WONO-E', 'SPOTCODE-E'] df_data.sort_values(by = Columns_Sort_Order, inplace=True) print(df_data.head()) #endregion # 5.6 Editing Data #region # 5.6.1 Delete spaces from start and end of a cell swap to 'lstrip' or 'rstrip' if required #region Column_To_Edit = 'SPOTCODE' Delete_Original_Column = 'n' Edited_Col_Name = Column_To_Edit + '-E' df_data.rename(columns={Column_To_Edit: 'editingthiscolumn'}, inplace=True) New_Col_Edited = df_data.editingthiscolumn.str.strip() df_data[Edited_Col_Name] = New_Col_Edited df_data.rename(columns={'editingthiscolumn': Column_To_Edit}, inplace=True) if Delete_Original_Column == 'y': df_data.drop(Column_To_Edit, axis=1, inplace=True) df_data.rename(columns={Edited_Col_Name: Column_To_Edit}, inplace=True) #End-5.6.1 #endregion # 5.6.2 Delete a character from the end of a cell #region Column_To_Edit = 'WONO-E' Delete_Original_Column = 'y' String_To_Strip = '/' Edited_Col_Name = Column_To_Edit + '-E' df_data.rename(columns={Column_To_Edit: 'editingthiscolumn'}, inplace=True) New_Col_Edited = df_data.editingthiscolumn.str.rstrip(String_To_Strip) df_data[Edited_Col_Name] = New_Col_Edited df_data.rename(columns={'editingthiscolumn': Column_To_Edit}, inplace=True) if Delete_Original_Column == 'y': df_data.drop(Column_To_Edit, axis=1, inplace=True) df_data.rename(columns={Edited_Col_Name: Column_To_Edit}, inplace=True) #endregion #End-5.6.2 # 5.6.5 Adding a string to the start of a row based on condition #region String_To_Check = 'SPT0' Column_Name_To_Check = 'WONO-E' String_To_Add = 'HANSEN-' # Get Indexes of Rows df_data.reset_index(drop=True) Bools_With_String = df_data[Column_Name_To_Check].str.startswith(String_To_Check) Index_Array = Bools_With_String[Bools_With_String].index.values # Edit Cells for item in Index_Array: x = df_data.at[item, Column_Name_To_Check] new_string = String_To_Add + str(x) df_data.at[item, Column_Name_To_Check] = new_string #End 5.6.5 #endregion #End-5.6 #endregion #End-5 #endregion # 6 EXPORTING DATA #region # 6.1 Standard Export #region # Input Params Output_Location = 'C:/FILES/' Output_filename = 'Hansen-Data-Qualified8' Output_Extension = '.csv' Delimiter = ',' # Creating File FName = Output_Location + Output_filename + Output_Extension df_data.to_csv(path_or_buf=FName, sep= Delimiter, index=False) print('---------------------------------------------') print('EXPORTING CSV DONE') #endregion # 6.2 Chuncked Export #region #INPUT PARAMS Out_File_Loc_Name = 'C:/FILES/HCHUNKS/HANSENDB_.csv' Output_Extension = '.csv' Delimiter = '|' ChunckSize = 1000 #CODE NumToRemove = -1 * (len(Output_Extension)) Output_filename = Out_File_Loc_Name[:NumToRemove] Full_Filepath = Output_filename + Output_Extension Row_Max = int((df_data.shape[0])-1) NoChuncks = Row_Max/ChunckSize NoChuncksInt = int(NoChuncks) PartialChunck = NoChuncks - NoChuncksInt print('Chunking Data...') if PartialChunck > 0: Bool_PartialChunck = True else: Bool_PartialChunck = False counter = int(0) FromRow = 0 ToRow = ChunckSize while counter <= NoChuncksInt: df_temp=df_data.iloc[FromRow:ToRow, :] FromRow = ToRow ToRow = ToRow + ChunckSize counter += 1 FName = Output_filename + str(counter) + Output_Extension df_temp.to_csv(path_or_buf=FName, sep=Delimiter, index=False) if PartialChunck == True: counter += 1 FName = Output_filename + str(counter) + Output_Extension df_temp=df_data.iloc[FromRow::, :] df_temp.to_csv(path_or_buf=FName, sep=Delimiter, index=False) print('EXPORTED CHUNKING DONE!') #endregion #endregion # 7 Bulk edit csv files # 7.1 Full MW cleanse and move #region # INPUT VARIABLES---------------------------------------------------------------------------------------- #region # Directory folder of the csv files you want to process Input_path_CSVs = 'C:/FILES/Input_CSV/' # Can change to xlsx if needed, other changes will be nessesary to code Extension = 'csv' # Csv files seperator for input and output files..generally (,) or (|) Delimiter = '|' # Directory folder of the TKC cross reference table Input_path_TKC_files = 'D:/FILES/Input_TKC_files/' # Directory excel file of the Sample Point Table Input_path_SPT = 'C:/FILES/Sample Points_37883_20180926_134607.xlsx' # Output folder of the CSV files Output_path_processed_csv = 'C:/FILES/Output_CSV_Processed/' # Output folder path of bad SPT CSV files Output_path_badSPT = 'C:/FILES/Output_CSV_Bad_SPT/' # Output folder path of TKC Unmapped Data Output_path_badTKC = 'C:/FILES/Output_CSV_Bad_TKC/' # Output folder path of Retest CSV files Output_path_Retests = 'C:/FILES/Output_CSV_Retests/' # Output folder path of CSV Files with Structure that can't be Analysed Output_path_bad_structure = 'C:/FILES/Output_CSV_Bad_Column_Structure/' # Output folder path of Report on Analysed files Output_path_Report = 'C:/FILES/' print('Directories loaded...') #endregion # READ AND PROCESS THE UNIQUE SAMPLE POINTS FILE---------------------------------------------------------------- #region df_SPTs = pd.read_excel(Input_path_SPT, sheet_name='Data', dtype={'Name': object, 'OldSiteCode_post2007': object}) List_Columns_Keep = ['Name','OldSiteCode_post2007'] df_SPTs = df_SPTs[List_Columns_Keep] df_SPTs.columns = ['SPT', 'OSC'] # Remove ESP points df_SPTs = df_SPTs[~df_SPTs['SPT'].astype(str).str.startswith('ESP')] # Delete non Unique (duplicate) OSC's df_SPTs.drop_duplicates(subset='OSC', keep=False, inplace=True) # Create a list of Unique OSC's List_OSCs = df_SPTs['OSC'].tolist() # Change index to old site code df_SPTs.set_index('OSC', inplace = True) dict_SPTs = df_SPTs.to_dict() dict_SPTs = dict_SPTs.get('SPT') #print('SPT Cross Reference Table created...') #endregion # READ AND PROCESS THE TKC FILES------------------------------------------------------------------------- #region os.chdir(Input_path_TKC_files) filenames = [i for i in glob.glob('*.{}'.format('xlsx'))] List_Columns_Keep = ['Test Key Code (TKC)','Valid', 'Data Type'] bool_df_created = False for filename in filenames: if bool_df_created == False: df_TKCs = pd.read_excel(filename, sheet_name='Data', dtype={'Test Key Code (TKC)': object}) bool_df_created = True df_TKCs = df_TKCs[List_Columns_Keep] df_TKCs.columns = ['TKC', 'Valid','DT'] else: df_temp = pd.read_excel(filename, sheet_name='Data', dtype={'Test Key Code (TKC)': object}) df_temp = df_temp[List_Columns_Keep] df_temp.columns = ['TKC', 'Valid','DT'] df_TKCs = df_TKCs.append(df_temp) # Remove Biosolids Monitoring TKC's from Dataframe and delete DT column df_TKCs = df_TKCs[~df_TKCs['DT'].astype(str).str.startswith('Bio')] df_TKCs.drop('DT', axis=1, inplace=True) # Remove Invalid TKC's from Dataframe and delete Valid column df_TKCs = df_TKCs[~df_TKCs['Valid'].astype(str).str.startswith('N')] df_TKCs.drop('Valid', axis=1, inplace=True) # Delete non Unique (duplicate) TKC's df_TKCs.drop_duplicates(subset='TKC', keep=False, inplace=True) #Create List of Mapped TKCs List_TKCs = df_TKCs['TKC'].tolist() print('Mapped TKC List created...') #endregion # SAVE CSV FILENAMES IN A LIST AND DATAFRAME------------------------------------------------------------- #region # Get the csv filenames into an array os.chdir(Input_path_CSVs) filenames = [i for i in glob.glob('*.{}'.format(Extension))] # Get the number of csv files NumFiles = len(filenames) print(NumFiles, 'csv files found...') #endregion # MOVE FILES WITHOUT 'LOCATIONCODE' or 'LocationDescription' -------------------------------------------- #region counter_good_files = 0 counter_bad_files = 0 List_Unsupported_Files = [] for filename in filenames: # Save an individual file as a DataFrame Object to analyse try: df_file = pd.read_csv(filename, sep=Delimiter, index_col=False, engine='python') if ('LOCATIONCODE' in df_file.columns) and ('LocationDescription' in df_file.columns): counter_good_files +=1 else: List_Unsupported_Files.append(filename) counter_bad_files +=1 except: List_Unsupported_Files.append(filename) counter_bad_files +=1 # Print stats print('Number of Files that can be Analysed:', counter_good_files) print("Number of Files that can't be Analysed:", counter_bad_files) # Move files files = os.listdir(Input_path_CSVs) for f in files: if f in List_Unsupported_Files: shutil.move(f, Output_path_bad_structure) # Get the csv filenames into an array after unwanted ones are moved os.chdir(Input_path_CSVs) filenames = [i for i in glob.glob('*.{}'.format(Extension))] #endregion # CREATE AN EMPTY DATAFRAME FOR REPORT------------------------------------------------------------------- #region List_Columns = ['Filename', 'Total Rows', 'Duplicates', 'Retests', 'Rows QA Data', 'No SPT Code', 'Replaced SPT Codes', 'Rows With Unmapped TKCs'] df_Report = pd.DataFrame(columns=List_Columns) #endregion # LOOP THOUGH EACH FILE AND PROCESS IT ------------------------------------------------------------------ for filename in filenames: print('-----------------------------------------------') print('current file:') print(filename) # Set Booleans QA_Data_In_File = False Bad_sptz = False Retests_In_File = False Duplicates_In_File = False Bad_TKCs = False # Set Counts Int_Total_Rows = int(0) Int_Bad_SPTs = int(0) Int_Replaced_SPTs = int(0) Int_QA_Rows = int(0) Int_Dup_Rows = int(0) Int_Retest_Rows = int(0) Int_Unmapped_TKCs = int(0) # Save the individual file as a DataFrame Object to analyse df_file = pd.read_csv(filename, sep=Delimiter, index_col=False, engine='python', dtype={'LOCATIONCODE': object, 'TEST_KEY_CODE': object}) # Delete Rows with everything missing in the row df_file = df_file.dropna(axis='index', how='all') Int_Total_Rows = df_file.shape[0] ################### QA DATA DELETION ################################## # Check and Find if Blanks exist in Location Code Rows bools_ml = df_file['LOCATIONCODE'].isnull() bools_ml = np.array(bools_ml) # Check and Find if/Where Blanks exist in Location Description Rows bools_md = df_file['LocationDescription'].isnull() bools_md = np.array(bools_ml) # Find Quality Assurance Data Rows Series_Loc_Desc = df_file['LocationDescription'] Series_Loc_Desc = Series_Loc_Desc.fillna(' ') bools_bd = Series_Loc_Desc == 'Blind Dup A' bools_bd = np.array(bools_bd) bools_bd =
np.logical_and(bools_ml, bools_bd)
numpy.logical_and
#!/usr/bin/env python # -*- coding: utf-8 -*- # ######################################################################### # Copyright (c) 2020, UChicago Argonne, LLC. All rights reserved. # # # # Copyright 2020. UChicago Argonne, LLC. This software was produced # # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # # U.S. Department of Energy. The U.S. Government has rights to use, # # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # # modified to produce derivative works, such modified software should # # be clearly marked, so as not to confuse it with the version available # # from ANL. # # # # Additionally, redistribution and use in source and binary forms, with # # or without modification, are permitted provided that the following # # conditions are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of UChicago Argonne, LLC, Argonne National # # Laboratory, ANL, the U.S. Government, nor the names of its # # contributors may be used to endorse or promote products derived # # from this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # # ######################################################################### import warnings from orangecontrib.wonder.fit.parameters.measured_data.phase import Phase from orangecontrib.wonder.fit.parameters.initialization.fft_parameters import FFTTypes from orangecontrib.wonder.fit.parameters.instrument.zero_error import ZeroError from orangecontrib.wonder.fit.parameters.instrument.lab6_tan_correction import Lab6TanCorrection from orangecontrib.wonder.fit.parameters.instrument.caglioti import Caglioti from orangecontrib.wonder.fit.parameters.instrument.polarization_parameters import Beampath, LorentzFormula, PolarizationParameters from orangecontrib.wonder.fit.parameters.instrument.speciment_displacement import SpecimenDisplacement from orangecontrib.wonder.fit.parameters.thermal.thermal_parameters import ThermalParameters from orangecontrib.wonder.fit.parameters.instrument.background_parameters import ChebyshevBackground, ExpDecayBackground from orangecontrib.wonder.fit.parameters.microstructure.strain import InvariantPAH, WarrenModel, KrivoglazWilkensModel from orangecontrib.wonder.fit.parameters.measured_data.phase_gsasii import GSASIIPhase from orangecontrib.wonder.fit.functions.gsasii_functions import gsasii_intensity_factor from orangecontrib.wonder.fit.parameters.additional.pseudo_voigt_peak import SpuriousPeaks from orangecontrib.wonder.fit.functions.chemical_formula_parser import ChemicalFormulaParser from orangecontrib.wonder.util.fit_utilities import Utilities, Symmetry warnings.filterwarnings("ignore", category=RuntimeWarning) class Distribution: DELTA = "delta" LOGNORMAL = "lognormal" GAMMA = "gamma" YORK = "york" @classmethod def tuple(cls): return [cls.DELTA, cls.LOGNORMAL, cls.GAMMA, cls.YORK] class Shape: NONE = "none" SPHERE = "sphere" CUBE = "cube" TETRAHEDRON = "tetrahedron" OCTAHEDRON = "octahedron" CYLINDER = "cylinder" WULFF = "wulff solid" @classmethod def tuple(cls): return [cls.NONE, cls.SPHERE, cls.CUBE, cls.TETRAHEDRON, cls.OCTAHEDRON, cls.CYLINDER, cls.WULFF] class WulffCubeFace: TRIANGULAR = "triangular" HEXAGONAL = "hexagonal" @classmethod def tuple(cls): return [cls.TRIANGULAR, cls.HEXAGONAL] class Normalization: NORMALIZE_TO_N = 0 NORMALIZE_TO_N2 = 1 @classmethod def tuple(cls): return ["to N", "to N\u00b2"] def __H_invariant_square(h, k, l): numerator = (h * h * k * k + k * k * l * l + l * l * h * h) denominator = (h**2 + k**2 + l**2)**2 return numerator / denominator def __merge_functions(list_of_pairs, s): # x step must be the same for all functions intensity = numpy.zeros(len(s)) for pair_index in range(list_of_pairs.shape[0]): intensity += numpy.interp(s, list_of_pairs[pair_index, 0], list_of_pairs[pair_index, 1]) return intensity ################################################# # # FIT FUNCTION # ################################################# def fit_function_direct(twotheta, fit_global_parameters, diffraction_pattern_index = 0): incident_radiation = fit_global_parameters.measured_dataset.get_incident_radiations_item(diffraction_pattern_index) wavelength = incident_radiation.wavelength.value I = fit_function_reciprocal(Utilities.s(0.5*numpy.radians(twotheta), wavelength), fit_global_parameters, diffraction_pattern_index) # POLARIZATION FACTOR -------------------------------------------------------------------------------------- polarization_parameters = fit_global_parameters.get_instrumental_profile_parameters_item(PolarizationParameters.__name__, diffraction_pattern_index) if not polarization_parameters is None: if polarization_parameters.use_polarization_factor: twotheta_mono = polarization_parameters.twotheta_mono I *= polarization_factor(numpy.radians(twotheta), None if twotheta_mono is None else numpy.radians(twotheta_mono), polarization_parameters.degree_of_polarization, polarization_parameters.beampath) # ADD BACKGROUNDS --------------------------------------------------------------------------------------------- if not fit_global_parameters.background_parameters is None: for key in fit_global_parameters.background_parameters.keys(): background_parameters = fit_global_parameters.get_background_parameters_item(key, diffraction_pattern_index) if not background_parameters is None: if key == ChebyshevBackground.__name__: parameters=[background_parameters.c0.value, background_parameters.c1.value, background_parameters.c2.value, background_parameters.c3.value, background_parameters.c4.value, background_parameters.c5.value, background_parameters.c6.value, background_parameters.c7.value, background_parameters.c8.value, background_parameters.c9.value] add_chebyshev_background(twotheta, I, parameters) elif key == ExpDecayBackground.__name__: add_expdecay_background(twotheta, I, parameters=[background_parameters.a0.value, background_parameters.b0.value, background_parameters.a1.value, background_parameters.b1.value, background_parameters.a2.value, background_parameters.b2.value]) # ADD PSEUDO VOIGTS --------------------------------------------------------------------------------------------- if not fit_global_parameters.additional_parameters is None: for key in fit_global_parameters.additional_parameters.keys(): additional_parameters = fit_global_parameters.get_additional_parameters_item(key, diffraction_pattern_index) if not additional_parameters is None: if key == SpuriousPeaks.__name__: add_pseudo_voigt_peaks(twotheta, I, additional_parameters) return I def fit_function_reciprocal(s, fit_global_parameters, diffraction_pattern_index = 0): line_profile = fit_global_parameters.measured_dataset.get_line_profile(diffraction_pattern_index) incident_radiation = fit_global_parameters.measured_dataset.get_incident_radiations_item(diffraction_pattern_index) # CONSTRUCTION OF EACH SEPARATE PEAK --------------------------------------------------------------------------- phases_number = fit_global_parameters.measured_dataset.get_phases_number() separated_phases_intensities = numpy.full((phases_number, 2), None) for phase_index in range(phases_number): phase = fit_global_parameters.measured_dataset.get_phase(phase_index) if not Phase.is_cube(phase.symmetry): raise ValueError("Only Cubic structures are supported by fit") reflections_number = line_profile.get_reflections_number(phase_index) separated_peaks_functions = numpy.full((reflections_number, 2), None) for reflection_index in range(reflections_number): if isinstance(phase, GSASIIPhase): s_analytical, intensity_analytical = create_one_peak(diffraction_pattern_index, phase_index, reflection_index, incident_radiation, phase, line_profile, fit_global_parameters, gsas_reflections_list=line_profile.get_additional_parameters_of_phase(phase_index)) else: s_analytical, intensity_analytical = create_one_peak(diffraction_pattern_index, phase_index, reflection_index, incident_radiation, phase, line_profile, fit_global_parameters) separated_peaks_functions[reflection_index, 0] = s_analytical separated_peaks_functions[reflection_index, 1] = intensity_analytical # INTERPOLATION ONTO ORIGINAL S VALUES ------------------------------------------------------------------------- intensity_phase = __merge_functions(separated_peaks_functions, s) # ADD SAXS size_parameters = fit_global_parameters.get_size_parameters(phase_index) if not size_parameters is None and size_parameters.active: if size_parameters.distribution == Distribution.DELTA and size_parameters.add_saxs: if not phase.use_structure: NotImplementedError("SAXS is available when the structural model is active") intensity_phase += saxs(s, size_parameters.mu.value, phase.a.value, phase.formula, phase.symmetry, size_parameters.normalize_to) # ADD DEBYE-WALLER FACTOR -------------------------------------------------------------------------------------- thermal_parameters = fit_global_parameters.get_thermal_parameters_item(ThermalParameters.__name__, diffraction_pattern_index) if not thermal_parameters is None: debye_waller_factor = thermal_parameters.get_debye_waller_factor(phase_index) if not debye_waller_factor is None: intensity_phase *= debye_waller(s, debye_waller_factor.value*0.01) # from A-2 to nm-2 separated_phases_intensities[phase_index, 0] = s separated_phases_intensities[phase_index, 1] = intensity_phase intensity = __merge_functions(separated_phases_intensities, s) if not incident_radiation.is_single_wavelength: principal_wavelength = incident_radiation.wavelength intensity_scaled = intensity*incident_radiation.get_principal_wavelenght_weight() separated_secondary_intensities = numpy.full((len(incident_radiation.secondary_wavelengths), 2), None) secondary_index = 0 for secondary_wavelength, secondary_wavelength_weigth in zip(incident_radiation.secondary_wavelengths, incident_radiation.secondary_wavelengths_weights): s_secondary = s * secondary_wavelength.value/principal_wavelength.value separated_secondary_intensities[secondary_index, 0] = s_secondary separated_secondary_intensities[secondary_index, 1] = intensity*secondary_wavelength_weigth.value secondary_index += 1 intensity = intensity_scaled + __merge_functions(separated_secondary_intensities, s) return intensity ################################################# # FOURIER FUNCTIONS ################################################# class FourierTranformFactory: @classmethod def get_fourier_transform(cls, type=FFTTypes.REAL_ONLY): if type == FFTTypes.REAL_ONLY: return FourierTransformRealOnly elif type == FFTTypes.FULL: return FourierTransformFull else: raise ValueError("Type not recognized") class FourierTransform: @classmethod def fft(cls, f, n_steps, dL): raise NotImplementedError() @classmethod def get_empty_fft(cls, n_steps, dL): s = numpy.fft.fftfreq(n_steps, dL) s = numpy.fft.fftshift(s) I = numpy.zeros(len(s)) I[int(len(s)/2)] = 1.0 return s, I class FourierTransformRealOnly(FourierTransform): @classmethod def _real_absolute_fourier(cls, y): return numpy.fft.fftshift(numpy.abs(numpy.real(numpy.fft.fft(y)))) @classmethod def _fft_normalized(cls, y_fft, n_steps, dL): s = numpy.fft.fftfreq(n_steps, dL) s = numpy.fft.fftshift(s) integral = numpy.trapz(y_fft, s) return s, y_fft / integral @classmethod def fft(cls, f, n_steps, dL): return cls._fft_normalized(cls._real_absolute_fourier(f), n_steps, dL) from scipy.integrate import simps class FourierTransformFull(FourierTransform): @classmethod def _full_fourier(cls, y): return numpy.fft.fftshift(numpy.fft.fft(y)) @classmethod def _fft_shifted(cls, y_fft, n_steps, dL): s = numpy.fft.fftfreq(n_steps, dL) s = numpy.fft.fftshift(s) y_fft -= y_fft[0] return s, y_fft @classmethod def _fft_real(cls, f, n_steps, dL): return cls._fft_shifted(numpy.real(cls._full_fourier(f)), n_steps, dL) @classmethod def _fft_imag(cls, f, n_steps, dL): return cls._fft_shifted(numpy.imag(cls._full_fourier(f)), n_steps, dL) @classmethod def _normalize(cls, s, i): return s, i/simps(i, s) @classmethod def fft(cls, f, n_steps, dL): sr, fft_real = cls._fft_real(numpy.real(f), n_steps, dL) si, fft_imag = cls._fft_imag(numpy.imag(f), n_steps, dL) return cls._normalize(sr, fft_real - fft_imag) ################################################# # CALCOLO DI UN SINGOLO PICCO ################################################# def create_one_peak(diffraction_pattern_index, phase_index, reflection_index, incident_radiation, phase, line_profile, fit_global_parameters, gsas_reflections_list=None): fft_type = fit_global_parameters.fit_initialization.fft_parameters.fft_type fit_space_parameters = fit_global_parameters.space_parameters() reflection = line_profile.get_reflection(phase_index, reflection_index) wavelength = incident_radiation.wavelength.value lattice_parameter = phase.a.value fourier_amplitudes = None # INSTRUMENTAL PROFILE --------------------------------------------------------------------------------------------- instrumental_profile_parameters = fit_global_parameters.get_instrumental_profile_parameters_item(Caglioti.__name__, diffraction_pattern_index) if not instrumental_profile_parameters is None: if fourier_amplitudes is None: fourier_amplitudes = instrumental_function(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, wavelength, instrumental_profile_parameters.U.value, instrumental_profile_parameters.V.value, instrumental_profile_parameters.W.value, instrumental_profile_parameters.a.value, instrumental_profile_parameters.b.value, instrumental_profile_parameters.c.value) else: fourier_amplitudes *= instrumental_function(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, wavelength, instrumental_profile_parameters.U.value, instrumental_profile_parameters.V.value, instrumental_profile_parameters.W.value, instrumental_profile_parameters.a.value, instrumental_profile_parameters.b.value, instrumental_profile_parameters.c.value) # SIZE ------------------------------------------------------------------------------------------------------------- size_parameters = fit_global_parameters.get_size_parameters(phase_index) if not size_parameters is None and size_parameters.active: if size_parameters.distribution == Distribution.LOGNORMAL: if size_parameters.shape == Shape.SPHERE: if fourier_amplitudes is None: fourier_amplitudes = size_function_lognormal(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) else: fourier_amplitudes *= size_function_lognormal(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) elif size_parameters.shape == Shape.WULFF: if fourier_amplitudes is None: fourier_amplitudes = size_function_wulff_solids_lognormal(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, size_parameters.sigma.value, size_parameters.mu.value, size_parameters.truncation.value, size_parameters.cube_face) else: fourier_amplitudes *=size_function_wulff_solids_lognormal(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, size_parameters.sigma.value, size_parameters.mu.value, size_parameters.truncation.value, size_parameters.cube_face) elif size_parameters.distribution == Distribution.GAMMA: if fourier_amplitudes is None: fourier_amplitudes = size_function_gamma(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) else: fourier_amplitudes *= size_function_gamma(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) elif size_parameters.distribution == Distribution.DELTA: if fourier_amplitudes is None: fourier_amplitudes = size_function_delta(fit_space_parameters.L, size_parameters.mu.value) else: fourier_amplitudes *= size_function_delta(fit_space_parameters.L, size_parameters.mu.value) # STRAIN ----------------------------------------------------------------------------------------------------------- strain_parameters = fit_global_parameters.get_strain_parameters(phase_index) if not strain_parameters is None and strain_parameters.active: if isinstance(strain_parameters, InvariantPAH): # INVARIANT PAH if fourier_amplitudes is None: fourier_amplitudes = strain_invariant_function_pah(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.aa.value, strain_parameters.bb.value, strain_parameters.get_invariant(reflection.h, reflection.k, reflection.l)) else: fourier_amplitudes *= strain_invariant_function_pah(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.aa.value, strain_parameters.bb.value, strain_parameters.get_invariant(reflection.h, reflection.k, reflection.l)) elif isinstance(strain_parameters, KrivoglazWilkensModel): # KRIVOGLAZ-WILKENS if fourier_amplitudes is None: fourier_amplitudes = strain_krivoglaz_wilkens(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.rho.value, strain_parameters.Re.value, strain_parameters.Ae.value, strain_parameters.Be.value, strain_parameters.As.value, strain_parameters.Bs.value, strain_parameters.mix.value, strain_parameters.b.value) else: fourier_amplitudes *= strain_krivoglaz_wilkens(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.rho.value, strain_parameters.Re.value, strain_parameters.Ae.value, strain_parameters.Be.value, strain_parameters.As.value, strain_parameters.Bs.value, strain_parameters.mix.value, strain_parameters.b.value) elif isinstance(strain_parameters, WarrenModel): # WARREN fourier_amplitudes_re, fourier_amplitudes_im = strain_warren_function(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.average_cell_parameter.value) if fft_type == FFTTypes.FULL: if fourier_amplitudes is None: fourier_amplitudes = fourier_amplitudes_re + 1j*fourier_amplitudes_im else: fourier_amplitudes = (fourier_amplitudes*fourier_amplitudes_re) + 1j*(fourier_amplitudes*fourier_amplitudes_im) elif fft_type == FFTTypes.REAL_ONLY: if fourier_amplitudes is None: fourier_amplitudes = fourier_amplitudes_re else: fourier_amplitudes *= fourier_amplitudes_re # FFT ----------------------------------------------------------------------------------------------------------- if not fourier_amplitudes is None: s, I = FourierTranformFactory.get_fourier_transform(fft_type).fft(fourier_amplitudes, n_steps=fit_global_parameters.fit_initialization.fft_parameters.n_step, dL=fit_space_parameters.dL) else: s, I = FourierTransform.get_empty_fft(n_steps=fit_global_parameters.fit_initialization.fft_parameters.n_step, dL=fit_space_parameters.dL) s_hkl = Utilities.s_hkl(lattice_parameter, reflection.h, reflection.k, reflection.l) s += s_hkl # INTENSITY MODULATION: STRUCTURAL MODEL YES/NO -------------------------------------------------------------------- if phase.use_structure: if isinstance(phase, GSASIIPhase): I *= phase.intensity_scale_factor.value * gsasii_intensity_factor(reflection.h, reflection.k, reflection.l, gsas_reflections_list) else: I *= phase.intensity_scale_factor.value * \ multiplicity_cubic(reflection.h, reflection.k, reflection.l) * \ squared_modulus_structure_factor(s_hkl, phase.formula, reflection.h, reflection.k, reflection.l, phase.symmetry) else: I *= reflection.intensity.value #TODO: AGGIUNGERE GESTIONE TDS con strutture dati + widget ad hoc # PEAK SHIFTS ----------------------------------------------------------------------------------------------------- if not fit_global_parameters.shift_parameters is None: theta = Utilities.theta(s, wavelength) for key in fit_global_parameters.shift_parameters.keys(): shift_parameters = fit_global_parameters.get_shift_parameters_item(key, diffraction_pattern_index) if not shift_parameters is None: if key == Lab6TanCorrection.__name__: s += lab6_tan_correction(theta, wavelength, shift_parameters.ax.value, shift_parameters.bx.value, shift_parameters.cx.value, shift_parameters.dx.value, shift_parameters.ex.value) elif key == ZeroError.__name__: s += Utilities.s(shift_parameters.shift.value/2, wavelength) elif key == SpecimenDisplacement.__name__: s += specimen_displacement(theta, wavelength, shift_parameters.goniometer_radius, shift_parameters.displacement.value*1e-6) # to m # LORENTZ FACTOR -------------------------------------------------------------------------------------- if not fit_global_parameters.instrumental_profile_parameters is None: polarization_parameters = fit_global_parameters.get_instrumental_profile_parameters_item(PolarizationParameters.__name__, diffraction_pattern_index) if not polarization_parameters is None: if polarization_parameters.use_lorentz_factor: if polarization_parameters.lorentz_formula == LorentzFormula.Shkl_Shkl: I *= lorentz_factor_simplified_normalized(s_hkl, wavelength) elif polarization_parameters.lorentz_formula == LorentzFormula.S_Shkl: I *= lorentz_factor_normalized(s, s_hkl, wavelength) return s, I ###################################################################### # FUNZIONI WPPM ###################################################################### import numpy from scipy.special import erfc import os # performance improvement ###################################################################### # THERMAL AND POLARIZATION ###################################################################### def debye_waller(s, B): return numpy.exp(-0.5*B*(s**2)) # it's the exp(-2M) = exp(-Bs^2/2) def lorentz_factor(s, s_hkl): return 1/(s*s_hkl) def lorentz_factor_normalized(s, s_hkl, wavelength): return lorentz_factor(s, s_hkl)/numpy.sqrt(1 - (s*wavelength/2)**2) def lorentz_factor_simplified(s_hkl): return 1/(s_hkl**2) def lorentz_factor_simplified_normalized(s_hkl, wavelength): return lorentz_factor_simplified(s_hkl)/numpy.sqrt(1 - (s_hkl*wavelength/2)**2) def polarization_factor(twotheta, twotheta_mono, degree_of_polarization, beampath): Q = degree_of_polarization if twotheta_mono is None or twotheta_mono == 0.0: return ((1+Q) + (1-Q)*(numpy.cos(twotheta)**2))/2 else: if beampath == Beampath.PRIMARY: return ((1+Q) + (1-Q)*(numpy.cos(twotheta_mono)**2)*(numpy.cos(twotheta)**2))/(1 + (numpy.cos(twotheta_mono)**2)) elif beampath == Beampath.SECONDARY: return ((1+Q) + (1-Q)*(numpy.cos(twotheta_mono)**2)*(numpy.cos(twotheta)**2))/2 ###################################################################### # SIZE ###################################################################### from scipy.special import gamma as G, gammaincc as GU def size_function_delta(L, D): LfracD = L/D return 1 - 1.5*LfracD + 0.5*LfracD**3 def size_function_lognormal(L, sigma, mu): modL = numpy.abs(L) lnModL = numpy.log(modL) sqrt2 = numpy.sqrt(2) size = 0.5*erfc((lnModL - mu -3*sigma**2)/(sigma*sqrt2)) + \ -0.75*modL*erfc((lnModL - mu -2*sigma**2)/(sigma*sqrt2))*numpy.exp(-mu - 2.5*sigma**2) + \ 0.25*(L**3)*erfc((lnModL - mu)/(sigma*sqrt2)) *numpy.exp(-3*mu - 4.5*sigma**2) return size def size_function_gamma(L, g, mu): Lgm = L*g/mu size = ((0.5*(Lgm**3)*GU(g, Lgm)) - \ (1.5*Lgm*GU(g+2, Lgm)) + \ GU(g+3, Lgm)) / G(g+3) return size def lognormal_distribution(mu, sigma, x): return numpy.exp(-0.5*((numpy.log(x)-mu)/(sigma))**2)/(x*sigma*numpy.sqrt(2*numpy.pi)) def delta_distribution(mu, x): distribution = numpy.zeros(len(x)) distribution[numpy.where(x==mu)] = 1.0 return distribution def gamma_distribution(mu, g, x): gxm = g*x/mu return (g/(mu*G(g)))*(gxm**(g-1))*numpy.exp(-gxm) def york_distribution(mu, g, x): gxm = g*x/mu return (g/(mu*G(g)))*(gxm**g)*numpy.exp(-gxm) def lognormal_average(mu, sigma): return lognormal_moment(1, mu, sigma) def lognormal_average_surface_weigthed(mu, sigma): return numpy.exp(mu+1.25*sigma**2) def lognormal_average_volume_weigthed(mu, sigma): return numpy.exp(mu+1.75*sigma**2) def lognormal_standard_deviation(mu, sigma): return numpy.sqrt(numpy.exp(2*mu + sigma**2)*(numpy.exp(sigma**2)-1)) def lognormal_moment(n, mu, sigma): return numpy.exp(n*mu + 0.5*(n**2)*(sigma**2)) ###################################################################### # SIZE - WULFF SOLIDS ###################################################################### THRESHOLD = 1e-3 class WulffSolidDataRow: def __init__(self, h, k, l, level, limit_dist, aa, bb, cc, dd, chi_square_1, a0, b0, c0, d0, xj, a1, b1, c1, d1, xl, chi_square_2): self.h = h self.k = k self.l = l self.level = level self.limit_dist = limit_dist self.aa = aa self.bb = bb self.cc = cc self.dd = dd self.chi_square_1 = chi_square_1 self.a0 = a0 self.b0 = b0 self.c0 = c0 self.d0 = d0 self.xj = xj self.a1 = a1 self.b1 = b1 self.c1 = c1 self.d1 = d1 self.xl = xl self.chi_square_2 = chi_square_2 @classmethod def parse_row(cls, row): return WulffSolidDataRow(int(row[0]), int(row[1]), int(row[2]), int(row[3]), row[4], row[5], row[6], row[7], row[8], row[9], row[10], row[11], row[12], row[13], row[14], row[15], row[16], row[17], row[18], row[19], row[20]) @classmethod def get_key(cls, h, k, l, level): return str(int(h)) + str(int(k)) + str(int(l)) + "_" + str(int(level)) def key(self): return WulffSolidDataRow.get_key(self.h, self.k, self.l, self.level) def __str__(self): return str(self.h ) + " " + \ str(self.k ) + " " + \ str(self.l ) + " " + \ str(self.level ) + " " + \ str(self.limit_dist ) + " " + \ str(self.aa ) + " " + \ str(self.bb ) + " " + \ str(self.cc ) + " " + \ str(self.dd ) + " " + \ str(self.chi_square_1) + " " + \ str(self.a0 ) + " " + \ str(self.b0 ) + " " + \ str(self.c0 ) + " " + \ str(self.d0 ) + " " + \ str(self.xj ) + " " + \ str(self.a1 ) + " " + \ str(self.b1 ) + " " + \ str(self.c1 ) + " " + \ str(self.d1 ) + " " + \ str(self.xl ) + " " + \ str(self.chi_square_2) def __load_wulff_solids_data(file_name): wulff_data_path = os.path.join(os.path.dirname(__file__), "data") wulff_data_path = os.path.join(wulff_data_path, "wulff_solids") rows = numpy.loadtxt(os.path.join(wulff_data_path, file_name), skiprows=2) wulff_solids_data = {} for row in rows: wulff_solids_data_row = WulffSolidDataRow.parse_row(row) wulff_solids_data[wulff_solids_data_row.key()] = wulff_solids_data_row return wulff_solids_data if not 'wulff_solids_data_hexagonal' in globals(): wulff_solids_data_hexagonal = __load_wulff_solids_data("Cube_TruncatedCubeHexagonalFace_L_FIT.data") wulff_solids_data_triangular = __load_wulff_solids_data("Cube_TruncatedCubeTriangularFace_L_FIT.data") def __get_wulff_solid_Hj_coefficients(h, k, l, truncation, face): # N.B. L, truncation >= 0! # x - x1 / x2 - x1 = y - y1 / y2 - y1 # x1 = 0, x2 = 1 # -> y = y1 + x (y2 - y1) def __point_in_between(y1, y2, x): return y1 + x*(y2 - y1) divisor = numpy.gcd.reduce([h, k, l]) truncation_on_file = 100.0*truncation if truncation_on_file.is_integer(): if face == WulffCubeFace.TRIANGULAR: wulff_solid_data_row = wulff_solids_data_triangular[WulffSolidDataRow.get_key(h/divisor, k/divisor, l/divisor, truncation_on_file)] else: wulff_solid_data_row = wulff_solids_data_hexagonal[WulffSolidDataRow.get_key(h/divisor, k/divisor, l/divisor, truncation_on_file)] return wulff_solid_data_row else: x = truncation % 1 # decimal part if face == WulffCubeFace.TRIANGULAR: coefficients_bottom = wulff_solids_data_triangular[WulffSolidDataRow.get_key(h/divisor, k/divisor, l/divisor, int(truncation_on_file))] coefficients_top = wulff_solids_data_triangular[WulffSolidDataRow.get_key(h/divisor, k/divisor, l/divisor, min(100, 1 + int(truncation_on_file)))] else: coefficients_bottom = wulff_solids_data_hexagonal[WulffSolidDataRow.get_key(h/divisor, k/divisor, l/divisor, int(truncation_on_file))] coefficients_top = wulff_solids_data_hexagonal[WulffSolidDataRow.get_key(h/divisor, k/divisor, l/divisor, min(100, 1 + int(truncation_on_file)))] wulff_solid_data_row = WulffSolidDataRow(h, k, l, truncation_on_file, __point_in_between(coefficients_top.limit_dist , coefficients_bottom.limit_dist , x), __point_in_between(coefficients_top.aa , coefficients_bottom.aa , x), __point_in_between(coefficients_top.bb , coefficients_bottom.bb , x), __point_in_between(coefficients_top.cc , coefficients_bottom.cc , x), __point_in_between(coefficients_top.dd , coefficients_bottom.dd , x), __point_in_between(coefficients_top.chi_square_1, coefficients_bottom.chi_square_1, x), __point_in_between(coefficients_top.a0 , coefficients_bottom.a0 , x), __point_in_between(coefficients_top.b0 , coefficients_bottom.b0 , x), __point_in_between(coefficients_top.c0 , coefficients_bottom.c0 , x), __point_in_between(coefficients_top.d0 , coefficients_bottom.d0 , x), __point_in_between(coefficients_top.xj , coefficients_bottom.xj , x), __point_in_between(coefficients_top.a1 , coefficients_bottom.a1 , x), __point_in_between(coefficients_top.b1 , coefficients_bottom.b1 , x), __point_in_between(coefficients_top.c1 , coefficients_bottom.c1 , x), __point_in_between(coefficients_top.d1 , coefficients_bottom.d1 , x), __point_in_between(coefficients_top.xl , coefficients_bottom.xl , x), __point_in_between(coefficients_top.chi_square_2, coefficients_bottom.chi_square_2, x)) return wulff_solid_data_row def size_function_wulff_solids_lognormal(L, h, k, l, sigma, mu, truncation, face): def __lognormal_momentum(mu, sigma2, n): return numpy.exp((n*mu) + (0.5*sigma2*(n**2))) def __FFourierLognormal(poly_coefficients, L, Kc, mu, sigma2, ssqrt2, M3, is_array): if is_array: A = numpy.zeros(len(L)) else: A = 0.0 for n in range(len(poly_coefficients)): A += poly_coefficients[n]*\ erfc((numpy.log(L*Kc)-mu-((3.0-n)*sigma2))/ssqrt2)*\ (L**n)*0.5*__lognormal_momentum(mu, sigma2, 3-n)/M3 if is_array: A[numpy.where(A <= 1e-20)] = 0.0 else: if A <= 1e-20: A = 0.0 return A is_array = isinstance(L, list) or isinstance(L, numpy.ndarray) if not is_array and L==0: return 1.0 sigma2 = sigma*sigma ssqrt2 = sigma*numpy.sqrt(2.0) M3 = __lognormal_momentum(mu, sigma2, 3) coefficients = __get_wulff_solid_Hj_coefficients(h, k, l, truncation, face) Hn_do1 = numpy.array([coefficients.a0, coefficients.b0, coefficients.c0, coefficients.d0]) Hn_do2 = numpy.array([coefficients.a1, coefficients.b1, coefficients.c1, coefficients.d1]) Hn_LD = coefficients.limit_dist * 0.01 Hn_Kc = 1/Hn_LD Hn_xj = coefficients.xj if numpy.abs(Hn_xj-1.0)<THRESHOLD: fourier_amplitude = __FFourierLognormal(Hn_do1, L*Hn_Kc, 1.0, mu, sigma2, ssqrt2, M3, is_array) else: fourier_amplitude = __FFourierLognormal(Hn_do2, L*Hn_Kc, 1. , mu, sigma2, ssqrt2, M3, is_array) # integr(f2) on LK fourier_amplitude += __FFourierLognormal(Hn_do1, L*Hn_Kc, 1./Hn_xj, mu, sigma2, ssqrt2, M3, is_array) # (integr(f1)) on LKxj fourier_amplitude -= __FFourierLognormal(Hn_do2, L*Hn_Kc, 1./Hn_xj, mu, sigma2, ssqrt2, M3, is_array) # (integr(f2)) on LKxj if is_array: fourier_amplitude[numpy.where(L == 0.0)] = 1.0 fourier_amplitude[numpy.where(fourier_amplitude < 0.0)] = 0.0 fourier_amplitude[numpy.where(fourier_amplitude > 1.0)] = 1.0 fourier_amplitude[2:][numpy.where(numpy.greater(fourier_amplitude[2:], fourier_amplitude[1:-1]))] = 0 else: if fourier_amplitude > 1.0 : return 1.0 if fourier_amplitude < 0.0 : return 0.0 #check the previous return fourier_amplitude ###################################################################### # STRAIN ###################################################################### # INVARIANT PAH -------------------------------- def strain_invariant_function_pah(L, h, k, l, lattice_parameter, a, b, C_hkl): s_hkl = Utilities.s_hkl(lattice_parameter, h, k, l) return numpy.exp(-((2*numpy.pi**2)/((s_hkl**2)*(lattice_parameter**4))) * C_hkl * (a*L + b*(L**2))) def displacement_invariant_pah(L, h, k, l, a, b, C_hkl): return numpy.sqrt((C_hkl*(a*L + b*(L**2)))/((h**2+k**2+l**2)**2)) # Krivoglaz-Wilkens -------------------------------- from scipy import integrate from numpy import pi, log, sqrt, arcsin, sin, cos # TO SHORTEN FORMULAS def clausen_integral_inner_function(t): return log(2*sin(t/2)) def clausen_integral(x=0.0): _v_integrate_quad = numpy.vectorize(integrate.quad) return -1*(_v_integrate_quad(lambda t: clausen_integral_inner_function(t), 0.0, x)[0]) def f_star(eta, use_simplified_calculation=True): is_array = isinstance(eta, list) or isinstance(eta, numpy.ndarray) if not is_array: if eta >= 1: return (256/(45*pi*eta)) - ((11/24) + (log(2) - log(eta))/4)/(eta**2) else: if use_simplified_calculation: return (7/4) - log(2) - log(eta) + ((eta**2)/6) - (32*(eta**3))/(225*pi) else: return (256/(45*pi*eta)) \ + ((eta**2)/6) - log(2) - log(eta) \ + -eta*sqrt(1-(eta**2))*(769 + 4*(eta**2)*(20.5 + (eta**2)))/(180*pi*(eta**2)) \ + -((45 - 180*eta**2)*clausen_integral(2*arcsin(eta)) \ + (15*arcsin(eta)*(11 + 4*(eta**2)*(10.5 + (eta**2)) + (6 - 24*(eta**2))*(log(2) + log(eta)))))/(180*pi*(eta**2)) else: result = numpy.zeros(len(eta)) cursor_1 = numpy.where(eta >= 1) cursor_2 = numpy.where(eta < 1) eta1 = eta[cursor_1] eta2 = eta[cursor_2] result[cursor_1] = (256/(45*pi*eta1)) - ((11/24) + (log(2) - log(eta1))/4)/(eta1**2) if use_simplified_calculation: result[cursor_2] = (7/4) - log(2) - log(eta2) + ((eta2**2)/6) - (32*(eta2**3))/(225*pi) else: result[cursor_2] = (256/(45*pi*eta2)) \ + ((eta2**2)/6) - log(2) - log(eta2) \ + -eta2*sqrt(1-(eta2**2))*(769 + 4*(eta2**2)*(20.5 + (eta2**2)))/(180*pi*(eta2**2)) \ + -((45 - 180*eta2**2)*clausen_integral(2*arcsin(eta2)) \ + (15*
arcsin(eta2)
numpy.arcsin
import numpy as np import itertools import multiprocessing MAX_ITERATES = 5000 class Sampling(object): def __init__(self, seed=1): self.reset(seed) def reset(self, seed=1): self.rng = np.random.RandomState(seed) self.seed = seed class NegativeSampling(Sampling): def __init__(self, seed=1): super().__init__(seed=seed) def sample(self, data, n_possibilities): """ Implements vanilla negative sampling. Either the head entity or the tail entity is replaced with an entity from the total number of possible entities. """ # select whether we should replace the head or the tails data = data.copy() entity_to_replace = self.rng.choice([0, 2], replace=True, size=data.shape[0]) entity_to_replace_with = self.rng.randint(n_possibilities, size=data.shape[0]) data[np.arange(0, data.shape[0]), entity_to_replace] = entity_to_replace_with return data class SmartNegativeSampling(Sampling): """ Implements smart negative sampling where the head or tail entity is replaced with an entity that is allowed at that position based on the relationship. To use this in Dataset: ``` sns = SmartNegativeSampling(kb) dset = Dataset(kb, sampler=sns.smart_triple_corruption) ``` """ def __init__(self, kb, workers=4, seed=1): super().__init__(seed=seed) self.workers = workers self.kb = kb assert kb._converted_triples data = np.array(kb.triples, dtype=np.int32) # this stores the unique relations in our dataset unique_relations = np.unique(data[:, 1]).tolist() # we now find all possible heads and tails that satisfy the relation # this will be used in the classificaiton task as the triples # that should be scored negatively possible_heads = {} possible_tails = {} for r in unique_relations: possible_heads[r] = data[np.where(data[:, 1] == r), 0][0].tolist() possible_tails[r] = data[
np.where(data[:, 1] == r)
numpy.where
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,0,0,-1,-1,0,0])
numpy.array
import numpy as np import scipy as sp def sim_state_eq( A, B, xi, U): """This function caclulates the trajectory for the network given our model if there are no constraints, and the target state is unknown, using the control equation precess x(t+1) = Ax(t) + BU(t). x(t) is the state vector, A is the adjacency matrix, U(t) is the time varying input as specified by the user, and B selects the control set (stimulating electrodes) Args: A : NxN state matrix (numpy array), where N is the number of nodes in your network (for example, a structural connectivity matrix constructed from DTI). A should be stable to prevent uncontrolled trajectories. B : NxN input matrix (numpy array), where N is the number of nodes. B selects where you want your input energy to be applied to. For example, if B is the Identity matrix, then input energy will be applied to all nodes in the network. If B is a matrix of zeros, but B(1,1) = 1. then energy will only be applied at the first node. xi : Nx1 initial state (numpy array) of your system where N is the number of nodes. xi MUST have N rows. U : NxT matrix of Energy (numpy array), where N is the number of nodes and T is the number of time points. For example, if you want to simulate the trajectory resulting from stimulation, U could have log(StimFreq)*StimAmp*StimDur as every element. You can also enter U's that vary with time Returns: x : x is the NxT trajectory (numpy array) that results from simulating x(t+1) = Ax(t) + Bu(t) the equation with the parameters above. @author JStiso June 2017 """ # Simulate trajectory T = np.size(U,1) N = np.size(A,0) # initialize x x = np.zeros((N, T)) xt = xi for t in range(T): x[:,t] = np.reshape(xt, N) # annoying python 1d array thing xt_1 = np.matmul(A,xt) + np.matmul(B,np.reshape(U[:,t],(N,1) ))# state equation xt = xt_1 return x def optimal_energy(A, T, B, x0, xf, rho, S): """This is a python adaptation of matlab code originally written by <NAME> and <NAME> compute optimal inputs/trajectories for a system to transition between two states <NAME> September 2017 Args: A: (NxN numpy array) Structural connectivity matrix B: (NxN numpy array) Input matrix: selects which nodes to put input into. Define so there is a 1 on the diagonal of elements you want to add input to, and 0 otherwise S: (NxN numpy array) Selects nodes whose distance you want to constrain, Define so that there is a 1 on the diagonal of elements you want to constrain, and a zero otherwise T: (float) Time horizon: how long you want to control for. Too large will give large error, too short will not give enough time for control rho: (float) weights energy and distance constraints. Small rho leads to larger energy Returns: X_opt: (TxN numpy array) The optimal trajectory through state space U_opt: (TxN numpy array) The optimal energy n_err: (float) the error associated with this calculation. Errors will be larger when B is not identity, and when A is large. Large T and rho will also tend to increase the error -------------- Change Log ------------- JStiso April 2018 Changed S to be an input, rather than something defined internally <NAME> January 2021 Changed the forward propagation of states to matrix exponential to avoid reliance on MATLAB toolboxes. Also changed definition of expanded input U to save time by avoiding having to resize the matrix. Also changed the initialization of U_opt for the same reason. JStiso 2021 Translated to Python """ n = np.shape(A)[1] # state vectors to float if they're bools if type(x0[0]) == np.bool_: x0 = x0.astype(float) if type(xf[0]) == np.bool_: xf = xf.astype(float) Sbar = np.eye(n) - S np.shape(np.dot(-B,B.T)/(2*rho)) Atilde = np.concatenate((np.concatenate((A, np.dot(-B,B.T)/(2*rho)), axis=1), np.concatenate((-2*S, -A.T), axis=1)), axis=0) M = sp.linalg.expm(Atilde*T) M11 = M[0:n,0:n] M12 = M[0:n,n:] M21 = M[n:,0:n] M22 = M[n:,n:] N = np.linalg.solve(Atilde,(M-np.eye(
np.shape(Atilde)
numpy.shape
import numpy as np import itertools import tensorflow as tf from tensorflow.keras.datasets import mnist import os # change tensorflow level for removing warning message os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def test1(): assert 1 == 0 def test2(): a = tf.constant(np.array([1, 0, 0, 1]), dtype=tf.float32) result = tf.constant(np.array([3, 0, 0, 3]), dtype=tf.float32) assert tf.reduce_all(tf.equal(3 * a, result)) def test3(): a = tf.constant(np.array([1, 2, 3, 4]), dtype=tf.float32) state_diag = tf.linalg.diag(a) result = tf.constant(np.array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]), dtype=tf.float32) assert tf.reduce_all(tf.equal(state_diag, result)) def test4(): a = tf.constant(np.array([1, 2, 3, 4]), dtype=tf.float32) b = tf.constant(
np.array([3, 1, 3, 1])
numpy.array
import numpy as np import tensorflow as tf def build_laplace(n,boundary='0'): if n==1: return np.zeros((1,1),dtype=np.float32) d1 = -2 * np.ones((n,),dtype=np.float32) d2 = 1 * np.ones((n-1,),dtype=np.float32) lap = np.zeros((n,n),dtype=np.float32) lap[range(n),range(n)]=d1 lap[range(1,n),range(n-1)]=d2 lap[range(n-1),range(1,n)]=d2 if boundary=='0': lap[0,0]=lap[n-1,n-1]=-1 return lap def lower_build_laplace(n,boundary='0'): if n==1: return np.zeros((1,1),dtype=np.float32) d1 = -1 * np.ones((n,),dtype=np.float32) d2 = np.ones((n-1,),dtype=np.float32) lap = np.zeros((n,n),dtype=np.float32) lap[range(n),range(n)]=d1 lap[range(1,n),range(n-1)]=d2 if boundary=='0': lap[0,0]=0 return lap def upper_build_laplace(n,boundary='0'): if n==1: return np.zeros((1,1),dtype=np.float32) d1 = -1 * np.ones((n,),dtype=np.float32) d2 = np.ones((n-1,),dtype=np.float32) lap = np.zeros((n,n),dtype=np.float32) lap[range(n),range(n)]=d1 lap[range(n-1),range(1,n)]=d2 if boundary=='0': lap[n-1,n-1]=0 return lap def eigenstate(n,i): lap = build_laplace(n) ew, ev = np.linalg.eigh(lap) res = ev[:,i] return res def coeffs(n): a = np.zeros((n,)) a[-1]=1 coefs = [] for i in range(n): coefs.append(eigenstate(n,i)@a) print(coefs) @tf.function def coup_nonlin_osc_batch( x, control): n_osc = x.shape[1]//2 # natural time evo a1 = np.array([[0,1],[-1,0]],dtype=np.float32) a2 = np.eye(n_osc,dtype=np.float32) A = np.kron(a1,a2) x_dot1 = tf.tensordot(x,A,axes = (1,1)) # linear interaction term interaction_strength = 0.0 b1 = np.array([[0,0],[1,0]],dtype=np.float32) b2 = build_laplace(n_osc) B = interaction_strength * np.kron(b1,b2) x_dot2 = tf.tensordot(x,B, axes=(1, 1)) # control term control_vector = np.zeros((n_osc,),dtype=np.float32) control_vector[-1] = 3.0 c1 = np.array([0,1],dtype=np.float32) c2 = control_vector C = np.kron(c1,c2) x_dot3 = tf.tensordot(control,C, axes=0) # cubic interaction term cubic_interaction_strength = 1.0 d1 = np.array([[0,0],[1,0]],dtype=np.float32) d2a = upper_build_laplace(n_osc) d2b = lower_build_laplace(n_osc) Da = cubic_interaction_strength *
np.kron(d1,d2a)
numpy.kron
"""Script to apply different linear regression methods with resampling to data.""" import os import matplotlib.pyplot as plt import numpy as np import seaborn as sns from regression_analysis.fit_model import linear_regression from regression_analysis.utils import franke def create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs): """Create array filled with zeros.""" return np.zeros([len(order), len(num_points), len(noise_var), len(test_ratios), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds), len(learn_rate), len(num_min_batch), len(epochs)]) def apply_regression(order, num_points, noise_var, test_ratio_array=np.zeros(1), reg_type="ols", ridge_lambda=np.ones(1), lasso_lambda=np.ones(1), n_boots=np.ones(1, dtype=int), k_folds=np.ones(1, dtype=int)): """ Apply specified linear regression method to data with given parameters :param order: order of polynomial which will be fitted :param num_points: number of points to be used for the simulation :param noise_var: noise variance to be used in Franke function :param test_ratio_array: size of testing data set :param reg_type: fitting method to be used :param ridge_lambda: lambda for ridge regression :param lasso_lambda: lambda for lasso regression :param n_boots: number of bootstraps :param k_folds: number of folds to be used in cross-validation """ # applies regression for multiple parameter combos train_MSE_arr = np.zeros([len(order), len(num_points), len(noise_var), len(test_ratio_array), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds)]) test_MSE_arr = np.zeros([len(order), len(num_points), len(noise_var), len(test_ratio_array), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds)]) train_R2_arr = np.zeros([len(order), len(num_points), len(noise_var), len(test_ratio_array), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds)]) test_R2_arr = np.zeros([len(order), len(num_points), len(noise_var), len(test_ratio_array), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds)]) # bias in test set test_bias_arr = np.zeros([len(order), len(num_points), len(noise_var), len(test_ratio_array), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds)]) # variance in test set test_var_arr = np.zeros([len(order), len(num_points), len(noise_var), len(test_ratio_array), len(ridge_lambda), len(lasso_lambda), len(n_boots), len(k_folds)]) # Calculate statistical indicators for given regression type and different resampling methods for points_ind, num in enumerate(num_points): for noise_ind, var in enumerate(noise_var): # Create data from Franke function xx1, xx2, y = franke.create_data(num_points=num, noise_variance=var) linear_reg = linear_regression.linear_regression2D(xx1, xx2, y) for order_ind, ordr in enumerate(order): for ratio_ind, test_ratio in enumerate(test_ratio_array): if reg_type == "ols": linear_reg.apply_leastsquares(order=ordr, test_ratio=test_ratio, reg_method="ols") train_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0] = linear_reg.trainMSE test_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0] = linear_reg.testMSE train_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0] = linear_reg.testR2 test_bias_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0] = linear_reg.testbias test_var_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0] = linear_reg.testvar elif reg_type == "ols_bootstrap": for boot_ind, n_boot in enumerate(n_boots): linear_reg.apply_leastsquares_bootstrap(order=ordr, test_ratio=test_ratio, n_boots=n_boot, reg_method="ols") train_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0] = linear_reg.trainMSE test_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0] = linear_reg.testMSE train_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0] = linear_reg.testR2 test_bias_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0] = linear_reg.testbias test_var_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0] = linear_reg.testvar elif reg_type == "ols_crossvalidation": # note test_ratio_array is of length one for crossvalidation. we don't need test ratio for fold_ind, k_fold in enumerate(k_folds): linear_reg.apply_leastsquares_crossvalidation(order=ordr, kfolds=k_fold, reg_method="ols") train_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind] = linear_reg.trainMSE test_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind] = linear_reg.testMSE train_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind] = linear_reg.testR2 test_bias_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind] = linear_reg.testbias test_var_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind] = linear_reg.testvar elif reg_type == "ridge": for ridge_lam_ind, ridge_lam in enumerate(ridge_lambda): linear_reg.apply_leastsquares(order=ordr, test_ratio=test_ratio, reg_method="ridge", lmbda=ridge_lam) train_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0] = linear_reg.trainMSE test_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0] = linear_reg.testMSE train_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0] = linear_reg.testR2 test_bias_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0] = linear_reg.testbias test_var_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0] = linear_reg.testvar elif reg_type == "ridge_bootstrap": for ridge_lam_ind, ridge_lam in enumerate(ridge_lambda): for boot_ind, n_boot in enumerate(n_boots): linear_reg.apply_leastsquares_bootstrap(order=ordr, test_ratio=test_ratio, n_boots=n_boot, reg_method="ridge", lmbda=ridge_lam) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0] = linear_reg.testvar elif reg_type == "ridge_crossvalidation": for ridge_lam_ind, ridge_lam in enumerate(ridge_lambda): for fold_ind, k_fold in enumerate(k_folds): linear_reg.apply_leastsquares_crossvalidation(order=ordr, kfolds=k_fold, reg_method="ridge", lmbda=ridge_lam) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind] = linear_reg.testvar elif reg_type == "lasso": for lasso_lam_ind, lasso_lam in enumerate(lasso_lambda): linear_reg.apply_leastsquares(order=ordr, test_ratio=test_ratio, reg_method="scikit_lasso", lmbda=lasso_lam) train_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, 0] = linear_reg.trainMSE test_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, 0] = linear_reg.testMSE train_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, 0] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, 0] = linear_reg.testR2 test_bias_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, 0] = linear_reg.testbias test_var_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, 0] = linear_reg.testvar elif reg_type == "lasso_bootstrap": for lasso_lam_ind, lasso_lam in enumerate(lasso_lambda): for boot_ind, n_boot in enumerate(n_boots): linear_reg.apply_leastsquares_bootstrap(order=ordr, test_ratio=test_ratio, n_boots=n_boot, reg_method="scikit_lasso", lmbda=lasso_lam) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, boot_ind, 0] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, boot_ind, 0] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, boot_ind, 0] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, boot_ind, 0] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, boot_ind, 0] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, boot_ind, 0] = linear_reg.testvar elif reg_type == "lasso_crossvalidation": for lasso_lam_ind, lasso_lam in enumerate(lasso_lambda): for fold_ind, k_fold in enumerate(k_folds): linear_reg.apply_leastsquares_crossvalidation(order=ordr, kfolds=k_fold, reg_method="scikit_lasso", lmbda=lasso_lam) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, fold_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, fold_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, fold_ind] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, fold_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, fold_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, lasso_lam_ind, 0, fold_ind] = linear_reg.testvar return train_MSE_arr, test_MSE_arr, train_R2_arr, test_R2_arr, test_bias_arr, test_var_arr def apply_regression_sgd(order, num_points, noise_var, test_ratios=np.zeros(1), reg_type="ols", ridge_lambda=np.ones(1), lasso_lambda=np.ones(1), n_boots=np.ones(1, dtype=int), k_folds=np.ones(1, dtype=int), learn_rate=np.ones(1), num_min_batch=np.ones(1), epochs=np.ones(1)): """ Apply specified linear regression method with stochastic gradient descent to data with given parameters :param order: order of polynomial which will be fitted :param num_points: number of points to be used for the simulation :param noise_var: noise variance to be used in Franke function :param test_ratios: size of testing data set :param reg_type: fitting method to be used :param ridge_lambda: lambda for ridge regression :param lasso_lambda: lambda for lasso regression :param n_boots: number of bootstraps :param k_folds: number of folds to be used in cross-validation :param learn_rate: learn rate for stochastic gradient descent :param num_min_batch: size of mini batches for stochastic gradient descent :param epochs: number of epochs for stochastic gradient descent """ # applies regression for multiple parameter combos train_MSE_arr = create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs) test_MSE_arr = create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs) train_R2_arr = create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs) test_R2_arr = create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs) # bias in test set test_bias_arr = create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs) # variance in test set test_var_arr = create_0(order, num_points, noise_var, test_ratios, ridge_lambda, lasso_lambda, n_boots, k_folds, learn_rate, num_min_batch, epochs) # Calculate statistical indicators for given regression type and different resampling methods for points_ind, num in enumerate(num_points): for noise_ind, var in enumerate(noise_var): # Create data from Franke function xx1, xx2, y = franke.create_data(num_points=num, noise_variance=var) # Create regression object linear_reg = linear_regression.linear_regression2D(xx1, xx2, y) for order_ind, ordr in enumerate(order): for ratio_ind, test_ratio in enumerate(test_ratios): if reg_type == "ols_sgd": for epoch_ind, epoch in enumerate(epochs): for learn_ind, learn_rat in enumerate(learn_rate): for batch_ind, num_batch in enumerate(num_min_batch): linear_reg.apply_leastsquares(order=ordr, test_ratio=test_ratio, reg_method="ols", num_epoch=epoch, learn_rate=learn_rat, num_min_batch=num_batch) train_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainMSE test_MSE_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testMSE train_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainR2 test_R2_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testR2 test_bias_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testbias test_var_arr[order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testvar elif reg_type == "ols_bootstrap_sgd": for boot_ind, n_boot in enumerate(n_boots): for epoch_ind, epoch in enumerate(epochs): for learn_ind, learn_rat in enumerate(learn_rate): for batch_ind, num_batch in enumerate(num_min_batch): linear_reg.apply_leastsquares_bootstrap(order=ordr, test_ratio=test_ratio, n_boots=n_boot, reg_method="ols", num_epoch=epoch, learn_rate=learn_rat, num_min_batch=num_batch) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainR2 test_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testvar elif reg_type == "ols_crossvalidation_sgd": # note test_ratio is of length one for crossvalidation. we don't need test ratio for fold_ind, k_fold in enumerate(k_folds): for epoch_ind, epoch in enumerate(epochs): for learn_ind, learn_rat in enumerate(learn_rate): for batch_ind, num_batch in enumerate(num_min_batch): linear_reg.apply_leastsquares_crossvalidation(order=ordr, kfolds=k_fold, reg_method="ols", num_epoch=epoch, learn_rate=learn_rat, num_min_batch=num_batch) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.trainR2 test_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, 0, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testvar elif reg_type == "ridge_sgd": for ridge_lam_ind, ridge_lam in enumerate(ridge_lambda): for epoch_ind, epoch in enumerate(epochs): for learn_ind, learn_rat in enumerate(learn_rate): for batch_ind, num_batch in enumerate(num_min_batch): linear_reg.apply_leastsquares(order=ordr, test_ratio=test_ratio, reg_method="ridge", lmbda=ridge_lam, num_epoch=epoch, learn_rate=learn_rat, num_min_batch=num_batch) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainR2 test_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testvar elif reg_type == "ridge_bootstrap_sgd": for ridge_lam_ind, ridge_lam in enumerate(ridge_lambda): for boot_ind, n_boot in enumerate(n_boots): for epoch_ind, epoch in enumerate(epochs): for learn_ind, learn_rat in enumerate(learn_rate): for batch_ind, num_batch in enumerate(num_min_batch): linear_reg.apply_leastsquares_bootstrap(order=ordr, test_ratio=test_ratio, n_boots=n_boot, reg_method="ridge", lmbda=ridge_lam, num_epoch=epoch, learn_rate=learn_rat, num_min_batch=num_batch) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.trainR2 test_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, boot_ind, 0, learn_ind, batch_ind, epoch_ind] = linear_reg.testvar elif reg_type == "ridge_crossvalidation_sgd": for ridge_lam_ind, ridge_lam in enumerate(ridge_lambda): for fold_ind, k_fold in enumerate(k_folds): for epoch_ind, epoch in enumerate(epochs): for learn_ind, learn_rat in enumerate(learn_rate): for batch_ind, num_batch in enumerate(num_min_batch): linear_reg.apply_leastsquares_crossvalidation(order=ordr, kfolds=k_fold, reg_method="ridge", lmbda=ridge_lam, num_epoch=epoch, learn_rate=learn_rat, num_min_batch=num_batch) train_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.trainMSE test_MSE_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testMSE train_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.trainR2 test_R2_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testR2 test_bias_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testbias test_var_arr[ order_ind, points_ind, noise_ind, ratio_ind, ridge_lam_ind, 0, 0, fold_ind, learn_ind, batch_ind, epoch_ind] = linear_reg.testvar return train_MSE_arr, test_MSE_arr, train_R2_arr, test_R2_arr, test_bias_arr, test_var_arr def get_data_path(): """ Get the directory from which the script is executed to load the data correctly. This is especially important for the execution in a jupyter notebook. """ current_path = os.getcwd() current_directory = current_path[current_path.rindex(os.sep) + 1:] if current_directory == 'examples': data_path = 'data_linear_regression/' elif current_directory == 'regression_analysis': data_path = 'examples/data_linear_regression/' elif current_directory == 'CompSci-Project-1': data_path = 'regression_analysis/examples/data_linear_regression/' else: raise Exception('This script is not in the correct directory.') return data_path def get_data_path_sgd(): """ Get the directory from which the scripts is executed to load the data correctly. This is especially important for the execution in a jupyter notebook. """ current_path = os.getcwd() current_directory = current_path[current_path.rindex(os.sep) + 1:] if current_directory == 'examples': data_path = 'data_linear_regression_sgd/' elif current_directory == 'regression_analysis': data_path = 'examples/data_linear_regression_sgd/' elif current_directory == 'CompSci-Project-1': data_path = 'regression_analysis/examples/data_linear_regression_sgd/' else: raise Exception('This script is not in the correct directory.') return data_path def get_data_statistic(data_path, statistic, method): """Load file with given statistical indicator and method.""" file_name = statistic.replace(' ', '_') + method + '.npy' return np.load(data_path + file_name) def plot_stat(ratio=0.1, num=100, stat="test MSE", method="ols", n_boot=1000, k_fold=1000, ridge_lmb=122.0, lasso_lmb=112.2): """ Create heatmap for given statistical indicator and sampling method :param ratio: ratio of the dataset to be used for testing :param num: length of dataset :param stat: statistical indicator :param method: resampling method :param n_boot: number of times bootstrap is performed if method=*_bootstrap :param k_fold: number of folds for cross-validation if method=*_crossvalidation :param ridge_lmb: lambda for ridge regression :param lasso_lmb: lambda for lasso regression """ # Path to example data data_path = get_data_path() # Load data order = np.load(data_path + "order.npy") num_points = np.load(data_path + "num_points.npy") noise_var = np.load(data_path + "noise_var.npy") test_ratio = np.load(data_path + "test_ratio.npy") ridge_lambda = np.load(data_path + "ridge_lambda.npy") k_folds =
np.load(data_path + "k_folds.npy")
numpy.load
import numpy as np import cv2 import random import time import math import torchvision.transforms as transforms import torchvision.transforms.functional as F from matplotlib.pyplot import imread, imsave import os import sys from PIL import Image import argparse args = argparse.ArgumentParser(description='the option of the degradation of EyeQ') args.add_argument('--degrade_dir', type=str, default='', help='degrade EyeQ dir') args.add_argument('--gt_dir', type=str, default='', help='high quality cropped image dir') args.add_argument('--output_dir', type=str, default='./temp', help='degraded output dir') args.add_argument('--mask_dir', type=str, default='./temp', help='mask output dir') args = args.parse_args() ''' ===== Gen Mask ==== ''' def _get_center_radius_by_hough(mask): circles = cv2.HoughCircles((mask*255).astype(np.uint8),cv2.HOUGH_GRADIENT,1,1000,param1=5,param2=5,minRadius=min(mask.shape)//4, maxRadius=max(mask.shape)//2+1) center = circles[0,0,:2] radius = circles[0,0,2] return center, radius def _get_circle_by_center_bbox(shape,center,bbox,radius): center_mask=np.zeros(shape=shape).astype('uint8') tmp_mask=np.zeros(shape=bbox[2:4]) center_tmp=(int(center[0]),int(center[1])) center_mask=cv2.circle(center_mask,center_tmp[::-1],int(radius),(1),-1) return center_mask def get_mask(img): if img.ndim ==3: g_img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) elif img.ndim == 2: g_img = img.copy() else: raise RuntimeError h,w = g_img.shape shape=g_img.shape[0:2] g_img = cv2.resize(g_img,(0,0),fx = 0.5,fy = 0.5) tg_img=cv2.normalize(g_img, None, 0, 255, cv2.NORM_MINMAX) tmp_mask=get_mask_BZ(tg_img) center, radius = _get_center_radius_by_hough(tmp_mask) #resize back center = [center[1]*2,center[0]*2] radius = int(radius*2) s_h = max(0,int(center[0] - radius)) s_w = max(0, int(center[1] - radius)) bbox = (s_h, s_w, min(h-s_h,2 * radius), min(w-s_w,2 * radius)) tmp_mask=_get_circle_by_center_bbox(shape,center,bbox,radius) return tmp_mask,bbox,center,radius def mask_image(img,mask): img[mask<=0,...]=0 return img def supplemental_black_area(img,border=None): image=img if border is None: h,v=img.shape[0:2] max_l=max(h,v) if image.ndim>2: image=np.zeros(shape=[max_l,max_l,img.shape[2]],dtype=img.dtype) else: image=np.zeros(shape=[max_l,max_l],dtype=img.dtype) border=(int(max_l/2-h/2),int(max_l/2-h/2)+h,int(max_l/2-v/2),int(max_l/2-v/2)+v,max_l) else: max_l=border[4] if image.ndim>2: image=np.zeros(shape=[max_l,max_l,img.shape[2]],dtype=img.dtype) else: image=np.zeros(shape=[max_l,max_l],dtype=img.dtype) image[border[0]:border[1],border[2]:border[3],...]=img return image,border def remove_back_area(img,bbox=None,border=None): image=img if border is None: border=np.array((bbox[0],bbox[0]+bbox[2],bbox[1],bbox[1]+bbox[3],img.shape[0],img.shape[1]),dtype=np.int) image=image[border[0]:border[1],border[2]:border[3],...] return image,border def get_mask_BZ(img): if img.ndim==3: gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: gray_img = img threhold = np.mean(gray_img)/3-7 _, mask = cv2.threshold(gray_img, max(0,threhold), 1, cv2.THRESH_BINARY) nn_mask = np.zeros((mask.shape[0]+2,mask.shape[1]+2),np.uint8) new_mask = (1-mask).astype(np.uint8) _,new_mask,_,_ = cv2.floodFill(new_mask, nn_mask, (0,0), (0), cv2.FLOODFILL_MASK_ONLY) _,new_mask,_,_ = cv2.floodFill(new_mask, nn_mask, (new_mask.shape[1]-1,new_mask.shape[0]-1), (0), cv2.FLOODFILL_MASK_ONLY) mask = mask + new_mask kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 20)) mask = cv2.erode(mask, kernel) mask = cv2.dilate(mask, kernel) return mask def preprocess(img): mask, bbox, center, radius = get_mask(img) r_img = mask_image(img, mask) # r_img, r_border = remove_back_area(r_img, bbox=bbox) # mask, _ = remove_back_area(mask, border=r_border) #r_img, sup_border = supplemental_black_area(r_img) #mask, _ = supplemental_black_area(mask, border=sup_border) print(r_img.shape) print(mask.shape) return r_img, (mask * 255).astype(np.uint8) ''' ===== Degrade ==== ''' def DE_COLOR(img, brightness=0.3, contrast=0.4, saturation=0.4): """Randomly change the brightness, contrast and saturation of an image""" if brightness > 0: brightness_factor = random.uniform(max(0.0, 1.0 - brightness), 1.0 + brightness - 0.1) # brightness factor img = F.adjust_brightness(img, brightness_factor) if contrast > 0: contrast_factor = random.uniform(max(0.0, 1.0 - contrast), 1.0 + contrast) # contrast factor img = F.adjust_contrast(img, contrast_factor) if saturation > 0: saturation_factor = random.uniform(max(0.0, 1.0 - saturation), 1.0 + saturation) # saturation factor img = F.adjust_saturation(img, saturation_factor) img = transform(img) img = img.numpy() color_params = {} color_params['brightness_factor'] = brightness_factor color_params['contrast_factor'] = contrast_factor color_params['saturation_factor'] = saturation_factor return img, color_params def DE_HALO(img, h, w, brightness_factor, center=None, radius=None): ''' Defined to simulate a 'ringlike' halo noise in fundus image :param weight_r/weight_g/weight_b: Designed to simulate 3 kinds of halo noise shown in Kaggle dataset. :param center_a/center_b: Position of each circle which is simulated the ringlike shape :param dia_a/dia_b: Size of each circle which is simulated the ringlike noise :param weight_hal0: Weight of added halo noise color :param sigma: Filter size for final Gaussian filter ''' weight_r = [251 / 255, 141 / 255, 177 / 255] weight_g = [249 / 255, 238 / 255, 195 / 255] weight_b = [246 / 255, 238 / 255, 147 / 255] # num if brightness_factor >= 0.2: num = random.randint(1, 2) else: num = random.randint(0, 2) w0_a = random.randint(w / 2 - int(w / 8), w / 2 + int(w / 8)) h0_a = random.randint(h / 2 - int(h / 8), h / 2 + int(h / 8)) center_a = [w0_a, h0_a] wei_dia_a = 0.75 + (1.0 - 0.75) * random.random() dia_a = min(h, w) * wei_dia_a Y_a, X_a = np.ogrid[:h, :w] dist_from_center_a = np.sqrt((X_a - center_a[0]) ** 2 + (Y_a - center_a[1]) ** 2) circle_a = dist_from_center_a <= (int(dia_a / 2)) mask_a = np.zeros((h, w)) mask_a[circle_a] = np.mean(img) # np.multiply(A[0], (1 - t)) center_b = center_a Y_b, X_b = np.ogrid[:h, :w] dist_from_center_b =
np.sqrt((X_b - center_b[0]) ** 2 + (Y_b - center_b[1]) ** 2)
numpy.sqrt
import warnings from logging import getLogger from typing import Callable, Union, Iterable, Tuple, Sequence import numpy as np from matplotlib.axes import Axes from matplotlib.colors import to_rgba from pandas import DataFrame from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns from seaborn.utils import iqr, remove_na from seaborn.categorical import _CategoricalPlotter, _CategoricalScatterPlotter __all__ = ["half_violinplot", "stripplot", "distplot"] log = getLogger(__name__) class _StripPlotter(_CategoricalScatterPlotter): """1-d scatterplot with categorical organization.""" def __init__( self, x, y, hue, data, order, hue_order, jitter, dodge, orient, color, palette, width, move, ): """Initialize the plotter.""" self.establish_variables(x, y, hue, data, orient, order, hue_order) self.establish_colors(color, palette, 1) # Set object attributes self.dodge = dodge self.width = width self.move = move if jitter == 1: # Use a good default for `jitter = True` jlim = 0.1 else: jlim = float(jitter) if self.hue_names is not None and dodge: jlim /= len(self.hue_names) self.jitterer = stats.uniform(-jlim, jlim * 2).rvs def draw_stripplot(self, ax, kws): """Draw the points onto `ax`.""" # Set the default zorder to 2.1, so that the points # will be drawn on top of line elements (like in a boxplot) for i, group_data in enumerate(self.plot_data): if self.plot_hues is None or not self.dodge: if self.hue_names is None: hue_mask = np.ones(group_data.size, np.bool) else: hue_mask = np.array( [h in self.hue_names for h in self.plot_hues[i]], np.bool, ) # Broken on older numpys # hue_mask = np.in1d(self.plot_hues[i], self.hue_names) strip_data = group_data[hue_mask] # Plot the points in centered positions cat_pos = self.move + np.ones(strip_data.size) * i cat_pos += self.jitterer(len(strip_data)) kws.update(c=self.point_colors[i][hue_mask]) if self.orient == "v": ax.scatter(cat_pos, strip_data, **kws) else: ax.scatter(strip_data, cat_pos, **kws) else: offsets = self.hue_offsets for j, hue_level in enumerate(self.hue_names): hue_mask = self.plot_hues[i] == hue_level strip_data = group_data[hue_mask] # Plot the points in centered positions center = i + offsets[j] cat_pos = self.move + np.ones(strip_data.size) * center cat_pos += self.jitterer(len(strip_data)) kws.update(c=self.point_colors[i][hue_mask]) if self.orient == "v": ax.scatter(cat_pos, strip_data, **kws) else: ax.scatter(strip_data, cat_pos, **kws) def plot(self, ax, kws): """Make the plot.""" self.draw_stripplot(ax, kws) self.add_legend_data(ax) self.annotate_axes(ax) if self.orient == "h": ax.invert_yaxis() class _Half_ViolinPlotter(_CategoricalPlotter): def __init__( self, x, y, hue, data, order, hue_order, bw, cut, scale, scale_hue, alpha, gridsize, width, inner, split, dodge, orient, linewidth, color, palette, saturation, offset, ): self.establish_variables(x, y, hue, data, orient, order, hue_order) self.establish_colors(color, palette, saturation) self.estimate_densities(bw, cut, scale, scale_hue, gridsize) self.gridsize = gridsize self.width = width self.dodge = dodge self.offset = offset self.alpha = alpha if inner is not None: if not any( [ inner.startswith("quart"), inner.startswith("box"), inner.startswith("stick"), inner.startswith("point"), ] ): err = "Inner style '{}' not recognized".format(inner) raise ValueError(err) self.inner = inner if split and self.hue_names is not None and len(self.hue_names) < 2: msg = "There must be at least two hue levels to use `split`.'" raise ValueError(msg) self.split = split if linewidth is None: linewidth = mpl.rcParams["lines.linewidth"] self.linewidth = linewidth def estimate_densities(self, bw, cut, scale, scale_hue, gridsize): """Find the support and density for all of the data.""" # Initialize data structures to keep track of plotting data if self.hue_names is None: support = [] density = [] counts = np.zeros(len(self.plot_data)) max_density = np.zeros(len(self.plot_data)) else: support = [[] for _ in self.plot_data] density = [[] for _ in self.plot_data] size = len(self.group_names), len(self.hue_names) counts = np.zeros(size) max_density = np.zeros(size) for i, group_data in enumerate(self.plot_data): # Option 1: we have a single level of grouping # -------------------------------------------- if self.plot_hues is None: # Strip missing datapoints kde_data = remove_na(group_data) # Handle special case of no data at this level if kde_data.size == 0: support.append(np.array([])) density.append(np.array([1.0])) counts[i] = 0 max_density[i] = 0 continue # Handle special case of a single unique datapoint elif np.unique(kde_data).size == 1: support.append(np.unique(kde_data)) density.append(np.array([1.0])) counts[i] = 1 max_density[i] = 0 continue # Fit the KDE and get the used bandwidth size kde, bw_used = self.fit_kde(kde_data, bw) # Determine the support grid and get the density over it support_i = self.kde_support(kde_data, bw_used, cut, gridsize) density_i = kde.evaluate(support_i) # Update the data structures with these results support.append(support_i) density.append(density_i) counts[i] = kde_data.size max_density[i] = density_i.max() # Option 2: we have nested grouping by a hue variable # --------------------------------------------------- else: for j, hue_level in enumerate(self.hue_names): # Handle special case of no data at this category level if not group_data.size: support[i].append(np.array([])) density[i].append(np.array([1.0])) counts[i, j] = 0 max_density[i, j] = 0 continue # Select out the observations for this hue level hue_mask = self.plot_hues[i] == hue_level # Strip missing datapoints kde_data = remove_na(group_data[hue_mask]) # Handle special case of no data at this level if kde_data.size == 0: support[i].append(np.array([])) density[i].append(
np.array([1.0])
numpy.array
import sys import json import pickle import random from pathlib import Path import csv import hashlib import numpy as np import open3d as o3d from loguru import logger as logging from tools.tests.ray_ground_filter import RayGroundFilter from tools.tests.object_utils import Box, ObjectWithBox, ObjectManipulator, VisualizerSequence # set seed for debug seed = random.randrange(sys.maxsize) # seed = 1000 random.seed(seed) logging.info('Random seed: {}'.format(seed)) class SceneGenerator(object): def __init__(self, cloud_data_folder, output_folder): self.cloud_data_folder = cloud_data_folder self.output_folder = output_folder self.output_cloud_file = None # path to save output cloud .bin file self.output_label_file = None # path to save output label .txt file self.label_data_dict = None # label data dict of the original scene self.scene_labels = None # label data dict of the generated scene self.output_file_name = None self.cloud = None # cloud as numpy ndarray type self.pcd = None # cloud as Open3d type self.scene_points = None # generated scene cloud as numpy ndarray type self.point_distance_buffer = None self.lidar_mask_buffer = None self.selected_objects = list() self.labels_of_objects = list() self.labels_of_valid_objects = list() self.object_manipulator = None self.create_object_manipulator() # num of each classes in a scene self.num_of_objects = {'Car': 15, 'Truck': 5, 'Tricar': 5, 'Cyclist': 10, 'Pedestrian': 10} # radial distance range of each classes in a scene, can be set as absolute or relative # -- absolute # self.range_of_distances = {'Car': [5.0, 100.0], # 'Truck': [8.0, 120.0], # 'Tricar': [5.0, 80.0], # 'Cyclist': [5.0, 80.0], # 'Pedestrian': [5.0, 60.0]} # -- relative self.range_of_distances = {'Car': [-10.0, 10.0], 'Truck': [-10.0, 10.0], 'Tricar': [-10.0, 10.0], 'Cyclist': [-10.0, 10.0], 'Pedestrian': [-10.0, 10.0]} # additional random rotation angle range applied to each object self.additional_rotation_range = 30.0 # deg # elevation angle range set to each object to control its height self.elevation_angle_range = 2.0 # deg def create_object_manipulator(self): # configure the object manipulator and the transform between the original lidar frame and current frame origin_lidar_rotation = [3.13742, -3.1309, 3.14101] origin_lidar_location = [-2.87509, -0.00462392, 1.83632] self.object_manipulator = ObjectManipulator() self.object_manipulator.init_lidar_transform(origin_lidar_rotation, origin_lidar_location) # configure lidar elevation angle distribution lidar_elevation_file = 'test_data/VLS-128-Figure9-8-Azimuth Offsets by Elevation.csv' azimuth_angle_increment = 0.2 # deg ring_index = list() elevation_angle = list() with open(lidar_elevation_file, newline='') as csvfile: csvreader = csv.reader(csvfile, delimiter=',') line_num = 0 for row in csvreader: if line_num > 0: ring_index.append(int(row[0])) elevation_angle.append(float(row[1])) line_num += 1 self.object_manipulator.init_lidar_param(ring_index, elevation_angle, azimuth_angle_increment) def remove_original_objects(self): self.pcd = o3d.geometry.PointCloud() self.pcd.points = o3d.utility.Vector3dVector(self.cloud[:, :3]) # -- iterate for each object objs = self.label_data_dict['gts'] for p in objs: # ignore DontCare objects if p['class_name'] == 'DontCare': continue # construct 3d box bbox = o3d.geometry.OrientedBoundingBox( center=p['location'], R=o3d.geometry.OrientedBoundingBox.get_rotation_matrix_from_xyz(p['rotation']), extent=p['dimension'], ) # crop the object points object_points = self.pcd.crop(bbox) # check if not empty if np.asarray(object_points.points).shape[0] == 0: continue # remove the object with distance threshold dist_threshold = 1e-3 # m, it should be very small, since ideally the min distance is 0 non_ground_to_object_distance = np.asarray(self.pcd.compute_point_cloud_distance(object_points)) remain_points_mask = non_ground_to_object_distance > dist_threshold remain_points_indices = np.nonzero(remain_points_mask) self.pcd = self.pcd.select_down_sample(remain_points_indices[0]) def random_select_candidate_objects(self, objects_data): class_num = len(objects_data) candidate_object_num = 0 added_object_points_for_collision_test = o3d.geometry.PointCloud() logging.info('Random selecting candidate objects...') for i in range(class_num): class_name = objects_data[i]['class_name'] samples = random.sample(objects_data[i]['objects'], self.num_of_objects[class_name]) # randomly place the object with polar coordinates for sample in samples: # manipulate the object self.object_manipulator.init_object(sample, class_name) # -- first mirror the object points self.object_manipulator.mirror_object_points() # -- then rotate and move in lidar frame self.object_manipulator.lidar_rotate_and_move_object( rotation_z_angle=random.uniform(0.0, 360.0), radial_distance=random.uniform(self.range_of_distances[class_name][0], self.range_of_distances[class_name][1]), absolute_distance=False) # -- then rotate and elevate itself self.object_manipulator.self_rotate_and_elevate_object( rotation_z_angle=random.uniform(-self.additional_rotation_range, self.additional_rotation_range), elevation_angle=random.uniform(-self.elevation_angle_range, self.elevation_angle_range)) # -- then check if collision happens with previous boxes if self.check_box_collision(self.object_manipulator.object.box3d, added_object_points_for_collision_test): continue # -- finally resample with the lidar if not self.object_manipulator.resample_by_lidar(): # if failed to get resampled object, skip continue # add object to list self.selected_objects.append({'class_name': class_name, 'object_data': self.object_manipulator.object}) # debug # object_pcd = o3d.geometry.PointCloud() # object_pcd.points = o3d.utility.Vector3dVector(self.object_manipulator.object.cloud_points) # o3d.visualization.draw_geometries([object_pcd]) # add label to the object self.labels_of_objects.append(self.object_manipulator.get_object_label()) # update object id candidate_object_num += 1 logging.info('Candidate object num: {}'.format(candidate_object_num)) def sort_by_distance(self): object_list_for_sort = list() for sample, label in zip(self.selected_objects, self.labels_of_objects): # compute object's distance to lidar location_homogeneous = np.append(sample['object_data'].box3d.location, 1) location_in_lidar_frame = np.matmul( self.object_manipulator.transform_current_to_origin_lidar, location_homogeneous) distance_to_lidar = np.linalg.norm(location_in_lidar_frame[:2]) object_list_for_sort.append([sample, label, distance_to_lidar]) object_list_for_sort.sort(key=lambda object: object[2]) for i in range(len(object_list_for_sort)): self.selected_objects[i] = object_list_for_sort[i][0] self.labels_of_objects[i] = object_list_for_sort[i][1] def add_object_to_scene(self, object, points_num_threshold=50): object_points = object['object_data'].cloud_points.copy() object_pcd = o3d.geometry.PointCloud() object_pcd.points = o3d.utility.Vector3dVector(object_points[:, :3]) # transform the object points to lidar frame # -- first recover translation from the location of 3D box object_pcd.translate(object['object_data'].box3d.location) # -- then apply the transformation to lidar frame object_pcd.transform(self.object_manipulator.transform_current_to_origin_lidar) # -- finally update points in numpy ndarray object_points = np.asarray(object_pcd.points) # add to all cloud with occlusion handling # -- backup buffer in case not enough valid points point_distance_buffer_backup = self.point_distance_buffer.copy() valid_points_num = \ self.handle_occlusion(object_points, use_lidar_mask=False, update_lidar_mask=True) if valid_points_num <= points_num_threshold: # restore previous point_distance_buffer self.point_distance_buffer = point_distance_buffer_backup return valid_points_num def check_box_collision(self, box3d, added_objects_points): # construct open3d box current_box = o3d.geometry.OrientedBoundingBox( center=box3d.location, R=o3d.geometry.OrientedBoundingBox.get_rotation_matrix_from_xyz(box3d.rotation), extent=box3d.dimension, ) # check with previously added box points if np.asarray(added_objects_points.points).shape[0] > 0: intersection_points = added_objects_points.crop(current_box) if np.asarray(intersection_points.points).shape[0] > 0: return True # randomly generate points of current box current_box_pcd = o3d.geometry.PointCloud() step = 0.2 box_points = np.mgrid[-0.5 * box3d.dimension[0]:0.5 * box3d.dimension[0]:step, -0.5 * box3d.dimension[1]:0.5 * box3d.dimension[1]:step, -0.5 * box3d.dimension[2]:0.5 * box3d.dimension[2]:step].T.reshape(-1, 3) current_box_pcd.points = o3d.utility.Vector3dVector(box_points) # -- transform with box's location and rotation transformation = np.eye(4) transformation[:3, :3] = o3d.geometry.OrientedBoundingBox.get_rotation_matrix_from_xyz(box3d.rotation) transformation[:3, 3] = box3d.location current_box_pcd.transform(transformation) # check with ego box ego_box = o3d.geometry.OrientedBoundingBox( center=self.object_manipulator.transform_origin_lidar_to_current[:3, 3], R=self.object_manipulator.transform_origin_lidar_to_current[:3, :3], extent=np.array([4.5, 1.8, 1.6]) * 1.2, ) # -- crop and check if intersecting intersection_points = current_box_pcd.crop(ego_box) if np.asarray(intersection_points.points).shape[0] > 0: return True # debug # current_box_pcd.paint_uniform_color([1.0, 0.0, 0.0]) # added_objects_points.paint_uniform_color([0.0, 1.0, 0.0]) # o3d.visualization.draw_geometries([current_box_pcd, added_objects_points]) # add points of current box to previous cloud added_objects_points += current_box_pcd return False def handle_occlusion(self, points, use_lidar_mask=False, update_lidar_mask=False): azimuth_angle_start = -np.pi XYZ_range_distances = np.linalg.norm(points[:, :3], axis=1) XY_range_distances = np.linalg.norm(points[:, :2], axis=1) azimuth_angles = np.arctan2(points[:, 1], points[:, 0]) elevation_angles = np.arctan2(points[:, 2], XY_range_distances) valid_points_num = 0 for i in range(points.shape[0]): # compute azimuth index azimuth_index = \ np.floor((azimuth_angles[i] - azimuth_angle_start) / np.radians(self.object_manipulator.lidar_azimuth_angle_increment)).astype('int') # find elevation index elevation_index = min(range(len(self.object_manipulator.lidar_elevation_angle)), key=lambda j: abs(self.object_manipulator.lidar_elevation_angle[j] - np.degrees(elevation_angles[i]))) # update the distance if not masked and assigned yet lidar_mask = False if not use_lidar_mask else self.lidar_mask_buffer[azimuth_index, elevation_index] point_distance = self.point_distance_buffer[azimuth_index, elevation_index] if not lidar_mask and point_distance < 0: # update distance self.point_distance_buffer[azimuth_index, elevation_index] = XYZ_range_distances[i] if update_lidar_mask: # update mask self.update_lidar_mask(self.lidar_mask_buffer, azimuth_index, elevation_index, mask_window_size=5) # increase valid num valid_points_num += 1 return valid_points_num def update_lidar_mask(self, lidar_mask_buffer, azimuth_index, elevation_index, mask_window_size=3): azimuth_angle_num = self.object_manipulator.lidar_azimuth_angle_num min_azimuth_index = azimuth_index - mask_window_size max_azimuth_index = azimuth_index + mask_window_size azimuth_index_range = np.array(range(min_azimuth_index, max_azimuth_index)) % azimuth_angle_num elevation_angle_num = self.object_manipulator.lidar_elevation_angle_num min_elevation_index = elevation_index - mask_window_size max_elevation_index = elevation_index + mask_window_size elevation_index_range = np.array(range(min_elevation_index, max_elevation_index)) % elevation_angle_num lidar_mask_buffer[np.ix_(azimuth_index_range, elevation_index_range)] = True def add_background_points_to_scene(self, valid_object_indices, background_pcd): # first remove points in objects' boxes for valid_object_index in valid_object_indices: # construct 3d box box_info = self.selected_objects[valid_object_index]['object_data'] bbox = o3d.geometry.OrientedBoundingBox( center=box_info.box3d.location, R=o3d.geometry.OrientedBoundingBox.get_rotation_matrix_from_xyz(box_info.box3d.rotation), extent=box_info.box3d.dimension, ) # crop the object points object_points = background_pcd.crop(bbox) if np.asarray(object_points.points).shape[0] == 0: # no points to remove continue # remove the object with distance threshold dist_threshold = 1e-3 # m, it should be very small, since ideally the min distance is 0 non_ground_to_object_distance = np.asarray(background_pcd.compute_point_cloud_distance(object_points)) remain_points_mask = non_ground_to_object_distance > dist_threshold remain_points_indices = np.nonzero(remain_points_mask) background_pcd = background_pcd.select_down_sample(remain_points_indices[0]) # then transform to lidar frame background_pcd.transform(self.object_manipulator.transform_current_to_origin_lidar) # then handle the occlusion when add it to buffer using lidar mask created by objects background_points = np.asarray(background_pcd.points) valid_background_points_num = \ self.handle_occlusion(background_points, use_lidar_mask=True, update_lidar_mask=False) logging.info('All background points: {}'.format(background_points.shape[0])) logging.info('Valid background points in the scene: {}'.format(valid_background_points_num)) def generate_scene(self, label_data_dict, objects_data, with_ground=True): self.label_data_dict = label_data_dict.copy() # set output file self.output_file_name = Path(label_data_dict['path']).name # load cloud data cloud_path = Path(self.cloud_data_folder).joinpath(self.label_data_dict['path']).as_posix() cloud = np.fromfile(cloud_path, dtype=np.float32) cloud = cloud.reshape((-1, 4)) # remove points far under or over ground z_filt = np.logical_and(cloud[:, 2] > -10.0, cloud[:, 2] < 30.0) self.cloud = cloud[z_filt, :] # remove objects from the original cloud self.remove_original_objects() # randomly select objects self.random_select_candidate_objects(objects_data) # sort objects by radial distance, in order to add object from close to far self.sort_by_distance() # combine all objects # -- construct a 2D polar buffer for occlusion handling # -- azimuth angle range: -pi ~ pi azimuth_angle_start = -np.pi azimuth_angle_num = self.object_manipulator.lidar_azimuth_angle_num elevation_angle_num = self.object_manipulator.lidar_elevation_angle_num # -- create XYZ-range distance buffer for each ray self.point_distance_buffer = np.full((azimuth_angle_num, elevation_angle_num), -1.0) # -- create lidar mask for handling occlusion of objects. True means occupied by objects self.lidar_mask_buffer = np.full((azimuth_angle_num, elevation_angle_num), False) logging.info('Adding objects...') valid_object_indices = list() for i in range(len(self.selected_objects)): object = self.selected_objects[i] valid_points_num_threshold = 50 valid_points_num = self.add_object_to_scene(object, points_num_threshold=valid_points_num_threshold) if valid_points_num > valid_points_num_threshold: valid_label = self.labels_of_objects[i] valid_label['num_points'] = valid_points_num self.labels_of_valid_objects.append(valid_label) # logging.info("Valid object #{}, points: {}".format(i, valid_points_num)) logging.info('Valid objects in the scene: {}'.format(len(self.labels_of_valid_objects))) logging.info('Objects points in the scene: {}'.format(np.count_nonzero(self.point_distance_buffer > 0))) if not with_ground: # split ground and non-ground points rgf = RayGroundFilter(refinement_mode='nearest_neighbor') ground_points, non_ground_points = rgf.filter(np.asarray(self.pcd.points)) non_ground_pcd = o3d.geometry.PointCloud() non_ground_pcd.points = o3d.utility.Vector3dVector(non_ground_points[:, :3]) # show results for debug # o3d.visualization.draw_geometries([non_ground_pcd]) # add the non-ground points self.add_background_points_to_scene(valid_object_indices, non_ground_pcd) else: # add all background points self.add_background_points_to_scene(valid_object_indices, self.pcd) # convert points from polar coordinates to XYZ scene_points_list = list() for azimuth_index, elevation_index in np.ndindex(self.point_distance_buffer.shape): # ignore empty buffer xyz_range_distance = self.point_distance_buffer[azimuth_index, elevation_index] if xyz_range_distance < 0: continue # compute point coordinates azimuth_angle = azimuth_angle_start + \ azimuth_index * np.radians(self.object_manipulator.lidar_azimuth_angle_increment) elevation_angle = np.radians(self.object_manipulator.lidar_elevation_angle[elevation_index]) x = xyz_range_distance * np.cos(elevation_angle) * np.cos(azimuth_angle) y = xyz_range_distance * np.cos(elevation_angle) * np.sin(azimuth_angle) z = xyz_range_distance * np.sin(elevation_angle) # add to buffer scene_points_list.append([x, y, z]) self.scene_points = np.array(scene_points_list) # transform back to current frame scene_pcd = o3d.geometry.PointCloud() scene_pcd.points = o3d.utility.Vector3dVector(self.scene_points[:, :3]) scene_pcd.transform(self.object_manipulator.transform_origin_lidar_to_current) self.scene_points = np.asarray(scene_pcd.points) def save_scene_cloud_to_file(self): self.output_cloud_file = Path(self.output_folder).joinpath(self.output_file_name) # add intensity scene_points_with_intensity =
np.zeros((self.scene_points.shape[0], 4))
numpy.zeros
import numpy as np from nnreg.model import Model error_tolerance = 1e-10 def test_accuracy(): y_data = np.asarray([[0, 0, 1, 0]]) y_pred =
np.asarray([[1, 0, 0, 0]])
numpy.asarray
""" Implementation of vanishing point detection methods. """ ########### # Imports # ########### import cv2 import numpy as np from abc import ABC, abstractmethod from itertools import product from skimage import color, feature, transform from typing import List, Tuple, Union ########## # Typing # ########## Image = np.array Point = Tuple Line = Tuple[Point, Point] Edgelets = Tuple[np.array] Intermediate = List[Image] ########### # Classes # ########### class VPDetector(ABC): """ Abstract class used to define a vanishing point detector. Each vanishing point detector must inherit this class. """ def __init__(self, export: bool = False): """ When the 'export' flag is True, the method returns the vanishing point and all intermediate results. When the 'export' flag is False, the method only returns the vanishing point. """ super().__init__() self.export = export @abstractmethod def detect(self, img: Image) -> Union[Point, Tuple[Point, Intermediate]]: """ Return the coordinates, in pixels, of the vanishing point of the image (and eventually all intermediate results). """ pass class VPClassic(VPDetector): """ Implementation of a vanishing point detector based on classic methods (Canny's algorithm and Hough transform). """ def __init__(self, export=False): super().__init__(export) # Specific def _preprocess(self, img: Image) -> Image: # Bilateral filtering d = 10 sigma_color = 10 sigma_space = 100 img = cv2.bilateralFilter( img, d, sigma_color, sigma_space ) return img def _edges(self, img: Image) -> Image: # Canny's algorithm median = np.median(img) sigma = 0.33 lo_thresh = int(max(0, (1.0 - sigma) * median)) hi_thresh = int(min(255, (1.0 + sigma) * median)) filter_size = 3 img = cv2.Canny( img, lo_thresh, hi_thresh, apertureSize=filter_size, L2gradient=True ) return img def _lines(self, img: Image) -> List[Line]: h, w = img.shape # Hough transform rho = 1 theta = np.pi / 180 thresh = 10 min_line_length = w // 40 max_line_gap = w // 256 lines = cv2.HoughLinesP( img, rho, theta, thresh, minLineLength=min_line_length, maxLineGap=max_line_gap ) # Get and filter end points if lines is None: return [] xy_thresh = w // 25 pts = [] for line in lines: x1, y1, x2, y2 = line[0] if abs(x1 - x2) > xy_thresh and abs(y1 - y2) > xy_thresh: pts.append(((x1, y1), (x2, y2))) return pts def _intersections(self, lines: List[Line]) -> List[Point]: if len(lines) == 0: return [] inters = [] def det(a, b): return a[0] * b[1] - a[1] * b[0] for i, l1 in enumerate(lines): for l2 in lines[i + 1:]: if not l1 == l2: x_diff = (l1[0][0] - l1[1][0], l2[0][0] - l2[1][0]) y_diff = (l1[0][1] - l1[1][1], l2[0][1] - l2[1][1]) div = det(x_diff, y_diff) if div == 0: continue d = (det(*l1), det(*l2)) x = det(d, x_diff) / div y = det(d, y_diff) / div inters.append((x, y)) return inters # Abstract interface def detect(self, img): """ This implementation is largely inspired from: - https://github.com/SZanlongo/vanishing-point-detection """ # Color convention img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Image dimensions h, w, _ = img.shape # Grid dimensions grid_size = min(h, w) // 5 rows = (h // grid_size) + 1 cols = (w // grid_size) + 1 # Initialize guess (cell with most intersections) max_inter = 0 guess = (0.0, 0.0) # Process preprocessed = self._preprocess(img) edges = self._edges(preprocessed) lines = self._lines(edges) intersections = self._intersections(lines) # Output if self.export: vp = img.copy() # Find best cell if len(intersections) > 0: for i, j in product(range(cols), range(rows)): left = i * grid_size right = (i + 1) * grid_size bottom = j * grid_size top = (j + 1) * grid_size if self.export: cv2.rectangle( vp, (left, bottom), (right, top), (0, 0, 255), 2 ) n_inter = 0 for x, y in intersections: if left < x < right and bottom < y < top: n_inter += 1 if n_inter > max_inter: max_inter = n_inter guess = ((left + right) / 2, (bottom + top) / 2) if self.export: # Draw lines img_lines = img.copy() if len(lines) > 0: for p1, p2 in lines: cv2.line(img_lines, p1, p2, (0, 0, 255), 2) # Draw best cell gx, gy = guess mgs = grid_size / 2 rx1 = int(gx - mgs) ry1 = int(gy - mgs) rx2 = int(gx + mgs) ry2 = int(gy + mgs) cv2.rectangle(vp, (rx1, ry1), (rx2, ry2), (0, 255, 0), 3) return guess, [preprocessed, edges, img_lines, vp] return guess class VPEdgelets(VPDetector): """ Implementation of a vanishing point detector based on edgelets and RANSAC. Inspired from: - Auto-Rectification of User Photos, Chaudhury et al. - https://github.com/chsasank/Image-Rectification """ def __init__(self, export=False): super().__init__(export) # Specific def _edgelets(self, img: Image) -> Edgelets: """ Compute edgelets of an image. """ # Edges gray = color.rgb2gray(img) edges = feature.canny(gray, sigma=0.3) # Lines lines = transform.probabilistic_hough_line( edges, line_length=3, line_gap=2 ) locations, directions, strengths = [], [], [] for p0, p1 in lines: p0, p1 = np.array(p0), np.array(p1) locations.append((p0 + p1) / 2) directions.append(p1 - p0) strengths.append(np.linalg.norm(p1 - p0)) # Normalize locations = np.array(locations) directions = np.array(directions) strengths = np.array(strengths) norm = np.linalg.norm(directions, axis=1)[:, np.newaxis] directions = np.divide(directions, norm) return locations, directions, strengths def _lines(self, edgelets: Edgelets) -> np.array: """ Compute lines from edgelets. """ locations, directions, _ = edgelets normals = np.zeros_like(directions) normals[:, 0] = directions[:, 1] normals[:, 1] = -directions[:, 0] p = -np.sum(locations * normals, axis=1) lines = np.concatenate((normals, p[:, np.newaxis]), axis=1) return lines def _votes(self, edgelets: Edgelets, model: np.array) -> int: """ Compute votes for each of the edgelet against a given vanishing point. """ threshold_inlier = 5 vp = model[:2] / model[2] locations, directions, strengths = edgelets est_directions = locations - vp dot_prod =
np.sum(est_directions * directions, axis=1)
numpy.sum
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test circuits and reference outputs for snapshot state instructions. """ from numpy import array, sqrt from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.providers.aer.extensions.snapshot import Snapshot from qiskit.providers.aer.extensions.snapshot_statevector import * def snapshot_state_circuits_deterministic(snapshot_label='snap', snapshot_type='statevector', post_measure=False): """Snapshot Statevector test circuits""" circuits = [] num_qubits = 3 qr = QuantumRegister(num_qubits) cr = ClassicalRegister(num_qubits) regs = (qr, cr) # State snapshot instruction acting on all qubits snapshot = Snapshot(snapshot_label, snapshot_type, num_qubits) # Snapshot |000> circuit = QuantumCircuit(*regs) if not post_measure: circuit.append(snapshot, qr) circuit.barrier(qr) circuit.measure(qr, cr) if post_measure: circuit.append(snapshot, qr) circuits.append(circuit) # Snapshot |111> circuit = QuantumCircuit(*regs) circuit.x(qr) if not post_measure: circuit.append(snapshot, qr) circuit.barrier(qr) circuit.measure(qr, cr) if post_measure: circuit.append(snapshot, qr) circuits.append(circuit) return circuits def snapshot_state_counts_deterministic(shots): """Snapshot Statevector test circuits reference counts.""" targets = [] # Snapshot |000> targets.append({'0x0': shots}) # Snapshot |111> targets.append({'0x7': shots}) return targets def snapshot_state_pre_measure_statevector_deterministic(): """Snapshot Statevector test circuits reference final statevector""" targets = [] # Snapshot |000> targets.append(
array([1, 0, 0, 0, 0, 0, 0, 0], dtype=complex)
numpy.array
# -*- coding: utf-8 -*- """ Copyright (c) 2019 <NAME> pySME is a Python script to run R SME package (https://cran.r-project.org/web/packages/sme/index.html). SME package generates smoothing-splines mixed-effects models from metabolomics data. This script follows methodology given by Berk et al. (2011) and utilizes bootstrapping to approximate p-values. Running this script requires R with SME package installed. """ import os import numpy as np from scipy import interpolate import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri import statsmodels.stats.multitest as smm import time import copy import smeutils smePack = importr('sme', lib_loc="C:/Users/user/Documents/R/win-library/3.6") statsPack = importr('stats') # Settings ==================================================================== # Input files info = pd.read_csv('./sme_info.csv') data = pd.read_csv('./sme_data.csv') info_arr = np.array(info) data_fid = np.array(data.columns) data_arr = np.array(data) selIdx = np.arange(len(data_fid)) # Parameters RUN = True N = 12 # Number of subjects t_n = 4 # Number of time points iplN = 100 # Number of interpolated time points n_bootstrap = 500 # Number of bootstrap sampling selIdx = selIdx[:] # List of metabolites to analyze relative = False # Scale data to initial values correctOutlier = False SAVE = False USEMEAN = True # SME Parameters ctra = "AICc" # Criteria init_l_mc = 1e-8 # Initial lambda_mu init_l_vc = 1e-8 # Initial lambda_v init_l_mt = 5e-8 # Initial lambda_mu init_l_vt = 5e-8 # Initial lambda_v maxIter = 100000 # Maximum iteration deltaEM = 1e-3 # Threshold for expetation maximization deltaNM = 1e-3 # Threshold for nelder mead normalizeTime = True seed = 1234 # RNG seed showFig = False # Flag to plot figures figSize = (20,16) # Size of figures plotLegend = False # Flag to plot legend colorMap = 'viridis' # kwarg for colormap plotSMEMeanOnly = False # Only plot SME mean trace mergePlot = True # Merge multiple plots plotHeatmap = False # Plot heatmap comparing two data groups t = np.array([1,3,5,7]) iplT = np.linspace(1, 7, iplN) iplTIdx = np.empty(t_n) for i in range(t_n): iplTIdx[i] = np.where(iplT == t[i])[0] iplTIdx = iplTIdx.astype(int) sel = np.array([data_fid[selIdx]]).flatten() #============================================================================== np.random.seed(seed) # Set seed #============================================================================== if relative: data = smeutils.normalizeData(data, N, t_n, data_fid) #============================================================================== t0 = time.time() fulldataRaw = pd.concat([info,data], axis=1) fulldataRaw = fulldataRaw.astype('float64') fulldata = copy.deepcopy(fulldataRaw) fulldata = fulldata.drop(fulldata.index[16]) # ind 5 has an outlier if correctOutlier: fulldata = smeutils.correctOutlier(fulldata, sel, t, t_n) # Initialize ================================================================== grp0_f = fulldata[(fulldata.grp == 0)]['ind'] grp1_f = fulldata[(fulldata.grp == 1)]['ind'] grp0 = np.unique(fulldata[(fulldata.grp == 0)]['ind']) grp1 = np.unique(fulldata[(fulldata.grp == 1)]['ind']) pandas2ri.activate() fd_ri = pandas2ri.py2ri(fulldata) fd_rigrp0 = fd_ri.rx(fd_ri.rx2("grp").ro == 0, True) fd_rigrp1 = fd_ri.rx(fd_ri.rx2("grp").ro == 1, True) fd_rigrp0tme = fd_rigrp0.rx2("tme") fd_rigrp0ind = fd_rigrp0.rx2("ind") fd_rigrp1tme = fd_rigrp1.rx2("tme") fd_rigrp1ind = fd_rigrp1.rx2("ind") ys0mu = np.empty((len(sel), iplN)) ys1mu = np.empty((len(sel), iplN)) ys0vHat = np.empty((len(sel), len(grp0), iplN)) ys1vHat = np.empty((len(sel), len(grp1), iplN)) l2 = np.empty(len(sel)) se = np.empty(len(sel)) se0 = np.empty((len(sel), len(grp0))) se1 = np.empty((len(sel), len(grp1))) sem = np.empty(len(sel)) tval = np.empty(len(sel)) ys0v = np.empty((len(sel), len(grp0), t_n)) ys1v = np.empty((len(sel), len(grp1), t_n)) ys0eta = np.empty((len(sel), len(grp0), t_n)) ys1eta = np.empty((len(sel), len(grp1), t_n)) ys0mubs = np.empty((n_bootstrap, len(sel), iplN)) ys1mubs = np.empty((n_bootstrap, len(sel), iplN)) ys0vHatbs = np.empty((n_bootstrap, len(sel), len(grp0), iplN)) ys1vHatbs = np.empty((n_bootstrap, len(sel), len(grp1), iplN)) l2bs = np.empty((n_bootstrap, len(sel))) sebs = np.empty((n_bootstrap, len(sel))) se0bs = np.empty((n_bootstrap, len(sel), len(grp0))) se1bs = np.empty((n_bootstrap, len(sel), len(grp1))) sembs = np.empty((n_bootstrap, len(sel))) tvalbs = np.empty((n_bootstrap, len(sel))) pval = np.empty(len(sel)) t1 = time.time() print(t1 - t0) # SME ========================================================================= if RUN: for m_i in range(len(sel)): fd_rigrp0obj = fd_rigrp0.rx2(sel[m_i]) fd_rigrp1obj = fd_rigrp1.rx2(sel[m_i]) fit0 = smePack.sme(fd_rigrp0obj, fd_rigrp0tme, fd_rigrp0ind, criteria=ctra, maxIter=maxIter, deltaEM=deltaEM, deltaNM=deltaNM, initial_lambda_mu=init_l_mc, initial_lambda_v=init_l_mc, normalizeTime=normalizeTime) fit1 = smePack.sme(fd_rigrp1obj, fd_rigrp1tme, fd_rigrp1ind, criteria=ctra, maxIter=maxIter, deltaEM=deltaEM, deltaNM=deltaNM, initial_lambda_mu=init_l_mt, initial_lambda_v=init_l_vt, normalizeTime=normalizeTime) fit0coef = np.array(fit0.rx2('coefficients')) fit1coef = np.array(fit1.rx2('coefficients')) spl0mu = interpolate.CubicSpline(t, fit0coef[0], bc_type='natural') ys0mu[m_i] = spl0mu(iplT) spl1mu = interpolate.CubicSpline(t, fit1coef[0], bc_type='natural') ys1mu[m_i] = spl1mu(iplT) l2[m_i] = np.sqrt(np.trapz(np.square(ys0mu[m_i] - ys1mu[m_i]), x=iplT)) for g0 in range(len(grp0)): spl0 = interpolate.CubicSpline(t, fit0coef[g0 + 1] + fit0coef[0], bc_type='natural') ys0vHat[m_i][g0] = spl0(iplT) ys0v[m_i][g0] = ys0mu[m_i][iplTIdx] - ys0vHat[m_i][g0][iplTIdx] ys0eta[m_i][g0] = fulldataRaw.loc[fulldataRaw.ind == grp0[g0], sel[m_i]] - ys0vHat[m_i][g0][iplTIdx] se0[m_i][g0] = np.trapz(np.square(ys0mu[m_i] - ys0vHat[m_i][g0]), x=iplT) for g1 in range(len(grp1)): spl1 = interpolate.CubicSpline(t, fit1coef[g1 + 1] + fit1coef[0], bc_type='natural') ys1vHat[m_i][g1] = spl1(iplT) ys1v[m_i][g1] = ys1mu[m_i][iplTIdx] - ys1vHat[m_i][g1][iplTIdx] ys1eta[m_i][g1] = fulldataRaw.loc[fulldataRaw.ind == grp1[g1], sel[m_i]] - ys1vHat[m_i][g1][iplTIdx] se1[m_i][g1] = np.trapz(np.square(ys1mu[m_i] - ys1vHat[m_i][g1]), x=iplT) se[m_i] = np.sqrt(np.mean(se0[m_i])/len(grp0) + np.mean(se1[m_i])/len(grp1)) sem = 0. tval = np.divide(l2, se + sem) ys0vFlat = ys0v.reshape((ys0v.shape[0], -1)) ys0etaFlat = ys0eta.reshape((ys0eta.shape[0], -1)) ys0etaFlat = np.delete(ys0etaFlat, 13, 1) # ind 5 has an outlier ys1vFlat = ys1v.reshape((ys1v.shape[0], -1)) ys1etaFlat = ys1eta.reshape((ys1eta.shape[0], -1)) t2 = time.time() print(t2 - t1) # Bootstrapping =============================================================== fulldataS = [] for bcount in range(n_bootstrap): print("Bootstrap run: " + str(bcount)) fulldataC = copy.deepcopy(fulldataRaw) for m_i in range(len(sel)): if USEMEAN: for Di in range(N): ysmuMean = (ys0mu[m_i][iplTIdx] + ys1mu[m_i][iplTIdx])/2 if Di in grp0: fulldataC[sel[m_i]][np.arange(0,t_n*N,N)+Di] = (ysmuMean + np.random.choice(ys0vFlat[m_i], size=t_n) + np.random.choice(ys0etaFlat[m_i], size=t_n)) else: fulldataC[sel[m_i]][np.arange(0,t_n*N,N)+Di] = (ysmuMean + np.random.choice(ys1vFlat[m_i], size=t_n) + np.random.choice(ys1etaFlat[m_i], size=t_n)) else: ct_rand = np.random.rand() for Di in range(N): if ct_rand < 0.5: if Di in grp0: fulldataC[sel[m_i]][np.arange(0,t_n*N,N)+Di] = (ys0mu[m_i][iplTIdx] + np.random.choice(ys0vFlat[m_i], size=t_n) + np.random.choice(ys0etaFlat[m_i], size=t_n)) else: fulldataC[sel[m_i]][np.arange(0,t_n*N,N)+Di] = (ys0mu[m_i][iplTIdx] + np.random.choice(ys1vFlat[m_i], size=t_n) + np.random.choice(ys1etaFlat[m_i], size=t_n)) else: if Di in grp0: fulldataC[sel[m_i]][np.arange(0,t_n*N,N)+Di] = (ys1mu[m_i][iplTIdx] + np.random.choice(ys0vFlat[m_i], size=t_n) + np.random.choice(ys0etaFlat[m_i], size=t_n)) else: fulldataC[sel[m_i]][np.arange(0,t_n*N,N)+Di] = (ys1mu[m_i][iplTIdx] + np.random.choice(ys1vFlat[m_i], size=t_n) + np.random.choice(ys1etaFlat[m_i], size=t_n)) fulldataC = fulldataC.drop(fulldataC.index[16]) # ind 5 has an outlier fulldataS.append(fulldataC) fd_ri = pandas2ri.py2ri(fulldataC) fd_rigrp0 = fd_ri.rx(fd_ri.rx2("grp").ro == 0, True) fd_rigrp1 = fd_ri.rx(fd_ri.rx2("grp").ro == 1, True) for m_i in range(len(sel)): fd_rigrp0objbs = fd_rigrp0.rx2(sel[m_i]) fd_rigrp1objbs = fd_rigrp1.rx2(sel[m_i]) fit0 = smePack.sme(fd_rigrp0objbs, fd_rigrp0tme, fd_rigrp0ind, criteria=ctra, maxIter=maxIter, deltaEM=deltaEM, deltaNM=deltaNM, initial_lambda_mu=init_l_mc, initial_lambda_v=init_l_vc, normalizeTime=normalizeTime) fit1 = smePack.sme(fd_rigrp1objbs, fd_rigrp1tme, fd_rigrp1ind, criteria=ctra, maxIter=maxIter, deltaEM=deltaEM, deltaNM=deltaNM, initial_lambda_mu=init_l_mt, initial_lambda_v=init_l_vt, normalizeTime=normalizeTime) fit0coefbs = np.array(fit0.rx2('coefficients')) fit1coefbs = np.array(fit1.rx2('coefficients')) spl0mubs = interpolate.CubicSpline(t, fit0coefbs[0], bc_type='natural') ys0mubs[bcount][m_i] = spl0mubs(iplT) spl1mubs = interpolate.CubicSpline(t, fit1coefbs[0], bc_type='natural') ys1mubs[bcount][m_i] = spl1mubs(iplT) l2bs[bcount][m_i] = np.sqrt(np.trapz(np.square(ys0mubs[bcount][m_i] - ys1mubs[bcount][m_i]), x=iplT)) for g0 in range(len(grp0)): spl0bs = interpolate.CubicSpline(t, fit0coefbs[g0 + 1] + fit0coefbs[0], bc_type='natural') ys0vHatbs[bcount][m_i][g0] = spl0bs(iplT) se0bs[bcount][m_i][g0] = np.trapz(np.square(ys0mubs[bcount][m_i] - ys0vHatbs[bcount][m_i][g0]), x=iplT) for g1 in range(len(grp1)): spl1bs = interpolate.CubicSpline(t, fit1coefbs[g1 + 1] + fit1coefbs[0], bc_type='natural') ys1vHatbs[bcount][m_i][g1] = spl1bs(iplT) se1bs[bcount][m_i][g1] = np.trapz(np.square(ys1mubs[bcount][m_i] - ys1vHatbs[bcount][m_i][g1]), x=iplT) sebs[bcount][m_i] = np.sqrt(np.mean(se0bs[bcount][m_i])/len(grp0) + np.mean(se1bs[bcount][m_i])/len(grp1)) sembs = 0. tvalbs[bcount] = np.divide(l2bs[bcount], sebs[bcount] + sembs) t3 = time.time() print(t3 - t2) for m_i in range(len(sel)): pval[m_i] = (tvalbs[:,m_i] >= tval[m_i]).sum()/n_bootstrap pvalCorr = smm.multipletests(pval, alpha=0.05, method='fdr_bh')[1] print('p-value: ' + str(len(np.where(pval <= 0.05)[0]))) print(np.where(pval <= 0.05)[0]) # Plotting ==================================================================== cmap1 = cm.get_cmap(colorMap, 2) cmap2 = cm.get_cmap(colorMap, N) cmap3 = cm.get_cmap(colorMap, len(sel)) cmap_grp0 = cm.get_cmap('viridis', len(grp0)) cmap_grp1 = cm.get_cmap('viridis', len(grp1)) def plotC(idx): """ Plots data points, individual, and mean curve of control group :param idx: index of the selection """ fdgrp0tme_arr = np.array(fulldata[fulldata.grp == 0]["tme"]) fdgrp0sel_arr = np.array(fulldata[fulldata.grp == 0][sel]) plt.figure(figsize=figSize) if not plotSMEMeanOnly: for g0 in range(len(grp0)): tmeIdx =
np.where(grp0_f == grp0[g0])
numpy.where
import os import pycqed as pq import unittest import numpy as np from scipy.spatial import ConvexHull import adaptive import pycqed.analysis.analysis_toolbox as a_tools from pycqed.measurement import measurement_control from pycqed.measurement.sweep_functions import ( None_Sweep, None_Sweep_idx, None_Sweep_With_Parameter_Returned, ) import pycqed.measurement.detector_functions as det from pycqed.instrument_drivers.physical_instruments.dummy_instruments import ( DummyParHolder, ) from pycqed.measurement.optimization import nelder_mead, SPSA from pycqed.utilities.learner1D_minimizer import (Learner1D_Minimizer, mk_minimization_loss_func, mk_minimization_goal_func) from pycqed.analysis import measurement_analysis as ma from pycqed.utilities.get_default_datadir import get_default_datadir from pycqed.measurement.hdf5_data import read_dict_from_hdf5 from qcodes.instrument.parameter import ManualParameter from qcodes import station class Test_MeasurementControl(unittest.TestCase): @classmethod def setUpClass(self): self.station = station.Station() self.MC = measurement_control.MeasurementControl( "MC", live_plot_enabled=True, verbose=True ) self.MC.station = self.station self.station.add_component(self.MC) self.mock_parabola = DummyParHolder("mock_parabola") self.station.add_component(self.mock_parabola) def setUp(self): self.MC.soft_avg(1) def test_soft_sweep_1D(self): sweep_pts = np.linspace(0, 10, 30) self.MC.set_sweep_function(None_Sweep()) self.MC.set_sweep_points(sweep_pts) self.MC.set_detector_function(det.Dummy_Detector_Soft()) dat = self.MC.run("1D_soft") dset = dat["dset"] x = dset[:, 0] xr = np.arange(len(x)) / 15 y = np.array([np.sin(xr / np.pi), np.cos(xr / np.pi)]) y0 = dset[:, 1] y1 = dset[:, 2] np.testing.assert_array_almost_equal(x, sweep_pts) np.testing.assert_array_almost_equal(y0, y[0, :]) np.testing.assert_array_almost_equal(y1, y[1, :]) # Test that the return dictionary has the right entries dat_keys = set( [ "dset", "opt_res", "opt_res_dset", "sweep_parameter_names", "sweep_parameter_units", "value_names", "value_units", ] ) self.assertEqual(dat_keys, set(dat.keys())) self.assertEqual(dat["sweep_parameter_names"], ["pts"]) self.assertEqual(dat["sweep_parameter_units"], ["arb. unit"]) self.assertEqual(dat["value_names"], ["I", "Q"]) self.assertEqual(dat["value_units"], ["V", "V"]) def test_soft_sweep_1D_alt_shape(self): # This is a generalization of a 1D sweep function where instead of # a shape (2,) it has a shape (2,1). This isinconsistent with the # N-D hard sweeps. and should be addressed sweep_pts = np.linspace(0, 10, 30) self.MC.set_sweep_function(None_Sweep()) self.MC.set_sweep_points(sweep_pts) self.MC.set_detector_function(det.Dummy_Detector_Soft_diff_shape()) dat = self.MC.run("1D_soft") dset = dat["dset"] x = dset[:, 0] xr = np.arange(len(x)) / 15 y = np.array([np.sin(xr / np.pi), np.cos(xr / np.pi)]) y0 = dset[:, 1] y1 = dset[:, 2] np.testing.assert_array_almost_equal(x, sweep_pts) np.testing.assert_array_almost_equal(y0, y[0, :]) np.testing.assert_array_almost_equal(y1, y[1, :]) # Test that the return dictionary has the right entries dat_keys = set( [ "dset", "opt_res", "opt_res_dset", "sweep_parameter_names", "sweep_parameter_units", "value_names", "value_units", ] ) self.assertEqual(dat_keys, set(dat.keys())) self.assertEqual(dat["sweep_parameter_names"], ["pts"]) self.assertEqual(dat["sweep_parameter_units"], ["arb. unit"]) self.assertEqual(dat["value_names"], ["I", "Q"]) self.assertEqual(dat["value_units"], ["V", "V"]) @unittest.skipIf(True, "This test is currently broken") def test_data_location(self): sweep_pts = np.linspace(0, 10, 30) self.MC.set_sweep_function(None_Sweep()) self.MC.set_sweep_points(sweep_pts) self.MC.set_detector_function(det.Dummy_Detector_Soft()) self.MC.run("datadir_test_file") # raises an error if the file is not found ma.MeasurementAnalysis(label="datadir_test_file") # change the datadir test_dir2 = os.path.abspath( os.path.join(os.path.dirname(pq.__file__), os.pardir, "data_test_2") ) self.MC.datadir(test_dir2) sweep_pts = np.linspace(0, 10, 30) self.MC.set_sweep_function(None_Sweep()) self.MC.set_sweep_points(sweep_pts) self.MC.set_detector_function(det.Dummy_Detector_Soft()) self.MC.run("datadir_test_file_2") # raises an error if the file is not found with self.assertRaises(Exception): ma.MeasurementAnalysis(label="datadir_test_file_2") ma.a_tools.datadir = test_dir2 # changing the dir makes it find the file now ma.MeasurementAnalysis(label="datadir_test_file_2") self.MC.datadir(get_default_datadir()) def test_hard_sweep_1D(self): sweep_pts = np.linspace(0, 10, 5) self.MC.set_sweep_function(None_Sweep(sweep_control="hard")) self.MC.set_sweep_points(sweep_pts) self.MC.set_detector_function(det.Dummy_Detector_Hard()) dat = self.MC.run("1D_hard") dset = dat["dset"] x = dset[:, 0] y = [np.sin(x / np.pi), np.cos(x / np.pi)] y0 = dset[:, 1] y1 = dset[:, 2] np.testing.assert_array_almost_equal(x, sweep_pts) np.testing.assert_array_almost_equal(y0, y[0]) np.testing.assert_array_almost_equal(y1, y[1]) d = self.MC.detector_function self.assertEqual(d.times_called, 1) def test_soft_sweep_2D(self): sweep_pts = np.linspace(0, 10, 30) sweep_pts_2D = np.linspace(0, 10, 5) self.MC.set_sweep_function(None_Sweep(sweep_control="soft")) self.MC.set_sweep_function_2D(None_Sweep(sweep_control="soft")) self.MC.set_sweep_points(sweep_pts) self.MC.set_sweep_points_2D(sweep_pts_2D) self.MC.set_detector_function(det.Dummy_Detector_Soft()) dat = self.MC.run("2D_soft", mode="2D") dset = dat["dset"] x = dset[:, 0] y = dset[:, 1] xr = np.arange(len(sweep_pts) * len(sweep_pts_2D)) / 15 z = np.array([np.sin(xr / np.pi), np.cos(xr / np.pi)]) z0 = dset[:, 2] z1 = dset[:, 3] x_tiled = np.tile(sweep_pts, len(sweep_pts_2D)) y_rep = np.repeat(sweep_pts_2D, len(sweep_pts)) np.testing.assert_array_almost_equal(x, x_tiled) np.testing.assert_array_almost_equal(y, y_rep) np.testing.assert_array_almost_equal(z0, z[0, :]) np.testing.assert_array_almost_equal(z1, z[1, :]) def test_soft_sweep_2D_with_reading_of_set_parameter(self): sweep_pts = np.linspace(0, 10, 30) sweep_pts_2D = np.linspace(0, 10, 5) self.MC.set_sweep_function( None_Sweep_With_Parameter_Returned(sweep_control="soft") ) self.MC.set_sweep_function_2D( None_Sweep_With_Parameter_Returned(sweep_control="soft") ) self.MC.set_sweep_points(sweep_pts) self.MC.set_sweep_points_2D(sweep_pts_2D) self.MC.set_detector_function(det.Dummy_Detector_Soft()) dat = self.MC.run("2D_soft", mode="2D") dset = dat["dset"] x = dset[:, 0] y = dset[:, 1] xr = np.arange(len(sweep_pts) * len(sweep_pts_2D)) / 15 z = np.array([np.sin(xr / np.pi), np.cos(xr / np.pi)]) z0 = dset[:, 2] z1 = dset[:, 3] # The +0.1 is to test if the return value is matching x_tiled = np.tile(sweep_pts + 0.1, len(sweep_pts_2D)) y_rep = np.repeat(sweep_pts_2D + 0.1, len(sweep_pts)) np.testing.assert_array_almost_equal(x, x_tiled) np.testing.assert_array_almost_equal(y, y_rep)
np.testing.assert_array_almost_equal(z0, z[0, :])
numpy.testing.assert_array_almost_equal
import numpy as np from mesonh_atm.mesonh_atmosphere import MesoNHAtmosphere import matplotlib.pyplot as plt from scipy.interpolate import RegularGridInterpolator import modules.cloud as ModCloud #Old Data without advection path = "/net/skyscanner/volume1/data/mesoNH/ARM_OneHour3600files_No_Horizontal_Wind/" mfiles = [path+"U0K10.1.min{:02d}.{:03d}_diaKCL.nc".format(minute, second) for minute in range(1, 60) for second in range(1, 61)] mtstep = 1 atm = MesoNHAtmosphere(mfiles, 1) font = {'size' : 26} plt.rc('font', **font) ####################################################################### ########################### cloud example ############################# ####################################################################### # Example Data of two variables with the coordinates of a rough bounding box of a cloud # RCT = liquid water content, WT = vertical wind lwc_data=atm.data['RCT'][449:599,75:125,60:200,110:250] zwind_data=atm.data['WT'][449:599,75:125,60:200,110:250] ids,counter,clouds=ModCloud.cloud_segmentation(lwc_data) clouds=list(set(clouds.values())) length_point_clds = np.ndarray((0,1)) for each_cloud in clouds: print(len(each_cloud.points)) temp = len(each_cloud.points) length_point_clds = np.vstack((length_point_clds,temp)) # Get cloud with the biggest amount of points in the bounding box cloud = clouds[np.argmax(length_point_clds)] cloud.calculate_attributes(lwc_data,zwind_data) lwc_cloud = np.zeros(lwc_data.shape) for point in cloud.points: lwc_cloud[point] = 1 #Coordinates of the rough bounding box of the example cloud xr = np.arange(0.005 + 60*0.01, 0.005 + 200*0.01,0.01) yr = np.arange(0.005 + 110*0.01, 0.005 + 250*0.01,0.01) all_Zs = atm.data["VLEV"][:,0,0] zr = all_Zs[75:125] tr = np.arange(449,599) origin_xy = [60,110] zspan = np.arange(0,16) # Plotting three different cross-sections including the center of geometry COG and the center of masses # of the vertical wind and liquid water content plt.figure() plt.xlabel("x coordinate(km)") plt.ylabel("y coordinate(km)") plt.contour(zwind_data[0,15].T,origin="lower",label='zwind',extent=[xr[0], xr[-1], yr[0], yr[-1]],linewidths=2) cbar=plt.colorbar() cbar.set_label('m/s') plt.contour(lwc_cloud[0,15].T,V=[0,1],origin='lower',extent=[xr[0], xr[-1], yr[0], yr[-1]],alpha=0.6,cmap='Greys') COG_2D = cloud.COG_2D_tz[0,15]*0.01 + np.array([0.005 + origin_xy[0]*0.01,0.005 + origin_xy[1]*0.01]) plt.plot(COG_2D[0],COG_2D[1],'ro',markersize=8,label='COG 2D') COM_2D_zwind = cloud.COM_2D_zwind_tz[0,15]*0.01 +
np.array([0.005 + origin_xy[0]*0.01,0.005 + origin_xy[1]*0.01])
numpy.array
""" Author: <NAME> """ import numpy as np import pandas as pd from sklearn.decomposition import PCA pd.options.mode.chained_assignment = None class NominalACM(object): """ This class estimates term premium based on the paper 'pricing term structures with linear regressions'. It takes the curve vertices and excess returns of positions from all of them and return the term premium and risk neutral yields as object attributes. """ base_count_dict = {'daily': 252, 'monthly': 12, 'yearly': 1} def __init__(self, curve, excess_returns, freq='daily', interpolation='pchip', n_factors=5, compute_miy=False): """ All inputs are saved as attributes. :param curve: DataFrame with equally spaced vertices as columns :param excess_returns: DataFrame with the excess returns of the vertices as columns :param freq: 'daily', 'monthly' or 'yearly'. Frequency of observations. :param interpolation: any interpolation method from the SciPy library. :param n_factors: number of principal components in the analysis. :param compute_miy: Boolean. If True, computes the model implied yield. """ self.curve = curve self.excess_returns = excess_returns self.curve_exp = np.log(1+curve) self.freq = freq self.interpolation_method = interpolation self.n_factors = n_factors self.n_tenors = excess_returns.shape[1] self.tenors = excess_returns.columns self.sample_size = curve.shape[0] - 1 self.base_count = self.base_count_dict[freq] self.compute_miy = compute_miy self._run_estimation() def _run_estimation(self): # Step 0 - get the PCA factor series self.PCA_factors = self._get_pca_factors() # Step 1 - VAR for the PCA equities Mu_hat, Phi_hat, V_hat, Sigma_hat = self._estimate_factor_var() # Step 2 - Excess return equation beta_hat, a_hat, B_star_hat, sigma2_hat, c_hat = self._estimate_excess_return_equation(v_hat=V_hat) # Step 3 - Estimate price of risk parameters lambda_0_hat, lambda_1_hat = self._retrieve_lambda(beta_hat, a_hat, B_star_hat, Sigma_hat, sigma2_hat, c_hat) # Step 4 - Equation for the Short Rate delta_0_hat, delta_1_hat = self._estimate_short_rate_equation() # Step 5 - Affine Recursions # model implied yield if self.compute_miy: miy = self._affine_recursions(Mu_hat, Phi_hat, Sigma_hat, sigma2_hat, lambda_0_hat, lambda_1_hat, delta_0_hat, delta_1_hat) miy = pd.DataFrame(data=miy[:, 1:], index=self.PCA_factors[1:].index, columns=list(range(1, self.tenors.max() + 1))) self.miy = np.exp(miy) - 1 else: self.miy = None # risk neutral yield rny = self._affine_recursions(Mu_hat, Phi_hat, Sigma_hat, sigma2_hat, 0, 0, delta_0_hat, delta_1_hat) rny = pd.DataFrame(data=rny[:, 1:], index=self.PCA_factors[1:].index, columns=list(range(1, self.tenors.max() + 1))) self.rny = np.exp(rny) - 1 self.term_premium = ((1 + self.curve) / (1 + self.rny) - 1).dropna(how='all') def _get_pca_factors(self): pca = PCA(n_components=self.n_factors) df_pca = pd.DataFrame(data=pca.fit_transform(self.curve_exp.values), index=self.curve.index, columns=['PC' + str(i) for i in range(1, self.n_factors + 1)]) return df_pca def _estimate_factor_var(self): Y = self.PCA_factors.iloc[1:] Z = self.PCA_factors.iloc[:-1] Z['const'] = 1 Z = Z[['const'] + ['PC' + str(x) for x in range(1, self.n_factors + 1)]].T # The VAR(1) estimator is given by equation (3.2.10) from Lutkepohl's book. mat_Z = np.matrix(Z) mat_Y = np.matrix(Y).T B_hat = np.dot(mat_Y, np.dot(mat_Z.T, np.linalg.inv(np.dot(mat_Z, mat_Z.T)))) # Computes matrices Mu and Phi of the VAR(1) of the paper. Mu_hat = B_hat[:, 0] Phi_hat = B_hat[:, 1:self.n_factors + 1] # residuals matrix V_hat and the unbiased estimate of its covariance V_hat = mat_Y - np.dot(B_hat, mat_Z) Sigma_hat = np.dot((1 / (self.sample_size - self.n_factors - 1)), np.dot(V_hat, V_hat.T)) return Mu_hat, Phi_hat, V_hat, Sigma_hat def _estimate_excess_return_equation(self, v_hat): mat_rx = self.excess_returns.iloc[1:].values.T.astype(float) Z = np.concatenate((np.ones((1, self.sample_size)), v_hat, np.matrix(self.PCA_factors.iloc[:-1]).T)) D_hat = np.dot(mat_rx, np.dot(Z.T, np.linalg.inv(np.dot(Z, Z.T)))) a_hat = D_hat[:, 0] beta_hat = D_hat[:, 1:self.n_factors + 1].T c_hat = D_hat[:, self.n_factors + 1:] E_hat = mat_rx - np.dot(D_hat, Z) sigma2_hat = np.trace(np.dot(E_hat, E_hat.T)) / (self.n_tenors * self.sample_size) # Builds the estimate of the B* matrix, defined in equation (13) of the paper B_star_hat = np.zeros((self.n_tenors, self.n_factors ** 2)) for i in range(0, self.n_tenors): B_star_hat[i, :] = np.reshape(np.dot(beta_hat[:, i], beta_hat[:, i].T), (1, self.n_factors ** 2)) return beta_hat, a_hat, B_star_hat, sigma2_hat, c_hat def _retrieve_lambda(self, beta_hat, a_hat, b_star_hat, Sigma_hat, sigma2_hat, c_hat): lambda_0_hat = np.dot(np.linalg.inv(np.dot(beta_hat, beta_hat.T)), np.dot(beta_hat, a_hat + np.dot(0.5, np.dot(b_star_hat, np.reshape(Sigma_hat, (self.n_factors ** 2, 1))) + np.dot(sigma2_hat, np.ones((self.n_tenors, 1)) ) ) ) ) lambda_1_hat = np.dot(np.dot(np.linalg.inv(np.dot(beta_hat, beta_hat.T)), beta_hat), c_hat) return lambda_0_hat, lambda_1_hat def _estimate_short_rate_equation(self): X_star = self.PCA_factors X_star['const'] = 1 X_star = X_star[['const'] + ['PC' + str(x) for x in range(1, self.n_factors + 1)]].values r1 = np.dot(1/self.base_count, self.curve_exp.iloc[:, 0].values.T) Delta_hat = np.dot(np.dot(np.linalg.inv(np.dot(X_star.T, X_star)), X_star.T), r1) delta_0_hat = Delta_hat[0] delta_1_hat = Delta_hat[1:self.n_factors + 1] return delta_0_hat, delta_1_hat def _affine_recursions(self, Mu_hat, Phi_hat, Sigma_hat, sigma2_hat, lambda_0_hat, lambda_1_hat, delta_0_hat, delta_1_hat): X_star = self.PCA_factors X_star['const'] = 1 X_star = X_star[['const'] + ['PC' + str(x) for x in range(1, self.n_factors + 1)]].values N_rec = self.tenors.max() Bn = np.matrix(np.zeros((self.n_factors, N_rec + 1))) Bn[:, 1] = -delta_1_hat.reshape((self.n_factors, 1)) for i in range(2, N_rec + 1): Bn[:, i] = np.transpose(np.dot(Bn[:, i - 1].T, Phi_hat - lambda_1_hat) - delta_1_hat.T) An = np.matrix(np.zeros((1, N_rec + 1))) An[:, 1] = -delta_0_hat for i in range(2, N_rec + 1): An[:, i] = An[:, i - 1] + np.dot(np.transpose(Bn[:, i - 1]), Mu_hat - lambda_0_hat) + 0.5 * \ (np.dot(np.dot(
np.transpose(Bn[:, i - 1])
numpy.transpose
import pandas as pd import sys import numpy as np import scipy as sp import json import os from decimal import Decimal import scipy.optimize as opt from scipy.optimize import minimize, curve_fit from scipy.special import erfc from scipy.stats import crystalball from scipy.signal import medfilt, find_peaks import pygama.analysis.histograms as pgh import pygama.utils as pgu import pygama.analysis.peak_fitting as pga import matplotlib.pyplot as plt from matplotlib.lines import Line2D plt.style.use('style.mplstyle') def main(): ## this code takes the peaks from thorium's first-pass calibration and fits them. the values from these fits are used to then do a non-linear, second-pass calibration. peak_2615() #peak_1765() #peak_1460() #peak_609() #peak_352() def peak_2615(): if(len(sys.argv) != 2): print('Usage: fit_bkg_peaks.py [run number]') sys.exit() with open("runDB.json") as f: runDB = json.load(f) meta_dir = os.path.expandvars(runDB["meta_dir"]) #df = pd.read_hdf("{}/Spectrum_280-329.hdf5".format(meta_dir), key="df") df = pd.read_hdf("{}/Spectrum_{}.hdf5".format(meta_dir,sys.argv[1]), key="df") def gauss(x, mu, sigma, A=1): """ define a gaussian distribution, w/ args: mu, sigma, area (optional). """ return A * (1. / sigma / np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2. * sigma**2)) def radford_peak(x, mu, sigma, hstep, htail, tau, bg0, a=1): """ David Radford's HPGe peak shape function """ # make sure the fractional amplitude parameters stay reasonable... if htail < 0 or htail > 1: return np.zeros_like(x) if hstep < 0 or hstep > 1: return np.zeros_like(x) bg_term = bg0 #+ x*bg1 if np.any(bg_term < 0): return np.zeros_like(x) # compute the step and the low energy tail step = a * hstep * erfc((x - mu) / (sigma * np.sqrt(2))) le_tail = a * htail le_tail *= erfc((x - mu) / (sigma * np.sqrt(2)) + sigma / (tau * np.sqrt(2))) le_tail *= np.exp((x - mu) / tau) le_tail /= (2 * tau * np.exp(-(sigma / (np.sqrt(2) * tau))**2)) # add up all the peak shape components return (1 - htail) * gauss(x, mu, sigma, a) + bg_term + step + le_tail hist, bins, var = pgh.get_hist(df['e_cal'], range=(2540,2680), dx=0.5) pgh.plot_hist(hist, bins, var=hist, label="data") pars, cov = pga.fit_hist(radford_peak, hist, bins, var=hist, guess=[2608.5, 1.05, 0.001, 0.02, 5, 1, 4000]) pgu.print_fit_results(pars, cov, radford_peak) pgu.plot_func(radford_peak, pars, label="chi2 fit", color='red') #x_vals = np.arange(2540,2680,0.5) #plt.plot(x_vals, radford_peak(x_vals, 2608.5, 1.05, .001, 0.02, 5, 1, 4000)) FWHM = '%.2f' % Decimal(pars[1]*2) FWHM_uncertainty = '%.2f' % Decimal(np.sqrt(cov[1][1])*2) peak = '%.2f' % Decimal(pars[0]) peak_uncertainty = '%.2f' % Decimal(np.sqrt(cov[0][0])) residual = '%.2f' % (2614.51 - float(peak)) chi_2_element_list = [] for i in range(len(hist)): chi_2_element = abs((radford_peak(bins[i], *pars) - hist[i])**2/radford_peak(bins[i], *pars)) chi_2_element_list.append(chi_2_element) chi_2 = sum(chi_2_element_list) reduced_chi_2 = '%.2f' % Decimal(chi_2/len(hist)) print(reduced_chi_2) label_01 = '2614.51 keV peak fit' label_02 = 'FWHM = '+str(FWHM)+r' $\pm$ '+str(FWHM_uncertainty) label_03 = 'Peak = '+str(peak)+r' $\pm$ '+str(peak_uncertainty) label_04 = 'Residual = '+str(residual)+r' $\pm$ '+str(peak_uncertainty) colors = ['red', 'red','red', 'red'] lines = [Line2D([0], [0], color=c, lw=2) for c in colors] labels = [label_01, label_02, label_03, label_04] plt.xlim(2540,2680) plt.ylim(0,plt.ylim()[1]) plt.xlabel('Energy (keV)', ha='right', x=1.0) plt.ylabel('Counts', ha='right', y=1.0) plt.title('Fit of First-Pass Kr83m Calibration Peak') plt.tight_layout() #plt.semilogy() plt.legend(lines, labels, frameon=False, loc='upper right', fontsize='small') plt.show() def peak_1765(): if(len(sys.argv) != 2): print('Usage: fit_bkg_peaks.py [run number]') sys.exit() with open("runDB.json") as f: runDB = json.load(f) meta_dir = os.path.expandvars(runDB["meta_dir"]) #df = pd.read_hdf("{}/Spectrum_280-329.hdf5".format(meta_dir), key="df") df = pd.read_hdf("{}/Spectrum_{}.hdf5".format(meta_dir,sys.argv[1]), key="df") def gauss(x, mu, sigma, A=1): """ define a gaussian distribution, w/ args: mu, sigma, area (optional). """ return A * (1. / sigma / np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2. * sigma**2)) def radford_peak(x, mu, sigma, hstep, htail, tau, bg0, a=1): """ <NAME>'s HPGe peak shape function """ # make sure the fractional amplitude parameters stay reasonable... if htail < 0 or htail > 1: return np.zeros_like(x) if hstep < 0 or hstep > 1: return np.zeros_like(x) bg_term = bg0 #+ x*bg1 if np.any(bg_term < 0): return np.zeros_like(x) # compute the step and the low energy tail step = a * hstep * erfc((x - mu) / (sigma * np.sqrt(2))) le_tail = a * htail le_tail *= erfc((x - mu) / (sigma * np.sqrt(2)) + sigma / (tau * np.sqrt(2))) le_tail *= np.exp((x - mu) / tau) le_tail /= (2 * tau * np.exp(-(sigma / (np.sqrt(2) * tau))**2)) # add up all the peak shape components return (1 - htail) * gauss(x, mu, sigma, a) + bg_term + step + le_tail hist, bins, var = pgh.get_hist(df['e_cal'], range=(1740,1780), dx=0.5) pgh.plot_hist(hist, bins, var=hist, label="data") pars, cov = pga.fit_hist(radford_peak, hist, bins, var=hist, guess=[1761, 1.85, 0.001, 0.02, 5, 1, 4000]) pgu.print_fit_results(pars, cov, radford_peak) pgu.plot_func(radford_peak, pars, label="chi2 fit", color='red') #x_vals = np.arange(1740,1780,0.5) #plt.plot(x_vals, radford_peak(x_vals, 1761, 1.85, .001, 0.02, 5, 1, 4000)) FWHM = '%.2f' % Decimal(pars[1]*2) FWHM_uncertainty = '%.2f' % Decimal(np.sqrt(cov[1][1])*2) peak = '%.2f' % Decimal(pars[0]) peak_uncertainty = '%.2f' % Decimal(np.sqrt(cov[0][0])) residual = '%.2f' % (1764.49 - float(peak)) #chi_2_element_list = [] #for i in range(len(hist)): #chi_2_element = abs((radford_peak(bins[i], *pars) - hist[i])**2/radford_peak(bins[i], *pars)) #chi_2_element_list.append(chi_2_element) #chi_2 = sum(chi_2_element_list) #reduced_chi_2 = '%.2f' % Decimal(chi_2/len(hist)) label_01 = '1764.49 keV peak fit' label_02 = 'FWHM = '+str(FWHM)+r' $\pm$ '+str(FWHM_uncertainty) label_03 = 'Peak = '+str(peak)+r' $\pm$ '+str(peak_uncertainty) label_04 = 'Residual = '+str(residual)+r' $\pm$ '+str(peak_uncertainty) colors = ['red', 'red','red', 'red'] lines = [Line2D([0], [0], color=c, lw=2) for c in colors] labels = [label_01, label_02, label_03, label_04] plt.xlim(1740,1780) plt.ylim(0,plt.ylim()[1]) plt.xlabel('Energy (keV)', ha='right', x=1.0) plt.ylabel('Counts', ha='right', y=1.0) plt.tight_layout() #plt.semilogy() plt.legend(lines, labels, frameon=False, loc='upper right', fontsize='small') plt.show() def peak_1460(): if(len(sys.argv) != 2): print('Usage: fit_bkg_peaks.py [run number]') sys.exit() with open("runDB.json") as f: runDB = json.load(f) meta_dir = os.path.expandvars(runDB["meta_dir"]) tier_dir = os.path.expandvars(runDB["tier_dir"]) #df = pd.read_hdf("{}/Spectrum_280-329.hdf5".format(meta_dir), key="df") df = pd.read_hdf("{}/Spectrum_{}.hdf5".format(meta_dir,sys.argv[1]), key="df") #df = pd.read_hdf("{}/t2_run{}.h5".format(tier_dir,sys.argv[1])) #df['e_cal'] = 0.4054761904761905 * df['e_ftp'] + 3.113095238095184 def gauss(x, mu, sigma, A=1): """ define a gaussian distribution, w/ args: mu, sigma, area (optional). """ return A * (1. / sigma / np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2. * sigma**2)) def radford_peak(x, mu, sigma, hstep, htail, tau, bg0, a=1): """ <NAME>'s HPGe peak shape function """ # make sure the fractional amplitude parameters stay reasonable... if htail < 0 or htail > 1: return np.zeros_like(x) if hstep < 0 or hstep > 1: return np.zeros_like(x) bg_term = bg0 #+ x*bg1 if
np.any(bg_term < 0)
numpy.any
import numpy as np from keras.layers import Input, Bidirectional, LSTM, Embedding, Dense, Dropout from keras.models import Model from keras.utils import to_categorical from sklearn.metrics import f1_score from model.callbacks import F1score from .data_utils import minibatches, pad_sequences class BaseKerasModel(object): """Generic class for general methods that are not specific to NER""" def __init__(self, config): """Defines self.config and self.logger Args: config: (Config instance) class with hyper parameters, vocab and embeddings """ self.config = config self.logger = config.logger self.model = None self.sess = None self.saver = None def batch_iter(self, train, batch_size, return_lengths=False): """ Creates a batch generator for the dataset :param train: Dataset :param batch_size: Batch Size :param return_lengths: If True, generator returns sequence lengths. Used masking data during the evaluation step :return: (number of batches in dataset, data generator) """ nbatches = (len(train) + batch_size - 1) // batch_size def data_generator(): while True: for i, (words, labels) in enumerate(minibatches(train, batch_size)): # perform padding of the given data if self.config.use_chars: char_ids, word_ids = zip(*words) word_ids, sequence_lengths = pad_sequences(word_ids, 0) char_ids, word_lengths = pad_sequences(char_ids, pad_tok=0, nlevels=2) else: char_ids, word_ids = zip(*words) word_ids, sequence_lengths = pad_sequences(word_ids, 0) if labels: labels, _ = pad_sequences(labels, 0) labels = [to_categorical(label, num_classes=self.config.ntags) for label in labels] # Change labels to one-hot # build dictionary inputs = { "word_ids": np.asarray(word_ids), } if self.config.use_chars: inputs["char_ids"] = np.asarray(char_ids) if return_lengths: yield(inputs, np.asarray(labels), sequence_lengths) else: yield (inputs, np.asarray(labels)) return (nbatches, data_generator()) def train(self, train, dev, show_history=False): batch_size = self.config.batch_size nbatches_train, train_generator = self.batch_iter(train, batch_size) nbatches_dev, dev_generator = self.batch_iter(dev, batch_size) _, f1_generator = self.batch_iter(dev, batch_size, return_lengths=True) f1 = F1score(f1_generator, nbatches_dev, self.run_evaluate) callbacks = self.gen_callbacks([f1]) history = self.model.fit_generator(generator=train_generator, steps_per_epoch=nbatches_train, validation_data=dev_generator, validation_steps=nbatches_dev, epochs=5, callbacks=callbacks) #, nbatches_train if show_history: print(history.history['f1']) pass def predict_words(self, words_raw): words = [self.config.processing_word(w) for w in words_raw] if type(words[0]) == tuple: words = zip(*words) char_ids, word_ids = words word_ids = np.asarray(word_ids) s = word_ids.shape word_ids = word_ids.reshape(-1, s[0]) inputs = [word_ids] if self.config.use_chars: char_ids, word_lengths = pad_sequences(char_ids, pad_tok=0, nlevels=1) char_ids = np.asarray(char_ids) s = char_ids.shape char_ids = char_ids.reshape(-1, s[0], s[1]) inputs.append(char_ids) #print(word_ids) #print(char_ids) one_hot_preds = self.model.predict_on_batch(inputs) #print("One hot preds: ", one_hot_preds) one_hot_preds = [a.flatten() for a in one_hot_preds.squeeze()] #Squeeze to remove unnecessary 1st dimension for batch size #print("One hot preds: ", one_hot_preds) pred_ids = np.argmax(one_hot_preds, axis=1) #print("Pred ids: ", pred_ids) preds = [self.idx_to_tag[idx] for idx in pred_ids] return preds def run_evaluate(self, data_generator, steps_per_epoch): accs = [] label_true = [] label_pred = [] for i in range(steps_per_epoch): #try: x_true, y_true, sequence_lengths = next(data_generator) y_pred = self.model.predict_on_batch(x_true) for lab, lab_pred, length in zip(y_true, y_pred, sequence_lengths): lab = lab[:length] lab_pred = lab_pred[:length] lab = np.argmax(lab, axis=1) lab_pred = np.argmax(lab_pred, axis=1) accs += [a==b for (a, b) in zip(lab, lab_pred)] label_true.extend(lab) label_pred.extend(lab_pred) label_true = np.asarray(label_true) #print("Truths: ", label_true) label_pred = np.asarray(label_pred) #print("Preds: ", label_pred) acc =
np.mean(accs)
numpy.mean
#*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** """Core integrated routines for detecting and characterizing crosstalk""" import numpy as _np from . import objects as _obj from ... import objects as _pygobjs from ... import io as _pygio import pcalg from gsq.ci_tests import ci_test_dis import collections from sympy import isprime def tuple_replace_at_index(tup, ix, val): return tup[:ix] + (val,) + tup[ix + 1:] def load_pygsti_dataset(filename): """ Loads a pygsti dataset from file. This is a wrapper that just checks the first line, and replaces it with the newer outcome specification format if its the old type. """ try: # file = open(filename, "r") open(filename, "r") except IOError: print("File not found, or other file IO error.") # lines = file.readlines() # file.close() # if lines[0] == "## Columns = 00 count, 01 count, 10 count, 11 count\n": # lines[0] = "## Columns = 0:0 count, 0:1 count, 1:0 count, 1:1 count\n" # file = open(filename, "w") # file.writelines(lines) # file.close() data = _pygio.load_dataset(filename) return data def flatten(l): """ Flattens an irregualr list. From https://stackoverflow.com/questions/2158395/flatten-an-irregular-list-of-lists """ for el in l: if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)): yield from flatten(el) else: yield el def form_ct_data_matrix(ds, number_of_regions, settings, filter_lengths=[]): # This converts a DataSet to an array since the code below uses arrays if type(ds) == _pygobjs.dataset.DataSet: opstr = ds.keys()[0] temp = ds.auxInfo[opstr]['settings'] num_settings = len(temp) settings_shape = _np.shape(settings) # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." dscopy = ds.copy_nonstatic() # filter out lengths not in filter_lengths if len(filter_lengths) > 0: for k in dscopy.keys(): if len(k) not in filter_lengths: dscopy.remove([k]) dscopy.done_adding_data() # num columns = number of settings + number of regions (b/c we assume one outcome per region) #num_columns = num_settings + number_of_regions num_data = len(dscopy.keys()) data = [] collect_settings = {key: [] for key in range(num_settings)} for row in range(num_data): opstr = dscopy.keys()[row] templine_set = [0] * num_settings settings_row = dscopy.auxInfo[opstr]['settings'] for key in settings_row: if len(key) == 1: # single region/qubit gate templine_set[key[0]] = settings_row[key] collect_settings[key[0]].append(settings_row[key]) else: # two-region/two-qubit gate print("Two qubit gate, not sure what to do!!") # TODO return outcomes_row = dscopy[opstr] for outcome in outcomes_row: templine_out = [0] * number_of_regions if len(outcome[0]) == 1: # outcomes labeled by bitstrings for r in range(number_of_regions): templine_out[r] = int(outcome[0][0][r]) num_rep = int(outcome[2]) templine_out.append(templine_set) flattened_line = list(flatten(templine_out)) else: # outcomes labeled by tuples of bits for r in range(number_of_regions): templine_out[r] = int(outcome[0][r]) num_rep = int(outcome[2]) templine_out.append(templine_set) flattened_line = list(flatten(templine_out)) for r in range(num_rep): data.append(flattened_line) #num_seqs = [len(set(collect_settings[i])) for i in range(num_settings)] data = _np.asarray(data) # if the dataset is specified by a string assume its a filename with a saved numpy array elif type(ds) == str: data = _np.loadtxt(ds) data = data.astype(int) data_shape =
_np.shape(data)
numpy.shape
import matplotlib.pyplot as plt import numpy as np import skfuzzy as fuzz import sys from skfuzzy import control as ctrl # Input Variables hand_distance = ctrl.Antecedent(np.arange(0, 101, 1), 'hand_distance') # no negative distances => starting at 0 hand_to_shoulder_distance = ctrl.Antecedent(np.arange(-100, 101, 1), 'hand_to_shoulder_distance') # negative = hands are belows shoulders, positive = hands are above shoulders hand_gradient = ctrl.Antecedent(np.arange(-100, 101, 1), 'hand_gradient') # negative = left hand lower, positive = right hand lower # Output Variables forward = ctrl.Consequent(
np.arange(0, 101, 1)
numpy.arange
import numpy as np import cv2 from skimage.feature import peak_local_max NOCS_CAMERA_MAT = np.array([[591.0125 , 0. , 322.525 , 0. ], [ 0. , 590.16775, 244.11084, 0. ], [ 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ]]) open_3d_lines = [ [0, 1], [7,3], [1, 3], [2, 0], [3, 2], [0, 4], [1, 5], [2, 6], # [4, 7], [7, 6], [6, 4], [4, 5], [5, 7], ] # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/utils/nocs_utils.py#L7 def load_depth(depth_path): """ Load depth image from img_path. """ # depth_path = depth_path + '_depth.png' # print("depth_path", depth_path) depth = cv2.imread(depth_path, -1) if len(depth.shape) == 3: # This is encoded depth image, let's convert # NOTE: RGB is actually BGR in opencv depth16 = depth[:, :, 1]*256 + depth[:, :, 2] depth16 = np.where(depth16==32001, 0, depth16) depth16 = depth16.astype(np.uint16) elif len(depth.shape) == 2 and depth.dtype == 'uint16': depth16 = depth else: assert False, '[ Error ]: Unsupported depth type.' return depth16 # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/utils/nocs_utils.py#L24 def load_img_NOCS(rgm_img_path, depth_path): left_img = cv2.imread(rgm_img_path) depth = load_depth(depth_path) depth_norm = np.array(depth, dtype=np.float32)/255.0 return left_img, depth_norm, depth # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/simnet/lib/net/post_processing/pose_outputs.py#L121 def find_nearest(peaks,value): newList = np.linalg.norm(peaks-value, axis=1) return peaks[np.argsort(newList)] # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/simnet/lib/net/post_processing/pose_outputs.py#L126 def extract_peaks_from_centroid_sorted(centroid_heatmap,min_confidence=0.15, min_distance=10): peaks = peak_local_max(centroid_heatmap, min_distance=min_distance, threshold_abs=min_confidence) peaks = find_nearest(peaks,[0,0]) return peaks # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/simnet/lib/net/post_processing/pose_outputs.py#L131 def extract_latent_emb_from_peaks(heatmap_output, peaks, latent_emb_output, scale_factor=8): assert peaks.shape[1] == 2 latent_embeddings = [] indices = [] scores = [] for ii in range(peaks.shape[0]): index = np.zeros([2]) index[0] = int(peaks[ii, 0] / scale_factor) index[1] = int(peaks[ii, 1] / scale_factor) index = index.astype(np.int) latent_emb = latent_emb_output[index[0], index[1], :] latent_embeddings.append(latent_emb) indices.append(index*scale_factor) scores.append(heatmap_output[peaks[ii, 0], peaks[ii, 1]]) return latent_embeddings, indices, scores # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/simnet/lib/net/post_processing/pose_outputs.py#L147 def extract_abs_pose_from_peaks(peaks, abs_pose_output, scale_factor=8): assert peaks.shape[1] == 2 abs_poses = [] scales = [] for ii in range(peaks.shape[0]): index = np.zeros([2]) index[0] = int(peaks[ii, 0] / scale_factor) index[1] = int(peaks[ii, 1] / scale_factor) index = index.astype(np.int) abs_pose_values = abs_pose_output[index[0], index[1],:] rotation_matrix = np.array([[abs_pose_values[0], abs_pose_values[1], abs_pose_values[2]], [abs_pose_values[3], abs_pose_values[4], abs_pose_values[5]], [abs_pose_values[6], abs_pose_values[7], abs_pose_values[8]]]) translation_vector = np.array([abs_pose_values[9], abs_pose_values[10], abs_pose_values[11]]) transformation_mat = np.eye(4) transformation_mat[:3,:3] = rotation_matrix transformation_mat[:3,3] = translation_vector scale = abs_pose_values[12] scale_matrix = np.eye(4) scale_mat = scale*np.eye(3, dtype=float) scale_matrix[0:3, 0:3] = scale_mat scales.append(scale_matrix) abs_poses.append((transformation_mat, scale_matrix)) return abs_poses # Ref: https://github.com/zubair-irshad/CenterSnap/blob/5422258475c30c37807566c60996f4d8b3a810e7/simnet/lib/net/post_processing/pose_outputs.py#L177 def draw_peaks(centroid_target, peaks): centroid_target =
np.clip(centroid_target, 0.0, 1.0)
numpy.clip
import numpy as np import time import copy from multiprocessing.pool import ThreadPool from operator import itemgetter from scipy.spatial.distance import cdist from torch.nn.functional import normalize from torch import Tensor import torch import torch.nn.functional as F from lib.config import cfg from sampler import Sampler from lib.utils import log class SubModSampler(Sampler): def __init__(self, model, dataset, batch_size, ltl_log_ep=5): super(SubModSampler, self).__init__(model, dataset) self.batch_size = batch_size self.index_set = range(0, len(self.dataset)) # It contains the indices of each image of the set. self.ltl_log_ep = ltl_log_ep f_acts = torch.tensor(self.final_activations) p_log_p = F.softmax(f_acts, dim=1) * F.log_softmax(f_acts, dim=1) H = -p_log_p.numpy() self.H = np.sum(H,axis=1) # Compute entropy of all samples for an epoch. dist = [1./len(self.dataset)]*len(self.dataset) self.dist = np.array(dist) def get_subset(self, detailed_logging=False): set_size = len(self.index_set) num_of_partitions = cfg.num_of_partitions if set_size >= num_of_partitions*self.batch_size: size_of_each_part = set_size / num_of_partitions r_size = (size_of_each_part*self.ltl_log_ep)/self.batch_size partitions = [self.index_set[k:k+size_of_each_part] for k in range(0, set_size, size_of_each_part)] pool = ThreadPool(processes=len(partitions)) pool_handlers = [] for partition in partitions: handler = pool.apply_async(get_subset_indices, args=(partition, self.penultimate_activations, self.final_activations, self.H, self.batch_size, r_size, self.dist)) pool_handlers.append(handler) pool.close() pool.join() intermediate_indices = [] dist_updated = [] for (k,handler) in enumerate(pool_handlers): res = handler.get() intermediate_indices.extend(res[0]) dist_k = res[1] dist_updated.extend(dist_k[np.array(partitions[k])]) self.dist =
np.array(dist_updated)
numpy.array
# Copyright 2017 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple import tensorflow as tf import numpy as np from numpy.testing import assert_almost_equal import pytest import gpflow from gpflow import settings from gpflow.conditionals import uncertain_conditional from gpflow.conditionals import feature_conditional from gpflow.quadrature import mvnquad from gpflow.test_util import session_context class MomentMatchingSVGP(gpflow.models.SVGP): @gpflow.params_as_tensors def uncertain_predict_f_moment_matching(self, Xmu, Xcov): return uncertain_conditional( Xmu, Xcov, self.feature, self.kern, self.q_mu, self.q_sqrt, mean_function=self.mean_function, white=self.whiten, full_cov_output=self.full_cov_output) def uncertain_predict_f_monte_carlo(self, Xmu, Xchol, mc_iter=int(1e6)): rng = np.random.RandomState(0) D_in = Xchol.shape[0] X_samples = Xmu + np.reshape( Xchol[None, :, :] @ rng.randn(mc_iter, D_in)[:, :, None], [mc_iter, D_in]) F_mu, F_var = self.predict_f(X_samples) F_samples = F_mu + rng.randn(*F_var.shape) * (F_var ** 0.5) mean = np.mean(F_samples, axis=0) covar = np.cov(F_samples.T) return mean, covar def gen_L(rng, n, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(n)]) def gen_q_sqrt(rng, D_out, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(D_out)]) def mean_function_factory(rng, mean_function_name, D_in, D_out): if mean_function_name == "Zero": return gpflow.mean_functions.Zero(output_dim=D_out) elif mean_function_name == "Constant": return gpflow.mean_functions.Constant(c=rng.rand(D_out)) elif mean_function_name == "Linear": return gpflow.mean_functions.Linear( A=rng.rand(D_in, D_out), b=rng.rand(D_out)) else: return None class Data: N = 7 N_new = 2 D_out = 3 D_in = 1 rng = np.random.RandomState(1) X = np.linspace(-5, 5, N)[:, None] + rng.randn(N, 1) Y = np.hstack([np.sin(X), np.cos(X), X**2]) Xnew_mu = rng.randn(N_new, 1) Xnew_covar = np.zeros((N_new, 1, 1)) class DataMC1(Data): Y = np.hstack([np.sin(Data.X), np.sin(Data.X) * 2, Data.X ** 2]) class DataMC2(Data): N = 7 N_new = 5 D_out = 4 D_in = 2 X = Data.rng.randn(N, D_in) Y = np.hstack([np.sin(X), np.sin(X)]) Xnew_mu = Data.rng.randn(N_new, D_in) L = gen_L(Data.rng, N_new, D_in, D_in) Xnew_covar = np.array([l @ l.T for l in L]) class DataQuadrature: num_data = 10 num_ind = 10 D_in = 2 D_out = 3 H = 150 rng = np.random.RandomState(1) Xmu = rng.randn(num_data, D_in) L = gen_L(rng, num_data, D_in, D_in) Xvar = np.array([l @ l.T for l in L]) Z = rng.randn(num_ind, D_in) q_mu = rng.randn(num_ind, D_out) q_sqrt = gen_q_sqrt(rng, D_out, num_ind, num_ind) @classmethod def tensors(cls, white, mean_name): float_type = settings.float_type Xmu = tf.placeholder(float_type, [cls.num_data, cls.D_in]) Xvar = tf.placeholder(float_type, [cls.num_data, cls.D_in, cls.D_in]) q_mu = tf.placeholder(float_type, [cls.num_ind, cls.D_out]) q_sqrt = tf.placeholder(float_type, [cls.D_out, cls.num_ind, cls.num_ind]) kern = gpflow.kernels.RBF(cls.D_in) feat = gpflow.features.InducingPoints(cls.Z) mean_function = mean_function_factory(cls.rng, mean_name, cls.D_in, cls.D_out) effective_mean = mean_function or (lambda X: 0.0) feed_dict = { Xmu: cls.Xmu, Xvar: cls.Xvar, q_mu: cls.q_mu, q_sqrt: cls.q_sqrt } def mean_fn(X): mean, _ = feature_conditional(X, feat, kern, q_mu, q_sqrt=q_sqrt, white=white) return mean + effective_mean(X) def var_fn(X): _, var = feature_conditional(X, feat, kern, q_mu, q_sqrt=q_sqrt, white=white) return var def mean_sq_fn(X): mean, _ = feature_conditional(X, feat, kern, q_mu, q_sqrt=q_sqrt, white=white) return (mean + effective_mean(X)) ** 2 Collection = namedtuple('QuadratureCollection', 'Xmu,Xvar,q_mu,q_sqrt,' 'kern,feat,mean_function,' 'feed_dict,mean_fn,' 'var_fn,mean_sq_fn') return Collection(Xmu=Xmu, Xvar=Xvar, q_mu=q_mu, q_sqrt=q_sqrt, kern=kern, feat=feat, mean_function=mean_function, feed_dict=feed_dict, mean_fn=mean_fn, var_fn=var_fn, mean_sq_fn=mean_sq_fn) MEANS = ["Constant", "Linear", "Zero", None] @pytest.mark.parametrize('white', [True, False]) @pytest.mark.parametrize('mean', MEANS) def test_no_uncertainty(white, mean): with session_context() as sess: m = mean_function_factory(Data.rng, mean, Data.D_in, Data.D_out) k = gpflow.kernels.RBF(1, variance=Data.rng.rand()) model = MomentMatchingSVGP( Data.X, Data.Y, k, gpflow.likelihoods.Gaussian(), mean_function=m, Z=Data.X.copy(), whiten=white) model.full_cov_output = False gpflow.train.AdamOptimizer().minimize(model, maxiter=50) mean1, var1 = model.predict_f(Data.Xnew_mu) pred_mm = model.uncertain_predict_f_moment_matching( tf.constant(Data.Xnew_mu), tf.constant(Data.Xnew_covar)) mean2, var2 = sess.run(pred_mm) assert_almost_equal(mean1, mean2) for n in range(Data.N_new): assert_almost_equal(var1[n, :], var2[n, ...]) @pytest.mark.parametrize('white', [True, False]) @pytest.mark.parametrize('mean', MEANS) def test_monte_carlo_1_din(white, mean): with session_context() as sess: k = gpflow.kernels.RBF(1, variance=DataMC1.rng.rand()) m = mean_function_factory(DataMC1.rng, mean, DataMC1.D_in, DataMC1.D_out) model = MomentMatchingSVGP( DataMC1.X, DataMC1.Y, k, gpflow.likelihoods.Gaussian(), Z=DataMC1.X.copy(), whiten=white) model.full_cov_output = True gpflow.train.AdamOptimizer().minimize(model, maxiter=50) pred_mm = model.uncertain_predict_f_moment_matching( tf.constant(DataMC1.Xnew_mu), tf.constant(DataMC1.Xnew_covar)) mean1, var1 = sess.run(pred_mm) for n in range(DataMC1.N_new): mean2, var2 = model.uncertain_predict_f_monte_carlo( DataMC1.Xnew_mu[n, ...], DataMC1.Xnew_covar[n, ...] ** 0.5) assert_almost_equal(mean1[n, ...], mean2, decimal=3) assert_almost_equal(var1[n, ...], var2, decimal=2) @pytest.mark.parametrize('white', [True, False]) @pytest.mark.parametrize('mean', MEANS) def test_monte_carlo_2_din(white, mean): with session_context() as sess: k = gpflow.kernels.RBF(DataMC2.D_in, variance=DataMC2.rng.rand()) m = mean_function_factory(DataMC2.rng, mean, DataMC2.D_in, DataMC2.D_out) model = MomentMatchingSVGP( DataMC2.X, DataMC2.Y, k, gpflow.likelihoods.Gaussian(), mean_function=m, Z=DataMC2.X.copy(), whiten=white) model.full_cov_output = True gpflow.train.AdamOptimizer().minimize(model) pred_mm = model.uncertain_predict_f_moment_matching( tf.constant(DataMC2.Xnew_mu), tf.constant(DataMC2.Xnew_covar)) mean1, var1 = sess.run(pred_mm) for n in range(DataMC2.N_new): mean2, var2 = model.uncertain_predict_f_monte_carlo( DataMC2.Xnew_mu[n, ...], DataMC2.L[n, ...]) assert_almost_equal(mean1[n, ...], mean2, decimal=2)
assert_almost_equal(var1[n, ...], var2, decimal=2)
numpy.testing.assert_almost_equal
# -*- coding: utf-8 -*- """ """ from __future__ import division, print_function, unicode_literals import numpy as np #import phasor.numerics.dispatched as dmath #import sympy import declarative from ..base.autograft import ( invalidate_auto, Element, ) from .utils import ( TargetLeft, TargetRight, TargetIdx, matrix_space, ) from . import bases from . import space from . import standard_attrs as attrs class System( bases.MatrixAtsCompositeBase, ): @declarative.mproperty def _internal(self): return Element() _loc_default = ('loc_m', None) loc_m = attrs.generate_loc_m() _boundary_left_default = ('boundary_left_m', None) boundary_left = attrs.generate_boundary_left_m() _boundary_right_default = ('boundary_right_m', None) boundary_right = attrs.generate_boundary_right_m() @declarative.mproperty(simple_delete = True) @invalidate_auto def offset_m(self, arg = declarative.NOARG): return 0 if arg is declarative.NOARG: if self.component_pos_pairings.any_abs_pos: arg = self.positions_list[0] else: arg = None return arg @declarative.mproperty(simple_delete = True) @invalidate_auto def width_m(self): return self.positions_list[-1] - self.positions_list[0] @declarative.mproperty(simple_delete = True) @invalidate_auto def components(self, comp_list = declarative.NOARG): if comp_list is not declarative.NOARG: for component in comp_list: if isinstance(component, declarative.PropertyTransforming): with self.building: self.insert(component) else: with self.building: self.insert( obj = component.replica_generate(), name = component.name_child, ) self.root._complete() loc_ch_list = [] for name, ch in list(self._registry_children.items()): if isinstance(ch, bases.MatrixAtsBase): if ch.loc_m.ref is not None: loc_ch_list.append((ch.loc_m.ref, ch)) loc_ch_list.sort() #print(loc_ch_list) clist = [ch for loc, ch in loc_ch_list] return clist @declarative.mproperty(simple_delete = True) @invalidate_auto def component_pos_pairings(self): with self.building: try: del self.ctree['_internal'] except KeyError: pass components_pos = [] components_filled = [] loc_m = 0 loc_m_prev = None pos_list = [] if self.boundary_left_m.ref is not None: for idx, comp in enumerate(self.components): if comp.loc_m.ref >= self.boundary_left_m.ref: lslice = idx break else: if comp.loc_m.ref + comp.width_m >= self.boundary_left_m.ref: raise NotImplementedError("currently does not support system truncation that cuts objects (including subsystems)") else: #if all of the components are behind the truncation, then index outside the component list lslice = idx + 1 else: lslice = None if self.boundary_right_m.ref is not None: for idx, comp in enumerate(reversed(self.components)): if comp.loc_m.ref <= self.boundary_right_m.ref: if comp.loc_m.ref + comp.width_m >= self.boundary_right_m.ref: raise NotImplementedError("currently does not support system truncation that cuts objects (including subsystems)") #this gives the actual (non reversed) index + 1 rslice = len(self.components) - idx break else: #if all of the components are behind the truncation, then index outside the component list rslice = 0 else: rslice = None if not self.env_reversed: comp_iter = iter(self.components[slice(lslice, rslice)]) else: comp_iter = iter(reversed(self.components[slice(lslice, rslice)])) for idx, comp in enumerate(comp_iter): loc_m = None if comp.loc_m.val is not None: #builds using negative indices when reversed if not self.env_reversed: loc_m = comp.loc_m.val else: loc_m = -comp.width_m - comp.loc_m.val #TODO make this typesafe for casadi MX #if idx != 0 and loc_m < loc_m_prev: # print("OUT OF SEQ: ", comp, loc_m, loc_m_prev) # raise RuntimeError("Objects stacked out of sequence. Maybe you meant to insert objects into an inner system.") #TODO if loc_m is not None: #put in a space to make up the gap if idx != 0: pos_list.append(loc_m_prev) name = 'auto_space{0}'.format(idx) components_filled.append( self._internal.insert( obj = space.Space( L_m = loc_m - loc_m_prev, loc_m = loc_m, #ctree = self.ctree['internal'][name], ), name = name, invalidate = False, ) ) elif ( (lslice is not None and not self.env_reversed) or (rslice is not None and self.env_reversed) ) : #put in a space for the gap the truncation edge if self.env_reversed: loc_m_prev = -self.boundary_right_m.val else: loc_m_prev = self.boundary_left_m.val pos_list.append(loc_m_prev) name = 'auto_space{0}'.format(idx) components_filled.append( self._internal.insert( obj = space.Space( L_m = loc_m - loc_m_prev, loc_m = loc_m, #ctree = self.ctree['internal'][name], ), name = name, invalidate = False, ) ) else: loc_m = loc_m_prev pos_list.append(loc_m) components_pos.append(loc_m) components_filled.append(comp) #print comp, loc_m loc_m += comp.width_m loc_m_prev = loc_m #now add the final space if there is a truncation if ( (rslice is not None and not self.env_reversed) or (lslice is not None and self.env_reversed) ) : #put in a space for the gap the truncation edge if self.env_reversed: loc_m = -self.boundary_left_m.val else: loc_m = self.boundary_right_m.val pos_list.append(loc_m_prev) name = 'auto_space{0}'.format(idx + 1) components_filled.append( self._internal.insert( obj = space.Space( L_m = loc_m - loc_m_prev, loc_m = loc_m, #ctree = self.ctree['internal'][name], ), name = name, invalidate = False, ) ) pos_list.append(loc_m) pos_list = np.asarray(pos_list) - pos_list[0] return declarative.Bunch( positions = pos_list, filled = components_filled, components_pos = components_pos, ) @declarative.mproperty(simple_delete = True) @invalidate_auto def positions_list(self): return self.component_pos_pairings.positions @declarative.mproperty(simple_delete = True) @invalidate_auto def filled_list(self): return self.component_pos_pairings.filled @declarative.mproperty(simple_delete = True) @invalidate_auto def component_matrix_list(self): mat = np.eye(2) mat_list = [mat] for comp in self.filled_list: mat = comp.matrix * mat mat_list.append(mat) return mat_list @declarative.mproperty(simple_delete = True) @invalidate_auto def matrix(self): return self.component_matrix_list[-1] @declarative.mproperty(simple_delete = True) @invalidate_auto def matrix_inv(self): mat = np.eye(2) for comp in reversed(self.filled_list): #print comp.matrix * comp.matrix_inv #print comp mat = comp.matrix_inv * mat return mat @declarative.mproperty(simple_delete = True) @invalidate_auto def _matrix_between_memomap(self): return {} def matrix_between(self, tidx1, tidx2): result = self._matrix_between_memomap.get((tidx1, tidx2), None) if result is not None: return result if tidx1 == TargetLeft: if tidx2 == TargetLeft: mat = np.eye(2) elif tidx2 == TargetRight: mat = self.matrix else: tidx2_outer = tidx2[-1] tidx2_inner = TargetIdx(tidx2[:-1]) mat = np.eye(2) for comp in self.filled_list[:tidx2_outer]: mat = comp.matrix * mat mat = self.filled_list[tidx2_outer].matrix_between(TargetLeft, tidx2_inner) * mat elif tidx1 == TargetRight: if tidx2 == TargetLeft: mat = self.matrix**(-1) elif tidx2 == TargetRight: mat =
np.eye(2)
numpy.eye
# License: BSD 3 clause import unittest from numpy.testing import assert_almost_equal import numpy as np from tick.prox import ProxTV from tick.prox.tests.prox import TestProx class ProxTVTest(object): def test_ProxTV(self): """...Test of ProxTV """ coeffs = self.coeffs.copy().astype(self.dtype) l_tv = 0.5 t = 1.7 out = np.array([ -0.40102846, -0.40102846, -0.40102846, -0.31364696, -0.31364696, 1.03937619, 1.03937619, 1.03937619, -0.21598253, -0.21598253 ]) prox = ProxTV(l_tv).astype(self.dtype) val = l_tv *
np.abs(coeffs[1:] - coeffs[:-1])
numpy.abs
# import system packages import os from datetime import datetime import sys import argparse import traceback import pickle import yaml from argparse import ArgumentParser, RawTextHelpFormatter # import numpy import numpy as np import healpy as hp # the MPI comunicator class, customized for pycal data storage from pycal.mpi import get_world, Comm # the Data class from pycal.dist import distribute_uniform, Data # some pycal utils to share informations with the environment from pycal.utils import Logger, Environment, memreport # some timers from pycal.timing import function_timer, GlobalTimers, Timer, gather_timers from pycal.timing import dump as dump_timing # the simulate the pointing, the atmosphere and put all the information in the TODGround class from pycal.todmap import TODGround, OpSimAtmosphere, OpPointingHpix from pycal.weather import Weather # Some wrapper to libaatm, they solve the radiative transfer equation in local thermodynamic equilibrium from pycal.todmap.atm import atm_absorption_coefficient, atm_absorption_coefficient_vec # helper functions from pycal.tests._helpers import boresight_focalplane import pycal.qarray as qa # focal plane and telescope calsses from pycal.todmap import Focalplane from pycal.todmap import Telescope # set up the output directory for each mc iterations @function_timer def setup_output(outdir, comm, mc, freq): outpath = "{}/{:08}/{:03}".format(outdir, mc, int(freq)) if comm.world_rank == 0: print("Creating the outpath: {}".format(outpath)) os.makedirs(outpath, exist_ok=True) return outpath def load_focalplane(args, comm): focalplane = None # Load focalplane information if comm.comm_world is None or comm.comm_world.rank == 0: if focalplane is None: detector_data = {} with open(r'./strip_focal_plane.yaml') as file: focalplane=yaml.load(file) detecotrs=focalplane['horns'].keys() for i in detecotrs: directions=focalplane['horns'][i]['orientation'] l=np.arctan(directions[0]/directions[2]) u=np.arctan(directions[1]/directions[2]) zaxis = np.array([0, 0, 1], dtype=np.float64) angrot = qa.rotation(zaxis, 0 * np.pi / 180.0) wx = np.rad2deg(l) * np.pi / 180.0 wy = np.rad2deg(u) * np.pi / 180.0 wz =
np.sqrt(1.0 - (wx * wx + wy * wy))
numpy.sqrt
import pyximport; pyximport.install() import sys import pandas as pd from pathlib import Path from gluonts.model.predictor import Predictor from gluonts.model.deepar import DeepAREstimator from gluonts.trainer import Trainer from gluonts.dataset.common import ListDataset import talib import numpy as np import warnings import scipy.signal as sc warnings.filterwarnings("ignore") def load_dataset(filename): dataset = pd.read_csv(filename, usecols = [0, 1, 5], header=0) dataset = dataset.dropna() dataset.columns = dataset.columns.to_series().apply(lambda x: x.strip()) df = dataset if 'timestamp' not in df.columns: df['timestamp'] = pd.to_datetime(df['Date'] + ' ' + df['Time']) timestamp = df.pop("timestamp") df.insert(0, timestamp.name, timestamp) df.drop(columns=['Date', 'Time'], inplace=True, errors='ignore') dataset = df features_to_normalize = ['close'] dataset[features_to_normalize] = dataset[features_to_normalize].apply(lambda x: (x - x.min()) / (x.max() - x.min())) return dataset def autocorr(x): result = np.correlate(x, x, mode='full') return result[int(result.size/2):] def estimated_autocorrelation(x): """ http://stackoverflow.com/q/14297012/190597 http://en.wikipedia.org/wiki/Autocorrelation#Estimation """ n = len(x) variance = x.var() x = x-x.mean() r = np.correlate(x, x, mode = 'full')[-n:] #assert np.allclose(r, np.array([(x[:n-k]*x[-(n-k):]).sum() for k in range(n)])) result = r/(variance*(np.arange(n, 0, -1))) return result if __name__ == "__main__": filename = sys.argv[1] df = load_dataset(filename) test_data = ListDataset( [{"start": df.index[1], "target": df.values[-12:, 1]}], freq="1 min" ) predictor = Predictor.deserialize(Path(".")) for test_entry, forecast in zip(test_data, predictor.predict(test_data)): print("[", forecast.mean[0], end = " ") np.seterr(divide='ignore') tsf5 = talib.TSF(df['close'].values, timeperiod=5) diff5 = np.diff(tsf5) / np.diff(df['close'].values) diff5 = np.insert(diff5, 0, 1) diff5 = np.diff(diff5) / np.diff(df['close'].values) tsf15 = talib.TSF(df['close'].values, timeperiod=15) diff15 = np.diff(tsf15) /
np.diff(df['close'].values)
numpy.diff
#!/usr/bin/env python3 """Training and evaluation entry point.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import argparse import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.python.ops import init_ops from tensorflow.python.ops import random_ops from tensorflow.python.framework import dtypes from scipy.spatial import KDTree from common.util import Dataset from common.util import ACTIVATION_MAP from tqdm import trange import pathlib import logging from common.util import summary_writer from common.gen_experiments import load_and_save_params import time import pickle as pkl tf.logging.set_verbosity(tf.logging.INFO) logging.basicConfig(level=logging.INFO) def _load_mini_imagenet(data_dir, split): """Load mini-imagenet from numpy's npz file format.""" _split_tag = {'sources': 'train', 'target_val': 'val', 'target_tst': 'test'}[split] dataset_path = os.path.join(data_dir, 'few-shot-{}.npz'.format(_split_tag)) logging.info("Loading mini-imagenet...") data = np.load(dataset_path) fields = data['features'], data['targets'] logging.info("Done loading.") return fields def get_image_size(data_dir): if 'mini-imagenet' or 'tiered' in data_dir: image_size = 84 elif 'cifar' in data_dir: image_size = 32 else: raise Exception('Unknown dataset: %s' % data_dir) return image_size class Namespace(object): def __init__(self, adict): self.__dict__.update(adict) def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval', 'test', 'train_classifier', 'create_embedding']) # Dataset parameters parser.add_argument('--data_dir', type=str, default=None, help='Path to the data.') parser.add_argument('--data_split', type=str, default='sources', choices=['sources', 'target_val', 'target_tst'], help='Split of the data to be used to perform operation.') # Training parameters parser.add_argument('--number_of_steps', type=int, default=int(30000), help="Number of training steps (number of Epochs in Hugo's paper)") parser.add_argument('--number_of_steps_to_early_stop', type=int, default=int(1000000), help="Number of training steps after half way to early stop the training") parser.add_argument('--log_dir', type=str, default='', help='Base log dir') parser.add_argument('--num_classes_train', type=int, default=5, help='Number of classes in the train phase, this is coming from the prototypical networks') parser.add_argument('--num_shots_train', type=int, default=5, help='Number of shots in a few shot meta-train scenario') parser.add_argument('--train_batch_size', type=int, default=32, help='Training batch size.') parser.add_argument('--num_tasks_per_batch', type=int, default=2, help='Number of few shot tasks per batch, so the task encoding batch is num_tasks_per_batch x num_classes_test x num_shots_train .') parser.add_argument('--init_learning_rate', type=float, default=0.1, help='Initial learning rate.') parser.add_argument('--save_summaries_secs', type=int, default=60, help='Time between saving summaries') parser.add_argument('--save_interval_secs', type=int, default=60, help='Time between saving model?') parser.add_argument('--optimizer', type=str, default='sgd', choices=['sgd', 'adam']) parser.add_argument('--augment', type=bool, default=False) # Learning rate paramteres parser.add_argument('--lr_anneal', type=str, default='pwc', choices=['const', 'pwc', 'cos', 'exp']) parser.add_argument('--n_lr_decay', type=int, default=3) parser.add_argument('--lr_decay_rate', type=float, default=10.0) parser.add_argument('--num_steps_decay_pwc', type=int, default=2500, help='Decay learning rate every num_steps_decay_pwc') parser.add_argument('--clip_gradient_norm', type=float, default=1.0, help='gradient clip norm.') parser.add_argument('--weights_initializer_factor', type=float, default=0.1, help='multiplier in the variance of the initialization noise.') # Evaluation parameters parser.add_argument('--max_number_of_evaluations', type=float, default=float('inf')) parser.add_argument('--eval_interval_secs', type=int, default=120, help='Time between evaluating model?') parser.add_argument('--eval_interval_steps', type=int, default=1000, help='Number of train steps between evaluating model in the training loop') parser.add_argument('--eval_interval_fine_steps', type=int, default=250, help='Number of train steps between evaluating model in the training loop in the final phase') # Test parameters parser.add_argument('--num_classes_test', type=int, default=5, help='Number of classes in the test phase') parser.add_argument('--num_shots_test', type=int, default=5, help='Number of shots in a few shot meta-test scenario') parser.add_argument('--num_cases_test', type=int, default=100000, help='Number of few-shot cases to compute test accuracy') # Architecture parameters parser.add_argument('--dropout', type=float, default=1.0) parser.add_argument('--conv_dropout', type=float, default=None) parser.add_argument('--feature_dropout_p', type=float, default=None) parser.add_argument('--weight_decay', type=float, default=0.0005) parser.add_argument('--num_filters', type=int, default=64) parser.add_argument('--num_units_in_block', type=int, default=3) parser.add_argument('--num_blocks', type=int, default=4) parser.add_argument('--num_max_pools', type=int, default=3) parser.add_argument('--block_size_growth', type=float, default=2.0) parser.add_argument('--activation', type=str, default='swish-1', choices=['relu', 'selu', 'swish-1']) parser.add_argument('--feature_expansion_size', type=int, default=None) parser.add_argument('--feature_bottleneck_size', type=int, default=None) parser.add_argument('--feature_extractor', type=str, default='simple_res_net', choices=['simple_res_net'], help='Which feature extractor to use') parser.add_argument('--encoder_sharing', type=str, default='shared', choices=['shared'], help='How to link fetaure extractors in task encoder and classifier') parser.add_argument('--encoder_classifier_link', type=str, default='prototypical', choices=['prototypical'], help='How to link fetaure extractors in task encoder and classifier') parser.add_argument('--embedding_pooled', type=bool, default=True, help='Whether to use avg pooling to create embedding') parser.add_argument('--task_encoder', type=str, default='self_att_mlp', choices=['class_mean', 'fixed_alpha','fixed_alpha_mlp','self_att_mlp']) # parser.add_argument('--num_batches_neg_mining', type=int, default=0) parser.add_argument('--eval_batch_size', type=int, default=100, help='Evaluation batch size') parser.add_argument('--alpha', type=float, default=1.0) parser.add_argument('--mlp_weight_decay', type=float, default=0.0) parser.add_argument('--mlp_dropout', type=float, default=0.0) parser.add_argument('--mlp_type', type=str, default='non-linear') parser.add_argument('--att_input', type=str, default='word') args = parser.parse_args() print(args) return args def get_logdir_name(flags): """Generates the name of the log directory from the values of flags Parameters ---------- flags: neural net architecture generated by get_arguments() Outputs ------- the name of the directory to store the training and evaluation results """ logdir = flags.log_dir return logdir class ScaledVarianceRandomNormal(init_ops.Initializer): """Initializer that generates tensors with a normal distribution scaled as per https://arxiv.org/pdf/1502.01852.pdf. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. """ def __init__(self, mean=0.0, factor=1.0, seed=None, dtype=dtypes.float32): self.mean = mean self.factor = factor self.seed = seed self.dtype = dtypes.as_dtype(dtype) def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype if shape: n = float(shape[-1]) else: n = 1.0 for dim in shape[:-2]: n *= float(dim) self.stddev = np.sqrt(self.factor * 2.0 / n) return random_ops.random_normal(shape, self.mean, self.stddev, dtype, seed=self.seed) def _get_scope(is_training, flags): normalizer_params = { 'epsilon': 0.001, 'momentum': .95, 'trainable': is_training, 'training': is_training, } conv2d_arg_scope = slim.arg_scope( [slim.conv2d, slim.fully_connected], activation_fn=ACTIVATION_MAP[flags.activation], normalizer_fn=tf.layers.batch_normalization, normalizer_params=normalizer_params, # padding='SAME', trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer(scale=flags.weight_decay), weights_initializer=ScaledVarianceRandomNormal(factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0) ) dropout_arg_scope = slim.arg_scope( [slim.dropout], keep_prob=flags.dropout, is_training=is_training) return conv2d_arg_scope, dropout_arg_scope def build_simple_conv_net(images, flags, is_training, reuse=None, scope=None): conv2d_arg_scope, dropout_arg_scope = _get_scope(is_training, flags) with conv2d_arg_scope, dropout_arg_scope: with tf.variable_scope(scope or 'feature_extractor', reuse=reuse): h = images for i in range(4): h = slim.conv2d(h, num_outputs=flags.num_filters, kernel_size=3, stride=1, scope='conv' + str(i), padding='SAME', weights_initializer=ScaledVarianceRandomNormal(factor=flags.weights_initializer_factor)) h = slim.max_pool2d(h, kernel_size=2, stride=2, padding='VALID', scope='max_pool' + str(i)) if flags.embedding_pooled == True: kernel_size = h.shape.as_list()[-2] h = slim.avg_pool2d(h, kernel_size=kernel_size, scope='avg_pool') h = slim.flatten(h) return h def leaky_relu(x, alpha=0.1, name=None): return tf.maximum(x, alpha * x, name=name) def build_simple_res_net(images, flags, num_filters, beta=None, gamma=None, is_training=False, reuse=None, scope=None): conv2d_arg_scope, dropout_arg_scope = _get_scope(is_training, flags) activation_fn = ACTIVATION_MAP[flags.activation] with conv2d_arg_scope, dropout_arg_scope: with tf.variable_scope(scope or 'feature_extractor', reuse=reuse): h = images for i in range(len(num_filters)): # make shortcut shortcut = slim.conv2d(h, num_outputs=num_filters[i], kernel_size=1, stride=1, activation_fn=None, scope='shortcut' + str(i), padding='SAME') for j in range(flags.num_units_in_block): h = slim.conv2d(h, num_outputs=num_filters[i], kernel_size=3, stride=1, scope='conv' + str(i) + '_' + str(j), padding='SAME', activation_fn=None) if flags.conv_dropout: h = slim.dropout(h, keep_prob=1.0 - flags.conv_dropout) if j < (flags.num_units_in_block - 1): h = activation_fn(h, name='activation_' + str(i) + '_' + str(j)) h = h + shortcut h = activation_fn(h, name='activation_' + str(i) + '_' + str(flags.num_units_in_block - 1)) if i < flags.num_max_pools: h = slim.max_pool2d(h, kernel_size=2, stride=2, padding='SAME', scope='max_pool' + str(i)) if flags.feature_expansion_size: if flags.feature_dropout_p: h = slim.dropout(h, scope='feature_expansion_dropout', keep_prob=1.0 - flags.feature_dropout_p) h = slim.conv2d(slim.dropout(h), num_outputs=flags.feature_expansion_size, kernel_size=1, stride=1, scope='feature_expansion', padding='SAME') if flags.embedding_pooled == True: kernel_size = h.shape.as_list()[-2] h = slim.avg_pool2d(h, kernel_size=kernel_size, scope='avg_pool') h = slim.flatten(h) if flags.feature_dropout_p: h = slim.dropout(h, scope='feature_bottleneck_dropout', keep_prob=1.0 - flags.feature_dropout_p) # Bottleneck layer if flags.feature_bottleneck_size: h = slim.fully_connected(h, num_outputs=flags.feature_bottleneck_size, activation_fn=activation_fn, normalizer_fn=None, scope='feature_bottleneck') return h def build_wordemb_transformer(embeddings, flags, is_training=False, reuse=None, scope=None): with tf.variable_scope(scope or 'mlp_transformer', reuse=reuse): h = embeddings if flags.mlp_type=='linear': h = slim.fully_connected(h, 512, reuse=False, scope='mlp_layer', activation_fn=None, trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer(scale=flags.mlp_weight_decay), weights_initializer=ScaledVarianceRandomNormal(factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0)) elif flags.mlp_type=='non-linear': h = slim.fully_connected(h, 300, reuse=False, scope='mlp_layer', activation_fn=tf.nn.relu, trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer( scale=flags.mlp_weight_decay), weights_initializer=ScaledVarianceRandomNormal( factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0)) h = slim.dropout(h, scope='mlp_dropout', keep_prob=1.0 - flags.mlp_dropout, is_training=is_training) h = slim.fully_connected(h, 512, reuse=False, scope='mlp_layer_1', activation_fn=None, trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer( scale=flags.mlp_weight_decay), weights_initializer=ScaledVarianceRandomNormal( factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0)) return h def build_self_attention(embeddings, flags, is_training=False, reuse=None, scope=None): with tf.variable_scope(scope or 'self_attention', reuse=reuse): h = embeddings if flags.mlp_type=='linear': h = slim.fully_connected(h, 1, reuse=False, scope='self_att_layer', activation_fn=None, trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer(scale=flags.mlp_weight_decay), weights_initializer=ScaledVarianceRandomNormal(factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0)) elif flags.mlp_type=='non-linear': h = slim.fully_connected(h, 300, reuse=False, scope='self_att_layer', activation_fn=tf.nn.relu, trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer( scale=flags.mlp_weight_decay), weights_initializer=ScaledVarianceRandomNormal( factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0)) h = slim.dropout(h, scope='self_att_dropout', keep_prob=1.0 - flags.mlp_dropout, is_training=is_training) h = slim.fully_connected(h, 1, reuse=False, scope='self_att_layer_1', activation_fn=None, trainable=is_training, weights_regularizer=tf.contrib.layers.l2_regularizer( scale=flags.mlp_weight_decay), weights_initializer=ScaledVarianceRandomNormal( factor=flags.weights_initializer_factor), biases_initializer=tf.constant_initializer(0.0)) h = tf.sigmoid(h) return h def get_res_net_block(h, flags, num_filters, num_units, pool=False, is_training=False, reuse=None, scope=None): conv2d_arg_scope, dropout_arg_scope = _get_scope(is_training, flags) activation_fn = ACTIVATION_MAP[flags.activation] with conv2d_arg_scope, dropout_arg_scope: with tf.variable_scope(scope, reuse=reuse): # make shortcut shortcut = slim.conv2d(h, num_outputs=num_filters, kernel_size=1, stride=1, activation_fn=None, scope='shortcut', padding='SAME') for j in range(num_units): h = slim.conv2d(h, num_outputs=num_filters, kernel_size=3, stride=1, scope='conv_' + str(j), padding='SAME', activation_fn=None) if flags.conv_dropout: h = slim.dropout(h, keep_prob=1.0 - flags.conv_dropout) if j < (num_units - 1): h = activation_fn(h, name='activation_' + str(j)) h = h + shortcut h = activation_fn(h, name='activation_' + '_' + str(flags.num_units_in_block - 1)) if pool: h = slim.max_pool2d(h, kernel_size=2, stride=2, padding='SAME', scope='max_pool') return h def build_feature_extractor_graph(images, flags, num_filters, beta=None, gamma=None, is_training=False, scope='feature_extractor_task_encoder', reuse=None, is_64way=False): if flags.feature_extractor == 'simple_conv_net': h = build_simple_conv_net(images, flags=flags, is_training=is_training, reuse=reuse, scope=scope) elif flags.feature_extractor == 'simple_res_net': h = build_simple_res_net(images, flags=flags, num_filters=num_filters, beta=beta, gamma=gamma, is_training=is_training, reuse=reuse, scope=scope) else: h = None embedding_shape = h.get_shape().as_list() if is_training and is_64way is False: h = tf.reshape(h, shape=(flags.num_tasks_per_batch, embedding_shape[0] // flags.num_tasks_per_batch, -1), name='reshape_to_separate_tasks_generic_features') else: h = tf.reshape(h, shape=(1, embedding_shape[0], -1), name='reshape_to_separate_tasks_generic_features') return h def build_task_encoder(embeddings, label_embeddings, flags, is_training, querys=None, reuse=None, scope='class_encoder'): conv2d_arg_scope, dropout_arg_scope = _get_scope(is_training, flags) alpha=None with conv2d_arg_scope, dropout_arg_scope: with tf.variable_scope(scope, reuse=reuse): if flags.task_encoder == 'talkthrough': task_encoding = embeddings elif flags.task_encoder == 'class_mean': task_encoding = embeddings if is_training: task_encoding = tf.reshape(task_encoding, shape=( flags.num_tasks_per_batch, flags.num_classes_train, flags.num_shots_train, -1), name='reshape_to_separate_tasks_task_encoding') else: task_encoding = tf.reshape(task_encoding, shape=(1, flags.num_classes_test, flags.num_shots_test, -1), name='reshape_to_separate_tasks_task_encoding') task_encoding = tf.reduce_mean(task_encoding, axis=2, keep_dims=False) elif flags.task_encoder == 'fixed_alpha': task_encoding = embeddings print("entered the word embedding task encoder...") if is_training: task_encoding = tf.reshape(task_encoding, shape=( flags.num_tasks_per_batch, flags.num_classes_train, flags.num_shots_train, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=( flags.num_tasks_per_batch, flags.num_classes_train, -1), name='reshape_to_separate_tasks_label_embedding') else: task_encoding = tf.reshape(task_encoding, shape=(1, flags.num_classes_test, flags.num_shots_test, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=(1, flags.num_classes_test, -1), name='reshape_to_separate_tasks_label_embedding') task_encoding = tf.reduce_mean(task_encoding, axis=2, keep_dims=False) task_encoding = flags.alpha*task_encoding+(1-flags.alpha)*label_embeddings elif flags.task_encoder == 'fixed_alpha_mlp': task_encoding = embeddings print("entered the word embedding task encoder...") label_embeddings = build_wordemb_transformer(label_embeddings,flags,is_training) if is_training: task_encoding = tf.reshape(task_encoding, shape=( flags.num_tasks_per_batch, flags.num_classes_train, flags.num_shots_train, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=( flags.num_tasks_per_batch, flags.num_classes_train, -1), name='reshape_to_separate_tasks_label_embedding') else: task_encoding = tf.reshape(task_encoding, shape=(1, flags.num_classes_test, flags.num_shots_test, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=(1, flags.num_classes_test, -1), name='reshape_to_separate_tasks_label_embedding') task_encoding = tf.reduce_mean(task_encoding, axis=2, keep_dims=False) task_encoding = flags.alpha*task_encoding+(1-flags.alpha)*label_embeddings elif flags.task_encoder == 'self_att_mlp': task_encoding = embeddings print("entered the word embedding task encoder...") label_embeddings = build_wordemb_transformer(label_embeddings,flags,is_training) if is_training: task_encoding = tf.reshape(task_encoding, shape=( flags.num_tasks_per_batch, flags.num_classes_train, flags.num_shots_train, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=( flags.num_tasks_per_batch, flags.num_classes_train, -1), name='reshape_to_separate_tasks_label_embedding') else: task_encoding = tf.reshape(task_encoding, shape=(1, flags.num_classes_test, flags.num_shots_test, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=(1, flags.num_classes_test, -1), name='reshape_to_separate_tasks_label_embedding') task_encoding = tf.reduce_mean(task_encoding, axis=2, keep_dims=False) if flags.att_input=='proto': alpha = build_self_attention(task_encoding,flags,is_training) elif flags.att_input=='word': alpha = build_self_attention(label_embeddings,flags,is_training) elif flags.att_input=='combined': embeddings=tf.concat([task_encoding, label_embeddings], axis=2) alpha = build_self_attention(embeddings, flags, is_training) elif flags.att_input=='queryword': j = label_embeddings.get_shape().as_list()[1] i = querys.get_shape().as_list()[1] task_encoding_tile = tf.expand_dims(task_encoding, axis=1) task_encoding_tile = tf.tile(task_encoding_tile, (1, i, 1, 1)) querys_tile = tf.expand_dims(querys, axis=2) querys_tile = tf.tile(querys_tile, (1, 1, j, 1)) label_embeddings_tile = tf.expand_dims(label_embeddings, axis=1) label_embeddings_tile = tf.tile(label_embeddings_tile, (1, i, 1, 1)) att_input = tf.concat([label_embeddings_tile, querys_tile], axis=3) alpha = build_self_attention(att_input, flags, is_training) elif flags.att_input=='queryproto': j = task_encoding.get_shape().as_list()[1] i = querys.get_shape().as_list()[1] task_encoding_tile = tf.expand_dims(task_encoding, axis=1) task_encoding_tile = tf.tile(task_encoding_tile, (1, i, 1, 1)) querys_tile = tf.expand_dims(querys, axis=2) querys_tile = tf.tile(querys_tile, (1, 1, j, 1)) label_embeddings_tile = tf.expand_dims(label_embeddings, axis=1) label_embeddings_tile = tf.tile(label_embeddings_tile, (1, i, 1, 1)) att_input = tf.concat([task_encoding_tile, querys_tile], axis=3) alpha = build_self_attention(att_input, flags, is_training) if querys is None: task_encoding = alpha*task_encoding+(1-alpha)*label_embeddings else: task_encoding = alpha * task_encoding_tile + (1-alpha) * label_embeddings_tile else: task_encoding = None return task_encoding, alpha def build_prototypical_head(features_generic, task_encoding, flags, is_training, scope='prototypical_head'): """ Implements the prototypical networks few-shot head :param features_generic: :param task_encoding: :param flags: :param is_training: :param reuse: :param scope: :return: """ with tf.variable_scope(scope): if len(features_generic.get_shape().as_list()) == 2: features_generic = tf.expand_dims(features_generic, axis=0) if len(task_encoding.get_shape().as_list()) == 2: task_encoding = tf.expand_dims(task_encoding, axis=0) # i is the number of steps in the task_encoding sequence # j is the number of steps in the features_generic sequence j = task_encoding.get_shape().as_list()[1] i = features_generic.get_shape().as_list()[1] # tile to be able to produce weight matrix alpha in (i,j) space features_generic = tf.expand_dims(features_generic, axis=2) task_encoding = tf.expand_dims(task_encoding, axis=1) # features_generic changes over i and is constant over j # task_encoding changes over j and is constant over i task_encoding_tile = tf.tile(task_encoding, (1, i, 1, 1)) features_generic_tile = tf.tile(features_generic, (1, 1, j, 1)) # implement equation (4) euclidian = -tf.norm(task_encoding_tile - features_generic_tile, name='neg_euclidian_distance', axis=-1) if is_training: euclidian = tf.reshape(euclidian, shape=(flags.num_tasks_per_batch * flags.train_batch_size, -1)) else: euclidian_shape = euclidian.get_shape().as_list() euclidian = tf.reshape(euclidian, shape=(euclidian_shape[1], -1)) return euclidian def build_prototypical_head_protoperquery(features_generic, task_encoding, flags, is_training, scope='prototypical_head'): """ Implements the prototypical networks few-shot head :param features_generic: :param task_encoding: :param flags: :param is_training: :param reuse: :param scope: :return: """ # the shape of task_encoding is [num_tasks, batch_size, num_classes, ] with tf.variable_scope(scope): if len(features_generic.get_shape().as_list()) == 2: features_generic = tf.expand_dims(features_generic, axis=0) if len(task_encoding.get_shape().as_list()) == 2: task_encoding = tf.expand_dims(task_encoding, axis=0) # i is the number of steps in the task_encoding sequence # j is the number of steps in the features_generic sequence j = task_encoding.get_shape().as_list()[2] i = features_generic.get_shape().as_list()[1] # tile to be able to produce weight matrix alpha in (i,j) space features_generic = tf.expand_dims(features_generic, axis=2) #task_encoding = tf.expand_dims(task_encoding, axis=1) # features_generic changes over i and is constant over j # task_encoding changes over j and is constant over i features_generic_tile = tf.tile(features_generic, (1, 1, j, 1)) # implement equation (4) euclidian = -tf.norm(task_encoding - features_generic_tile, name='neg_euclidian_distance', axis=-1) if is_training: euclidian = tf.reshape(euclidian, shape=(flags.num_tasks_per_batch * flags.train_batch_size, -1)) else: euclidian_shape = euclidian.get_shape().as_list() euclidian = tf.reshape(euclidian, shape=(euclidian_shape[1], -1)) return euclidian def build_regularizer_head(embeddings, label_embeddings, flags, is_training, scope='regularizer_head'): """ Implements the prototypical networks few-shot head :param features_generic: :param task_encoding: :param flags: :param is_training: :param reuse: :param scope: :return: """ with tf.variable_scope(scope): task_encoding = embeddings if is_training: task_encoding = tf.reshape(task_encoding, shape=( flags.num_tasks_per_batch, flags.num_classes_train, flags.num_shots_train, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=( flags.num_tasks_per_batch, flags.num_classes_train, -1), name='reshape_to_separate_tasks_label_embedding') else: task_encoding = tf.reshape(task_encoding, shape=(1, flags.num_classes_test, flags.num_shots_test, -1), name='reshape_to_separate_tasks_task_encoding') label_embeddings = tf.reshape(label_embeddings, shape=(1, flags.num_classes_test, -1), name='reshape_to_separate_tasks_label_embedding') task_encoding = tf.reduce_mean(task_encoding, axis=2, keep_dims=False) # i is the number of steps in the task_encoding sequence # j is the number of steps in the features_generic sequence j = task_encoding.get_shape().as_list()[1] i = label_embeddings.get_shape().as_list()[1] # tile to be able to produce weight matrix alpha in (i,j) space task_encoding = tf.expand_dims(task_encoding, axis=2) label_embeddings = tf.expand_dims(label_embeddings, axis=1) # features_generic changes over i and is constant over j # task_encoding changes over j and is constant over i label_embeddings_tile = tf.tile(label_embeddings, (1, i, 1, 1)) task_encoding_tile = tf.tile(task_encoding, (1, 1, j, 1)) # implement equation (4) euclidian = -tf.norm(task_encoding_tile - label_embeddings_tile, name='neg_euclidian_distance_regularizer', axis=-1) if is_training: euclidian = tf.reshape(euclidian, shape=(flags.num_tasks_per_batch * flags.num_classes_train, -1)) else: euclidian_shape = euclidian.get_shape().as_list() euclidian = tf.reshape(euclidian, shape=(euclidian_shape[1], -1)) return euclidian def placeholder_inputs(batch_size, image_size, scope): """ :param batch_size: :return: placeholders for images and """ with tf.variable_scope(scope): images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, 3), name='images') labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size), name='labels') return images_placeholder, labels_placeholder def get_batch(data_set, images_placeholder, labels_placeholder, batch_size): """ :param data_set: :param images_placeholder: :param labels_placeholder: :return: """ images_feed, labels_feed = data_set.next_batch(batch_size) feed_dict = { images_placeholder: images_feed.astype(dtype=np.float32), labels_placeholder: labels_feed, } return feed_dict def preprocess(images): # mean = tf.constant(np.asarray([127.5, 127.5, 127.5]).reshape([1, 1, 3]), dtype=tf.float32, name='image_mean') # std = tf.constant(np.asarray([127.5, 127.5, 127.5]).reshape([1, 1, 3]), dtype=tf.float32, name='image_std') # return tf.div(tf.subtract(images, mean), std) std = tf.constant(np.asarray([0.5, 0.5, 0.5]).reshape([1, 1, 3]), dtype=tf.float32, name='image_std') return tf.div(images, std) def get_nearest_neighbour_acc(flags, embeddings, labels): num_correct = 0 num_tot = 0 for i in trange(flags.num_cases_test): test_classes = np.random.choice(np.unique(labels), size=flags.num_classes_test, replace=False) train_idxs, test_idxs = get_few_shot_idxs(labels=labels, classes=test_classes, num_shots=flags.num_shots_test) # TODO: this is to fix the OOM error, this can be removed when embed() supports batch processing test_idxs = np.random.choice(test_idxs, size=100, replace=False) np_embedding_train = embeddings[train_idxs] # Using the np.std instead of np.linalg.norm improves results by around 1-1.5% np_embedding_train = np_embedding_train / np.std(np_embedding_train, axis=1, keepdims=True) # np_embedding_train = np_embedding_train / np.linalg.norm(np_embedding_train, axis=1, keepdims=True) labels_train = labels[train_idxs] np_embedding_test = embeddings[test_idxs] np_embedding_test = np_embedding_test / np.std(np_embedding_test, axis=1, keepdims=True) # np_embedding_test = np_embedding_test / np.linalg.norm(np_embedding_test, axis=1, keepdims=True) labels_test = labels[test_idxs] kdtree = KDTree(np_embedding_train) nns, nn_idxs = kdtree.query(np_embedding_test, k=1) labels_predicted = labels_train[nn_idxs] num_matches = sum(labels_predicted == labels_test) num_correct += num_matches num_tot += len(labels_predicted) # print("Accuracy: ", (100.0 * num_correct) / num_tot) return (100.0 * num_correct) / num_tot def build_inference_graph(images_deploy_pl, images_task_encode_pl, flags, is_training, is_primary, label_embeddings): num_filters = [round(flags.num_filters * pow(flags.block_size_growth, i)) for i in range(flags.num_blocks)] reuse = not is_primary alpha=None with tf.variable_scope('Model'): feature_extractor_encoding_scope = 'feature_extractor_encoder' features_task_encode = build_feature_extractor_graph(images=images_task_encode_pl, flags=flags, is_training=is_training, num_filters=num_filters, scope=feature_extractor_encoding_scope, reuse=False) if flags.encoder_sharing == 'shared': ecoder_reuse = True feature_extractor_classifier_scope = feature_extractor_encoding_scope elif flags.encoder_sharing == 'siamese': # TODO: in the case of pretrained feature extractor this is not good, # because the classfier part will be randomly initialized ecoder_reuse = False feature_extractor_classifier_scope = 'feature_extractor_classifier' else: raise Exception('Option not implemented') if flags.encoder_classifier_link == 'prototypical': #flags.task_encoder = 'class_mean' features_generic = build_feature_extractor_graph(images=images_deploy_pl, flags=flags, is_training=is_training, scope=feature_extractor_classifier_scope, num_filters=num_filters, reuse=ecoder_reuse) querys = None if 'query' in flags.att_input: querys = features_generic task_encoding, alpha = build_task_encoder(embeddings=features_task_encode, label_embeddings=label_embeddings, flags=flags, is_training=is_training, reuse=reuse, querys=querys, threshold=flags.alpha) if 'query' in flags.att_input: logits = build_prototypical_head_protoperquery(features_generic, task_encoding, flags, is_training=is_training) else: logits = build_prototypical_head(features_generic, task_encoding, flags, is_training=is_training) # logits_regularizer = build_regularizer_head(embeddings= features_task_encode, # label_embeddings=label_embeddings, flags=flags, # is_training=is_training ) else: raise Exception('Option not implemented') return logits, None, features_task_encode, features_generic, alpha def get_train_datasets(flags): mini_imagenet = _load_mini_imagenet(data_dir=flags.data_dir, split='sources') few_shot_data_train = Dataset(mini_imagenet) pretrain_data_train, pretrain_data_test = None, None return few_shot_data_train, pretrain_data_train, pretrain_data_test def get_pwc_learning_rate(global_step, flags): learning_rate = tf.train.piecewise_constant(global_step, [np.int64(flags.number_of_steps / 2), np.int64( flags.number_of_steps / 2 + flags.num_steps_decay_pwc), np.int64( flags.number_of_steps / 2 + 2 * flags.num_steps_decay_pwc)], [flags.init_learning_rate, flags.init_learning_rate * 0.1, flags.init_learning_rate * 0.01, flags.init_learning_rate * 0.001]) return learning_rate def create_hard_negative_batch(misclass, feed_dict, sess, few_shot_data_train, flags, images_deploy_pl, labels_deploy_pl, images_task_encode_pl, labels_task_encode_pl): """ :param logits: :param feed_dict: :param sess: :param few_shot_data_train: :param flags: :param images_deploy_pl: :param labels_deploy_pl: :param images_task_encode_pl: :param labels_task_encode_pl: :return: """ feed_dict_test = dict(feed_dict) misclass_test_final = 0.0 misclass_history = np.zeros(flags.num_batches_neg_mining) for i in range(flags.num_batches_neg_mining): images_deploy, labels_deploy, images_task_encode, labels_task_encode = \ few_shot_data_train.next_few_shot_batch(deploy_batch_size=flags.train_batch_size, num_classes_test=flags.num_classes_train, num_shots=flags.num_shots_train, num_tasks=flags.num_tasks_per_batch) feed_dict_test[images_deploy_pl] = images_deploy.astype(dtype=np.float32) feed_dict_test[labels_deploy_pl] = labels_deploy feed_dict_test[images_task_encode_pl] = images_task_encode.astype(dtype=np.float32) feed_dict_test[labels_task_encode_pl] = labels_task_encode # logits misclass_test = sess.run(misclass, feed_dict=feed_dict_test) misclass_history[i] = misclass_test if misclass_test > misclass_test_final: misclass_test_final = misclass_test feed_dict = dict(feed_dict_test) return feed_dict def train(flags): log_dir = get_logdir_name(flags) flags.pretrained_model_dir = log_dir fout=open(log_dir+'/out','a') log_dir = os.path.join(log_dir, 'train') # This is setting to run evaluation loop only once flags.max_number_of_evaluations = 1 flags.eval_interval_secs = 0 image_size = get_image_size(flags.data_dir) with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False, name='global_step', dtype=tf.int64) global_step_pretrain = tf.Variable(0, trainable=False, name='global_step_pretrain', dtype=tf.int64) images_deploy_pl, labels_deploy_pl = placeholder_inputs( batch_size=flags.num_tasks_per_batch * flags.train_batch_size, image_size=image_size, scope='inputs/deploy') images_task_encode_pl, _ = placeholder_inputs( batch_size=flags.num_tasks_per_batch * flags.num_classes_train * flags.num_shots_train, image_size=image_size, scope='inputs/task_encode') with tf.variable_scope('inputs/task_encode'): labels_task_encode_pl_real = tf.placeholder(tf.int64, shape=(flags.num_tasks_per_batch * flags.num_classes_train), name='labels_real') labels_task_encode_pl = tf.placeholder(tf.int64, shape=(flags.num_tasks_per_batch * flags.num_classes_train), name='labels') #here is the word embedding layer for training emb_path = os.path.join(flags.data_dir, 'few-shot-wordemb-{}.npz'.format("train")) embedding_train = np.load(emb_path)["features"].astype(np.float32) print(embedding_train.dtype) logging.info("Loading mini-imagenet...") W_train = tf.constant(embedding_train, name="W_train") label_embeddings_train = tf.nn.embedding_lookup(W_train, labels_task_encode_pl_real) # Primary task operations logits, regularizer_logits, _, _, alpha = build_inference_graph(images_deploy_pl=images_deploy_pl, images_task_encode_pl=images_task_encode_pl, flags=flags, is_training=True, is_primary=True, label_embeddings=label_embeddings_train) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot(labels_deploy_pl, flags.num_classes_train))) # Losses and optimizer regu_losses = slim.losses.get_regularization_losses() loss = tf.add_n([loss] + regu_losses) misclass = 1.0 - slim.metrics.accuracy(tf.argmax(logits, 1), labels_deploy_pl) # Learning rate if flags.lr_anneal == 'const': learning_rate = flags.init_learning_rate elif flags.lr_anneal == 'pwc': learning_rate = get_pwc_learning_rate(global_step, flags) elif flags.lr_anneal == 'exp': lr_decay_step = flags.number_of_steps // flags.n_lr_decay learning_rate = tf.train.exponential_decay(flags.init_learning_rate, global_step, lr_decay_step, 1.0 / flags.lr_decay_rate, staircase=True) else: raise Exception('Not implemented') # Optimizer if flags.optimizer == 'sgd': optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9) else: optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer, global_step=global_step, clip_gradient_norm=flags.clip_gradient_norm) tf.summary.scalar('loss', loss) tf.summary.scalar('misclassification', misclass) tf.summary.scalar('learning_rate', learning_rate) # Merge all summaries except for pretrain summary = tf.summary.merge(tf.get_collection('summaries', scope='(?!pretrain).*')) # Get datasets few_shot_data_train, pretrain_data_train, pretrain_data_test = get_train_datasets(flags) # Define session and logging summary_writer = tf.summary.FileWriter(log_dir, flush_secs=1) saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() supervisor = tf.train.Supervisor(logdir=log_dir, init_feed_dict=None, summary_op=None, init_op=tf.global_variables_initializer(), summary_writer=summary_writer, saver=saver, global_step=global_step, save_summaries_secs=flags.save_summaries_secs, save_model_secs=0) # flags.save_interval_secs with supervisor.managed_session() as sess: checkpoint_step = sess.run(global_step) if checkpoint_step > 0: checkpoint_step += 1 eval_interval_steps = flags.eval_interval_steps for step in range(checkpoint_step, flags.number_of_steps): # get batch of data to compute classification loss images_deploy, labels_deploy, images_task_encode, labels_task_encode_real, labels_task_encode = \ few_shot_data_train.next_few_shot_batch_wordemb(deploy_batch_size=flags.train_batch_size, num_classes_test=flags.num_classes_train, num_shots=flags.num_shots_train, num_tasks=flags.num_tasks_per_batch) if flags.augment: images_deploy = image_augment(images_deploy) images_task_encode = image_augment(images_task_encode) feed_dict = {images_deploy_pl: images_deploy.astype(dtype=np.float32), labels_deploy_pl: labels_deploy, images_task_encode_pl: images_task_encode.astype(dtype=np.float32), labels_task_encode_pl_real: labels_task_encode_real, labels_task_encode_pl: labels_task_encode} t_batch = time.time() feed_dict = create_hard_negative_batch(misclass, feed_dict, sess, few_shot_data_train, flags, images_deploy_pl, labels_deploy_pl, images_task_encode_pl, labels_task_encode_pl_real) dt_batch = time.time() - t_batch t_train = time.time() loss,alpha_np = sess.run([train_op,alpha], feed_dict=feed_dict) dt_train = time.time() - t_train if step % 100 == 0: summary_str = sess.run(summary, feed_dict=feed_dict) summary_writer.add_summary(summary_str, step) summary_writer.flush() logging.info("step %d, loss : %.4g, dt: %.3gs, dt_batch: %.3gs" % (step, loss, dt_train, dt_batch)) fout.write("step: "+str(step)+' loss: '+str(loss)+'\n') if float(step) / flags.number_of_steps > 0.5: eval_interval_steps = flags.eval_interval_fine_steps if eval_interval_steps > 0 and step % eval_interval_steps == 0: saver.save(sess, os.path.join(log_dir, 'model'), global_step=step) eval(flags=flags, is_primary=True, fout=fout) if float(step) > 0.5 * flags.number_of_steps + flags.number_of_steps_to_early_stop: break class ModelLoader: def __init__(self, model_path, batch_size, is_primary, split): self.batch_size = batch_size latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir=os.path.join(model_path, 'train')) step = int(os.path.basename(latest_checkpoint).split('-')[1]) flags = Namespace(load_and_save_params(default_params=dict(), exp_dir=model_path)) image_size = get_image_size(flags.data_dir) with tf.Graph().as_default(): images_deploy_pl, labels_deploy_pl = placeholder_inputs(batch_size=batch_size, image_size=image_size, scope='inputs/deploy') if is_primary: task_encode_batch_size = flags.num_classes_test * flags.num_shots_test images_task_encode_pl, _ = placeholder_inputs(batch_size=task_encode_batch_size, image_size=image_size, scope='inputs/task_encode') with tf.variable_scope('inputs/task_encode'): labels_task_encode_pl_real = tf.placeholder(tf.int64, shape=(flags.num_classes_test), name='labels_real') labels_task_encode_pl = tf.placeholder(tf.int64, shape=(flags.num_classes_test), name='labels') self.vocab_size = tf.placeholder(tf.float32, shape=(), name='vocab_size') self.tensor_images_deploy = images_deploy_pl self.tensor_labels_deploy = labels_deploy_pl self.tensor_labels_task_encode_real = labels_task_encode_pl_real self.tensor_labels_task_encode = labels_task_encode_pl self.tensor_images_task_encode = images_task_encode_pl emb_path = os.path.join(flags.data_dir, 'few-shot-wordemb-{}.npz'.format(split)) embedding_train = np.load(emb_path)["features"].astype(np.float32) print(embedding_train.dtype) logging.info("Loading mini-imagenet...") W = tf.constant(embedding_train, name="W_"+split) label_embeddings_train = tf.nn.embedding_lookup(W, labels_task_encode_pl_real) # Primary task operations logits, regularizer_logits, features_sample, features_query, self.alpha = build_inference_graph(images_deploy_pl=images_deploy_pl, images_task_encode_pl=images_task_encode_pl, flags=flags, is_training=False, is_primary=True, label_embeddings=label_embeddings_train) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot(labels_deploy_pl, flags.num_classes_test))) regularizer_loss = 0.0 # Losses and optimizer regu_losses = slim.losses.get_regularization_losses() loss = tf.add_n([loss] + regu_losses + [regularizer_loss]) init_fn = slim.assign_from_checkpoint_fn( latest_checkpoint, slim.get_model_variables('Model')) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True self.sess = tf.Session(config=config) # Run init before loading the weights self.sess.run(tf.global_variables_initializer()) # Load weights init_fn(self.sess) self.flags = flags self.logits = logits self.loss = loss self.features_sample = features_sample self.features_query = features_query self.logits_size = self.logits.get_shape().as_list()[-1] self.step = step self.is_primary = is_primary log_dir = get_logdir_name(flags) graphpb_txt = str(tf.get_default_graph().as_graph_def()) pathlib.Path(os.path.join(log_dir, 'eval')).mkdir(parents=True, exist_ok=True) with open(os.path.join(log_dir, 'eval', 'graph.pbtxt'), 'w') as f: f.write(graphpb_txt) def eval(self, data_dir, num_cases_test, split='target_val'): data_set = Dataset(_load_mini_imagenet(data_dir=data_dir, split=split)) num_batches = num_cases_test // self.batch_size num_correct = 0.0 num_tot = 0.0 loss_tot = 0.0 final_alpha=[] for i in range(num_batches): num_classes, num_shots = self.flags.num_classes_test, self.flags.num_shots_test images_deploy, labels_deploy, images_task_encode, labels_task_encode_real, labels_task_encode = \ data_set.next_few_shot_batch_wordemb(deploy_batch_size=self.batch_size, num_classes_test=num_classes, num_shots=num_shots, num_tasks=1) feed_dict = {self.tensor_images_deploy: images_deploy.astype(dtype=np.float32), self.tensor_labels_task_encode_real: labels_task_encode_real, self.tensor_labels_deploy: labels_deploy, self.tensor_labels_task_encode: labels_task_encode, self.tensor_images_task_encode: images_task_encode.astype(dtype=np.float32)} [logits, loss, alpha] = self.sess.run([self.logits, self.loss, self.alpha], feed_dict) final_alpha.append(alpha) labels_deploy_pred =
np.argmax(logits, axis=-1)
numpy.argmax
""" Transformer ================================= This example shows how to implement the Transformer model with Gluon NLP Toolkit. @inproceedings{vaswani2017attention, title={Attention is all you need}, author={Vaswani, Ashish and Shazeer, Noam and <NAME> and Uszkoreit, Jakob and Jones, Llion and Gomez, <NAME> and <NAME> and Polosukhin, Illia}, booktitle={Advances in Neural Information Processing Systems}, pages={6000--6010}, year={2017} } """ # coding: utf-8 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint:disable=redefined-outer-name,logging-format-interpolation import argparse import time import random import os import io import logging import math import numpy as np import mxnet as mx from mxnet import nd from mxnet import gluon from mxnet.gluon.data import ArrayDataset, SimpleDataset from mxnet.gluon.data import DataLoader import gluonnlp.data.batchify as btf from gluonnlp.data import NLTKMosesDetokenizer from gluonnlp.data import ConstWidthBucket, LinearWidthBucket, ExpWidthBucket,\ FixedBucketSampler, IWSLT2015, WMT2016, WMT2016BPE, WMT2014, WMT2014BPE from gluonnlp.model import BeamSearchScorer from translation import NMTModel, BeamSearchTranslator from transformer import get_transformer_encoder_decoder from loss import SoftmaxCEMaskedLoss, LabelSmoothing from utils import logging_config from bleu import _bpe_to_words, compute_bleu import _constants as _C np.random.seed(100) random.seed(100) mx.random.seed(10000) parser = argparse.ArgumentParser(description='Neural Machine Translation Example.' 'We train the Transformer Model') parser.add_argument('--dataset', type=str, default='WMT2016BPE', help='Dataset to use.') parser.add_argument('--src_lang', type=str, default='en', help='Source language') parser.add_argument('--tgt_lang', type=str, default='de', help='Target language') parser.add_argument('--epochs', type=int, default=10, help='upper epoch limit') parser.add_argument('--num_units', type=int, default=512, help='Dimension of the embedding ' 'vectors and states.') parser.add_argument('--hidden_size', type=int, default=2048, help='Dimension of the hidden state in position-wise feed-forward networks.') parser.add_argument('--dropout', type=float, default=0.1, help='dropout applied to layers (0 = no dropout)') parser.add_argument('--epsilon', type=float, default=0.1, help='epsilon parameter for label smoothing') parser.add_argument('--num_layers', type=int, default=6, help='number of layers in the encoder and decoder') parser.add_argument('--num_heads', type=int, default=8, help='number of heads in multi-head attention') parser.add_argument('--scaled', action='store_true', help='Turn on to use scale in attention') parser.add_argument('--batch_size', type=int, default=1024, help='Batch size. Number of tokens in a minibatch') parser.add_argument('--beam_size', type=int, default=4, help='Beam size') parser.add_argument('--lp_alpha', type=float, default=0.6, help='Alpha used in calculating the length penalty') parser.add_argument('--lp_k', type=int, default=5, help='K used in calculating the length penalty') parser.add_argument('--test_batch_size', type=int, default=256, help='Test batch size') parser.add_argument('--num_buckets', type=int, default=10, help='Bucket number') parser.add_argument('--bucket_scheme', type=str, default='constant', help='Strategy for generating bucket keys. It supports: ' '"constant": all the buckets have the same width; ' '"linear": the width of bucket increases linearly; ' '"exp": the width of bucket increases exponentially') parser.add_argument('--bucket_ratio', type=float, default=0.0, help='Ratio for increasing the ' 'throughput of the bucketing') parser.add_argument('--src_max_len', type=int, default=-1, help='Maximum length of the source ' 'sentence, -1 means no clipping') parser.add_argument('--tgt_max_len', type=int, default=-1, help='Maximum length of the target ' 'sentence, -1 means no clipping') parser.add_argument('--optimizer', type=str, default='adam', help='optimization algorithm') parser.add_argument('--lr', type=float, default=1.0, help='Initial learning rate') parser.add_argument('--warmup_steps', type=float, default=4000, help='number of warmup steps used in NOAM\'s stepsize schedule') parser.add_argument('--num_accumulated', type=int, default=1, help='Number of steps to accumulate the gradients. ' 'This is useful to mimic large batch training with limited gpu memory') parser.add_argument('--magnitude', type=float, default=3.0, help='Magnitude of Xavier initialization') parser.add_argument('--average_checkpoint', action='store_true', help='Turn on to perform final testing based on ' 'the average of last few checkpoints') parser.add_argument('--num_averages', type=int, default=5, help='Perform final testing based on the ' 'average of last num_averages checkpoints. ' 'This is only used if average_checkpoint is True') parser.add_argument('--average_start', type=int, default=5, help='Perform average SGD on last average_start epochs') parser.add_argument('--full', action='store_true', help='In default, we use the test dataset in' ' http://statmt.org/wmt14/test-filtered.tgz.' ' When the option full is turned on, we use the test dataset in' ' http://statmt.org/wmt14/test-full.tgz') parser.add_argument('--bleu', type=str, default='tweaked', help='Schemes for computing bleu score. It can be: ' '"tweaked": it uses similar steps in get_ende_bleu.sh in tensor2tensor ' 'repository, where compound words are put in ATAT format; ' '"13a": This uses official WMT tokenization and produces the same results' ' as official script (mteval-v13a.pl) used by WMT; ' '"intl": This use international tokenization in mteval-v14a.pl') parser.add_argument('--log_interval', type=int, default=100, metavar='N', help='report interval') parser.add_argument('--save_dir', type=str, default='transformer_out', help='directory path to save the final model and training log') parser.add_argument('--gpus', type=str, help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu.' '(using single gpu is suggested)') args = parser.parse_args() logging_config(args.save_dir) logging.info(args) def cache_dataset(dataset, prefix): """Cache the processed npy dataset the dataset into a npz Parameters ---------- dataset : SimpleDataset file_path : str """ if not os.path.exists(_C.CACHE_PATH): os.makedirs(_C.CACHE_PATH) src_data = np.array([ele[0] for ele in dataset]) tgt_data = np.array([ele[1] for ele in dataset]) np.savez(os.path.join(_C.CACHE_PATH, prefix + '.npz'), src_data=src_data, tgt_data=tgt_data) def load_cached_dataset(prefix): cached_file_path = os.path.join(_C.CACHE_PATH, prefix + '.npz') if os.path.exists(cached_file_path): print('Load cached data from {}'.format(cached_file_path)) dat = np.load(cached_file_path) return ArrayDataset(np.array(dat['src_data']),
np.array(dat['tgt_data'])
numpy.array
# Subgrid refinement and error estimation of redshift value found by # redmonster.physics.zfinder.py . # Interpolates both between redshift pixel lags and between model parameters. # # <NAME>, University of Utah @ IAC, May 2014 # Significant updates to z_refine() -> z_refine2() by TH, July 2015 # <EMAIL> import numpy as n import matplotlib as m from matplotlib import pyplot as p m.interactive(True) from redmonster.physics.misc import quadfit from redmonster.physics import grid_spline as gs class ZFitter: def __init__(self, zchi2, zbase): self.zchi2 = zchi2 self.zbase = zbase self.z =
n.zeros((zchi2.shape[0],5))
numpy.zeros
#!/usr/bin/env python # coding: utf-8 import numpy as np import h5py import matplotlib.pyplot as plt import scipy.signal import GPy from sklearn.decomposition import PCA from hdbscan import HDBSCAN from tqdm import tqdm import numpy.matlib def fourier_transform(waveform, num_harmonics, len_spw): step=np.arange(0,len_spw,1) a=[] b=[] for order in range(1, num_harmonics + 1): w_cos = waveform * np.cos(order * 2 * np.pi / len_spw * step) w_sin = waveform * np.sin(order * 2 * np.pi / len_spw * step) a.append((2/len_spw)*w_cos.sum()) b.append((2/len_spw)*w_sin.sum()) return [np.array(a),np.array(b)] def delt(base,target): delt = target - base if np.abs(delt) > np.pi: if base >= 0: delt = 2*np.pi + delt else: delt = delt - 2*np.pi return delt def sampling_timing(init_site, width_extended = 100, width_detected = 32, step_width = 0.01, len_wave = 20): shift_quantity = np.round(0.01*np.arange(-99,100),2) time_coordinate = np.arange(0,len_wave,step_width) + init_site - width_detected + shift_quantity.reshape(-1,1)#x time_coordinate = np.round(100*time_coordinate,0).astype('int') integer_idx = np.where(time_coordinate%100==0,True, False) temp_idx = np.where(integer_idx==True)[1].reshape(199,len_wave) samp_idx = time_coordinate[integer_idx].reshape(integer_idx.shape[0],len_wave).copy() samp_idx = np.round(samp_idx/100,0).astype('int') return samp_idx, temp_idx class SpikeSorting: def __init__(self): self.progress_ = 0 def guidance(self,module_num): message = ["load_h5()", "highpass_filter()", "spike_detection()", "dataset_division()", "spectrum_extraction()", "spw_classification()", "template_reconstruction()", "template_matching()","mpw_classification()","data_summarization()"] if module_num - self.progress_ > 1: print("Please run "+message[self.progress_]) return False else: return True def load_h5(self, h5_name): h5_data = h5py.File(h5_name) a_group_key = list(h5_data.keys())[0] self.raw_data_ = h5_data[a_group_key][:,0] self.progress_ = 1 def highpass_filter(self, bottom=300, sampling_rate=24000): if self.guidance(2): nyq = sampling_rate / 2 cutoff = np.array([bottom]) / nyq numtaps = 255 bpf = scipy.signal.firwin(numtaps, cutoff, pass_zero=False) self.filtered_data_ = scipy.signal.lfilter(bpf, 1, self.raw_data_)[int((numtaps-1)/2):] self.progress_ = 2 def spike_detection(self, f_std=3.5): if self.guidance(3): wide = 36 self.thr_ = f_std*np.median(np.abs(self.filtered_data_)/0.6745) peak_idx = scipy.signal.argrelmax(self.filtered_data_,order=5)[0] peak_idx = peak_idx[np.where(self.filtered_data_[peak_idx]>self.thr_)[0]] self.detected_waveform_ = [self.filtered_data_[i-wide:i+wide] for i in peak_idx] self.detected_waveform_ = np.array(self.detected_waveform_).reshape(peak_idx.shape[0],wide*2) self.peak_idx_ =peak_idx self.progress_ = 3 def dataset_division(self): if self.guidance(4): single_peak_waveform = []; multi_peak_waveform = []; sw_idx = []; mw_idx = [] for i in range(self.detected_waveform_.shape[0]): peak_idx = scipy.signal.argrelmax(self.detected_waveform_[i,:])[0] ith_waveform = self.detected_waveform_[i,:].copy() if len(np.where(ith_waveform[peak_idx]>self.thr_)[0])==1: single_peak_waveform.append(ith_waveform[4:68].copy()) sw_idx.append(i) else: multi_peak_waveform.append(ith_waveform[4:68].copy()) mw_idx.append(i) self.sw_idx_ = np.array(sw_idx) self.mw_idx_ = np.array(mw_idx) self.single_peak_waveform_ = np.array(single_peak_waveform).reshape(self.sw_idx_.shape[0],64) self.multi_peak_waveform_ = np.array(multi_peak_waveform).reshape(self.mw_idx_.shape[0],64) self.progress_ = 4 def spectrum_extraction(self, diff_order): if self.guidance(5): num_spw = self.single_peak_waveform_.shape[0] len_spw = self.single_peak_waveform_.shape[1] self.num_spw_ = num_spw self.len_spw_ = len_spw num_harmonics = int(self.single_peak_waveform_.shape[1]/2) self.order_diff_ = diff_order self.padded_diff_waveform = np.zeros((num_spw,len_spw)) diff_waveform = np.diff(self.single_peak_waveform_, diff_order).copy()*scipy.signal.hamming(len_spw-diff_order) self.padded_diff_waveform[:,0:len_spw-diff_order] = np.copy(diff_waveform.T - diff_waveform.mean(1)).T self.fourier_coeff_a = np.zeros((num_spw, num_harmonics)) self.fourier_coeff_b = np.zeros((num_spw, num_harmonics)) self.phase_ = np.zeros((num_spw,num_harmonics)) self.amplitude_ = np.zeros((num_spw,num_harmonics)) for i in range(num_spw): self.fourier_coeff_a[i,:], self.fourier_coeff_b[i,:] = fourier_transform(self.padded_diff_waveform[i,:].copy(),num_harmonics, len_spw) self.phase_[i,:] =
np.arctan2(self.fourier_coeff_b[i,:],self.fourier_coeff_a[i,:])
numpy.arctan2
import numpy as np import timeit NUM_RUNS = 10 def mat_trig_upper_dot(mat, v, y, n): for i in range(n-1,-1,-1): for j in range(n-1, i-1, -1): y[i] += mat[i][j] * v[j] return y def mat_trig_upper_axpy(mat, v, y, n): for j in range(n-1,-1,-1): for i in range(j+1): y[i] += mat[i][j] * v[j] return y def mat_trig_lower_dot(mat, v, y, n): for i in range(n): for j in range(i+1): y[i] += mat[i][j] * v[j] return y def mat_trig_lower_axpy(mat, v, y, n): for j in range(n): for i in range(n-1, j-1, -1): y[i] += mat[i][j] * v[j] return y def mat_sym_trig_upper_dot(mat, v, y, n): for i in range(n): for j in range(n): if i > j: y[i] += mat[j][i] * v[j] else: y[i] += mat[i][j] * v[j] return y def mat_vector_dot(mat, v, y, n): for i in range(n): for j in range(n): y[i] += mat[i][j] * v[j] return y def assertion(func, mat, v, n): y = np.zeros(n, dtype=int) # numpy dot = np.dot(mat, v) # mine my_dot = func(mat, v, y, n) return np.array_equal(dot, my_dot) def make_tests(): mat_trig_upper = np.array([ [1,2,3], [0,4,5], [0,0,6] ]) mat_trig_lower = np.array([ [1,0,0], [2,3,0], [4,5,6] ]) mat_sym = np.array([ [1,2,3], [2,5,6], [3,6,7] ]) mat = np.array([ [1,2,3], [4,5,6], [7,8,9] ]) v = np.array([1,0,1]) n = len(v) # Testes assert assertion(mat_trig_upper_dot,mat_trig_upper,v,n) print("Matriz Triangular Superior Dot - [!] PASSOU") assert assertion(mat_trig_lower_dot,mat_trig_lower,v,n) print("Matriz Triangular Inferior Dot - [!] PASSOU") assert assertion(mat_sym_trig_upper_dot,mat_sym,v,n) print("Matriz Simétrica Dot - [!] PASSOU") assert assertion(mat_vector_dot,mat,v,n) print("Matriz-Vetor Dot - [!] PASSOU\n\n") def benchmark(func, msg=None, *args): duration = timeit.Timer(lambda: func(*args)).timeit(number = NUM_RUNS) avg_duration = duration/NUM_RUNS if msg: print(f'[+] {msg}: Demorou, aproximadamente, {avg_duration} segundos') if "__main__" == __name__: make_tests() n = 3000 v = np.random.randint(low=1, high=5, size=n, dtype=int) mat = np.random.randint(low=1, high=10, size=(n, n), dtype=int) mat_trig_upper = np.triu(mat) mat_trig_lower = np.tril(mat) #mat_sym = np.tril(mat) + np.tril(mat, -1).T print("### Dot: Matriz Triangular Superior ###") benchmark(np.dot, "Numpy func", mat_trig_upper, v) y = np.zeros(n, dtype=int) benchmark(mat_vector_dot, "Naive func", mat_trig_upper, v, y, n) y = np.zeros(n, dtype=int) benchmark(mat_trig_upper_dot, "Efficient func", mat_trig_upper, v, y, n) print("### Dot: Matriz Triangular Inferior ###") benchmark(np.dot, "Numpy func", mat_trig_lower, v) y = np.zeros(n, dtype=int) benchmark(mat_vector_dot, "Naive func", mat_trig_lower, v, y, n) y = np.zeros(n, dtype=int) benchmark(mat_trig_lower_dot, "Efficient func", mat_trig_lower, v, y, n) print("### AxPy: Matriz Triangular Superior ###") benchmark(np.dot, "Numpy func", mat_trig_upper, v) y = np.zeros(n, dtype=int) benchmark(mat_vector_dot, "Naive func", mat_trig_upper, v, y, n) y = np.zeros(n, dtype=int) benchmark(mat_trig_upper_axpy, "Efficient func", mat_trig_upper, v, y, n) print("### AxPy: Matriz Triangular Inferior ###") benchmark(np.dot, "Numpy func", mat_trig_lower, v) y =
np.zeros(n, dtype=int)
numpy.zeros
from __future__ import division, absolute_import from __future__ import print_function, unicode_literals import nose.tools as nt import numpy as np import theano import theano.tensor as T import treeano import treeano.nodes as tn import canopy def test_piecewise_linear_schedule(): s = canopy.schedules.PiecewiseLinearSchedule([(2, 10), (4, 15), (7, -2)]) ans = np.array([10, 10, 12.5, 15, (2 * 15 + -2) / 3, (15 + 2 * -2) / 3, -2, -2, -2, -2]) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) def test_discrete_schedule(): s = canopy.schedules.DiscreteSchedule([(2, 10), (4, 15), -2]) ans = np.array([10, 10, 15, 15, -2, -2, -2, -2, -2, -2]) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) s = canopy.schedules.DiscreteSchedule([-2]) ans = np.array([-2, -2, -2, -2, -2]) res = np.array([s(None, None) for _ in range(5)]) np.testing.assert_allclose(ans, res) def test_step_schedule(): s = canopy.schedules.StepSchedule(1, 2, [3, 5, 9]) ans = np.array([1, 1, 2, 2, 4, 4, 4, 4, 8, 8]) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) def test_recurring_step_schedule(): s = canopy.schedules.RecurringStepSchedule(1, 2, 3) ans = np.array([1, 1, 2, 2, 2, 4, 4, 4, 8, 8]) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) def test_inverse_decay_schedule(): s = canopy.schedules.InverseDecaySchedule(1, 0.1, -2) ans = np.array([1, 1.1 ** 2, 1.2 ** 2, 1.3 ** 2, 1.4 ** 2]) res = np.array([s(None, None) for _ in range(5)]) np.testing.assert_allclose(ans, res) def test_fixed_schedule(): s = canopy.schedules.FixedSchedule(42) ans = np.array([42] * 10) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) def test_exponential_schedule(): s = canopy.schedules.ExponentialSchedule(2.3, 0.7) ans = 2.3 * 0.7 ** np.arange(10) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) def test_half_life_schedule(): s = canopy.schedules.HalfLifeSchedule(1, 2) ans = np.array([1, np.sqrt(0.5), 0.5, np.sqrt(0.125), 0.25]) res = np.array([s(None, None) for _ in range(5)]) np.testing.assert_allclose(ans, res) def test_multi_stage_schedule(): s = canopy.schedules.MultiStageSchedule( [(2, canopy.schedules.FixedSchedule(2)), (5, canopy.schedules.ExponentialSchedule(3, 2)), canopy.schedules.FixedSchedule(1)]) ans = np.array([2, 2, 3, 6, 12, 1, 1, 1, 1, 1]) res = np.array([s(None, None) for _ in range(10)]) np.testing.assert_allclose(ans, res) def test_piecewise_log_linear_schedule(): s = canopy.schedules.PiecewiseLogLinearSchedule([(2, 1.0), (5, 1e-3)]) ans =
np.array([1, 1, 1e-1, 1e-2, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3])
numpy.array
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This package implement BiGraph structure for handling bigraph data. """ import os import json import paddle import copy import numpy as np from pgl.utils import op import pgl.graph_kernel as graph_kernel from pgl.message import Message from collections import defaultdict from pgl.utils.helper import check_is_tensor, scatter, generate_segment_id_from_index, maybe_num_nodes, unique_segment from pgl.utils.edge_index import EdgeIndex import paddle.distributed as dist import warnings class BiGraph(object): """Implementation of bigraph interface in pgl. This is a simple implementation of graph structure in pgl. `pgl.BiGraph` is an alias for `pgl.graph.BiGraph` Args: edges: list of (u, v) tuples, 2D numpy.ndarry or 2D paddle.Tensor src_num_nodes (optional: int, numpy or paddle.Tensor): Number of src_nodes in a bigraph. If not provided, the number of src nodes will be infered from edges[:, 0]. dst_num_nodes (optional: int, numpy or paddle.Tensor): Number of dst nodes in a bigraph. If not provided, the number of dst_nodes will be infered from edges[:, 1]. src_node_feat (optional): a dict of numpy array as src node features dst_node_feat (optional): a dict of numpy array as dst node features edge_feat (optional): a dict of numpy array as edge features (should have consistent order with edges) Examples 1: - Create a graph with numpy. - Convert it into paddle.Tensor . - Do send recv for graph neural network. .. code-block:: python import numpy as np import pgl src_num_nodes = 4 dst_num_nodes = 5 edges = [ (0, 1), (1, 2), (3, 4)] src_feat = np.random.randn(4, 100).astype(np.float32) dst_feat = np.random.randn(5, 100).astype(np.float32) edge_feature = np.random.randn(3, 100).astype(np.float32) graph = pgl.BiGraph( src_num_nodes=src_num_nodes, dst_num_nodes=dst_num_nodes, edges=edges, src_node_feat={ "src_feat": src_feat }, dst_node_feat={ "dst_feat": dst_feat }, edge_feat={ "edge_feature": edge_feature }) graph.tensor() Examples 2: - Create a graph with paddle.Tensor. - Do send recv for graph neural network. .. code-block:: python import numpy as np import pgl src_num_nodes = 4 dst_num_nodes = 5 edges = paddle.to_tensor([ (0, 1), (1, 2), (3, 4)]) src_feat = np.random.randn(4, 100).astype(np.float32) src_feat = paddle.to_tensor(src_feat) dst_feat = np.random.randn(5, 100).astype(np.float32) dst_feat = paddle.to_tensor(dst_feat) edge_feature = np.random.randn(3, 100).astype(np.float32) edge_feature = paddle.to_tensor(edge_feature) graph = pgl.BiGraph( src_num_nodes=src_num_nodes, dst_num_nodes=dst_num_nodes, edges=edges, src_node_feat={ "src_feat": src_feat }, dst_node_feat={ "dst_feat": dst_feat }, edge_feat={ "edge_feature": edge_feature }) """ def __init__(self, edges, src_num_nodes=None, dst_num_nodes=None, src_node_feat=None, dst_node_feat=None, edge_feat=None, **kwargs): if src_node_feat is not None: self._src_node_feat = src_node_feat else: self._src_node_feat = {} if dst_node_feat is not None: self._dst_node_feat = dst_node_feat else: self._dst_node_feat = {} if edge_feat is not None: self._edge_feat = edge_feat else: self._edge_feat = {} if not check_is_tensor(edges): if isinstance(edges, np.ndarray): if edges.dtype != "int64": edges = edges.astype("int64") edges = np.array(edges, dtype="int64") self._edges = edges if src_num_nodes is None: self._src_num_nodes = maybe_num_nodes(self._edges[:, 0]) else: self._src_num_nodes = src_num_nodes max_edge_id = maybe_num_nodes(self._edges[:, 0]) if self._src_num_nodes < max_edge_id: raise ValueError("The max src edge ID should be less than the number of src nodes. " "But got max src edge ID [%s] >= src_num_nodes [%s]" \ % (max_edge_id-1, self._src_num_nodes)) if dst_num_nodes is None: self._dst_num_nodes = maybe_num_nodes(self._edges[:, 1]) else: self._dst_num_nodes = dst_num_nodes max_edge_id = maybe_num_nodes(self._edges[:, 1]) if self._dst_num_nodes < max_edge_id: raise ValueError("The max dst edge ID should be less than the number of dst nodes. " "But got max dst edge ID [%s] >= dst_num_nodes [%s]" \ % (max_edge_id-1, self._dst_num_nodes)) self._adj_src_index = kwargs.get("adj_src_index", None) self._adj_dst_index = kwargs.get("adj_dst_index", None) if check_is_tensor(self._src_num_nodes, self._dst_num_nodes, self._edges, *list(self._src_node_feat.values()), *list(self._dst_node_feat.values()), *list(self._edge_feat.values())): self._is_tensor = True elif self._adj_src_index is not None and self._adj_src_index.is_tensor( ): self._is_tensor = True elif self._adj_dst_index is not None and self._adj_dst_index.is_tensor( ): self._is_tensor = True else: self._is_tensor = False if self._is_tensor: # ensure all variable is tenosr if not check_is_tensor(self._src_num_nodes): self._src_num_nodes = paddle.to_tensor(self._src_num_nodes) if not check_is_tensor(self._dst_num_nodes): self._dst_num_nodes = paddle.to_tensor(self._dst_num_nodes) if not check_is_tensor(self._edges): self._edges = paddle.to_tensor(self._edges) for key in self._src_node_feat: if not check_is_tensor(self._src_node_feat[key]): self._src_node_feat[key] = paddle.to_tensor( self._src_node_feat[key]) for key in self._dst_node_feat: if not check_is_tensor(self._dst_node_feat[key]): self._dst_node_feat[key] = paddle.to_tensor( self._dst_node_feat[key]) for key in self._edge_feat: if not check_is_tensor(self._edge_feat[key]): self._edge_feat[key] = paddle.to_tensor(self._edge_feat[ key]) if self._adj_src_index is not None: if not self._adj_src_index.is_tensor(): self._adj_src_index.tensor(inplace=True) if self._adj_dst_index is not None: if not self._adj_dst_index.is_tensor(): self._adj_dst_index.tensor(inplace=True) # preprocess graph level informations self._process_graph_info(**kwargs) self._src_nodes = None self._dst_nodes = None def __repr__(self): """Pretty Print the BiGraph """ repr_dict = {"class": self.__class__.__name__} if self._is_tensor: src_num_nodes = self.src_num_nodes.numpy() dst_num_nodes = self.dst_num_nodes.numpy() else: src_num_nodes = self.src_num_nodes dst_num_nodes = sefl.dst_num_nodes repr_dict["src_num_nodes"] = int(src_num_nodes) repr_dict["dst_num_nodes"] = int(dst_num_nodes) repr_dict["edges_shape"] = self.edges.shape repr_dict["src_node_feat"] = [] for key, value in self.src_node_feat.items(): repr_dict["src_node_feat"].append({ "name": key, "shape": list(value.shape), "dtype": str(value.dtype) }) repr_dict["dst_node_feat"] = [] for key, value in self.dst_node_feat.items(): repr_dict["dst_node_feat"].append({ "name": key, "shape": list(value.shape), "dtype": str(value.dtype) }) repr_dict["edge_feat"] = [] for key, value in self.edge_feat.items(): repr_dict["edge_feat"].append({ "name": key, "shape": list(value.shape), "dtype": str(value.dtype) }) return json.dumps(repr_dict, ensure_ascii=False) @classmethod def load(cls, path, mmap_mode="r"): """Load BiGraph from path and return a BiGraph in numpy. Args: path: The directory path of the stored BiGraph. mmap_mode: Default :code:`mmap_mode="r"`. If not None, memory-map the graph. """ src_num_nodes = np.load( os.path.join(path, 'src_num_nodes.npy'), mmap_mode=mmap_mode) dst_num_nodes = np.load( os.path.join(path, 'dst_num_nodes.npy'), mmap_mode=mmap_mode) edges = np.load(os.path.join(path, 'edges.npy'), mmap_mode=mmap_mode) num_graph = np.load( os.path.join(path, 'num_graph.npy'), mmap_mode=mmap_mode) if os.path.exists(os.path.join(path, 'graph_src_node_index.npy')): graph_src_node_index = np.load( os.path.join(path, 'graph_src_node_index.npy'), mmap_mode=mmap_mode) else: graph_src_node_index = None if os.path.exists(os.path.join(path, 'graph_dst_node_index.npy')): graph_dst_node_index = np.load( os.path.join(path, 'graph_dst_node_index.npy'), mmap_mode=mmap_mode) else: graph_dst_node_index = None if os.path.exists(os.path.join(path, 'graph_edge_index.npy')): graph_edge_index = np.load( os.path.join(path, 'graph_edge_index.npy'), mmap_mode=mmap_mode) else: graph_edge_index = None if os.path.isdir(os.path.join(path, 'adj_src')): adj_src_index = EdgeIndex.load( os.path.join(path, 'adj_src'), mmap_mode=mmap_mode) else: adj_src_index = None if os.path.isdir(os.path.join(path, 'adj_dst')): adj_dst_index = EdgeIndex.load( os.path.join(path, 'adj_dst'), mmap_mode=mmap_mode) else: adj_dst_index = None def _load_feat(feat_path): """Load features from .npy file. """ feat = {} if os.path.isdir(feat_path): for feat_name in os.listdir(feat_path): feat[os.path.splitext(feat_name)[0]] = np.load( os.path.join(feat_path, feat_name), mmap_mode=mmap_mode) return feat src_node_feat = _load_feat(os.path.join(path, 'src_node_feat')) dst_node_feat = _load_feat(os.path.join(path, 'dst_node_feat')) edge_feat = _load_feat(os.path.join(path, 'edge_feat')) return cls(edges=edges, src_num_nodes=src_num_nodes, dst_num_nodes=dst_num_nodes, src_node_feat=src_node_feat, dst_node_feat=dst_node_feat, edge_feat=edge_feat, adj_src_index=adj_src_index, adj_dst_index=adj_dst_index, _num_graph=num_graph, _graph_src_node_index=graph_src_node_index, _graph_dst_node_index=graph_dst_node_index, _graph_edge_index=graph_edge_index) def is_tensor(self): """Return whether the BiGraph is in paddle.Tensor or numpy format. """ return self._is_tensor def _apply_to_tensor(self, key, value, inplace=True): if value is None: return value if key == '_is_tensor': # set is_tensor to True return True if isinstance(value, EdgeIndex): value = value.tensor(inplace=inplace) elif isinstance(value, dict): if inplace: for k, v in value.items(): value[k] = paddle.to_tensor(v) else: new_value = {} for k, v in value.items(): new_value[k] = paddle.to_tensor(v) value = new_value else: value = paddle.to_tensor(value) return value def tensor(self, inplace=True): """Convert the BiGraph into paddle.Tensor format. In paddle.Tensor format, the bigraph edges and node features are in paddle.Tensor format. You can use send and recv in paddle.Tensor bigraph. Args: inplace: (Default True) Whether to convert the bigraph into tensor inplace. """ if self._is_tensor: return self if inplace: for key in self.__dict__: self.__dict__[key] = self._apply_to_tensor( key, self.__dict__[key], inplace) return self else: new_dict = {} for key in self.__dict__: new_dict[key] = self._apply_to_tensor(key, self.__dict__[key], inplace) graph = self.__class__( src_num_nodes=new_dict["_src_num_nodes"], dst_num_nodes=new_dict["_dst_num_nodes"], edges=new_dict["_edges"], src_node_feat=new_dict["_src_node_feat"], dst_node_feat=new_dict["_dst_node_feat"], edge_feat=new_dict["_edge_feat"], adj_src_index=new_dict["_adj_src_index"], adj_dst_index=new_dict["_adj_dst_index"], **new_dict) return graph def _apply_to_numpy(self, key, value, inplace=True): if value is None: return value if key == '_is_tensor': # set is_tensor to True return False if isinstance(value, EdgeIndex): value = value.numpy(inplace=inplace) elif isinstance(value, dict): if inplace: for k, v in value.items(): value[k] = v.numpy() else: new_value = {} for k, v in value.items(): new_value[k] = v.numpy() value = new_value else: value = value.numpy() return value def numpy(self, inplace=True): """Convert the BiGraph into numpy format. In numpy format, the bigraph edges and node features are in numpy.ndarray format. But you can't use send and recv in numpy bigraph. Args: inplace: (Default True) Whether to convert the bigraph into numpy inplace. """ if not self._is_tensor: return self if inplace: for key in self.__dict__: self.__dict__[key] = self._apply_to_numpy( key, self.__dict__[key], inplace) return self else: new_dict = {} for key in self.__dict__: new_dict[key] = self._apply_to_numpy(key, self.__dict__[key], inplace) graph = self.__class__( src_num_nodes=new_dict["_src_num_nodes"], dst_num_nodes=new_dict["_dst_num_nodes"], edges=new_dict["_edges"], src_node_feat=new_dict["_src_node_feat"], dst_node_feat=new_dict["_dst_node_feat"], edge_feat=new_dict["_edge_feat"], adj_src_index=new_dict["_adj_src_index"], adj_dst_index=new_dict["_adj_dst_index"], **new_dict) return graph def dump(self, path): """Dump the bigraph into a directory. This function will dump the bigraph information into the given directory path. The bigraph can be read back with :code:`pgl.BiGraph.load` Args: path: The directory for the storage of the bigraph. """ if self._is_tensor: # Convert back into numpy and dump. graph = self.numpy(inplace=False) graph.dump(path) else: if not os.path.exists(path): os.makedirs(path) np.save( os.path.join(path, 'src_num_nodes.npy'), self._src_num_nodes) np.save( os.path.join(path, 'dst_num_nodes.npy'), self._dst_num_nodes) np.save(os.path.join(path, 'edges.npy'), self._edges) np.save(os.path.join(path, 'num_graph.npy'), self._num_graph) if self._adj_src_index is not None: self._adj_src_index.dump(os.path.join(path, 'adj_src')) if self._adj_dst_index is not None: self._adj_dst_index.dump(os.path.join(path, 'adj_dst')) if self._graph_src_node_index is not None: np.save( os.path.join(path, 'graph_src_node_index.npy'), self._graph_src_node_index) if self._graph_dst_node_index is not None: np.save( os.path.join(path, 'graph_dst_node_index.npy'), self._graph_dst_node_index) if self._graph_edge_index is not None: np.save( os.path.join(path, 'graph_edge_index.npy'), self._graph_edge_index) def _dump_feat(feat_path, feat): """Dump all features to .npy file. """ if len(feat) == 0: return if not os.path.exists(feat_path): os.makedirs(feat_path) for key in feat: value = feat[key] np.save(os.path.join(feat_path, key + ".npy"), value) _dump_feat(os.path.join(path, "src_node_feat"), self.src_node_feat) _dump_feat(os.path.join(path, "dst_node_feat"), self.dst_node_feat) _dump_feat(os.path.join(path, "edge_feat"), self.edge_feat) @property def adj_src_index(self): """Return an EdgeIndex object for src. """ if self._adj_src_index is None: u = self._edges[:, 0] v = self._edges[:, 1] self._adj_src_index = EdgeIndex.from_edges( u=u, v=v, num_nodes=self._src_num_nodes) return self._adj_src_index @property def adj_dst_index(self): """Return an EdgeIndex object for dst. """ if self._adj_dst_index is None: v = self._edges[:, 0] u = self._edges[:, 1] self._adj_dst_index = EdgeIndex.from_edges( u=u, v=v, num_nodes=self._dst_num_nodes) return self._adj_dst_index @property def edge_feat(self): """Return a dictionary of edge features. """ return self._edge_feat @property def src_node_feat(self): """Return a dictionary of src node features. """ return self._src_node_feat @property def dst_node_feat(self): """Return a dictionary of dst node features. """ return self._dst_node_feat @property def num_edges(self): """Return the number of edges. """ if self._is_tensor: return paddle.shape(self._edges)[0] else: return self._edges.shape[0] @property def src_num_nodes(self): """Return the number of src nodes. """ return self._src_num_nodes @property def dst_num_nodes(self): """Return the number of dst nodes. """ return self._dst_num_nodes @property def edges(self): """Return all edges in numpy.ndarray or paddle.Tensor with shape (num_edges, 2). """ return self._edges def sorted_edges(self, sort_by="src"): """Return sorted edges with different strategies. This function will return sorted edges with different strategy. If :code:`sort_by="src"`, then edges will be sorted by :code:`src` nodes and otherwise :code:`dst`. Args: sort_by: The type for sorted edges. ("src" or "dst") Return: A tuple of (sorted_src, sorted_dst, sorted_eid). """ if sort_by not in ["src", "dst"]: raise ValueError("sort_by should be in 'src' or 'dst'.") if sort_by == 'src': src, dst, eid = self.adj_src_index.triples() else: dst, src, eid = self.adj_dst_index.triples() return src, dst, eid @property def src_nodes(self): """Return all src nodes id from 0 to :code:`src_num_nodes - 1` """ if self._src_nodes is None: if self.is_tensor(): self._src_nodes = paddle.arange(self.src_num_nodes) else: self._src_nodes =
np.arange(self.src_num_nodes)
numpy.arange
#!/usr/bin/env python # Copyright 2021 # author: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from scipy.stats import ttest_ind import netCDF4 as nc import pickle import os from PIL import Image as PIL_Image import sys import shutil import glob import datetime import time import calendar from numpy import genfromtxt from scipy.optimize import curve_fit from scipy.cluster.vq import kmeans,vq from scipy.interpolate import interpn, interp1d from math import e as e_constant import math import matplotlib.dates as mdates from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from matplotlib.collections import LineCollection from matplotlib.ticker import (MultipleLocator, NullFormatter, ScalarFormatter) from matplotlib.colors import ListedColormap, BoundaryNorm import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib import warnings warnings.filterwarnings("ignore") plt.style.use('classic') # font size # font_size = 14 # matplotlib.rc('font', **{'family': 'serif', 'serif': ['Arial'], 'size': font_size}) # matplotlib.rc('font', weight='bold') p_progress_writing = False SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title time_format = '%d-%m-%Y_%H:%M' time_format_khan = '%Y%m%d.0%H' time_format_mod = '%Y-%m-%d_%H:%M:%S' time_format_twolines = '%H:%M\n%d-%m-%Y' time_format_twolines_noYear_noMin_intMonth = '%H\n%d-%m' time_format_twolines_noYear = '%H:%M\n%d-%b' time_format_twolines_noYear_noMin = '%H\n%d-%b' time_format_date = '%Y-%m-%d' time_format_time = '%H:%M:%S' time_format_parsivel = '%Y%m%d%H%M' time_format_parsivel_seconds = '%Y%m%d%H%M%S' time_str_formats = [ time_format, time_format_mod, time_format_twolines, time_format_twolines_noYear, time_format_date, time_format_time, time_format_parsivel ] default_cm = cm.jet cm_vir = cm.viridis listed_cm_colors_list = ['silver', 'red', 'green', 'yellow', 'blue', 'black'] listed_cm = ListedColormap(listed_cm_colors_list, 'indexed') colorbar_tick_labels_list_cloud_phase = ['Clear', 'Water', 'SLW', 'Mixed', 'Ice', 'Unknown'] listed_cm_colors_list_cloud_phase = ['white', 'red', 'green', 'yellow', 'blue', 'purple'] listed_cm_cloud_phase = ListedColormap(listed_cm_colors_list_cloud_phase, 'indexed') avogadros_ = 6.022140857E+23 # molecules/mol gas_const = 83144.598 # cm3 mbar k-1 mol-1 gas_const_2 = 8.3144621 # J mol-1 K-1 gas_const_water = 461 # J kg-1 K-1 gas_const_dry = 287 # J kg-1 K-1 boltzmann_ = gas_const / avogadros_ # cm3 mbar / k molecules gravity_ = 9.80665 # m/s poisson_ = 2/7 # for dry air (k) latent_heat_v = 2.501E+6 # J/kg latent_heat_f = 3.337E+5 # J/kg latent_heat_s = 2.834E+6 # J/kg heat_capacity__Cp = 1005.7 # J kg-1 K-1 dry air heat_capacity__Cv = 719 # J kg-1 K-1 water vapor Rs_da = 287.05 # Specific gas const for dry air, J kg^{-1} K^{-1} Rs_v = 461.51 # Specific gas const for water vapour, J kg^{-1} K^{-1} Cp_da = 1004.6 # Specific heat at constant pressure for dry air Cv_da = 719. # Specific heat at constant volume for dry air Cp_v = 1870. # Specific heat at constant pressure for water vapour Cv_v = 1410. # Specific heat at constant volume for water vapour Cp_lw = 4218 # Specific heat at constant pressure for liquid water Epsilon = 0.622 # Epsilon=Rs_da/Rs_v; The ratio of the gas constants degCtoK = 273.15 # Temperature offset between K and C (deg C) rho_w = 1000. # Liquid Water density kg m^{-3} grav = 9.80665 # Gravity, m s^{-2} Lv = 2.5e6 # Latent Heat of vaporisation boltzmann = 5.67e-8 # Stefan-Boltzmann constant mv = 18.0153e-3 # Mean molar mass of water vapor(kg/mol) m_a = 28.9644e-3 # Mean molar mass of air(kg/mol) Rstar_a = 8.31432 # Universal gas constant for air (N m /(mol K)) path_output = '/g/data/k10/la6753/' # Misc class Object_create(object): pass def list_files_recursive(path_, filter_str=None): # create list of raw spectra files file_list = [] # r=root, d=directories, f = files if filter_str is None: for r, d, f in os.walk(path_): for file in f: file_list.append(os.path.join(r, file)) else: for r, d, f in os.walk(path_): for file in f: if filter_str in file: file_list.append(os.path.join(r, file)) return file_list def list_files(path_, filter_str='*'): file_list = sorted(glob.glob(str(path_ + filter_str))) return file_list def coincidence(arr_1,arr_2): # only coincidences check_ = arr_1 * arr_2 check_[check_ == check_] = 1 arr_1_checked = arr_1 * check_ arr_2_checked = arr_2 * check_ return arr_1_checked[~np.isnan(arr_1_checked)], arr_2_checked[~np.isnan(arr_2_checked)] def array_2d_fill_gaps_by_interpolation_linear(array_): rows_ = array_.shape[0] cols_ = array_.shape[1] output_array_X = np.zeros((rows_, cols_), dtype=float) output_array_Y = np.zeros((rows_, cols_), dtype=float) row_sum = np.sum(array_, axis=1) col_index = np.arange(array_.shape[1]) col_sum = np.sum(array_, axis=0) row_index = np.arange(array_.shape[0]) for r_ in range(array_.shape[0]): if row_sum[r_] != row_sum[r_]: # get X direction interpolation coin_out = coincidence(col_index, array_[r_, :]) output_array_X[r_, :][np.isnan(array_[r_, :])] = np.interp( col_index[np.isnan(array_[r_, :])], coin_out[0], coin_out[1]) for c_ in range(array_.shape[1]): if col_sum[c_] != col_sum[c_]: # get Y direction interpolation coin_out = coincidence(row_index, array_[:, c_]) output_array_Y[:, c_][np.isnan(array_[:, c_])] = np.interp( row_index[np.isnan(array_[:, c_])], coin_out[0], coin_out[1]) output_array = np.array(array_) output_array[np.isnan(array_)] = 0 return output_array + ((output_array_X + output_array_Y)/2) def array_2d_fill_gaps_by_interpolation_cubic(array_): rows_ = array_.shape[0] cols_ = array_.shape[1] output_array_X = np.zeros((rows_, cols_), dtype=float) output_array_Y = np.zeros((rows_, cols_), dtype=float) row_sum = np.sum(array_, axis=1) col_index = np.arange(array_.shape[1]) col_sum = np.sum(array_, axis=0) row_index = np.arange(array_.shape[0]) for r_ in range(array_.shape[0]): if row_sum[r_] != row_sum[r_]: # get X direction interpolation coin_out = coincidence(col_index, array_[r_, :]) interp_function = interp1d(coin_out[0], coin_out[1], kind='cubic') output_array_X[r_, :][np.isnan(array_[r_, :])] = interp_function(col_index[np.isnan(array_[r_, :])]) for c_ in range(array_.shape[1]): if col_sum[c_] != col_sum[c_]: # get Y direction interpolation coin_out = coincidence(row_index, array_[:, c_]) interp_function = interp1d(coin_out[0], coin_out[1], kind='cubic') output_array_Y[:, c_][np.isnan(array_[:, c_])] = interp_function(row_index[np.isnan(array_[:, c_])]) output_array = np.array(array_) output_array[np.isnan(array_)] = 0 return output_array + ((output_array_X + output_array_Y)/2) def combine_2_time_series(time_1_reference, data_1, time_2, data_2, forced_time_step=None, forced_start_time=None, forced_stop_time=None, cumulative_var_1=False, cumulative_var_2=False): """ takes two data sets with respective time series, and outputs the coincident stamps from both data sets It does this by using mean_discrete() for both sets with the same start stamp and averaging time, the averaging time is the forced_time_step :param time_1_reference: 1D array, same units as time_2, this series will define the returned time step reference :param data_1: can be 1D or 2D array, first dimention most be same as time_1 :param time_2: 1D array, same units as time_1 :param data_2: can be 1D or 2D array, first dimention most be same as time_2 :param window_: optional, if 0 (default) the values at time_1 and time_2 most match exactly, else, the match can be +- window_ :param forced_time_step: if not none, the median of the differential of the time_1_reference will be used :param forced_start_time: if not none, the returned series will start at this time stamp :param forced_stop_time: if not none, the returned series will stop at this time stamp :param cumulative_var_1: True is you want the variable to be accumulated instead of means, only of 1D data :param cumulative_var_2: True is you want the variable to be accumulated instead of means, only of 1D data :return: Index_averaged_1: 1D array, smallest coincident time, without time stamp gaps :return: Values_mean_1: same shape as data_1 both according to Index_averaged_1 times :return: Values_mean_2: same shape as data_2 both according to Index_averaged_1 times """ # define forced_time_step if forced_time_step is None: forced_time_step = np.median(np.diff(time_1_reference)) # find time period if forced_start_time is None: first_time_stamp = max(np.nanmin(time_1_reference), np.nanmin(time_2)) else: first_time_stamp = forced_start_time if forced_stop_time is None: last_time_stamp = min(np.nanmax(time_1_reference), np.nanmax(time_2)) else: last_time_stamp = forced_stop_time # do the averaging print('starting averaging of data 1') if cumulative_var_1: Index_averaged_1, Values_mean_1 = mean_discrete(time_1_reference, data_1, forced_time_step, first_time_stamp, last_index=last_time_stamp, cumulative_parameter_indx=0) else: Index_averaged_1, Values_mean_1 = mean_discrete(time_1_reference, data_1, forced_time_step, first_time_stamp, last_index=last_time_stamp) print('starting averaging of data 2') if cumulative_var_2: Index_averaged_2, Values_mean_2 = mean_discrete(time_2, data_2, forced_time_step, first_time_stamp, last_index=last_time_stamp, cumulative_parameter_indx=0) else: Index_averaged_2, Values_mean_2 = mean_discrete(time_2, data_2, forced_time_step, first_time_stamp, last_index=last_time_stamp) # check that averaged indexes are the same if np.nansum(np.abs(Index_averaged_1 - Index_averaged_2)) != 0: print('error during averaging of series, times do no match ????') return None, None, None # return the combined, trimmed data return Index_averaged_1, Values_mean_1, Values_mean_2 def split_str_chunks(s, n): """Produce `n`-character chunks from `s`.""" out_list = [] for start in range(0, len(s), n): out_list.append(s[start:start+n]) return out_list def coincidence_multi(array_list): # only coincidences parameters_list = array_list check_ = parameters_list[0] for param_ in parameters_list[1:]: check_ = check_ * param_ check_[check_ == check_] = 1 new_arr_list = [] for param_ in parameters_list: new_arr_list.append(param_ * check_) check_ = check_ * param_ # delete empty rows_ list_list = [] for param_ in parameters_list: t_list = [] for i in range(check_.shape[0]): if check_[i] == check_[i]: t_list.append(param_[i]) list_list.append(t_list) # concatenate ar_list = [] for ii in range(len(parameters_list)): ar_list.append(np.array(list_list[ii])) return ar_list def coincidence_zero(arr_1,arr_2): # only coincidences check_ = arr_1 * arr_2 # delete empty rows_ list_1 = [] list_2 = [] for i in range(check_.shape[0]): if check_[i] != 0: list_1.append(arr_1[i]) list_2.append(arr_2[i]) return np.array(list_1),np.array(list_2) def discriminate(X_, Y_, Z_, value_disc_list, discrmnt_invert_bin = False): if discrmnt_invert_bin: Z_mask = np.ones(Z_.shape[0]) Z_mask[Z_ > value_disc_list[0]] = np.nan Z_mask[Z_ >= value_disc_list[1]] = 1 Y_new = Y_ * Z_mask X_new = X_ * Z_mask else: Z_mask = np.ones(Z_.shape[0]) Z_mask[Z_ < value_disc_list[0]] = np.nan Z_mask[Z_ > value_disc_list[1]] = np.nan Y_new = Y_ * Z_mask X_new = X_ * Z_mask return X_new, Y_new def add_ratio_to_values(header_, values_, nominator_index, denominator_index, ratio_name, normalization_value=1.): nominator_data = values_[:,nominator_index] denominator_data = values_[:,denominator_index] ratio_ = normalization_value * nominator_data / denominator_data values_new = np.column_stack((values_,ratio_)) header_new = np.append(header_,ratio_name) return header_new, values_new def bin_data(x_val_org,y_val_org, start_bin_edge=0, bin_size=1, min_bin_population=1): # get coincidences only x_val,y_val = coincidence(x_val_org,y_val_org) # combine x and y in matrix M_ = np.column_stack((x_val,y_val)) # checking if always ascending to increase efficiency always_ascending = 1 for x in range(x_val.shape[0]-1): if x_val[x]==x_val[x] and x_val[x+1]==x_val[x+1]: if x_val[x+1] < x_val[x]: always_ascending = 0 if always_ascending == 0: M_sorted = M_[M_[:,0].argsort()] # sort by first column M_ = M_sorted # convert data to list of bins y_binned = [] x_binned = [] last_row = 0 last_row_temp = last_row while start_bin_edge <= np.nanmax(x_val): y_val_list = [] for row_ in range(last_row, M_.shape[0]): if start_bin_edge <= M_[row_, 0] < start_bin_edge + bin_size: if M_[row_, 1] == M_[row_, 1]: y_val_list.append(M_[row_, 1]) last_row_temp = row_ if M_[row_, 0] >= start_bin_edge + bin_size: last_row_temp = row_ break x_binned.append(start_bin_edge) if len(y_val_list) >= min_bin_population: y_binned.append(y_val_list) else: y_binned.append([]) start_bin_edge += bin_size last_row = last_row_temp # add series if bin_size >= 1: x_binned_int = np.array(x_binned, dtype=int) else: x_binned_int = x_binned return x_binned_int, y_binned def shiftedColorMap(cmap, midpoint=0.5, name='shiftedcmap'): cdict = { 'red': [], 'green': [], 'blue': [], 'alpha': [] } # regular index to compute the colors reg_index = np.linspace(0, 1, 257) # shifted index to match the data shift_index = np.hstack([ np.linspace(0.0, midpoint, 128, endpoint=False), np.linspace(midpoint, 1.0, 129, endpoint=True) ]) for ri, si in zip(reg_index, shift_index): r, g, b, a = cmap(ri) cdict['red'].append((si, r, r)) cdict['green'].append((si, g, g)) cdict['blue'].append((si, b, b)) cdict['alpha'].append((si, a, a)) newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict) plt.register_cmap(cmap=newcmap) return newcmap def student_t_test(arr_1, arr_2): return ttest_ind(arr_1, arr_2, nan_policy='omit') def k_means_clusters(array_, cluster_number, forced_centers=None): if forced_centers is None: centers_, x = kmeans(array_,cluster_number) data_id, x = vq(array_, centers_) return centers_, data_id else: data_id, x = vq(array_, forced_centers) return forced_centers, data_id def grid_(x, y, z, resX=100, resY=100): "Convert 3 column data to matplotlib grid" xi = np.linspace(min(x), max(x), resX) yi = np.linspace(min(y), max(y), resY) Z = matplotlib.mlab.griddata(x, y, z, xi, yi) X, Y = np.meshgrid(xi, yi) return X, Y, Z def find_max_index_2d_array(array_): return np.unravel_index(np.argmax(array_, axis=None), array_.shape) def find_min_index_2d_array(array_): return np.unravel_index(np.argmin(array_, axis=None), array_.shape) def find_max_index_1d_array(array_): return np.argmax(array_, axis=None) def find_min_index_1d_array(array_): return np.argmin(array_, axis=None) def time_series_interpolate_discrete(Index_, Values_, index_step, first_index, position_=0., last_index=None): """ this will average values from Values_ that are between Index_[n:n+avr_size) :param Index_: n by 1 numpy array to look for position, :param Values_: n by m numpy array, values to be averaged :param index_step: in same units as Index_ :param first_index: is the first discrete index on new arrays. :param position_: will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) :param last_index: in case you want to force the returned series to some fixed period/length :return: Index_averaged, Values_averaged """ # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: MM_ = np.column_stack((Index_,Values_)) MM_sorted = MM_[MM_[:,0].argsort()] # sort by first column Index_ = MM_sorted[:,0] Values_ = MM_sorted[:,1:] # error checking! if Index_.shape[0] != Values_.shape[0]: print('error during shape check! Index_.shape[0] != Values_.shape[0]') return None, None if Index_[-1] < first_index: print('error during shape check! Index_[-1] < first_index') return None, None # initialize output matrices if last_index is None: final_index = np.nanmax(Index_) else: final_index = last_index total_averaged_rows = int((final_index-first_index) / index_step) + 1 if len(Values_.shape) == 1: Values_mean = np.zeros(total_averaged_rows) Values_mean[:] = np.nan else: Values_mean = np.zeros((total_averaged_rows,Values_.shape[1])) Values_mean[:,:] = np.nan Index_interp = np.zeros(total_averaged_rows) for r_ in range(total_averaged_rows): Index_interp[r_] = first_index + (r_ * index_step) Index_interp -= (position_ * index_step) Values_interp = np.interp(Index_interp, Index_, Values_) Index_interp = Index_interp + (position_ * index_step) return Index_interp, Values_interp def array_2D_sort_ascending_by_column(array_, column_=0): array_sorted = array_[array_[:, column_].argsort()] return array_sorted def get_ax_range(ax): x_1 = ax.axis()[0] x_2 = ax.axis()[1] y_1 = ax.axis()[2] y_2 = ax.axis()[3] return x_1, x_2, y_1, y_2 def get_array_perimeter_only(array_): return np.concatenate([array_[0, :-1], array_[:-1, -1], array_[-1, ::-1], array_[-2:0:-1, 0]]) # WRF def wrf_var_search(wrf_nc_file, description_str): description_str_lower = description_str.lower() for var_ in sorted(wrf_nc_file.variables): try: if description_str_lower in wrf_nc_file.variables[var_].description.lower(): print(var_, '|', wrf_nc_file.variables[var_].description) except: pass def create_virtual_sonde_from_wrf(sonde_dict, filelist_wrf_output, wrf_filename_time_format = 'wrfout_d03_%Y-%m-%d_%H_%M_%S'): # create time array filelist_wrf_output_noPath = [] for filename_ in filelist_wrf_output: filelist_wrf_output_noPath.append(filename_.split('/')[-1]) wrf_time_file_list = np.array(time_str_to_seconds(filelist_wrf_output_noPath, wrf_filename_time_format)) # create lat and lon arrays wrf_domain_file = nc.Dataset(filelist_wrf_output[0]) # p(sorted(wrf_domain_file.variables)) # wrf_vars = sorted(wrf_domain_file.variables) # for i_ in range(len(wrf_vars)): # try: # print(wrf_vars[i_], '\t\t', wrf_domain_file.variables[wrf_vars[i_]].description) # except: # print(wrf_vars[i_]) wrf_lat = wrf_domain_file.variables['XLAT'][0, :, :].filled(np.nan) wrf_lon = wrf_domain_file.variables['XLONG'][0, :, :].filled(np.nan) wrf_lat_U = wrf_domain_file.variables['XLAT_U'][0, :, :].filled(np.nan) wrf_lon_U = wrf_domain_file.variables['XLONG_U'][0, :, :].filled(np.nan) wrf_lat_V = wrf_domain_file.variables['XLAT_V'][0, :, :].filled(np.nan) wrf_lon_V = wrf_domain_file.variables['XLONG_V'][0, :, :].filled(np.nan) wrf_domain_file.close() # load sonde's profile sonde_hght = sonde_dict['hght'] # m ASL sonde_pres = sonde_dict['pres'] # hPa sonde_time = sonde_dict['time'] # seconds since epoc sonde_lati = sonde_dict['lati'] # degrees sonde_long = sonde_dict['long'] # degrees # create output lists of virtual sonde list_p__ = [] list_hgh = [] list_th_ = [] list_th0 = [] list_qv_ = [] list_U__ = [] list_V__ = [] list_tim = [] list_lat = [] list_lon = [] wrf_point_abs_address_old = 0 # loop thru real sonde's points for t_ in range(sonde_hght.shape[0]): p_progress_bar(t_, sonde_hght.shape[0]) point_hght = sonde_hght[t_] point_pres = sonde_pres[t_] point_time = sonde_time[t_] point_lati = sonde_lati[t_] point_long = sonde_long[t_] # find closest cell via lat, lon index_tuple = find_index_from_lat_lon_2D_arrays(wrf_lat,wrf_lon, point_lati,point_long) index_tuple_U = find_index_from_lat_lon_2D_arrays(wrf_lat_U,wrf_lon_U, point_lati,point_long) index_tuple_V = find_index_from_lat_lon_2D_arrays(wrf_lat_V,wrf_lon_V, point_lati,point_long) # find closest file via time file_index = time_to_row_sec(wrf_time_file_list, point_time) # open wrf file wrf_domain_file = nc.Dataset(filelist_wrf_output[file_index]) # get pressure array from wrf wrf_press = (wrf_domain_file.variables['PB'][0, :, index_tuple[0], index_tuple[1]].data + wrf_domain_file.variables['P'][0, :, index_tuple[0], index_tuple[1]].data) / 100 # hPa # find closest model layer via pressure layer_index = find_min_index_1d_array(np.abs(wrf_press - point_pres)) # define point absolute address and check if it is a new point wrf_point_abs_address_new = (index_tuple[0], index_tuple[1], file_index, layer_index) if wrf_point_abs_address_new != wrf_point_abs_address_old: wrf_point_abs_address_old = wrf_point_abs_address_new # get wrf data index_tuple_full = (0, layer_index, index_tuple[0], index_tuple[1]) index_tuple_full_U = (0, layer_index, index_tuple_U[0], index_tuple_U[1]) index_tuple_full_V = (0, layer_index, index_tuple_V[0], index_tuple_V[1]) # save to arrays list_p__.append(float(wrf_press[layer_index])) list_hgh.append(float(point_hght)) list_th_.append(float(wrf_domain_file.variables['T'][index_tuple_full])) list_th0.append(float(wrf_domain_file.variables['T00'][0])) list_qv_.append(float(wrf_domain_file.variables['QVAPOR'][index_tuple_full])) list_U__.append(float(wrf_domain_file.variables['U'][index_tuple_full_U])) list_V__.append(float(wrf_domain_file.variables['V'][index_tuple_full_V])) list_tim.append(float(wrf_time_file_list[file_index])) list_lat.append(float(wrf_lat[index_tuple[0], index_tuple[1]])) list_lon.append(float(wrf_lon[index_tuple[0], index_tuple[1]])) wrf_domain_file.close() # convert lists to arrays array_p__ = np.array(list_p__) array_hgh = np.array(list_hgh) array_th_ = np.array(list_th_) array_th0 = np.array(list_th0) array_qv_ = np.array(list_qv_) array_U__ = np.array(list_U__) array_V__ = np.array(list_V__) array_tim = np.array(list_tim) array_lat = np.array(list_lat) array_lon = np.array(list_lon) # calculate derivative variables wrf_temp_K = calculate_temperature_from_potential_temperature(array_th_ + array_th0, array_p__) wrf_temp_C = kelvin_to_celsius(wrf_temp_K) wrf_e = MixR2VaporPress(array_qv_, array_p__*100) wrf_td_C = DewPoint(wrf_e) wrf_td_C[wrf_td_C > wrf_temp_C] = wrf_temp_C[wrf_td_C > wrf_temp_C] wrf_RH = calculate_RH_from_QV_T_P(array_qv_, wrf_temp_K, array_p__*100) wrf_WD, wrf_WS = cart_to_polar(array_V__, array_U__) wrf_WD_met = wrf_WD + 180 wrf_WD_met[wrf_WD_met >= 360] = wrf_WD_met[wrf_WD_met >= 360] - 360 wrf_WS_knots = ws_ms_to_knots(wrf_WS) # create virtual sonde dict wrf_sonde_dict = {} wrf_sonde_dict['hght'] = array_hgh wrf_sonde_dict['pres'] = array_p__ wrf_sonde_dict['temp'] = wrf_temp_C wrf_sonde_dict['dwpt'] = wrf_td_C wrf_sonde_dict['sknt'] = wrf_WS_knots wrf_sonde_dict['drct'] = wrf_WD_met wrf_sonde_dict['relh'] = wrf_RH wrf_sonde_dict['time'] = array_tim wrf_sonde_dict['lati'] = array_lat wrf_sonde_dict['long'] = array_lon return wrf_sonde_dict def wrf_get_temp_K(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_press = (wrf_domain_file.variables['PB'][0, :, :, :].data + wrf_domain_file.variables['P'][0, :, :, :].data) / 100 # hPa wrf_theta = (wrf_domain_file.variables['T'][0, :, :, :].data + wrf_domain_file.variables['T00'][0].data) # K wrf_temp_K = calculate_temperature_from_potential_temperature(wrf_theta, wrf_press) if original_arg_type_str: wrf_domain_file.close() return wrf_temp_K def wrf_get_press_hPa(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_press = (wrf_domain_file.variables['PB'][0, :, :, :].data + wrf_domain_file.variables['P'][0, :, :, :].data) / 100 # hPa if original_arg_type_str: wrf_domain_file.close() return wrf_press def wrf_get_height_m(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_height = (wrf_domain_file.variables['PH'][0,:-1,:,:].data + wrf_domain_file.variables['PHB'][0,:-1,:,:].data) / gravity_ if original_arg_type_str: wrf_domain_file.close() return wrf_height def wrf_get_terrain_height_m(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_height = (wrf_domain_file.variables['PH'][0,0,:,:].data + wrf_domain_file.variables['PHB'][0,0,:,:].data) / gravity_ if original_arg_type_str: wrf_domain_file.close() return wrf_height def wrf_get_water_vapor_mixing_ratio(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_QVAPOR = wrf_domain_file.variables['QVAPOR'][0,:,:,:].data if original_arg_type_str: wrf_domain_file.close() return wrf_QVAPOR def wrf_get_cloud_water_mixing_ratio(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_QCLOUD = wrf_domain_file.variables['QCLOUD'][0,:,:,:].data if original_arg_type_str: wrf_domain_file.close() return wrf_QCLOUD def wrf_get_ice_mixing_ratio(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_QICE = wrf_domain_file.variables['QICE'][0,:,:,:].data if original_arg_type_str: wrf_domain_file.close() return wrf_QICE def wrf_get_lat_lon(wrf_nc): original_arg_type_str = False if type(wrf_nc) == str: original_arg_type_str = True wrf_domain_file = nc.Dataset(wrf_nc) else: wrf_domain_file = wrf_nc # get pressure array from wrf wrf_lat = wrf_domain_file.variables['XLAT'][0, :, :].filled(np.nan) wrf_lon = wrf_domain_file.variables['XLONG'][0, :, :].filled(np.nan) if original_arg_type_str: wrf_domain_file.close() return wrf_lat, wrf_lon def wrf_rename_files_fix_time_format(filename_original_list, original_character=':', replacement_character='_'): for i_, filename_ in enumerate(filename_original_list): p_progress_bar(i_, len(filename_original_list)) new_filename = filename_.replace(original_character,replacement_character) os.rename(filename_, new_filename) # meteorology def calculate_saturation_vapor_pressure_wexler(T_array_K): # result in mb (hPa) G0 = -0.29912729E+4 G1 = -0.60170128E+4 G2 = 0.1887643854E+2 G3 = -0.28354721E-1 G4 = 0.17838301E-4 G5 = -0.84150417E-9 G6 = 0.44412543E-12 G7 = 0.2858487E+1 e_s = np.exp((G0 * (T_array_K ** -2)) + (G1 * (T_array_K ** -1)) + G2 + (G3 * T_array_K) + (G4 * (T_array_K ** 2)) + (G5 * (T_array_K ** 3)) + (G6 * (T_array_K ** 4)) + (G7 * np.log(T_array_K))) return e_s * 0.01 def calculate_saturation_mixing_ratio(P_array_mb, T_array_K): e_s = calculate_saturation_vapor_pressure_wexler(T_array_K) q_s = 621.97 * (e_s / (P_array_mb - e_s)) return q_s def calculate_potential_temperature(T_array_K, P_array_hPa): potential_temp = T_array_K * ((1000 / P_array_hPa) ** poisson_) return potential_temp def calculate_equivalent_potential_temperature(T_array_K, P_array_hPa, R_array_kg_over_kg): P_o = 1000 T_e = T_array_K + (latent_heat_v * R_array_kg_over_kg / heat_capacity__Cp) theta_e = T_e * ((P_o/P_array_hPa)**poisson_) return theta_e def calculate_temperature_from_potential_temperature(theta_array_K, P_array_hPa): temperature_ = theta_array_K * ( (P_array_hPa/1000) ** poisson_ ) return temperature_ def calculate_mountain_height_from_sonde(sonde_dict): """ calculates H_hat from given values of u_array, v_array, T_array, effective_height, rh_array, q_array, p_array """ # Set initial conditions height = 1000 # metres # define arrays WS_array = ws_knots_to_ms(sonde_dict['SKNT']) U_array, V_array = polar_to_cart(sonde_dict['DRCT'], WS_array) T_array = celsius_to_kelvin(sonde_dict['TEMP']) RH_array = sonde_dict['RELH'] P_array = sonde_dict['PRES'] Z_array = sonde_dict['HGHT'] Q_array = sonde_dict['MIXR']/1000 TH_array = sonde_dict['THTA'] # calculated arrays q_s = calculate_saturation_mixing_ratio(P_array, T_array) e_ = gas_const_dry / gas_const_water # gradients d_ln_TH = np.gradient(np.log(TH_array)) d_z = np.gradient(Z_array) d_q_s = np.gradient(q_s) # Dry Brunt - Vaisala N_dry = gravity_ * d_ln_TH / d_z N_dry[RH_array >= 90] = 0 # Moist Brunt - Vaisala term_1_1 = 1 + ( latent_heat_v * q_s / (gas_const_dry * T_array) ) term_1_2 = 1 + ( e_ * (latent_heat_v**2) * q_s / (heat_capacity__Cp * gas_const_dry * (T_array**2) ) ) term_2_1 = d_ln_TH / d_z term_2_2 = latent_heat_v / (heat_capacity__Cp * T_array) term_2_3 = d_q_s / d_z term_3 = d_q_s / d_z # should be d_q_w but sonde data has no cloud water data N_moist = gravity_ * ( (term_1_1 / term_1_2) * (term_2_1 + ( term_2_2 * term_2_3) ) - term_3 ) N_moist[RH_array < 90] = 0 # define output array N_2 = (N_dry + N_moist)**2 H_hat_2 = N_2 * (height**2) / (U_array**2) return H_hat_2 def calculate_mountain_height_from_era5(era5_pressures_filename, era5_surface_filename, point_lat, point_lon, return_arrays=False, u_wind_mode='u', range_line_degrees=None, time_start_str_YYYYmmDDHHMM='',time_stop_str_YYYYmmDDHHMM='', reference_height=1000, return_debug_arrays=False): """ calculates H_hat from given values of u_array, v_array, T_array, effective_height, rh_array, q_array, p_array u_wind_mode: can be u, wind_speed, normal_to_range. If normal_to_range, then range_line most not be none if range_line_degrees is not None, u_wind_mode will automatically be set to normal_to_range range_line_degrees: degress (decimals) from north, clockwise, of the mountain range line. """ # load files era5_sur = nc.Dataset(era5_surface_filename, 'r') era5_pre = nc.Dataset(era5_pressures_filename, 'r') # check if times are the same for both files dif_sum = np.sum(np.abs(era5_pre.variables['time'][:] - era5_sur.variables['time'][:])) if dif_sum > 0: print('Error, times in selected files are not the same') return # check if lat lon are the same for both files dif_sum = np.sum(np.abs(era5_pre.variables['latitude'][:] - era5_sur.variables['latitude'][:])) dif_sum = dif_sum + np.sum(np.abs(era5_pre.variables['longitude'][:] - era5_sur.variables['longitude'][:])) if dif_sum > 0: print('Error, latitude or longitude in selected files are not the same') return # find lat lon index lat_index, lon_index = find_index_from_lat_lon(era5_sur.variables['latitude'][:], era5_sur.variables['longitude'][:], [point_lat], [point_lon]) lat_index = lat_index[0] lon_index = lon_index[0] # copy arrays time_array = time_era5_to_seconds(np.array(era5_sur.variables['time'][:])) r_1 = 0 r_2 = -1 if time_start_str_YYYYmmDDHHMM != '': r_1 = time_to_row_str(time_array, time_start_str_YYYYmmDDHHMM) if time_stop_str_YYYYmmDDHHMM != '': r_2 = time_to_row_str(time_array, time_stop_str_YYYYmmDDHHMM) time_array = time_array[r_1:r_2] sp_array = np.array(era5_sur.variables['sp'][r_1:r_2, lat_index, lon_index]) / 100 # hPa P_array = np.array(era5_pre.variables['level'][:]) # hPa if range_line_degrees is not None: WD_, WS_ = cart_to_polar(np.array(era5_pre.variables['v'][r_1:r_2,:,lat_index,lon_index]).flatten(), np.array(era5_pre.variables['u'][r_1:r_2,:,lat_index,lon_index]).flatten()) WD_delta = WD_ - range_line_degrees range_normal_component = WS_ * np.sin(np.deg2rad(WD_delta)) U_array = range_normal_component.reshape((sp_array.shape[0], P_array.shape[0])) else: if u_wind_mode == 'u': U_array = np.array(era5_pre.variables['u'][r_1:r_2,:,lat_index,lon_index]) else: U_array = np.sqrt(np.array(era5_pre.variables['v'][r_1:r_2,:,lat_index,lon_index]) ** 2 + np.array(era5_pre.variables['u'][r_1:r_2,:,lat_index,lon_index]) ** 2) T_array = np.array(era5_pre.variables['t'][r_1:r_2, :, lat_index, lon_index]) Q_L_array = np.array(era5_pre.variables['crwc'][r_1:r_2, :, lat_index, lon_index]) RH_array = np.array(era5_pre.variables['r'][r_1:r_2, :, lat_index, lon_index]) Z_array = np.array(era5_pre.variables['z'][r_1:r_2, :, lat_index, lon_index]) / gravity_ # calculate arrays TH_array = np.zeros((time_array.shape[0], P_array.shape[0]), dtype=float) for t_ in range(time_array.shape[0]): TH_array[t_,:] = calculate_potential_temperature(T_array[t_,:], P_array[:]) # calculated arrays q_s = calculate_saturation_mixing_ratio(P_array, T_array) e_ = gas_const_dry / gas_const_water # create output dict H_hat_2 = {} # loop tru time stamps for t_ in range(time_array.shape[0]): p_progress_bar(t_,time_array.shape[0]) # find surface pressure at this time stamp surface_p = sp_array[t_] # find pressure at 1000 meters pressure_1000m = np.interp(reference_height, Z_array[t_, :], P_array) pressure_1000m_index = np.argmin(np.abs(P_array - pressure_1000m)) # find extrapolations ql_0 = np.interp(np.log(surface_p), np.log(P_array), Q_L_array[t_, :]) z__0 = np.interp(np.log(surface_p), np.log(P_array), Z_array[t_, :]) th_0 = np.interp(np.log(surface_p), np.log(P_array), TH_array[t_, :]) qs_0 = np.interp(np.log(surface_p), np.log(P_array), q_s[t_, :]) t__1000 = np.interp(reference_height, Z_array[t_, :], T_array[t_, :]) u__1000 = np.interp(reference_height, Z_array[t_, :], U_array[t_, :]) ql_1000 = np.interp(reference_height, Z_array[t_, :], Q_L_array[t_, :]) z__1000 = reference_height th_1000 = np.interp(reference_height, Z_array[t_, :], TH_array[t_, :]) qs_1000 = np.interp(reference_height, Z_array[t_, :], q_s[t_, :]) # gradients d_ln_TH = np.log(th_1000) - np.log(th_0) d_z = z__1000 - z__0 d_q_s = qs_1000 - qs_0 d_q_w = (d_q_s) + (ql_1000 - ql_0) # Brunt - Vaisala if np.max(RH_array[t_, pressure_1000m_index:])>= 90: # Moist term_1_1 = 1 + ( latent_heat_v * qs_1000 / (gas_const_dry * t__1000) ) term_1_2 = 1 + ( e_ * (latent_heat_v**2) * qs_1000 / (heat_capacity__Cp * gas_const_dry * (t__1000**2) ) ) term_2_1 = d_ln_TH / d_z term_2_2 = latent_heat_v / (heat_capacity__Cp * t__1000) term_2_3 = d_q_s / d_z term_3 = d_q_w / d_z N_2 = gravity_ * ( (term_1_1 / term_1_2) * (term_2_1 + ( term_2_2 * term_2_3) ) - term_3 ) else: # Dry N_2 = gravity_ * d_ln_TH / d_z # populate each time stamp H_hat_2[time_array[t_]] = N_2 * (reference_height ** 2) / (u__1000 ** 2) era5_sur.close() era5_pre.close() if return_arrays: H_hat_2_time = sorted(H_hat_2.keys()) H_hat_2_time = np.array(H_hat_2_time) H_hat_2_vals = np.zeros(H_hat_2_time.shape[0], dtype=float) for r_ in range(H_hat_2_time.shape[0]): H_hat_2_vals[r_] = H_hat_2[H_hat_2_time[r_]] if return_debug_arrays: return H_hat_2_time, H_hat_2_vals, N_2, u__1000 ** 2 else: return H_hat_2_time, H_hat_2_vals else: return H_hat_2 def calculate_mountain_height_from_WRF(filename_SP, filename_PR, filename_UU, filename_VV, filename_TH, filename_QR, filename_QV, filename_PH, return_arrays=False, u_wind_mode='u', range_line_degrees=None, reference_height=1000): """ calculates H_hat from WRF point output text files u_wind_mode: can be u, wind_speed, normal_to_range. If normal_to_range, then range_line most not be none if range_line_degrees is not None, u_wind_mode will automatically be set to normal_to_range range_line_degrees: degress (decimals) from north, clockwise, of the mountain range line. :param filename_SP: fullpath filename of surface pressure file :param filename_PR: fullpath filename of pressure file :param filename_UU: fullpath filename of u wind file :param filename_VV: fullpath filename of v wind file :param filename_TH: fullpath filename of potential temperature file :param filename_QR: fullpath filename of rain water mixing ratio file :param filename_QV: fullpath filename of Water vapor mixing ratio file :param filename_PH: fullpath filename of geopotential height file :param return_arrays: if true, will return also brunt vaisalla and wind component squared :param u_wind_mode: can be u, wind_speed, normal_to_range. If normal_to_range, then range_line most not be none :param range_line_degrees: if not None, u_wind_mode will automatically be set to normal_to_range :param reference_height: mean height of mountain range :return: H_hat_2 """ # load arrays from text SP_array = genfromtxt(filename_SP, dtype=float, skip_header=1)[:,9] / 100 # hPa PR_array = genfromtxt(filename_PR, dtype=float, skip_header=1)[:,1:] / 100 # hPa UU_array = genfromtxt(filename_UU, dtype=float, skip_header=1)[:,1:] VV_array = genfromtxt(filename_VV, dtype=float, skip_header=1)[:,1:] TH_array = genfromtxt(filename_TH, dtype=float, skip_header=1)[:,1:] QR_array = genfromtxt(filename_QR, dtype=float, skip_header=1)[:,1:] QV_array = genfromtxt(filename_QV, dtype=float, skip_header=1)[:,1:] Z_array = genfromtxt(filename_PH, dtype=float, skip_header=1)[:,1:] # already in meters # calculate arrays if range_line_degrees is not None: WD_, WS_ = cart_to_polar(UU_array.flatten(), VV_array.flatten()) WD_delta = WD_ - range_line_degrees range_normal_component = WS_ * np.sin(np.deg2rad(WD_delta)) U_array = range_normal_component.reshape((UU_array.shape[0], UU_array.shape[1])) else: if u_wind_mode == 'u': U_array = UU_array else: U_array = np.sqrt(UU_array ** 2 + VV_array ** 2) T_array = calculate_temperature_from_potential_temperature(TH_array, PR_array) RH_array = calculate_RH_from_QV_T_P(QV_array, T_array, PR_array*100) q_s = calculate_saturation_mixing_ratio(PR_array, T_array) e_ = gas_const_dry / gas_const_water # create output array H_hat_2 = np.zeros(PR_array.shape[0], dtype=float) # loop tru time stamps for r_ in range(PR_array.shape[0]): p_progress_bar(r_, PR_array.shape[0]) # find surface pressure at this time stamp surface_p = SP_array[r_] # find pressure at 1000 meters pressure_1000m = np.interp(reference_height, Z_array[r_, :], PR_array[r_, :]) pressure_1000m_index = np.argmin(np.abs(PR_array[r_, :] - pressure_1000m)) # find extrapolations ql_0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), QR_array[r_, :]) z__0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), Z_array[r_, :]) th_0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), TH_array[r_, :]) qs_0 = np.interp(np.log(surface_p), np.log(PR_array[r_, :]), q_s[r_, :]) t__1000 = np.interp(reference_height, Z_array[r_, :], T_array[r_, :]) u__1000 = np.interp(reference_height, Z_array[r_, :], U_array[r_, :]) ql_1000 = np.interp(reference_height, Z_array[r_, :], QR_array[r_, :]) z__1000 = reference_height th_1000 = np.interp(reference_height, Z_array[r_, :], TH_array[r_, :]) qs_1000 = np.interp(reference_height, Z_array[r_, :], q_s[r_, :]) # gradients d_ln_TH = np.log(th_1000) - np.log(th_0) d_z = z__1000 - z__0 d_q_s = qs_1000 - qs_0 d_q_w = (d_q_s) + (ql_1000 - ql_0) # Brunt - Vaisala if np.max(RH_array[r_, pressure_1000m_index:])>= 90: # Moist term_1_1 = 1 + ( latent_heat_v * qs_1000 / (gas_const_dry * t__1000) ) term_1_2 = 1 + ( e_ * (latent_heat_v**2) * qs_1000 / (heat_capacity__Cp * gas_const_dry * (t__1000**2) ) ) term_2_1 = d_ln_TH / d_z term_2_2 = latent_heat_v / (heat_capacity__Cp * t__1000) term_2_3 = d_q_s / d_z term_3 = d_q_w / d_z N_2 = gravity_ * ( (term_1_1 / term_1_2) * (term_2_1 + ( term_2_2 * term_2_3) ) - term_3 ) else: # Dry N_2 = gravity_ * d_ln_TH / d_z # populate each time stamp H_hat_2[r_] = N_2 * (reference_height ** 2) / (u__1000 ** 2) if return_arrays: return H_hat_2, N_2, u__1000 ** 2 else: return H_hat_2 def calculate_dewpoint_from_T_RH(T_, RH_): """ from Magnus formula, using Bolton's constants :param T_: ambient temperature [Celsius] :param RH_: relative humidity :return: Td_ dew point temperature [celsius] """ a = 6.112 b = 17.67 c = 243.5 y_ = np.log(RH_/100) + ((b*T_)/(c+T_)) Td_ = (c * y_) / (b - y_) return Td_ def calculate_RH_from_QV_T_P(arr_qvapor, arr_temp_K, arr_press_Pa): tv_ = 6.11 * e_constant**((2500000/461) * ((1/273) - (1/arr_temp_K))) pv_ = arr_qvapor * (arr_press_Pa/100) / (arr_qvapor + 0.622) return np.array(100 * pv_ / tv_) def calculate_profile_input_for_cluster_analysis_from_ERA5(p_profile, t_profile, td_profile, q_profile, u_profile, v_profile, h_profile, surface_p): """ takes data from ERA5 for only one time stamp for all pressure levels from 250 to 1000 hPa :param p_profile: in hPa :param t_profile: in Celsius :param td_profile: in Celsius :param q_profile: in kg/kg :param u_profile: in m/s :param v_profile: in m/s :param h_profile: in m :param surface_p: in hPa :return: surface_p, qv_, qu_, tw_, sh_, tt_ """ # trim profiles from surface to top # find which levels should be included levels_total = 0 for i_ in range(p_profile.shape[0]): if p_profile[i_] > surface_p: break levels_total += 1 ####################################### find extrapolations surface_t = np.interp(np.log(surface_p), np.log(p_profile), t_profile) surface_td = np.interp(np.log(surface_p), np.log(p_profile), td_profile) surface_q = np.interp(np.log(surface_p), np.log(p_profile), q_profile) surface_u = np.interp(np.log(surface_p), np.log(p_profile), u_profile) surface_v = np.interp(np.log(surface_p), np.log(p_profile), v_profile) surface_h = np.interp(np.log(surface_p), np.log(p_profile), h_profile) # create temp arrays T_array = np.zeros(levels_total + 1, dtype=float) Td_array = np.zeros(levels_total + 1, dtype=float) Q_array = np.zeros(levels_total + 1, dtype=float) U_array = np.zeros(levels_total + 1, dtype=float) V_array = np.zeros(levels_total + 1, dtype=float) H_array = np.zeros(levels_total + 1, dtype=float) P_array = np.zeros(levels_total + 1, dtype=float) T_array[:levels_total] = t_profile[:levels_total] Td_array[:levels_total] = td_profile[:levels_total] Q_array[:levels_total] = q_profile[:levels_total] U_array[:levels_total] = u_profile[:levels_total] V_array[:levels_total] = v_profile[:levels_total] H_array[:levels_total] = h_profile[:levels_total] P_array[:levels_total] = p_profile[:levels_total] T_array[-1] = surface_t Td_array[-1] = surface_td Q_array[-1] = surface_q U_array[-1] = surface_u V_array[-1] = surface_v H_array[-1] = surface_h P_array[-1] = surface_p ###################################### r_850 = np.argmin(np.abs(P_array - 850)) r_500 = np.argmin(np.abs(P_array - 500)) dp_ = np.abs(np.gradient(P_array)) tt_ = (T_array[r_850] - (2 * T_array[r_500]) + Td_array[r_850]) qu_ = np.sum(Q_array * U_array * dp_) / gravity_ qv_ = np.sum(Q_array * V_array * dp_) / gravity_ tw_ = np.sum(Q_array * dp_) / gravity_ del_u = U_array[r_850] - U_array[r_500] del_v = V_array[r_850] - V_array[r_500] del_z = H_array[r_850] - H_array[r_500] sh_ = ((del_u / del_z) ** 2 + (del_v / del_z) ** 2) ** 0.5 return surface_p, qv_, qu_, tw_, sh_, tt_ def barometric_equation(presb_pa, tempb_k, deltah_m, Gamma=-0.0065): """The barometric equation models the change in pressure with height in the atmosphere. INPUTS: presb_k (pa): The base pressure tempb_k (K): The base temperature deltah_m (m): The height differential between the base height and the desired height Gamma [=-0.0065]: The atmospheric lapse rate OUTPUTS pres (pa): Pressure at the requested level REFERENCE: http://en.wikipedia.org/wiki/Barometric_formula """ return presb_pa * \ (tempb_k/(tempb_k+Gamma*deltah_m))**(grav*m_a/(Rstar_a*Gamma)) def barometric_equation_inv(heightb_m, tempb_k, presb_pa, prest_pa, Gamma=-0.0065): """The barometric equation models the change in pressure with height in the atmosphere. This function returns altitude given initial pressure and base altitude, and pressure change. INPUTS: heightb_m (m): presb_pa (pa): The base pressure tempb_k (K) : The base temperature deltap_pa (m): The pressure differential between the base height and the desired height Gamma [=-0.0065]: The atmospheric lapse rate OUTPUTS heightt_m REFERENCE: http://en.wikipedia.org/wiki/Barometric_formula """ return heightb_m + \ tempb_k * ((presb_pa/prest_pa)**(Rstar_a*Gamma/(grav*m_a))-1) / Gamma def Theta(tempk, pres, pref=100000.): """Potential Temperature INPUTS: tempk (K) pres (Pa) pref: Reference pressure (default 100000 Pa) OUTPUTS: Theta (K) Source: Wikipedia Prints a warning if a pressure value below 2000 Pa input, to ensure that the units were input correctly. """ try: minpres = min(pres) except TypeError: minpres = pres if minpres < 2000: print("WARNING: P<2000 Pa; did you input a value in hPa?") return tempk * (pref/pres)**(Rs_da/Cp_da) def TempK(theta, pres, pref=100000.): """Inverts Theta function.""" try: minpres = min(pres) except TypeError: minpres = pres if minpres < 2000: print("WARNING: P<2000 Pa; did you input a value in hPa?") return theta * (pres/pref)**(Rs_da/Cp_da) def ThetaE(tempk, pres, e): """Calculate Equivalent Potential Temperature for lowest model level (or surface) INPUTS: tempk: Temperature [K] pres: Pressure [Pa] e: Water vapour partial pressure [Pa] OUTPUTS: theta_e: equivalent potential temperature References: Eq. (9.40) from Holton (2004) Eq. (22) from Bolton (1980) <NAME> and <NAME> (2013), 'Land-Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations', J. Climate """ # tempc tempc = tempk - degCtoK # Calculate theta theta = Theta(tempk, pres) # T_lcl formula needs RH es = VaporPressure(tempc) RH = 100. * e / es # theta_e needs q (water vapour mixing ratio) qv = MixRatio(e, pres) # Calculate the temp at the Lifting Condensation Level T_lcl = ((tempk-55)*2840 / (2840-(np.log(RH/100)*(tempk-55)))) + 55 # print "T_lcl :%.3f"%T_lcl # DEBUG STUFF #### theta_l = tempk * \ (100000./(pres-e))**(Rs_da/Cp_da)*(tempk/T_lcl)**(0.28*qv) # print "theta_L: %.3f"%theta_l # Calculate ThetaE theta_e = theta_l * np.exp((Lv * qv) / (Cp_da * T_lcl)) return theta_e def ThetaE_Bolton(tempk, pres, e, pref=100000.): """Theta_E following Bolton (1980) INPUTS: tempk: Temperature [K] pres: Pressure [Pa] e: Water vapour partial pressure [Pa] See http://en.wikipedia.org/wiki/Equivalent_potential_temperature """ # Preliminary: T = tempk qv = MixRatio(e, pres) Td = DewPoint(e) + degCtoK kappa_d = Rs_da / Cp_da # Calculate TL (temp [K] at LCL): TL = 56 + ((Td-56.)**-1+(np.log(T/Td)/800.))**(-1) # print "TL: %.3f"%TL # Calculate Theta_L: thetaL = T * (pref/(pres-e))**kappa_d*(T/TL)**(0.28*qv) # print "theta_L: %.3f"%thetaL # put it all together to get ThetaE thetaE = thetaL * np.exp((3036./TL-0.78)*qv*(1+0.448*qv)) return thetaE def ThetaV(tempk, pres, e): """Virtual Potential Temperature INPUTS tempk (K) pres (Pa) e: Water vapour pressure (Pa) (Optional) OUTPUTS theta_v : Virtual potential temperature """ mixr = MixRatio(e, pres) theta = Theta(tempk, pres) return theta * (1+mixr/Epsilon) / (1+mixr) def GammaW(tempk, pres): """Function to calculate the moist adiabatic lapse rate (deg C/Pa) based on the environmental temperature and pressure. INPUTS: tempk (K) pres (Pa) RH (%) RETURNS: GammaW: The moist adiabatic lapse rate (Deg C/Pa) REFERENCE: http://glossary.ametsoc.org/wiki/Moist-adiabatic_lapse_rate (Note that I multiply by 1/(grav*rho) to give MALR in deg/Pa) """ tempc = tempk-degCtoK es = VaporPressure(tempc) ws = MixRatio(es, pres) # tempv=VirtualTempFromMixR(tempk,ws) tempv = VirtualTemp(tempk, pres, es) latent = Latentc(tempc) Rho = pres / (Rs_da*tempv) # This is the previous implementation: # A=1.0+latent*ws/(Rs_da*tempk) # B=1.0+Epsilon*latent*latent*ws/(Cp_da*Rs_da*tempk*tempk) # Gamma=(A/B)/(Cp_da*Rho) # This is algebraically identical but a little clearer: A = -1. * (1.0+latent*ws/(Rs_da*tempk)) B = Rho * (Cp_da+Epsilon*latent*latent*ws/(Rs_da*tempk*tempk)) Gamma = A / B return Gamma def DensHumid(tempk, pres, e): """Density of moist air. This is a bit more explicit and less confusing than the method below. INPUTS: tempk: Temperature (K) pres: static pressure (Pa) mixr: mixing ratio (kg/kg) OUTPUTS: rho_air (kg/m^3) SOURCE: http://en.wikipedia.org/wiki/Density_of_air """ pres_da = pres - e rho_da = pres_da / (Rs_da * tempk) rho_wv = e/(Rs_v * tempk) return rho_da + rho_wv def Density(tempk, pres, mixr): """Density of moist air INPUTS: tempk: Temperature (K) pres: static pressure (Pa) mixr: mixing ratio (kg/kg) OUTPUTS: rho_air (kg/m^3) """ virtualT = VirtualTempFromMixR(tempk, mixr) return pres / (Rs_da * virtualT) def VirtualTemp(tempk, pres, e): """Virtual Temperature INPUTS: tempk: Temperature (K) e: vapour pressure (Pa) p: static pressure (Pa) OUTPUTS: tempv: Virtual temperature (K) SOURCE: hmmmm (Wikipedia).""" tempvk = tempk / (1-(e/pres)*(1-Epsilon)) return tempvk def VirtualTempFromMixR(tempk, mixr): """Virtual Temperature INPUTS: tempk: Temperature (K) mixr: Mixing Ratio (kg/kg) OUTPUTS: tempv: Virtual temperature (K) SOURCE: hmmmm (Wikipedia). This is an approximation based on a m """ return tempk * (1.0+0.6*mixr) def Latentc(tempc): """Latent heat of condensation (vapourisation) INPUTS: tempc (C) OUTPUTS: L_w (J/kg) SOURCE: http://en.wikipedia.org/wiki/Latent_heat#Latent_heat_for_condensation_of_water """ return 1000 * (2500.8 - 2.36*tempc + 0.0016*tempc**2 - 0.00006*tempc**3) def VaporPressure(tempc, phase="liquid"): """Water vapor pressure over liquid water or ice. INPUTS: tempc: (C) OR dwpt (C), if SATURATION vapour pressure is desired. phase: ['liquid'],'ice'. If 'liquid', do simple dew point. If 'ice', return saturation vapour pressure as follows: Tc>=0: es = es_liquid Tc <0: es = es_ice RETURNS: e_sat (Pa) SOURCE: http://cires.colorado.edu/~voemel/vp.html (#2: CIMO guide (WMO 2008), modified to return values in Pa) This formulation is chosen because of its appealing simplicity, but it performs very well with respect to the reference forms at temperatures above -40 C. At some point I'll implement Goff-Gratch (from the same resource). """ over_liquid = 6.112 * np.exp(17.67*tempc/(tempc+243.12))*100. over_ice = 6.112 * np.exp(22.46*tempc/(tempc+272.62))*100. # return where(tempc<0,over_ice,over_liquid) if phase == "liquid": # return 6.112*exp(17.67*tempc/(tempc+243.12))*100. return over_liquid elif phase == "ice": # return 6.112*exp(22.46*tempc/(tempc+272.62))*100. return np.where(tempc < 0, over_ice, over_liquid) else: raise NotImplementedError def SatVap(dwpt, phase="liquid"): """This function is deprecated, return ouput from VaporPres""" print("WARNING: This function is deprecated, please use VaporPressure()" + " instead, with dwpt as argument") return VaporPressure(dwpt, phase) def MixRatio(e, p): """Mixing ratio of water vapour INPUTS e (Pa) Water vapor pressure p (Pa) Ambient pressure RETURNS qv (kg kg^-1) Water vapor mixing ratio` """ return Epsilon * e / (p - e) def MixR2VaporPress(qv, p): """Return Vapor Pressure given Mixing Ratio and Pressure INPUTS qv (kg kg^-1) Water vapor mixing ratio` p (Pa) Ambient pressure RETURNS e (Pa) Water vapor pressure """ return qv * p / (Epsilon + qv) def DewPoint(e): """ Use Bolton's (1980, MWR, p1047) formulae to find tdew. INPUTS: e (Pa) Water Vapor Pressure OUTPUTS: Td (C) """ ln_ratio = np.log(e/611.2) Td = ((17.67-ln_ratio)*degCtoK+243.5*ln_ratio)/(17.67-ln_ratio) return Td - degCtoK def WetBulb(tempc, RH): """Stull (2011): Wet-Bulb Temperature from Relative Humidity and Air Temperature. INPUTS: tempc (C) RH (%) OUTPUTS: tempwb (C) """ Tw = tempc * np.arctan(0.151977*(RH+8.313659)**0.5) + \ np.arctan(tempc+RH) - np.arctan(RH-1.676331) + \ 0.00391838*RH**1.5*np.arctan(0.023101*RH) - \ 4.686035 return Tw # unit conversions def convert_unit_and_save_data_ppb_ugm3(filename_, station_name): # https://uk-air.defra.gov.uk/assets/documents/reports/cat06/0502160851_Conversion_Factors_Between_ppb_and.pdf # http://www2.dmu.dk/AtmosphericEnvironment/Expost/database/docs/PPM_conversion.pdf parameters_unit_scaling = {'11' : 1.96, # O3 '10' : 1.25, # NO '9' : 1.88, # NO2 '16' : 2.62, # SO2 '8' : 1.15} # CO new_unit_name = '[$\mu$g/m$^3$]' parameter_name_mod = {'9' : 'NO$_2$', '11' : 'O$_3$', '12' : 'PM$_1$$_0$', '13' : 'PM$_2$$_.$$_5$', '7' : 'CO$_2$', '16' : 'SO$_2$', } # station_name = 'QF_01' data_array = open_csv_file(filename_) current_header = data_array[0,:] new_header = np.array(current_header) v_current = np.array(data_array[1:,:],dtype=float) v_new = np.array(v_current) for keys_ in parameters_unit_scaling.keys(): v_new[:, int(keys_)] = v_current[:, int(keys_)] * parameters_unit_scaling[str(keys_)] # add station name suffix for i_ in range(5,22): if str(i_) in parameter_name_mod.keys(): parameter_name = parameter_name_mod[str(i_)] else: parameter_name = current_header[i_].split('_')[0] if str(i_) in parameters_unit_scaling.keys(): parameter_unit = new_unit_name else: parameter_unit = current_header[i_].split('_')[1] new_header[i_] = station_name + '_' + parameter_name + '_' + parameter_unit data_array[1:,:] = v_new data_array[0,:] = new_header filename_new = filename_.split('\\')[-1].split('.')[0] + '_unit_converted.csv' current_filename_without_path = filename_.split('\\')[-1] current_filename_path = filename_[:-len(current_filename_without_path)] numpy_save_txt(current_filename_path + filename_new, data_array) print('done!') def save_data_with_unit_conversion_ppb_ugm3(file_list_path): file_list = sorted(glob.glob(str(file_list_path + '\\' + '*.csv'))) # https://uk-air.defra.gov.uk/assets/documents/reports/cat06/0502160851_Conversion_Factors_Between_ppb_and.pdf # http://www2.dmu.dk/AtmosphericEnvironment/Expost/database/docs/PPM_conversion.pdf parameters_unit_scaling = {'12' : 1.96, # O3 '13' : 1.25, # NO '14' : 1.88, # NO2 '15' : 2.62, # SO2 '16' : 1.15} # CO parameters_new_names = ['YYYY', # 0 'MM', # 1 'DD', # 2 'HH', # 3 'mm', # 4 'Day of the week', # 5 'WD degrees', # 6 'WS m/s', # 7 'Temp Celsius', # 8 'RH %', # 9 'SR W/m2', # 10 'ATP mbar', # 11 'O3 ug/m3', # 12 'NO ug/m3', # 13 'NO2 ug/m3', # 14 'SO2 ug/m3', # 15 'CO mg/m3', # 16 'CO2 ppm', # 17 'PM10 ug/m3', # 18 'PM2.5 ug/m3', # 19 'THC ppm', # 20 'Rain mm', # 21 'Ox ppb', # 22 'NOx ppb'] # 23 for month_ in range(1,13): print(month_) filename_old = file_list[month_ -1] data_array = open_csv_file(file_list[month_ -1]) v_ppb = np.array(data_array[1:,:],dtype=float) v_ug_m3 = np.array(v_ppb) for keys_ in parameters_unit_scaling.keys(): v_ug_m3[:, int(keys_)] = v_ppb[:, int(keys_)] * parameters_unit_scaling[str(keys_)] data_array[0, :] = parameters_new_names data_array[1:,:] = v_ug_m3 filename_new = filename_old.split('\\')[-1].split('.')[0] + '_ugm3.csv' numpy_save_txt(file_list_path + '\\' + filename_new, data_array) print('done!') def RH_to_abs_conc(arr_RH,arr_T): a_ = 1-(373.15/arr_T) c_1 = 13.3185 c_2 = -1.97 c_3 = -.6445 c_4 = -.1299 Po_H2O = 1013.25 * e_constant ** ((c_1 * (a_**1)) + (c_2 * (a_**2)) + (c_3 * (a_**3)) + (c_4 * (a_**4)) ) # mbar return (arr_RH * Po_H2O) / (100 * boltzmann_ * arr_T) def Mixing_Ratio_to_molecules_per_cm3(arr_MR, ATP_mbar, Temp_C): arr_temp = Temp_C + 273.15 # kelvin arr_Molec_per_cm3 = arr_MR * ( ATP_mbar / ( boltzmann_ * arr_temp ) ) # molecules / cm3 return arr_Molec_per_cm3 def molecules_per_cm3_to_Mixing_Ratio(arr_Molec_per_cm3, ATP_mbar, Temp_C): arr_temp = Temp_C + 273.15 # kelvin arr_MR = (arr_Molec_per_cm3 * boltzmann_ * arr_temp) / ATP_mbar return arr_MR def ws_knots_to_ms(arr_): return arr_ * .514444 def ws_ms_to_knots(arr_): return arr_ / .514444 def kelvin_to_celsius(arr_temp_k): return arr_temp_k - 273.15 def celsius_to_kelvin(arr_temp_c): return arr_temp_c + 273.15 # geo reference def find_index_from_lat_lon(series_lat, series_lon, point_lat_list, point_lon_list): lat_index_list = [] lon_index_list = [] # mask arrays lat_m = series_lat lon_m = series_lon if np.sum(lat_m) != np.sum(lat_m) or np.sum(lon_m) != np.sum(lon_m): lat_m = np.ma.masked_where(np.isnan(lat_m), lat_m) lat_m = np.ma.masked_where(np.isinf(lat_m), lat_m) lon_m = np.ma.masked_where(np.isnan(lon_m), lon_m) lon_m = np.ma.masked_where(np.isinf(lon_m), lon_m) if type(point_lat_list) == tuple or type(point_lat_list) == list: for lat_ in point_lat_list: lat_index_list.append(np.argmin(np.abs(lat_m - lat_))) for lon_ in point_lon_list: lon_index_list.append(np.argmin(np.abs(lon_m - lon_))) else: lat_index_list = np.argmin(np.abs(lat_m - point_lat_list)) lon_index_list = np.argmin(np.abs(lon_m - point_lon_list)) return lat_index_list, lon_index_list def find_index_from_lat_lon_2D_arrays(lat_arr, lon_arr, point_lat, point_lon): lat_del_arr = lat_arr - point_lat lon_del_arr = lon_arr - point_lon dist_arr = ( lat_del_arr**2 + lon_del_arr**2 )**0.5 return find_min_index_2d_array(dist_arr) def find_index_from_lat_lon_1D_arrays(lat_arr, lon_arr, point_lat, point_lon): lat_del_arr = lat_arr - point_lat lon_del_arr = lon_arr - point_lon dist_arr = ( lat_del_arr**2 + lon_del_arr**2 )**0.5 return find_min_index_1d_array(dist_arr) def distance_array_lat_lon_2D_arrays_degrees(lat_arr, lon_arr, point_lat, point_lon): lat_del_arr = lat_arr - point_lat lon_del_arr = lon_arr - point_lon return ( lat_del_arr**2 + lon_del_arr**2 )**0.5 def meter_per_degrees(lat_point): lat_mean_rad = np.deg2rad(np.abs(lat_point)) m_per_deg_lat = 111132.954 - 559.822 * np.cos(2 * lat_mean_rad) + 1.175 * np.cos(4 * lat_mean_rad) m_per_deg_lon = 111132.954 * np.cos(lat_mean_rad) return np.abs(m_per_deg_lat), np.abs(m_per_deg_lon) def degrees_per_meter(lat_point): m_per_deg_lat, m_per_deg_lon = meter_per_degrees(lat_point) return 1/m_per_deg_lat, 1/m_per_deg_lon def distance_array_lat_lon_2D_arrays_degress_to_meters(lat_arr, lon_arr, point_lat, point_lon): m_per_deg_lat, m_per_deg_lon = meter_per_degrees(np.nanmean(lat_arr)) lat_del_arr_m = (lat_arr - point_lat) * m_per_deg_lat lon_del_arr_m = (lon_arr - point_lon) * m_per_deg_lon return ( lat_del_arr_m**2 + lon_del_arr_m**2 )**0.5 def distance_between_to_points_in_meters(point_1_latlon, point_2_latlon): latMid = (point_1_latlon[0] + point_2_latlon[0]) / 2 m_per_deg_lat, m_per_deg_lon = meter_per_degrees(latMid) del_lat = (point_1_latlon[0] - point_2_latlon[0]) * m_per_deg_lat del_lon = (point_1_latlon[1] - point_2_latlon[1]) * m_per_deg_lon return ((del_lat**2) + (del_lon**2))**0.5 # Data Loading def numpy_load_txt(filename_, delimiter_=",", format_=float, skip_head=0): return genfromtxt(filename_, delimiter=delimiter_, dtype=format_, skip_header=skip_head) def open_csv_file(filename_, delimiter=',', skip_head=0, dtype='<U32'): # load data return np.array(genfromtxt(filename_, delimiter=delimiter, dtype=dtype, skip_header=skip_head)) def load_time_columns(filename_): ## user defined variables day_column_number = 2 month_column_number = 1 year_column_number = 0 hour_column_number = 3 minute_column_number = 4 time_header = 'Time' #defining time header data_array = open_csv_file(filename_) # define arrays values_str = data_array[1:,5:] values_ = np.zeros((values_str.shape[0],values_str.shape[1]),dtype=float) for r_ in range(values_.shape[0]): for c_ in range(values_.shape[1]): try: values_[r_,c_] = float(values_str[r_,c_]) except: values_[r_,c_] = np.nan header_ = data_array[0 ,1:] # defining time arrays time_days = np.zeros(data_array.shape[0] - 1, dtype=float) time_month = np.zeros(data_array.shape[0] - 1, dtype=int) time_weekday = np.zeros(data_array.shape[0] - 1, dtype=int) time_hour = np.zeros(data_array.shape[0] - 1) for r_ in range(data_array.shape[0] - 1): time_days[r_] = mdates.date2num(datetime.datetime( int(float(data_array[r_+1,year_column_number])), int(float(data_array[r_+1,month_column_number])), int(float(data_array[r_+1,day_column_number])), int(float(data_array[r_+1,hour_column_number])), int(float(data_array[r_+1,minute_column_number])))) time_month[r_] = int(float(data_array[r_+1,month_column_number])) time_weekday[r_] = datetime.datetime.weekday(mdates.num2date(time_days[r_])) time_hour[r_] = float(data_array[r_+1,hour_column_number]) + (float(data_array[r_+1,minute_column_number]) / 60) # compile names header_[0] = time_header header_[1] = 'Month' header_[2] = 'Day of week' header_[3] = 'Hour of day' # compile values values_ = np.column_stack((time_days, time_month, time_weekday, time_hour, values_)) return header_, values_ def load_object(filename): with open(filename, 'rb') as input_object: object_ = pickle.load(input_object) return object_ def read_one_line_from_text_file(filename_, line_number): file_ = open(filename_) for i, line in enumerate(file_): if i == line_number : line_str = line elif i > line_number: break file_.close() return line_str # data saving/output def save_time_variable_as_csv(output_filename, var_name, time_in_secs, var_values, time_format_output='%Y%m%d%H%M%S'): out_file = open(output_filename, 'w') # write header out_file.write(time_format_output) out_file.write(',') out_file.write(var_name) out_file.write('\n') for r_ in range(time_in_secs.shape[0]): p_progress_bar(r_, time_in_secs.shape[0]) out_file.write(time_seconds_to_str(time_in_secs[r_], time_format_output)) out_file.write(',' + str(var_values[r_])) out_file.write('\n') out_file.close() def numpy_save_txt(filename_, array_, delimiter_=",", format_='%s'): np.savetxt(filename_, array_, delimiter=delimiter_, fmt=format_) def save_array_to_disk(header_with_units, time_in_seconds, values_in_floats, filename): # if len(values_in_floats.shape) == 1: header_to_print = ['YYYY', 'MM', 'DD', 'HH', 'mm', header_with_units] else: header_to_print = ['YYYY', 'MM', 'DD', 'HH', 'mm'] for parameter_ in header_with_units: header_to_print.append(parameter_) # create values block T_ = time_seconds_to_5C_array(time_in_seconds) P_ = np.column_stack((T_, values_in_floats)) # change type to str P_str = np.array(P_, dtype='<U32') # join header with values P_final = np.row_stack((header_to_print, P_str)) # save to hard drive numpy_save_txt(filename, P_final) print('final data saved to: ' + filename) def save_HVF(header_, values_, filename): # check if all shapes match if len(header_) != values_.shape[1]: print('shape of header is not compatible with shape of values') return time_in_seconds = mdates.num2epoch(values_[:, 0]) header_with_units = header_[2:] values_in_floats = values_[:, 2:] header_to_print = ['YYYY', 'MM', 'DD', 'HH', 'mm'] for parameter_ in header_with_units: header_to_print.append(parameter_) # create values block T_ = np.zeros((time_in_seconds.shape[0], 5), dtype='<U32') for r_ in range(time_in_seconds.shape[0]): if time_in_seconds[r_] == time_in_seconds[r_]: T_[r_] = time.strftime("%Y,%m,%d,%H,%M", time.gmtime(time_in_seconds[r_])).split(',') P_ = np.column_stack((T_, values_in_floats)) # change type to str P_str = np.array(P_, dtype='<U32') # join header with values P_final = np.row_stack((header_to_print, P_str)) # save to hard drive numpy_save_txt(filename, P_final) print('final data saved to: ' + filename) def save_simple_array_to_disk(header_list, values_array, filename_): # change type to str values_str = np.array(values_array, dtype='<U32') # join header with values array_final = np.row_stack((header_list, values_str)) # save to hard drive numpy_save_txt(filename_, array_final) print('final data saved to: ' + filename_) def save_array_as_is(array_, filename_): np.savetxt(filename_, array_, delimiter=",", fmt='%s') def save_object(obj, filename): with open(filename, 'wb') as output: # Overwrites any existing file. pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL) # png data handeling def store_array_to_png(array_, filename_out): """ This function saves an array to a png file while keeping as much accuracy as possible with the lowest memory ussage :param array_: numpy array :param filename_out: string with full path :return: none """ # shape rows_ = array_.shape[0] columns_ = array_.shape[1] # nan layer array_nan = np.zeros((rows_, columns_), dtype='uint8') array_nan[array_ != array_] = 100 # replace nans array_[array_ != array_] = 0 # convert to all positive array_positive = np.abs(array_) # sign layer array_sign = np.zeros((rows_, columns_), dtype='uint8') array_sign[array_ >= 0] = 100 # zeros array array_zeros = np.zeros((rows_, columns_), dtype='uint8') array_zeros[array_positive != 0] = 1 # sub 1 array array_sub1 = np.zeros((rows_, columns_), dtype='uint8') array_sub1[array_positive<1] = 1 array_sub1 = array_sub1 * array_zeros # power array exp_ = np.array(np.log10(array_positive), dtype=int) exp_[array_zeros==0] = 0 # integral array array_integral = array_positive / 10 ** np.array(exp_, dtype=float) # array_layer_1 array_layer_1 = np.array(((array_sub1 * 9) + 1) * array_integral * 10, dtype='uint8') + array_sign # array_layer_2 array_layer_2 = np.array(((array_integral * ((array_sub1 * 9) + 1) * 10) - np.array(array_integral * ((array_sub1 * 9) + 1) * 10, dtype='uint8')) * 100, dtype='uint8') array_layer_2 = array_layer_2 + array_nan # power sign layer exp_ = exp_ - array_sub1 array_power_sign = np.zeros((rows_, columns_), dtype='uint8') array_power_sign[exp_ >= 0] = 100 # array_layer_3 array_layer_3 = np.abs(exp_) + array_power_sign # initialize out array out_array = np.zeros((rows_, columns_, 3), dtype='uint8') # dump into out array out_array[:, :, 0] = array_layer_1 out_array[:, :, 1] = array_layer_2 out_array[:, :, 2] = array_layer_3 img_arr = PIL_Image.fromarray(out_array) img_arr.save(filename_out) def read_png_to_array(filename_): """ This functions converts pngs files created by "store_array_to_png" back to numpy arrays :param filename_: string with full path name to png file created by store_array_to_png :return: numpy array """ # read image into array img_arr = np.array(PIL_Image.open(filename_)) # shape rows_ = img_arr.shape[0] columns_ = img_arr.shape[1] # nan array nan_array = np.zeros((rows_, columns_), dtype='uint8') nan_array[img_arr[:,:,1] >= 100] = 1 # power array power_array_magnitude = ((img_arr[:,:,2]/100) - np.array(img_arr[:,:,2]/100, dtype='uint8') ) * 100 sign_array = np.zeros((rows_, columns_)) - 1 sign_array[img_arr[:,:,2] >= 100] = 1 power_array = power_array_magnitude * sign_array # sign array sign_array = np.array(img_arr[:,:,0]/100, dtype=int) sign_array[sign_array == 0] = -1 # unit array unit_array = np.array(img_arr[:,:,0]/10, dtype='uint8') - (np.array(img_arr[:,:,0]/100, dtype='uint8') * 10) # decimal array decimal_array_1 = (img_arr[:,:,0]/10) - np.array(img_arr[:,:,0]/10, dtype='uint8') decimal_array_2 = ((img_arr[:,:,1]/100) - np.array(img_arr[:,:,1]/100, dtype='uint8') ) / 10 # compute out array out_array = (sign_array * (unit_array + decimal_array_1 + decimal_array_2)) * 10 ** power_array # flag nans out_array[nan_array==1]=np.nan return out_array # sattelite data load def load_OMI_NO2_monthly_data(filename_): # # [molec./cm-2] # filename_ = 'C:\\_input\\no2_201601.grd' # arr_NO2, lat_arr_NO2, lon_arr_NO2 = load_OMI_NO2_monthly_data(filename_) # [440: -820, 1650: 1960] data_array = genfromtxt(filename_, dtype=float, skip_header=7) file_object = open(filename_,mode='r') ncols = int(file_object.readline().split()[-1]) nrows = int(file_object.readline().split()[-1]) xllcorner = float(file_object.readline().split()[-1]) yllcorner = float(file_object.readline().split()[-1]) cellsize = float(file_object.readline().split()[-1]) nodata_value = float(file_object.readline().split()[-1]) # version = file_object.readline().split()[-1] file_object.close() lat_arr = np.zeros((nrows, ncols), dtype=float) lon_arr = np.zeros((nrows, ncols), dtype=float) lat_series = np.linspace(yllcorner + (cellsize * nrows), yllcorner, nrows) lon_series = np.linspace(xllcorner, xllcorner + (cellsize * ncols), ncols) for r_ in range(nrows): lon_arr[r_, :] = lon_series for c_ in range(ncols): lat_arr[:, c_] = lat_series data_array[data_array==nodata_value] = np.nan data_array = data_array * 1e13 return data_array[1:-1,:], lat_arr[1:-1,:], lon_arr[1:-1,:] def load_OMI_HCHO_monthly_data(filename_): # # [molec./cm-2] # filename_ = 'C:\\_input\\OMIH2CO_Grid_720x1440_201601.dat' # arr_HCHO, lat_arr_HCHO, lon_arr_HCHO = load_OMI_HCHO_monthly_data(filename_) # [220: -410, 825: 980] data_array = genfromtxt(filename_, dtype=float, skip_header=7) ncols = 1440 nrows = 720 xllcorner = -180 yllcorner = -90 cellsize = 0.25 lat_arr = np.zeros((nrows, ncols), dtype=float) lon_arr = np.zeros((nrows, ncols), dtype=float) lat_series = np.linspace(yllcorner + (cellsize * nrows), yllcorner, nrows) lon_series = np.linspace(xllcorner, xllcorner + (cellsize * ncols), ncols) for r_ in range(nrows): lon_arr[r_, :] = lon_series for c_ in range(ncols): lat_arr[:, c_] = lat_series data_array = data_array * 1e15 return data_array[1:-1,:], lat_arr[1:-1,:], lon_arr[1:-1,:] def download_HIM8_AUS_ch3_500m(YYYYmmddHHMM_str): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + \ '/' + \ YYYYmmddHHMM_str[4:6] + \ '/' + \ YYYYmmddHHMM_str[6:8] + \ '/' + \ YYYYmmddHHMM_str[8:12] + \ '/' + \ YYYYmmddHHMM_str + '00' \ '-P1S-ABOM_BRF_B03-PRJ_GEOS141_500-HIMAWARI8-AHI.nc' f_ = nc.Dataset(url_) r_1 = 13194 r_2 = 19491 c_1 = 4442 c_2 = 14076 return f_.variables['channel_0003_brf'][0, r_1:r_2, c_1:c_2] def download_HIM8_AUS_2000m(YYYYmmddHHMM_str, channel_number_str, print_=True): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + '/' + YYYYmmddHHMM_str[4:6] + '/' + YYYYmmddHHMM_str[6:8] + \ '/' + YYYYmmddHHMM_str[8:12] + \ '/' + YYYYmmddHHMM_str + '00' + \ '-P1S-ABOM_OBS_' \ 'B' + channel_number_str + \ '-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' if print_: print('downloading HIM_8', YYYYmmddHHMM_str, channel_number_str) f_ = nc.Dataset(url_) r_1 = 3298 r_2 = 4873 c_1 = 1110 c_2 = 3519 variable_name = '' for var_key in f_.variables.keys(): if len(var_key.split('channel')) > 1: variable_name = var_key break return f_.variables[variable_name][0, r_1:r_2, c_1:c_2] def download_HIM8_2000m(YYYYmmddHHMM_str, channel_number_str): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + '/' + YYYYmmddHHMM_str[4:6] + '/' + YYYYmmddHHMM_str[6:8] + \ '/' + YYYYmmddHHMM_str[8:12] + \ '/' + YYYYmmddHHMM_str + '00' + \ '-P1S-ABOM_OBS_' \ 'B' + channel_number_str + \ '-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' f_ = nc.Dataset(url_) variable_name = '' for var_key in f_.variables.keys(): if len(var_key.split('channel')) > 1: variable_name = var_key break print('downloading variable:', variable_name) return f_.variables[variable_name][0, :,:] def download_HIM8_AUS_truecolor_2000m(YYYYmmddHHMM_str): H8_b = download_HIM8_AUS_2000m(YYYYmmddHHMM_str, '01') H8_g = download_HIM8_AUS_2000m(YYYYmmddHHMM_str, '02') H8_r = download_HIM8_AUS_2000m(YYYYmmddHHMM_str, '03') img_ = np.zeros((H8_b.shape[0], H8_b.shape[1], 3), dtype='uint8') img_[:, :, 0] = H8_r * 170 img_[:, :, 1] = H8_g * 170 img_[:, :, 2] = H8_b * 170 return img_ def download_HIM8_truecolor_2000m(YYYYmmddHHMM_str): H8_b = download_HIM8_2000m(YYYYmmddHHMM_str, '01') H8_g = download_HIM8_2000m(YYYYmmddHHMM_str, '02') H8_r = download_HIM8_2000m(YYYYmmddHHMM_str, '03') img_ = np.zeros((H8_b.shape[0], H8_b.shape[1], 3), dtype='uint8') img_[:, :, 0] = H8_r * 170 img_[:, :, 1] = H8_g * 170 img_[:, :, 2] = H8_b * 170 return img_ def download_lat_lon_arrays_HIM8_500(): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/ancillary/' \ '20150127000000-P1S-ABOM_GEOM_SENSOR-PRJ_GEOS141_500-HIMAWARI8-AHI.nc' lat_ = download_big_nc_array_in_parts(url_, 'lat') lon_ = download_big_nc_array_in_parts(url_, 'lon') lat_[lat_ > 360] = np.nan lon_[lon_ > 360] = np.nan return lat_, lon_ def download_lat_lon_arrays_HIM8_2000(): url_ = 'http://dapds00.nci.org.au/thredds/dodsC/rr5/satellite/obs/himawari8/FLDK/ancillary/' \ '20150127000000-P1S-ABOM_GEOM_SENSOR-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' lat_ = download_big_nc_array_in_parts(url_, 'lat') lon_ = download_big_nc_array_in_parts(url_, 'lon') lat_[lat_ > 360] = np.nan lon_[lon_ > 360] = np.nan return lat_, lon_ def download_big_nc_array_in_parts(url_, variable_name, parts_=4): f_ = nc.Dataset(url_) var_shape = f_.variables[variable_name].shape print('downloading variable', variable_name, 'with shape:', var_shape) if len(var_shape) == 0: print('ERROR! variable is not an array') return None elif len(var_shape) == 1: if var_shape[0] == 1: print('ERROR! variable is a scalar') return None else: rows_per_part = int(var_shape[0] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros(var_shape[0]) for part_ in range(parts_ - 1): output_array[int(part_*rows_per_part):int((part_+1)*rows_per_part)] =\ f_.variables[variable_name][int(part_*rows_per_part):int((part_+1)*rows_per_part)] output_array[int((parts_ -1)*rows_per_part):] = \ f_.variables[variable_name][int((parts_ -1)*rows_per_part):] return output_array elif len(var_shape) == 2: rows_per_part = int(var_shape[1] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros((var_shape[0],var_shape[1])) for part_ in range(parts_ - 1): output_array[:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part)] = \ f_.variables[variable_name][:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part)] output_array[:,int((parts_ - 1) * rows_per_part):] = \ f_.variables[variable_name][:,int((parts_ - 1) * rows_per_part):] return output_array elif len(var_shape) == 3: rows_per_part = int(var_shape[1] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros((var_shape[0],var_shape[1],var_shape[2])) for part_ in range(parts_ - 1): output_array[:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:] = \ f_.variables[variable_name][:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:] output_array[:,int((parts_ - 1) * rows_per_part):,:] = \ f_.variables[variable_name][:,int((parts_ - 1) * rows_per_part):,:] return output_array elif len(var_shape) == 4: rows_per_part = int(var_shape[1] / parts_) if rows_per_part == 0: print('ERROR! variable size is too small to be divided, should be downloaded directly') return None else: output_array = np.zeros((var_shape[0],var_shape[1],var_shape[2],var_shape[3])) for part_ in range(parts_ - 1): output_array[:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:,:] = \ f_.variables[variable_name][:,int(part_ * rows_per_part):int((part_ + 1) * rows_per_part),:,:] output_array[:,int((parts_ - 1) * rows_per_part):,:,:] = \ f_.variables[variable_name][:,int((parts_ - 1) * rows_per_part):,:,:] return output_array elif len(var_shape) > 4: print('ERROR! variable has more than 4 dimensions, not implemented for this many dimentions') return None def get_himawari8_2000m_NCI(YYYYmmddHHMM_str, channel_number, output_format='png', output_path='/g/k10/la6753/data/', row_start=0, row_stop=5500, col_start=0, col_stop=5500): """ gets array from himawari-8 netcdf files and extracts only the indicated channel at the indicated time. saves to output_path :param YYYYmmddHHMM_str: string with the time in four digits for year, two digits for months... :param channel_number: int or float with the number of the channel ('01'-'16') :param output_format: string with either 'png' or 'numpy'. If png the array will be saved used store_array_to_png, otherwise numpy.save will be used :param output_path: string with the path, or full filename to be used to save the file :param row_start: int with the row number to start the crop :param row_stop: int with the row number to stop the crop :param col_start: int with the coloumn number to start the crop :param col_stop: int with the coloumn number to stop the crop :return: None """ channel_number_str = str(int(channel_number)).zfill(2) filename_ = '/g/data/rr5/satellite/obs/himawari8/FLDK/' + \ YYYYmmddHHMM_str[:4] + '/' + YYYYmmddHHMM_str[4:6] + '/' + YYYYmmddHHMM_str[6:8] + \ '/' + YYYYmmddHHMM_str[8:12] + \ '/' + YYYYmmddHHMM_str + '00' + \ '-P1S-ABOM_OBS_' \ 'B' + channel_number_str + \ '-PRJ_GEOS141_2000-HIMAWARI8-AHI.nc' if os.path.exists(filename_): f_ = nc.Dataset(filename_) variable_name = '' for var_key in f_.variables.keys(): if len(var_key.split('channel')) > 1: variable_name = var_key break array_ = f_.variables[variable_name][0, row_start:row_stop, col_start:col_stop] if output_path[-1] == '/' or output_path[-1] == '\\': if output_format == 'png': output_filename = output_path + 'him_2000m_ch' + channel_number_str + '_' + YYYYmmddHHMM_str + '.png' else: output_filename = output_path + 'him_2000m_ch' + channel_number_str + '_' + YYYYmmddHHMM_str + '.npy' else: output_filename = output_path if output_format == 'png': store_array_to_png(array_, output_filename) else: np.save(output_filename, array_) else: print('File not available for time stamp:', YYYYmmddHHMM_str) # ERA5 def create_virtual_sondes_from_ERA5(time_stamp_sec, lat_lon_tuple, era5_file_levels_ncFile, era5_file_surface_ncFile, max_time_delta_sec=21600, show_prints=True): close_level_file=False close_surface_file=False if type(era5_file_levels_ncFile) == str: era5_file_levels = nc.Dataset(era5_file_levels_ncFile) close_level_file = True else: era5_file_levels = era5_file_levels_ncFile if type(era5_file_surface_ncFile) == str: era5_file_surface = nc.Dataset(era5_file_surface_ncFile) close_surface_file = True else: era5_file_surface = era5_file_surface_ncFile time_era5_levels_sec = time_era5_to_seconds(era5_file_levels.variables['time'][:]) time_era5_surface_sec = time_era5_to_seconds(era5_file_surface.variables['time'][:]) r_era5_levels_1 = time_to_row_sec(time_era5_levels_sec, time_stamp_sec) r_era5_surface_1 = time_to_row_sec(time_era5_surface_sec, time_stamp_sec) if np.abs(time_era5_levels_sec[r_era5_levels_1] - time_stamp_sec) > max_time_delta_sec: if show_prints: print('error time gap is too large', ) return None # find row and column for the lat lon lat_index, lon_index = find_index_from_lat_lon(era5_file_levels.variables['latitude'][:].data, era5_file_levels.variables['longitude'][:].data, lat_lon_tuple[0], lat_lon_tuple[1]) if show_prints: print('creating input arrays') t_profile = kelvin_to_celsius(era5_file_levels.variables['t'][r_era5_levels_1, :, lat_index, lon_index].data) if show_prints: print('created t_array') td_profile = calculate_dewpoint_from_T_RH(t_profile, era5_file_levels.variables['r'][r_era5_levels_1, :, lat_index, lon_index].data) if show_prints: print('created Td_array') h_profile = era5_file_levels.variables['z'][r_era5_levels_1, :, lat_index, lon_index].data / gravity_ if show_prints: print('created z_array') u_profile = era5_file_levels.variables['u'][r_era5_levels_1, :, lat_index, lon_index].data if show_prints: print('created u_array') v_profile = era5_file_levels.variables['v'][r_era5_levels_1, :, lat_index, lon_index].data if show_prints: print('created v_array') p_profile = era5_file_levels.variables['level'][:].data # hPa if show_prints: print('created p_array') surface_p = era5_file_surface.variables['sp'][r_era5_surface_1, lat_index, lon_index] / 100 # / 100 to convert Pa to hPa if show_prints: print('created sp_array') # trim profiles from surface to top # find which levels should be included levels_total = 0 for i_ in range(p_profile.shape[0]): if p_profile[i_] > surface_p: break levels_total += 1 ####################################### find extrapolations surface_t = np.interp(np.log(surface_p), np.log(p_profile), t_profile) surface_td = np.interp(np.log(surface_p), np.log(p_profile), td_profile) surface_u = np.interp(np.log(surface_p), np.log(p_profile), u_profile) surface_v = np.interp(np.log(surface_p), np.log(p_profile), v_profile) surface_h = np.interp(np.log(surface_p), np.log(p_profile), h_profile) # create temp arrays T_array = np.zeros(levels_total + 1, dtype=float) Td_array = np.zeros(levels_total + 1, dtype=float) Q_array = np.zeros(levels_total + 1, dtype=float) U_array = np.zeros(levels_total + 1, dtype=float) V_array = np.zeros(levels_total + 1, dtype=float) H_array = np.zeros(levels_total + 1, dtype=float) P_array = np.zeros(levels_total + 1, dtype=float) T_array[:levels_total] = t_profile[:levels_total] Td_array[:levels_total] = td_profile[:levels_total] U_array[:levels_total] = u_profile[:levels_total] V_array[:levels_total] = v_profile[:levels_total] H_array[:levels_total] = h_profile[:levels_total] P_array[:levels_total] = p_profile[:levels_total] T_array[-1] = surface_t Td_array[-1] = surface_td U_array[-1] = surface_u V_array[-1] = surface_v H_array[-1] = surface_h P_array[-1] = surface_p if close_level_file: era5_file_levels.close() if close_surface_file: era5_file_surface.close() return P_array, H_array, T_array, Td_array, U_array, V_array def era5_get_surface_interpolated_vars(era5_file_levels_ncFile, era5_file_surface_ncFile, show_prints=True, time_start_str_YYYYmmDDHHMM=None, time_stop_str_YYYYmmDDHHMM=None): close_level_file=False close_surface_file=False if type(era5_file_levels_ncFile) == str: era5_file_levels = nc.Dataset(era5_file_levels_ncFile) close_level_file = True else: era5_file_levels = era5_file_levels_ncFile if type(era5_file_surface_ncFile) == str: era5_file_surface = nc.Dataset(era5_file_surface_ncFile) close_surface_file = True else: era5_file_surface = era5_file_surface_ncFile time_era5_levels_sec = time_era5_to_seconds(era5_file_levels.variables['time'][:]) # trim time r_1 = 0 r_2 = -1 if time_start_str_YYYYmmDDHHMM is not None: r_1 = time_to_row_str(time_era5_levels_sec, time_start_str_YYYYmmDDHHMM) if time_stop_str_YYYYmmDDHHMM is not None: r_2 = time_to_row_str(time_era5_levels_sec, time_stop_str_YYYYmmDDHHMM) time_era5_sec = time_era5_levels_sec[r_1:r_2] if show_prints: print('creating input arrays') t_profile = kelvin_to_celsius(era5_file_levels.variables['t'][r_1:r_2, 10:, :, :].data) if show_prints: print('created t_array') td_profile = calculate_dewpoint_from_T_RH(t_profile, era5_file_levels.variables['r'][r_1:r_2, 10:, :, :].data) if show_prints: print('created Td_array') h_profile = era5_file_levels.variables['z'][r_1:r_2, 10:, :, :].data / gravity_ if show_prints: print('created z_array') u_profile = era5_file_levels.variables['u'][r_1:r_2, 10:, :, :].data if show_prints: print('created u_array') v_profile = era5_file_levels.variables['v'][r_1:r_2, 10:, :, :].data if show_prints: print('created v_array') p_profile = era5_file_levels.variables['level'][10:].data # hPa if show_prints: print('created p_array') surface_p = era5_file_surface.variables['sp'][r_1:r_2, :, :] / 100 # / 100 to convert Pa to hPa if show_prints: print('created sp_array') q_profile = era5_file_levels.variables['q'][r_1:r_2, 10:, :, :].data if show_prints: print('created q_array') ####################################### find extrapolations surface_t = np.zeros((surface_p.shape), dtype=float) surface_td = np.zeros((surface_p.shape), dtype=float) surface_u = np.zeros((surface_p.shape), dtype=float) surface_v = np.zeros((surface_p.shape), dtype=float) surface_h = np.zeros((surface_p.shape), dtype=float) surface_q = np.zeros((surface_p.shape), dtype=float) if show_prints: print('starting interpolation of every point in time') for r_ in range(time_era5_sec.shape[0]): p_progress_bar(r_,time_era5_sec.shape[0]) for lat_ in range(surface_p.shape[1]): for lon_ in range(surface_p.shape[2]): surface_t [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), t_profile [r_,:,lat_,lon_]) surface_td[r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), td_profile[r_,:,lat_,lon_]) surface_u [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), u_profile [r_,:,lat_,lon_]) surface_v [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), v_profile [r_,:,lat_,lon_]) surface_h [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), h_profile [r_,:,lat_,lon_]) surface_q [r_,lat_,lon_] = np.interp(np.log(surface_p[r_,lat_,lon_]), np.log(p_profile), q_profile [r_,:,lat_,lon_]) if close_level_file: era5_file_levels.close() if close_surface_file: era5_file_surface.close() return surface_t, surface_td, surface_u, surface_v, surface_h, surface_q, time_era5_sec # HYSPLIT def hysplit_load_freq_endpoints(filename_, number_of_hours): file_obj = open(filename_,'r') line_list = file_obj.readlines() file_obj.close() file_traj_list = [] traj_number = -1 for line_inx, line_str in enumerate(line_list): if line_str == ' 1 PRESSURE\n': traj_number += 1 for r_ in range(number_of_hours + 1): new_line_list = line_list[line_inx + r_ + 1].split() new_line_list.append(traj_number) file_traj_list.append(new_line_list) arr_ = np.zeros((len(file_traj_list),12), dtype=float) for r_ in range(len(file_traj_list)): for c_ in range(12): arr_[r_,c_] = file_traj_list[r_][c_ + 2] return arr_ def hysplit_load_freq_endpoints_all(file_list): file_traj_list = [] for filename_ in file_list: file_obj = open(filename_,'r') line_list = file_obj.readlines() file_obj.close() for line_inx, line_str in enumerate(line_list): if line_str == ' 1 PRESSURE\n': for r_ in range(25): file_traj_list.append(line_list[line_inx + r_ + 1].split()) arr_ = np.zeros((len(file_traj_list),11), dtype=float) for r_ in range(len(file_traj_list)): for c_ in range(11): arr_[r_,c_] = file_traj_list[r_][c_ + 2] return arr_ def calculate_mean_time(file_list, lat_tuple, lon_tuple): # file_list_irn = sorted(glob.glob(str('E:\\hysplit_IRN\\' + '*.txt'))) # file_list_uae = sorted(glob.glob(str('E:\\hysplit_UAE\\' + '*.txt'))) # lat_tuple = tuple((24.889974, 26.201930)) # lon_tuple = tuple((50.727086, 51.729315)) hit_counter_list = [] total_counter_list = [] # month_list_list = [] month_mean_time = [] month_std_time = [] month_probability_list = [] for filename_ in file_list: arr_ = hysplit_load_freq_endpoints(filename_, 24) hit_counter = 0 hit_age = [] total_number_of_trajs = int(np.max(arr_[:,-1])) for traj_ in range(total_number_of_trajs + 1): for r_ in range(arr_.shape[0]): if arr_[r_,-1] == traj_: if lat_tuple[0] < arr_[r_, 7] < lat_tuple[1] and lon_tuple[0] < arr_[r_, 8] < lon_tuple[1]: hit_counter += 1 hit_age.append(arr_[r_, 6]) break hit_counter_list.append(hit_counter) total_counter_list.append(total_number_of_trajs) month_probability_list.append(100*hit_counter/total_number_of_trajs) # month_list_list.append(hit_age) month_mean_time.append(np.mean(hit_age)) month_std_time.append(np.std(hit_age)) return month_probability_list, np.array(month_mean_time), hit_counter_list, total_counter_list, np.array(month_std_time) # BOM def Lidar_compile_and_convert_txt_to_dict(main_folder_path): # main_folder_path = 'D:\Data\LIDAR Data\\' # create the full file list filename_list = [] path_folders_list = next(os.walk(main_folder_path))[1] for sub_folder in path_folders_list: if sub_folder[0] == '2': path_sub_folders_list = next(os.walk(main_folder_path + sub_folder + '\\'))[1] for sub_sub_folder in path_sub_folders_list: path_sub_sub_sub = main_folder_path + sub_folder + '\\' + sub_sub_folder + '\\' ssss_filelist = sorted(glob.glob(str(path_sub_sub_sub + '*.*'))) for filename_min in ssss_filelist: filename_list.append(filename_min) total_files = len(filename_list) print(' number of files to compile:', str(total_files)) # get first file to get shape convertion_output = Lidar_convert_txt_to_array(filename_list[0]) range_shape = convertion_output[1].shape[0] # create arrays time_array = np.zeros(total_files) range_array = convertion_output[1][:,0] ch0_pr2 = np.zeros((total_files, range_shape), dtype=float) ch0_mrg = np.zeros((total_files, range_shape), dtype=float) ch1_pr2 = np.zeros((total_files, range_shape), dtype=float) ch1_mrg = np.zeros((total_files, range_shape), dtype=float) ch2_pr2 = np.zeros((total_files, range_shape), dtype=float) ch2_mrg = np.zeros((total_files, range_shape), dtype=float) print('arrays initialized') # populate arrays for i_, filename_ in enumerate(filename_list): p_progress(i_, total_files) convertion_output = Lidar_convert_txt_to_array(filename_) time_array[i_] = convertion_output[0] ch0_pr2[i_, :] = convertion_output[1][:,1] ch0_mrg[i_, :] = convertion_output[1][:,2] ch1_pr2[i_, :] = convertion_output[1][:,3] ch1_mrg[i_, :] = convertion_output[1][:,4] ch2_pr2[i_, :] = convertion_output[1][:,5] ch2_mrg[i_, :] = convertion_output[1][:,6] # move to dict output_dict = {} output_dict['time'] = time_array output_dict['range'] = range_array output_dict['ch0_pr2'] = ch0_pr2 output_dict['ch0_mrg'] = ch0_mrg output_dict['ch1_pr2'] = ch1_pr2 output_dict['ch1_mrg'] = ch1_mrg output_dict['ch2_pr2'] = ch2_pr2 output_dict['ch2_mrg'] = ch2_mrg return output_dict def Lidar_convert_txt_to_array(filename_): file_time_str = filename_[-25:-6] time_stamp_seconds = time_str_to_seconds(file_time_str, '%Y-%m-%d_%H-%M-%S') # read the data into an array data_array_raw = genfromtxt(filename_,dtype=float, delimiter='\t',skip_header=133) # only keep one altitude column data_array_out = np.zeros((data_array_raw.shape[0], 7), dtype=float) data_array_out[:,0] = data_array_raw[:,0] data_array_out[:,1] = data_array_raw[:,1] data_array_out[:,2] = data_array_raw[:,2] data_array_out[:,3] = data_array_raw[:,4] data_array_out[:,4] = data_array_raw[:,5] data_array_out[:,5] = data_array_raw[:,7] data_array_out[:,6] = data_array_raw[:,8] return time_stamp_seconds, data_array_out def compile_AWAP_precip_datafiles(file_list): # load first file to get shape print('loading file: ', file_list[0]) arr_1, start_date_sec_1 = load_AWAP_data(file_list[0]) rows_ = arr_1.shape[0] columns_ = arr_1.shape[1] # create lat and lon series series_lat = np.arange(-44.5, -9.95, 0.05)[::-1] series_lon = np.arange(112, 156.29, 0.05) # create time array output_array_time = np.zeros(len(file_list), dtype=float) # create output array output_array = np.zeros((len(file_list), rows_, columns_), dtype=float) # load first array data into output array output_array[0,:,:] = arr_1 output_array_time[0] = start_date_sec_1 # loop thru remainning files to populate ouput_array for t_, filename_ in enumerate(file_list[1:]): print('loading file: ', filename_) arr_t, start_date_sec_t = load_AWAP_data(filename_) output_array[t_+1, :, :] = arr_t output_array_time[t_+1] = start_date_sec_t return output_array, output_array_time, series_lat, series_lon def load_AWAP_data(filename_): start_date_str = filename_.split('\\')[-1][:8] # stop_date_str = filename_.split('\\')[-1][8:16] start_date_sec = time_str_to_seconds(start_date_str, '%Y%m%d') arr_precip = np.genfromtxt(filename_, float, skip_header=6, skip_footer=18) return arr_precip , start_date_sec def get_means_from_filelist(file_list, lat_lon_ar): # lat_lon_points_list = [ 147.8, # 149, # -36.8, # -35.4] # box domain indexes index_c = [716, 740] index_r = [508, 536] series_lat = np.arange(-44.5, -9.95, 0.05)[::-1] series_lon = np.arange(112,156.3,0.05) lat_index_list, lon_index_list = find_index_from_lat_lon(series_lat, series_lon, lat_lon_ar[:,1], lat_lon_ar[:,0]) time_secs_list = [] precip_array = np.zeros((277,9),dtype=float) for r_, filename_ in enumerate(file_list): print('loading file: ', filename_) arr_precip, start_date_sec = load_AWAP_data(filename_) time_secs_list.append(start_date_sec) precip_array[r_, 0] = start_date_sec precip_array[r_, 1] = np.mean(arr_precip[index_r[0]:index_r[1]+1, index_c[0]:index_c[1]+1]) for i_ in range(2,9): precip_array[r_, i_] = arr_precip[lat_index_list[i_-2],lon_index_list[i_-2]] save_array_to_disk(['box mean precip [mm]','1 precip [mm]','2 precip [mm]','3 precip [mm]', '4 precip [mm]','5 precip [mm]','6 precip [mm]','7 precip [mm]'], precip_array[:,0], precip_array[:,1:], 'C:\\_output\\test_fimi_2.csv') # save_HVF(['box','1','2','3','4','5','6','7'], precip_array, 'C:\\_output\\test_fimi_1.csv') print("done") return precip_array def compile_BASTA_days_and_save_figure(directory_where_nc_file_are): # compile BASTA data per day and save plot (per day) time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' # directory_where_nc_file_are = '/home/luis/Data/BASTA/L0/12m5/' path_input = directory_where_nc_file_are file_label = path_input.split('/')[-4] + '_' + path_input.split('/')[-3] + '_' + path_input.split('/')[-2] + '_' file_list_all = sorted(glob.glob(str(path_input + '/*.nc'))) first_day_str = file_list_all[0][-18:-10] last_day_str = file_list_all[-1][-18:-10] first_day_int = time_seconds_to_days(time_str_to_seconds(first_day_str,'%Y%m%d')) last_day_int = time_seconds_to_days(time_str_to_seconds(last_day_str,'%Y%m%d')) total_number_of_days = last_day_int - first_day_int print('The data in the folder encompasses', total_number_of_days, 'days') days_list_int = np.arange(first_day_int, last_day_int + 1) days_list_str = time_seconds_to_str(time_days_to_seconds(days_list_int),'%Y%m%d') for day_str in days_list_str: print('-|' * 20) file_list_day = sorted(glob.glob(str(path_input + file_label + day_str + '*.nc'))) print('Compiling day', day_str, len(file_list_day), 'files found for this day.') if len(file_list_day) > 0: filename_ = file_list_day[0] print('loading file:', filename_) netcdf_file_object = nc.Dataset(filename_, 'r') # variable_names = sorted(netcdf_file_object.variables.keys()) time_raw = netcdf_file_object.variables['time'][:].copy() file_first_time_stamp = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) compiled_time_days = time_seconds_to_days(np.array(time_raw, dtype=int) + file_first_time_stamp) compiled_raw_reflectivity_array = netcdf_file_object.variables['raw_reflectivity'][:].copy() compiled_range_array = netcdf_file_object.variables['range'][:].copy() netcdf_file_object.close() if len(file_list_day) > 1: for filename_ in file_list_day[1:]: print('loading file:', filename_) netcdf_file_object = nc.Dataset(filename_, 'r') time_raw = netcdf_file_object.variables['time'][:].copy() file_first_time_stamp = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) time_days = time_seconds_to_days(np.array(time_raw, dtype = int) + file_first_time_stamp) compiled_time_days = np.append(compiled_time_days, time_days) raw_reflectivity_array = netcdf_file_object.variables['raw_reflectivity'][:].copy() compiled_raw_reflectivity_array = np.vstack((compiled_raw_reflectivity_array, raw_reflectivity_array)) netcdf_file_object.close() figure_output_name = path_input + file_label + day_str + '.png' print('saving figure to:', figure_output_name) p_arr_vectorized_2(compiled_raw_reflectivity_array, compiled_time_days, compiled_range_array/1000, cmap_=default_cm, figsize_=(12, 8), vmin_=80, vmax_=140, cbar_label='Raw Reflectivity dB', x_header='UTC',y_header='Range AGL [km]', figure_filename=figure_output_name, time_format_ = '%H') def compile_BASTA_into_one_file(directory_where_nc_file_are): # compile BASTA data into one netcdf file time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' # directory_where_nc_file_are = '/home/luis/Data/BASTA/L0/12m5/' path_input = directory_where_nc_file_are file_list_all = sorted(glob.glob(str(path_input + '/*.nc'))) # first_day_str = file_list_all[0][-18:-10] # last_day_str = file_list_all[-1][-18:-10] # first_day_int = time_seconds_to_days(time_str_to_seconds(first_day_str,'%Y%m%d')) # last_day_int = time_seconds_to_days(time_str_to_seconds(last_day_str,'%Y%m%d')) # days_list_int = np.arange(first_day_int, last_day_int + 1) # create copy of first file netcdf_file_object = nc.Dataset(file_list_all[-1], 'r') last_second_raw = netcdf_file_object.variables['time'][:][-1] file_first_time_stamp = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) netcdf_file_object.close() last_second_epoc = last_second_raw + file_first_time_stamp last_time_str = time_seconds_to_str(last_second_epoc, '%Y%m%d_%H%M%S') output_filename = file_list_all[0][:-3] + '_' + last_time_str + '.nc' shutil.copyfile(file_list_all[0], output_filename) print('Created output file with name:', output_filename) # open output file for appending data netcdf_output_file_object = nc.Dataset(output_filename, 'a') file_first_time_stamp_seconds_epoc = time_str_to_seconds(netcdf_output_file_object.variables['time'].units, time_format_basta) variable_names = sorted(netcdf_output_file_object.variables.keys()) # create references to variables in output file variable_objects_dict = {} for var_name in variable_names: variable_objects_dict[var_name] = netcdf_output_file_object.variables[var_name] for filename_ in file_list_all[1:]: print('-' * 5) print('loading file:', filename_) # open file netcdf_file_object = nc.Dataset(filename_, 'r') # create file's time series file_time_stamp_seconds_epoc = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) time_raw = netcdf_file_object.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc row_start = variable_objects_dict['time'].shape[0] row_end = time_raw.shape[0] + row_start # append time array variable_objects_dict['time'][row_start:row_end] = time_seconds_epoc - file_first_time_stamp_seconds_epoc # append raw_reflectivity array variable_objects_dict['raw_reflectivity'][row_start:row_end] = \ netcdf_file_object.variables['raw_reflectivity'][:].copy() # append raw_velocity array variable_objects_dict['raw_velocity'][row_start:row_end] = \ netcdf_file_object.variables['raw_velocity'][:].copy() # append all other variables that only time dependent for var_name in variable_names: if var_name != 'time' and var_name != 'range' and \ var_name != 'raw_reflectivity' and var_name != 'raw_velocity': if len(netcdf_file_object.variables[var_name].shape) == 1: variable_objects_dict[var_name][row_start:row_end] = \ netcdf_file_object.variables[var_name][:].copy() netcdf_file_object.close() netcdf_output_file_object.close() print('done') def load_BASTA_data_from_netcdf_to_arrays(filename_): # load BASTA data from netcdf to arrays # path_input = '/home/luis/Data/BASTA/L0/' # filename_ = path_input + 'BASTA_L0_12m5_20180606_071716_20180806_025422.nc' time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' # open file netcdf_file_object = nc.Dataset(filename_, 'r') # load time as seconds and days file_time_stamp_seconds_epoc = time_str_to_seconds(netcdf_file_object.variables['time'].units, time_format_basta) time_raw = netcdf_file_object.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc time_days_epoc = time_seconds_to_days(time_seconds_epoc) # append range array array_range = netcdf_file_object.variables['range'][:].copy() # append raw_reflectivity array array_raw_reflectivity = netcdf_file_object.variables['raw_reflectivity']#[:].copy() # append raw_velocity array array_raw_velocity = netcdf_file_object.variables['raw_velocity']#[:].copy() # close file # netcdf_file_object.close() return array_raw_reflectivity, array_raw_velocity, array_range, time_seconds_epoc, time_days_epoc def BASTA_load_period_to_dict(start_time_YMDHM, stop_time_YMDHM, folder_path, variable_names=('time', 'range', 'raw_reflectivity', 'raw_velocity')): time_format_basta = 'seconds since %Y-%m-%d %H:%M:%S' out_dict = {} temp_dict = {} variables_with_time_dimension = [] if not 'time' in variable_names: variable_names_temp_list = ['time'] for variable_name in variable_names: variable_names_temp_list.append(variable_name) variable_names = variable_names_temp_list # data_folder data_folder = folder_path # get all data files filenames file_list = sorted(glob.glob(str(data_folder + '\\*.nc'))) file_times_tuple_list = [] file_times_tuple_list_str = [] for i_, filename_ in enumerate(file_list): file_time_str_start = filename_.split('_')[-2] + filename_.split('_')[-1].split('.')[0] file_time_sec_start = time_str_to_seconds(file_time_str_start, '%Y%m%d%H%M%S') if i_ < len(file_list) -1: file_time_str_stop = file_list[i_+1].split('_')[-2] + file_list[i_+1].split('_')[-1].split('.')[0] file_time_sec_stop = time_str_to_seconds(file_time_str_stop, '%Y%m%d%H%M%S') else: file_time_sec_stop = file_time_sec_start + (24*60*60) file_times_tuple_list.append(tuple((file_time_sec_start, file_time_sec_stop))) file_times_tuple_list_str.append(tuple((file_time_str_start, time_seconds_to_str(file_time_sec_stop, '%Y%m%d%H%M%S')))) # select only files inside time range event_start_sec = time_str_to_seconds(start_time_YMDHM, '%Y%m%d%H%M') event_stop_sec = time_str_to_seconds(stop_time_YMDHM, '%Y%m%d%H%M') selected_file_list = [] for file_index in range(len(file_list)): if event_start_sec <= file_times_tuple_list[file_index][0] <= event_stop_sec: selected_file_list.append(file_list[file_index]) elif event_start_sec <= file_times_tuple_list[file_index][1] <= event_stop_sec: selected_file_list.append(file_list[file_index]) elif file_times_tuple_list[file_index][0] <= event_start_sec <= file_times_tuple_list[file_index][1]: selected_file_list.append(file_list[file_index]) elif file_times_tuple_list[file_index][0] <= event_stop_sec <= file_times_tuple_list[file_index][1]: selected_file_list.append(file_list[file_index]) print('found files:') p_(selected_file_list) # load data if len(selected_file_list) == 0: print('No files inside time range!') return out_dict else: cnt = 0 for filename_ in selected_file_list: if cnt == 0: nc_file = nc.Dataset(filename_, 'r') print('reading file:',filename_) for variable_name in variable_names: if 'time' in nc_file.variables[variable_name].dimensions: variables_with_time_dimension.append(variable_name) if variable_name == 'time': file_time_stamp_seconds_epoc = time_str_to_seconds(nc_file.variables['time'].units, time_format_basta) time_raw = nc_file.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc temp_dict[variable_name] = time_seconds_epoc else: temp_dict[variable_name] = nc_file.variables[variable_name][:].filled(np.nan) nc_file.close() cnt += 1 else: nc_file = nc.Dataset(filename_, 'r') print('reading file:', filename_) for variable_name in variable_names: if 'time' in nc_file.variables[variable_name].dimensions: variables_with_time_dimension.append(variable_name) if len(nc_file.variables[variable_name].shape) == 1: if variable_name == 'time': file_time_stamp_seconds_epoc = time_str_to_seconds(nc_file.variables['time'].units, time_format_basta) time_raw = nc_file.variables['time'][:].copy() time_seconds_epoc = np.array(time_raw, dtype=int) + file_time_stamp_seconds_epoc temp_dict[variable_name] = np.hstack((temp_dict[variable_name], time_seconds_epoc)) else: temp_dict[variable_name] = np.hstack((temp_dict[variable_name], nc_file.variables[variable_name][:].filled(np.nan))) else: temp_dict[variable_name] = np.vstack((temp_dict[variable_name], nc_file.variables[variable_name][:].filled(np.nan))) nc_file.close() # find row for start and end of event start_row = np.argmin(np.abs(temp_dict['time'] - event_start_sec)) end_row = np.argmin(np.abs(temp_dict['time'] - event_stop_sec)) for variable_name in variable_names: if variable_name in variables_with_time_dimension: out_dict[variable_name] = temp_dict[variable_name][start_row:end_row] else: out_dict[variable_name] = temp_dict[variable_name] return out_dict def MRR_CFAD(range_array, Ze_array, bins_=(12, np.arange(-10, 40, 2)), normalize_height_wise = True, x_header='dBZe', y_header='Height [km]', custom_y_range_tuple=None, custom_x_range_tuple=None, figure_filename=None, cbar_label='', cmap_=default_cm, figsize_ = (10,6), title_str = '', contourF_=True, cbar_format='%.2f', vmin_=None,vmax_=None, grid_=True, fig_ax=None, show_cbar=True, level_threshold_perc=10, invert_y=False, levels=None,custom_ticks_x=None, custom_ticks_y=None, cbar_ax=None): if len(range_array.shape) == 1: temp_array = np.zeros((Ze_array.shape)) for r_ in range(Ze_array.shape[0]): temp_array[r_,:] = range_array range_array = temp_array if type(bins_[0]) == int: if bins_[0] < 1: bins_ = (int(range_array.shape[1] * bins_[0]), bins_[1]) hist_out = np.histogram2d(range_array.flatten()[~np.isnan(Ze_array.flatten())] / 1000, Ze_array.flatten()[~np.isnan(Ze_array.flatten())], normed=False, bins=bins_) hist_array, hist_r, hist_c = hist_out hist_r = (hist_r[:-1] + hist_r[1:]) * 0.5 hist_c = (hist_c[:-1] + hist_c[1:]) * 0.5 hist_r_2d = np.zeros((hist_array.shape), dtype=float) hist_c_2d = np.zeros((hist_array.shape), dtype=float) for r_ in range(hist_array.shape[0]): for c_ in range(hist_array.shape[1]): hist_r_2d[r_, c_] = hist_r[r_] hist_c_2d[r_, c_] = hist_c[c_] # normalize height wise if normalize_height_wise: heights_counts = np.sum(hist_array, axis=1) maximum_count_at_some_height = np.max(heights_counts) cbar_label_final = 'Height normalized frequency' for r_ in range(hist_array.shape[0]): if heights_counts[r_] < maximum_count_at_some_height * (level_threshold_perc/100): hist_array[r_, :] = np.nan else: hist_array[r_, :] = hist_array[r_, :] / heights_counts[r_] else: cbar_label_final = 'Normalized frequency' if cbar_label == '': cbar_label = cbar_label_final fig_ax = p_arr_vectorized_3(hist_array, hist_c_2d, hist_r_2d, contourF_=contourF_, grid_=grid_, custom_y_range_tuple=custom_y_range_tuple, custom_x_range_tuple=custom_x_range_tuple, x_header=x_header, y_header=y_header, cmap_=cmap_, figsize_=figsize_, cbar_ax=cbar_ax, cbar_label=cbar_label, title_str=title_str, vmin_=vmin_, vmax_=vmax_,levels=levels, figure_filename=figure_filename, fig_ax=fig_ax,show_cbar=show_cbar, invert_y=invert_y, custom_ticks_x=custom_ticks_x, custom_ticks_y=custom_ticks_y,cbar_format=cbar_format) return fig_ax, hist_array.T, hist_c[:-1], hist_r[:-1] # parsivel def create_DSD_plot(DSD_arr, time_parsivel_seconds, size_arr, events_period_str, figfilename='', output_data=False, x_range=(0, 7.5), y_range=(-1, 3.1), figsize_=(5, 5)): size_series = size_arr[0, :] event_row_start = time_to_row_str(time_parsivel_seconds, events_period_str.split('_')[0]) event_row_stop_ = time_to_row_str(time_parsivel_seconds, events_period_str.split('_')[1]) # normalize DSD_arr_over_D = DSD_arr / size_arr DSD_arr_over_D_by_D = np.sum(DSD_arr_over_D, axis=1) DSD_arr_over_D_by_D_no_zero = DSD_arr_over_D_by_D * 1 DSD_arr_over_D_by_D_no_zero[DSD_arr_over_D_by_D_no_zero == 0] = np.nan DSD_arr_over_D_by_D_log = np.log10(DSD_arr_over_D_by_D_no_zero) DSD_arr_over_D_by_D_log_event_1_bin = np.array(DSD_arr_over_D_by_D_log[event_row_start:event_row_stop_]) DSD_arr_over_D_by_D_log_event_1_bin[~np.isnan(DSD_arr_over_D_by_D_log_event_1_bin)] = 1 DSD_arr_over_D_by_D_log_event_1_bin_sum = np.nansum(DSD_arr_over_D_by_D_log_event_1_bin, axis=0) DSD_arr_over_D_by_D_log_event_1_meanbyD = np.nanmean(np.array( DSD_arr_over_D_by_D_log[event_row_start:event_row_stop_]), axis=0) DSD_arr_over_D_by_D_log_event_1_meanbyD[DSD_arr_over_D_by_D_log_event_1_bin_sum < 10] = np.nan fig, ax = plt.subplots(figsize=figsize_) ax.set_title('Mean value of drop concentrations in each diameter bin') ax.set_xlabel('D [mm]') ax.set_ylabel('log10 N(D) [m-3 mm-1]') ax.plot(size_series, DSD_arr_over_D_by_D_log_event_1_meanbyD, '-or', label='Event 1') ax.set_xlim(x_range) ax.set_ylim(y_range) ax.grid() if figfilename != '': fig.savefig(figfilename, transparent=True, bbox_inches='tight') plt.close(fig) if output_data: return size_series, DSD_arr_over_D_by_D_log_event_1_meanbyD def parsivel_nc_format_V2(input_filename, output_filename): """ Transform the not so good nc V1 version produced by save_parsivel_arrays_to_netcdf to V2 :param input_filename: output from save_parsivel_arrays_to_netcdf :param output_filename: a path and filename :return: """ # create file netcdf_output_file_object = nc.Dataset(output_filename, 'w') print('created new file') netcdf_first_file_object = nc.Dataset(input_filename) # create attributes netcdf_output_file_object.setncattr('author', '<NAME> (<EMAIL>') netcdf_output_file_object.setncattr('version', 'V2') netcdf_output_file_object.setncattr('created', time_seconds_to_str(time.time(), '%Y-%m-%d_%H:%M UTC')) print('added attributes') # create list for dimensions and variables dimension_names_list = sorted(netcdf_first_file_object.dimensions) variable_names_list = sorted(netcdf_first_file_object.variables) # create dimensions for dim_name in dimension_names_list: if dim_name == 'time': netcdf_output_file_object.createDimension('time', size=0) print('time', 'dimension created') else: netcdf_output_file_object.createDimension(dim_name, size=netcdf_first_file_object.dimensions[dim_name].size) print(dim_name, 'dimension created') # create variables # time var_name = 'time' netcdf_output_file_object.createVariable(var_name, 'int64', (var_name,), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'seconds since ' + time_seconds_to_str(0, time_format_mod)) time_parsivel_seconds = time_str_to_seconds(np.array(netcdf_first_file_object.variables[var_name][:], dtype=str), time_format_parsivel) netcdf_output_file_object.variables[var_name][:] = np.array(time_parsivel_seconds, dtype='int64') print('created time variable') # time_YmdHM var_name = 'YYYYmmddHHMM' netcdf_output_file_object.createVariable(var_name, 'str', ('time',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'YYYYmmddHHMM in string type') netcdf_output_file_object.variables[var_name][:] = np.array(netcdf_first_file_object.variables['time'][:], dtype=str) print('created time_YmdHM variable') # particle_fall_speed var_name = 'particles_spectrum' if var_name in variable_names_list: netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, netcdf_first_file_object.variables[var_name].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'particle counts per bin per minute') netcdf_output_file_object.variables[var_name].setncattr('description', 'for each time stamp, the array varies with respect' ' to fall speed on the y axis (rows) starting from the top' ' and varies with respect to size on the x axis (columns) ' 'starting from the left') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][:].copy() print('created particles_spectrum variable') # particle_fall_speed var_name = 'particle_fall_speed' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, ('particle_fall_speed',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'm/s') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][:, 0].copy() print('created particle_fall_speed variable') # particle_size var_name = 'particle_size' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, ('particle_size',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'mm') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][0, :].copy() print('created particle_size variable') # precipitation_intensity var_name = 'precipitation_intensity' netcdf_output_file_object.createVariable(var_name, 'float', netcdf_first_file_object.variables[ 'Intensity of precipitation (mm|h)'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'mm/h') netcdf_output_file_object.variables[var_name][:] = np.array( netcdf_first_file_object.variables['Intensity of precipitation (mm|h)'][:], dtype=float) print('created precipitation_intensity variable') # Weather_code_SYNOP_WaWa var_name = 'weather_code_SYNOP_WaWa' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables['Weather code SYNOP WaWa'].dtype, netcdf_first_file_object.variables['Weather code SYNOP WaWa'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'n/a') netcdf_output_file_object.variables[var_name][:] = \ netcdf_first_file_object.variables['Weather code SYNOP WaWa'][:].copy() # Weather_code_SYNOP_WaWa var_name = 'weather_code_METAR_SPECI' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables['Weather code METAR|SPECI'].dtype, netcdf_first_file_object.variables['Weather code METAR|SPECI'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'n/a') netcdf_output_file_object.variables[var_name][:] = \ netcdf_first_file_object.variables['Weather code METAR|SPECI'][:].copy() print('created weather_code_METAR_SPECI variable') # Weather_code_NWS var_name = 'weather_code_NWS' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables['Weather code NWS'].dtype, netcdf_first_file_object.variables['Weather code NWS'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'n/a') NWS_description = '''precip_type_dict = { 'C': 'No Precip', 'Kein Niederschlag': 'No Precip', 'A': 'Hail', 'L': 'Drizzle', 'L+': 'heavy Drizzle', 'L-': 'light Drizzle', 'R': 'Rain', 'R+': 'heavy Rain', 'R-': 'light Rain', 'RL': 'Drizzle and Rain', 'RL+': 'heavy Drizzle and Rain', 'RL-': 'light Drizzle and Rain', 'RLS': 'Rain, Drizzle and Snow', 'RLS+': 'heavy Rain, Drizzle and Snow', 'RLS-': 'light Rain, Drizzle and Snow', 'S': 'Snow', 'S+': 'heavy Snow', 'S-': 'light Snow', 'SG': 'Snow Grains', 'SP': 'Freezing Rain' }''' netcdf_output_file_object.variables[var_name].setncattr('description', NWS_description) netcdf_output_file_object.variables[var_name][:] = \ netcdf_first_file_object.variables['Weather code NWS'][:].copy() print('created weather_code_NWS variable') # Radar_reflectivity (dBz) var_name = 'radar_reflectivity' netcdf_output_file_object.createVariable(var_name, 'float', netcdf_first_file_object.variables['Radar reflectivity (dBz)'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'dBz') netcdf_output_file_object.variables[var_name][:] = np.array( netcdf_first_file_object.variables['Radar reflectivity (dBz)'][:], dtype=float) print('created radar_reflectivity variable') # particle_count var_name = 'particle_count' netcdf_output_file_object.createVariable(var_name, 'int64', netcdf_first_file_object.variables[ 'Number of detected particles'].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', 'counts') netcdf_output_file_object.variables[var_name].setncattr('description', 'Number of detected particles per minute') netcdf_output_file_object.variables[var_name][:] = np.array( netcdf_first_file_object.variables['Number of detected particles'][:], dtype='int64') print('created particle_count variable') # particle_concentration_spectrum var_name = 'particle_concentration_spectrum' var_name_old = 'particle_concentration_spectrum_m-3' if var_name_old in variable_names_list: netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name_old].dtype, netcdf_first_file_object.variables[var_name_old].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '1/m3') netcdf_output_file_object.variables[var_name].setncattr('description', 'particles per meter cube per class') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name_old][:].copy() print('created particle_concentration_spectrum variable') # N_total var_name = 'N_total' var_name_old = 'particle_concentration_total_m-3' netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name_old].dtype, netcdf_first_file_object.variables[var_name_old].dimensions, zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '1/m3') netcdf_output_file_object.variables[var_name].setncattr('description', 'total particles per meter cube') netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name_old][:].copy() print('created N_total variable') # psd var_name = 'psd' var_name_old = 'particle_concentration_spectrum_m-3' netcdf_output_file_object.createVariable(var_name, 'float', ('time', 'particle_size',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '1/m3') netcdf_output_file_object.variables[var_name].setncattr('description', 'particle size distribution, same as ' 'particle_concentration_spectrum but all speeds' 'bins are summed, only varies with time and size') netcdf_output_file_object.variables[var_name][:] = np.sum(netcdf_first_file_object.variables[var_name_old][:], axis=1) print('created psd variable') # rain mask rain_only_list = ['R', 'R+', 'R-'] RR_ = np.array(netcdf_first_file_object.variables['Intensity of precipitation (mm|h)'][:], dtype=float) NWS_ = netcdf_first_file_object.variables['Weather code NWS'][:].copy() rain_mask = np.zeros(RR_.shape[0], dtype=int) + 1 for r_ in range(RR_.shape[0]): if RR_[r_] > 0 and NWS_[r_] in rain_only_list: rain_mask[r_] = 0 var_name = 'rain_mask' netcdf_output_file_object.createVariable(var_name, 'int', ('time',), zlib=True) netcdf_output_file_object.variables[var_name].setncattr('units', '0 if rain, 1 if not rain') netcdf_output_file_object.variables[var_name].setncattr('description', 'using the NWS code, only used R, R+ and R-') netcdf_output_file_object.variables[var_name][:] = rain_mask print('rain_mask') # close all files netcdf_output_file_object.close() netcdf_first_file_object.close() def parsivel_sampling_volume(particle_size_2d, particle_fall_speed_2d): sampling_area = 0.18 * (0.03 - ((particle_size_2d/1000) / 2)) # m2 sampling_time = 60 # seconds sampling_height = particle_fall_speed_2d * sampling_time # meters sampling_volume_2d = sampling_area * sampling_height # m3 return sampling_volume_2d def load_parsivel_txt_to_array(filename_, delimiter_=';'): # filename_ = 'C:\\_input\\parsivel_2018-07-26-00_2018-08-02-00_1.txt' size_scale = [0.062,0.187,0.312,0.437,0.562,0.687,0.812,0.937,1.062,1.187,1.375,1.625,1.875, 2.125,2.375,2.75,3.25,3.75,4.25,4.75,5.5,6.5,7.5,8.5,9.5,11,13,15,17,19,21.5,24.5] speed_scale = [0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.1,1.3,1.5,1.7,1.9,2.2,2.6,3,3.4, 3.8,4.4,5.2,6,6.8,7.6,8.8,10.4,12,13.6,15.2,17.6,20.8] speed_array = np.zeros((32,32), dtype=float) size_array = np.zeros((32, 32), dtype=float) for i in range(32): speed_array[:,i] = speed_scale size_array[i, :] = size_scale # read parsivel file spectrum_array_list = [] data_array_list = [] with open(filename_) as file_object: header_ = file_object.readline().split(delimiter_) line_str = file_object.readline() line_split = np.array(line_str.split(delimiter_)) if len(line_split) == 17: line_split[16] = '0' data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32,32))) elif len(line_split) > 17: line_split[16] = '0' data_array_list.append(line_split[:16]) line_split[line_split == ''] = '0' spectrum_array_list.append(np.array(line_split[16:-1]).reshape((32, 32))) elif len(line_split) == 16: data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32,32))) for line in file_object: line_split = np.array(line.split(delimiter_)) if len(line_split) == 17: line_split[16] = '0' data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32, 32))) elif len(line_split) > 17: line_split[16] = '0' data_array_list.append(line_split[:16]) line_split[line_split == ''] = '0' spectrum_array_list.append(np.array(line_split[16:-1]).reshape((32, 32))) elif len(line_split) == 16: if line_split[0] != 'Date': data_array_list.append(line_split[:-1]) spectrum_array_list.append(np.zeros((32, 32))) data_array = np.stack(data_array_list) spectrum_array = np.stack(spectrum_array_list).astype(float) t_list = [] for t_ in range(data_array.shape[0]): t_list.append(data_array[t_][0] + ' ' + data_array[t_][1]) if len(header_) == 16: # no spectra was set to record return data_array, None, t_list, size_array, speed_array, header_ else: return data_array, spectrum_array, t_list, size_array, speed_array, header_ def save_parsivel_arrays_to_netcdf(raw_spectra_filename, nedcdf_output_filename, delimiter_=';', raw_time_format='%d.%m.%Y %H:%M:%S'): # save_parsivel_arrays_to_netcdf('C:\\_input\\parsivel_2018-07-26-00_2018-08-02-00_1.txt', 'C:\\_input\\parsivel_compiled_3.nc') print('reading txt to array') data_array, spectrum_array, t_list, size_array, speed_array, header_ = \ load_parsivel_txt_to_array(raw_spectra_filename, delimiter_=delimiter_) print('arrays created') file_attributes_tuple_list = [('Compiled by', '<NAME> @: ' + str(datetime.datetime.now())), ('Data source', 'Parsivel Disdrometer'), ('time format', 'YYYYMMDDHHmm in uint64 data type, each ' + 'time stamp is the acumulated precip for one minute')] # time from str to int time_array = np.zeros(data_array.shape[0], dtype='<U12') # for t_ in range(data_array.shape[0]): # time_array[t_] = int(t_list[t_][6:10] + # YYYY # t_list[t_][3:5] + # MM # t_list[t_][:2] + # DD # t_list[t_][12:14] + # HH # t_list[t_][15:17]) # mm for t_ in range(data_array.shape[0]): time_array[t_] = int(time_seconds_to_str(time_str_to_seconds(t_list[t_],raw_time_format), time_format_parsivel)) pollutant_attributes_tuple_list = [('units', 'particles per minute')] # create output file file_object_nc4 = nc.Dataset(nedcdf_output_filename,'w')#,format='NETCDF4_CLASSIC') print('output file started') # create dimensions file_object_nc4.createDimension('particle_fall_speed', speed_array.shape[0]) file_object_nc4.createDimension('particle_size', size_array.shape[1]) file_object_nc4.createDimension('time', time_array.shape[0]) # create dimension variables file_object_nc4.createVariable('particle_fall_speed', 'f4', ('particle_fall_speed','particle_size',), zlib=True) file_object_nc4.createVariable('particle_size', 'f4', ('particle_fall_speed','particle_size',), zlib=True) file_object_nc4.createVariable('time', 'u8', ('time',), zlib=True) # populate dimension variables file_object_nc4.variables['time'][:] = time_array[:] file_object_nc4.variables['particle_fall_speed'][:] = speed_array[:] file_object_nc4.variables['particle_size'][:] = size_array[:] # create particles_spectrum array if spectrum_array is not None: file_object_nc4.createVariable('particles_spectrum', 'u2', ('time', 'particle_fall_speed', 'particle_size',), zlib=True) # populate file_object_nc4.variables['particles_spectrum'][:] = spectrum_array[:] # create particle_concentration_spectrum_m-3 # get sampling volume sampling_volume_2d = parsivel_sampling_volume(size_array, speed_array) particle_concentration_spectrum = spectrum_array / sampling_volume_2d # create variable file_object_nc4.createVariable('particle_concentration_spectrum_m-3', 'float32', ('time', 'particle_fall_speed', 'particle_size',), zlib=True) # populate file_object_nc4.variables['particle_concentration_spectrum_m-3'][:] = particle_concentration_spectrum[:] # create particle_concentration_total_m-3 particle_concentration_total = np.nansum(np.nansum(particle_concentration_spectrum, axis=-1), axis=-1) # create variable file_object_nc4.createVariable('particle_concentration_total_m-3', 'float32', ('time', ), zlib=True) # populate file_object_nc4.variables['particle_concentration_total_m-3'][:] = particle_concentration_total[:] for attribute_ in pollutant_attributes_tuple_list: setattr(file_object_nc4.variables['particles_spectrum'], attribute_[0], attribute_[1]) # create other data variables for i_, head_ in enumerate(header_[:-1]): var_name = head_.replace('/','|') print('storing var name: ' , var_name) temp_ref = file_object_nc4.createVariable(var_name, str, ('time',), zlib=True) temp_ref[:] = data_array[:, i_] for attribute_ in file_attributes_tuple_list: setattr(file_object_nc4, attribute_[0], attribute_[1]) file_object_nc4.close() print('Done!') def load_parsivel_from_nc(netcdf_filename): netcdf_file_object = nc.Dataset(netcdf_filename, 'r') file_var_values_dict = {} variable_name_list = netcdf_file_object.variables.keys() for var_ in variable_name_list: file_var_values_dict[var_] = netcdf_file_object.variables[var_][:].copy() netcdf_file_object.close() return file_var_values_dict, variable_name_list def parsivel_plot_spectrum_counts(arr_, title_='', x_range_tuple=(0, 6), y_range_tuple=(0, 10), save_filename=None, contourF=False, bins_=(0,2,5,10,20,50,100,200), fig_size=(5,5)): cmap_parsivel = ListedColormap(['white', 'yellow', 'orange', 'lime', 'darkgreen', 'aqua', 'purple', 'navy', 'red'], 'indexed') size_scale = [0.062,0.187,0.312,0.437,0.562,0.687,0.812,0.937,1.062,1.187,1.375,1.625,1.875, 2.125,2.375,2.75,3.25,3.75,4.25,4.75,5.5,6.5,7.5,8.5,9.5,11,13,15,17,19,21.5,24.5] speed_scale = [0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.1,1.3,1.5,1.7,1.9,2.2,2.6,3,3.4, 3.8,4.4,5.2,6,6.8,7.6,8.8,10.4,12,13.6,15.2,17.6,20.8] speed_array = np.zeros((32,32), dtype=float) size_array = np.zeros((32, 32), dtype=float) for i in range(32): speed_array[:,i] = speed_scale size_array[i, :] = size_scale spectrum_array_color = np.zeros((arr_.shape[0], arr_.shape[1]), dtype=float) bin_labels = [] i_ = 0 for i_, bin_ in enumerate(bins_): spectrum_array_color[arr_ > bin_] = i_ + 1 bin_labels.append(str(bin_)) bin_labels[i_] = '>' + bin_labels[i_] fig, ax = plt.subplots(figsize=fig_size) if contourF: quad1 = ax.contourf(size_array, speed_array, spectrum_array_color, cmap=cmap_parsivel, vmin=0, vmax=8) else: quad1 = ax.pcolormesh(size_array, speed_array, spectrum_array_color, cmap=cmap_parsivel, vmin=0, vmax=8) ax.set_ylim(y_range_tuple) ax.set_xlim(x_range_tuple) ax.set_xlabel('particle size [mm]') ax.set_ylabel('particle speed [m/s]') ax.set_title(title_) cbar_label = 'Particles per bin' cb2 = fig.colorbar(quad1)#, ticks=[0,1,2,3,4,5,6,7]) ticks_ = np.linspace(0.5, i_+0.5, len(bins_)) cb2.set_ticks(ticks_) cb2.set_ticklabels(bin_labels) cb2.ax.set_ylabel(cbar_label) if save_filename is None: plt.show() else: fig.savefig(save_filename, transparent=True, bbox_inches='tight') plt.close(fig) return fig, ax def parsivel_plot_spectrum_DSD(arr_, title_='', x_range_tuple=(0, 6), y_range_tuple=(0, 10), save_filename=None, contourF=False, fig_size=(5,5), cmap_=default_cm, cbar_label='DSD [m-3]', nozeros_=True, vmin_=None, vmax_=None,): size_scale = [0.062,0.187,0.312,0.437,0.562,0.687,0.812,0.937,1.062,1.187,1.375,1.625,1.875, 2.125,2.375,2.75,3.25,3.75,4.25,4.75,5.5,6.5,7.5,8.5,9.5,11,13,15,17,19,21.5,24.5] speed_scale = [0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.1,1.3,1.5,1.7,1.9,2.2,2.6,3,3.4, 3.8,4.4,5.2,6,6.8,7.6,8.8,10.4,12,13.6,15.2,17.6,20.8] speed_array = np.zeros((32,32), dtype=float) size_array = np.zeros((32, 32), dtype=float) for i in range(32): speed_array[:,i] = speed_scale size_array[i, :] = size_scale if nozeros_: arr_ = np.array(arr_) arr_[arr_ == 0] = np.nan fig, ax = plt.subplots(figsize=fig_size) if contourF: quad1 = ax.contourf(size_array, speed_array, arr_, cmap=cmap_) else: quad1 = ax.pcolormesh(size_array, speed_array, arr_, cmap=cmap_, vmin=vmin_, vmax=vmax_) ax.set_ylim(y_range_tuple) ax.set_xlim(x_range_tuple) ax.set_xlabel('particle size [mm]') ax.set_ylabel('particle speed [m/s]') ax.set_title(title_) cb2 = fig.colorbar(quad1) cb2.ax.set_ylabel(cbar_label) if save_filename is None: plt.show() else: fig.savefig(save_filename, transparent=True, bbox_inches='tight') plt.close(fig) return fig, ax def calculate_cumulative_precipitation_parsivel(parsivel_precipitation_mm_per_hour, parsivel_time_sec, time_period_str): return np.nansum( parsivel_precipitation_mm_per_hour[time_to_row_str(parsivel_time_sec, time_period_str.split('_')[0]): time_to_row_str(parsivel_time_sec, time_period_str.split('_')[1])]) / 60 def calculate_D_m(N_D, D_series): D_grad = np.gradient(D_series) D_m = np.nansum((N_D * (D_series**4) * D_grad)) / np.nansum((N_D * (D_series ** 3) * D_grad)) return D_m def calculate_LWC(N_D, D_series): D_grad = np.gradient(D_series) water_density = 1E6 # g/m3 LWC_ = (np.pi * water_density / 6) * np.nansum((N_D * (D_series**3) * D_grad)) return LWC_ # Holographic microscope def convert_raw_to_array(filename_): print('converting file: ' + filename_.split('/')[-1]) A = np.fromfile(filename_, dtype='uint8') evenEl = A[1::2] oddEl = A[0::2] B = 256 * evenEl + oddEl width = 2592 height = 1944 I = B.reshape(height, width) return I def create_video_from_filelist(file_list, output_filename, cmap_): width = 2592 height = 1944 array_3d = np.zeros((len(file_list), height, width), dtype='uint8') time_list = [] for t_, filename_ in enumerate(file_list): array_3d[t_,:,:] = convert_raw_to_array(filename_) time_list.append(filename_[-21:-4]) create_video_animation_from_3D_array(array_3d, output_filename, colormap_= cmap_, title_list=time_list, axes_off=True, show_colorbar=False, interval_=500) def convert_array_to_png_array(array_): # shape rows_ = array_.shape[0] columns_ = array_.shape[1] # nan layer array_nan = np.zeros((rows_, columns_), dtype='uint8') array_nan[array_ != array_] = 100 # replace nans array_[array_ != array_] = 0 # convert to all positive array_positive = np.abs(array_) # sign layer array_sign = np.zeros((rows_, columns_), dtype='uint8') array_sign[array_ >= 0] = 100 # zeros array array_zeros = np.zeros((rows_, columns_), dtype='uint8') array_zeros[array_positive != 0] = 1 # sub 1 array array_sub1 = np.zeros((rows_, columns_), dtype='uint8') array_sub1[array_positive<1] = 1 array_sub1 = array_sub1 * array_zeros # power array exp_ = np.array(np.log10(array_positive), dtype=int) exp_[array_zeros==0] = 0 # integral array array_integral = array_positive / 10 ** np.array(exp_, dtype=float) # array_layer_1 array_layer_1 = np.array(((array_sub1 * 9) + 1) * array_integral * 10, dtype='uint8') + array_sign # array_layer_2 array_layer_2 = np.array(((array_integral * ((array_sub1 * 9) + 1) * 10) - np.array(array_integral * ((array_sub1 * 9) + 1) * 10, dtype='uint8')) * 100, dtype='uint8') array_layer_2 = array_layer_2 + array_nan # power sign layer exp_ = exp_ - array_sub1 array_power_sign = np.zeros((rows_, columns_), dtype='uint8') array_power_sign[exp_ >= 0] = 100 # array_layer_3 array_layer_3 = np.abs(exp_) + array_power_sign # initialize out array out_array = np.zeros((rows_, columns_, 3), dtype='uint8') # dump into out array out_array[:, :, 0] = array_layer_1 out_array[:, :, 1] = array_layer_2 out_array[:, :, 2] = array_layer_3 return out_array # netcdf file handling def netCDF_crop_timewise(input_filename, time_stamp_start_str_YYYYmmDDHHMM, time_stamp_stop_str_YYYYmmDDHHMM, output_filename=None, vars_to_keep=None, time_dimension_name='time'): """ Creates a copy of an input netCDF4 file with only a subset of the data :param input_filename: netCDF4 file with path :param time_stamp_start_str_YYYYmmDDHHMMSS: String in YYYYmmDDHHMMSS format :param time_stamp_stop_str_YYYYmmDDHHMMSS: :param output_filename: filename with path and .nc extension. If none, output file will be in same folder as input :param vars_to_keep: list of variable names in str to be kept in output copy. If none, all variables will be copied :param time_dimension_name: name of time dimension :return: 0 if good, filename if error """ error_file = 0 try: nc_input_file = nc.Dataset(input_filename) time_array = nc_input_file.variables[time_dimension_name][:].copy() nc_input_file.close() r_1 = time_to_row_str(time_array, time_stamp_start_str_YYYYmmDDHHMM) r_2 = time_to_row_str(time_array, time_stamp_stop_str_YYYYmmDDHHMM) dict_ = load_netcdf_to_dictionary(input_filename, var_list=vars_to_keep, time_tuple_start_stop_row=(r_1,r_2), time_dimension_name=time_dimension_name) if output_filename is None: output_filename = input_filename[:-3] + '_trimmed_' + str(r_1) + '_' + str(r_2) + '.nc' save_dictionary_to_netcdf(dict_, output_filename) except BaseException as error_msg: print(error_msg) error_file = input_filename return error_file def add_variable_to_netcdf_file(nc_filename, variables_dict): """ Opens and adds a variable(s) to the file. Will not add new dimensions. :param nc_filename: str including path :param variables_dict: must be a dictionary with keys as variables. inside each variables key should have a dictionary inside with variable names as keys Each var most have a data key equal to a numpy array (can be masked) and a attribute key Each var most have a dimensions key equal to a tuple, in the same order as the array's dimensions Each var most have a attributes key equal to a list of tuples with name and description text :return: None """ # check if dict_ has the right format # create dimension and variables lists vars_list = variables_dict.keys() for var_ in vars_list: if 'dimensions' in variables_dict[var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its dimensions') return if 'attributes' in variables_dict[var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its attributes') return # open file file_obj = nc.Dataset(nc_filename,'a') print('file openned, do not close this threat or file might be corrupted') try: # check that variable shapes agree with destination file for var_ in vars_list: dim_list = list(variables_dict[var_]['dimensions']) var_shape = variables_dict[var_]['data'].shape for i_, dim_ in enumerate(dim_list): if dim_ in sorted(file_obj.dimensions): if var_shape[i_] == file_obj.dimensions[dim_].size: pass else: print('Variable', var_, 'has dimension', dim_, 'of different size compared to destination file\nfile closed') file_obj.close() return else: print('Variable', var_, 'has dimension', dim_, 'which does not exist in destination file\nfile closed') file_obj.close() return # create variables print('creating', var_, 'variable') file_obj.createVariable(var_, variables_dict[var_]['data'].dtype, variables_dict[var_]['dimensions'], zlib=True) # populate variables file_obj.variables[var_][:] = variables_dict[var_]['data'] for var_attr in variables_dict[var_]['attributes']: if var_attr[0] == '_FillValue' or var_attr[0] == 'fill_value': pass else: setattr(file_obj.variables[var_], var_attr[0], var_attr[1]) print('created', var_, 'variable') except BaseException as error_msg: file_obj.close() print('error, file closed\n', error_msg) print('All good, closing file') file_obj.close() print('Done!') def save_dictionary_to_netcdf(dict_, output_filename): """ Saves a dictionary with the right format to a netcdf file. First dim will be set to unlimited. :param dict_: must have a dimensions key, a variables key, and a attributes key. dimensions key should have a list of the names of the dimensions variables key should have a dictionary inside with variable names as keys attributes key should have a list of tuples inside, with the name of the attribute and description in each tuple Each var most have a data key equal to a numpy array (can be masked) and a attribute key Each var most have a dimensions key equal to a tuple, in the same order as the array's dimensions all attributes are tuples with name and description text :param output_filename: should include full path and extension :return: None """ # check if dict_ has the right format if 'variables' in dict_.keys(): pass else: print('dictionary has the wrong format, missing variables key') return if 'dimensions' in dict_.keys(): pass else: print('dictionary has the wrong format, missing dimensions key') return if 'attributes' in dict_.keys(): pass else: print('dictionary has the wrong format, missing attributes key') return # create dimension and variables lists vars_list = dict_['variables'].keys() dims_list = dict_['dimensions'] for dim_ in dims_list: if dim_ in vars_list: pass else: print('dictionary has the wrong format, ' + dim_ + 'dimension is missing from variables') for var_ in vars_list: if 'dimensions' in dict_['variables'][var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its dimensions') return if 'attributes' in dict_['variables'][var_].keys(): pass else: print('dictionary has the wrong format, ' + var_ + 'variable is missing its attributes') return # create output file file_obj = nc.Dataset(output_filename,'w')#,format='NETCDF4_CLASSIC') print('output file started') # populate file's attributes for attribute_ in dict_['attributes']: setattr(file_obj, attribute_[0], attribute_[1]) # create dimensions for i_, dim_ in enumerate(dims_list): if i_ == 0: file_obj.createDimension(dim_, size=0) else: shape_index = np.argwhere(np.array(dict_['variables'][dim_]['dimensions']) == dim_)[0][0] file_obj.createDimension(dim_, dict_['variables'][dim_]['data'].shape[shape_index]) print('dimensions created') # create variables for var_ in vars_list: print('creating', var_, 'variable') file_obj.createVariable(var_, dict_['variables'][var_]['data'].dtype, dict_['variables'][var_]['dimensions'], zlib=True) # populate variables file_obj.variables[var_][:] = dict_['variables'][var_]['data'] for var_attr in dict_['variables'][var_]['attributes']: if isinstance(var_attr, str): setattr(file_obj.variables[var_], dict_['variables'][var_]['attributes'][0], dict_['variables'][var_]['attributes'][1]) break else: if var_attr[0] == '_FillValue' or var_attr[0] == 'fill_value': pass else: setattr(file_obj.variables[var_], var_attr[0], var_attr[1]) print('created', var_, 'variable') print('storing data to disk and closing file') file_obj.close() print('Done!') def load_netcdf_to_dictionary(filename_, var_list=None, time_tuple_start_stop_row=None, time_dimension_name='time'): """ creates a dictionary from a netcdf file, with the following format :param filename_: filename with path of a netCDF4 file :param var_list: list of variables to be loaded, if none, all variables will be loaded :param time_tuple_start_stop_str: tuple with two time rows, time dimension will be trimmed r_1:r_2 :param time_dimension_name: name of time dimension :return: dict_: have a dimensions key, a variables key, and a attributes key. Each var have a data key equal to a numpy array (can be masked) and a attribute key Each var have a dimensions key equal to a tuple, in the same order as the array's dimensions all attributes are tuples with name and description text """ # create output dict out_dict = {} # open file file_obj = nc.Dataset(filename_, 'r') # ,format='NETCDF4_CLASSIC') print('output file started') # get file's attr file_att_list_tuple = [] for attr_ in file_obj.ncattrs(): file_att_list_tuple.append((attr_, file_obj.getncattr(attr_))) out_dict['attributes'] = file_att_list_tuple # get dimensions out_dict['dimensions'] = sorted(file_obj.dimensions) # get variables if var_list is None: var_list = sorted(file_obj.variables) out_dict['variables'] = {} # create variables for var_ in var_list: out_dict['variables'][var_] = {} if time_tuple_start_stop_row is not None: if time_dimension_name in file_obj.variables[var_].dimensions: out_dict['variables'][var_]['data'] = file_obj.variables[var_][time_tuple_start_stop_row[0]: time_tuple_start_stop_row[1]] else: out_dict['variables'][var_]['data'] = file_obj.variables[var_][:] else: out_dict['variables'][var_]['data'] = file_obj.variables[var_][:] out_dict['variables'][var_]['attributes'] = file_obj.variables[var_].ncattrs() var_att_list_tuple = [] for attr_ in file_obj.variables[var_].ncattrs(): var_att_list_tuple.append((attr_, file_obj.variables[var_].getncattr(attr_))) out_dict['variables'][var_]['attributes'] = var_att_list_tuple out_dict['variables'][var_]['dimensions'] = file_obj.variables[var_].dimensions print('read variable', var_) file_obj.close() print('Done!') return out_dict def merge_multiple_netCDF_by_time_dimension(directory_where_nc_file_are_in_chronological_order, output_path='', output_filename=None, time_variable_name='time', time_dimension_name=None, vars_to_keep=None, nonTimeVars_check_list=None, key_search_str='', seek_in_subfolders=False, force_file_list=None): if force_file_list is not None: file_list_all = sorted(force_file_list) else: if seek_in_subfolders: if key_search_str == '': file_list_all = sorted(list_files_recursive(directory_where_nc_file_are_in_chronological_order)) else: file_list_all = sorted(list_files_recursive(directory_where_nc_file_are_in_chronological_order, filter_str=key_search_str)) else: file_list_all = sorted(glob.glob(str(directory_where_nc_file_are_in_chronological_order + '*' + key_search_str + '*.nc'))) print('Files to be merged (in this order):') parameter_list = '' for i, parameter_ in enumerate(file_list_all): parameter_list = str(parameter_list) + str(i) + " ---> " + str(parameter_) + '\n' print(parameter_list) # create copy of first file if output_filename is None: if output_path == '': output_filename = file_list_all[0][:-3] + '_merged.nc' else: output_filename = output_path + file_list_all[0].split('\\')[-1][:-3] + '_merged.nc' # define time variable and dimension if time_dimension_name is None: time_dimension_name = time_variable_name # check if time dimension is unlimited netcdf_first_file_object = nc.Dataset(file_list_all[0], 'r') if netcdf_first_file_object.dimensions[time_dimension_name].size == 0 and vars_to_keep is None: # all good, just make copy of file with output_filename name netcdf_first_file_object.close() shutil.copyfile(file_list_all[0], output_filename) print('first file in merger list has unlimited time dimension, copy created with name:', output_filename) else: # not so good, create new file and copy everything from first, make time dimension unlimited... netcdf_output_file_object = nc.Dataset(output_filename, 'w') print('first file in merger list does not have unlimited time dimension, new file created with name:', output_filename) # copy main attributes attr_list = netcdf_first_file_object.ncattrs() for attr_ in attr_list: netcdf_output_file_object.setncattr(attr_, netcdf_first_file_object.getncattr(attr_)) print('main attributes copied') # create list for dimensions and variables dimension_names_list = sorted(netcdf_first_file_object.dimensions) if vars_to_keep is None: variable_names_list = sorted(netcdf_first_file_object.variables) else: variable_names_list = vars_to_keep # create dimensions for dim_name in dimension_names_list: if dim_name == time_dimension_name: netcdf_output_file_object.createDimension(time_dimension_name, size=0) print(time_variable_name, 'dimension created') else: netcdf_output_file_object.createDimension(dim_name, size=netcdf_first_file_object.dimensions[dim_name].size) print(dim_name, 'dimension created') # create variables for var_name in variable_names_list: # create netcdf_output_file_object.createVariable(var_name, netcdf_first_file_object.variables[var_name].dtype, netcdf_first_file_object.variables[var_name].dimensions, zlib=True) print(var_name, 'variable created') # copy the attributes attr_list = netcdf_first_file_object.variables[var_name].ncattrs() for attr_ in attr_list: netcdf_output_file_object.variables[var_name].setncattr(attr_, netcdf_first_file_object.variables[ var_name].getncattr(attr_)) print('variable attributes copied') # copy the data to the new file netcdf_output_file_object.variables[var_name][:] = netcdf_first_file_object.variables[var_name][:].copy() print('variable data copied') print('-=' * 20) # close all files netcdf_output_file_object.close() netcdf_first_file_object.close() print('starting to copy other files into merged file') vars_list = variable_names_list for filename_ in file_list_all[1:]: # open output file for appending data netcdf_output_file_object = nc.Dataset(output_filename, 'a') print('-' * 5) print('loading file:', filename_) # open hourly file netcdf_file_object = nc.Dataset(filename_, 'r') # get time array time_hourly = np.array(netcdf_file_object.variables[time_variable_name][:], dtype=float) row_start = netcdf_output_file_object.variables[time_variable_name].shape[0] row_end = time_hourly.shape[0] + row_start # append time array netcdf_output_file_object.variables[time_variable_name][row_start:row_end] = time_hourly # append all other variables that only time dependent for var_name in vars_list: if var_name != time_variable_name: if time_dimension_name in netcdf_output_file_object.variables[var_name].dimensions: netcdf_output_file_object.variables[var_name][row_start:row_end] = \ netcdf_file_object.variables[var_name][:].copy() # check non time dependent variables for consistency vars_list_sub = sorted(netcdf_file_object.variables) if vars_list_sub != sorted(netcdf_first_file_object.variables): print('Alert! Variables in first file are different than other files') print('first file variables:') p_(sorted(netcdf_first_file_object.variables)) print(filename_, 'file variables:') p_(vars_list_sub) if nonTimeVars_check_list is not None: for var_name in nonTimeVars_check_list: if np.nansum(np.abs(netcdf_file_object.variables[var_name][:].copy() - netcdf_output_file_object.variables[var_name][:].copy())) != 0: print('Alert!', var_name, 'from file:', filename_, 'does not match the first file') # copy the attributes netcdf_output_file_object.variables[var_name].setncattr( 'values from file ' + filename_, netcdf_file_object.variables[var_name][:].copy() ) netcdf_file_object.close() netcdf_output_file_object.close() print('done') def load_netcdf_file_variable(filename_, variable_name_list=None): netcdf_file_object = nc.Dataset(filename_, 'r') file_attributes_dict = {} file_var_values_dict = {} file_var_attrib_dict = {} file_dim_dict = {} if variable_name_list is None: variable_name_list = list(netcdf_file_object.variables) for atr_ in netcdf_file_object._attributes: file_attributes_dict[atr_] = netcdf_file_object._attributes[atr_] for dim_ in netcdf_file_object.dimensions: file_dim_dict[dim_] = netcdf_file_object.dimensions[dim_] for var_ in variable_name_list: file_var_values_dict[var_] = netcdf_file_object.variables[var_][:].copy() for atr_ in netcdf_file_object.variables[var_]._attributes: file_var_attrib_dict[var_] = netcdf_file_object.variables[var_]._attributes[atr_] netcdf_file_object.close() return file_attributes_dict, file_var_values_dict, file_var_attrib_dict, file_dim_dict def save_array_list_as_netcdf(array_list, name_list, units_list, attributes_list, out_filename): file_object = nc.Dataset(out_filename, 'w') # file_object.history = 'Created for a test' for variable_ in range(len(array_list)): dim_list_name = [] for dim_ in range(len(array_list[variable_].shape)): dim_name = str(variable_) + '_' + str(dim_) dim_list_name.append(dim_name) file_object.createDimension(dim_name, array_list[variable_].shape[dim_]) dtype_ = str(array_list[variable_].dtype)[0] file_object.createVariable( name_list[variable_], dtype_, tuple(dim_list_name) ) setattr(file_object.variables[name_list[variable_]], 'units',units_list[variable_]) file_object.variables[name_list[variable_]] = array_list[variable_] # temp_variable_handle[:] = array_list[variable_][:] for atri_ in attributes_list: setattr(file_object, atri_[0], atri_[1]) file_object.close() def save_time_series_as_netcdf(array_list, name_list, units_list, attributes_list, out_filename): file_object = nc.Dataset(out_filename, 'w') # create time dimension file_object.createDimension('time', array_list[0].shape[0]) for variable_ in range(len(array_list)): dtype_ = str(array_list[variable_].dtype)[0] if dtype_ == '<': dtype_ = 'S1' file_object.createVariable(name_list[variable_], dtype_, ('time',)) setattr(file_object.variables[name_list[variable_]], 'units',units_list[variable_]) file_object.variables[name_list[variable_]][:] = array_list[variable_][:] # temp_variable_handle[:] = array_list[variable_][:] for atri_ in attributes_list: setattr(file_object, atri_[0], atri_[1]) file_object.close() def save_emissions_to_new_netcdf(out_filename, emissions_array, pollutant_name, time_array, lat_array, lon_array, file_attributes_tuple_list, pollutant_attributes_tuple_list): file_object = nc.Dataset(out_filename, 'w') # create dimensions file_object.createDimension('lat', lat_array.shape[0]) file_object.createDimension('lon', lon_array.shape[0]) file_object.createDimension('time', time_array.shape[0]) # create dimension variables file_object.createVariable('time', str(time_array.dtype)[0], ('time', )) file_object.createVariable('lat', str(lat_array.dtype)[0], ('lat',)) file_object.createVariable('lon', str(lon_array.dtype)[0], ('lon',)) # populate dimension variables file_object.variables['time'][:] = time_array[:] file_object.variables['lat'][:] = lat_array[:] file_object.variables['lon'][:] = lon_array[:] # create emission array file_object.createVariable(pollutant_name, str(emissions_array.dtype)[0], ('time', 'lat', 'lon',)) # populate file_object.variables[pollutant_name][:] = emissions_array[:] for attribute_ in file_attributes_tuple_list: setattr(file_object, attribute_[0], attribute_[1]) for attribute_ in pollutant_attributes_tuple_list: setattr(file_object.variables[pollutant_name], attribute_[0], attribute_[1]) file_object.close() def save_emissions_to_existing_netcdf(out_filename, emissions_array, pollutant_name, attributes_tuple_list): file_object = nc.Dataset(out_filename, 'a') file_object.createVariable(pollutant_name, str(emissions_array.dtype)[0], ('time', 'lat', 'lon',)) file_object.variables[pollutant_name][:] = emissions_array[:] setattr(file_object.variables[pollutant_name], 'pollutant name', pollutant_name) for attribute_ in attributes_tuple_list: setattr(file_object.variables[pollutant_name], attribute_[0], attribute_[1]) file_object.close() def WRF_emission_file_modify(filename_, variable_name, cell_index_west_east, cell_index_south_north, new_value): netcdf_file_object = nc.Dataset(filename_, 'a') current_array = netcdf_file_object.variables[variable_name][0,0,:,:].copy() current_value = current_array[cell_index_south_north, cell_index_west_east] print(current_value) current_array[cell_index_south_north, cell_index_west_east] = new_value netcdf_file_object.variables[variable_name][0,0,:,:] = current_array[:,:] netcdf_file_object.close() def find_wrf_3d_cell_from_latlon_to_south_north_west_east(lat_, lon_, wrf_output_filename, wrf_lat_variablename='XLAT', wrf_lon_variablename='XLONG', flatten_=False): netcdf_file_object_wrf = nc.Dataset(wrf_output_filename, 'r') wrf_lat_array = netcdf_file_object_wrf.variables[wrf_lat_variablename][:,:].copy() wrf_lon_array = netcdf_file_object_wrf.variables[wrf_lon_variablename][:,:].copy() netcdf_file_object_wrf.close() wrf_abs_distance = ( (np.abs(wrf_lat_array - lat_)**2) + (np.abs(wrf_lon_array - lon_)**2) )**0.5 if flatten_: return np.argmin(wrf_abs_distance) else: return np.unravel_index(np.argmin(wrf_abs_distance), wrf_abs_distance.shape) # specialized tools def vectorize_array(array_): output_array = np.zeros((array_.shape[0] * array_.shape[1], 3), dtype=float) for r_ in range(array_.shape[0]): for c_ in range(array_.shape[1]): output_array[r_,0] = r_ output_array[r_, 1] = c_ output_array[r_, 2] = array_[r_,c_] return output_array def exceedance_rolling(arr_time_seconds, arr_values, standard_, rolling_period, return_rolling_arrays=False): ## assumes data is in minutes and in same units as standard time_secs_1h, values_mean_disc_1h = mean_discrete(arr_time_seconds, arr_values, 3600, arr_time_seconds[0], min_data=45) values_rolling_mean = row_average_rolling(values_mean_disc_1h, rolling_period) counter_array = np.zeros(values_rolling_mean.shape[0]) counter_array[values_rolling_mean > standard_] = 1 total_number_of_exceedances = np.sum(counter_array) #create date str array T_ = np.zeros((time_secs_1h.shape[0],5),dtype='<U32') for r_ in range(time_secs_1h.shape[0]): if time_secs_1h[r_] == time_secs_1h[r_]: T_[r_] = time.strftime("%Y_%m_%d",time.gmtime(time_secs_1h[r_])).split(',') exceedance_date_list = [] for r_, rolling_stamp in enumerate(values_rolling_mean): if rolling_stamp > standard_: exceedance_date_list.append(T_[r_]) exc_dates_array = np.array(exceedance_date_list) exc_dates_array_unique = np.unique(exc_dates_array) if return_rolling_arrays: return total_number_of_exceedances, exc_dates_array_unique, time_secs_1h, values_rolling_mean else: return total_number_of_exceedances, exc_dates_array_unique # ozonesonde and radiosonde related def load_sonde_data(filename_, mode_='PBL'): ##Loads data and finds inversions, creates I_ # global V_, M_, H_, ASL_, time_header, I_, I_line # global ASL_avr, L_T, L_RH, time_string, time_days, time_seconds, year_, flight_name ## user defined variables delimiter_ = ',' error_flag = -999999 first_data_header = 'Day_[GMT]' day_column_number = 0 month_column_number = 1 year_column_number = 2 hour_column_number = 3 minute_column_number = 4 second_column_number = 5 # time_header = 'Local Time' # defining time header # main data array sample_data = filename_ # look for data start (header size) with open(sample_data) as file_read: header_size = -1 r_ = 0 for line_string in file_read: if (len(line_string) >= len(first_data_header) and line_string[:len(first_data_header)] == first_data_header): header_size = r_ break r_ += 1 if header_size == -1: print('no data found!') sys.exit() data_array = np.array(genfromtxt(sample_data, delimiter=delimiter_, skip_header=header_size, dtype='<U32')) # defining header and data arrays M_ = data_array[1:, 6:].astype(float) H_ = data_array[0, 6:] ASL_ = M_[:, -1] # year_ = data_array[1, year_column_number] ASL_[ASL_ == error_flag] = np.nan # defining time arrays time_str = data_array[1:, 0].astype('<U32') for r_ in range(time_str.shape[0]): time_str[r_] = (str(data_array[r_ + 1, day_column_number]) + '-' + str(data_array[r_ + 1, month_column_number]) + '-' + str(data_array[r_ + 1, year_column_number]) + '_' + str(data_array[r_ + 1, hour_column_number]) + ':' + str(data_array[r_ + 1, minute_column_number]) + ':' + str(data_array[r_ + 1, second_column_number])) time_days = np.array([mdates.date2num(datetime.datetime.utcfromtimestamp( calendar.timegm(time.strptime(time_string_record, '%d-%m-%Y_%H:%M:%S')))) for time_string_record in time_str]) time_seconds = time_days_to_seconds(time_days) V_ = M_.astype(float) V_[V_ == error_flag] = np.nan T_avr = np.ones(V_[:, 1].shape) RH_avr = np.ones(V_[:, 1].shape) ASL_avr = np.ones(V_[:, 1].shape) L_T = np.zeros(V_[:, 1].shape) L_RH = np.zeros(V_[:, 1].shape) I_ = np.zeros(V_[:, 1].shape) I_[:] = np.nan # rolling average of T RH and ASL mean_size = 7 # 5 for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): T_avr[r_] = np.nanmean(V_[r_ - mean_size: r_ + mean_size, 1]) RH_avr[r_] = np.nanmean(V_[r_ - mean_size: r_ + mean_size, 2]) ASL_avr[r_] = np.nanmean(ASL_[r_ - mean_size: r_ + mean_size]) for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): if (ASL_avr[r_ + 1] - ASL_avr[r_]) > 0: L_T[r_] = ((T_avr[r_ + 1] - T_avr[r_]) / (ASL_avr[r_ + 1] - ASL_avr[r_])) L_RH[r_] = ((RH_avr[r_ + 1] - RH_avr[r_]) / (ASL_avr[r_ + 1] - ASL_avr[r_])) # define location of inversion # PBL or TSI if mode_ == 'PBL': for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): if L_T[r_] > 7 and L_RH[r_] < -20: # PBL = 7,20 / TSI = 20,200 I_[r_] = 1 # get one of I_ only per layer temperature_gap = .4 # kilometres I_line = np.zeros((1, 3)) # height, time, intensity if np.nansum(I_) > 1: r_ = -1 while r_ < I_.shape[0] - mean_size: r_ += 1 if I_[r_] == 1 and ASL_avr[r_] < 4: layer_temp = T_avr[r_] layer_h = ASL_avr[r_] layer_time = time_seconds[r_] for rr_ in range(r_, I_.shape[0] - mean_size): if T_avr[rr_] < layer_temp - temperature_gap: delta_h = ASL_avr[rr_] - layer_h altitude_ = layer_h stanking_temp = np.array([altitude_, layer_time, delta_h]) I_line = np.row_stack((I_line, stanking_temp)) r_ = rr_ break if np.max(I_line[:, 0]) != 0: I_line = I_line[1:, :] else: I_line[:, :] = np.nan else: for r_ in range(mean_size, V_[:, 1].shape[0] - mean_size): if L_T[r_] > 20 and L_RH[r_] < -200: # PBL = 7,20 / TSI = 20,200 I_[r_] = 1 # get one of I_ only per layer temperature_gap = .4 # kilometres I_line = np.zeros((1, 3)) # height, time, intensity if np.nansum(I_) > 1: r_ = -1 while r_ < I_.shape[0] - mean_size: r_ += 1 if I_[r_] == 1 and 4 < ASL_avr[r_] < 8: layer_temp = T_avr[r_] layer_h = ASL_avr[r_] layer_time = time_seconds[r_] for rr_ in range(r_, I_.shape[0] - mean_size): if T_avr[rr_] < layer_temp - temperature_gap: delta_h = ASL_avr[rr_] - layer_h altitude_ = layer_h stanking_temp = np.array([altitude_, layer_time, delta_h]) I_line = np.row_stack((I_line, stanking_temp)) r_ = rr_ break if np.max(I_line[:, 0]) != 0: I_line = I_line[1:, :] else: I_line[:, :] = np.nan return H_, V_, time_days, time_seconds, I_, I_line, L_T, L_RH def plot_X1_X2_Y(X1_blue, X2_green, Y): fig, ax1 = plt.subplots() ax2 = ax1.twiny() ax1.plot(X1_blue, Y, s=5, color='b', edgecolor='none') ax1.axvline(0, c='k') ax2.scatter(X2_green, Y, s=5, color='g', edgecolor='none') ax2.axvline(0, c='k') plt.show() def plot_T_RH_I_(V_, I_line): fig, ax1 = plt.subplots() ax2 = ax1.twiny() ASL_ = V_[:, -1] ax1.set_ylabel('ASL') ax1.set_xlabel('Temp') ax2.set_xlabel('RH') ax1.scatter(V_[:, 1], ASL_, s=5, color='b', edgecolor='none') ax1.axvline(0, c='k') RH_temp = V_[:, 2] RH_temp = RH_temp ax2.scatter(RH_temp, ASL_, s=5, color='g', edgecolor='none') ax2.axvline(0, c='k') for x in range(I_line.shape[0]): plt.axhline(I_line[x, 0], c='r') plt.show() def plot_ThetaVirtual_I_(V_, I_line): fig, ax1 = plt.subplots() ASL_ = V_[:, -1] ax1.set_ylabel('ASL') ax1.set_xlabel('Virtual Potential Temperature [K]') ax1.scatter(V_[:, 5], ASL_, s=5, color='b', edgecolor='none') for x in range(I_line.shape[0]): plt.axhline(I_line[x, 0], c='r') plt.show() def last_lat_lon_alt_ozonesonde(filename_): data_array = genfromtxt(filename_, delimiter=',', dtype='<U32', skip_header=23) return data_array[-1,31], data_array[-1,32], data_array[-1,33], data_array[-1,0] def load_khancoban_sondes(filename_): line_number = -1 dict_ = {} dict_['filename'] = filename_.split('\\')[-1] dict_['date'] = '20' + filename_.split('\\')[-1][2:] profile_header = [] profile_units = [] profile_data = [] with open(filename_) as file_object: for line in file_object: line_number += 1 line_items = line.split() if 17 <= line_number <= 35: profile_header.append(line_items[0]) profile_units.append(line_items[1]) if line_number >= 39 and len(line_items)>1: profile_data.append(line_items) profile_array = np.zeros((len(profile_data), len(profile_data[0])), dtype=float) for r_ in range(len(profile_data)): profile_array[r_, :] = profile_data[r_] for c_ in range(len(profile_header)): dict_[profile_header[c_]] = {} dict_[profile_header[c_]]['data'] = profile_array[:, c_] dict_[profile_header[c_]]['units'] = profile_units[c_] return dict_ def convert_khan_sonde_data_to_skewt_dict(khan_dict, sonde_name): # create time array in seconds since epoc date_seconds = time_str_to_seconds(khan_dict[sonde_name]['date'], '%Y%m%d.0%H') time_sonde_sec = date_seconds + khan_dict[sonde_name]['time']['data'] mydata_0=dict(zip(('hght','pres','temp','dwpt', 'sknt', 'drct', 'relh', 'time', 'lati', 'long'), (khan_dict[sonde_name]['Height']['data'], khan_dict[sonde_name]['P']['data'], kelvin_to_celsius(khan_dict[sonde_name]['T']['data']), kelvin_to_celsius(khan_dict[sonde_name]['TD']['data']), ws_ms_to_knots(khan_dict[sonde_name]['FF']['data']), khan_dict[sonde_name]['DD']['data'], khan_dict[sonde_name]['RH']['data'], time_sonde_sec, khan_dict[sonde_name]['Lat']['data'], khan_dict[sonde_name]['Lon']['data'] ))) return mydata_0 # data averaging def average_all_data_files(filename_, number_of_seconds, WD_index = None, WS_index = None, min_data_number=None, cumulative_parameter_list=None): header_, values_ = load_time_columns(filename_) time_sec = time_days_to_seconds(values_[:,0]) # wind tratment if WD_index is not None and WS_index is not None: print('wind averaging underway for parameters: ' + header_[WD_index] + ' and ' + header_[WS_index]) # converting wind parameters to cartesian WD_ = values_[:,WD_index] WS_ = values_[:,WS_index] North_, East_ = polar_to_cart(WD_, WS_) values_[:,WD_index] = North_ values_[:,WS_index] = East_ # averaging if min_data_number is None: min_data_number = int(number_of_seconds/60 * .75) if cumulative_parameter_list is None: Index_mean,Values_mean = mean_discrete(time_sec, values_[:,2:], number_of_seconds, time_sec[0], min_data = min_data_number, cumulative_parameter_indx= None) else: Index_mean,Values_mean = mean_discrete(time_sec, values_[:,2:], number_of_seconds, time_sec[0], min_data = min_data_number, cumulative_parameter_indx=np.array(cumulative_parameter_list) - 2) if WD_index is not None and WS_index is not None: # converting wind parameters to polar North_ = Values_mean[:,WD_index - 2] East_ = Values_mean[:,WS_index - 2] WD_, WS_ = cart_to_polar(North_, East_) Values_mean[:,WD_index - 2] = WD_ Values_mean[:,WS_index - 2] = WS_ output_filename = filename_.split('.')[0] output_filename += '_' + str(int(number_of_seconds/60)) + '_minute_mean' + '.csv' save_array_to_disk(header_[2:], Index_mean, Values_mean, output_filename) print('Done!') print('saved at: ' + output_filename) def median_discrete(Index_, Values_, avr_size, first_index, min_data=1, position_=0.0): # Index_: n by 1 numpy array to look for position, # Values_: n by m numpy array, values to be averaged # avr_size in same units as Index_, # first_index is the first discrete index on new arrays. # min_data is minimum amount of data for average to be made (optional, default = 1) # position_ will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) # this will average values from Values_ that are between Index_[n:n+avr_size) # will return: Index_averaged, Values_averaged # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: MM_ = np.column_stack((Index_,Values_)) MM_sorted = MM_[MM_[:,0].argsort()] # sort by first column Index_ = MM_sorted[:,0] Values_ = MM_sorted[:,1:] # error checking! if Index_.shape[0] != Values_.shape[0]: return None, None if Index_[-1] < first_index: return None, None if min_data < 1: return None, None # initialize averaged matrices final_index = np.nanmax(Index_) total_averaged_rows = int((final_index-first_index)/avr_size) + 1 if len(Values_.shape) == 1: Values_median = np.zeros(total_averaged_rows) Values_median[:] = np.nan else: Values_median = np.zeros((total_averaged_rows,Values_.shape[1])) Values_median[:,:] = np.nan Index_averaged = np.zeros(total_averaged_rows) for r_ in range(total_averaged_rows): Index_averaged[r_] = first_index + (r_ * avr_size) Index_averaged -= (position_ * avr_size) Values_25pr = np.array(Values_median) Values_75pr = np.array(Values_median) Std_ = np.array(Values_median) indx_avr_r = -1 last_raw_r = 0 r_raw_a = 0 r_raw_b = 1 while indx_avr_r <= total_averaged_rows-2: indx_avr_r += 1 indx_a = Index_averaged[indx_avr_r] indx_b = Index_averaged[indx_avr_r] + avr_size stamp_population = 0 for r_raw in range(last_raw_r,Index_.shape[0]): if indx_a <= Index_[r_raw] < indx_b: if stamp_population == 0: r_raw_a = r_raw r_raw_b = r_raw + 1 stamp_population += 1 if Index_[r_raw] >= indx_b: last_raw_r = r_raw break if stamp_population >= min_data: if len(Values_.shape) == 1: Values_median[indx_avr_r] = np.nanmedian(Values_[r_raw_a:r_raw_b]) Values_25pr[indx_avr_r] = np.nanmedian(Values_[r_raw_a:r_raw_b]) Values_75pr[indx_avr_r] = np.nanmedian(Values_[r_raw_a:r_raw_b]) Std_[indx_avr_r] = np.nanstd(Values_[r_raw_a:r_raw_b]) else: for c_ in range(Values_.shape[1]): Values_median[indx_avr_r,c_] = np.nanmedian(Values_[r_raw_a:r_raw_b,c_]) Values_25pr[indx_avr_r,c_] = np.nanpercentile(Values_[r_raw_a:r_raw_b,c_],25) Values_75pr[indx_avr_r,c_] = np.nanpercentile(Values_[r_raw_a:r_raw_b,c_],75) Std_[indx_avr_r] = np.nanstd(Values_[r_raw_a:r_raw_b],c_) Index_averaged = Index_averaged + (position_ * avr_size) return Index_averaged,Values_median,Values_25pr,Values_75pr, Std_ def mean_discrete(Index_, Values_, avr_size, first_index, min_data=1, position_=0., cumulative_parameter_indx=None, last_index=None, show_progress=True): """ this will average values from Values_ that are between Index_[n:n+avr_size) :param Index_: n by 1 numpy array to look for position, :param Values_: n by m numpy array, values to be averaged :param avr_size: in same units as Index_ :param first_index: is the first discrete index on new arrays. :param min_data: is minimum amount of data for average to be made (optional, default = 1) :param position_: will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) :param cumulative_parameter_indx: in case there is any column in Values_ to be summed, not averaged. Most be a list :param last_index: in case you want to force the returned series to some fixed period/length :return: Index_averaged, Values_averaged """ # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: MM_ = np.column_stack((Index_,Values_)) MM_sorted = MM_[MM_[:,0].argsort()] # sort by first column Index_ = MM_sorted[:,0] Values_ = MM_sorted[:,1:] # error checking! if Index_.shape[0] != Values_.shape[0]: print('error during shape check! Index_.shape[0] != Values_.shape[0]') return None, None if Index_[-1] < first_index: print('error during shape check! Index_[-1] < first_index') return None, None if min_data < 1: print('error during shape check! min_data < 1') return None, None # initialize averaged matrices if last_index is None: final_index = np.nanmax(Index_) else: final_index = last_index total_averaged_rows = int((final_index-first_index)/avr_size) + 1 if len(Values_.shape) == 1: Values_mean = np.zeros(total_averaged_rows) Values_mean[:] = np.nan else: Values_mean = np.zeros((total_averaged_rows,Values_.shape[1])) Values_mean[:,:] = np.nan Index_averaged = np.zeros(total_averaged_rows) for r_ in range(total_averaged_rows): Index_averaged[r_] = first_index + (r_ * avr_size) Index_averaged -= (position_ * avr_size) indx_avr_r = -1 last_raw_r = 0 r_raw_a = 0 r_raw_b = 1 while indx_avr_r <= total_averaged_rows-2: if show_progress: p_progress_bar(indx_avr_r, total_averaged_rows-2, extra_text='averaged') indx_avr_r += 1 indx_a = Index_averaged[indx_avr_r] indx_b = Index_averaged[indx_avr_r] + avr_size stamp_population = 0 for r_raw in range(last_raw_r,Index_.shape[0]): if indx_a <= Index_[r_raw] < indx_b: if stamp_population == 0: r_raw_a = r_raw r_raw_b = r_raw + 1 stamp_population += 1 if Index_[r_raw] >= indx_b: last_raw_r = r_raw break if stamp_population >= min_data: if len(Values_.shape) == 1: if cumulative_parameter_indx is not None: Values_mean[indx_avr_r] = np.nansum(Values_[r_raw_a:r_raw_b]) else: Values_mean[indx_avr_r] = np.nanmean(Values_[r_raw_a:r_raw_b]) else: for c_ in range(Values_.shape[1]): if cumulative_parameter_indx is not None: if c_ in cumulative_parameter_indx: Values_mean[indx_avr_r, c_] = np.nansum(Values_[r_raw_a:r_raw_b, c_]) else: Values_mean[indx_avr_r, c_] = np.nanmean(Values_[r_raw_a:r_raw_b, c_]) else: Values_mean[indx_avr_r,c_] = np.nanmean(Values_[r_raw_a:r_raw_b,c_]) Index_averaged = Index_averaged + (position_ * avr_size) return Index_averaged,Values_mean def mean_discrete_std(Index_, Values_, avr_size, first_index, min_data=1, position_=0.): # Index_: n by 1 numpy array to look for position, # Values_: n by m numpy array, values to be averaged # avr_size in same units as Index_, # first_index is the first discrete index on new arrays. # min_data is minimum amount of data for average to be made (optional, default = 1) # position_ will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) # this will average values from Values_ that are between Index_[n:n+avr_size) # will return: Index_averaged, Values_averaged # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: MM_ = np.column_stack((Index_,Values_)) MM_sorted = MM_[MM_[:,0].argsort()] # sort by first column Index_ = MM_sorted[:,0] Values_ = MM_sorted[:,1:] # error checking! if Index_.shape[0] != Values_.shape[0]: return None, None if Index_[-1] < first_index: return None, None if min_data < 1: return None, None # initialize averaged matrices final_index = np.nanmax(Index_) total_averaged_rows = int((final_index-first_index)/avr_size) + 1 if len(Values_.shape) == 1: Values_mean = np.zeros(total_averaged_rows) Values_mean[:] = np.nan else: Values_mean = np.zeros((total_averaged_rows,Values_.shape[1])) Values_mean[:,:] = np.nan Index_averaged = np.zeros(total_averaged_rows) for r_ in range(total_averaged_rows): Index_averaged[r_] = first_index + (r_ * avr_size) Index_averaged -= (position_ * avr_size) Std_ = np.array(Values_mean) indx_avr_r = -1 last_raw_r = 0 r_raw_a = 0 r_raw_b = 1 while indx_avr_r <= total_averaged_rows-2: indx_avr_r += 1 indx_a = Index_averaged[indx_avr_r] indx_b = Index_averaged[indx_avr_r] + avr_size stamp_population = 0 for r_raw in range(last_raw_r,Index_.shape[0]): if indx_a <= Index_[r_raw] < indx_b: if stamp_population == 0: r_raw_a = r_raw r_raw_b = r_raw + 1 stamp_population += 1 if Index_[r_raw] >= indx_b: last_raw_r = r_raw break if stamp_population >= min_data: if len(Values_.shape) == 1: Values_mean[indx_avr_r] = np.nanmean(Values_[r_raw_a:r_raw_b]) Std_[indx_avr_r] = np.nanstd(Values_[r_raw_a:r_raw_b]) else: for c_ in range(Values_.shape[1]): Values_mean[indx_avr_r,c_] = np.nanmean(Values_[r_raw_a:r_raw_b,c_]) Std_[indx_avr_r] = np.nanstd(Values_[r_raw_a:r_raw_b],c_) Index_averaged = Index_averaged + (position_ * avr_size) return Index_averaged,Values_mean,Std_ def sum_discrete_3D_array(Index_, array_3D, sum_size, first_index, min_data=1, position_=0.): # Index_: n by 1 numpy array to look for position, # Values_: n by m numpy array, values to be averaged # avr_size in same units as Index_, # first_index is the first discrete index on new arrays. # min_data is minimum amount of data for average to be made (optional, default = 1) # position_ will determine where is the stamp located; 0 = beginning, .5 = mid, 1 = top (optional, default = 0) # this will average values from Values_ that are between Index_[n:n+avr_size) # will return: Index_averaged, Values_averaged # checking if always ascending to increase efficiency always_ascending = 1 for x in range(Index_.shape[0]-1): if Index_[x]==Index_[x] and Index_[x+1]==Index_[x+1]: if Index_[x+1] < Index_[x]: always_ascending = 0 if always_ascending == 0: print('Error, index must always be ascending') return None, None # error checking! if Index_.shape[0] != array_3D.shape[0]: print('Error, axes 0 of 3D array must be equal to Index size') return None, None if Index_[-1] < first_index: print('Error, first') return None, None # initialize averaged matrices final_index = np.nanmax(Index_) total_summed_rows = int((final_index-first_index)/sum_size) + 1 Values_sum = np.zeros((total_summed_rows, array_3D.shape[1], array_3D.shape[2])) Values_sum[:,:,:] = np.nan Index_summed = np.zeros(total_summed_rows) for r_ in range(total_summed_rows): Index_summed[r_] = first_index + (r_ * sum_size) Index_summed -= (position_ * sum_size) indx_sum_r = -1 last_raw_r = 0 r_raw_a = 0 r_raw_b = 1 while indx_sum_r <= total_summed_rows-2: indx_sum_r += 1 indx_a = Index_summed[indx_sum_r] indx_b = Index_summed[indx_sum_r] + sum_size stamp_population = 0 for r_raw in range(last_raw_r,Index_.shape[0]): if indx_a <= Index_[r_raw] < indx_b: if stamp_population == 0: r_raw_a = r_raw r_raw_b = r_raw + 1 stamp_population += 1 if Index_[r_raw] >= indx_b: last_raw_r = r_raw break if stamp_population >= min_data: Values_sum[indx_sum_r,:,:] = np.nansum(array_3D[r_raw_a:r_raw_b,:,:],axis=0) Index_summed = Index_summed + (position_ * sum_size) return Index_summed,Values_sum def row_average_rolling(arr_, average_size): result_ = np.array(arr_) * np.nan for r_ in range(arr_.shape[0] +1 - int(average_size)): result_[r_] = np.nanmean(arr_[r_ : r_ + average_size]) return result_ def row_average_discrete_1D(arr_, average_size): result_ = np.zeros(int(arr_.shape[0]/average_size)) * np.nan for r_ in range(result_.shape[0]): result_[r_] = np.nanmean(arr_[int(r_* average_size) : int(r_* average_size) + average_size], axis=0) return result_ def row_average_discrete_2D(arr_, average_size): result_ = np.zeros((int(arr_.shape[0]/average_size), arr_.shape[1])) * np.nan for r_ in range(result_.shape[0]): result_[r_,:] = np.nanmean(arr_[int(r_* average_size) : int(r_* average_size) + average_size], axis=0) return result_ def row_average_discrete_3D(arr_, average_size): result_ = np.zeros((int(arr_.shape[0]/average_size), arr_.shape[1], arr_.shape[2])) * np.nan for r_ in range(result_.shape[0]): result_[r_,:,:] = np.nanmean(arr_[int(r_* average_size) : int(r_* average_size) + average_size], axis=0) return result_ def column_average_discrete_2D(arr_, average_size): result_ = np.zeros((arr_.shape[0], int(arr_.shape[1]/average_size))) * np.nan for c_ in range(result_.shape[1]): result_[:, c_] = np.nanmean(arr_[:, int(c_* average_size) : int(c_* average_size) + average_size], axis=1) return result_ def column_average_discrete_3D(arr_, average_size): result_ = np.zeros((arr_.shape[0], int(arr_.shape[1]/average_size), arr_.shape[2])) * np.nan for c_ in range(result_.shape[1]): result_[:, c_,:] = np.nanmean(arr_[:, int(c_* average_size) : int(c_* average_size) + average_size,:], axis=1) return result_ def average_all_data_files_monthly(filename_, number_of_seconds, min_data_number = None, WD_index = None, WS_index = None, cumulative_parameter_list=None): header_, values_ = load_time_columns(filename_) time_sec = time_days_to_seconds(values_[:,0]) # wind tratment if WD_index is not None and WS_index is not None: print('wind averaging underway for parameters: ' + header_[WD_index] + ' and ' + header_[WS_index]) # converting wind parameters to cartesian WD_ = values_[:,WD_index] WS_ = values_[:,WS_index] North_, East_ = polar_to_cart(WD_, WS_) values_[:,WD_index] = North_ values_[:,WS_index] = East_ # averaging if min_data_number is None: min_data_number = int(number_of_seconds/60 * .75) if cumulative_parameter_list is None: Index_mean,Values_mean = mean_discrete(time_sec, values_[:,2:], number_of_seconds, time_sec[0], min_data = min_data_number, cumulative_parameter_indx= None) else: Index_mean,Values_mean = mean_discrete(time_sec, values_[:,2:], number_of_seconds, time_sec[0], min_data = min_data_number, cumulative_parameter_indx=np.array(cumulative_parameter_list) - 2) if WD_index is not None and WS_index is not None: # converting wind parameters to polar North_ = Values_mean[:,WD_index - 2] East_ = Values_mean[:,WS_index - 2] WD_, WS_ = cart_to_polar(North_, East_) Values_mean[:,WD_index - 2] = WD_ Values_mean[:,WS_index - 2] = WS_ output_filename = filename_.split('.')[0] output_filename += '_' + str(int(number_of_seconds/60)) + '_minute_mean' + '.csv' save_array_to_disk(header_[2:], Index_mean, Values_mean, output_filename) print('Done!') print('saved at: ' + output_filename) def rolling_window(array_, window_size): shape = array_.shape[:-1] + (array_.shape[-1] - window_size + 1, window_size) strides = array_.strides + (array_.strides[-1],) return np.lib.stride_tricks.as_strided(array_, shape=shape, strides=strides) # wind direction related def polar_to_cart(WD_, WS_): WD_rad = np.radians(WD_) North_ = WS_ * np.cos(WD_rad) East_ = WS_ * np.sin(WD_rad) return North_, East_ def cart_to_polar(North_, East_): try: WS_ = np.sqrt(North_**2 + East_**2) WD_with_neg = np.degrees(np.arctan2(East_, North_)) mask_ = np.zeros(WD_with_neg.shape[0]) mask_[WD_with_neg < 0] = 360 WD_ = WD_with_neg + mask_ except: WS_ = np.sqrt(North_**2 + East_**2) WD_with_neg = np.degrees(np.arctan2(East_, North_)) mask_ = 0 if WD_with_neg < 0: mask_ = 360 WD_ = WD_with_neg + mask_ return WD_, WS_ # time transforms def combine_by_index(reference_index, var_index, var_values): """ finds point from var_index to each reference_index point, has to be exact, if not found then nan :param reference_index: 1d array :param var_index: 1d array of same size as var_values :param var_values: 1d or 2d array of same size as var_index :return: reindexed_var_values of same size as reference_index """ rows_ = reference_index.shape[0] if len(var_values.shape) == 1: reindexed_var_values = np.zeros(rows_) * np.nan for r_ in range(rows_): p_progress(r_, rows_) where_ = np.where(var_index == reference_index[r_])[0] if len(where_) > 0: reindexed_var_values[r_] = var_values[where_[0]] return reindexed_var_values else: reindexed_var_values = np.zeros((rows_, var_values.shape[1])) * np.nan for r_ in range(rows_): p_progress(r_, rows_) where_ = np.where(var_index == reference_index[r_])[0] if len(where_) > 0: reindexed_var_values[r_, :] = var_values[where_[0], :] return reindexed_var_values def time_seconds_to_days(time_in_seconds): return mdates.epoch2num(time_in_seconds) def time_days_to_seconds(time_in_days): return mdates.num2epoch(time_in_days) def time_str_to_seconds(time_str, time_format): # defining time arrays if isinstance(time_str, str): time_seconds = calendar.timegm(time.strptime(time_str, time_format)) else: time_seconds = np.array([calendar.timegm(time.strptime(time_string_record, time_format)) for time_string_record in time_str]) return time_seconds def time_seconds_to_str(time_in_seconds, time_format): try: x = len(time_in_seconds) if isinstance(time_in_seconds, list): time_in_seconds = np.array(time_in_seconds) temp_array = np.zeros(time_in_seconds.shape[0],dtype="<U32") for r_ in range(time_in_seconds.shape[0]): temp_array[r_] = datetime.datetime.utcfromtimestamp(time_in_seconds[r_]).strftime(time_format) return temp_array except: return datetime.datetime.utcfromtimestamp(time_in_seconds).strftime(time_format) def time_seconds_to_5C_array(time_in_seconds): if isinstance(time_in_seconds, int): out_array = np.zeros(5, dtype=int) out_array[0] = datetime.datetime.utcfromtimestamp(time_in_seconds).strftime('%Y') out_array[1] = datetime.datetime.utcfromtimestamp(time_in_seconds).strftime('%m') out_array[2] = datetime.datetime.utcfromtimestamp(time_in_seconds).strftime('%d') out_array[3] = datetime.datetime.utcfromtimestamp(time_in_seconds).strftime('%H') out_array[4] = datetime.datetime.utcfromtimestamp(time_in_seconds).strftime('%M') else: out_array = np.zeros((time_in_seconds.shape[0], 5), dtype=int) for r_ in range(time_in_seconds.shape[0]): out_array[r_, 0] = datetime.datetime.utcfromtimestamp(time_in_seconds[r_]).strftime('%Y') out_array[r_, 1] = datetime.datetime.utcfromtimestamp(time_in_seconds[r_]).strftime('%m') out_array[r_, 2] = datetime.datetime.utcfromtimestamp(time_in_seconds[r_]).strftime('%d') out_array[r_, 3] = datetime.datetime.utcfromtimestamp(time_in_seconds[r_]).strftime('%H') out_array[r_, 4] = datetime.datetime.utcfromtimestamp(time_in_seconds[r_]).strftime('%M') return out_array def time_era5_to_seconds(time_in_era5): time_in_era5_in_seconds = np.array(time_in_era5, dtype=float) * 60 * 60 time_format_era5 = 'hours since %Y-%m-%d %H:%M' time_seconds_start = calendar.timegm(time.strptime('hours since 1900-01-01 00:00', time_format_era5)) time_seconds_epoc = time_in_era5_in_seconds + time_seconds_start return time_seconds_epoc def time_seconds_to_struct(time_in_seconds): time_struct_list = [] for t_ in time_in_seconds: time_struct_list.append(time.gmtime(t_)) return time_struct_list def time_to_row_str(time_array_seconds, time_stamp_str_YYYYmmDDHHMM): time_stamp_seconds = time_str_to_seconds(time_stamp_str_YYYYmmDDHHMM, time_format_parsivel) row_ = np.argmin(np.abs(time_array_seconds - time_stamp_seconds)) return row_ def time_to_row_sec(time_array_seconds, time_stamp_sec): row_ = np.argmin(np.abs(time_array_seconds - time_stamp_sec)) return row_ def time_period_to_row_tuple(time_array_seconds, time_stamp_start_stop_str_YYYYmmDDHHMM): time_start_seconds = time_str_to_seconds(time_stamp_start_stop_str_YYYYmmDDHHMM.split('_')[0], time_format_parsivel) time_stop_seconds = time_str_to_seconds(time_stamp_start_stop_str_YYYYmmDDHHMM.split('_')[1], time_format_parsivel) row_1 = np.argmin(np.abs(time_array_seconds - time_start_seconds)) row_2 = np.argmin(np.abs(time_array_seconds - time_stop_seconds)) return row_1, row_2 def convert_any_time_type_to_days(time_series, print_show=False): time_days_normal_range = [727000, 748000] time_secs_normal_range = [646800000, 2540240000] # check if it is a str if isinstance(time_series, str): # try each known str_time_format and return time_seconds_to_days() for time_str_format in time_str_formats: try: time_in_secs = time_str_to_seconds(time_series, time_str_format) return time_seconds_to_days(time_in_secs) except: pass if print_show: print('could not find correct time string format! returning nan') return np.nan # if not str, check if it is a single number if isinstance(time_series, float) or isinstance(time_series, int): if time_secs_normal_range[0] < time_series < time_secs_normal_range[1]: return time_seconds_to_days(time_series) elif time_days_normal_range[0] < time_series < time_days_normal_range[1]: return time_series else: if print_show: print('could not find correct time number correction! returning nan') return np.nan else: # multiple items # check if series of strs try: if isinstance(time_series[0], str): # try each known str_time_format and return time_seconds_to_days() for time_str_format in time_str_formats: try: time_in_secs = time_str_to_seconds(time_series, time_str_format) return time_seconds_to_days(time_in_secs) except: pass if print_show: print('could not find correct time string format! returning None') return None else: # get max and min time_series_min = np.nanmin(time_series) time_series_max = np.nanmax(time_series) if time_secs_normal_range[0] < time_series_min and time_series_max < time_secs_normal_range[1]: return time_seconds_to_days(time_series) elif time_days_normal_range[0] < time_series_min and time_series_max < time_days_normal_range[1]: return time_series else: if print_show: print('could not find correct time number correction! returning None') return None except: if print_show: print('unknown type of data, returning None') return None def time_rman_blist_to_seconds(rman_2D_b_array, time_format='%H:%M:%S %d/%m/%Y'): """ takes bite arrays and converts to seconds :param rman_2D_b_array: array where each row is a time stamp and columns are a character in bite format :param time_format: string that defines the structure of the characters in each time stamp :return: seconds array """ time_str_list = [] for row_ in range(rman_2D_b_array.shape[0]): t_str = '' for i in rman_2D_b_array[row_]: t_str = t_str + i.decode('UTF-8') time_str_list.append(t_str) time_seconds = time_str_to_seconds(time_str_list, time_format) return time_seconds def create_time_series_seconds(start_time_str, stop_time_str, step_size): start_time_sec = float(time_days_to_seconds(convert_any_time_type_to_days(start_time_str))) stop__time_sec = float(time_days_to_seconds(convert_any_time_type_to_days(stop_time_str ))) time_list = [] t_ = start_time_sec while t_ < stop__time_sec: time_list.append(t_) t_ += step_size return np.array(time_list) def day_night_discrimination(hour_of_day,values_,day_hours_range_tuple_inclusive): day_ = np.array(values_) * np.nan night_ = np.array(values_) * np.nan for r_ in range(values_.shape[0]): if day_hours_range_tuple_inclusive[0] <= hour_of_day[r_] <= day_hours_range_tuple_inclusive[1]: day_[r_,:] = values_[r_,:] else: night_[r_,:] = values_[r_,:] return day_, night_ def create_time_stamp_list_between_two_times(datetime_start_str, datetime_end_str, time_steps_in_sec, input_time_format='%Y%m%d%H%M', output_list_format='%Y%m%d%H%M'): datetime_start_sec = time_str_to_seconds(datetime_start_str, input_time_format) datetime_end_sec = time_str_to_seconds(datetime_end_str, input_time_format) number_of_images = (datetime_end_sec - datetime_start_sec) / time_steps_in_sec datetime_list_str = [] for time_stamp_index in range(int(number_of_images)): datetime_list_str.append(time_seconds_to_str(datetime_start_sec + (time_stamp_index * time_steps_in_sec), output_list_format)) return datetime_list_str # animation def update_animation_img(frame_number, img_animation, ax_, frame_list, title_list): p_progress_bar(frame_number, len(frame_list), extra_text='of video created') try: new_frame = frame_list[frame_number,:,:] except: new_frame = frame_list[frame_number] img_animation.set_data(new_frame) ax_.set_title(str(title_list[frame_number])) # ax_.set_xlabel(title_list[frame_number]) return img_animation def update_animation_img_pcolormesh(frame_number, img_animation, ax_, frame_list, title_list): p_progress(frame_number, len(frame_list), extra_text='of video created') try: new_frame = frame_list[frame_number,:,:] except: new_frame = frame_list[frame_number] img_animation.set_array(new_frame.ravel()) ax_.set_title(str(title_list[frame_number])) return img_animation def update_animation_img_img_list(frame_number, img_animation, ax_, frame_list, title_list): p_progress(frame_number, len(frame_list), extra_text='of video created') new_frame = frame_list[frame_number] img_animation.set_data(new_frame) ax_.set_title(str(title_list[frame_number])) # ax_.set_xlabel(title_list[frame_number]) return img_animation def update_animation_img_scatter_list(frame_number, img_plot, sca_plot, ax_img, frame_list, scatter_array_x, scatter_array_y, title_list): p_progress(frame_number, len(frame_list), extra_text='of video created') new_frame_img = frame_list[frame_number] new_frame_sca_x = scatter_array_x[:frame_number] new_frame_sca_y = scatter_array_y[:frame_number] img_plot.set_data(new_frame_img) sca_plot.set_data(new_frame_sca_x, new_frame_sca_y) ax_img.set_title(str(title_list[frame_number])) # ax_.set_xlabel(title_list[frame_number]) return img_plot def animate_parsivel(frame_number, t_list, size_array, speed_array, spectrum_array_color, cmap_parsivel, img_plot, ax): img_plot.remove() img_plot = ax.pcolormesh(size_array, speed_array, spectrum_array_color[frame_number, :, :], cmap=cmap_parsivel, vmin=0, vmax=8) ax.set_title(str(t_list[frame_number])) return img_plot def create_video_animation_from_array_list(array_list, out_filename, colormap_=default_cm, extend_='', interval_=50, dpi_=200, show_=False, save_=True, cbar_label='', title_list=None): fig, ax_ = plt.subplots() min_ = np.nanmin(array_list) max_ = np.nanmax(array_list) if title_list is None: title_list_ = np.arange(len(array_list)) else: title_list_ = title_list if extend_=='': img_figure = ax_.imshow(array_list[0], interpolation='none', cmap=colormap_, vmin=min_, vmax=max_) else: img_figure = ax_.imshow(array_list[0], interpolation='none', cmap=colormap_, vmin=min_, vmax=max_, extent=[extend_[1], extend_[3], extend_[2], extend_[0]]) color_bar = fig.colorbar(img_figure) color_bar.ax.set_ylabel(cbar_label) img_animation = FuncAnimation(fig, update_animation_img, len(array_list), fargs=(img_figure, ax_, array_list, title_list_), interval=interval_) if show_: plt.show() if save_: img_animation.save(out_filename, metadata={'artist':'Guido'}, dpi=dpi_) plt.close(fig) print('Done') def create_video_animation_from_3D_array(array_, out_filename, colormap_=default_cm, extend_='', interval_=50, dpi_=200, show_=False, save_=True, cbar_label='', title_list=None, format_='%.2f', axes_off=False, show_colorbar=True, vmin_=None, vmax_=None): fig, ax_ = plt.subplots() if vmin_ is None: vmin_ = np.nanmin(array_) if vmax_ is None: vmax_ = np.nanmax(array_) if title_list is None or len(title_list) != array_.shape[0]: title_list_ = np.arange(array_.shape[0]) else: title_list_ = title_list if extend_=='': img_figure = ax_.imshow(array_[0,:,:], interpolation='none', cmap=colormap_, vmin=vmin_, vmax=vmax_) else: img_figure = ax_.imshow(array_[0,:,:], interpolation='none', cmap=colormap_, vmin=vmin_, vmax=vmax_, extent=[extend_[1], extend_[3], extend_[2], extend_[0]]) if show_colorbar: color_bar = fig.colorbar(img_figure,format=format_) color_bar.ax.set_ylabel(cbar_label) if axes_off: ax_.set_axis_off() img_animation = FuncAnimation(fig, update_animation_img, array_.shape[0], fargs=(img_figure, ax_, array_, title_list_), interval=interval_) if show_: plt.show() if save_: # img_animation.save(out_filename, writer='ffmpeg', codec='rawvideo') img_animation.save(out_filename, metadata={'artist':'Guido'}, dpi=dpi_) plt.close(fig) print('Done') def create_video_animation_from_img_arrays_list(array_list, out_filename, interval_=50, dpi_=200, show_=False, save_=True, title_list=None): fig, ax_ = plt.subplots() if title_list is None: title_list_ = np.arange(len(array_list)) else: title_list_ = title_list img_figure = ax_.imshow(array_list[0], interpolation='none') ax_.set_axis_off() img_animation = FuncAnimation(fig, update_animation_img_img_list, len(array_list), fargs=(img_figure, ax_, array_list, title_list_), interval=interval_) if show_: plt.show() if save_: img_animation.save(out_filename, metadata={'artist':'Guido'}, dpi=dpi_) plt.close(fig) print('Done') def create_video_animation_from_3D_array_pcolormesh(array_values, array_x, array_y, out_filename, colormap_=default_cm, interval_=50, dpi_=200, show_=False, save_=True, cbar_label='', title_list=None,format_='%.2f', axes_off=False, show_colorbar=True, x_header='', y_header='', custom_y_range_tuple=None, custom_x_range_tuple=None, vmin_=None, vmax_=None): fig, ax_ = plt.subplots() if vmin_ is None: vmin_ = np.nanmin(array_values) if vmax_ is None: vmax_ = np.nanmax(array_values) if title_list is None or len(title_list) != array_values.shape[0]: title_list_ = np.arange(array_values.shape[0]) else: title_list_ = title_list img_figure = ax_.pcolormesh(array_x, array_y, array_values[0,:,:], cmap=colormap_, vmin=vmin_, vmax=vmax_)#, shading='gouraud') ax_.set_xlabel(x_header) ax_.set_ylabel(y_header) if custom_y_range_tuple is not None: ax_.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax_.set_xlim(custom_x_range_tuple) if show_colorbar: color_bar = fig.colorbar(img_figure,format=format_) color_bar.ax.set_ylabel(cbar_label) if axes_off: ax_.set_axis_off() img_animation = FuncAnimation(fig, update_animation_img_pcolormesh, frames=array_values.shape[0], fargs=(img_figure, ax_, array_values, title_list_), interval=interval_) if show_: plt.show() if save_: # img_animation.save(out_filename, writer='ffmpeg', codec='rawvideo') img_animation.save(out_filename, metadata={'artist':'Guido'}, dpi=dpi_) plt.close(fig) print('Done') # display / plotting def p_plot(X_series,Y_, S_=5, c_='', label_=None, x_header=None,y_header=None, t_line=False, grid_=False, cus_loc =None, cmap_=default_cm, custom_y_range_tuple=None, custom_x_range_tuple=None, figsize_ = (10,6), save_fig=False, figure_filename='', custom_x_ticks_start_end_step=None, custom_y_ticks_start_end_step=None, extra_text='', title_str = '', time_format_=None, x_as_time=True, c_header=None, add_line=False, linewidth_=2, fig_ax=None, line_color='black', invert_y=False, invert_x=False, log_x=False,log_y=False, transparent_=True, density_=False, t_line_1_1 = True, t_line_color = 'r', fit_function=None, show_cbar=False, text_box_str=None, text_box_loc=None, skewt=False, filled_arr=None, legend_show=False, legend_loc='upper left'): if fig_ax is not None: fig, ax = fig_ax else: if skewt: fig = plt.figure(figsize=figsize_) ax = fig.add_subplot(111, projection='skewx') else: fig, ax = plt.subplots(figsize=figsize_) x_is_time_cofirmed = True if x_as_time==True and density_==False and invert_x==False and log_x==False: X_ = convert_any_time_type_to_days(X_series) if X_ is None: X_ = X_series x_is_time_cofirmed = False else: X_ = X_series x_is_time_cofirmed = False if skewt: # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot if c_ == '': c_ = 'black' ax.semilogy(X_, Y_, color=c_) # Disables the log-formatting that comes with semilogy ax.yaxis.set_major_formatter(ScalarFormatter()) ax.yaxis.set_minor_formatter(NullFormatter()) ax.set_yticks(np.linspace(100, 1000, 10)) ax.set_ylim(1050, 100) ax.xaxis.set_major_locator(MultipleLocator(10)) ax.set_xlim(-50, 50) x_as_time = False ax.grid(True) else: if density_: ax = p_density_scatter(X_, Y_, s = S_, fig_ax=[fig, ax], cmap_=cmap_, show_cbar=show_cbar) else: if c_=='': if add_line: ax.scatter(X_, Y_, s=S_, lw=0, c='black') ax.plot(X_, Y_, c=line_color, linewidth=linewidth_, label=label_) if filled_arr is not None: ax.fill_between(X_, Y_, filled_arr, facecolor=line_color, interpolate=True) else: ax.scatter(X_, Y_, s=S_, lw=0, c='black', label=label_) elif type(c_) == str: if add_line: ax.plot(X_, Y_, c=c_, linewidth=linewidth_, label=label_) ax.scatter(X_, Y_, s=S_, lw=0, c=c_) if filled_arr is not None: ax.fill_between(X_, Y_, filled_arr, facecolor=line_color, interpolate=True) else: ax.scatter(X_, Y_, s=S_, lw=0, c=c_, label=label_) else: im = ax.scatter(X_,Y_, s = S_, lw = 0, c = c_, cmap = cmap_) color_bar = fig.colorbar(im,fraction=0.046, pad=0.04) if c_header is not None: color_bar.ax.set_ylabel(c_header) if x_header is not None: ax.set_xlabel(x_header) if y_header is not None: ax.set_ylabel(y_header) # ax.yaxis.set_ticks(np.arange(180, 541, 45)) if grid_: ax.grid(True) if t_line: Rsqr = plot_trend_line(ax, X_, Y_, c=t_line_color, alpha=1, cus_loc = cus_loc, extra_text=extra_text, t_line_1_1= t_line_1_1, fit_function=fit_function) else: Rsqr = None if invert_y: ax.invert_yaxis() if invert_x: ax.invert_xaxis() if log_x: ax.set_xscale("log")#, nonposy='clip') if log_y: ax.set_yscale("log")#, nonposy='clip') if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: if x_as_time == True and density_ == False and invert_x == False and log_x == False and x_is_time_cofirmed == True: r_1 = convert_any_time_type_to_days(custom_x_range_tuple[0]) r_2 = convert_any_time_type_to_days(custom_x_range_tuple[1]) ax.set_xlim((r_1,r_2)) else: ax.set_xlim(custom_x_range_tuple) if custom_x_ticks_start_end_step is not None: ax.xaxis.set_ticks(np.arange(custom_x_ticks_start_end_step[0], custom_x_ticks_start_end_step[1], custom_x_ticks_start_end_step[2])) if custom_y_ticks_start_end_step is not None: ax.yaxis.set_ticks(np.arange(custom_y_ticks_start_end_step[0], custom_y_ticks_start_end_step[1], custom_y_ticks_start_end_step[2])) if x_as_time==True and density_==False and invert_x==False and log_x==False and x_is_time_cofirmed==True: if time_format_ is None: plot_format_mayor = mdates.DateFormatter(time_format_mod) else: plot_format_mayor = mdates.DateFormatter(time_format_) ax.xaxis.set_major_formatter(plot_format_mayor) if legend_show: ax.legend(loc=legend_loc) ax.set_title(title_str) if text_box_str is not None: if text_box_loc is None: x_1 = ax.axis()[0] y_2 = ax.axis()[3] text_color = 'black' ax.text(x_1, y_2 , str(text_box_str), horizontalalignment='left',verticalalignment='top',color=text_color) else: x_1 = text_box_loc[0] y_2 = text_box_loc[1] text_color = 'black' ax.text(x_1, y_2 , str(text_box_str), horizontalalignment='left',verticalalignment='top',color=text_color) if save_fig or figure_filename != '': if figure_filename == '': name_ = str(calendar.timegm(time.gmtime()))[:-2] fig.savefig(path_output + 'image_' + name_ + '.png', transparent=True, bbox_inches='tight') else: fig.savefig(figure_filename, transparent=transparent_, bbox_inches='tight') plt.close(fig) else: plt.show() return fig, ax, Rsqr def p_(header_): # parameters list print('-' * 20) print('Parameters: ') parameter_list = '' fill_len = len(str(len(header_))) for i, parameter_ in enumerate(header_): parameter_list = str(parameter_list) + str(i).rjust(fill_len) + " ---> " + str(parameter_) + '\n' print(parameter_list) print('-' * 20) def p_progress(current_count, total_count, display_each_percent=10, extra_text='done'): if total_count <= display_each_percent: if total_count > 0: print(int(100 * current_count / total_count), '%', extra_text) else: total_count_corrected = int(total_count / display_each_percent) * display_each_percent if display_each_percent * current_count / total_count_corrected % 1 == 0: if 0 < int(100 * current_count / total_count_corrected) <= 100: print(int(100 * current_count / total_count_corrected), '%', extra_text) def p_progress_bar(current_count, total_count, extra_text='done'): display_each_percent = 5 units_ = int(100 / display_each_percent) if current_count == 0: print('|' + ' ' * units_ + '| %', extra_text, end="", flush=True) if current_count == total_count -1: print('\r', end='') print('|' + '-' * units_ + '| %', extra_text + '!finished!') else: if total_count <= units_: if total_count > 0: print('\r', end='') print('|', end="", flush=True) str_ = '-' * current_count str_ = str_ + ' ' * (units_ - current_count) print(str_, end="", flush=True) print('| % ', extra_text, end="", flush=True) else: percentage_ = int((current_count / total_count) * 100) if percentage_ / display_each_percent % 1 == 0: if 0 < percentage_ <= 100: print('\r', end='') print('|', end="", flush=True) str_ = '-' * int(percentage_ / display_each_percent) str_ = str_ + ' ' * (units_ - int(percentage_ / display_each_percent)) print(str_, end="", flush=True) print('| % ', extra_text, end="", flush=True) def p_hist(data_, figsize_ = (10,6), fig_ax=None, title_str='', x_header=None, y_header=None, x_bins=None): if len(data_.shape) > 1: data_display = data_.flatten() else: data_display = data_ if fig_ax is not None: fig, ax = fig_ax else: fig, ax = plt.subplots(figsize=figsize_) ax.hist(data_display[~np.isnan(data_display)],x_bins) ax.set_title(title_str) if x_header is not None: ax.set_xlabel(x_header) if y_header is not None: ax.set_ylabel(y_header) return fig, ax def get_chart_range(ax): x_1 = ax.axis()[0] x_2 = ax.axis()[1] y_1 = ax.axis()[2] y_2 = ax.axis()[3] return x_1,x_2,y_1,y_2 def p_arr_vectorized(A_, cmap_=default_cm, figsize_= (10,6), vmin_=None,vmax_=None, cbar_label = ''): fig, ax = plt.subplots(figsize=figsize_) if vmin_ is None: vmin_ = np.nanmin(A_) if vmax_ is None: vmax_ = np.nanmax(A_) y_, x_ = np.mgrid[0:A_.shape[0], 0:A_.shape[1]] surf_ = ax.pcolormesh(x_, y_, A_, cmap=cmap_, vmin=vmin_, vmax=vmax_) color_bar = fig.colorbar(surf_) color_bar.ax.set_ylabel(cbar_label) return fig, ax def p_arr_vectorized_2(array_v, array_x, array_y,custom_y_range_tuple=None, custom_x_range_tuple=None, x_header='', y_header='', cbar_label = '', title_str='', cmap_=default_cm, figsize_= (10,6), vmin_=None,vmax_=None, figure_filename = None, time_format_ = None): fig, ax = plt.subplots(figsize=figsize_) # plt.close(fig) if vmin_ is None: vmin_ = np.nanmin(array_v) if vmax_ is None: vmax_ = np.nanmax(array_v) if len(array_x.shape) == 1: array_y_reshaped = np.zeros((array_v.shape[0], array_v.shape[1]), dtype=float) array_x_reshaped = np.zeros((array_v.shape[0], array_v.shape[1]), dtype=float) for r_ in range(array_v.shape[0]): array_y_reshaped[r_, :] = array_y for c_ in range(array_v.shape[1]): array_x_reshaped[:, c_] = array_x else: array_y_reshaped = array_y array_x_reshaped = array_x surf_ = ax.pcolormesh(array_x_reshaped, array_y_reshaped, array_v, cmap=cmap_, vmin=vmin_, vmax=vmax_) color_bar = fig.colorbar(surf_) color_bar.ax.set_ylabel(cbar_label) ax.set_xlabel(x_header) ax.set_ylabel(y_header) ax.set_title(title_str) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) if time_format_ is not None: plot_format_mayor = mdates.DateFormatter(time_format_) ax.xaxis.set_major_formatter(plot_format_mayor) if figure_filename is not None: fig.savefig(figure_filename, transparent=True, bbox_inches='tight') plt.close(fig) return return fig, ax def p_arr_vectorized_3(array_v, array_x, array_y, custom_y_range_tuple=None, custom_x_range_tuple=None, custom_ticks_x=None, custom_ticks_y=None, x_header='', y_header='', cbar_label = '', title_str='', contour_=False, contourF_=False, cmap_=default_cm, figsize_= (10,6), vmin_=None, vmax_=None, show_cbar=True, cbar_format='%.2f', figure_filename = None, grid_=False, time_format_ = None, fig_ax=None, colorbar_tick_labels_list=None, show_x_ticks=True, show_y_ticks=True,cbar_ax=None, invert_y=False, invert_x=False, levels=None, text_box_str=None,text_box_loc=None): if fig_ax is not None: fig, ax = fig_ax else: fig, ax = plt.subplots(figsize=figsize_) if vmin_ is None: vmin_ = np.nanmin(array_v) if vmax_ is None: vmax_ = np.nanmax(array_v) if len(array_x.shape) == 1: array_x_reshaped = np.zeros((array_v.shape[0], array_v.shape[1]), dtype=float) for c_ in range(array_v.shape[1]): array_x_reshaped[:, c_] = array_x else: array_x_reshaped = array_x array_x = array_x_reshaped if len(array_y.shape) == 1: array_y_reshaped = np.zeros((array_v.shape[0], array_v.shape[1]), dtype=float) for r_ in range(array_v.shape[0]): array_y_reshaped[r_, :] = array_y else: array_y_reshaped = array_y array_y = array_y_reshaped if time_format_ is not None: array_x = convert_any_time_type_to_days(array_x_reshaped) if contour_: surf_ = ax.contour(array_x, array_y, array_v, levels=levels, cmap=cmap_, vmin=vmin_, vmax=vmax_) elif contourF_: surf_ = ax.contourf(array_x, array_y, array_v, levels=levels, cmap=cmap_, vmin=vmin_, vmax=vmax_) else: surf_ = ax.pcolormesh(array_x, array_y, array_v, cmap=cmap_, vmin=vmin_, vmax=vmax_) if show_cbar: if cbar_ax is None: color_bar = fig.colorbar(surf_, format=cbar_format) else: color_bar = fig.colorbar(surf_, format=cbar_format, cax=cbar_ax) color_bar.ax.set_ylabel(cbar_label) if colorbar_tick_labels_list is not None: ticks_ = np.linspace(0.5, len(colorbar_tick_labels_list) - 0.5, len(colorbar_tick_labels_list)) color_bar.set_ticks(ticks_) color_bar.set_ticklabels(colorbar_tick_labels_list) ax.set_xlabel(x_header) ax.set_ylabel(y_header) ax.set_title(title_str) ax.grid(grid_) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) if time_format_ is not None: plot_format_mayor = mdates.DateFormatter(time_format_) ax.xaxis.set_major_formatter(plot_format_mayor) ax.format_coord = lambda x, y: 'x=%s, y=%g, v=%g' % (plot_format_mayor(x), y, array_v[int(np.argmin(np.abs(array_x[:, 0] - x))), int( np.argmin(np.abs(array_y[0, :] - y)))]) else: ax.format_coord = lambda x, y: 'x=%1.2f, y=%g, v=%g' % (x, y, array_v[ int(np.argmin(np.abs(array_x[:, 0] - x))), int( np.argmin(np.abs(array_y[0, :] - y)))]) if not show_x_ticks: plt.setp(ax.get_xticklabels(), visible=False) if not show_y_ticks: plt.setp(ax.get_yticklabels(), visible=False) if invert_y: ax.invert_yaxis() if invert_x: ax.invert_xaxis() if custom_ticks_x is not None: ax.xaxis.set_ticks(custom_ticks_x) if custom_ticks_y is not None: ax.yaxis.set_ticks(custom_ticks_y) if text_box_str is not None: if text_box_loc is None: x_1 = ax.axis()[0] y_2 = ax.axis()[3] text_color = 'black' ax.text(x_1, y_2 , str(text_box_str), horizontalalignment='left',verticalalignment='top',color=text_color) else: x_1 = text_box_loc[0] y_2 = text_box_loc[1] text_color = 'black' ax.text(x_1, y_2 , str(text_box_str), horizontalalignment='left',verticalalignment='top',color=text_color) if figure_filename is not None: fig.savefig(figure_filename, transparent=True, bbox_inches='tight') plt.close(fig) return return fig, ax, surf_ def p_arr(A_, cmap_=default_cm, extend_x1_x2_y1_y2 =(0,1), figsize_= (10, 6), aspect_='auto', rot_=0, title_str = '', vmin_=None, vmax_=None, cbar_label = '', x_as_time=False, time_format_='%H:%M %d%b%y', save_fig=False, figure_filename='', x_header='',y_header='', x_ticks_tuple=None, y_ticks_tuple=None, fig_ax=None, origin_='upper', colorbar_tick_labels_list=None, tick_label_format='plain', tick_offset=False): if fig_ax is not None: fig, ax = fig_ax else: fig, ax = plt.subplots(figsize=figsize_) A_copy = np.array(A_) if vmin_ is not None: A_copy[A_copy < vmin_] = vmin_ if vmax_ is not None: A_copy[A_copy > vmax_] = vmax_ if rot_ != 0: A_copy = np.rot90(A_copy, rot_) if len(extend_x1_x2_y1_y2)==2: img_ = ax.imshow(A_copy, interpolation='none', cmap=cmap_, aspect= aspect_, vmin=vmin_, vmax=vmax_, origin=origin_) else: img_ = ax.imshow(A_copy, interpolation='none', cmap=cmap_, aspect= aspect_, origin=origin_, vmin=vmin_, vmax=vmax_, extent=[extend_x1_x2_y1_y2[0], extend_x1_x2_y1_y2[1], extend_x1_x2_y1_y2[2], extend_x1_x2_y1_y2[3]]) color_bar = fig.colorbar(img_) color_bar.ax.set_ylabel(cbar_label) if colorbar_tick_labels_list is not None: ticks_ = np.linspace(0.5, len(colorbar_tick_labels_list) - 0.5, len(colorbar_tick_labels_list)) color_bar.set_ticks(ticks_) color_bar.set_ticklabels(colorbar_tick_labels_list) if x_as_time: plot_format_mayor = mdates.DateFormatter(time_format_) ax.xaxis.set_major_formatter(plot_format_mayor) ax.set_title(title_str) ax.set_xlabel(x_header) ax.set_ylabel(y_header) if x_ticks_tuple is not None: ax.xaxis.set_ticks(np.arange(x_ticks_tuple[0], x_ticks_tuple[1], x_ticks_tuple[2])) if y_ticks_tuple is not None: ax.yaxis.set_ticks(np.arange(y_ticks_tuple[0], y_ticks_tuple[1], y_ticks_tuple[2])) ax.ticklabel_format(useOffset=tick_offset, style='plain') plt.tight_layout() if save_fig or figure_filename != '': if figure_filename == '': name_ = str(calendar.timegm(time.gmtime()))[:-2] fig.savefig(path_output + 'image_' + name_ + '.png', transparent=True, bbox_inches='tight') else: fig.savefig(figure_filename, transparent=False, bbox_inches='tight') plt.close(fig) else: plt.show() return fig, ax, img_, color_bar def p_plot_colored_lines(x_array, y_array, color_array, tick_labels_list, fig_ax=None, figsize_= (10, 6), x_header='', y_header='', figure_filename = None, time_format='', cbar_show=True, custom_y_range_tuple=None, custom_x_range_tuple=None, grid_=False, cbar_ax=None, cmap = listed_cm): # plot rain rate colored by rain type points = np.array([x_array, y_array]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) if fig_ax is not None: fig, ax = fig_ax else: fig, ax = plt.subplots(figsize=figsize_) # Use a boundary norm instead norm = BoundaryNorm(np.arange(len(tick_labels_list)+1), cmap.N) lc = LineCollection(segments, cmap=cmap, norm=norm) lc.set_array(color_array) lc.set_linewidth(2) line = ax.add_collection(lc) if cbar_show: if cbar_ax is None: cb2 = fig.colorbar(line, ax=ax) else: cb2 = fig.colorbar(line, cax=cbar_ax) ticks_ = np.linspace(0.5, len(tick_labels_list) - 0.5, len(tick_labels_list)) cb2.set_ticks(ticks_) cb2.set_ticklabels(tick_labels_list) # x_array = convert_any_time_type_to_days(x_array) ax.set_xlim(x_array.min(), x_array.max()) ax.set_ylim(y_array.min(), y_array.max()) ax.set_ylabel(y_header) ax.set_xlabel(x_header) ax.grid(grid_) if time_format != '': plot_format_mayor = mdates.DateFormatter(time_format) ax.xaxis.set_major_formatter(plot_format_mayor) # plt.xticks(rotation=45) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) if figure_filename is not None: fig.savefig(figure_filename , transparent=True, bbox_inches='tight') plt.close(fig) else: return fig, ax def plot_3D_scatter(x_series, y_series, z_series, label_names_tuples_xyz=tuple(''), size_ = 15, color_='b'): fig = plt.figure() ax = Axes3D(fig) ax.scatter(x_series, y_series, z_series,s=size_,c=color_,lw = 0) if len(label_names_tuples_xyz) == 3: ax.set_xlabel(label_names_tuples_xyz[0]) ax.set_ylabel(label_names_tuples_xyz[1]) ax.set_zlabel(label_names_tuples_xyz[2]) plt.show() return fig, ax def plot_3D_stacket_series_lines(x_z_series_list, y_series=None, y_as_time=False, time_format=time_format, log_z=False, invert_z=False, custom_x_range_tuple=None, custom_y_range_tuple=None, custom_z_range_tuple=None, label_names_tuples_xyz=tuple(''), color_='b'): fig = plt.figure() ax = Axes3D(fig) if y_series is None: y_series = np.arange(len(x_z_series_list)) for t_ in range(len(x_z_series_list)): y_ = np.ones(len(x_z_series_list[t_][0])) * y_series[t_] ax.plot(x_z_series_list[t_][0], y_, x_z_series_list[t_][1], c=color_) if len(label_names_tuples_xyz) == 3: ax.set_xlabel(label_names_tuples_xyz[0]) ax.set_ylabel(label_names_tuples_xyz[1]) ax.set_zlabel(label_names_tuples_xyz[2]) if y_as_time: plot_format_mayor = mdates.DateFormatter(time_format) ax.yaxis.set_major_formatter(plot_format_mayor) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_z_range_tuple is not None: ax.set_zlim(custom_z_range_tuple) if log_z: ax.set_zscale("log")#, nonposy='clip') if invert_z: ax.invert_zaxis() ax.yaxis.set_ticks(y_series) plt.show() return fig, ax def plot_shared_x_axis(X_Y_list, S_=5, x_header=None,y_header_list=None, t_line=False, grid_=False, cus_loc =None, c_='', custom_y_range_tuple=None, custom_x_range_tuple=None, figsize_ = (10,6), save_fig=False, figure_filename='',title_str = '', cmap_=default_cm, sharex=True, sharey=False, custom_x_ticks_start_end_step=None, custom_y_ticks_start_end_step=None, rot_y_label=90, time_format_='%H:%M %d%b%y', x_as_time=False, add_line=False, linewidth_=2, invert_y=False, invert_x=False, log_x=False,log_y=False, transparent_=True): fig, (ax_list) = plt.subplots(nrows=len(X_Y_list), sharex=sharex, sharey=sharey, figsize=figsize_) if c_=='': n = int(len(X_Y_list)) color_list = cmap_(np.linspace(0, 1, n)) for series_number in range(len(X_Y_list)): ax_list[series_number].scatter(X_Y_list[series_number][0],X_Y_list[series_number][1], c= color_list[series_number], s = S_, lw = 0) if add_line: ax_list[series_number].plot(X_Y_list[series_number][0], X_Y_list[series_number][1], c=color_list[series_number], linewidth=linewidth_) else: for series_number in range(len(X_Y_list)): ax_list[series_number].scatter(X_Y_list[series_number][0],X_Y_list[series_number][1], s = S_, lw = 0, c = c_) if x_header is not None: ax_list[-1].set_xlabel(x_header) for series_number in range(len(X_Y_list)): if y_header_list is not None: ax_list[series_number].set_ylabel(y_header_list[series_number], rotation=rot_y_label) if grid_: ax_list[series_number].grid(True) if t_line: plot_trend_line(ax_list[series_number], X_Y_list[series_number][0],X_Y_list[series_number][1], order=1, c='r', alpha=1, cus_loc = cus_loc) if custom_y_range_tuple is not None: ax_list[series_number].set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax_list[series_number].set_xlim(custom_x_range_tuple) if custom_x_ticks_start_end_step is not None: ax_list[series_number].xaxis.set_ticks(np.arange(custom_x_ticks_start_end_step[0], custom_x_ticks_start_end_step[1], custom_x_ticks_start_end_step[2])) if custom_y_ticks_start_end_step is not None: ax_list[series_number].yaxis.set_ticks(np.arange(custom_y_ticks_start_end_step[0], custom_y_ticks_start_end_step[1], custom_y_ticks_start_end_step[2])) if x_as_time: plot_format_mayor = mdates.DateFormatter(time_format_) ax_list[series_number].xaxis.set_major_formatter(plot_format_mayor) if invert_y: ax_list[series_number].invert_yaxis() if invert_x: ax_list[series_number].invert_xaxis() if log_x: ax_list[series_number].set_xscale("log", nonposy='clip') if log_y: ax_list[series_number].set_yscale("log", nonposy='clip') for series_number in range(len(X_Y_list)-1): plt.setp(ax_list[series_number].get_xticklabels(), visible=False) ax_list[0].set_title(title_str) fig.tight_layout() if save_fig or figure_filename != '': if figure_filename == '': name_ = str(calendar.timegm(time.gmtime()))[:-2] fig.savefig(path_output + 'image_' + name_ + '.png', transparent=True, bbox_inches='tight') else: fig.savefig(figure_filename, transparent=transparent_, bbox_inches='tight') plt.close(fig) else: plt.show() return fig, ax_list def plot_shared_y_axis(X_Y_list, S_=5, x_header_list=None, y_header=None, t_line=False, grid_=False, cus_loc=None, c_='', custom_y_range_tuple=None, custom_x_range_tuple=None, figsize_=(10, 6), save_fig=False, figure_filename='', title_str='', cmap_=default_cm, sharex=False, sharey=True, custom_x_ticks_start_end_step=None, custom_y_ticks_start_end_step=None, time_format_='%H:%M %d%b%y', x_as_time=False, add_line=False, linewidth_=2, invert_y=False, invert_x=False, log_x=False, log_y=False, transparent_=True): fig, (ax_list) = plt.subplots(ncolumns=len(X_Y_list), sharex=sharex, sharey=sharey, figsize=figsize_) if c_ == '': n = int(len(X_Y_list)) color_list = cmap_(np.linspace(0, 1, n)) for series_number in range(len(X_Y_list)): ax_list[series_number].scatter(X_Y_list[series_number][0], X_Y_list[series_number][1], c=color_list[series_number], s=S_, lw=0) if add_line: ax_list[series_number].plot(X_Y_list[series_number][0], X_Y_list[series_number][1], c=color_list[series_number], linewidth=linewidth_) else: for series_number in range(len(X_Y_list)): ax_list[series_number].scatter(X_Y_list[series_number][0], X_Y_list[series_number][1], s=S_, lw=0, c=c_[series_number], cmap=cmap_) if y_header is not None: ax_list[0].set_ylabel(y_header) for series_number in range(len(X_Y_list)): if x_header_list is not None: ax_list[series_number].set_ylabel(x_header_list[series_number]) if grid_: ax_list[series_number].grid(True) if t_line: plot_trend_line(ax_list[series_number], X_Y_list[series_number][0], X_Y_list[series_number][1], order=1, c='r', alpha=1, cus_loc=cus_loc) if custom_y_range_tuple is not None: ax_list[series_number].set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax_list[series_number].set_xlim(custom_x_range_tuple) if custom_x_ticks_start_end_step is not None: ax_list[series_number].xaxis.set_ticks(np.arange(custom_x_ticks_start_end_step[0], custom_x_ticks_start_end_step[1], custom_x_ticks_start_end_step[2])) if custom_y_ticks_start_end_step is not None: ax_list[series_number].yaxis.set_ticks(np.arange(custom_y_ticks_start_end_step[0], custom_y_ticks_start_end_step[1], custom_y_ticks_start_end_step[2])) if x_as_time: plot_format_mayor = mdates.DateFormatter(time_format_) ax_list[series_number].xaxis.set_major_formatter(plot_format_mayor) if invert_y: ax_list[series_number].invert_yaxis() if invert_x: ax_list[series_number].invert_xaxis() if log_x: ax_list[series_number].set_xscale("log", nonposy='clip') if log_y: ax_list[series_number].set_yscale("log", nonposy='clip') for series_number in range(len(X_Y_list) - 1): plt.setp(ax_list[series_number+1].get_xticklabels(), visible=False) ax_list[0].set_title(title_str) fig.tight_layout() if save_fig or figure_filename != '': if figure_filename == '': name_ = str(calendar.timegm(time.gmtime()))[:-2] fig.savefig(path_output + 'image_' + name_ + '.png', transparent=True, bbox_inches='tight') else: fig.savefig(figure_filename, transparent=transparent_, bbox_inches='tight') plt.close(fig) else: plt.show() return fig, ax_list def scatter_custom_size(X_,Y_,S_, x_header=None,y_header=None, t_line=False, grid_=False, cus_loc =None, c_='', custom_y_range_tuple=None, custom_x_range_tuple=None, figsize_ = (10,6), save_fig=False, custom_x_ticks_start_end_step=None, custom_y_ticks_start_end_step=None, extra_text='', time_format_='%H:%M %d%b%y', x_as_time=False, c_header=None, add_line=False, linewidth_=2, line_color='black'): fig, ax = plt.subplots(figsize=figsize_) if c_=='': ax.scatter(X_,Y_, s = S_, lw = 0, c = 'black') if add_line: ax.plot(X_, Y_, c=line_color, linewidth=linewidth_) else: im = ax.scatter(X_,Y_, s = S_, lw = 0, c = c_, cmap = default_cm) color_bar = fig.colorbar(im,fraction=0.046, pad=0.04) if c_header is not None: color_bar.ax.set_ylabel(c_header) if x_header is not None: ax.set_xlabel(x_header) if y_header is not None: ax.set_ylabel(y_header) # ax.yaxis.set_ticks(np.arange(180, 541, 45)) if grid_: ax.grid(True) if t_line: plot_trend_line(ax, X_, Y_, order=1, c='r', alpha=1, cus_loc = cus_loc, extra_text=extra_text) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) if custom_x_ticks_start_end_step is not None: ax.xaxis.set_ticks(np.arange(custom_x_ticks_start_end_step[0], custom_x_ticks_start_end_step[1], custom_x_ticks_start_end_step[2])) if custom_y_ticks_start_end_step is not None: ax.yaxis.set_ticks(np.arange(custom_y_ticks_start_end_step[0], custom_y_ticks_start_end_step[1], custom_y_ticks_start_end_step[2])) if x_as_time: plot_format_mayor = mdates.DateFormatter(time_format_) ax.xaxis.set_major_formatter(plot_format_mayor) if save_fig: name_ = str(calendar.timegm(time.gmtime()))[:-2] fig.savefig(path_output + 'image_' + name_ + '.png',transparent=True, bbox_inches='tight') else: plt.show() return fig, ax def Display_emission_array(filename_, variable_name): netcdf_file_object = nc.Dataset(filename_, 'r') p_arr(netcdf_file_object.variables[variable_name][0, 0, ::-1, :]) netcdf_file_object.close() def power_plot(X_, Y_, Size_=5, x_header='',y_header='', trend_line=False, show_line=False, lw_=2, grid_=False, cus_loc = '', c_='', custom_y_range_tuple=None, custom_x_range_tuple=None, cbar_label = ''): fig, ax = plt.subplots() if c_=='': ax.scatter(X_,Y_, s = Size_, lw = 0, c = 'black') if show_line: ax.plot(X_,Y_, lw = lw_, color = 'black') else: im = ax.scatter(X_,Y_, s = Size_, lw = 0, c = c_, cmap = default_cm) ax.plot(X_,Y_, lw = lw_, c = c_, cmap = default_cm) color_bar = fig.colorbar(im,fraction=0.046, pad=0.04) color_bar.ax.set_ylabel(cbar_label) ax.set_xlabel(x_header) ax.set_ylabel(y_header) if grid_: ax.grid(True) if trend_line: plot_trend_line(ax, X_, Y_, order=1, c='r', alpha=1, cus_loc = cus_loc) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) plt.show() return fig, ax def power_plot_with_error(X_, Y_, yerr_, Size_=5, c_='', x_header='',y_header='', trend_line=False, lw_=2, grid_=False, cus_loc = '', custom_y_range_tuple=None, custom_x_range_tuple=None, cbar_label = ''): fig, ax = plt.subplots() if c_=='': ax.scatter(X_,Y_, s = Size_, lw = 0, c = 'black') ax.errorbar(X_,Y_, yerr=yerr_, color = 'black') else: im = ax.scatter(X_,Y_, s = Size_, lw = 0, c = c_, cmap = default_cm) ax.plot(X_,Y_, lw = lw_, c = c_, cmap = default_cm) color_bar = fig.colorbar(im,fraction=0.046, pad=0.04) color_bar.ax.set_ylabel(cbar_label) ax.set_xlabel(x_header) ax.set_ylabel(y_header) if grid_: ax.grid(True) if trend_line: plot_trend_line(ax, X_, Y_, order=1, c='r', alpha=1, cus_loc = cus_loc) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) plt.show() def plot_preview_x_as_time(header_,days_,values_): plot_format_mayor = mdates.DateFormatter('%H:%M %d%b%y') fig, ax = plt.subplots() if len(values_.shape) > 1: for c_ in range(values_.shape[1]): ax.plot_date(days_,values_[:,c_], markersize=2, markeredgewidth=0, label=header_[c_]) else: ax.plot_date(days_,values_,'ko-', markersize=2, markeredgewidth=0, label=header_) ax.xaxis.set_major_formatter(plot_format_mayor) plt.show() def plot_values_x_as_time(header_,values_,x_array,y_list, legend_=False, plot_fmt_str0='%H:%M %d%b%y'): color_list = default_cm(np.linspace(0,1,len(y_list))) plot_format_mayor = mdates.DateFormatter(plot_fmt_str0) fig, ax = plt.subplots() for c_,y_ in enumerate(y_list): color_ = color_list[c_] ax.plot(x_array,values_[:,y_], color = color_,label=header_[y_]) ax.xaxis.set_major_formatter(plot_format_mayor) fig.tight_layout() if legend_: ax.legend(loc=(.95,.0)) plt.show() def plot_trend_line(axes_, xd, yd, c='r', alpha=1, cus_loc = None, text_color='black', extra_text='', t_line_1_1=True, fit_function=None): """Make a line of best fit""" #create clean series x_, y_ = coincidence(xd,yd) if fit_function is not None: params = curve_fit(fit_function, x_, y_) print('fitted parameters') print(params[0]) fit_line_x = np.arange(int(np.nanmin(x_)),int(np.nanmax(x_))+1,.1) plotting_par_list = [fit_line_x] for fit_par in params[0]: plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) axes_.plot(fit_line_x, fit_line_y, c, alpha=alpha) # calculate R2 plotting_par_list = [x_] params_str_ = '' for i_, fit_par in enumerate(params[0]): if extra_text == '': params_str_ = params_str_ + 'fit parameters ' + str(i_+1) + ': ' + '$%0.2f$' % (fit_par) + '\n' else: params_str_ = params_str_ + extra_text + '$%0.2f$' % (fit_par) + '\n' plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) residuals = y_ - fit_line_y ss_res = np.sum(residuals**2) ss_tot = np.sum((y_ - np.mean(y_))**2) Rsqr = float(1 - (ss_res / ss_tot)) # Plot R^2 value x_1 = np.nanmin(x_) y_2 = np.nanmax(y_) error_text = '$R^2 = %0.2f$' % Rsqr if cus_loc is None: axes_.text(x_1, y_2 , params_str_ + error_text, horizontalalignment='left',verticalalignment='top',color=text_color) else: axes_.text(cus_loc[0], cus_loc[1] , params_str_ + error_text, horizontalalignment='left',verticalalignment='top',color=text_color) else: # Calculate trend line coeffs = np.polyfit(x_, y_, 1) intercept = coeffs[-1] slope = coeffs[-2] minxd = np.nanmin(x_) maxxd = np.nanmax(x_) xl = np.array([minxd, maxxd]) yl = slope * xl + intercept # Plot trend line axes_.plot(xl, yl, c, alpha=alpha) # Calculate R Squared p = np.poly1d(coeffs) ybar = np.sum(y_) / len(y_) ssreg = np.sum((p(x_) - ybar) ** 2) sstot = np.sum((y_ - ybar) ** 2) Rsqr = float(ssreg / sstot) # Plot R^2 value x_1 = np.nanmin(x_) y_2 = np.nanmax(y_) if intercept >= 0: if extra_text=='': equat_text = '$Y = %0.2f*x + %0.2f$' % (slope,intercept) else: equat_text = extra_text + '\n' + '$Y = %0.2f*x + %0.2f$' % (slope,intercept) else: if extra_text=='': equat_text = '$Y = %0.2f*x %0.2f$' % (slope,intercept) else: equat_text = extra_text + '\n' + '$Y = %0.2f*x %0.2f$' % (slope,intercept) error_text = '$R^2 = %0.2f$' % Rsqr if cus_loc is None: axes_.text(x_1, y_2 , equat_text + '\n' + error_text, horizontalalignment='left',verticalalignment='top',color=text_color) else: axes_.text(cus_loc[0], cus_loc[1] , equat_text + '\n' + error_text, horizontalalignment='left',verticalalignment='top',color=text_color) # plot 1:1 line if true if t_line_1_1: xy_min = np.min([np.nanmin(x_),np.nanmin(y_)]) xy_max = np.max([np.nanmax(x_),np.nanmax(y_)]) axes_.plot([xy_min, xy_max], [xy_min, xy_max], 'k--') return Rsqr def color_y_axis(ax, color): """Color your axes.""" for t in ax.get_yticklabels(): t.set_color(color) return None def p_density_scatter( x_ , y_, fig_ax = None, cmap_=default_cm, sort = True, bins = 20, show_cbar=False, **kwargs ) : """ Scatter plot colored by 2d histogram """ x, y = coincidence(x_ , y_) if fig_ax is None : fig , ax = plt.subplots() else: fig = fig_ax[0] ax = fig_ax[1] data , x_e, y_e = np.histogram2d( x, y, bins = bins) z = interpn( ( 0.5*(x_e[1:] + x_e[:-1]) , 0.5*(y_e[1:]+y_e[:-1]) ) , data , np.vstack([x,y]).T , method = "splinef2d", bounds_error = False ) # Sort the points by density, so that the densest points are plotted last if sort : idx = z.argsort() x, y, z = x[idx], y[idx], z[idx] im = ax.scatter( x, y, c=z, cmap=cmap_, lw=0, **kwargs) if show_cbar: color_bar = fig.colorbar(im, fraction=0.046, pad=0.04) return ax # diurnal variations def diurnal_variability_boxplot(time_in_seconds, y_, fig_ax=None, x_header='Hours', y_header='',figure_filename='', bin_size_hours=1, min_bin_population=10, start_value=0, figsize_=(10,6), title_str=''): # convert time to struct time_hour = np.zeros(time_in_seconds.shape[0], dtype=float) time_mins = np.zeros(time_in_seconds.shape[0], dtype=float) time_secs = np.zeros(time_in_seconds.shape[0], dtype=float) for r_ in range(time_in_seconds.shape[0]): time_hour[r_] = time.gmtime(time_in_seconds[r_])[3] time_mins[r_] = time.gmtime(time_in_seconds[r_])[4] time_secs[r_] = time.gmtime(time_in_seconds[r_])[5] time_hours = time_hour + (time_mins + (time_secs/60))/60 # get coincidences only x_val,y_val = coincidence(time_hours, y_) # combine x and y in matrix M_ = np.column_stack((x_val,y_val)) # always ascending to increase efficiency M_sorted = M_[M_[:,0].argsort()] # sort by first column M_ = M_sorted # convert data to list of bins y_binned = [] x_binned = [] start_bin_edge = start_value last_row = 0 last_row_temp = last_row while start_bin_edge <= np.nanmax(x_val): y_val_list = [] for row_ in range(last_row, M_.shape[0]): if start_bin_edge <= M_[row_, 0] < start_bin_edge + bin_size_hours: if M_[row_, 1] == M_[row_, 1]: y_val_list.append(M_[row_, 1]) last_row_temp = row_ if M_[row_, 0] >= start_bin_edge + bin_size_hours: last_row_temp = row_ break x_binned.append(start_bin_edge + (bin_size_hours / 2)) if len(y_val_list) >= min_bin_population: y_binned.append(y_val_list) else: y_binned.append([]) start_bin_edge += bin_size_hours last_row = last_row_temp # start figure if fig_ax is not None: fig, ax = fig_ax else: fig, ax = plt.subplots(figsize=figsize_) # add series if bin_size_hours >= 1: x_binned_int = np.array(x_binned) else: x_binned_int = x_binned ax.boxplot(y_binned, 0, '', whis=[5,95], positions = x_binned_int, showmeans = True, widths =bin_size_hours * .9, manage_xticks=False) # if user selected x axes as hour ax.xaxis.set_ticks(np.arange(0, 24, 3)) ax.set_xlabel(x_header) ax.set_ylabel(y_header) ax.set_title(title_str) if figure_filename != '': fig.savefig(figure_filename, transparent=True, bbox_inches='tight') plt.close(fig) else: plt.show() return fig, ax, x_binned_int, y_binned def plot_box_from_values(values_x, values_y, x_label=None, y_label=None, bin_size=1, min_bin_population=10, fit_function = None, fit_fuction_by='mean', log_x=False,log_y=False, custom_y_range_tuple = None, custom_x_range_tuple = None, force_start=None, force_end=None, show_means=True, notch=False, sym='', whis=(5,95)): x_val_original = values_x y_val_original = values_y # get coincidences only x_val,y_val = coincidence(x_val_original,y_val_original) # start figure fig, ax = plt.subplots(figsize=(8, 6)) # combine x and y in matrix M_ = np.column_stack((x_val,y_val)) # checking if always ascending to increase efficiency always_ascending = 1 for x in range(x_val.shape[0]-1): if x_val[x]==x_val[x] and x_val[x+1]==x_val[x+1]: if x_val[x+1] < x_val[x]: always_ascending = 0 if always_ascending == 0: M_sorted = M_[M_[:,0].argsort()] # sort by first column M_ = M_sorted # convert data to list of bins y_binned = [] x_binned = [] if force_start is None: start_bin_edge = np.nanmin(x_val) else: start_bin_edge = force_start if force_end is None: stop_bin = np.nanmax(x_val) else: stop_bin = force_end last_row = 0 last_row_temp = last_row while start_bin_edge <= stop_bin: y_val_list = [] for row_ in range(last_row, M_.shape[0]): if start_bin_edge <= M_[row_, 0] < start_bin_edge + bin_size: if M_[row_, 1] == M_[row_, 1]: y_val_list.append(M_[row_, 1]) last_row_temp = row_ if M_[row_, 0] >= start_bin_edge + bin_size: last_row_temp = row_ break x_binned.append(start_bin_edge) if len(y_val_list) >= min_bin_population: y_binned.append(y_val_list) else: y_binned.append([]) start_bin_edge += bin_size last_row = last_row_temp if bin_size == 1: x_binned_arr = np.array(x_binned, dtype=int) else: x_binned_arr = np.array(x_binned) # add series box_dict = ax.boxplot(y_binned, notch=notch, sym=sym, whis=whis, positions = x_binned_arr, showmeans = show_means, widths = bin_size * .9) # axes labels if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if fit_function is not None: # get mean only list if fit_fuction_by=='mean': y_s = [] for y_bin in y_binned: y_s.append(np.nanmean(y_bin)) elif fit_fuction_by=='median': y_s = [] for y_bin in y_binned: y_s.append(np.nanmedian(y_bin)) elif fit_fuction_by=='max': y_s = [] for y_bin in y_binned: y_s.append(np.nanmax(y_bin)) elif fit_fuction_by=='min': y_s = [] for y_bin in y_binned: y_s.append(np.nanmin(y_bin)) else: print('error, only possible fit_by are mean, median, max, min') return x_,y_= coincidence(x_binned_arr,y_s) # axes labels if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if log_x: ax.set_xscale("log") # , nonposy='clip') if log_y: ax.set_yscale("log") # , nonposy='clip') params = curve_fit(fit_function, x_, y_) print('fitted parameters') print('%0.3f, %0.3f' % (params[0][0], params[0][1])) # calculate R2 plotting_par_list = [x_] params_str_ = '' for i_, fit_par in enumerate(params[0]): plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) residuals = y_ - fit_line_y ss_res = np.sum(residuals**2) ss_tot = np.sum((y_ - np.mean(y_))**2) Rsqr = float(1 - (ss_res / ss_tot)) print('R2 = %0.2f' % Rsqr) fit_line_x = np.arange(0,int(np.max(x_))+1,.1) plotting_par_list = [fit_line_x] for fit_par in params[0]: plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) # fit_line_y = (a_ * (fit_line_x ** 3)) + (b_ * (fit_line_x ** 2)) + (c_ * fit_line_x) + d_ ax.plot(fit_line_x,fit_line_y,'k') # ax.yaxis.set_ticks(np.arange(0, 2800, 200)) for i in range(len(x_)): print('%0.2f, %0.2f' % (x_[i], y_[i])) print('-' * 20) if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) plt.show() medians_ = [] for i_ in box_dict['medians']: medians_.append(i_.get_ydata()[0]) medians_ = np.array(medians_) means_ = [] for i_ in box_dict['means']: means_.append(i_.get_ydata()[0]) means_ = np.array(means_) return fig, ax, box_dict, x_binned_arr, medians_, means_ def plot_diurnal_multi(values_array, header_array, x_index, y_index_list,add_line=None, median_=False, bin_size=1, min_bin_population=10, legend_= True, y_label='',legend_loc=(.70,.80), custom_y_range_tuple=None, custom_x_range_tuple=None, lw_=2, return_stats=False, print_stats=False): color_list = default_cm(np.linspace(0,1,len(y_index_list))) # stats holder stats_list_x = [] stats_list_y = [] # start figure fig, ax = plt.subplots()#figsize=(16, 10)) for c_, parameter_index in enumerate(y_index_list): color_ = color_list[c_] x_val_original = values_array[:,x_index] y_val_original = values_array[:,parameter_index] # get coincidences only x_val,y_val = coincidence(x_val_original,y_val_original) # combine x and y in matrix M_ = np.column_stack((x_val,y_val)) # checking if always ascending to increase efficiency always_ascending = 1 for x in range(x_val.shape[0]-1): if x_val[x]==x_val[x] and x_val[x+1]==x_val[x+1]: if x_val[x+1] < x_val[x]: always_ascending = 0 if always_ascending == 0: M_sorted = M_[M_[:,0].argsort()] # sort by first column M_ = M_sorted # convert data to list of bins y_binned = [] x_binned = [] start_bin_edge = np.nanmin(x_val) last_row = 0 last_row_temp = last_row while start_bin_edge <= np.nanmax(x_val): y_val_list = [] for row_ in range(last_row, M_.shape[0]): if start_bin_edge <= M_[row_, 0] < start_bin_edge + bin_size: if M_[row_, 1] == M_[row_, 1]: y_val_list.append(M_[row_, 1]) last_row_temp = row_ if M_[row_, 0] >= start_bin_edge + bin_size: last_row_temp = row_ break x_binned.append(start_bin_edge) if len(y_val_list) >= min_bin_population: y_binned.append(y_val_list) else: y_binned.append([]) start_bin_edge += bin_size last_row = last_row_temp # if bin_size >= 1: # x_binned_int = np.array(x_binned, dtype=int) # else: # x_binned_int = x_binned # get mean only list y_means = [] for y_bin in y_binned: if median_: y_means.append(np.median(y_bin)) else: y_means.append(np.mean(y_bin)) x_,y_= coincidence(np.array(x_binned),np.array(y_means)) # store stats stats_list_x.append(x_) stats_list_y.append(y_) # print x and y if print_stats: print(header_array[parameter_index]) for i in range(len(x_)): print(x_[i],y_[i]) print('-' * 10) # add means series ax.plot(x_, y_, color=color_, label=header_array[parameter_index], lw=lw_) # axes labels ax.set_xlabel(header_array[x_index]) ax.set_ylabel(y_label) if legend_: ax.legend(loc=legend_loc) ax.xaxis.set_ticks(np.arange(0, 24, 3)) # if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) if add_line is not None: ax.plot(add_line[0], add_line[1], color='black', label=add_line[2], lw=lw_) # plt.show() if return_stats: return stats_list_x, stats_list_y def plot_diurnal_multi_wind_direction(header_array, time_array_list, wd_ws_list_list, bin_size=1, min_bin_population=10, legend_= True, y_label='', x_label='',legend_loc='best', custom_y_range_tuple=None, custom_x_range_tuple=None, lw_=0, size_=5): color_list = default_cm(np.linspace(0,1,len(time_array_list))) # start figure fig, ax = plt.subplots()#figsize=(16, 10)) for c_ in range(len(time_array_list)): color_ = color_list[c_] x_val_original = time_array_list[c_] wd_val_original = wd_ws_list_list[c_][0] ws_val_original = wd_ws_list_list[c_][1] # # get coincidences only # wd_val,ws_val = coincidence(wd_val_original,ws_val_original) North_, East_ = polar_to_cart(wd_val_original, ws_val_original) M_ = np.column_stack((North_,East_)) Index_mean, Values_mean = mean_discrete(x_val_original, M_, bin_size, 0, min_data=min_bin_population) WD_mean, WS_mean = cart_to_polar(Values_mean[:,0], Values_mean[:,1]) # add means series ax.scatter(Index_mean, WD_mean, s = size_, c=color_, label=header_array[c_], lw = lw_) # axes labels ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.yaxis.set_ticks(np.arange(0, 361, 45)) if legend_: ax.legend(loc=legend_loc) ax.xaxis.set_ticks(np.arange(0, 24, 3)) # if custom_y_range_tuple is not None: ax.set_ylim(custom_y_range_tuple) if custom_x_range_tuple is not None: ax.set_xlim(custom_x_range_tuple) # plt.show() def fit_test_1(values_x, values_y, fit_func, x_label=None, y_label=None, bin_size=1,min_bin_population=10): x_val_original = values_x y_val_original = values_y # get coincidences only x_val,y_val = coincidence(x_val_original,y_val_original) # start figure fig, ax = plt.subplots()#figsize=(16, 10)) # combine x and y in matrix M_ =
np.column_stack((x_val,y_val))
numpy.column_stack
import numpy as np from nuspacesim import eas_optical def test_known_values(): altitude =
np.arange(0, 21, dtype=np.float32)
numpy.arange
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Checking consistency of serialization # # This test checks the consistency of the internal states between before/after serialization. We render two images. One with normal configuration and the other with deserialized states. import lmenv env = lmenv.load('.lmenv') import os import imageio import pandas as pd import numpy as np # %matplotlib inline import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import lmscene import lightmetrica as lm os.getpid() # %load_ext lightmetrica_jupyter lm.init() lm.log.init('jupyter') lm.progress.init('jupyter') lm.info() if not lm.Release: lm.debug.attach_to_debugger() scene_names = lmscene.scenes_small() def rmse(img1, img2): return np.sqrt(np.mean((img1 - img2) ** 2)) rmse_series = pd.Series(index=scene_names) for scene_name in scene_names: print("Testing [scene='{}']".format(scene_name)) # Load scene and render print('w/o serialization') lm.reset() lm.load_film('film_output', 'bitmap', { 'w': 1920, 'h': 1080 }) lm.load_accel('accel', 'sahbvh', {}) scene = lm.load_scene('scene', 'default', { 'accel': '$.assets.accel' }) lmscene.load(scene, env.scene_path, scene_name) scene.build() lm.load_renderer('renderer', 'raycast', { 'scene': '$.assets.scene', 'output': '$.assets.film_output', }) renderer = lm.get_renderer('$.assets.renderer') renderer.render() film = lm.get_film('$.assets.film_output') img_orig = np.copy(film.buffer()) # Visualize f = plt.figure(figsize=(15,15)) ax = f.add_subplot(111) ax.imshow(np.clip(np.power(img_orig,1/2.2),0,1), origin='lower') plt.show() # Serialize, reset, deserialize, and render print('w/ serialization') lm.save_state_to_file('lm.serialized') lm.reset() lm.load_state_from_file('lm.serialized') renderer = lm.get_renderer('$.assets.renderer') renderer.render() film = lm.get_film('$.assets.film_output') img_serial = np.copy(film.buffer()) # Visualize f = plt.figure(figsize=(15,15)) ax = f.add_subplot(111) ax.imshow(np.clip(
np.power(img_serial,1/2.2)
numpy.power
"""Functions to visualize the simplex and branch and bound algorithms. This moodule uses a custom implementation of the resvised simplex method and the branch and bound algorithm (simplex module) to create and solve LPs. Using the graphic module (which provides a high-level interface with the plotly visualization package) and computational geometry functions from the geometry module, visualizations of these algorithms are then created to be viewed inline on a Jupyter Notebook or written to a static HTML file. """ __author__ = '<NAME>' __all__ = ['lp_visual', 'simplex_visual', 'bnb_visual'] import itertools import math import networkx as nx import numpy as np import plotly.graph_objects as plt from typing import Union, List, Tuple from ._constants import (AXIS_2D, AXIS_3D, BFS_SCATTER, BNB_NODE, CANONICAL_TABLE, CONSTRAINT_LINE, CONSTRAINT_POLYGON, DICTIONARY_TABLE, FIG_HEIGHT, FIG_WIDTH, ISOPROFIT_IN_POLYGON, ISOPROFIT_LINE, INTEGER_POINT, ISOPROFIT_OUT_POLYGON, ISOPROFIT_STEPS, LAYOUT, LEGEND_WIDTH, PRIMARY_COLOR, PRIMARY_DARK_COLOR, REGION_2D_POLYGON, REGION_3D_POLYGON, SCATTER, SCATTER_3D, SECONDARY_COLOR, SLIDER, TABLE, TERTIARY_DARK_COLOR, TERTIARY_LIGHT_COLOR, VECTOR) from ._geometry import (intersection, interior_point, NoInteriorPoint, polytope_vertices, polytope_facets) from ._graphic import (num_format, equation_string, linear_string, plot_tree, Figure, label, table, vector, scatter, equation, polygon, polytope) from .simplex import (LP, simplex, branch_and_bound_iteration, UnboundedLinearProgram, Infeasible) class InfiniteFeasibleRegion(Exception): """Raised when an LP is found to have an infinite feasible region and can not be accurately visualized.""" pass def template_figure(n: int, visual_type: str = 'tableau') -> Figure: """Return a figure on which to create a visualization. The figure can be for a 2 or 3 dimensional linear program and is either of type tableau (in which the tableau of each simplex iteration is on the right subplot) or type bnb_tree (in which a branch and bound tree is visualized shown on the right subplot). Args: n (int): Dimension of the LP visualization. Either 2 or 3. visual_type (str): Type of visualization. Tableau by default. Returns: Figure: A figure on which to create a visualization. Raises: ValueError: Can only visualize 2 or 3 dimensional LPs. """ if n not in [2,3]: raise ValueError('Can only visualize 2 or 3 dimensional LPs.') # Subplots: plot on left, table/tree on right plot_type = {2: 'scatter', 3: 'scene'}[n] visual_type = {'tableau': 'table', 'bnb_tree': 'scatter'}[visual_type] fig = Figure(subplots=True, rows=1, cols=2, horizontal_spacing=(LEGEND_WIDTH / FIG_WIDTH), specs=[[{"type": plot_type},{"type": visual_type}]]) layout = LAYOUT.copy() # Set axes x_domain = [0, (1 - (LEGEND_WIDTH / FIG_WIDTH)) / 2] y_domain = [0, 1] x = "x<sub>%d</sub>" if n == 2: layout['xaxis1'] = {**AXIS_2D, **dict(domain=x_domain, title=x % (1))} layout['yaxis1'] = {**AXIS_2D, **dict(domain=y_domain, title=x % (2))} else: layout['scene'] = dict(aspectmode='cube', domain=dict(x=x_domain, y=y_domain), xaxis={**AXIS_3D, **dict(title=x % (1))}, yaxis={**AXIS_3D, **dict(title=x % (2))}, zaxis={**AXIS_3D, **dict(title=x % (3))}) # Rotate through 6 line colors colors = ['#173D90', '#1469FE', '#65ADFF', '#474849', '#A90C0C', '#DC0000'] scatter = [plt.Scatter({**SCATTER, **dict(line_color=c)}) for c in colors] # Annotation templates for branch and bound tree nodes layout['annotations'] = [ {**BNB_NODE, **dict(name='current', bgcolor='#45568B', font_color=TERTIARY_LIGHT_COLOR)}, {**BNB_NODE, **dict(name='explored', bgcolor='#D8E4F9')}, {**BNB_NODE, **dict(name='unexplored', bgcolor=TERTIARY_LIGHT_COLOR)} ] # Conslidate and construct the template template = plt.layout.Template() template.layout = layout template.data.table = [plt.Table(TABLE)] template.data.scatter = scatter template.data.scatter3d = [plt.Scatter3d(SCATTER_3D)] fig.update_layout(template=template) # Right subplot axes right_x_axis = dict(domain=[0.5, 1], range=[0,1], visible=False) right_y_axis = dict(domain=[0.15, 1], range=[0,1], visible=False) if n == 2: fig.layout.xaxis2 = right_x_axis fig.layout.yaxis2 = right_y_axis else: fig.layout.xaxis = right_x_axis fig.layout.yaxis = right_y_axis return fig def scale_axes(fig: Figure, vertices: List[np.ndarray], scale: float = 1.3): """Scale the axes of the figure to fit the given set of vertices. Args: fig (Figure): Figure whose axes will get re-scaled. vertices (List[np.ndarray]): Set of vertices to be contained. scale (float): The factor to multiply the minumum axis lengths by. """ x_list = [list(x[:,0]) for x in vertices] limits = [max(i)*scale for i in list(zip(*x_list))] fig.set_axis_limits(limits) def bfs_plot(lp: LP, basic_sol: bool = True, show_basis: bool = True, vertices: List[np.ndarray] = None ) -> Union[plt.Scatter, plt.Scatter3d]: """Return a scatter trace with hover labels for every basic feasible sol. Vertices of LP's feasible region can be given to improve computation time. Args: lp (LP): LP whose basic feasible solutions will be plotted. basic_sol (bool): True if the entire BFS is shown. Default to True. show_basis (bool) : True if the basis is shown within the BFS label. vertices (List[np.ndarray]): Vertices of the LP's feasible region. Returns: Union[plt.Scatter, plt.Scatter3d]: Scatter trace for every BFS. """ n,m,A,b,c = lp.get_coefficients(equality=False) if vertices is None: vertices = lp.get_vertices() vertices_arr = np.array([list(v[:,0]) for v in vertices]) bfs = vertices_arr # Add slack variable values to basic feasible solutions for i in range(m): x_i = -np.matmul(vertices_arr,np.array([A[i]]).transpose()) + b[i] bfs =
np.hstack((bfs,x_i))
numpy.hstack
import numpy as np import numpy.testing as npt from stumpy import scraamp, aamp, config from stumpy.scraamp import prescraamp import pytest import naive test_data = [ ( np.array([9, 8100, -60, 7], dtype=np.float64), np.array([584, -11, 23, 79, 1001, 0, -19], dtype=np.float64), ), ( np.random.uniform(-1000, 1000, [8]).astype(np.float64), np.random.uniform(-1000, 1000, [64]).astype(np.float64), ), ] window_size = [8, 16, 32] substitution_locations = [(slice(0, 0), 0, -1, slice(1, 3), [0, 3])] substitution_values = [np.nan, np.inf] percentages = [(0.01, 0.1, 1.0)] @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescraamp_self_join(T_A, T_B): for p in [1.0, 2.0, 3.0]: m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescraamp(T_B, m, T_B, s=s, exclusion_zone=zone, p=p) np.random.seed(seed) comp_P, comp_I = prescraamp(T_B, m, s=s, p=p) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescraamp_A_B_join(T_A, T_B): for p in [1.0, 2.0, 3.0]: m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescraamp(T_A, m, T_B, s=s, p=p) np.random.seed(seed) comp_P, comp_I = prescraamp(T_A, m, T_B=T_B, s=s, p=p) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescraamp_A_B_join_swap(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescraamp(T_B, m, T_A, s=s) np.random.seed(seed) comp_P, comp_I = prescraamp(T_B, m, T_B=T_A, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_prescraamp_self_join_larger_window(T_A, T_B, m): if len(T_B) > m: zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescraamp(T_B, m, T_B, s=s, exclusion_zone=zone) np.random.seed(seed) comp_P, comp_I = prescraamp(T_B, m, s=s) npt.assert_almost_equal(ref_P, comp_P)
npt.assert_almost_equal(ref_I, comp_I)
numpy.testing.assert_almost_equal
# Mathematical import numpy as np from scipy.ndimage.interpolation import map_coordinates import cv2 # Pytorch import torch from torch.utils import data from torchvision import datasets # Misc from functools import lru_cache import os import sys sys.path.insert(0, '/home/bo/research/realtime-action-detection') from utils.augmentations import SSDAugmentation import collections def genuv(h, w): u, v = np.meshgrid(np.arange(w), np.arange(h)) u = (u + 0.5) * 2 * np.pi / w - np.pi v = (v + 0.5) * np.pi / h - np.pi / 2 return np.stack([u, v], axis=-1) def uv2xyz(uv): sin_u = np.sin(uv[..., 0]) cos_u = np.cos(uv[..., 0]) sin_v = np.sin(uv[..., 1]) cos_v = np.cos(uv[..., 1]) return np.stack([ cos_v * cos_u, cos_v * sin_u, sin_v ], axis=-1) def xyz2uv(xyz): c = np.sqrt((xyz[..., :2] ** 2).sum(-1)) u = np.arctan2(xyz[..., 1], xyz[..., 0]) v = np.arctan2(xyz[..., 2], c) return np.stack([u, v], axis=-1) def get_rotated_mat(outshape,inshape,rot_x,rot_y,rot_z,fov): uv = genuv(*outshape) xyz = uv2xyz(uv.astype(np.float64)) # rotate along x-axis xyz_rot = xyz.copy() xyz_rot[..., 0] = xyz[..., 0] xyz_rot[..., 1] = np.cos(rot_x) * xyz[..., 1] - np.sin(rot_x) * xyz[..., 2] xyz_rot[..., 2] = np.sin(rot_x) * xyz[..., 1] + np.cos(rot_x) * xyz[..., 2] # rotate along y-axis xyz = xyz_rot.copy() xyz_rot = xyz.copy() xyz_rot[..., 0] =
np.cos(rot_y)
numpy.cos
import numpy as np import tensorflow as tf def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position, d_model): angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] =
np.sin(angle_rads[:, 0::2])
numpy.sin
# Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from hypothesis import assume, given from hypothesis.extra.numpy import from_dtype from hypothesis.strategies import booleans, floats, integers, just, lists, sampled_from from hypothesis_gufunc.gufunc import gufunc_args as gufunc from scipy.interpolate import interp1d from sklearn.preprocessing import LabelBinarizer import bayesmark.space as sp from bayesmark.np_util import linear_rescale from bayesmark.space import CAT_DTYPE, CAT_KIND, CAT_NATIVE_DTYPE from hypothesis_util import broadcast_tester, close_enough, gufunc_floats from util import space_configs INT_MIN = np.iinfo("i").min INT_MAX = np.iinfo("i").max WARPS = ("logit", "linear", "bilog", "log") ENCODER_DTYPES = ("bool", "int", "float") def encoder_gen(args): X, labels, assume_sorted, dtype, assume_valid = args if assume_sorted: labels = np.sort(labels) X = labels[X % len(labels)] dtype = dtype.item() # np.array does not like np.array(dtype) return X, labels, assume_sorted, dtype, assume_valid def decoder_gen(args): Y, labels, assume_sorted, dtype, assume_valid = args if assume_sorted: labels = np.sort(labels) dtype = dtype.item() return Y, labels, assume_sorted, dtype, assume_valid def decoder_gen_broadcast(args): Y, labels, assume_sorted = args if assume_sorted: labels = np.sort(labels) return Y, labels, assume_sorted @given( gufunc( "(),(n),(),(),()->(n)", dtype=[np.int_, CAT_DTYPE, np.bool_, str, np.bool_], elements=[ integers(0, INT_MAX), from_dtype(np.dtype(CAT_DTYPE)), booleans(), sampled_from(ENCODER_DTYPES), booleans(), ], unique=[False, True, False, False, False], min_side={"n": 1}, ).map(encoder_gen) ) def test_encode_decode(args): X, labels, assume_sorted, dtype, assume_valid = args Y = sp.encode(X, labels, assume_sorted=assume_sorted, dtype=dtype, assume_valid=assume_valid) if assume_sorted: # otherwise labels will be re-arranged (idx,), = np.where(Y > 0) assert np.asarray(labels[idx]) == X assert Y.dtype == dtype X2 = sp.decode(Y, labels, assume_sorted=assume_sorted) assert close_enough(X, X2) @given( gufunc( "(m),(n),(),(),()->(n)", dtype=[np.int_, CAT_DTYPE, np.bool_, str, np.bool_], elements=[ integers(0, INT_MAX), from_dtype(np.dtype(CAT_DTYPE)), booleans(), sampled_from(ENCODER_DTYPES), booleans(), ], unique=[False, True, False, False, False], min_side={"m": 1, "n": 3}, ).map(encoder_gen) ) def test_encoder_to_sklearn(args): # sklearn cannot handle this correctly unless n >= 3 X, labels, assume_sorted, dtype, assume_valid = args Y = sp.encode(X, labels, assume_sorted=assume_sorted, dtype=dtype, assume_valid=assume_valid) enc = LabelBinarizer() enc.fit(labels) Y2 = enc.transform(X) assert close_enough(Y, Y2.astype(dtype)) @given( gufunc( "(m,n),(n),(),(),()->(n)", dtype=[np.float_, CAT_DTYPE, np.bool_, str, np.bool_], elements=[floats(), from_dtype(np.dtype(CAT_DTYPE)), booleans(), sampled_from(ENCODER_DTYPES), booleans()], unique=[False, True, False, False, False], min_side={"n": 1}, ).map(decoder_gen) ) def test_decode_encode(args): Y, labels, assume_sorted, dtype, assume_valid = args assert Y.ndim >= 1 and Y.shape[-1] == len(labels) X = sp.decode(Y, labels, assume_sorted=assume_sorted) Y2 = sp.encode(X, labels, assume_sorted=assume_sorted, dtype=dtype, assume_valid=assume_valid) # The encoding is defined as the argmax assert np.all(Y.argmax(axis=1) == Y2.argmax(axis=1)) assert np.all(np.sum(Y2 != 0, axis=1) == 1) assert np.all(np.sum(Y2 == 1, axis=1) == 1) @given( gufunc( "(m,n),(n),(),(),()->(n)", dtype=[np.float_, CAT_DTYPE, np.bool_, str, np.bool_], elements=[floats(), from_dtype(
np.dtype(CAT_DTYPE)
numpy.dtype
import scipy.io.wavfile as sio import scipy.signal as sis from scipy import interpolate import numpy as np import math import matplotlib.pyplot as plt import mylib as myl import sys import copy as cp import re import scipy.fftpack as sf # NOTE: int2float might be removed after scipy update/check # (check defaults in myl.sig_preproc) # read wav file # IN: # fileName # OUT: # signal ndarray # sampleRate def wavread(f,opt={'do_preproc':True}): ## signal input fs, s_in = sio.read(f) # int -> float s = myl.wav_int2float(s_in) # preproc if opt['do_preproc']: s = myl.sig_preproc(s) return s, fs # DCT # IN: # y - 1D signal vector # opt # ['fs'] - sample rate # ['wintyp'] - <'kaiser'>, any type supported by # scipy.signal.get_window() # ['winparam'] - <1> additionally needed window parameters, # scalar, string, list ..., depends on 'wintyp' # ['nsm'] - <3> number of spectral moments # ['rmo'] - skip first (lowest) cosine (=constant offset) # in spectral moment calculation <1>|0 # ['lb'] - lower cutoff frequency for coef truncation <0> # ['ub'] - upper cutoff frequency (if 0, no cutoff) <0> # Recommended e.g. for f0 DCT, so that only influence # of events with <= 10Hz on f0 contour is considered) # ['peak_prct'] - <80> lower percentile threshold to be superseeded for # amplitude maxima in DCT spectrum # OUT: # dct # ['c_orig'] all coefs # ['f_orig'] their frequencies # ['c'] coefs with freq between lb and ub # ['f'] their freqs # ['i'] their indices in c_orig # ['sm'] spectral moments based on c # ['opt'] input options # ['m'] y mean # ['sd'] y standard dev # ['cbin'] array of sum(abs(coef)) in frequency bins # ['fbin'] corresponding lower boundary freqs # ['f_max'] frequency of global amplitude maximum # ['f_lmax'] frequencies of local maxima (array of minlen 1) # ['c_cog'] the coef amplitude of the cog freq (sm[0]) # PROBLEMS: # - if segment is too short (< 5 samples) lowest freqs associated to # DCT components are too high for ub, that is dct_trunc() returns # empty array. # -> np.nan assigned to respective variables def dct_wrapper(y,opt): dflt={'wintyp':'kaiser','winparam':1,'nsm':3,'rmo':True, 'lb':0,'ub':0,'peak_prct':80} opt = myl.opt_default(opt,dflt) # weight window w = sig_window(opt['wintyp'],len(y),opt['winparam']) y = y*w #print(1,len(y)) # centralize y = y-np.mean(y) #print(2,len(y)) # DCT coefs c = sf.dct(y,norm='ortho') #print(3,len(c)) # indices (starting with 0) ly = len(y) ci = myl.idx_a(ly) # corresponding cos frequencies f = ci+1 * (opt['fs']/(ly*2)) # band pass truncation of coefs # indices of coefs with lb <= freq <= ub i = dct_trunc(f,ci,opt) #print('f ci i',f,ci,i) # analysis segment too short -> DCT freqs above ub if len(i)==0: sm = myl.ea() while len(sm) <= opt['nsm']: sm = np.append(sm,np.nan) return {'c_orig':c,'f_orig':f,'c':myl.ea(),'f':myl.ea(),'i':[],'sm':sm,'opt':opt, 'm':np.nan,'sd':np.nan,'cbin':myl.ea(),'fbin':myl.ea(), 'f_max':np.nan, 'f_lmax':myl.ea(), 'c_cog': np.nan} # mean abs error from band-limited IDCT #mae = dct_mae(c,i,y) # remove constant offset with index 0 # already removed by dct_trunc in case lb>0. Thus checked for i[0]==0 # (i[0] indeed represents constant offset; tested by # cr = np.zeros(ly); cr[0]=c[0]; yr = sf.idct(cr); print(yr) if opt['rmo']==True and len(i)>1 and i[0]==0: j = i[1:len(i)] else: j = i if type(j) is not list: j = [j] # coefs and their frequencies between lb and ub # (+ constant offset removed) fi = f[j] ci = c[j] # spectral moments if len(j)>0: sm = specmom(ci,fi,opt['nsm']) else: sm = np.zeros(opt['nsm']) # frequency bins fbin, cbin = dct_fbin(fi,ci,opt) # frequencies of global and local maxima in DCT spectrum f_max, f_lmax, px = dct_peak(ci,fi,sm[0],opt) # return return {'c_orig':c,'f_orig':f,'c':ci,'f':fi,'i':j,'sm':sm,'opt':opt, 'm':np.mean(y),'sd':np.std(y),'cbin':cbin,'fbin':fbin, 'f_max':f_max, 'f_lmax':f_lmax, 'c_cog': px} # returns local and max peak frequencies # IN: # x: array of abs coef amplitudes # f: corresponding frequencies # cog: center of gravity # OUT: # f_gm: freq of global maximu # f_lm: array of freq of local maxima # px: threshold to be superseeded (derived from prct specs) def dct_peak(x,f,cog,opt): x = abs(cp.deepcopy(x)) ## global maximum i = myl.find(x,'is','max') if len(i)>1: i=int(np.mean(i)) f_gm = float(f[i]) ## local maxima # threshold to be superseeded px = dct_px(x,f,cog,opt) idx = myl.find(x,'>=',px) # 2d array of neighboring+1 indices # e.g. [[0,1,2],[5,6],[9,10]] ii = [] # min freq distance between maxima fd_min = 1 for i in myl.idx(idx): if len(ii)==0: ii.append([idx[i]]) elif idx[i]>ii[-1][-1]+1: xi = x[ii[-1]] fi = f[ii[-1]] j = myl.find(xi,'is','max') #print('xi',xi,'fi',fi,'f',f[idx[i]]) if len(j)>0 and f[idx[i]]>fi[j[0]]+fd_min: #print('->1') ii.append([idx[i]]) else: #print('->2') ii[-1].append(idx[i]) #myl.stopgo() #!c else: ii[-1].append(idx[i]) # get index of x maximum within each subsegment # and return corresponding frequencies f_lm = [] for si in ii: zi = myl.find(x[si],'is','max') if len(zi)>1: zi=int(np.mean(zi)) else: zi = zi[0] i = si[zi] if not np.isnan(i): f_lm.append(f[i]) #print('px',px) #print('i',ii) #print('x',x) #print('f',f) #print('m',f_gm,f_lm) #myl.stopgo() return f_gm, f_lm, px # return center-of-gravity related amplitude # IN: # x: array of coefs # f: corresponding freqs # cog: center of gravity freq # opt # OUT: # coef amplitude related to cog def dct_px(x,f,cog,opt): x = abs(cp.deepcopy(x)) # cog outside freq range if cog <= f[0]: return x[0] elif cog >= f[-1]: return x[-1] # find f-indices adjacent to cog for i in range(len(f)-1): if f[i] == cog: return x[i] elif f[i+1] == cog: return x[i+1] elif f[i] < cog and f[i+1] > cog: # interpolate #xi = np.interp(cog,f[i:i+2],x[i:i+2]) #print('cog:',cog,'xi',f[i:i+2],x[i:i+2],'->',xi) return np.interp(cog,f[i:i+2],x[i:i+2]) return np.percentile(x,opt['peak_prct']) # pre-emphasis # alpha > 1 (interpreted as lower cutoff freq) # alpha <- exp(-2 pi alpha delta) # s'[n] = s[n]-alpha*s[n-1] # IN: # signal # alpha - s[n-1] weight <0.95> # fs - sample rate <-1> # do_scale - <FALSE> if TRUE than the pre-emphasized signal is scaled to # same abs_mean value as original signal (in general pre-emphasis # leads to overall energy loss) def pre_emphasis(y,a=0.95,fs=-1,do_scale=False): # determining alpha directly or from cutoff freq if a>1: if fs <= 0: print('pre emphasis: alpha cannot be calculated deltaT. Set to 0.95') a = 0.95 else: a = math.exp(-2*math.pi*a*1/fs) #print('alpha',a) # shifted signal ype = np.append(y[0], y[1:] - a * y[:-1]) # scaling if do_scale: sf = np.mean(abs(y))/np.mean(abs(ype)) ype*=sf ## plot #ys = y[30000:40000] #ypes = ype[30000:40000] #t = np.linspace(0,len(ys),len(ys)) #fig, spl = plt.subplots(2,1,squeeze=False) #cid1 = fig.canvas.mpl_connect('button_press_event', onclick_next) #cid2 = fig.canvas.mpl_connect('key_press_event', onclick_exit) #spl[0,0].plot(t,ys) #spl[1,0].plot(t,ypes) #plt.show() ## return ype # frequency bins: symmetric 2-Hz windows around freq integers # in bandpass overlapped by 1 Hz # IN: # f - ndarray frequencies # c - ndarray coefs # opt['lb'] - lower and upper truncation freqs # ['ub'] # OUT: # fbin - ndarray, lower bnd of freq bins # cbin - ndarray, summed abs coef values in these bins def dct_fbin(f,c,opt): fb = myl.idx_seg(math.floor(opt['lb']),math.ceil(opt['ub'])) cbin = np.zeros(len(fb)-1); for j in myl.idx_a(len(fb)-1): k = myl.intersect(myl.find(f,'>=',fb[j]), myl.find(f,'<=',fb[j+1])) cbin[j] = sum(abs(c[k])) fbin = fb[myl.idx_a(len(fb)-1)] return fbin, cbin # spectral moments # IN: # c - ndarray, coefficients # f - ndarray, related frequencies <1:len(c)> # n - number of spectral moments <3> # OUT: # m - ndarray moments (increasing) def specmom(c,f=[],n=3): if len(f)==0: f = myl.idx_a(len(c))+1 c = abs(c) s = sum(c) k=0; m = np.asarray([]) for i in myl.idx_seg(1,n): m = myl.push(m, sum(c*((f-k)**i))/s) k = m[-1] return m # wrapper around IDCT # IN: # c - coef vector derived by dct # i - indices of coefs to be taken for IDCT; if empty (default), # all coefs taken) # OUT: # y - IDCT result def idct_bp(c,i=myl.ea()): if len(i)==0: return sf.idct(c,norm='ortho') cr = np.zeros(len(c)) cr[i]=c[i] return sf.idct(cr) # mean abs error from IDCT def dct_mae(c,i,y): cr = np.zeros(len(c)) cr[i]=c[i] yr = sf.idct(cr) return myl.mae(yr,y) # indices to truncate DCT output to freq band # IN: # f - ndarray, all frequencies # ci - all indices of coef ndarray # opt['lb'] - lower cutoff freq # ['ub'] - upper cutoff freq # OUT: # i - ndarray, indices in F of elements to be kept def dct_trunc(f,ci,opt): if opt['lb']>0: ihp = myl.find(f,'>=',opt['lb']) else: ihp = ci if opt['ub']>0: ilp = myl.find(f,'<=',opt['ub']) else: ilp = ci return myl.intersect(ihp,ilp) # wrapper around wavread and energy calculation # IN: # f: wavFileName (any number of channels) or array containing # the signal (any number of channels=columns) # opt: energy extraction and postprocessing # .win, .wintyp, .winparam: window parameters # .sts: stepsize for energy contour # .do_preproc: centralizing signal # .do_out: remove outliers # .do_interp: linear interpolation over silence # .do_smooth: smoothing (median or savitzky golay) # .out dict; see pp_outl() # .smooth dict; see pp_smooth() # fs: <-1> needed if f is array # OUT: # y: time + energy contour 2-dim np.array # (1st column: time, other columns: energy) def wrapper_energy(f,opt = {}, fs = -1): opt = myl.opt_default(opt,{'wintyp':'hamming', 'winparam':'', 'sts':0.01, 'win':0.05, 'do_preproc': True, 'do_out': False, 'do_interp': False, 'do_smooth': False, 'out': {}, 'smooth': {}}) opt['out'] = myl.opt_default(opt['out'], {'f': 3, 'm': 'mean'}) opt['smooth'] = myl.opt_default(opt['smooth'],{"mtd": "sgolay", "win": 7, "ord": 3}) if type(f) is str: s, fs = wavread(f,opt) else: if fs < 0: sys.exit("array input requires sample rate fs. Exit.") s = f opt['fs']=fs # convert to 2-dim array; each column represents a channel if np.ndim(s)==1: s = np.expand_dims(s, axis=1) # output (.T-ed later, reserve first list for time) y = myl.ea() # over channels for i in np.arange(0,s.shape[1]): e = sig_energy(s[:,i],opt) # setting outlier to 0 if opt['do_out']: e = pp_outl(e,opt['out']) # interpolation over 0 if opt['do_interp']: e = pp_interp(e) # smoothing if opt['do_smooth']: e = pp_smooth(e,opt['smooth']) # <0 -> 0 e[myl.find(e,'<',0)]=0 y = myl.push(y,e) # output if np.ndim(y)==1: y = np.expand_dims(y, axis=1) else: y = y.T # concat time as 1st column sts = opt['sts'] t = np.arange(0,sts*y.shape[0],sts) if len(t) != y.shape[0]: while len(t) > y.shape[0]: t = t[0:len(t)-1] while len(t) < y.shape[0]: t = np.append(t,t[-1]+sts) t = np.expand_dims(t, axis=1) y = np.concatenate((t,y),axis=1) return y ### replacing outliers by 0 ################### def pp_outl(y,opt): if "m" not in opt: return y # ignore zeros opt['zi'] = True io = myl.outl_idx(y,opt) if np.size(io)>0: y[io] = 0 return y ### interpolation over 0 (+constant extrapolation) ############# def pp_interp(y,opt={}): xi = myl.find(y,'==',0) xp = myl.find(y,'>',0) yp = y[xp] if "kind" in opt: f = interpolate.interp1d(xp,yp,kind=opt["kind"], fill_value=(yp[0],yp[-1])) yi = f(xi) else: yi = np.interp(xi,xp,yp) y[xi]=yi return y #!check ### smoothing ######################################## # remark: savgol_filter() causes warning # Using a non-tuple sequence for multidimensional indexing is deprecated # will be out with scipy.signal 1.2.0 # (https://github.com/scipy/scipy/issues/9086) def pp_smooth(y,opt): if opt['mtd']=='sgolay': if len(y) <= opt['win']: return y y = sis.savgol_filter(y,opt['win'],opt['ord']) elif opt['mtd']=='med': y = sis.medfilt(y,opt['win']) return y # calculates energy contour from acoustic signal # do_preproc per default False. If not yet preprocessed by myl.sig_preproc() # set to True # IN: # x ndarray signal # opt['fs'] - sample frequency # ['wintyp'] - <'hamming'>, any type supported by # scipy.signal.get_window() # ['winparam'] - <''> additionally needed window parameters, # scalar, string, list ... # ['sts'] - stepsize of moving window # ['win'] - window length # OUT: # y ndarray energy contour def sig_energy(x,opt): dflt={'wintyp':'hamming','winparam':'','sts':0.01,'win':0.05} opt = myl.opt_default(opt,dflt) # stepsize and winlength in samples sts = round(opt['sts']*opt['fs']) win = min([math.floor(len(x)/2),round(opt['win']*opt['fs'])]) # weighting window w = sig_window(opt['wintyp'],win,opt['winparam']) # energy values y = np.asarray([]) for j in myl.idx_a(len(x)-win,sts): s = x[j:j+len(w)]*w y = myl.push(y,myl.rmsd(s)) return y # wrapper around windows # IN: # typ: any type supported by scipy.signal.get_window() # lng: <1> length # par: <''> additional parameters as string, scalar, list etc # OUT: # window array def sig_window(typ,l=1,par=''): if typ=='none' or typ=='const': return np.ones(l) if ((type(par) is str) and (len(par) == 0)): return sis.get_window(typ,l) return sis.get_window((typ,par),l) # pause detection # IN: # s - mono signal # opt['fs'] - sample frequency # ['ons'] - idx onset <0> (to be added to time output) # ['flt']['f'] - filter options, boundary frequencies in Hz # (2 values for btype 'band', else 1): <8000> (evtl. lowered by fu_filt()) # ['btype'] - <'band'>|'high'|<'low'> # ['ord'] - butterworth order <5> # ['fs'] - (internally copied) # ['l'] - analysis window length (in sec) # ['l_ref'] - reference window length (in sec) # ['e_rel'] - min energy quotient analysisWindow/referenceWindow # ['fbnd'] - True|<False> assume pause at beginning and end of file # ['n'] - <-1> extract exactly n pauses (if > -1) # ['min_pau_l'] - min pause length <0.5> sec # ['min_chunk_l'] - min inter-pausal chunk length <0.2> sec # ['force_chunk'] - <False>, if True, pause-only is replaced by chunk-only # ['margin'] - <0> time to reduce pause on both sides (sec; if chunks need init and final silence) # OUT: # pau['tp'] 2-dim array of pause [on off] (in sec) # ['tpi'] 2-dim array of pause [on off] (indices in s = sampleIdx-1 !!) # ['tc'] 2-dim array of speech chunks [on off] (i.e. non-pause, in sec) # ['tci'] 2-dim array of speech chunks [on off] (indices) # ['e_ratio'] - energy ratios corresponding to pauses in ['tp'] (analysisWindow/referenceWindow) def pau_detector(s,opt={}): if 'fs' not in opt: sys.exit('pau_detector: opt does not contain key fs.') dflt = {'e_rel':0.0767,'l':0.1524,'l_ref':5,'n':-1,'fbnd':False,'ons':0,'force_chunk':False, 'min_pau_l':0.4,'min_chunk_l':0.2,'margin':0, 'flt':{'btype':'low','f':np.asarray([8000]),'ord':5}} opt = myl.opt_default(opt,dflt) opt['flt']['fs'] = opt['fs'] ## removing DC, low-pass filtering flt = fu_filt(s,opt['flt']) y = flt['y'] ## pause detection for >=n pauses t, e_ratio = pau_detector_sub(y,opt) if len(t)>0: ## extending 1st and last pause to file boundaries if opt['fbnd']==True: t[0,0]=0 t[-1,-1]=len(y)-1 ## merging pauses across too short chunks ## merging chunks across too small pauses if (opt['min_pau_l']>0 or opt['min_chunk_l']>0): t, e_ratio = pau_detector_merge(t,e_ratio,opt) ## too many pauses? # -> subsequently remove the ones with highest e-ratio if (opt['n']>0 and len(t)>opt['n']): t, e_ratio = pau_detector_red(t,e_ratio,opt) ## speech chunks tc = pau2chunk(t,len(y)) ## pause-only -> chunk-only if (opt['force_chunk']==True and len(tc)==0): tc = cp.deepcopy(t) t = np.asarray([]) e_ratio = np.asarray([]) ## add onset t = t+opt['ons'] tc = tc+opt['ons'] ## return dict ## incl fields with indices to seconds (index+1=sampleIndex) pau={'tpi':t, 'tci':tc, 'e_ratio': e_ratio} pau['tp'] = myl.idx2sec(t,opt['fs']) pau['tc'] = myl.idx2sec(tc,opt['fs']) #print(pau) return pau # merging pauses across too short chunks # merging chunks across too small pauses # IN: # t [[on off]...] of pauses # e [e_rat ...] # OUT: # t [[on off]...] merged # e [e_rat ...] merged (simply mean of merged segments taken) def pau_detector_merge(t,e,opt): ## min pause and chunk length in samples mpl = myl.sec2smp(opt['min_pau_l'],opt['fs']) mcl = myl.sec2smp(opt['min_chunk_l'],opt['fs']) ## merging chunks across short pauses tm = np.asarray([]) em = np.asarray([]) for i in myl.idx_a(len(t)): if ((t[i,1]-t[i,0] >= mpl) or (opt['fbnd']==True and (i==0 or i==len(t)-1))): tm = myl.push(tm,t[i,:]) em = myl.push(em,e[i]) # nothing done in previous step? if len(tm)==0: tm = cp.deepcopy(t) em = cp.deepcopy(e) if len(tm)==0: return t, e ## merging pauses across short chunks tn = np.asarray([tm[0,:]]) en = np.asarray([em[0]]) if (tn[0,0]<mcl): tn[0,0]=0 for i in np.arange(1,len(tm),1): if (tm[i,0] - tn[-1,1] < mcl): tn[-1,1] = tm[i,1] en[-1] = np.mean([en[-1],em[i]]) else: tn = myl.push(tn,tm[i,:]) en = myl.push(en,em[i]) #print("t:\n", t, "\ntm:\n", tm, "\ntn:\n", tn) #!v return tn, en # pause to chunk intervals # IN: # t [[on off]] of pause segments (indices in signal) # l length of signal vector # OUT: # tc [[on off]] of speech chunks def pau2chunk(t,l): if len(t)==0: return np.asarray([[0,l-1]]) if t[0,0]>0: tc = np.asarray([[0,t[0,0]-1]]) else: tc = np.asarray([]) for i in np.arange(0,len(t)-1,1): if t[i,1] < t[i+1,0]-1: tc = myl.push(tc,[t[i,1]+1,t[i+1,0]-1]) if t[-1,1]<l-1: tc = myl.push(tc,[t[-1,1]+1,l-1]) return tc # called by pau_detector # IN: # as for pau_detector # OUT: # t [on off] # e_ratio def pau_detector_sub(y,opt): ## settings # reference window span rl = math.floor(opt['l_ref']*opt['fs']) # signal length ls = len(y) # min pause length ml = opt['l']*opt['fs'] # global rmse and pause threshold e_rel = cp.deepcopy(opt['e_rel']) # global rmse # as fallback in case reference window is likely to be pause # almost-zeros excluded (cf percentile) since otherwise pauses # show a too high influence, i.e. lower the reference too much # so that too few pauses detected #e_glob = myl.rmsd(y) ya = abs(y) qq = np.percentile(ya,[50]) e_glob = myl.rmsd(ya[ya>qq[0]]) t_glob = opt['e_rel']*e_glob # stepsize sts=max([1,math.floor(0.05*opt['fs'])]) # energy calculation in analysis and reference windows wopt_en = {'win':ml,'rng':[0,ls]} wopt_ref = {'win':rl,'rng':[0,ls]} # loop until opt.n criterion is fulfilled # increasing energy threshold up to 1 while e_rel < 1: # pause [on off], pause index t=np.asarray([]) j=0 # [e_y/e_rw] indices as in t e_ratio=np.asarray([]) i_steps = np.arange(1,ls,sts) for i in i_steps: # window yi = myl.windowing_idx(i,wopt_en) e_y = myl.rmsd(y[yi]) # energy in reference window e_r = myl.rmsd(y[myl.windowing_idx(i,wopt_ref)]) # take overall energy as reference if reference window is pause if (e_r <= t_glob): e_r = e_glob # if rmse in window below threshold if e_y <= e_r*e_rel: yis = yi[0] yie = yi[-1] if len(t)-1==j: # values belong to already detected pause if len(t)>0 and yis<t[j,1]: t[j,1]=yie # evtl. needed to throw away superfluous # pauses with high e_ratio e_ratio[j]=np.mean([e_ratio[j],e_y/e_r]) else: t = myl.push(t,[yis, yie]) e_ratio = myl.push(e_ratio,e_y/e_r) j=j+1 else: t=myl.push(t,[yis, yie]) e_ratio = myl.push(e_ratio,e_y/e_r) # (more than) enough pauses detected? if len(t) >= opt['n']: break e_rel = e_rel+0.1 if opt['margin']==0 or len(t)==0: return t, e_ratio # shorten pauses by margins mar=int(opt['margin']*opt['fs']) tm, erm = myl.ea(), myl.ea() for i in myl.idx_a(len(t)): # only slim non-init and -fin pauses if i>0: ts = t[i,0]+mar else: ts = t[i,0] if i < len(t)-1: te = t[i,1]-mar else: te = t[i,1] # pause disappeared if te <= ts: # ... but needs to be kept if opt['n']>0: tm = myl.push(tm,[t[i,0],t[i,1]]) erm = myl.push(erm,e_ratio[i]) continue # pause still there tm = myl.push(tm,[ts,te]) erm = myl.push(erm,e_ratio[i]) return tm, erm def pau_detector_red(t,e_ratio,opt): # keep boundary pauses if opt['fbnd']==True: n=opt['n']-2 #bp = [t[0,],t[-1,]] bp = np.concatenate((np.array([t[0,]]),np.array([t[-1,]])),axis=0) ii = np.arange(1,len(t)-1,1) t = t[ii,] e_ratio=e_ratio[ii] else: n=opt['n'] bp=np.asarray([]) if n==0: t=[] # remove pause with highest e_ratio while len(t)>n: i = myl.find(e_ratio,'is','max') j = myl.find(np.arange(1,len(e_ratio),1),'!=',i[0]) t = t[j,] e_ratio = e_ratio[j] # re-add boundary pauses if removed if opt['fbnd']==True: if len(t)==0: t=np.concatenate((np.array([bp[0,]]),np.array([bp[1,]])),axis=0) else: t=np.concatenate((np.array([bp[0,]]),np.array([t]),np.array([bp[1,]])),axis=0) return t, e_ratio # spectral balance calculation according to Fant 2000 # IN: # sig: signal (vowel segment) # fs: sampe rate # opt: # 'win': length of central window in ms <len(sig)>; -1 is same as len(sig) # 'ub': upper freq boundary in Hz <-1> default: no low-pass filtering # 'domain': <'freq'>|'time'; pre-emp in frequency (Fant) or time domain # 'alpha': <0.95> for time domain only y[n] = x[n]-alpha*x[n-1] # if alpha>0 it is interpreted as lower freq threshold for pre-emp # OUT: # sb: spectral tilt def splh_spl(sig,fs,opt_in={}): opt = cp.deepcopy(opt_in) opt = myl.opt_default(opt,{'win':len(sig),'f':-1,'btype':'none', 'domain':'freq','alpha':0.95}) #print(opt) #myl.stopgo() ## cut out center window ################################## ls = len(sig) if opt['win'] <= 0: opt['win'] = ls if opt['win'] < ls: wi = myl.windowing_idx(int(ls/2), {'rng':[0, ls], 'win':int(opt['win']*fs)}) y = sig[wi] else: y = cp.deepcopy(sig) if len(y)==0: return np.nan # reference sound pressure level p_ref = pRef('spl') ## pre-emp in time domain #################################### if opt['domain']=='time': # low pass filtering if opt['btype'] != 'none': flt = fu_filt(y,{'fs':fs,'f':opt['f'],'ord':6, 'btype':opt['btype']}) y = flt['y'] yp = pre_emphasis(y,opt['alpha'],fs,False) y_db = 20*np.log10(myl.rmsd(y)/p_ref) yp_db = 20*np.log10(myl.rmsd(yp)/p_ref) #print(yp_db - y_db) return yp_db - y_db ## pre-emp in frequency domain ############################## # according to Fant # actual length of cut signal n = len(y) ## hamming windowing y *= np.hamming(n) ## spectrum Y = np.fft.fft(y,n) N = int(len(Y)/2) ## frequency components XN = np.fft.fftfreq(n,d=1/fs) X = XN[0:N] # same as X = np.linspace(0, fs/2, N, endpoint=True) ## amplitudes # sqrt(Y.real**2 + Y.imag**2) # to be normalized: # *2 since only half of transform is used # /N since output needs to be normalized by number of samples # (tested on sinus, cf # http://www.cbcity.de/die-fft-mit-python-einfach-erklaert) a = 2*np.abs(Y[:N])/N ## vowel-relevant upper frequency boundary if opt['btype'] != 'none': vi = fu_filt_freq(X,opt) if len(vi)>0: X = X[vi] a = a[vi] ## Fant preemphasis filter (Fant et al 2000, p10f eq 20) preemp = 10*np.log10((1+X**2/200**2)/(1+X**2/5000**2)) ap = 10*
np.log10(a)
numpy.log10
#!/usr/bin/env python import sys import matplotlib.pyplot as plt #graphics library import numpy as np #numerical library (FFT etc) import Nio # NCAR python io library # set up the physical domain of the experiment to be run # zs = topography (Fzs = FFT(zs)) # dx = grid cell size (m) # U = wind speed (m/s) # Hw = water vapor scale height # Ndsq = Brunt Vaisalla freq. squared (s^-2) # also sets up parameters for the linear model (e.g. tauf,c, cw) # tauf = average hydrometeor fall time (seconds) ~500s? for rain w/Hw=5000, 1500s? for snow w/Hw=3000 # tauc = average hydrometeor formation time (seconds) ~500s for rain, longer for snow, faster for warmer def setup_experiment(wind=2, experiment=1, verbose=False): U = [5.0,10.0,15.0,25.0][wind] # wind speed Ndsq = 3.6e-5; # dry BV freq sq. #original # Ndsq = 0.002**2 #4e-6 # dry BV freq sq. # Ndsq = 0.00011 #1e-4 # dry BV freq sq. # experiment D1 D2 D3 # h height of the hill 1800 1400 1040 [meters] # sigma half-width 60 40 3.1 [grid cells] # z0 base of the hill 1700 2000 2200 [meters] # G number of grids 420 250 52 [grid cells] Nx = [420.,250.,52.][experiment]*2 # length of domain (grid cells) hm = [1800.0,1400.0,1040.0][experiment] # mnt height (m) xm = Nx/2.0 # mountain location in domain (grid cell) am = [60.0,40.0,3.1][experiment] # mountain half-width (grid cells) dx = 2000.0 # grid spacing (m) Lx = Nx*dx # length of domain (m) x = np.linspace(0,Lx,Nx) # distance array (m) zo = [1700.0,2000.0,2200.0][experiment] # mountain base height (m) NOT REALLY USED CORRECTLY YET p0 = 101325 * (1 - 2.25577e-5*zo)**5.25588 # compute base pressure T2m = 268.0 # 270.56 #needs to be selected by experiment? base_mr=[0.00325,0.0032,0.003][experiment] # mixing ratio at the base of the mountain # base_mr = 0.003255 # base_mr = 0.0025687 # hw = 4000.0 # scale of water vapor (see formula in SB04,appendix) # hw = hw - zo # hw = 3000.0 # zo=0.0 # ---------------------------------------------------------------- # Make the mountain (theoretical) # # zs = hm*exp(-(x-xm).^2/am^2); Gaussian zs = hm/(1.0+((x/dx-xm)/am)**2.) # eqn from Trude zs = zs-zs[Nx/4] # sets the zero point to be 1/4 of the way in because we have doubled the size of the domain zs[zs<0]=0 # set anything below 0 to 0 zs += zo # ----------------------------------------------------------------- # put zs in Fourier space Fzs = np.fft.fftshift(np.fft.fft(zs))/Nx # linear model paramters (see calculations in SB'04): # ------------------------------------------------------------------------------- t0 = 273.16 # p0 = 100000 # p0 = 82000.0 (now calculated above from z0) L = 2.5e6 ratio = 18.015/28.964 R = 287.0 Rv = 461.0 cp = 1004.0 g = 9.81 es = 611.21*np.exp(17.502*(T2m-t0)/(T2m-32.19)); qs0 = ratio *es/(p0-es); cap_gamma = -(g * (1.+(L*qs0)/(R*T2m)) / (cp + (L**2*qs0*ratio) / (R*T2m**2))); env_gamma = Ndsq*T2m/g + cap_gamma #Ndsq calculated from potential temperature profile cap_gamma converts to real temp? hw = np.abs((Rv*T2m**2)/(L*env_gamma)) # if env_gamma pulled from model, enforce reasonable values with Ndsq=min(Ndsq,0.012) # cw below calculated from Trude's profile, Ndsq=0.00011, T2m=271K, p0=820mb, dth/dz=0.004K/m dt/dz=-0.0054 # could calculate Ndsq as = (env_gamma-cap_gamma)*g/T2m Ndsq = (-0.0054 - cap_gamma) * g / T2m # ------------------------------------------------------------------------------- # cw = 1.9 # sensitivity (commonly set to 1.1, see paper SB04) = cap_gamma / env_gamma cw = cap_gamma / env_gamma # using base_mr from profile, but maybe it should be qs0 above? cwqv = cw * base_mr # sensitivity times q_vs (set to: 0.01 kg/kg, see paper SB04) z0 = 0 # at the height (AGL?) where you want the precip vterm = 2.0 # vertical terminal velocity for e.g. snow = 2m/s rain=10m/s tauf= hw / vterm # BS'11: =zg/Vt ( =hw/Vt for moisture level: around 500s (->750s) is normally good) tauc= 2000.0 # cloud->hydrometero conversion time. probably around 500s for rain, # shorter for warmer condition, longer for snow? if verbose: print(" Ndsq=",Ndsq) print(" Environmental lapse rate=0.004K/m") print(" \"Dry\" lapse rate=0.0017K/m") print(" Base MR=",base_mr) print(" Scale height=",hw) print(" tauc=",tauc) print(" tauf=",tauf) print(" cwqv=",cwqv) # --------------------------------------------------------------------------------- params = {"cw":cw,"cwqv":cwqv,"z0":z0,"tauf":tauf,"tauc":tauc,"hw":hw,"Ndsq":Ndsq} return (x,zs,Fzs,U,dx,params) def get_params(T2m,U,Ndsq,zs,env_gamma,verbose=False): """docstring for get_params""" Nx = len(zs) # length of domain (grid cells) # hm = [1800.0,1400.0,1040.0][experiment] # mnt height (m) # xm = Nx/2.0 # mountain location in domain (grid cell) # am = [60.0,40.0,3.1][experiment] # mountain half-width (grid cells) # dx = 2000.0 # grid spacing (m) # Lx = Nx*dx # length of domain (m) # x = np.linspace(0,Lx,Nx) # distance array (m) # zo = [1700.0,2000.0,2200.0][experiment] # mountain base height (m) NOT REALLY USED CORRECTLY YET zo = 0.0 p0 = 101325 * (1 - 2.25577e-5*zo)**5.25588 # compute base pressure # p0 = 101325.0 # T2m = 268.0# 270.56 #needs to be selected for each experiment...? # hw = 4000.0 # scale of water vapor (see formula in SB04,appendix) # base_mr=[0.00325,0.0032,0.003][experiment] # mixing ratio at the base of the mountain # base_mr = 0.003255 # base_mr = 0.0025687 # ----------------------------------------------------------------- # put zs in Fourier space Fzs = np.fft.fftshift(np.fft.fft(zs))/Nx # linear model paramters (see calculations in SB'04): # ------------------------------------------------------------------------------- t0 = 273.16 # p0 = 100000 # p0 = 82000.0 (now calculated above from z0) L = 2.5e6 ratio = 18.015/28.964 R = 287.0 Rv = 461.0 cp = 1004.0 g = 9.81 es = 611.21*np.exp(17.502*(T2m-t0)/(T2m-32.19)) qs0 = ratio *es/(p0-es) base_mr=qs0 cap_gamma = -(g * (1.+(L*qs0)/(R*T2m)) / (cp + (L**2*qs0*ratio) / (R*T2m**2))) # env_gamma = Ndsq*T2m/g + cap_gamma #Ndsq calculated from potential temperature profile cap_gamma converts to real temp? hw = np.abs((Rv*T2m**2)/(L*env_gamma)) # if env_gamma pulled from model, enforce reasonable values with Ndsq=min(Ndsq,0.012) # cw below calculated from Trude's profile, Ndsq=0.00011, T2m=271K, p0=820mb, dth/dz=0.004K/m dt/dz=-0.0054 # could calculate Ndsq as = (env_gamma-cap_gamma)*g/T2m # Ndsq=(-0.0054-cap_gamma)*g/T2m # ------------------------------------------------------------------------------- # cw = 1.9 # sensitivity (commonly set to 1.1, see paper SB04) = cap_gamma / env_gamma cw = cap_gamma/env_gamma if verbose: print(cap_gamma, env_gamma, cw, qs0) # using base_mr from profile, but maybe it should be qs0 above? cwqv= cw*base_mr # =sensitivity times q_vs (set to: 0.01 kg/kg, see paper SB04) # print(cwqv,cw,base_mr,qs0,p0,hw) z0 = 0 # at the height (AGL?) where you want the precip vterm = 2.0 # vertical terminal velocity for e.g. snow = 2m/s rain=10m/s tauf= hw/vterm # BS'11: =zg/Vt ( =hw/Vt for moisture level: around 500s (->750s) is normally good) tauc= 2000.0 # cloud->hydrometero conversion time. probably around 500s for rain, # shorter for warmer condition, longer for snow? if verbose: print(" Ndsq=",Ndsq) print(" Environmental lapse rate=0.004K/m") print(" \"Dry\" lapse rate=0.0017K/m") print(" Base MR=",base_mr) print(" Scale height=",hw) print(" tauc=",tauc) print(" tauf=",tauf) print(" cwqv=",cwqv) # --------------------------------------------------------------------------------- params = {"cw":cw,"cwqv":cwqv,"z0":z0,"tauf":tauf,"tauc":tauc,"hw":hw,"Ndsq":Ndsq} return (Fzs,params) # # This is a 2-D precipitation solution for the linear model. # def solve(Fzs,U,dx,params, zlevels=None): cw = params.cw #1.1 #efficiency factor cwqv= params.cwqv z0 = params.z0 #0 #meters tauf= params.tauf #1500 #seconds tauc= params.tauc #1000 #seconds hw = params.hw #3000 #m water vapor scale height, maybe this shouldn't be in params... Ndsq= params.Ndsq #0.0011 # 1/s^2 Brunt-Vaisalla frequency squared Nx=Fzs.shape[0] m=
np.ones(Nx)
numpy.ones
import argparse # import safety_gym import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import time from safety_gym.envs.engine import Engine from PIL import Image from imageio import imwrite from envs import GoalEnv from utils.dataset import * import os CAMERA_FREE = 0 CAMERA_FIXED = 1 class Maze(GoalEnv): def __init__(self, num_steps=20000, step_size=50): super(Maze, self).__init__() self.goal_im = None self.step_size = step_size self.grid_n = 64 self.maze_env = SafetyGymMaze('point') self.maze_env.reset() self.maze_env.render(mode='rgb_array', camera_id=2) # env.render(camera_id=2) self.maze_env.viewer_setup() self.maze_env.set_num_steps(num_steps) self.state = self.maze_env.robot_pos self.name = 'maze' def reset(self): """Resets the state of the environment and the goal, returning an initial observation (images).""" self.maze_env.reset() self.goal_im = self.get_obs() self.goal_state = self.maze_env.robot_pos self.maze_env.reset() return self.get_obs() def seed(self, seed): """Set the random seed.""" np.random.seed(seed) def get_state(self): return self.maze_env.robot_pos def get_obs(self): """Return current image observation.""" img = self.maze_env.render(mode='rgb_array', camera_id=2) img = np.array(Image.fromarray(img).resize((64, 64), resample=Image.NEAREST)) return img def step(self, action): """Run one timestep of the environment's dynamics. :param action: :return: """ for i in range(self.step_size): self.maze_env.step(action[i]) def step_sequence(self, action_seq): for action in action_seq: self.step(action) def sample_action(self): """Return a uniformly sampled action from the action space""" action = [] for i in range(self.step_size): action.append(self.maze_env.action_space.sample()) return action def reached_goal(self): """Return True if the state of the environment matches the goal state""" pass class SafetyGymMaze(Engine): def __init__(self, agent, robot_xy = None): surrounding_walls = set() for i in (
np.linspace(0, 1, 15)
numpy.linspace
import os import tarfile from Bio import SeqIO import numpy as np import math import time import random import sys import logging #region Logging start logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) handler = logging.FileHandler('results/logger.log') handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) #endregion AA_list = ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'] # Custom dictionary, amino acids with similar properties are "close" to one another AA_to_int = {'X': 0, 'R': 1, 'H': 2, 'K': 3, 'D': 4, 'E': 5, 'S': 6, 'T': 7, 'N': 8, 'Q': 9, 'C': 10, 'G': 11, 'P': 12, 'A': 13, 'V': 14, 'I': 15, 'L': 16, 'M': 17, 'F': 18, 'Y': 19, 'W': 20} int_to_AA = {x: y for y, x in AA_to_int.items()} def check_region(region): if any(x in region for x in ['c','n','h','C']): return np.array([1]) else: return np.array([0]) def progress(file_counter, total_file_count, sample_counter): s = (f"{file_counter} out of {total_file_count} files loaded, " f"{sample_counter} samples loaded") print(s, end='\r') def one_hot_endcoding(vector): # Stupid keras.... # TO FIGURE OUT THIS BULLSHIT TOOK SO LONG TIME, I FIRST THOUGHT IT WAS NUMPY BUT NOOOO.... for i,j in enumerate(vector): _hot = [0]*len(AA_to_int.keys()) if j in AA_to_int.keys(): _hot[AA_to_int[j]] = 1. # Add 1. at correct index else: _hot[0] = 1. # Add X if unknown AA vector[i] = _hot return vector def load_training(seq_length, data_folder, data_augmentation=False, fix_samples='IGNORE', equalize_data=False, save_array=True, use_ascii=False, vectorize=True): """Loads traning data into a numpy array. Ignores files that starts with . since they are config files in ubuntu. """ print('Loading data...') t = time.time() cur_dir = os.getcwd() # Needed to reset working directory os.chdir(data_folder) # Go to data folder sample_counter = 0 # Just to count amount of data file_counter = 0 total_file_count = 0 # Count total amount of files for dirpath, dirnames, files in os.walk(os.getcwd(), topdown=True): dirnames[:] = [x for x in dirnames if not x.startswith('.')] total_file_count += len([x for x in files if not x.startswith('.')]) progress(file_counter, total_file_count, sample_counter) big_seq_list = [] # FASTER big_label_list = [] # FASTER for (dirpath, dirnames, filenames) in os.walk(os.getcwd(), topdown=True): # Walks through all files and dirs dirnames[:] = [x for x in dirnames if not x.startswith('.')] for filename in filenames: if filename.startswith('.'): # Ignore config files continue records = SeqIO.parse(dirpath + '/' + filename, 'fasta') for record in records: record = str(record.seq) record = record.split('#') full_seq = list(record[0]) # Discard bad data if len(full_seq) < 2: continue # The first amino acid is usually M or not in signal peptide. Ignore it full_seq = full_seq[1:] # seqs = list in list if not data_augmentation: seqs = [full_seq[:seq_length]] elif data_augmentation: # Divide into smaller pieces seqs = [full_seq[x:x + seq_length] for x in range(0, len(full_seq), seq_length)] else: print('No resample method has been choosen') quit() if fix_samples == 'LOOP_SEQ': seqs = [list(x) + (full_seq*(math.ceil(seq_length/(len(full_seq)))))[:seq_length-len(x)] if len(x) < seq_length else x for x in seqs] elif fix_samples == 'ZERO': seqs = [list(x) + ['X']*(seq_length-len(x)) if len(x) < seq_length else x for x in seqs] elif fix_samples == 'IGNORE': seqs = [x for x in seqs if len(x) == seq_length] if seqs == []: # Check for empty lists continue elif fix_samples == 'NOISE': seqs = [x + random.choices(AA_list, k=(seq_length-len(x))) if len(x) < seq_length else x for x in seqs] # Fix Y if 'positive' in dirpath: """No region, assume the first bases are the signal peptide""" for i in range(len(seqs)): if i == 0: big_label_list.append([1.]) else: # When doing data augmentation, this is needed big_label_list.append([0.]) elif 'negative' in dirpath: for i in range(len(seqs)): big_label_list.append([0.]) else: # Unknown big_label_list.append([-1.]) # Fix X if vectorize: for i,j in enumerate(seqs): seqs[i] = one_hot_endcoding(j) elif use_ascii: # Using ascii numbers, ord('A') = 65 """Doing this sped up the process by 20 fold!""" for i,j in enumerate(seqs): seqs[i] = [float(ord(x)) - 65 for x in j] elif not use_ascii: # Using ascii numbers, ord('A') = 65 """Doing this sped up the process by 20 fold!""" for i,j in enumerate(seqs): seqs[i] = [float(AA_to_int[x]) if x in AA_to_int.keys() else 0 # Fix unknown amino acids for x in j] for seq in seqs: big_seq_list.append(seq) # Needed, since data aug breaks sample_counter += len(seqs) # Slows performance, but I still like it here #progress(file_counter, total_file_count, sample_counter) file_counter += 1 progress(file_counter, total_file_count, sample_counter) """Can be used in future to find which data was tm or not""" #print(os.path.basename(dirpath)) """For neg or pos""" #print(os.path.basename(dirpath)) # Needs to flatten big_seq_list, since it is now a 3 matrix print('') logger.info(f'Loaded {sample_counter} samples') #print('Flattening...') #big_seq_list = sum(big_seq_list, []) # Flattens list, needed since the code needs list in lists for data aug print('Converting to numpy array...') X =
np.array(big_seq_list, dtype=np.float32)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 15 11:29:39 2022 @author: chloechallamel Code pour le projet M9 """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import dm4bem # Physical values # =============== # P-controler gain # ---------------- Kp = 1e4 # Kp -> ∞ : almost perfect controller # Kp = 1e2 # Kp = 1e-3 # Kp -> 0 : no controller Kp -> 0 Kp # Air-flow rate # ------------- Va_livingroom = 6 * 4 * 2.5 # m³ volume of air in the living room Va_bathroom = 2 * 4 * 2.5 # m³ volume of air in the bathroom ACH = 1 # air changes per hour Va_livingroom_dot = ACH * Va_livingroom / 3600 # m³/s air infiltration Va_bathroom_dot = ACH * Va_bathroom / 3600 # Thermophysical properties # ------------------------ air = {'Density': 1.2, # kg/m³ 'Specific heat': 1000} # J/kg.K # Valeurs récupérées de DB materials = {'Conductivity': [2.3, 0.0457, 0.25, 0.19, 1.4], # W/m.K 'Density': [2300, 40, 2800, 700, 2100], # kg/m³ 'Specific heat': [1000, 1450, 896, 2390, 840], # J/kg.K 'Width': [0.3, 0.05, 0.013, 0.035, 0.1], # m 'Slice': [1, 1, 1, 1, 1]} # nb of meshes materials = pd.DataFrame( materials, index=['Concrete', 'Insulation', 'Plaster', 'Door', 'Floor']) # Surfaces surfaces = {'LR': [13.11, 18.4, 6.6, 1.89, 48], # m² 'BR': [15, 3.8, 1.2, 0, 16], 'LR-BR': [8.11, 0, 0, 1.89, 0]} surfaces = pd.DataFrame( surfaces, index=['Dividingwall', 'Wall', 'Window', 'Door', 'Floor']) # convection coefficients, W/m² K h = pd.DataFrame([{'in': 4., 'out': 10}]) # Thermal circuit # =============== # Thermal conductances # -------------------- # Conduction # Conduction zone 1 : LR # in wall Gcd_LR_w_c = materials['Conductivity']['Concrete'] / \ materials['Width']['Concrete'] * surfaces['LR']['Wall'] Gcd_LR_w_i = materials['Conductivity']['Insulation'] / \ materials['Width']['Insulation'] * surfaces['LR']['Wall'] Gcd_LR_w_p = materials['Conductivity']['Plaster'] / \ materials['Width']['Plaster'] * surfaces['LR']['Wall'] # in dividing wall Gcd_LR_dw_p = materials['Conductivity']['Plaster'] / \ materials['Width']['Plaster'] * surfaces['LR']['Dividingwall'] Gcd_LR_dw_i = materials['Conductivity']['Insulation'] / \ materials['Width']['Insulation'] * surfaces['LR']['Dividingwall'] # door Gcd_LR_d = materials['Conductivity']['Door'] / \ materials['Width']['Door'] * surfaces['LR']['Door'] # floor Gcd_LR_f = materials['Conductivity']['Floor'] / \ materials['Width']['Floor'] * surfaces['LR']['Floor'] # Conduction zone 2 : BR # in wall Gcd_BR_w_c = materials['Conductivity']['Concrete'] / \ materials['Width']['Concrete'] * surfaces['BR']['Wall'] Gcd_BR_w_i = materials['Conductivity']['Insulation'] / \ materials['Width']['Insulation'] * surfaces['BR']['Wall'] Gcd_BR_w_p = materials['Conductivity']['Plaster'] / \ materials['Width']['Plaster'] * surfaces['BR']['Wall'] # in dividing wall Gcd_BR_dw_p = materials['Conductivity']['Plaster'] / \ materials['Width']['Plaster'] * surfaces['BR']['Dividingwall'] Gcd_BR_dw_i = materials['Conductivity']['Insulation'] / \ materials['Width']['Insulation'] * surfaces['BR']['Dividingwall'] # floor Gcd_BR_f = materials['Conductivity']['Floor'] / \ materials['Width']['Floor'] * surfaces['BR']['Floor'] # Conduction zone 3 : LR-BR # in dividing wall Gcd_LRBR_dw_p = materials['Conductivity']['Plaster'] / \ materials['Width']['Plaster'] * surfaces['LR-BR']['Dividingwall'] Gcd_LRBR_dw_i = materials['Conductivity']['Insulation'] / \ materials['Width']['Insulation'] * surfaces['LR-BR']['Dividingwall'] # door Gcd_LRBR_d = materials['Conductivity']['Door'] / \ materials['Width']['Door'] * surfaces['LR-BR']['Door'] # Convection # Convection zone 1 : LR Gcv_LR_w = h * surfaces['LR']['Wall'] # in wall Gcv_LR_dw = h * surfaces['LR']['Dividingwall'] # in in dividing wall Gcv_LR_d = h * surfaces['LR']['Door'] # door Gcv_LR_f = h * surfaces['LR']['Floor'] # floor # Convection zone 2 : BR Gcv_BR_w = h * surfaces['BR']['Wall'] # in wall Gcv_BR_dw = h * surfaces['BR']['Dividingwall'] # in in dividing wall Gcv_BR_f = h * surfaces['BR']['Floor'] # floor # Convection zone 3 : LR-BR Gcv_LRBR_dw = h * surfaces['LR-BR']['Dividingwall'] # in in dividing wall Gcv_LRBR_d = h * surfaces['LR-BR']['Door'] # door # Ventilation & advection Gv_LR = Va_livingroom_dot * air['Density'] * air['Specific heat'] Gv_BR = Va_bathroom * air['Density'] * air['Specific heat'] # Window : conductance Uw * S Uw = 1.96 # W/(m2.K) pour double-vitrage selon DB Gw_LR = Uw * surfaces['LR']['Window'] Gw_BR = Uw * surfaces['BR']['Window'] # Renouvellement d'air Gr_LR = Gr_BR = Kp # Thermal capacities # ------------------ # zone 1 : LR C_LR_w_c = materials['Density']['Concrete'] * \ materials['Specific heat']['Concrete'] * \ surfaces['LR']['Wall'] * materials['Width']['Concrete'] C_LR_w_i = materials['Density']['Insulation'] * \ materials['Specific heat']['Insulation'] * \ surfaces['LR']['Wall'] * materials['Width']['Insulation'] C_LR_w_p = materials['Density']['Plaster'] * \ materials['Specific heat']['Plaster'] * \ surfaces['LR']['Wall'] * materials['Width']['Plaster'] C_LR_dw_p = materials['Density']['Plaster'] * \ materials['Specific heat']['Plaster'] * \ surfaces['LR']['Dividingwall'] * materials['Width']['Plaster'] C_LR_dw_i = materials['Density']['Insulation'] * \ materials['Specific heat']['Insulation'] * \ surfaces['LR']['Dividingwall'] * materials['Width']['Insulation'] C_LR_d = materials['Density']['Door'] * \ materials['Specific heat']['Door'] * \ surfaces['LR']['Door'] * materials['Width']['Door'] C_LR_f = materials['Density']['Floor'] * \ materials['Specific heat']['Floor'] * \ surfaces['LR']['Floor'] * materials['Width']['Floor'] # zone 2 : BR C_BR_w_c = materials['Density']['Concrete'] * \ materials['Specific heat']['Concrete'] * \ surfaces['BR']['Wall'] * materials['Width']['Concrete'] C_BR_w_i = materials['Density']['Insulation'] * \ materials['Specific heat']['Insulation'] * \ surfaces['BR']['Wall'] * materials['Width']['Insulation'] C_BR_w_p = materials['Density']['Plaster'] * \ materials['Specific heat']['Plaster'] * \ surfaces['BR']['Wall'] * materials['Width']['Plaster'] C_BR_dw_p = materials['Density']['Plaster'] * \ materials['Specific heat']['Plaster'] * \ surfaces['BR']['Dividingwall'] * materials['Width']['Plaster'] C_BR_dw_i = materials['Density']['Insulation'] * \ materials['Specific heat']['Insulation'] * \ surfaces['BR']['Dividingwall'] * materials['Width']['Insulation'] C_BR_f = materials['Density']['Floor'] * \ materials['Specific heat']['Floor'] * \ surfaces['BR']['Floor'] * materials['Width']['Floor'] # zone 3 : LR-BR C_LRBR_dw_p = materials['Density']['Plaster'] * \ materials['Specific heat']['Plaster'] * \ surfaces['LR-BR']['Dividingwall'] * materials['Width']['Door'] C_LRBR_dw_i = materials['Density']['Insulation'] * \ materials['Specific heat']['Insulation'] * \ surfaces['LR-BR']['Dividingwall'] * materials['Width']['Insulation'] C_LRBR_d = materials['Density']['Door'] * \ materials['Specific heat']['Door'] * \ surfaces['LR-BR']['Door'] * materials['Width']['Door'] # air C_LR_air = air['Density'] * air['Specific heat'] * Va_livingroom C_BR_air = air['Density'] * air['Specific heat'] * Va_bathroom # Incidence matrix A # ------------------ A = np.zeros([60, 49]) # Flux directed to livingroom A[0, 0] = 1 A[1, 0], A[1, 1] = -1, 1 A[2, 1], A[2, 2] = -1, 1 A[3, 2], A[3, 3] = -1, 1 A[4, 3], A[4, 4] = -1, 1 A[5, 4], A[5, 5] = -1, 1 A[6, 5], A[6, 6] = -1, 1 A[7, 6], A[7, 20] = -1, 1 A[8, 7] = 1 A[9, 7], A[9, 8] = -1, 1 A[10, 8], A[10, 9] = -1, 1 A[11, 9], A[11, 20] = -1, 1 A[12, 10] = 1 A[13, 10], A[13, 11] = -1, 1 A[14, 11], A[14, 12] = -1, 1 A[15, 12], A[15, 20] = -1, 1 A[16, 13] = 1 A[17, 13], A[17, 14] = -1, 1 A[18, 14], A[18, 15] = -1, 1 A[19, 15], A[19, 16] = -1, 1 A[20, 16], A[20, 17] = -1, 1 A[21, 17], A[21, 18] = -1, 1 A[22, 18], A[22, 19] = -1, 1 A[23, 19], A[23, 20] = -1, 1 A[24, 20] = 1 A[25, 20] = 1 A[26, 20], A[26, 21] = -1, 1 A[27, 21], A[27, 22] = -1, 1 A[28, 22], A[28, 23] = -1, 1 A[29, 23], A[29, 24] = -1, 1 A[30, 24], A[30, 25] = -1, 1 A[31, 25], A[31, 26] = -1, 1 A[32, 26], A[32, 27] = -1, 1 A[33, 27], A[33, 31] = -1, 1 A[34, 28] = 1 A[35, 28], A[35, 29] = -1, 1 A[36, 29], A[36, 30] = -1, 1 A[37, 30], A[37, 31] = -1, 1 # Flux directed to bathroom A[38, 31], A[38, 32] = 1, -1 A[39, 32], A[39, 33] = 1, -1 A[40, 33], A[40, 34] = 1, -1 A[41, 34], A[41, 35] = 1, -1 A[42, 35], A[42, 36] = 1, -1 A[43, 36], A[43, 37] = 1, -1 A[44, 37], A[44, 38] = 1, -1 A[45, 38] = 1 A[46, 31], A[46, 39] = 1, -1 A[47, 39], A[47, 40] = 1, -1 A[48, 40], A[48, 41] = 1, -1 A[49, 41] = 1 A[50, 31], A[50, 42] = 1, -1 A[51, 42], A[51, 43] = 1, -1 A[52, 43], A[52, 44] = 1, -1 A[53, 44], A[53, 45] = 1, -1 A[54, 45], A[54, 46] = 1, -1 A[55, 46], A[55, 47] = 1, -1 A[56, 47], A[56, 48] = 1, -1 A[57, 48] = 1 A[58, 31] = 1 A[59, 31] = 1 # Conductance matrix G # -------------------- G = np.zeros([60, 60]) # Livingroom # wall (ext) # convection G[0, 0] = Gcv_LR_w['out'] # convection wall concrete out # conduction G[1, 1] = G[2, 2] = Gcd_LR_w_c # conduction wall concrete G[3, 3] = G[4, 4] = Gcd_LR_w_i # conduction wall insulation G[5, 5] = G[6, 6] = Gcd_LR_w_p # conduction wall plaster # convection G[7, 7] = Gcv_LR_w['in'] # convection wall plaster inside # floor # convection G[8, 8] = Gcv_LR_f['in'] # convection floor temp fix # conduction G[9, 9] = G[10, 10] = Gcd_LR_f # conduction floor # convection G[11, 11] = Gcv_LR_f['in'] # convection floor inside # door # convection G[12, 12] = Gcv_LR_d['in'] # convection door temp fix # conduction G[13, 13] = G[14, 14] = Gcd_LR_d # conduction door # convection G[15, 15] = Gcv_LR_d['in'] # convection door inside # dividing wall # convection G[16, 16] = Gcv_LR_dw['in'] # convection d-wall plaster fix # conduction G[17, 17] = G[18, 18] = Gcd_LR_dw_p # conduction d-wall plaster G[19, 19] = G[20, 20] = Gcd_LR_dw_i # conduction d-wall insulation G[21, 21] = G[22, 22] = Gcd_LR_dw_p # conduction d-wall plaster # convection G[23, 23] = Gcv_LR_dw['in'] # convection wall plaster inside # window + ventilation # conduction G[24, 24] = Gw_LR + Gv_LR # conduction w + venti # renouvellement air # conduction G[25, 25] = Gr_LR # renouv air LR # partition wall # convection G[26, 26] = Gcv_LRBR_dw['in'] # convection d-wall plaster in # conduction G[27, 27] = G[28, 28] = Gcd_LRBR_dw_p # conduction d-wall plaster G[29, 29] = G[30, 30] = Gcd_LRBR_dw_i # conduction d-wall insulation G[31, 31] = G[32, 32] = Gcd_LRBR_dw_p # conduction d-wall plaster # convection G[33, 33] = Gcv_LRBR_dw['in'] # convection wall plaster inside # door # convection G[34, 34] = Gcv_LRBR_d['in'] # convection door temp fix # conduction G[35, 35] = G[36, 36] = Gcd_LRBR_d # conduction door # convection G[37, 37] = Gcv_LRBR_d['in'] # convection door inside # Bathroom # wall (ext) # convection G[45, 45] = Gcv_BR_w['out'] # convection wall concrete out # conduction G[44, 44] = G[43, 43] = Gcd_BR_w_c # conduction wall concrete G[42, 42] = G[41, 41] = Gcd_BR_w_i # conduction wall insulation G[40, 40] = G[39, 39] = Gcd_BR_w_p # conduction wall plaster # convection G[38, 38] = Gcv_BR_w['in'] # convection wall plaster inside # floor # convection G[49, 49] = Gcv_BR_f['in'] # convection floor temp fix # conduction G[48, 48] = G[47, 47] = Gcd_BR_f # conduction floor # convection G[46, 46] = Gcv_BR_f['in'] # convection floor inside # dividing wall # convection G[57, 57] = Gcv_BR_dw['in'] # convection d-wall plaster fix # conduction G[56, 56] = G[55, 55] = Gcd_BR_dw_p # conduction d-wall plaster G[54, 54] = G[53, 53] = Gcd_BR_dw_i # conduction d-wall insulation G[52, 52] = G[51, 51] = Gcd_BR_dw_p # conduction d-wall plaster # convection G[50, 50] = Gcv_BR_dw['in'] # convection wall plaster inside # window + ventilation # conduction G[59, 59] = Gw_BR + Gv_BR # conduction w + venti # renouvellement air # conduction G[58, 58] = Gr_BR # renouv air BR # Capacity matrix C # ----------------- C = np.zeros([49, 49]) C_BR_air = C_BR_dw_i = C_BR_w_i = C_LR_dw_i = C_LRBR_dw_i = 0 # C_BR_air = C_BR_dw_i = C_BR_w_i = C_LR_air = C_LR_dw_i = C_LR_w_i = C_LRBR_dw_i = 0 # Livingroom : LR # wall (ext) C[1, 1] = C_LR_w_c C[3, 3] = C_LR_w_i C[5, 5] = C_LR_w_p # floor C[8, 8] = C_LR_f # dividingwall C[14, 14] = C[18, 18] = C_LR_dw_p C[16, 16] = C_LR_dw_i # door C[11, 11] = C_LR_d # air C[20, 20] = C_LR_air # Partition wall : LR-BR # dividingwall C[22, 22] = C[26, 26] = C_LRBR_dw_p C[24, 24] = C_LRBR_dw_i # door C[29, 29] = C_LRBR_d # Bathroom # wall (ext) C[37, 37] = C_BR_w_c C[35, 35] = C_BR_w_i C[33, 33] = C_BR_w_p # floor C[40, 40] = C_BR_f # dividingwall C[47, 47] = C[43, 43] = C_BR_dw_p C[45, 45] = C_BR_dw_i # air C[31, 31] = C_BR_air # Vector of temperature sources b # ------------------------------- b = np.zeros(60) b[[0, 8, 12, 16, 24, 25, 45, 49, 57, 58, 59]] = 1 # Vector of heat sources f # ------------------------ f = np.zeros(49) f[[0, 6, 8, 19, 20, 21, 27, 31, 32, 38, 40, 42]] = 1 # Vector of outputs # ----------------- y = np.zeros(49) # 1 si on veut que la T sorte, 0 sinon y[[20, 31]] = 1 # Input vector # ------------ u = np.hstack([b[np.nonzero(b)], f[np.nonzero(f)]]) # Thermal circuit -> state-space # ============================== [As, Bs, Cs, Ds] = dm4bem.tc2ss(A, G, b, C, f, y) # Maximum time-step dtmax = min(-2. / np.linalg.eig(As)[0]) print(f'Maximum time step: {dtmax:.2f} s') dt = 10 # dt = 100 # dt = 360 print(f'Time step: {dt:.2f} s') # Step response # ------------- duration = 3600 * 24 * 2 # [s] # number of steps n = int(
np.floor(duration / dt)
numpy.floor
import numpy as np from scipy.linalg import block_diag import math class rJoint: def __init__(self, alpha, a, theta, d, type, inertia, m, r): self.alpha = alpha self.a = a self.theta = theta self.d = d self.type = type self.inertia = inertia self.m = m self.r = r class cartesian: def __init__(self, x, y, z, roll, pitch, yaw): self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw class fkine: def __init__(self, T, A, Aout, transl, R, rpy): self.T = T self.A = A self.Aout = Aout self.transl = transl self.R = R self.rpy = rpy class impedanceController: def __init__(self): self.Kd = np.diag(np.array([125,125,125,1,1,1])) self.Bd = np.diag(np.array([85,85,85,165,165,165])) self.Md = np.diag(np.array([15, 15, 15, 1, 1, 1])) # Controllers def output(self, x, xd, xdd, xc, xcd, F): Mdinv = np.linalg.inv(self.Md) damper = np.dot(self.Bd,(xcd - xd)) spring = np.dot(self.Kd,(xc - x)) ax = xdd - np.dot(self.Mdinv,(damper + spring + F)) return ax class Robot: def __init__(self, joints, ndof, dh): self.joints = joints self.ndof = ndof self.dh = dh def inverseDynamics(self, qc, qcdot, qcddot, grav): qc = qc.reshape((1,self.ndof)) qcdot = qcdot.reshape((1,self.ndof)) qcddot = qcddot.reshape((1,self.ndof)) if self.dh.lower() == 'mdh': grav = grav.reshape(3) Q = np.ravel(self.mdh_invdyn(qc, qcdot, qcddot, grav)) else: grav = grav.reshape((3,1)) # May need to fix this Q = np.ravel(self.invdyn(qc, qcdot, qcddot, grav)) return Q def forwardKinematics(self, q): if self.dh.lower() == 'mdh': T,A,Aout = self.mdh_Transform(q) else: T,A,Aout = self.Transform(q) transl = self.t2transl(T) R = self.t2rot(T) r,p,y = self.r2rpy(R) rpy = [r,p,y] kinematics = fkine(T, A, Aout, transl, R, rpy) return kinematics def jacobian(self, q): J = self.calcJac(q) return J def jacobianDot(self, q, qd): Jd = self.calcJacDot(q, qd) return Jd # Kinematics def mdh_Transform(rb, q): for j in range(rb.ndof): rb.joints[j].theta = q[j] A = [0 for i in range(rb.ndof)] alp = np.zeros(rb.ndof) a = np.zeros(rb.ndof) th = np.zeros(rb.ndof) d = np.zeros(rb.ndof) for i in range(rb.ndof): alp[i] = rb.joints[i].alpha a[i] = rb.joints[i].a th[i] = rb.joints[i].theta d[i] = rb.joints[i].d T = np.identity(4) Aout = [] for i in range(rb.ndof): ct = np.cos(th[i]) st = np.sin(th[i]) ca = np.cos(alp[i]) sa = np.sin(alp[i]) A[i] = np.array([[ct, -st, 0, a[i]], [(st * ca), (ct * ca), -sa, (-d[i] * sa)], [(st * sa), (ct * sa), ca, (d[i] * ca)], [0, 0, 0, 1]]) Aout.append(np.dot(T, A[i])) T = np.dot(T, A[i]) return T, A, Aout def Transform(rb, q): for j in range(rb.ndof): rb.joints[j].theta = q[j] A = [0 for i in range(rb.ndof)] alp = np.zeros(rb.ndof) a = np.zeros(rb.ndof) th = np.zeros(rb.ndof) d = np.zeros(rb.ndof) # A = np.zeros(2) for i in range(rb.ndof): alp[i] = rb.joints[i].alpha a[i] = rb.joints[i].a th[i] = rb.joints[i].theta d[i] = rb.joints[i].d T = np.identity(4) Aout = [] for i in range(rb.ndof): A[i] = np.array([[np.cos(th[i]), -np.sin(th[i]) * np.cos(alp[i]), np.sin(th[i]) * np.sin(alp[i]), a[i] * np.cos(th[i])], [np.sin(th[i]), np.cos(th[i]) * np.cos(alp[i]), -np.cos(th[i]) * np.sin(alp[i]), a[i] * np.sin(th[i])], [0, np.sin(alp[i]), np.cos(alp[i]), d[i]], [0, 0, 0, 1]]) Aout.append(np.dot(T, A[i])) T = np.dot(T, A[i]) return T, A, Aout def t2transl(self, T): transl = np.ravel(T[:3, 3]) return transl def t2rot(self, T): R = T[:3, :3] return R def r2eul(self, R): if (R[0,2] < np.finfo(float).eps and R[1,2] <np.finfo(float).eps): theta = 0 sp = 0 cp = 1 phi = np.arctan2(cp*R[0,2] + sp*R[1,2], R[2,2]) psi = np.arctan2(-sp*R[0,0] + cp*R[1,0], -sp*R[0,1] + cp*R[1,1]) else: # sin(theta) > 0 #theta = np.arctan2(R[2,2], np.sqrt(1 - (R[2,2]**2))) theta = np.arctan2(R[1,2],R[0,2]) sp = np.sin(theta) cp = np.cos(theta) phi = np.arctan2(cp*R[0,2] + sp*R[1,2], R[2,2]) psi = np.arctan2(-sp*R[0,0] + cp*R[1,0], -sp*R[0,1] + cp*R[1,1]) return theta, phi, psi def isclose(self, x, y, rtol=1.e-5, atol=1.e-8): return abs(x-y) <= atol + rtol * abs(y) def r2rpy(self, R): ''' From a paper by <NAME> (undated), "Computing Euler angles from a rotation matrix ''' phi = 0.0 if self.isclose(R[2,0],-1.0): theta = math.pi/2.0 psi = math.atan2(R[0,1],R[0,2]) elif self.isclose(R[2,0],1.0): theta = -math.pi/2.0 psi = math.atan2(-R[0,1],-R[0,2]) else: theta = -math.asin(R[2,0]) cos_theta = math.cos(theta) psi = math.atan2(R[2,1]/cos_theta, R[2,2]/cos_theta) phi = math.atan2(R[1,0]/cos_theta, R[0,0]/cos_theta) return psi, theta, phi def calcInverseKin(self, X): # Pre solved for the 2-DOF Planar robot. tx = X[0] ty = X[1] tz = X[2] q1 = 2*np.arctan((7*ty + (- 25*tx**4 - 50*tx**2*ty**2 + 49*tx**2 - 25*ty**4 + 49*ty**2)**(1/2))/(5*tx**2 + 7*tx + 5*ty**2)) q2 = -2*np.arctan((- 25*tx**2 - 25*ty**2 + 49)**(1/2)/(5*(tx**2 + ty**2)**(1/2))) if np.isnan(q1): q1 = 0 if np.isnan(q2): q2 = 0 qc = np.array([q1,q2]) return qc def calcQd(rb, Xd, qc, rho): J = rb.calcJac(qc) Jt = np.transpose(J) inner = np.linalg.inv( np.dot(J,Jt) + np.dot(np.identity(6),rho) ) Jinv = np.dot(Jt,inner) TestSingularity = np.linalg.det(J[:2,:2]) if(TestSingularity < (1e-9)) and (TestSingularity > -(1e-9)): qd = np.array([0,0]) print("in here qd") else: qd = np.dot(Jinv[:2,:2],Xd[:2]) return qd def calcQdd(rb, Xdd, qc, qd): J = rb.calcJac(qc) Jd = rb.calcJacDot(qc, qd) Jdq = np.dot(Jd,qd) kine = rb.forwardKinematics(qc) rpy = kine.rpy A = rb.rpy2Ja(rpy[0],rpy[1],rpy[2]) B = block_diag(np.eye(3),np.linalg.inv(A)) # Jadq = np.dot(B,Jdq) Ja = np.dot(B,J) Jpinv = rb.pinv(Ja) Jpinv = rb.pinv(Ja) qdd = np.dot(Jpinv, (Xdd - Jdq)) return qdd def calcQdd3(rb, Xdd, qc, qd): J = rb.calcJac(qc) Jd = rb.calcJacDot(qc, qd) Jdq = np.dot(Jd,qd) kine = rb.forwardKinematics(qc) rpy = kine.rpy A = rb.rpy2Ja(rpy[0],rpy[1],rpy[2]) B = block_diag(np.eye(3),np.linalg.inv(A)) # Jadq = np.dot(B,Jdq) Ja = np.dot(B,J) Jpinv = rb.pinv(Ja) qdd = np.dot(Jpinv[:,:3], (Xdd - Jdq[:3])) return qdd def calcXd(rb, qc, qd): J = rb.calcJac(qc) kine = rb.forwardKinematics(qc) rpy = kine.rpy A = rb.rpy2Ja(rpy[0],rpy[1],rpy[2]) B = block_diag(np.eye(3),np.linalg.inv(A)) # Jadq = np.dot(B,Jdq) Ja = np.dot(B,J) xd = np.dot(Ja,qd) return xd def calcXd3(rb, qc, qd): J = rb.calcJac(qc) # kine = rb.forwardKinematics(qc) # rpy = kine.rpy # A = rb.rpy2Ja(rpy[0],rpy[1],rpy[2]) # B = block_diag(np.eye(3),np.linalg.inv(A)) # # Jadq = np.dot(B,Jdq) # Ja = np.dot(B,J) xd = np.dot(J,qd) xd = xd[:3] return xd def calcJac(rb, q): J = np.zeros((6,7)) kine = rb.forwardKinematics(q) T = kine.T Aout = kine.Aout # To simplify the readability: J1v = np.cross( np.array([0, 0, 1]), T[:3,3]) J1w = np.array([0, 0, 1]) J1 = np.concatenate((J1v,J1w)) J[:,0] = J1 for i in range(1,rb.ndof): Aframe = Aout[i-1] Jv = np.cross( (Aframe[:3, 2]), (T[:3, 3] - Aframe[:3, 3]), axis=0) Jw = Aframe[:3, 2] Jtemp = np.concatenate((Jv, Jw)) J[:,i] = Jtemp return J def calcJacDot(rb, q, qd): J = np.zeros((6,7)) kine = rb.forwardKinematics(q) T = kine.T Aout = kine.Aout # To simplify the readability (Jacobian for the first joint): J1v = np.cross(np.array([0, 0, 1]), T[:3,3]) J1w = np.array([0, 0, 1]) J1 = np.concatenate((J1v,J1w)) J[:,0] = J1 # Jacobian computation # Declaring variables Jvi, Jwi = np.zeros((3,7)), np.zeros((3,7)) Jvi[:,0], Jwi[:,0] = J1v, J1w w, z = [], [] z.append( np.array([0, 0, 1]).reshape((3,1)) ) w.append( np.array([0, 0, 1]).reshape((3,1)) ) for i in range(1,rb.ndof): Aframe = Aout[i-1] z.append( np.array(Aframe[:3, 2]).reshape((3,1)) ) Jv = np.cross( (Aframe[:3, 2]), (T[:3, 3] - Aframe[:3, 3]), axis=0) Jw = Aframe[:3, 2] Jvi[:,i] = Jv Jwi[:,i] = Jw Jtemp = np.concatenate((Jv, Jw)) J[:,i] = Jtemp # w and z (used for Jacobian derivative computation) # Note to self, be aware of indexing. wtemp = w[len(w)-1] + np.dot(z[len(z) - 2], qd[i-1]) w.append(wtemp) # Jacobian derivative computation beta = np.array(np.dot(Jvi, qd)).reshape((3,1)) Jd = np.zeros((6,7)) for i in reversed(range(1, rb.ndof)): Aframe = Aout[i-1] zd = np.cross(w[i-1], z[i-1], axis = 0) alpha = np.array([0, 0, 0]).reshape((3,1)) for j in range(i): alpha = alpha + np.dot( np.cross(z[j+1-1], np.array(T[:3, 3] - Aframe[:3, 3]).reshape((3,1)), axis=0), qd[j]) # print "alpha", (alpha), "\n\n" Jvd = np.cross( zd, (T[:3, 3] - Aframe[:3, 3]), axis=0) + np.cross(z[i-1], (alpha + beta), axis=0) Jwd = zd Jtemp = np.concatenate((Jvd, Jwd)) Jd[:,i] = np.ravel(Jtemp) beta = beta + np.dot(Jvi[:,i-1], qd[i-1]).reshape((3,1)) # cross z0 x beta Jvd = np.cross(np.array([0, 0, 1]).reshape((3,1)), beta, axis=0) Jwd = np.array([0, 0, 0]).reshape((3,1)) Jtemp = np.concatenate((Jvd, Jwd)) Jd[:,0] = np.ravel(Jtemp) return Jd def eul2Ja(self, phi,theta,psi): Ja = np.array([[ 0, -np.sin(phi), np.cos(phi) * np.sin(theta)], [0, np.cos(phi), np.sin(phi) * np.sin(theta)], [1, 0, np.cos(theta) ]]) return Ja def rpy2Ja(self, r,p,y): Ja = np.array([[ 1, 0, np.sin(p)], [0, np.cos(r), -np.cos(p) * np.sin(r)], [0, np.sin(r), np.cos(p) * np.cos(r)]]) return Ja def pinv(self, J): u, s, vh = np.linalg.svd(J.T, full_matrices=True) u.shape, s.shape, vh.shape rho = 4 S2 = np.dot(J.T,0) for i in range(len(s)): S2[i,i] = s[i] / (s[i]**2 + rho**2) JpinvT = np.dot(np.dot(vh.T,S2.T),u.T) Jpinv = JpinvT.T return Jpinv # Dynamics def mdh_calc_transformation(rb, From, to, qc): T = np.identity(4) From = From to = to alp = np.zeros(rb.ndof) a = np.zeros(rb.ndof) th = np.zeros(rb.ndof) d = np.zeros(rb.ndof) for i in range(rb.ndof): alp[i] = rb.joints[i].alpha a[i] = rb.joints[i].a th[i] = qc[i] d[i] = rb.joints[i].d for i in range(From, to): ct = np.cos(th[i] + 0) st = np.sin(th[i] + 0) ca = np.cos(alp[i]) sa = np.sin(alp[i]) A = np.array([[ct, -st, 0, a[i]], [(st * ca), (ct * ca), -sa, (-d[i] * sa)], [(st * sa), (ct * sa), ca, (d[i] * ca)], [0, 0, 0, 1]]) T = np.dot(T, A) # print(A) return T def mdh_invdyn(rb, qc, qcdot, qcddot, grav): z0 = np.array([0, 0, 1]) R = np.identity(3) Q = np.zeros((rb.ndof, 1)) grav = grav.reshape(3) w = np.zeros((3)) wdot = np.zeros((3)) vdot = grav Fm = np.empty((3,0)) Nm = np.empty((3,0)) for k in range(1): q = qc[k, :].reshape((rb.ndof,1)) qdot = qcdot[k, :].reshape((rb.ndof,1)) qddot = qcddot[k, :].reshape((rb.ndof,1)) N_DOFS = rb.ndof # Forward recursion for i in range(N_DOFS): T = rb.mdh_calc_transformation(i, i+1, q) R = T[:3,:3] p = np.array([rb.joints[i].a, -rb.joints[i].d * np.sin(rb.joints[i].alpha), rb.joints[i].d * np.cos(rb.joints[i].alpha)]) wdot_ = (np.dot(R.T, wdot) + np.dot(z0,qddot[i,k]) + np.cross(np.dot(R.T,w), np.dot(z0, qdot[i,k]))) w_ = (np.dot(R.T,w) + np.dot(z0, qdot[i,k])) vdot_ = np.dot(R.T, (vdot + np.cross(wdot, p) + np.cross(w, np.cross(w, p)))) wdot = wdot_ w = w_ vdot = vdot_ vcdot = (vdot + np.cross(wdot, rb.joints[i].r.reshape(3)) + (np.cross(w, np.cross(w, rb.joints[i].r.reshape(3)))) ) F = np.dot(rb.joints[i].m, vcdot) N = np.dot(rb.joints[i].inertia, wdot) + np.cross(w, np.dot(rb.joints[i].inertia, w)) Fm = np.append(Fm, F.reshape((3,1)), axis=1) Nm = np.append(Nm, N.reshape((3,1)), axis=1) n = np.zeros(3) f = np.zeros(3) # Backward recursion for i in reversed(range(N_DOFS)): if i+1 < N_DOFS: p = np.array([[rb.joints[i+1].a], [-rb.joints[i+1].d * np.sin(rb.joints[i+1].alpha)],[rb.joints[i+1].d * np.cos(rb.joints[i+1].alpha)]]) T = rb.mdh_calc_transformation(i+1, i+2, q) R = T[:3, :3] else: R = np.eye(3) p = np.zeros(3).reshape(3,1) n_ =(np.dot(R, n) + np.cross(rb.joints[i].r.reshape(3), Fm[:,i]) + np.cross(p.reshape(3), np.dot(R,f)) + Nm[:,i] ) f_ = np.dot(R, f) + Fm[:,i] n = n_ f = f_ Q[i,k] = np.dot(n.T, z0) return Q def calc_transformation(rb, From, to, qc): T = np.identity(4) From = From +1 to = to +1 alp = np.zeros(rb.ndof) a = np.zeros(rb.ndof) th = np.zeros(rb.ndof) d = np.zeros(rb.ndof) for i in range(rb.ndof): alp[i] = rb.joints[i].alpha a[i] = rb.joints[i].a # th[i] = rb.joints[i].theta # Since it is revolute: th[i] = qc[i] d[i] = rb.joints[i].d for i in range(From, to): ct = np.cos(th[i] + 0) st = np.sin(th[i] + 0) ca = np.cos(alp[i]) sa = np.sin(alp[i]) A = np.array([[ct, -st * ca, st*sa, a[i]*ct], [st, ct * ca, -ct * sa, a[i] * st], [0, sa, ca, d[i]], [0, 0, 0, 1]]) T = np.dot(T, A) # print(A) return T def invdyn(rb, qc, qcdot, qcddot, grav): z0 = np.array([[0], [0], [1]]) R =
np.identity(3)
numpy.identity
import numpy as np from ..utils import product_matrix_vector def fast_wilcoxon(X, y=None, zero_method='wilcox', correction=False, n_jobs=-1): from mne.parallel import parallel_func if y is not None: X -= y dims = X.shape X = X.reshape(len(X), -1) parallel, p_time_gen, n_jobs = parallel_func(_loop_wilcoxon, n_jobs) n_chunks = np.min([n_jobs, X.shape[1]]) out = parallel(p_time_gen(X[..., chunk], zero_method=zero_method, correction=correction) for chunk in np.array_split(range(X.shape[1]), n_chunks)) stats, p_val = map(list, zip(*out)) stats = np.hstack(stats).reshape(dims[1:]) p_val = np.hstack(p_val).reshape(dims[1:]) return stats, p_val def _loop_wilcoxon(X, zero_method, correction): from scipy.stats import wilcoxon p_val = np.ones(X.shape[1]) stats = np.ones(X.shape[1]) for ii, x in enumerate(X.T): stats[ii], p_val[ii] = wilcoxon(x) return stats, p_val def corr_linear_circular(X, alpha): # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Licence : BSD-simplified """ Parameters ---------- X : numpy.array, shape (n_angles, n_dims) The linear data alpha : numpy.array, shape (n_angles,) The angular data (if n_dims == 1, repeated across all x dimensions) Returns ------- R : numpy.array, shape (n_dims) R values R2 : numpy.array, shape (n_dims) R square values p_val : numpy.array, shape (n_dims) P values Adapted from: Circular Statistics Toolbox for Matlab By <NAME>, 2009 <EMAIL> - www.kyb.mpg.de/~berens/circStat.html Equantion 27.47 """ from scipy.stats import chi2 import numpy as np # computes correlation for sin and cos separately rxs = repeated_corr(X, np.sin(alpha)) rxc = repeated_corr(X, np.cos(alpha)) rcs = repeated_corr(np.sin(alpha), np.cos(alpha)) # tile alpha across multiple dimension without requiring memory if X.ndim > 1 and alpha.ndim == 1: rcs = rcs[:, np.newaxis] # Adapted from equation 27.47 R = (rxc ** 2 + rxs ** 2 - 2 * rxc * rxs * rcs) / (1 - rcs ** 2) # JR adhoc way of having a sign.... R = np.sign(rxs) * np.sign(rxc) * R R2 = np.sqrt(R ** 2) # Get degrees of freedom n = len(alpha) pval = 1 - chi2.cdf(n * R2, 2) return R, R2, pval def corr_circular_linear(alpha, X): # Authors: <NAME> <<EMAIL>> # # Licence : BSD-simplified """ Parameters ---------- alpha : numpy.array, shape (n_angles,) The angular data (if n_dims == 1, repeated across all x dimensions) X : numpy.array, shape (n_angles, n_dims) The linear data Returns ------- R : numpy.array, shape (n_dims) R values R2 : numpy.array, shape (n_dims) R square values p_val : numpy.array, shape (n_dims) P values Adapted from: Circular Statistics Toolbox for Matlab By <NAME>, 2009 <EMAIL> - www.kyb.mpg.de/~berens/circStat.html Equantion 27.47 """ from scipy.stats import chi2 from jr.utils import pairwise import numpy as np # computes correlation for sin and cos separately # WIP Applies repeated correlation if X is vector # TODO: deals with non repeated correlations (X * ALPHA) if alpha.ndim > 1: rxs = repeated_corr(np.sin(alpha), X) rxc = repeated_corr(np.cos(alpha), X) rcs = np.zeros_like(alpha[0, :]) rcs = pairwise(np.sin(alpha), np.cos(alpha), func=_loop_corr, n_jobs=-1) else: # WIP Applies repeated correlation if alpha is vector rxs = repeated_corr(X, np.sin(alpha)) rxc = repeated_corr(X, np.cos(alpha)) rcs = repeated_corr(np.sin(alpha), np.cos(alpha)) # Adapted from equation 27.47 R = (rxc ** 2 + rxs ** 2 - 2 * rxc * rxs * rcs) / (1 - rcs ** 2) # JR adhoc way of having a sign.... R = np.sign(rxs) * np.sign(rxc) * R R2 = np.sqrt(R ** 2) # Get degrees of freedom n = len(X) pval = 1 - chi2.cdf(n * R2, 2) return R, R2, pval def _loop_corr(X, Y): R = np.zeros(X.shape[1]) for ii, (x, y) in enumerate(zip(X.T, Y.T)): R[ii] = repeated_corr(x, y) return R def repeated_corr(X, y, dtype=float): """Computes pearson correlations between a vector and a matrix. Adapted from Jona-Sassenhagen's PR #L1772 on mne-python. Parameters ---------- X : np.array, shape (n_samples, n_measures) Data matrix onto which the vector is correlated. y : np.array, shape (n_samples) Data vector. dtype : type, optional Data type used to compute correlation values to optimize memory. Returns ------- rho : np.array, shape (n_measures) """ if not isinstance(X, np.ndarray): X = np.array(X) if X.ndim == 1: X = X[:, None] shape = X.shape X = np.reshape(X, [shape[0], -1]) if X.ndim not in [1, 2] or y.ndim != 1 or X.shape[0] != y.shape[0]: raise ValueError('y must be a vector, and X a matrix with an equal' 'number of rows.') if X.ndim == 1: X = X[:, None] ym = np.array(y.mean(0), dtype=dtype) Xm = np.array(X.mean(0), dtype=dtype) y -= ym X -= Xm y_sd = y.std(0, ddof=1) X_sd = X.std(0, ddof=1)[:, None if y.shape == X.shape else Ellipsis] R = (np.dot(y.T, X) / float(len(y) - 1)) / (y_sd * X_sd) R = np.reshape(R, shape[1:]) # cleanup variable changed in place y += ym X += Xm return R def repeated_spearman(X, y, dtype=None): """Computes spearman correlations between a vector and a matrix. Parameters ---------- X : np.array, shape (n_samples, n_measures ...) Data matrix onto which the vector is correlated. y : np.array, shape (n_samples) Data vector. dtype : type, optional Data type used to compute correlation values to optimize memory. Returns ------- rho : np.array, shape (n_measures) """ from scipy.stats import rankdata if not isinstance(X, np.ndarray): X = np.array(X) if X.ndim == 1: X = X[:, None] shape = X.shape X = np.reshape(X, [shape[0], -1]) if X.ndim not in [1, 2] or y.ndim != 1 or X.shape[0] != y.shape[0]: raise ValueError('y must be a vector, and X a matrix with an equal' 'number of rows.') # Rank X = np.apply_along_axis(rankdata, 0, X) y = np.apply_along_axis(rankdata, 0, y) # Double rank to ensure that normalization step of compute_corr # (X -= mean(X)) remains an integer. X *= 2 y *= 2 X = np.array(X, dtype=dtype) y = np.array(y, dtype=dtype) R = repeated_corr(X, y, dtype=type(y[0])) R = np.reshape(R, shape[1:]) return R def corr_circular(ALPHA1, alpha2, axis=0): """ Circular correlation coefficient for two circular random variables. Input: ------ ALPHA1 : np.array, shape[axis] = n The matrix alpha2 : np.array, shape (n), or shape == ALPHA1.shape Vector or matrix axis : int The axis used to estimate correlation Returns ------- Y : np.array, shape == X.shape Adapted from pycircstat by <NAME> : 1. Less memory consuming than original 2. supports ALPHA1 as matrix and alpha2 as vector https://github.com/circstat/pycircstat References: [Jammalamadaka2001]_ """ # center data on circular mean def sin_center(alpha): m = np.arctan2(np.mean(np.sin(alpha), axis=axis), np.mean(np.cos(alpha), axis=axis)) return np.sin((alpha - m) % (2 * np.pi)) sin_alpha1 = sin_center(ALPHA1) sin_alpha2 = sin_center(alpha2) # compute correlation coeffcient from p. 176 if sin_alpha1.ndim == sin_alpha2.ndim: num = np.sum(sin_alpha1 * sin_alpha2, axis=axis) den = np.sqrt(np.sum(sin_alpha1 ** 2, axis=axis) * np.sum(sin_alpha2 ** 2, axis=axis)) else: num = np.sum(product_matrix_vector(sin_alpha1, sin_alpha2, axis=axis)) den = np.sqrt(np.sum(sin_alpha1 ** 2, axis=axis) * np.sum(sin_alpha2 ** 2)) return num / den def robust_mean(X, axis=None, percentile=[5, 95]): X = np.array(X) axis_ = axis # force axis to be 0 for facilitation if axis is not None and axis != 0: X = np.transpose(X, [axis] + range(0, axis) + range(axis+1, X.ndim)) axis_ = 0 mM = np.percentile(X, percentile, axis=axis_) indices_min = np.where((X - mM[0][np.newaxis, ...]) < 0) indices_max = np.where((X - mM[1][np.newaxis, ...]) > 0) X[indices_min] = np.nan X[indices_max] = np.nan m = np.nanmean(X, axis=axis_) return m def fast_mannwhitneyu(Y, X, use_continuity=True, n_jobs=-1): from mne.parallel import parallel_func X = np.array(X) Y = np.array(Y) nx, ny = len(X), len(Y) dims = X.shape X = np.reshape(X, [nx, -1]) Y = np.reshape(Y, [ny, -1]) parallel, p_time_gen, n_jobs = parallel_func(_loop_mannwhitneyu, n_jobs) n_chunks = np.min([n_jobs, X.shape[1]]) chunks = np.array_split(range(X.shape[1]), n_chunks) out = parallel(p_time_gen(X[..., chunk], Y[..., chunk], use_continuity=use_continuity) for chunk in chunks) # Unpack estimators into time slices X folds list of lists. U, p_value = map(list, zip(*out)) U = np.hstack(U).reshape(dims[1:]) p_value = np.hstack(p_value).reshape(dims[1:]) AUC = U / (nx * ny) # XXX FIXME this introduces a bug # # correct directionality of U stats imposed by mannwhitneyu # if nx > ny: # AUC = 1 - AUC return U, p_value, AUC def _loop_mannwhitneyu(X, Y, use_continuity=True): n_col = X.shape[1] U, P = np.zeros(n_col), np.zeros(n_col) for ii in range(n_col): try: U[ii], P[ii] = mannwhitneyu(X[:, ii], Y[:, ii], use_continuity) except ValueError as e: if e.message == 'All numbers are identical in amannwhitneyu': U[ii], P[ii] = .5 * len(X) * len(Y), 1. else: raise ValueError(e.message) return U, P def dPrime(hits, misses, fas, crs): from scipy.stats import norm from math import exp, sqrt Z = norm.ppf hits, misses, fas, crs = float(hits), float(misses), float(fas), float(crs) # From <NAME> : lindeloev.net/?p=29 # Floors an ceilings are replaced by half hits and half FA's halfHit = 0.5 / (hits + misses) halfFa = 0.5 / (fas + crs) # Calculate hitrate and avoid d' infinity hitRate = hits / (hits + misses) if hitRate == 1: hitRate = 1 - halfHit if hitRate == 0: hitRate = halfHit # Calculate false alarm rate and avoid d' infinity faRate = fas/(fas+crs) if faRate == 1: faRate = 1 - halfFa if faRate == 0: faRate = halfFa # Return d', beta, c and Ad' out = {} out['d'] = Z(hitRate) - Z(faRate) out['beta'] = exp(Z(faRate)**2 - Z(hitRate)**2)/2 out['c'] = -(Z(hitRate) + Z(faRate))/2 out['Ad'] = norm.cdf(out['d']/sqrt(2)) return out def mannwhitneyu(x, y, use_continuity=True): """Adapated from scipy.stats.mannwhitneyu but includes direction of U""" from scipy.stats import rankdata, tiecorrect from scipy.stats import distributions from numpy import asarray x = asarray(x) y = asarray(y) n1 = len(x) n2 = len(y) ranked = rankdata(np.concatenate((x, y))) rankx = ranked[0:n1] # get the x-ranks u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0) # calc U for x u2 = n1*n2 - u1 # remainder is U for y T = tiecorrect(ranked) if T == 0: raise ValueError('All numbers are identical in amannwhitneyu') sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0) if use_continuity: # normal approximation for prob calc with continuity correction z = abs((u1 - 0.5 - n1*n2/2.0) / sd) else: z = abs((u1 - n1*n2/2.0) / sd) # normal approximation for prob calc return u2, distributions.norm.sf(z) def nested_analysis(X, df, condition, function=None, query=None, single_trial=False, y=None, n_jobs=-1): """ Apply a nested set of analyses. Parameters ---------- X : np.array, shape(n_samples, ...) Data array. df : pandas.DataFrame Condition DataFrame condition : str | list If string, get the samples for each unique value of df[condition] If list, nested call nested_analysis. query : str | None, optional To select a subset of trial using pandas.DataFrame.query() function : function Computes across list of evoked. Must be of the form: function(X[:], y[:]) y : np.array, shape(n_conditions) n_jobs : int Number of core to compute the function. Defaults to -1. Returns ------- scores : np.array, shape(...) The results of the function sub : dict() Contains results of sub levels. """ import numpy as np from jr.utils import pairwise if isinstance(condition, str): # Subselect data using pandas.DataFrame queries sel = range(len(X)) if query is None else df.query(query).index X = X.take(sel, axis=0) y = np.array(df[condition][sel]) # Find unique conditions values = list() for ii in np.unique(y): if (ii is not None) and (ii not in [np.nan]): try: if np.isnan(ii): continue else: values.append(ii) except TypeError: values.append(ii) # Subsubselect for each unique condition y_sel = [np.where(y == value)[0] for value in values] # Mean condition: X_mean = np.zeros(np.hstack((len(y_sel), X.shape[1:]))) y_mean = np.zeros(len(y_sel)) for ii, sel_ in enumerate(y_sel): X_mean[ii, ...] = np.mean(X[sel_, ...], axis=0) if isinstance(y[sel_[0]], str): y_mean[ii] = ii else: y_mean[ii] = y[sel_[0]] if single_trial: X = X.take(np.hstack(y_sel), axis=0) # ERROR COME FROM HERE y = y.take(np.hstack(y_sel), axis=0) else: X = X_mean y = y_mean # Store values to keep track sub_list = dict(X=X_mean, y=y_mean, sel=sel, query=query, condition=condition, values=values, single_trial=single_trial) elif isinstance(condition, list): # If condition is a list, we must recall the function to gather # the results of the lower levels sub_list = list() X_list = list() # FIXME use numpy array for subcondition in condition: scores, sub = nested_analysis( X, df, subcondition['condition'], n_jobs=n_jobs, function=subcondition.get('function', None), query=subcondition.get('query', None)) X_list.append(scores) sub_list.append(sub) X = np.array(X_list) if y is None: y = np.arange(len(condition)) if len(y) != len(X): raise ValueError('X and y must be of identical shape: ' + '%s <> %s') % (len(X), len(y)) sub_list = dict(X=X, y=y, sub=sub_list, condition=condition) # Default function function = _default_analysis if function is None else function scores = pairwise(X, y, function, n_jobs=n_jobs) return scores, sub_list def _default_analysis(X, y): # from sklearn.metrics import roc_auc_score from jr.stats import fast_mannwhitneyu # Binary contrast unique_y = np.unique(y) # if two condition, can only return contrast if len(y) == 2: y = np.where(y == unique_y[0], 1, -1) return np.mean(X * y[:, np.newaxis], axis=0) elif len(unique_y) == 2: # if two conditions but multiple trials, can return AUC # auc = np.zeros_like(X[0]) _, _, auc = fast_mannwhitneyu(X[y == unique_y[0], ...], X[y == unique_y[1], ...], n_jobs=1) # for ii, x in enumerate(X.T): # auc[ii] = roc_auc_score(y, np.copy(x)) return auc # Linear regression: elif len(unique_y) > 2: return repeated_spearman(X, y) else: raise RuntimeError('Please specify a function for this kind of data') def median_abs_deviation(x, axis=None): """median absolute deviation""" x = np.asarray(x) # transpose selected axis in front shape = x.shape n_dim = len(shape) axis_ = None if axis is not None: dim_order = np.hstack((axis, np.delete(np.arange(n_dim), axis))) x = np.transpose(x, dim_order) axis_ = 0 # compute median center = np.median(x, axis=axis_, keepdims=False) if len(center): center = center[np.newaxis, ...] # compute median absolute deviation from median mad = np.median(np.abs(x - center), axis=axis_) return mad def cross_correlation_fft(a, b, mode='valid'): """Cross correlation between two 1D signals. Similar to np.correlate, but faster. Parameters ---------- a : np.array, shape(n) b : np.array, shape(m) If len(b) > len(a), a, b = b, a Output ------ r : np.array Correlation coefficients. Shape depends on mode. """ from scipy import signal a = np.asarray(a) b = np.asarray(b) if np.prod(a.ndim) > 1 or np.prod(b.ndim) > 1: raise ValueError('Can only vectorize vectors') if len(b) > len(a): a, b = b, a n = len(a) # Pad vector c = np.hstack((np.zeros(n/2), b, np.zeros(n/2 + len(a) - len(b) + 1))) # Convolution of reverse signal: return signal.fftconvolve(c, a[::-1], mode=mode) def align_signals(a, b): """Finds optimal delay to align two 1D signals maximizes hstack((zeros(shift), b)) = a Parameters ---------- a : np.array, shape(n) b : np.array, shape(m) Output ------ shift : int Integer that maximizes hstack((zeros(shift), b)) - a = 0 """ # check inputs a = np.asarray(a) b = np.asarray(b) if np.prod(a.ndim) > 1 or np.prod(b.ndim) > 1: raise ValueError('Can only vectorize vectors') # longest first sign = 1 if len(b) > len(a): sign = -1 a, b = b, a r = cross_correlation_fft(a, b) shift = np.argmax(r) - len(a) + len(a) / 2 # deal with odd / even lengths (b doubles in size by cross_correlation_fft) if len(a) % 2 and len(b) % 2: shift += 1 if len(a) > len(b) and len(a) % 2 and not(len(b) % 2): shift += 1 return sign * shift def cross_correlation(x, y, maxlag): """ Cross correlation with a maximum number of lags. `x` and `y` must be one-dimensional numpy arrays with the same length. This computes the same result as numpy.correlate(x, y, mode='full')[len(a)-maxlag-1:len(a)+maxlag] The return vaue has length 2*maxlag + 1. Author: http://stackoverflow.com/questions/30677241 <NAME> """ from numpy.lib.stride_tricks import as_strided def _check_arg(x, xname): x = np.asarray(x) if x.ndim != 1: raise ValueError('%s must be one-dimensional.' % xname) return x x = _check_arg(x, 'x') y = _check_arg(y, 'y') py = np.pad(y.conj(), 2*maxlag, mode='constant') T = as_strided(py[2*maxlag:], shape=(2*maxlag+1, len(y) + 2*maxlag), strides=(-py.strides[0], py.strides[0])) px = np.pad(x, maxlag, mode='constant') return T.dot(px) class ScoringAUC(): """Score AUC for multiclass problems. Average of one against all. """ def __call__(self, clf, X, y, **kwargs): from sklearn.metrics import roc_auc_score # Generate predictions if hasattr(clf, 'decision_function'): y_pred = clf.decision_function(X) elif hasattr(clf, 'predict_proba'): y_pred = clf.predict_proba(X) else: y_pred = clf.predict(X) # score classes = set(y) if y_pred.ndim == 1: y_pred = y_pred[:, np.newaxis] _score = list() for ii, this_class in enumerate(classes): _score.append(roc_auc_score(y == this_class, y_pred[:, ii])) if (ii == 0) and (len(classes) == 2): _score[0] = 1. - _score[0] break return np.mean(_score, axis=0) if __name__ == '__main__': from sklearn.model_selection import cross_val_score, KFold from sklearn.linear_model import LogisticRegression, RidgeClassifier from sklearn.svm import LinearSVC from sklearn.preprocessing import LabelBinarizer x = np.random.randn(100, 10) y =
np.random.randint(0, 2, 100)
numpy.random.randint
#!/usr/bin/env python # Copyright (c) 2016 The UUV Simulator Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy import rospy import tf.transformations as trans from PID import PIDRegulator from dynamic_reconfigure.server import Server from uuv_control_cascaded_pid.cfg import PositionControlConfig import geometry_msgs.msg as geometry_msgs from nav_msgs.msg import Odometry from rospy.numpy_msg import numpy_msg class PositionControllerNode: def __init__(self): print('PositionControllerNode: initializing node') self.config = {} self.pos_des = numpy.zeros(3) self.quat_des = numpy.array([0, 0, 0, 1]) self.initialized = False # Initialize pids with default parameters self.pid_rot = PIDRegulator(1, 0, 0, 1) self.pid_pos = PIDRegulator(1, 0, 0, 1) # ROS infrastructure self.sub_cmd_pose = rospy.Subscriber('cmd_pose', numpy_msg(geometry_msgs.Pose), self.cmd_pose_callback) self.sub_odometry = rospy.Subscriber('odom', numpy_msg(Odometry), self.odometry_callback) self.pub_cmd_vel = rospy.Publisher('cmd_vel', geometry_msgs.Twist, queue_size=10) self.srv_reconfigure = Server(PositionControlConfig, self.config_callback) def cmd_pose_callback(self, msg): """Handle updated set pose callback.""" # Just store the desired pose. The actual control runs on odometry callbacks p = msg.position q = msg.orientation self.pos_des =
numpy.array([p.x, p.y, p.z])
numpy.array
# coding: utf-8 # # Copyright © 2016 <NAME> import time from settings import * from gui import mapgui, updategui import pygame import random import numpy as np import math def engine(ind, map): screen = mapgui(ind_data) running = True # Simulation loop while running: start_time = time.time() # Fresh white screen screen.fill((252, 251, 251)) for key, i in ind.items(): # Boids in seeing range close_inds = i.get_close_inds(setting_data.get_seeing_range()) # Too close boids too_close_inds = i.get_close_inds(setting_data.get_personal_space()) # Get center point of individuals close by center = i.get_center(close_inds) # Get center point of too close individuals center_to_avoid = i.get_center(too_close_inds) # Get angles to the center points angle = i.get_angle(center) angle_to_avoid = i.get_angle(center_to_avoid) # Update boid orientation i.set_orientation(angle, angle_to_avoid + 180, close_inds) # Move boid i.move() # Update individual position in simulation screen updategui(ind_data[key], screen) # Render pygame.display.flip() for event in pygame.event.get(): if event.type == pygame.QUIT: running = False end_time = time.time() # FPS limit sleep_time = (1 / FRAMES_PER_SECOND) - (end_time - start_time) if sleep_time > 0: time.sleep(sleep_time) def get_random_position(): posx = int(MAP_WIDTH * random.random()) posy = int(MAP_HEIGHT * random.random()) coordinates = (posx, posy) return coordinates def get_random_velocity(): return MIN_VELOCITY + (MAX_VELOCITY-MIN_VELOCITY) * random.random() def get_random_orientation(): orientation = 360 * random.random() return orientation def turn_to(target_angle, own_angle): a = - target_angle + own_angle a = (a + 180) % 360 - 180 if a < 0: own_angle = (own_angle + TURNING_SPEED) % 360 elif a > 0: own_angle = own_angle - TURNING_SPEED if own_angle < 0: own_angle += 360 return own_angle def get_circular_mean(array_of_angles, id=None): ang1 = np.sum(np.cos(array_of_angles * np.pi / 180)) ang2 = np.sum(np.sin(array_of_angles * np.pi / 180)) ori_mean = np.arctan2(ang2, ang1) * 180 / np.pi if ori_mean == 0 and id is not None: return ind_data[id][ORIE] if ori_mean < 0: ori_mean += 360 return ori_mean def get_circular_mean2(angle_to_center, angle_mean_ori, angle_to_avoid): x = y = 0. angles = [angle_to_center, angle_mean_ori, angle_to_avoid] weights = [setting_data.get_cohesion(), setting_data.get_alignment(), setting_data.get_separation()] for angle, weight in zip(angles, weights): x += math.cos(math.radians(angle)) * weight y += math.sin(math.radians(angle)) * weight mean = math.degrees(math.atan2(y, x)) if mean == 0: mean = None return mean def get_final_angle(angle_own, angle_to_center, angle_to_avoid, angle_mean_ori): if np.isnan(angle_to_center): angle_to_center = angle_own if
np.isnan(angle_to_avoid)
numpy.isnan
""" This module provides a name_to_constructor dict for all models/estimators in scikit-learn, plus a couple test models and error handling functions """ import warnings import inspect import sklearn.base import sklearn.utils.testing import joblib import numpy as np import os # Sometimes xgboost is hard to install so make it optional try: import xgboost as xgb except: pass import keras from keras.models import model_from_json from keras.models import load_model from keras.models import Sequential import random random.seed(0) import pandas as pd #from . import keras_models from mastml import utils import pickle from scipy import stats with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) name_to_constructor = dict(sklearn.utils.testing.all_estimators()) class AlwaysFive(sklearn.base.RegressorMixin): """ Class used as a test model that always predicts a value of 5. Args: constant: (int), the value to predict. Always 5 by default Methods: fit: Just passes through to maintain scikit-learn structure predict: Provides predicted model values based on X features Args: X: (numpy array), array of X features Returns: (numpy array), prediction array where all values are equal to constant """ def __init__(self, constant = 5): self.five = constant def fit(self, X, y, groups=None): return self def predict(self, X): return np.array([self.five for _ in range(len(X))]) class RandomGuesser(sklearn.base.RegressorMixin): """ Class used as a test model that always predicts random values for y data. Args: None Methods: fit: Constructs possible predicted values based on y data Args: y: (numpy array), array of y data predict: Provides predicted model values based on X features Args: X: (numpy array), array of X features Returns: (numpy array), prediction array where all values are random selections of y data """ def __init__(self): pass def fit(self, X, y, groups=None): self.possible_answers = y return self def predict(self, X): return np.random.choice(self.possible_answers, size=X.shape[0]) class KerasRegressor(): def __init__(self, conf_dict): self.conf_dict = conf_dict self.model = self.build_model() def build_model(self): model_vals = self.conf_dict model = Sequential() for layer_dict, layer_val in model_vals.items(): if (layer_dict != 'FitParams'): layer_type = layer_val.get('layer_type') layer_name_asstr = layer_type if layer_name_asstr == 'Dense': neuron_num = int(layer_val.get('neuron_num')) if (layer_dict == 'Layer1'): input_dim = int(layer_val.get('input_dim')) kernel_initializer = layer_val.get('kernel_initializer') activation = layer_val.get('activation') elif layer_name_asstr == 'Dropout': rate = float(layer_val.get('rate')) for layer_name, cls in inspect.getmembers(keras.layers, inspect.isclass): layer_type = getattr(keras.layers, layer_name_asstr) # (neuron_num) else: if layer_val.get('rate'): self.rate = float(layer_val.get('rate')) if layer_val.get('epochs'): self.epochs = int(layer_val.get('epochs')) else: self.epochs = 1 if layer_val.get('batch_size'): self.batch_size = int(layer_val.get('batch_size')) else: self.batch_size = None if layer_val.get('loss'): self.loss = str(layer_val.get('loss')) else: self.loss = 'mean_squared_error' if layer_val.get('optimizer'): self.optimizer = str(layer_val.get('optimizer')) else: self.optimizer = 'adam' if layer_val.get('metrics'): self.metrics = layer_val.get('metrics').split(',') else: self.metrics = ['mae'] if layer_val.get('verbose'): self.verbose = str(layer_val.get('verbose')) else: self.verbose = 0 if layer_val.get('shuffle'): self.shuffle = bool(layer_val.get('shuffle')) else: self.shuffle = True if layer_val.get('validation_split'): self.validation_split = float(layer_val.get('validation_split')) else: self.validation_split = 0.0 continue if (layer_dict == 'Layer1'): model.add(layer_type(neuron_num, input_dim=input_dim, kernel_initializer=kernel_initializer, activation=activation)) else: if layer_name_asstr == 'Dense': model.add(layer_type(neuron_num, kernel_initializer=kernel_initializer, activation=activation)) if layer_name_asstr == 'Dropout': model.add(layer_type(rate=rate)) return model def fit(self, X, Y): # Need to rebuild and re-compile model at every fit instance so don't have information of weights from other fits self.model = self.build_model() self.model.compile(loss=self.loss, optimizer=self.optimizer, metrics=self.metrics) return self.model.fit(X, Y, epochs=self.epochs, batch_size=self.batch_size, verbose=self.verbose, validation_split=self.validation_split, shuffle=self.shuffle) def predict(self, X): return self.model.predict(X) def summary(self): return self.model.summary() # ref: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor # NOTE: in order to use this, other models for the custom ensemble must be defined # in the conf file with "_ensemble" somewhere in the name class EnsembleRegressor(): def __init__(self, num_samples, model_list, num_models): self.model_list = model_list # should be list of strings self.num_models = num_models # how many of each of the specified models should be included in the ensemble self.n_estimators = sum(self.num_models) self.num_samples = num_samples self.max_samples = num_samples self.bootstrapped_datasets = [] self.bootstrapped_idxs = [] self.all_preds = [] self.path = "" self.model = self.build_models() # actually a list of models for use as the members in the ensemble self.fold = -1 self.bootstrap = True def build_models(self): model = [] for i, num_m in enumerate(self.num_models): for j in range(num_m): model.append(self.model_list[i]) return model def setup(self, path): self.fold += 1 self.bootstrapped_idxs = [] self.bootstrapped_datasets = [] self.path = path def fit(self, X, Y): X = X.values Y = Y.values idxs = np.arange(len(X)) # fit each model in the ensemble for i in range(self.n_estimators): model = self.model[i] # do bootstrapping given the validation data bootstrap_idxs = random.choices(idxs, k=self.num_samples) bootstrap_X = X[bootstrap_idxs] bootstrap_Y = Y[bootstrap_idxs] if 1 == len(bootstrap_X.shape): bootstrap_X = np.expand_dims(np.asarray(bootstrap_X), -1) if 1 == len(bootstrap_Y.shape): bootstrap_Y = np.expand_dims(np.asarray(bootstrap_Y), -1) self.bootstrapped_idxs.append(bootstrap_idxs) self.bootstrapped_datasets.append(bootstrap_X) model.fit(bootstrap_X, bootstrap_Y) def predict(self, X, return_std=False): if isinstance(X, pd.DataFrame): X = X.values all_preds = [] means = [] for x_i in range(len(X)): preds = [] for i in range(self.n_estimators): sample_X = X[x_i] if 1 == len(sample_X.shape): sample_X = np.expand_dims(np.asarray(sample_X), 0) preds.append(self.model[i].predict(sample_X)) all_preds.append(preds) means.append(np.mean(preds)) # NOTE if manual implementation is desired # https://www.jpytr.com/post/random_forests_and_jackknife_variance/ # https://github.com/scikit-learn-contrib/forest-confidence-interval/tree/master/forestci # http://contrib.scikit-learn.org/forest-confidence-interval/reference/forestci.html self.all_preds = all_preds return np.asarray(means) # check for failed fits, warn users, and re-calculate def stats_check_models(self, X, Y): if self.n_estimators > 10: maes = [] for i in range(self.n_estimators): abs_errors = np.absolute(np.absolute(np.squeeze(np.asarray(self.all_preds)[:,i])) - Y) maes.append(sum(abs_errors) / len(abs_errors)) alpha = 0.01 bad_idxs = [] for i in range(self.n_estimators): other_maes = np.delete(maes, [i]) # ref: https://towardsdatascience.com/statistical-significance-hypothesis-testing-the-normal-curve-and-p-values-93274fa32687 z_score = (maes[i] - np.mean(other_maes)) / np.std(other_maes) # ref: https://stackoverflow.com/questions/3496656/convert-z-score-z-value-standard-score-to-p-value-for-normal-distribution-in/3508321 p_val = stats.norm.sf(abs(z_score))*2 if p_val <= alpha: # TODO ok to print these/how to print/log properly? print("Estimator {} failed under statistical significance threshold {} (p_val {}), relevant dataset output to file with name format \'<fold>_<estimator idx>_bootstrapped_dataset.csv\'".format(i, alpha, p_val)) print("bad estimator mae: {}".format(maes[i])) print("mean mae (for ref):") print(
np.mean(maes)
numpy.mean
# AUTOGENERATED! DO NOT EDIT! File to edit: game.ipynb (unless otherwise specified). __all__ = ['create_maze', 'shame_game', 'tough_game', 'random_move', 'available_moves'] # Cell import numpy as np # Cell def create_maze(n, k=4, t=4, prng=None): """Create a maze, by diffusing out from k points. Params ------ n : int Board size k : int The number of starting points t : int The number of time steps for diffusion prng : None, np.random.RandonState Controls seeding """ if prng is None: prng = np.random.RandomState() maze = np.zeros((n, n)) # Initial seends locs = [] for _ in range(k): x0, y0 = prng.randint(0, n, 2) locs.append((x0, y0)) # Moving t steps from x0,y0 # fill in neighbors # by random draw for x0, y0 in locs: x, y = x0, y0 maze[x, y] = 1 for step in range(t): # Draw dx = prng.randint(-1, 2) if np.isclose(dx, 0): dy = prng.randint(-1, 2) else: dy = 0 # Sane and safe moves? if x + dx < 0: dx = 0 if x + dx >= n: dx = 0 if y + dy < 0: dy = 0 if y + dy >= n: dy = 0 # Add to maze x += dx y += dy maze[x, y] = 1 return maze, prng # Cell def shame_game(n, sigma=0.5, shame=1, maze=None, prng=None): if prng is None: prng =
np.random.RandomState()
numpy.random.RandomState
import numpy as np EPS = 1e-3 def xy2mrx_v0(a_xy, b_pv, grid): """ Encode xy to activations on a grid Activation symmetric so that flipping xy about b's v yields same values Clip activations that would be outside grid to map to last coordinate :param a_xy: n, 2 | (x_x, x_y) :param b_pv: n, 4 | (x_x, x_y, v_x, v_y) :param grid: (l, m) | symmetric (about 0) grid in 1D l | upper bound for coordinates m | number of grid points grid points are regularly spaced in [0, l] :return: n, m | encoding for each (of n) agent """ n = a_xy.shape[0] m = int(grid[-1]) mrx = np.zeros((n, m), dtype=np.float) pos_dif = a_xy - b_pv[:, :2] # n, 2 pos_dif_dot_v = np.einsum('ij, ij -> i', pos_dif, b_pv[:, 2:]) # n v_normsq = (b_pv[:, 2:] ** 2).sum(axis=1) v_normsq[v_normsq < EPS] = EPS perp_ds = (pos_dif ** 2).sum(axis=1) - (pos_dif_dot_v ** 2) / v_normsq perp_ds = np.sqrt(perp_ds) np.clip(perp_ds, a_min=None, a_max=grid[0]-EPS, out=perp_ds) d = grid[0] / (grid[1] - 1) for i in range(n): a, r = np.divmod(perp_ds[i], d) th = 1 - r/d inds = np.array([a, a+1], dtype=np.int) mrx[i, inds] = np.array([th, 1-th]) return mrx def xy2mrx_v1(a_xy, b_pv, grid): """ Encode xy to activations on a grid Activation symmetric so that flipping xy about b's v yields same values Clip activations that would be outside grid to map to last coordinate :param a_xy: n, 2 | (x_x, x_y) :param b_pv: n, 4 | (x_x, x_y, v_x, v_y) :param grid: (l, m) | symmetric (about 0) grid in 1D l | upper bound for coordinates m | number of grid points grid points are regularly spaced in [0, l] :return: n, m | encoding for each (of n) agent """ n = a_xy.shape[0] m = int(grid[-1]) mrx = np.zeros((n, m), dtype=np.float) pos_dif = a_xy - b_pv[:, :2] # n, 2 pos_dif_dot_v = np.einsum('ij, ij -> i', pos_dif, b_pv[:, 2:]) # n v_normsq = (b_pv[:, 2:] ** 2).sum(axis=1) v_normsq[v_normsq < EPS] = EPS perp_ds = (pos_dif ** 2).sum(axis=1) - (pos_dif_dot_v ** 2) / v_normsq perp_ds = np.sqrt(perp_ds) np.clip(perp_ds, a_min=None, a_max=grid[0]-EPS, out=perp_ds) d = grid[0] / (grid[1] - 1) a, r = np.divmod(perp_ds, d) a = a.astype(np.int) th = 1 - r/d row_inds = np.arange(n) mrx[row_inds, a] = th mrx[row_inds, a + 1] = 1 - th return mrx def evaluate_v_v0(a_pv, b_pv, grid, u, q, b_inds): """ Evaluate velocity as \hat{v} = vq + v(1-q)[mrx_{b_ind}(x).dot(u)] :param a_pv: n, 4 :param b_pv: k, 4 :param grid: (l, m) | 2-tuple :param u: m, | weights to apply to grid encodings :param q: n, | q=0 for using grid encoding, q=1 for not :param b_inds: n, | index of b \in [0, k-1] (undefined for i st. q[i]=1) :return: n, 2 | \hat{v} for each (of n) agent """ n = a_pv.shape[0] v_hat = a_pv[:, 2:].copy() d = grid[0] / (grid[1] - 1) for i in range(n): if q[i]: continue b_pv_i = b_pv[b_inds[i], :] pos_dif = a_pv[i, :2] - b_pv_i[:2] # 2, pos_dif_dot_v = pos_dif.dot(b_pv_i[2:]) v_normsq = (b_pv_i[2:] ** 2).sum(axis=-1) v_normsq = EPS if v_normsq < EPS else v_normsq perp_ds = (pos_dif ** 2).sum(axis=-1) - (pos_dif_dot_v ** 2) / v_normsq perp_ds = np.sqrt(perp_ds) perp_ds = np.clip(perp_ds, a_min=None, a_max=grid[0] - EPS) a, r = np.divmod(perp_ds, d) a = a.astype(np.int) th = 1 - r / d scaling = u[a] * th + u[a + 1] * (1 - th) v_hat[i, :] *= scaling return v_hat def evaluate_v_v1(a_pv, b_pv, grid, u, q, b_inds): """ Evaluate velocity as \hat{v} = vq + v(1-q)[mrx_{b_ind}(x).dot(u)] :param a_pv: n, 4 :param b_pv: k, 4 :param grid: (l, m) | 2-tuple :param u: m, | weights to apply to grid encodings :param q: n, | q=0 for using grid encoding, q=1 for not :param b_inds: n, | index of b \in [0, k-1] :return: n, 2 | \hat{v} for each (of n) agent """ n = a_pv.shape[0] v_hat = a_pv[:, 2:].copy() d = grid[0] / (grid[1] - 1) # n->k pe dist pos_dif = a_pv[:, np.newaxis, :2] - b_pv[np.newaxis, :, :2] # n, k pos_dif_dot_v = np.einsum('ijk, jk -> ij', pos_dif, b_pv[:, 2:]) # k v_normsq = (b_pv[:, 2:] ** 2).sum(axis=1) v_normsq[v_normsq < EPS] = EPS # n, k pe_dist_sq = (pos_dif ** 2).sum(axis=-1) - (pos_dif_dot_v ** 2) / v_normsq pe_dist = np.sqrt(pe_dist_sq) np.clip(pe_dist, a_min=None, a_max=grid[0] - EPS, out=pe_dist) # subset n, st. q=0: n_q0, q0_mask = q == 0 # n_q0, a, r = np.divmod(pe_dist[q0_mask, b_inds[q0_mask]], d) a = a.astype(np.int) th = 1 - r / d scaling = u[a] * th + u[a + 1] * (1 - th) v_hat[q0_mask, :] = (v_hat[q0_mask, :].T * scaling).T return v_hat def evaluate_v_particles_v0(a_pv, b_pv, grid, u, q, b_inds): """ Evaluate velocity as \hat{v} = vq + v(1-q)[mrx_{b_ind}(x).dot(u)] :param a_pv: n_p, n, 4 :param b_pv: k, 4 :param grid: (l, m) | 2-tuple :param u: m, | weights to apply to grid encodings :param q: n_p, n | q=0 for using grid encoding, q=1 for not :param b_inds: n_p, n | index of b \in [0, k-1] (undefined for i st. q[i]=1) :return: n_p, n, 2 | \hat{v} for each (of n) agent """ n_p, n = a_pv.shape[:2] v_hat = np.empty((n_p, n, 2)) for i in range(n_p): v_hat[i, ...] = evaluate_v_v1(a_pv[i], b_pv, grid, u, q[i], b_inds[i]) return v_hat def evaluate_v_particles_v1(a_pv, b_pv, grid, u, q, b_inds): """ Evaluate velocity as \hat{v} = vq + v(1-q)[mrx_{b_ind}(x).dot(u)] :param a_pv: n_p, n, 4 :param b_pv: k, 4 :param grid: (l, m) | 2-tuple :param u: m, | weights to apply to grid encodings :param q: n_p, n | q=0 for using grid encoding, q=1 for not :param b_inds: n_p, n | index of b \in [0, k-1] (undefined for i st. q[i]=1) :return: n_p, n, 2 | \hat{v} for each (of n) agent """ n_p, n = a_pv.shape[:2] v_hat = evaluate_v_v1( a_pv.reshape(-1, 4), b_pv, grid, u, q.reshape(-1), b_inds.reshape(-1)).reshape(n_p, n, 2) return v_hat def main_evaluate_v_particles(): from timeit import timeit seed = np.random.randint(0, 1000) # seed = 0 np.random.seed(seed) print('seed: {}'.format(seed)) n_p = 100 n = 20 k = 3 a_pv = np.random.randn(n_p, n, 4) b_pv = np.random.randn(k, 4) * 2 grid = np.array([5., 6]) # [0, 1, ..., 5] u = np.arange(grid[1]) / grid[1] q = np.random.randn(n_p, n) > 0 b_inds = np.random.choice(k, n_p*n).reshape(n_p, n) print('---------------') x_true = evaluate_v_particles_v0(a_pv, b_pv, grid, u, q, b_inds) x_hat = evaluate_v_particles_v1(a_pv, b_pv, grid, u, q, b_inds) print('diff: {:0.4f}'.format(np.linalg.norm(x_true - x_hat))) n_tries = 2 args = (a_pv, b_pv, grid, u, q, b_inds) print(timeit('f(*args)', number=n_tries, globals=dict(f=evaluate_v_particles_v0, args=args))/n_tries) print(timeit('f(*args)', number=n_tries, globals=dict(f=evaluate_v_particles_v1, args=args))/n_tries) def main_evaluate_v(): from timeit import timeit seed = np.random.randint(0, 1000) # seed = 0 np.random.seed(seed) print('seed: {}'.format(seed)) n = 200 k = 3 a_pv = np.random.randn(n, 4) b_pv = np.random.randn(k, 4) * 2 grid = np.array([5., 6]) # [0, 1, ..., 5] u =
np.arange(grid[1])
numpy.arange
from abc import ABC import numpy from ._helpers import resample algorithms = {"dunkin", "fast-delta"} def is_arraylike(arr, size): """Check input array.""" return isinstance(arr, (list, tuple, numpy.ndarray)) and
numpy.size(arr)
numpy.size
# coding: utf-8 # In[ ]: from enum import Enum import os TRAIN_DIR = os.path.join('../stage_1_train_images', '') TRAIN_DIR_STAGE_2 = os.path.join('../stage_2_train_images', '') TEST_DIR = os.path.join('../stage_1_test_images', '') TEST_DIR_STAGE_2 = os.path.join('../stage_2_test_images', '') CSV_FILENAME = 'submission.csv' class HemorrhageTypes(Enum): ANY = "any" EP = "epidural" IN_PA = "intraparenchymal" IN_VE = "intraventricular" SUB_AR = "subarachnoid" SUB_DU = "subdural" # There are at least 5 windows that a radiologist goes through for each scan! # Brain Matter window : W:80 L:40 # Blood/subdural window: W:130-300 L:50-100 # Soft tissue window: W:350–400 L:20–60 # Bone window: W:2800 L:600 # Grey-white differentiation window: W:8 L:32 or W:40 L:40 BRAIN_MATTER_WINDOW = (40, 80) SUBDURAL_WINDOW = (80, 200) SOFT_TISSUE_WINDOW = (40, 380) BONE_WINDOW = (600, 2800) GRAY_WHITE_DIFFERENTIATION_WINDOW = (40, 40) ALL_WINDOW_VALUES = {'BRAIN_MATTER': BRAIN_MATTER_WINDOW, 'SUBDURAL': SUBDURAL_WINDOW, 'SOFT_TISSUE': SOFT_TISSUE_WINDOW, 'BONE': BONE_WINDOW, 'GRAY_WHITE': GRAY_WHITE_DIFFERENTIATION_WINDOW} KERNEL_WIDTH = 13 KERNEL_HEIGHT = 13 GAUSS_MEAN = 0.1 GAUSS_STDDEV = 0.05 BRIGHTNESS_DELTA = 0.4 # In[ ]: def create_output_csv(output_dict): content = "ID,Label\n" for image_id in output_dict: for num, hemorrhageType in enumerate(HemorrhageTypes, start=0): content += create_output_line(image_id, hemorrhageType.value, output_dict[image_id][num]) with open(CSV_FILENAME, "w") as f: f.write(content) def create_output_line(image_id, hemorrhage_type, probability): return image_id + "_" + hemorrhage_type + "," + str(probability) + "\n" # In[ ]: import os import pandas as pd import glob import pydicom import numpy as np def get_sequence_clipping_order(seq_length): indices = [] elem = 0 for idx, i in enumerate(reversed(range(seq_length))): indices.append(elem) if idx % 2 == 0: elem += i else: elem -= i return indices def print_error(message): c_red = '\033[95m' c_end = '\033[0m' print(c_red + message + c_end) def get_csv_train(data_prefix=TRAIN_DIR_STAGE_2): train_df = pd.read_csv(os.path.join(data_prefix, 'stage_2_train.csv')) train_df[['ID', 'subtype']] = train_df['ID'].str.rsplit('_', 1, expand=True) train_df = train_df.rename(columns={'ID': 'id', 'Label': 'label'}) train_df = pd.pivot_table(train_df, index='id', columns='subtype', values='label') train_df.to_csv("labels_2.csv") return train_df def extract_csv_partition(): df = get_csv_train() meta_data_train = combine_labels_metadata(TRAIN_DIR_STAGE_2) negative, positive = df.loc[df['any'] == 0], df.loc[df['any'] == 1] negative_study_uids = list(meta_data_train.query("any == 0")['StudyInstanceUID']) indices = np.arange(min(len(negative_study_uids), len(positive.index))) np.random.shuffle(indices) negative_study_uids = np.array(negative_study_uids)[indices] selected_negative_studies = meta_data_train.loc[meta_data_train['StudyInstanceUID'].isin(negative_study_uids)] selected_negative_studies = selected_negative_studies.drop( set(selected_negative_studies.columns).intersection(set(negative.columns)), axis=1) negative = negative.merge(selected_negative_studies, how='left', on='id').dropna() negative = negative.drop(selected_negative_studies.columns, axis=1) return pd.concat([positive, negative]) def extract_metadata(data_prefix=TRAIN_DIR_STAGE_2): filenames = glob.glob(os.path.join(data_prefix, "*.dcm")) get_id = lambda p: os.path.splitext(os.path.basename(p))[0] ids = map(get_id, filenames) dcms = map(pydicom.dcmread, filenames) columns = ['BitsAllocated', 'BitsStored', 'Columns', 'HighBit', 'Modality', 'PatientID', 'PhotometricInterpretation', 'PixelRepresentation', 'RescaleIntercept', 'RescaleSlope', 'Rows', 'SOPInstanceUID', 'SamplesPerPixel', 'SeriesInstanceUID', 'StudyID', 'StudyInstanceUID', 'ImagePositionPatient', 'ImageOrientationPatient', 'PixelSpacing'] meta_dict = {col: [] for col in columns} for img in dcms: for col in columns: meta_dict[col].append(getattr(img, col)) meta_df = pd.DataFrame(meta_dict) del meta_dict meta_df['id'] = pd.Series(ids, index=meta_df.index) split_cols = ['ImagePositionPatient1', 'ImagePositionPatient2', 'ImagePositionPatient3', 'ImageOrientationPatient1', 'ImageOrientationPatient2', 'ImageOrientationPatient3', 'ImageOrientationPatient4', 'ImageOrientationPatient5', 'ImageOrientationPatient6', 'PixelSpacing1', 'PixelSpacing2'] meta_df[split_cols[:3]] = pd.DataFrame(meta_df.ImagePositionPatient.values.tolist()) meta_df[split_cols[3:9]] = pd.DataFrame(meta_df.ImageOrientationPatient.values.tolist()) meta_df[split_cols[9:]] = pd.DataFrame(meta_df.PixelSpacing.values.tolist()) meta_df = meta_df.drop(['ImagePositionPatient', 'ImageOrientationPatient', 'PixelSpacing'], axis=1) meta_df.to_csv(os.path.join(data_prefix, 'test_meta_2.csv')) return meta_df def combine_labels_metadata(data_prefix=TRAIN_DIR_STAGE_2): meta_df = extract_metadata(data_prefix) df = get_csv_train(data_prefix) df = df.merge(meta_df, how='left', on='id').dropna() df.sort_values(by='ImagePositionPatient3', inplace=True, ascending=False) df.to_csv(os.path.join(data_prefix, 'train_meta_2.csv')) return df # In[ ]: import cv2 # the kernel sizes must be positive odd integers but they do not have to be equal # the larger they are the more the image will be blurred def blur_image(pixel_matrix, kernel_size_width=KERNEL_WIDTH, kernel_size_height=KERNEL_HEIGHT): return cv2.GaussianBlur(pixel_matrix, (kernel_size_width, kernel_size_height), cv2.BORDER_DEFAULT) def noisy(image, mean=GAUSS_MEAN, stddev=GAUSS_STDDEV): gauss = np.random.normal(mean, stddev, image.shape) noisy = image + gauss noisy_min = np.amin(noisy) noisy_max = np.amax(noisy) noisy = (noisy - noisy_min) / (noisy_max - noisy_min) return noisy def adjust_brightness(image, delta=BRIGHTNESS_DELTA): image += delta image[image < 0] = 0 image[image > 1] = 1 return image # In[ ]: import copy import pydicom import scipy from skimage import morphology from skimage.transform import resize class Preprocessor: @staticmethod def apply_hounsfield(image, intercept, slope): if slope is not 1: image = slope * image.astype(np.float64) image = image.astype(np.float64) image += np.float64(intercept) # Setting values smaller than air, to air. Values smaller than -1024, are probably just outside the scanner. image[image < -1024] = -1024 return image @staticmethod def windowing(image, custom_center=30, custom_width=100, rescale=True): new_image = copy.deepcopy(image) min_value = custom_center - (custom_width / 2) max_value = custom_center + (custom_width / 2) # Including another value for values way outside the range, to (hopefully) make segmentation processes easier. new_image[new_image < min_value] = min_value new_image[new_image > max_value] = max_value if rescale: new_image = (new_image - min_value) / (max_value - min_value) return new_image @staticmethod def image_resample(image, pixel_spacing, new_spacing=[1, 1]): pixel_spacing = map(float, pixel_spacing) spacing = np.array(list(pixel_spacing)) resize_factor = spacing / new_spacing new_real_shape = image.shape * resize_factor new_shape = np.round(new_real_shape) real_resize_factor = new_shape / image.shape image = scipy.ndimage.interpolation.zoom(image, real_resize_factor) return image @staticmethod def image_background_segmentation(image, WL=30, WW=100, rescale=True): lB = WW - WL uB = WW + WL # Keep only values inside of the window background_separation = np.logical_and(image > lB, image < uB) # Get largest connected component: # From https://github.com/nilearn/nilearn/blob/master/nilearn/_utils/ndimage.py background_separation = morphology.dilation(background_separation, np.ones((5, 5))) labels, label_nb = scipy.ndimage.label(background_separation) label_count = np.bincount(labels.ravel().astype(np.int)) # discard the 0 label label_count[0] = 0 mask = labels == label_count.argmax() # Fill holes in the mask mask = morphology.dilation(mask, np.ones((5, 5))) # dilate the mask for less fuzy edges mask = scipy.ndimage.morphology.binary_fill_holes(mask) mask = morphology.dilation(mask, np.ones((3, 3))) # dilate the mask again image = mask * image if rescale: img_min = np.amin(image) img_max = np.amax(image) image = (image - img_min) / (img_max - img_min) return image @staticmethod def preprocess(image_path): dicom = pydicom.read_file(image_path) image = dicom.pixel_array.astype(np.float64) if image.shape != (299, 299): image = resize(image, (299, 299)) p = Preprocessor image = p.apply_hounsfield(image, dicom.RescaleIntercept, dicom.RescaleSlope) image = p.windowing(image) return image @staticmethod def augment(image): augmented = list() augmented.append(blur_image(image)) augmented.append(noisy(image)) augmented.append(adjust_brightness(image, 0.3)) return augmented # In[ ]: import os import random from keras.utils import Sequence class DataGenerator(Sequence): def __init__(self, list_ids, labels=None, batch_size=1, img_size=(299, 299, 3), img_dir=TRAIN_DIR_STAGE_2, shuffle=True, n_classes=2): self.list_ids = list_ids self.indices = np.arange(len(self.list_ids)) self.labels = labels self.batch_size = batch_size self.img_size = img_size self.img_dir = img_dir self.shuffle = shuffle self.n_classes = n_classes # TODO: this could be generalized with the help of # an Augmenter class self.n_augment = 3 # 3 data augmentation functions self.augment_funcs = [blur_image, noisy, adjust_brightness, lambda img: img] # identity function self.on_epoch_end() if labels is not None: # Weights should be a probability distribution. # If the number of training instances is too large, # there could be issues! (arithmetic underflow) weight_func = lambda row: 1.0 if row["any"] == 0 else self.n_augment + 1 self.weights = labels.apply(weight_func, axis=1) total = self.weights.sum() self.weights = (self.weights / total).values # set random seed, hope this randomizes starting value for # each worker random.seed(os.urandom(8)) def __len__(self): return len(self.indices) // self.batch_size def __getitem__(self, index): indices = np.random.choice(self.indices, size=self.batch_size, replace=False, p=self.weights) return self.__data_generation(indices) # Don't think this is necessary anymore, indices are sampled randomly. def on_epoch_end(self): pass def __data_generation(self, indices): x = np.empty((self.batch_size, *self.img_size)) if self.labels is not None: # training phase if self.n_classes == 2: y = np.empty((self.batch_size,), dtype=np.float32) else: y = np.empty((self.batch_size, self.n_classes), dtype=np.float32) for i, idx in enumerate(indices): image = Preprocessor.preprocess(self.img_dir + self.list_ids[idx] + ".dcm") if self.labels.iloc[idx]['any'] == 1: image = self.augment_funcs[random.randint(0, self.n_augment)](image) image = np.array(image) image = np.repeat(image[..., np.newaxis], 3, -1) x[i,] = image if self.n_classes == 2: y[i, ] = self.labels.iloc[idx]['any'] elif self.n_classes == 5: y[i, ] = self.labels.iloc[idx, 1:] else: y[i, ] = self.labels.iloc[idx] return x, y else: # test phase for i, idx in enumerate(indices): image = Preprocessor.preprocess(self.img_dir + self.list_ids[idx] + ".dcm") image = np.repeat(image[..., np.newaxis], 3, -1) x[i,] = image return x # In[ ]: import os from keras.utils import Sequence class LSTMDataGenerator(Sequence): def __init__(self, list_ids, labels=None, batch_size=1, img_size=(299, 299, 3), sequence_size=10, img_dir=TRAIN_DIR_STAGE_2, shuffle=True): # here, list_ids is a series of lists; each list represents an # ordered sequence of scans that compose a single study self.list_ids = list_ids self.indices = np.arange(len(self.list_ids)) self.labels = labels self.batch_size = batch_size self.img_size = img_size self.sequence_size = sequence_size self.img_dir = img_dir self.shuffle = shuffle # TODO: this could be generalized with the help of # an Augmenter class self.n_augment = 3 # 3 data augmentation functions self.augment_funcs = [blur_image, noisy, adjust_brightness, lambda img: img] # identity function self.on_epoch_end() if labels is not None: # Weights should be a probability distribution. # If the number of training instances is too large, # there could be issues! (arithmetic underflow) weight_func = lambda seq: (float(self.n_augment + 1) if any([labels[0] for labels in seq]) else 1.0) self.weights = np.array(list(map(weight_func, self.labels))) total = np.sum(self.weights) self.weights = (self.weights / total) def __len__(self): return len(self.indices) // self.batch_size def __getitem__(self, index): indices = np.random.choice(self.indices, size=self.batch_size, replace=False, p=self.weights) return self.__data_generation(indices) def on_epoch_end(self): pass def __data_generation(self, indices): x = np.empty((self.batch_size, self.sequence_size, *self.img_size)) preprocess_func = lambda im: Preprocessor.preprocess(os.path.join(self.img_dir, im + ".dcm")) if self.labels is not None: # training phase y = np.empty((self.batch_size, self.sequence_size, 6), dtype=np.float32) for i, idx in enumerate(indices): seq = self.list_ids[idx] seq_labels = np.array(self.labels[idx]) seq_len = len(seq) # if there is an any label = 1, set has_hemorrhage flag has_hemorrhage = np.any(seq_labels[0]) imgs = map(preprocess_func, seq) if has_hemorrhage: # augment images func_idxs = np.random.randint(0, self.n_augment + 1, size=seq_len) imgs = [self.augment_funcs[j](img) for j, img in zip(func_idxs, imgs)] else: # consume map generator imgs = list(imgs) imgs = np.array(imgs) imgs = np.repeat(imgs[..., np.newaxis], 3, -1) diff = seq_len - self.sequence_size if diff < 0: padding = np.repeat(np.zeros(imgs.shape[1:])[np.newaxis, ...], abs(diff), 0) imgs = np.concatenate((imgs, padding), axis=0) seq_padding = np.repeat(np.zeros(6)[np.newaxis, ...], abs(diff), 0) seq_labels = np.concatenate((seq_labels, seq_padding), axis=0) elif diff > 0: indices = get_sequence_clipping_order(seq_len) imgs = np.delete(imgs, indices[:diff], 0) seq_labels = np.delete(seq_labels, indices[:diff], 0) x[i,] = imgs y[i,] = seq_labels[:, :] return x, y else: # test phase for i, idx in enumerate(indices): seq = self.list_ids[idx] seq_len = len(seq) imgs = np.array(list(map(preprocess_func, seq))) imgs = np.repeat(imgs[..., np.newaxis], 3, -1) diff = seq_len - self.sequence_size if diff < 0: padding = np.repeat(np.zeros(imgs.shape[1:])[np.newaxis, ...], abs(diff), 0) imgs = np.concatenate((imgs, padding), axis=0) elif diff > 0: indices = get_sequence_clipping_order(seq_len) imgs = np.delete(imgs, indices[:diff], 0) x[i,] = imgs return x # In[ ]: from keras.applications import NASNetLarge, InceptionResNetV2, Xception, DenseNet201, ResNet50 from keras.layers import Bidirectional, LSTM, TimeDistributed, Masking from keras.layers import Dense, Dropout, BatchNormalization, LeakyReLU, Input, GlobalAveragePooling2D from keras.models import Sequential, Model class StandardModel: def __init__(self, network='xception', input_shape=(299, 299, 3), pooling_method='max', classes=2, use_softmax=True): self.base_model = self.get_base_model(network, input_shape, pooling_method) self.classes = classes self.use_softmax = use_softmax self.input_shape = input_shape @staticmethod def get_base_model(network, input_shape, pooling_method): network = network.lower() input_warning_message = 'WARNING! The input shape is not the default one!!! Proceeding anyway!' if network == 'nas': if input_shape != (331, 331, 3): print_error(input_warning_message) return NASNetLarge(input_shape=input_shape, include_top=False, pooling=pooling_method, weights=None) elif network == 'inception': if input_shape != (299, 299, 3): print_error(input_warning_message) return InceptionResNetV2(input_shape=input_shape, include_top=False, pooling=pooling_method, weights='imagenet') elif network == 'xception': if input_shape != (299, 299, 3): print_error(input_warning_message) return Xception(input_shape=input_shape, include_top=False, pooling=pooling_method, weights='imagenet') elif network == 'densenet': if input_shape != (224, 224, 3): print_error(input_warning_message) return DenseNet201(input_shape=input_shape, include_top=False, pooling=pooling_method, weights='imagenet') elif network == 'resnet': if input_shape != (224, 224, 3): print_error(input_warning_message) return ResNet50(input_shape=input_shape, include_top=False, pooling=pooling_method, weights='imagenet') else: print_error(f'Invalid network name: {network}! Please choose from: \n ') return None def build_model(self): return self.build_binary_model() if self.classes == 2 else self.build_multi_class_model() def build_binary_model(self): model = Sequential() model.add(self.base_model) model.add(Dense(96)) model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.1)) model.add(Dropout(0.3)) model.add(Dense(1, activation='sigmoid')) return model def build_multi_class_model(self): return self.build_probability_model() if self.use_softmax else self.build_recurrent_model() def build_probability_model(self): model = Sequential() model.add(self.base_model) model.add(Dense(96, activation='relu')) model.add(BatchNormalization()) model.add(Dense(self.classes, activation='sigmoid')) return model def build_recurrent_model(self): inputs = Input(shape=(10, *self.input_shape)) time_dist = TimeDistributed(self.base_model)(inputs) global_pool = TimeDistributed(GlobalAveragePooling2D())(time_dist) dense_relu = TimeDistributed(Dense(256, activation='relu'))(global_pool) masked = Masking(0.0)(dense_relu) out = Bidirectional(LSTM(64, return_sequences=True, activation='softsign'))(masked) out = TimeDistributed(Dense(self.classes, activation='sigmoid'))(out) model = Model(inputs=inputs, outputs=out) return model def build_simple_recurrent_model(self): inputs = Input(shape=(None, self.classes)) lstm = Bidirectional(LSTM(64, activation='softsign', return_sequences=True))(inputs) outputs = TimeDistributed(Dense(self.classes, activation='sigmoid'))(lstm) model = Model(inputs=inputs, outputs=outputs) return model # In[ ]: import glob import os import sys import time import keras import matplotlib.pyplot as plt import tensorflow as tf import keras.backend as K from keras.optimizers import Adamax, SGD from sklearn.metrics import log_loss from keras.callbacks import ModelCheckpoint, Callback class WeightsSaver(Callback): def __init__(self, N): self.N = N self.batch = 0 def on_batch_end(self, batch, logs={}): if self.batch % self.N == 0: name = 'model_weights.h5' self.model.save_weights(name) self.batch += 1 def prepare_data(only_positives=False): csv = pd.read_csv(os.path.join('data/train', 'labels_2.csv')) files = glob.glob(os.path.join(TRAIN_DIR_STAGE_2, "*.dcm")) files = list(map(lambda x: os.path.splitext(os.path.basename(x))[0], files)) filtered_csv = csv[csv.id.isin(files)] if only_positives: filtered_csv = filtered_csv.loc[filtered_csv['any'] == 1] indices = np.random.rand(len(filtered_csv)) mask = indices < 0.9 x_train, y_train = list(filtered_csv[mask].id), filtered_csv.iloc[mask, 1:] x_test, y_test = list(filtered_csv[~mask].id), filtered_csv.iloc[~mask, 1:] # x_train.reset_index(inplace=True, drop=True) y_train.reset_index(inplace=True, drop=True) # x_test.reset_index(inplace=True, drop=True) y_test.reset_index(inplace=True, drop=True) return x_train, y_train, x_test, y_test def prepare_sequential_data(only_positives=False, for_prediction=False): if not for_prediction: # open label + metadata CSV csv = pd.read_csv(os.path.join('data/train', "train_meta_2.csv")) # sort by study ID and position csv.sort_values(by=["StudyInstanceUID", "ImagePositionPatient3"], inplace=True, ascending=False) label_columns = ["any", "epidural", "intraparenchymal", "intraventricular", "subarachnoid", "subdural"] # filter unnecessary columns csv = csv[["StudyInstanceUID", "id"] + label_columns] if only_positives: csv = csv.loc[csv['any'] == 1] # get sequences of IDs (groupby preserves order) sequences = csv.groupby("StudyInstanceUID")["id"].apply(list) # group labels into one single column csv["labels"] = csv[label_columns].values.tolist() # get sequences of labels labels = csv.groupby("StudyInstanceUID")["labels"].apply(list) # indices = np.random.rand(sequences.size) # # partition data # mask = indices < 0.001 # x_train = list(sequences.iloc[mask]) # y_train = list(labels.iloc[mask]) x_train = list(sequences) y_train = list(labels) return x_train, y_train else: csv = pd.read_csv(os.path.join('data/train', "test_meta_2.csv")) # sort by study ID and position csv.sort_values(by=["StudyInstanceUID", "ImagePositionPatient3"], inplace=True, ascending=False) # filter unnecessary columns csv = csv[["StudyInstanceUID", "id"]] # get sequences of IDs (groupby preserves order) sequences = csv.groupby("StudyInstanceUID")["id"].apply(list) x_test = list(sequences) return x_test def test_recurrent_network(): def generate_single_instance(instance): images, labels = list(), list() for file in instance: file_path = os.path.join(TRAIN_DIR, file) images.append(Preprocessor.preprocess(file_path)) labels.append(np.random.uniform(0, 1, 5)) images = np.stack(images, axis=0) labels = np.stack(labels, axis=0) return images, labels model = StandardModel('xception', (512, 512, 3), classes=5, use_softmax=False, pooling_method=None) model = model.build_model() model.compile(Adamax(), loss='categorical_crossentropy', metrics=['acc']) model.summary() x_train = [] y_train = [] data = [['ID_00025ef4b.dcm', 'ID_00027c277.dcm', 'ID_00027cbb1.dcm', 'ID_00027c277.dcm', 'ID_00027cbb1.dcm', 'ID_00027c277.dcm', 'ID_00027cbb1.dcm', 'ID_00027c277.dcm', 'ID_00027cbb1.dcm', 'ID_00027cbb1.dcm']] for i in range(1): instance_images, instance_labels = generate_single_instance(data[i]) x_train.append(instance_images) y_train.append(instance_labels) x_train = np.stack(x_train) x_train = np.repeat(x_train[..., np.newaxis], 3, -1) y_train = np.stack(y_train) print(x_train.shape, y_train.shape) model.fit(x_train, y_train, batch_size=1) def plot_model_graph(history, graph_name): plt.plot(history.history['acc']) plt.plot(history.history['loss']) plt.title('Model Accuracy & Loss') plt.ylabel('Accuracy & Loss') plt.xlabel('Epoch') plt.savefig(graph_name) def weighted_log_loss(y_true, y_pred): class_weights = np.array([2., 1., 1., 1., 1., 1.]) eps = K.epsilon() y_pred = K.clip(y_pred, eps, 1.0 - eps) out = -(y_true * K.log(y_pred) * class_weights + (1.0 - y_true) * K.log(1.0 - y_pred) * class_weights) return K.mean(out, axis=-1) def train_binary_model(base_model, model_name, already_trained_model=None): x_train, y_train, x_test, y_test = prepare_data() if not already_trained_model: model = StandardModel(base_model, (512, 512, 3), classes=2, use_softmax=True) model = model.build_model() model.compile(Adamax(), loss='binary_crossentropy', metrics=['acc']) model.fit_generator(DataGenerator(x_train, labels=y_train, n_classes=2, batch_size=8), epochs=1) model.save(model_name) else: if os.path.exists(already_trained_model): model = keras.models.load_model(already_trained_model) model.compile(Adamax(), loss='binary_crossentropy', metrics=['acc']) model.fit_generator(DataGenerator(x_train, labels=y_train, n_classes=2, batch_size=8), epochs=1) model.save(model_name) else: print_error("Provided model file doesn't exist! Exiting...") sys.exit(1) def train_multi_class_model(base_model, model_name, already_trained_model=None, n_classes=5): x_train, y_train, x_test, y_test = prepare_data() checkpoint_acc = keras.callbacks.ModelCheckpoint(model_name, monitor='loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1) if not already_trained_model: model = StandardModel(base_model, (299, 299, 3), classes=n_classes, use_softmax=True) model = model.build_model() model.compile(Adamax(), loss='binary_crossentropy', metrics=['acc']) model.fit_generator(DataGenerator(x_train, labels=y_train, n_classes=n_classes, batch_size=8), epochs=5, callbacks=[checkpoint_acc]) model.save(model_name) else: if os.path.exists(already_trained_model): model = keras.models.load_model(already_trained_model) model.compile(Adamax(), loss='binary_crossentropy', metrics=['acc']) model.fit_generator(DataGenerator(x_train, labels=y_train, n_classes=n_classes, batch_size=8), epochs=3, callbacks=[checkpoint_acc]) model.save(model_name) else: print_error("Provided model file doesn't exist! Exiting...") sys.exit(1) def train_recurrent_multi_class_model(base_model, model_name, already_trained_model=None): x_train, y_train = prepare_sequential_data() if not already_trained_model: model = StandardModel(base_model, (299, 299, 3), classes=6, use_softmax=False, pooling_method=None) model = model.build_model() model.compile(Adamax(), loss='binary_crossentropy', metrics=['acc']) model.fit_generator(LSTMDataGenerator(x_train, labels=y_train), epochs=5) model.save(model_name) else: if os.path.exists(already_trained_model): model = keras.models.load_model(already_trained_model) model.compile(Adamax(), loss='binary_crossentropy', metrics=['acc']) model.fit_generator(LSTMDataGenerator(x_train, labels=y_train), epochs=3) model.save(model_name) else: print_error("Provided model file doesn't exist! Exiting...") sys.exit(1) def construct_probabilities_sequences(x_train, y_train, loaded_multi_class_model): def preprocess_func(im): return Preprocessor.preprocess(os.path.join(TRAIN_DIR_STAGE_2, im + ".dcm")) new_x_train = list() new_y_train = list() print(len(x_train)) count = 1 ideal_length = max([len(seq) for seq in x_train]) for seq, label_seq in zip(x_train, y_train): print(count) label_seq = np.array(label_seq) padding = np.zeros((ideal_length, 6)) label_padding = np.zeros((ideal_length, 6)) preprocessed_seq = np.array(list(map(preprocess_func, seq))) preprocessed_seq = np.array([np.repeat(p[..., np.newaxis], 3, -1) for p in preprocessed_seq]) predictions = loaded_multi_class_model.predict(preprocessed_seq) padding[:predictions.shape[0], :predictions.shape[1]] = predictions padding = padding.reshape(1, *padding.shape) label_padding[:label_seq.shape[0], :label_seq.shape[1]] = label_seq label_padding = label_padding.reshape(1, *label_padding.shape) new_x_train.append(padding) new_y_train.append(label_padding) count += 1 new_x_train =
np.concatenate(new_x_train, axis=0)
numpy.concatenate
# -- coding: utf-8 -- # Copyright 2018 <NAME> <<EMAIL>> """ Library to handle SPM data. This is the core module of all images retrieved by SPM and ToF-SIMS. """ import numpy as np import matplotlib.pyplot as plt import scipy import scipy.ndimage import scipy.optimize import skimage import skimage.exposure import skimage.filters import scipy.interpolate from skimage import transform as tf import copy from .utils import CDF, funit import sys import matplotlib as mpl import warnings from .utils.misc import PB try: from skimage.filters import threshold_local except: # For compatibility with old versions of skimage from skimage.filters import threshold_adaptive as threshold_local class SPM_image: """ Main class to handle SPM images. This class contains the pixels data of the images as well as it's real size. It also provides a lot of tools to correct and perform various analysis and tasks on the image. """ def __init__(self, BIN, channel='Topography', corr=None, real=None, zscale='?', _type='Unknown'): """ Create a new SPM_image Parameters ---------- BIN : 2D numpy array The pixel values of the image as a 2D numpy array channel : string The name of the channel. What does the image represents? corr : string or None 'slope' : correct the SPM image for its slope (see pySPM.SPM.SPM_image.correct_slope) 'lines' : correct the SPM image for its lines (see pySPM.SPM.SPM_image.correct_lines) 'plane' : correct the SPM image by plane fitting (see pySPM.SPM.SPM_image.correct_plane) real : None or dictionary Information about the real size of the image {'x':width,'y':height,'unit':unit_name} zscale : string Unit used to describe the z-scale. (units of the data of BIN) _type : string represent the type of measurement """ self.channel = channel self.direction = 'Unknown' self.size = {'pixels': {'x': BIN.shape[1], 'y': BIN.shape[0]}} if not real is None: self.size['real'] = real else: self.size['real'] = {'unit': 'pixels', 'x': BIN.shape[1], 'y': BIN.shape[0]} if not 'unit' in self.size['real']: self.size['real']['unit'] = 'px' self.pixels = BIN self.type = _type self.zscale = zscale if corr is not None: if corr.lower() == 'slope': self.correct_slope() elif corr.lower() == 'lines': self.correct_lines() elif corr.lower() == 'plane': self.correct_plane() def __add__(self, b): """ Add up two images. This is a low level function and no check is performed to proof that both images have the same size. """ New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels += b.pixels New.channel += " + "+b.channel elif type(b) in [int, float]: New.pixels += b New.channels += " + {:.2f}".format(b) return New def __sub__(self, b): """ Subtract two images. This is a low level function and no check is performed to proof that both images have the same size. """ New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels -= b.pixels New.channel += " - "+b.channel elif type(b) in [int, float]: New.pixels -= b New.channels += " - {:.2f}".format(b) return New def __mul__(self, b): New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels *= b.pixels New.channel = "({})*{}".format(New.channel,b.channel) elif type(b) in [int, float]: New.pixels *= b New.channels = "({})*{:.2f}".format(New.channel,b) return New def __div__(self, b): New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels /= b.pixels New.channel = "({})/{}".format(New.channel,b.channel) elif type(b) in [int, float]: New.pixels /= b New.channels = "({})/{:.2f}".format(New.channel,b) return New def pxs(self): """ Return the pixel size """ fxy = {xy: funit(self.size['real'][xy], self.size['real']['unit']) for xy in 'xy'} return [(fxy[xy]['value']/self.size['pixels'][xy], fxy[xy]['unit']) for xy in 'xy'] def add_scale(self, length, ax=None, height=20, margin=5, color='w', loc=4, text=True, pixels=None, fontsize=20, edge_color='k', edge_width=3): """ Display a scale marker on an existing image Parameters ---------- length : float The length of the scale in real units ax : matplotlib axis if None the current axis will be taken (plt.gca()) height : int The height of the scale bar in pixels color : string The color used to display the scale bar loc : int The location of the scale bar. 1 : top right 2 : top left 3 : bottom left 4 : bottom right text : bool display the size of the scale on top of it? pixels : bool Is the image plotted in ax with a x/y scale in pixels? fontsize : float The fontsize used to display the text Example ------- >>> img = pySPM.SPM_image() >>> img.show() >>> img.add_scale(50e-6, pixels=False); Add a scale of 50 μm on an image displayed with real units >>> img = pySPM.SPM_image() >>> img.show(pixels=True) >>> img.add_scale(50e-6); Add a scale of 50 μm on an image displayed in pixels """ import matplotlib.patches import matplotlib.patheffects as PathEffects fL = length/self.size['real']['x'] L = self.size['pixels']['x']*fL fH = height/self.size['pixels']['y'] if ax is None: ax = plt.gca() if pixels is None: if hasattr(ax, 'isPixel'): pixels = ax.isPixel else: pixels = False flipped = False if hasattr(ax, 'flipped'): flipped = ax.flipped if type(loc) is int: assert loc in [1, 2, 3, 4] ref = ax.transAxes.transform({1:(1-fL,0),2:(0,0),3:(0,1-fH),4:(1-fL,1-fH)}[loc]) if loc in [2,3]: ref[0] += margin else: ref[0] -= margin if loc in [1,2]: ref[1] += margin else: ref[1] -= margin else: assert type(loc) in [tuple, list] assert len(loc)==2 ref = ax.transData.transform(loc) + ax.transAxes.transform((-fL/2,-fH/2)) - ax.transAxes.transform((0,0)) inv = ax.transData.inverted() ref = inv.transform(ref) WH = inv.transform(ax.transAxes.transform((fL,fH)))-inv.transform(ax.transAxes.transform((0,0))) rect = ax.add_patch(matplotlib.patches.Rectangle(ref, width=WH[0], height=WH[1], color=color)) if text: r = funit(length, self.size['real']['unit']) if r['unit'][0] == 'u': r['unit'] = '$\\mu$' + r['unit'][1:] if loc in [3,4]: label_ref = [ref[0]+WH[0]/2, ref[1]] ann = ax.annotate("{value:.01f} {unit}".format(**r), label_ref, color=color, fontsize=fontsize, va="top", ha="center") else: label_ref = [ref[0]+WH[0]/2, ref[1]+WH[1]] ann = ax.annotate("{value:.01f} {unit}".format(**r), label_ref, color=color, fontsize=fontsize, va="bottom", ha="center") ann.set_path_effects([PathEffects.withStroke(linewidth=edge_width, foreground=edge_color)]) def offset(self, profiles, width=1, ax=None, col='w', inline=True, **kargs): """ Correct an image by offsetting each row individually in order that the lines passed as argument in "profiles" becomes flat. Parameters ---------- profiles: list of list each sublist represent a line as [x1, y1, x2, y2] in pixels known to be flat width : int, float the line width in pixels used for better statistics ax : matplotlib axis or None If not None, axis in which the profiles will be plotted in inline : bool If True perform the correction on the current object, otherwise return a new image col : string matrplotlib color used to plot the profiles (if ax is not None) labels : bool display a label number with each profile **kargs: arguments passed further to get_row_profile. axPixels: set to True if you axis "ax" have the data plotted in pixel instead of real distance Example ------- Exampel if the data are plotted in pixels: >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topoC = topo.offset([[150, 0, 220, 255]], inline=False,axPixels=True) >>> topo.show(pixels=True, ax=ax[0]) >>> topoC.show(ax=ax[1]); Example if the data are plotted with real units >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topoC = topo.offset([[150, 0, 220, 255]], inline=False) >>> topo.show(ax=ax[0]) >>> topoC.show(ax=ax[1]); """ offset = np.zeros(self.pixels.shape[0]) counts = np.zeros(self.pixels.shape[0]) for i, p in enumerate(profiles): if kargs.get('labels', False): y, D = self.get_row_profile(*p, width=width, ax=ax, col=col, label=str(i), **kargs) else: y, D = self.get_row_profile(*p, width=width, ax=ax, col=col, **kargs) counts[y] += 1 offset[y[1:]] += np.diff(D) counts[counts == 0] = 1 offset = offset/counts offset = np.cumsum(offset) offset = offset.reshape((self.pixels.shape[0], 1)) if inline: self.pixels = self.pixels - \ np.flipud(np.repeat(offset, self.pixels.shape[1], axis=1)) return self else: C = copy.deepcopy(self) C.pixels = self.pixels - \ np.flipud(np.repeat(offset, self.pixels.shape[1], axis=1)) return C def pxRect2Real(self, xy, width, height): """ Transform a xy, width, height data in pixels to an equivalentz one with real units """ ll = self.px2real(xy[0],xy[1]) ur = self.px2real(xy[0]+width,xy[1]+height) return ll,ur[0]-ll[0],ur[1]-ll[1] def get_row_profile(self, x1, y1, x2, y2, width=1, col='C1', ax=None, alpha=0, **kargs): """ Get a profile per row along a given line. This function is mainly useful for the function offset. x1, y1, x2, y2: int coordinates of the line. width : int the width of the line used for statistics (in pixels) col: string color used to plot the line position ax : matplotlib axis axis in which the lines position will plotted alpha : float The alpha channel of the line color (≥0 and ≤1) **kargs: line style arguments: linewidth, color and linestyle axis units: axPixels set to True if ax has the image plotted in pixels. Returns ------- Y coordinates : 1D numpy array distance along the profile starting at 0 Z coordinates : 1D numpy array profile """ plotargs = { key: kargs[key] for key in ['linewidth', 'color', 'linestyle'] if key in kargs } if y2 < y1: x1, y1, x2, y2 = x2, y2, x1, y1 if ax is not None: d = np.sqrt((x2-x1)**2+(y2-y1)**2) dx = -width/2*(y2-y1)/d dy = width/2*(x2-x1)/d if kargs.get('axPixels', False): ax.plot([x1-dx, x1+dx], [y1-dy, y1+dy], col) ax.plot([x2-dx, x2+dx], [y2-dy, y2+dy], col) ax.plot((x1, x2), (y1, y2), col, **plotargs) if kargs.get('label', False): ax.annotate(kargs.get('label'), (.5*(x1+x2),.5*(y1+y2)), color=col) if alpha>0: import matplotlib.patches ax.add_patch(matplotlib.patches.Rectangle((x1+dx,y1+dy),width, d, -np.degrees(np.arctan2(x2-x1,y2-y1)), color=col, alpha=alpha)) else: h = self.pixels.shape[0] pxs = self.size['real']['x'] / self.pixels.shape[1] pys = self.size['real']['y'] / h ax.plot([(x1-dx)*pxs, (x1+dx)*pxs], [(h-(y1-dy))*pys, (h-(y1+dy))*pys], col) ax.plot([(x2-dx)*pxs, (x2+dx)*pxs], [(h-(y2-dy))*pys, (h-(y2+dy))*pys], col) ax.plot((x1*pxs, x2*pxs), ((h-y1)*pys, (h-y2)*pys), col, **plotargs) if kargs.get('label', False): ax.annotate(kargs.get('label'), (.5*(x1+x2)*pxs,.5*(2*h-y1-y2)*pys), color=col) if alpha>0: import matplotlib.patches W = np.sqrt((2*dx*pxs)**2+(2*dy*pys)**2) L = np.sqrt(((x2-x1)*pxs)**2+((y2-y1)*pys)**2) ax.add_patch(matplotlib.patches.Rectangle(((x1+dx)*pxs,(y1+dy)*pys), W, L, -np.degrees(np.arctan2((x2-x1)*pxs,(y2-y1)*pys)), color=col, alpha=alpha)) x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) I = scipy.interpolate.interp2d(x, y, np.flipud(self.pixels)) Y = np.arange(y1, y2+1) V = np.zeros(len(Y)) for w in np.arange(width): xl = np.linspace(x1-(width-1)/2.+w, x2-(width-1)/2.+w, len(Y)) for i in range(len(Y)): Z = I(xl[i], Y[i]) V[i] += Z return Y, V/width def correct_median_diff(self, inline=True): """ Correct the image with the median difference """ N = self.pixels # Difference of the pixel between two consecutive row N2 = np.vstack([N[1:, :], N[-1:, :]])-N # Take the median of the difference and cumsum them C = np.cumsum(np.median(N2, axis=1)) # Extend the vector to a matrix (row copy) D = np.tile(C, (N.shape[0], 1)).T if inline: self.pixels = N-D else: New = copy.deepcopy(self) New.pixels = N-D return New def correct_slope(self, inline=True): """ Correct the image by subtracting a fitted slope along the y-axis """ s = np.mean(self.pixels, axis=1) i = np.arange(len(s)) fit = np.polyfit(i, s, 1) if inline: self.pixels -= np.tile(np.polyval(fit, i).reshape(len(i), 1), len(i)) return self else: New = copy.deepcopy(self) New.pixels -= np.tile(np.polyval(fit, i).reshape(len(i), 1), len(i)) return New def correct_plane(self, inline=True, mask=None): """ Correct the image by subtracting a fitted 2D-plane on the data Parameters ---------- inline : bool If True the data of the current image will be updated otherwise a new image is created mask : None or 2D numpy array If not None define on which pixels the data should be taken. """ x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) X0, Y0 = np.meshgrid(x, y) Z0 = self.pixels if mask is not None: X = X0[mask] Y = Y0[mask] Z = Z0[mask] else: X = X0 Y = Y0 Z = Z0 A = np.column_stack((np.ones(Z.ravel().size), X.ravel(), Y.ravel())) c, resid, rank, sigma = np.linalg.lstsq(A, Z.ravel(), rcond=-1) if inline: self.pixels -= c[0] * \ np.ones(self.pixels.shape) + c[1] * X0 + c[2] * Y0 return self else: New = copy.deepcopy(self) New.pixels -= c[0]*np.ones(self.pixels.shape) + c[1] * X0 + c[2] * Y0 return New def correct_lines(self, inline=True): """ Subtract the average of each line for the image. if inline is True the current data are updated otherwise a new image with the corrected data is returned """ if inline: self.pixels -= np.tile(np.mean(self.pixels, axis=1).T, (self.pixels.shape[0], 1)).T return self else: New = copy.deepcopy(self) New.pixels -= np.tile(np.mean(self.pixels, axis=1).T, (self.pixels.shape[0], 1)).T return New def dist_v2(self, pixel=False): """ Return a 2D array with the distance between each pixel and the closest border. Might be usefull for FFT filtering """ if pixel: dx = 1 dy = 1 else: dx = self.size['real']['x']/self.size['pixels']['x'] dy = self.size['real']['y']/self.size['pixels']['y'] x2 = np.arange(self.size['pixels']['x']) x2 = (np.minimum(x2, self.size['pixels']['x']-x2) * dx)**2 y2 = np.arange(self.size['pixels']['y']) y2 = (np.minimum(y2, self.size['pixels']['y'] - y2) * dy)**2 X, Y = np.meshgrid(x2, y2) return np.sqrt(X+Y) def inv_calc_flat(self, d, l=0.1): """ Function used for inverse MFM calculation (inspired from http://qmfm.empa.ch/qmfm/) The function is in its early devlopment stage as not used by the developed. Parameters ---------- d : float Height distance in the input data l : float Tikhonov parameter for the deconvolution """ work_image = self.pixels ny, nx = self.pixels.shape dx = self.size['real']['x']/self.size['pixels']['x'] dy = self.size['real']['y']/self.size['pixels']['y'] k = self.dist_v2() k[0, 0] = 1e-10 tf = np.exp(-d*k) tf[0, 0] = np.mean(tf) tf /= 2 tf *= 1-np.exp(-d * k) recon_tf = np.ones(tf.shape) / (tf+l*np.ones(tf.shape) / np.conj(tf)) tf *= recon_tf return np.real(np.fft.ifft2(np.fft.fft2(work_image)*recon_tf)) def get_extent(self): """ Get the image extent in real data """ if 'recorded' in self.size: W = self.size['recorded']['real']['x'] H = self.size['recorded']['real']['y'] else: W = self.size['real']['x'] H = self.size['real']['y'] return (0, W, 0, H) def show(self, ax=None, sig=None, cmap=None, title=None, adaptive=False, dmin=0, dmax=0, pixels=False, flip=False, wrap=None, mul=1, symmetric=False, **kargs): """ Function to display the image with a lot of parametrization Parameters ---------- ax : matplotlib axis or None matplotlib axis if given otherwise current axis will be used (plt.gca()) sig : float sigma values to adjust the contrast range around the mean ±sig times the standard-deviation cmap : string colormap name used. By default a gray map is used. If the zscale of the data are in 'meter' (i.e. topography data) the 'hot' colormap is used title : string The title of the plot. By default is the channel name adaptive : bool The color scale used is linear. If adaptive is True a non linear color scale is used in order that each color is used with the same amount. dmin : float minimum value adjustment used for the colorscale dmax: float maximum value adjustment used for the colorscale pixels : bool Display the image with x/y-labels with real unit. If pixels is True, the axes are in pixels flip : bool Flip the image upside-down wrap : Nont or int wrap the title to a width of wrap chars symmetric : bool If True will place the middle of the colorscale to the value 0. This is specially usefull for diverging colormaps such as : BrBG, bwr, coolwarm, seismiv, spectral, etc. level : float level should be ≥0 and <50. Adjust the lower and upper colorscale to level% and (100-level)% of the data range. e.g. if level=1, the colorscale will display 1-99% of the data range vmin : float Minimum value used for the colorscale vmax : flaot Maximum value used for the colorscale Returns ------- matplotlib.image.AxesImage matplolib axis instance returned by imshow Examples -------- >>> topo = pySPM.SPM_image(...) >>> fig, (ax, ax2) = plt.subplots(2, 3, figsize=(15, 10)) >>> topo.show(ax=ax[0], cmap='gray', title="color map=\"gray\"") >>> topo.show(ax=ax[1], sig=2, title="standard deviation=2") >>> topo.show(ax=ax[2], adaptive=True, title="Adaptive colormap") >>> topo.show(ax=ax2[0], dmin=4e-8, cmap='gray', title="raise the lowest value for the colormap of +40nm") >>> topo.show(ax=ax2[1], dmin=3e-8, dmax=-3e-8, cmap='gray',title="raise lower of +30nm and highest of -30nm") >>> topo.show(ax=ax2[2], pixels=True, title="Set axis value in pixels"); """ mpl.rc('axes', grid=False) if ax is None: ax = plt.gca() ax.src = self if title == None: title = u"{0} - {1}".format(self.type, self.channel) if wrap is not None: title = "\n".join([title[i*wrap:(i+1)*wrap] for i in range(int(len(title)/wrap)+1)]) unit = self.size['real']['unit'] sunit = 'afpnum kMGTPE' if len(unit) == 1 or unit in ['pixels']: isunit = 6 elif unit[0] in sunit: isunit = sunit.find(unit[0]) unit = unit[1:] else: isunit = 6 W = self.size['real']['x'] H = self.size['real']['y'] fact = int(np.floor(np.log(W)/np.log(10)/3)) isunit += fact W, H = W/10**(fact*3), H/10**(fact*3) if cmap == None: cmap = 'gray' if unit == 'm' and self.channel == "Topography": cmap = 'hot' mi, ma = np.nanmin(self.pixels), np.nanmax(self.pixels) if adaptive: img = np.asarray(256**2*(self.pixels-mi)/(ma-mi), dtype=np.uint16) mi, ma = 0, 1 img = skimage.exposure.equalize_adapthist(img, clip_limit=0.03) else: img = mul*self.pixels mi *= mul ma *= mul if sig == None: vmin = mi+dmin vmax = ma+dmax else: std = np.nanstd(img) avg = np.nanmean(img) vmin = avg - sig * std vmax = avg + sig * std if 'level' in kargs: if kargs['level'] < 0 or kargs['level']>=50: raise ValueError("The level shoud have a value in [0,50)") vmax = np.percentile(img, 100-kargs['level']) vmin = np.percentile(img, kargs['level']) del kargs['level'] if 'vmin' in kargs: vmin = kargs['vmin'] del kargs['vmin'] if 'vmax' in kargs: vmax = kargs['vmax'] del kargs['vmax'] if symmetric: vmax = abs(max(vmin,vmax)) vmin = -vmax if not flip: ax.flipped = False if pixels: ax.isPixel = True r = ax.imshow(np.flipud(img), extent=[0,img.shape[1],img.shape[0],0], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.isPixel = False r = ax.imshow(np.flipud(img), extent=[0, W, 0, H], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.flipped = True if pixels: ax.isPixel = True r = ax.imshow(np.flipud(img), extent=[0,img.shape[1],img.shape[0],0], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.isPixel = False r = ax.imshow(np.flipud(img), cmap=cmap, extent=[0, W, 0, H], vmin=vmin, vmax=vmax, **kargs) if pixels: ax.set_xlim((0, self.pixels.shape[1])) if flip: ax.set_ylim((0, self.pixels.shape[0])) else: ax.set_ylim((self.pixels.shape[0], 0)) else: ax.set_xlim((0,W)) if flip: ax.set_ylim((H,0)) else: ax.set_ylim((0,H)) if not pixels: if isunit != 6: u = sunit[isunit] if u == 'u': u = '$\\mu$' ax.set_xlabel(u'x [{0}{1}]'.format(u, unit)) ax.set_ylabel(u'y [{0}{1}]'.format(u, unit)) else: ax.set_xlabel(u'x [{0}]'.format(unit)) ax.set_ylabel(u'y [{0}]'.format(unit)) if title != None: ax.set_title(title) return r def real2px(self, x, y): """ Transform a real (x,y) value in pixels Units should be the same as the one plotted by pySPM.SPM_image.show """ return self.real2pixels(x,y) def real2pixels(self, x, y, float=False): """ Transform a real (x,y) value in pixels Units should be the same as the one plotted by pySPM.SPM_image.show """ W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 if not float: px = np.digitize(x, np.linspace(0,self.size['real']['x']/(10**fact),self.pixels.shape[1]), right=True) py = np.digitize(y, np.linspace(0,self.size['real']['y']/(10**fact),self.pixels.shape[0]), right=False) else: px = x*(self.pixels.shape[1]-1)/(self.size['real']['x']/(10**fact)) py = y*(self.pixels.shape[0]-1)/(self.size['real']['y']/(10**fact)) return px, py def px2real(self, x, y): """ Transform a (x,y) value from pixels to real Units are the same as the one plotted by pySPM.SPM_image.show """ W = self.size['real']['x'] fact = int(np.floor(
np.log(W)
numpy.log
#!/usr/bin/python # # Copyright 2018, <NAME> # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import print_function from time import time import os,sys,re,subprocess try: from StringIO import StringIO except ImportError: from io import StringIO import random import logging import argparse import pickle from rdkit.Chem import AllChem as Chem from rdkit.Chem import Draw import numpy as np import pandas as pd from scipy.spatial.distance import pdist,squareform from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import StratifiedKFold,GridSearchCV from sklearn.metrics import classification_report, accuracy_score, f1_score, confusion_matrix import matplotlib.pyplot as plt try: import seaborn as sns except ImportError: print("INFO: Please install seaborn package for plotting.") __author__ = 'chris' def extract_features(mol, sourcename, pos, printHeader=True, fillNa=np.nan, xyz_file=None, plot=False, useSelectionRules=True, OrderAtoms=True, bondAngles=True, skipH=False, addBonds=False, verbose=False): """ Create feature matrix from RDKit mol object or xyz file :param mol: RDKit molecule :param sourcename: name of sd file :param pos: position in sdf :param xyz_file: name of xyz :param plot: plotting :param useSelectionRules: use rules to remove strange bonds :param OrderAtoms: larger atomic number first :param bondAngles: add bond angles, i.e. distance to third atom :param skipH: remove H :param addBonds: add neighbor bonds as features :param printHeader: prints column headers :param fillNa: how to fill NA values :param verbose: verbosity on/off :return: pandas dataframe with feature matrix """ pt = Chem.GetPeriodicTable() if xyz_file is not None: if xyz_file.lower().endswith(".xyz"): atomtypes, coords, q, title = read_xyz(xyz_file, skipH=skipH) elif xyz_file.lower().endswith(".pdb"): atomtypes, coords, q, title = read_pdbfile(xyz_file, skipH=skipH) if q!=0: logging.info("Found charge: %.2f"%(q)) dm = squareform(pdist(np.asarray(coords))) else: if skipH: try: mol = Chem.RemoveHs(mol) except ValueError as e: logging.info("Skipping H deletion for molecule at pos:" + str(pos)) return(None) #check if bonds are available try: if not addBonds and mol.GetNumBonds(onlyHeavy=False)==0: logging.info("No bonds found: skipping molecule %s " %Chem.MolToSmiles(mol)) return (None) except RuntimeError as e: logging.info("RuntimeError: skipping molecule") return(None) dm = Chem.Get3DDistanceMatrix(mol) # both should be the same!!! q = Chem.GetFormalCharge(mol) n,m = dm.shape assert(n == m) if plot: plt.pcolormesh(dm) plt.colorbar() plt.xlim([0, n]) plt.ylim([0, n]) plt.show() dist_cut = 3.0 # distance cutoff n_cut = 3 # neighbour cutoff if printHeader and verbose: print('{:<4s}{:<4s}{:>4s}{:>3s}{:>3s}{:>8s}'.format('ID1','ID2','Q', '#1', '#2', 'DIST'),end='') for i in range(2*n_cut): if addBonds: print('{:>4s}{:>3s}{:>8s}{:>8s}{:>4s}'.format('POS', '#', 'DIST', 'DISTB','BNB'),end='') elif bondAngles: print('{:>4s}{:>3s}{:>8s}{:>8s}'.format('POS', '#', 'DIST','DISTB'),end='') else: print('{:4s}{:3s}{:8s}'.format('POS', '#', 'DIST'),end='') print("{:4s}".format('TYPE')) df = [] index = [] for i in range(0,n): if xyz_file is not None: bnd_at1 = atomtypes[i] bond_num1 = pt.GetAtomicNumber(bnd_at1) else: bnd_at1 = mol.GetAtomWithIdx(i) bond_num1 = bnd_at1.GetAtomicNum() bnd_at1 = bnd_at1.GetSymbol() for j in range(0,m): row = [] if i >= j: continue bnd_dist = dm[i,j] if bnd_dist>dist_cut: continue bnd_type = 0 if xyz_file is None: bnd_at2 = mol.GetAtomWithIdx(j) bond_num2 = bnd_at2.GetAtomicNum() bnd = mol.GetBondBetweenAtoms(i, j) if bnd is not None: bnd_type = int(bnd.GetBondTypeAsDouble()) if bnd.GetIsAromatic(): bnd_type = 4 else: bnd_type = 0 bnd_at2=bnd_at2.GetSymbol() else: bnd_at2 = atomtypes[j] bond_num2 = pt.GetAtomicNumber(bnd_at2) #sanity checks if xyz_file is None: # we accept very short bonds but give warning selstr = "Skipping" if not useSelectionRules: selstr = "Keeping" if bnd_dist<0.75 and bnd_type>0: logging.warn("Unreasonable short X-X bond (r<0.75): %r(%d) %r(%d) %4.2f type: %d from source: %s at pos: %d"%(bnd_at1,i+1,bnd_at2,j+1,bnd_dist,bnd_type,sourcename,pos)) elif bnd_dist<1.1 and bond_num1>=6 and bond_num2>=6 and bnd_type>0: logging.warn("Unreasonable short X-X bond (r<1.1): %r(%d) %r(%d) %4.2f type: %d from source: %s at pos: %d"%(bnd_at1,i+1,bnd_at2,j+1,bnd_dist,bnd_type,sourcename,pos)) # in case of problems we discard whole molecule elif bnd_dist < 0.75 and (bond_num1 == 1 or bond_num2 == 1) and bnd_type == 0: logging.warn("%s unreasonable short X-H distance w/o bond: %r(%d) %r(%d) %4.2f type: %d from source: %s at pos: %d" % (selstr, bnd_at1,i+1, bnd_at2,j+1, bnd_dist, bnd_type,sourcename,pos)) if useSelectionRules: return (None) elif bnd_dist < 1.5 and bond_num1==6 and bond_num2==6 and bnd_type==0: logging.warn("%s unreasonable short C-C distance w/o bond: %r(%d) %r(%d) %4.2f type: %d from source: %s at pos: %d" % (selstr, bnd_at1,i+1, bnd_at2,j+1, bnd_dist, bnd_type,sourcename,pos)) if useSelectionRules: return(None) elif bnd_dist < 1.0 and bond_num1>=6 and bond_num2>=6 and bnd_type==0: logging.warn("%s unreasonable short distance w/o bond: %r(%d) %r(%d) %4.2f type: %d from source: %s at pos: %d" % (selstr, bnd_at1,i+1, bnd_at2,j+1, bnd_dist, bnd_type,sourcename,pos)) if useSelectionRules: return(None) # rather generous cutoff elif bnd_dist>1.8 and bond_num1==6 and bond_num2==6 and bnd_type>0: logging.warn("%s unreasonable long C-C bond: %r(%d) %r(%d) %4.2f type: %d from source: %s at pos: %d"%(selstr,bnd_at1,i+1,bnd_at2,j+1,bnd_dist,bnd_type,sourcename,pos)) if useSelectionRules: return(None) #unique order if OrderAtoms and bond_num1<bond_num2: row.extend([j + 1, i + 1, q,bond_num2, bond_num1, bnd_dist]) i_tmp,j_tmp = j,i else: row.extend([i + 1, j + 1, q,bond_num1, bond_num2, bnd_dist]) i_tmp, j_tmp = i, j if verbose: print('{:<4d}{:<4d}{:4.1f}{:3d}{:3d}{:8.3f}'.format(i_tmp+1,j_tmp+1,q,bond_num1,bond_num2,bnd_dist),end='') # now iterate over neighbors of a and b and i.e. sort row a and b and concat, then skip i and j for a in [i_tmp,j_tmp]: row_sorted_a = np.argsort(dm[a,:]) count = 0 k = 0 if len(row_sorted_a) > 2: for nextn in row_sorted_a: nextn = int(nextn) if nextn == j_tmp or nextn == i_tmp: continue if k==n_cut:break dist = dm[a,nextn] if xyz_file is None: at = mol.GetAtomWithIdx(nextn) num = at.GetAtomicNum() at = at.GetSymbol() else: at = atomtypes[nextn] num = pt.GetAtomicNumber(at) if bondAngles: other = i_tmp if a==j_tmp else j_tmp distb = dm[other,nextn] if addBonds: bndb = mol.GetBondBetweenAtoms(a, nextn) if bndb is not None: bnd_typeb = int(bndb.GetBondTypeAsDouble()) if bndb.GetIsAromatic(): #bnd_type=randint(1,2) bnd_typeb = 4 else: bnd_typeb = 0 row.extend([num, dist, distb,bnd_typeb]) if verbose: print('{:4d}{:>3d}{:8.3f}{:8.3f}{:4d}'.format(nextn+1,num,dist,distb,bnd_typeb),end='') else: row.extend([num, dist,distb]) if verbose: print('{:4d}{:>3s}{:3d}{:8.3f}{:8.3f}'.format(nextn+1,at,num,dist,distb),end='') else: row.extend([num, dist]) if verbose: print('{:4d}{:>3s}{:3d}{:8.3f}'.format(nextn+1,at,num,dist),end='') k += 1 count += 1 # padding while count<n_cut: count += 1 if verbose: print('{:>4d}{:>3s}{:3d}{:8.3f}'.format(0,"NA", 0, fillNa),end='') row.extend([0, fillNa]) if bondAngles: row.extend([fillNa]) if verbose: print('{:4d}'.format( bnd_type),end='') row.append(bnd_type) df.append(row) index.append(sourcename + '_pos' + str(pos+1) + '_' + str(i_tmp + 1) + 'x' + str(j_tmp + 1)) try: df = pd.DataFrame(df) colnames = ['id1','id2','q','ata','atb','distab','ata1','dista1','ata2','dista2','ata3','dista3','atb1','distb1','atb2','distb2','atb3','distb3','bond'] if addBonds: colnames = ['id1', 'id2', 'q', 'ata', 'atb', 'distab', 'ata1', 'dista1', 'dista1b','bonda1', 'ata2', 'dista2', 'dista2b','bonda2', 'ata3', 'dista3', 'dista3b','bonda3', 'atb1', 'distb1', 'distb1a','bondb1', 'atb2', 'distb2', 'distb2a','bondb2', 'atb3', 'distb3', 'distb3a','bondb3', 'bond'] elif bondAngles: colnames = ['id1', 'id2', 'q', 'ata', 'atb', 'distab', 'ata1', 'dista1','dista1b', 'ata2', 'dista2','dista2b', 'ata3', 'dista3','dista3b', 'atb1', 'distb1','distb1a', 'atb2', 'distb2','distb2a', 'atb3', 'distb3','distb3a','bond'] if len(colnames)!=len(df.columns): logging.error("Mismatch in dataframe colums for %s - SMILES: %s"%(sourcename+'_pos'+str(pos+1), Chem.MolToSmiles(mol))) df.columns = colnames df.index = index except ValueError: #i.e. for empty dataframes df = None return df def convert_sdf2dataframe(infile, outfile="moldat.csv", fillNa=np.nan, sanitize=True, tempsave=False, useSelectionRules=True, skipH=False, addBonds=True, sample=None, debug=False, verbose=False): """ Generate training dataset from list of sd files sd file -> Pandas DataFrame :param infile: sd file used for training :param outfile: feature matrix as .csv file :param fillNa: fill value for NA positions :param sanitize: switch this off for special molecules RDKit cannot digest, should be True in order to have aromatic bonds :param tempsave: save temporary data :param useSelectionRules: apply rules to filter nonsense structures :param skipH: remove hydrogens :param addBonds: inject neighbor bonds to feature matrix :param sample: subsample dataset fraction [0-1] :param verbose: verbosity on/off :return: feature matrix as pandas dataframe """ logging.info("Generating feature using RDKit matrix from: %s -- with options skipH (%r) iterative(%r) filterRubbish(%r) "%(infile,skipH,addBonds,useSelectionRules)) if sample is not None: logging.info("Subsampling fraction %4.2f of dataset"%(sample)) np.random.seed(42) df_new = None suppl = Chem.SDMolSupplier(infile,removeHs=skipH,sanitize=False) count=0 for i,mol in enumerate(suppl): if sanitize: try: Chem.SanitizeMol(mol) #adding aromatic bonds...we may have a problem here except ValueError as e: logging.info("Skipping sanitization for molecule at pos:" + str(i+1)) if debug: w = Chem.SDWriter('tmp_pos'+str(i+1)+'.sdf') w.write(mol) w.close() # we cannot use it then... if mol is not None: if sample is not None and np.random.random_sample()>sample: continue if i>0: df_new = pd.concat([df_new, extract_features(mol, infile, i, verbose=verbose, printHeader=True, fillNa=fillNa, useSelectionRules=useSelectionRules, skipH=skipH, addBonds=addBonds)], axis=0) else: df_new = extract_features(mol, infile, i, verbose=verbose, printHeader=True, fillNa=fillNa, useSelectionRules=useSelectionRules, skipH=skipH, addBonds=addBonds) count += 1 else: logging.info("SKIPPING molecule at pos:"+str(i+1)) logging.error("SKIPPING molecule at pos:" + str(i+1)) logging.info("Processed total of >%d< molecules" % (count)) if df_new is not None and tempsave: logging.info("%3d Generated temp file: %s" % (i + 1, outfile)) df_new.to_csv(outfile,index=True) if df_new is None: logging.info("ERROR: There was a problem generating the data!") logging.info("Bond types: \n%r"%(df_new['bond'].value_counts())) logging.info("Total bonds: %r\n" % (df_new['bond'].value_counts().sum())) return(df_new) def convert_sdfiles2csv(file_list = [], base_dir='', outdat='train_dat.csv', method='UFF', skipH=False, addBonds=False, sample=0.25, verbose=False): """ Allows for training use a list of filenames, for internal testing :param file_list: list of .sd files :param base_dir: location of those files :param outdat: .csv file with feature matrix and target vectors """ finalf = outdat for i,f in enumerate(file_list): infile = base_dir+f if not os.path.isfile(infile): logging.critical("File not found:"+infile) logging.critical("CWD:"+os.getcwd()) sys.exit(1) outfile = 'moldat_tmp.csv' if infile.endswith('.smi'): infile = convert_smiles2sdfile(smifile=infile, outdat=outfile, method=method, verbose=verbose) infile = infile.replace(".smi",".sdf") print(infile) df = convert_sdf2dataframe(infile=infile, outfile=outfile, fillNa=9999.0, skipH=skipH, addBonds=addBonds, sample=sample, verbose=verbose) if df is None: continue outstr = 'writing' mode = 'w' header = True if os.path.isfile(finalf): mode = 'a' header = False outstr = 'appending' with open(finalf, mode) as f: df.to_csv(f, header=header, index=True) print(df.head()) logging.info("File: %3d - %s .csv file to: %s" % (i + 1, outstr, finalf)) def train_from_csv(filename, grid_search=False, useRF=False, plotClassifier=False, save_clf='clf.p',verbose=False): """ Train bond data with sklearn classifier, final model gets pickled. :param filename: .csv file with feature matrix :param grid_search: Do a parameter search on grid :return: trained scikit-learn model """ logging.info("Training data on dataset:") df = pd.read_csv(filename,index_col=0) if 'id1' in df.columns and 'id2' in df.columns: df.drop(['id1', 'id2'], axis=1,inplace=True) logging.info("Shape : %d X %d"%(df.shape[0],df.shape[1])) logging.info("Features: %s" % (df.columns)) # remove similar data logging.info("Droping duplicates...") df.drop_duplicates(inplace=True) logging.info("Shape : %d X %d" % (df.shape[0], df.shape[1])) y = df['bond'] X = df.drop(['bond'],axis=1,inplace=False) if plotClassifier: tree = DecisionTreeClassifier( max_depth=5) tree.fit(X,y) dot_data = tree.export_graphviz(tree, out_file='tree') import graphviz graph = graphviz.Source(dot_data) graph.render("decisiontree") n_jobs = 1 n_splits = 4 if useRF: model = RandomForestClassifier(n_estimators=250, max_depth=None, min_samples_leaf=5, n_jobs=n_jobs, max_features=11, oob_score=False) else: #model = xgb.XGBClassifier(n_estimators=2000, learning_rate=0.01, max_depth=5, NA=0, subsample=.5,colsample_bytree=1.0, min_child_weight=5, n_jobs=4, objective='multi:softprob',num_class=5, booster='gbtree', silent=1, eval_size=0.0) #parameters = {'n_estimators': [2000], 'learning_rate': [0.01, 0.1, 0.001], 'max_depth': [5, 7],'subsample': [0.5]} model = GradientBoostingClassifier(n_estimators=1000,learning_rate=0.1,max_depth=5,verbose=1) parameters = {} if grid_search: #model.set_params(n_jobs=1) n_jobs = 4 cv = StratifiedKFold(n_splits=n_splits) model = GridSearchCV(model, parameters, n_jobs=n_jobs, verbose=2, scoring='f1_micro', cv=cv,refit=True) model.fit(X,y) means = model.cv_results_['mean_test_score'] stds = model.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, model.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print(model) else: logging.info("Fitting classifier: %s"%(model)) model.fit(X, y) pickle.dump(model,open( save_clf, "wb" )) logging.info("Saving classifier as: %s"%(save_clf)) return(model) def train_job(filename, reset=True, eval=False, fmethod='UFF', skipH=False, iterative=False, sample=False, useRF=False,verbose=False): """ Use either .sdf or .smi file to train from a new dataset or append data :param filename: name of .smi of .sd file :param reset: removes old training data """ if eval: train_file = 'eval_dat.csv' reset=True else: train_file = 'train_dat.csv' iter_file = "" if iterative and not eval: logging.info("Iterative mode switched ON!") iter_file = train_file.replace("_dat","_iter") if useRF and not eval: logging.info("INFO: Using Random Forest for training!") if reset: if os.path.isfile(train_file): os.remove(train_file) if os.path.isfile(iter_file): os.remove(iter_file) if filename.endswith('.sdf') or filename.endswith('.sd'): convert_sdfiles2csv(file_list=[filename], outdat=train_file, skipH=skipH, addBonds=False, sample=sample, verbose=verbose) if iterative and not eval: convert_sdfiles2csv(file_list=[filename], outdat=iter_file, skipH=skipH, addBonds=True, sample=sample, verbose=verbose) elif filename.endswith('.smi'): logging.info("Using forcefield for optimization: %s" % (fmethod)) convert_sdfiles2csv(file_list=[filename], outdat=train_file, method=fmethod, skipH=skipH, addBonds=False) if iterative and not eval: convert_sdfiles2csv(file_list=[filename], outdat=iter_file, method=fmethod, skipH=skipH, addBonds=True, verbose=verbose) if not os.path.isfile(train_file): sys.stderr.write("ERROR: Missing training data file: %s!\n"%(train_file)) sys.exit(1) if eval: evaluate(train_file,iterative=iterative, verbose=verbose) else: train_from_csv(train_file, useRF=useRF, verbose=verbose) if iterative: train_from_csv(iter_file,useRF=useRF, save_clf="clf_iter.p", verbose=verbose) def eval_job(filename, skipH=False, iterative=False,verbose=False): """ Evaluation per! molecule :param filename: filename for evaluation :param skipH: omit hydrogen :param iterative: use 2nd classifier :param verbose: verbose mode :return: - """ # iterate over mols of SDF # mol -> df -> bonds_predicted / bonds_true # make SDF -> extract features -> df -> bonds_predicted2 # compare bonds_true & bonds_predicted2 # generatePredictions with mol print("Evaluation run with option: noH(%r)" % (skipH)) print("Loading classifier...") clf = pickle.load(open('clf.p', "rb")) if iterative: clf_iter = pickle.load(open('clf_iter.p', "rb")) else: clf_iter = None suppl = Chem.SDMolSupplier(filename, removeHs=skipH, sanitize=iterative) nok = 0 nfalse = 0 for i, mol in enumerate(suppl): if mol is None: continue res = generate_predictions(mol, skipH=skipH, iterative=True, forceAromatics=False, maxiter=1, verbose=verbose, clf=clf, clf_iter=clf_iter, isEval=True) if res is None: continue if i % 50 == 0: logging.info("%d %r\n" % (i, res)) if res: nok += 1 else: nfalse += 1 nall = len(suppl) acc = nok / float(nall) logging.info("\nTOTAL: %5d OK: %5d WRONG: %5d Accuray: %6.3f" % (nall, nok, nfalse, acc)) def evaluate(filename_test,filename_train='train_dat.csv',plotting=True,iterative=False,verbose=False): """ Evaluate on dataset with known bond info, molecule accuracy is computed afterwards :param filename_test: name of .csv file with feature matrix and targets """ df = pd.read_csv(filename_test,index_col=0) filename_train=None # shown train_data if filename_train is not None: logging.info("Analyze train data...") df_train = pd.read_csv(filename_train,index_col=0) print(df_train.shape) df_train['bondtype']=df_train['bond'].astype('category') df_train = df_train[df_train.ata==6] df_train = df_train[df_train.atb==6] if plotting: ax = sns.boxplot(x="bond", y="distab", data=df_train[['distab','bond']]) ax.set(ylabel='C-C distance', xlabel='bond type') #ax.set(xticklabels=[]) plt.show() logging.info("Evaluate data set: " + filename_test) logging.info("Loading classifier...") clf = pickle.load(open("clf.p", "rb")) logging.info("Loading test set with %d rows from file %s\n"%(df.shape[0],filename_test)) y = df['bond'] X = df.drop(['bond','id1','id2'],axis=1,inplace=False) yprob = clf.predict_proba(X) ypred = clf.predict(X) score = accuracy_score(y,ypred) score2 = f1_score(y,ypred,average='weighted') logging.info("ACCURACY:%0.3f - F1-score: %0.3f\n" % (score,score2)) X['bond_pred'] = ypred X['p(-)'] = yprob[:, 1] X['p(=)'] = yprob[:, 2] X['p(#)'] = yprob[:, 3] X['p(a)'] = yprob[:, 4] X['bond'] = y if plotting: print("Misclassification stats:") idx = (ypred != y) df_tmp = X[idx.values] print(df_tmp[['ata','atb','distab','bond','bond_pred']].head(200).sort_values(['ata'])) plot_classification_results(y,ypred) mol_df_list = mol_dataframe_generator(X) all=0 ok=0 not_ok=0 false_indices=[] for name, df_sub in mol_df_list: all += 1 if iterative: print("ERROR: Iterative - does not work in fast evaluation mode..") sys.exit(1) # ok no coordinates/no dm how to get feature matrix...???? if np.array_equal(df_sub['bond_pred'].values, df_sub['bond'].values): ok += 1 else: # print("FALSE: %s"%(name)) not_ok += 1 mask = df_sub['bond_pred'] != df_sub['bond'] idx = np.argmax(mask) false_indices.append(idx) acc = ok/float(all) print(false_indices) print("\nTOTAL: %5d OK: %5d WRONG: %5d Accuray: %6.3f"%(all,ok,not_ok,acc)) return(X) def evaluate_OB(filename='fullerene_ml.sdf', verbose=False): """ Evaluation via Open Babel :param filename: sd file :param removeHs: use H or not (obabel reorders X-H bonds...) :param verbose: True for verbose :return: - """ logging.info("Evaluating %s via OBabel"%(filename)) #if sanitize: # print("WARNING: Switched ON sanitization!") #else: # print("WARNING: Switched OFF sanitization!") suppl = Chem.SDMolSupplier(filename, removeHs=False, sanitize=True) nok = 0 nfalse = 0 nall = len(suppl) for i, mol in enumerate(suppl): if mol is None: continue xyz_str = mol2xyz(mol) #remove H for comparison with OB mol = Chem.RemoveHs(mol) df_orig = extract_features(mol, "babel_orig", (i+1), skipH=True) if df_orig is None: continue bond_orig = df_orig['bond'] #generate xyz for OB prediction without H myfile = StringIO.StringIO(xyz_str) #if removeHs: #cmd_call = ["obabel", "-d","-ixyz", "-osdf"] #else: cmd_call = ["obabel", "-ixyz", "-osdf"] p = subprocess.Popen(cmd_call, stdin=subprocess.PIPE, stdout=subprocess.PIPE,stderr=subprocess.PIPE) molblock, err = p.communicate(myfile.read()) #switch off sanitization #mol_pred_H = Chem.MolFromMolBlock(molblock,removeHs=False,sanitize=False) #always switch off H for comparison of main element bonds only mol_pred = Chem.MolFromMolBlock(molblock,removeHs=True,sanitize=False) if mol_pred is None: nfalse += 1 continue df = extract_features(mol_pred, "obabel", 0, skipH=True) if df is None: nfalse += 1 continue if len(bond_orig)!=len(df['bond'].values): logging.error("Original (%d) and predicted bond vector (%d) have different length!"%(len(bond_orig),len(df['bond'].values))) if verbose: mol_pred_noH = Chem.RemoveHs(mol_pred) Chem.Compute2DCoords(mol_pred_noH) Chem.Compute2DCoords(mol) img = Draw.MolsToGridImage([mol_pred_noH, mol], molsPerRow=2, subImgSize=(400, 400), legends=['ob' + str(i + 1), 'orig' + str(i + 1)]) img.show() if
np.array_equal(bond_orig.values, df['bond'].values)
numpy.array_equal
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.svm import SVR from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, Input, Model #============================================================================== #============================================================================== KPN = pd.read_csv('/Users/henriwoodcock/Documents/University/Year_3/MATH3001' '/Code/Data/Code_Data/new_data_copy.csv', usecols=[1,2,3,4,5 ,6,7,8,9,10 ,11,12,13,14,15 ,16,17,18,19,20, 21,22,23] ).astype('float32') ''' train, test = Split_Train_Test(KPN, 0.1) ''' '''training data:''' ''' X_train = train.iloc[:,0:6] #input y_train = train["output"] #output ''' '''testing data:''' ''' X_test = test.iloc[:,0:6] y_test = test["output"] ''' '''standardising the input data:''' ''' sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) ''' #============================================================================== #============================================================================== '''Creating k-folds''' sc = StandardScaler() k = 5 set_size = len(KPN)//(k+1) features = 15 #fold 1: fold1_train = sc.fit_transform(KPN.iloc[:set_size,0:features]) fold1_train_y = KPN["output"][:set_size] fold1_test = sc.transform(KPN.iloc[set_size:2*set_size,0:features]) fold1_test_y = KPN["output"][set_size:2*set_size] fold1_test_y = fold1_test_y.reset_index(drop=True) #fold 2: fold2_train = sc.fit_transform(KPN.iloc[:2*set_size,0:features]) fold2_train_y = KPN["output"][:2*set_size] fold2_test = sc.transform(KPN.iloc[2*set_size:3*set_size,0:features]) fold2_test_y = KPN["output"][2*set_size:3*set_size] fold2_test_y = fold2_test_y.reset_index(drop=True) #fold 3: fold3_train = sc.fit_transform(KPN.iloc[:3*set_size,0:features]) fold3_train_y = KPN["output"][:3*set_size] fold3_test = sc.transform(KPN.iloc[3*set_size:4*set_size,0:features]) fold3_test_y = KPN["output"][3*set_size:4*set_size] fold3_test_y = fold3_test_y.reset_index(drop=True) #fold 4: fold4_train = sc.fit_transform(KPN.iloc[:4*set_size,0:features]) fold4_train_y = KPN["output"][:4*set_size] fold4_test = sc.transform(KPN.iloc[4*set_size:5*set_size,0:features]) fold4_test_y = KPN["output"][4*set_size:5*set_size] fold4_test_y = fold4_test_y.reset_index(drop=True) #fold 5: fold5_train = sc.fit_transform(KPN.iloc[:5*set_size,0:features]) fold5_train_y = KPN["output"][:5*set_size] fold5_test = sc.transform(KPN.iloc[5*set_size:6*set_size,0:features]) fold5_test_y = KPN["output"][5*set_size:6*set_size] fold5_test_y = fold5_test_y.reset_index(drop=True) #============================================================================== #============================================================================== '''Auto-Encoding:''' num_neurons = 2 regulariser = keras.regularizers.l2(0.01) #input placeholder: stock_in = Input(shape=(features,)) #encoded representation: encoded = layers.Dense(num_neurons, activation="relu", kernel_regularizer = regulariser )(stock_in) #decoded representation: decoded = layers.Dense(features, activation = "linear", kernel_regularizer = regulariser )(encoded) autoencoder = Model(stock_in, decoded) encoder = Model(stock_in, encoded) encoded_input = Input(shape=(num_neurons,)) decoder_layer = autoencoder.layers[-1] decoder = Model(encoded_input, decoder_layer(encoded_input)) autoencoder.compile(optimizer='sgd', loss='mean_squared_error') ''' autoencoder.fit(X_train,X_train, epochs = 500, verbose = 1) encoded_imgs = encoder.predict(X_test) decoded_imgs = decoder.predict(encoded_imgs) encoded_Train = encoder.predict(X_train) encoded_Test = encoder.predict(X_test) ''' #============================================================================== #============================================================================== '''auto-encoding the folds:''' Epochs = 100 #fold 1: autoencoder.fit(fold1_train,fold1_train, epochs = Epochs, verbose = 1) enc_fold1_train = encoder.predict(fold1_train) enc_fold1_test = encoder.predict(fold1_test) #fold 2: autoencoder.fit(fold2_train,fold2_train, epochs = Epochs, verbose = 1) enc_fold2_train = encoder.predict(fold2_train) enc_fold2_test = encoder.predict(fold2_test) #fold 3: autoencoder.fit(fold3_train,fold3_train, epochs = Epochs, verbose = 1) enc_fold3_train = encoder.predict(fold3_train) enc_fold3_test = encoder.predict(fold3_test) #fold 4: autoencoder.fit(fold4_train,fold4_train, epochs = Epochs, verbose = 1) enc_fold4_train = encoder.predict(fold4_train) enc_fold4_test = encoder.predict(fold4_test) #fold 5: autoencoder.fit(fold5_train,fold5_train, epochs = Epochs, verbose = 1) enc_fold5_train = encoder.predict(fold5_train) enc_fold5_test = encoder.predict(fold5_test) #============================================================================== #============================================================================== def SVR_Train(X,y,kern,eps, gam, c): piped_svr = Pipeline([#('scaler', StandardScaler()), ('svr', SVR(kernel=kern,epsilon=eps,gamma=gam, C=c)), ]) return piped_svr.fit(X,y) #============================================================================== #============================================================================== #============================================================================== #============================================================================== def trend(prediction): trend_vector = [] for i in range(len(prediction)-1): if prediction[i+1] >= prediction[i]: trend_vector.append(1) else: trend_vector.append(-1) return trend_vector def hits(actual, pred): hits = 0 for i in range(len(actual)): if actual[i] == pred[i]: hits +=1 return hits #============================================================================== #============================================================================== eps = 0.1 sig_sqaured = 25 gam = 1/sig_sqaured c = 100 #fold 1: svr_fold1 = SVR_Train(enc_fold1_train,fold1_train_y,'rbf',eps,gam,c) fold1_predict = svr_fold1.predict(enc_fold1_test) fold1_act_trend = trend(fold1_test_y) fold1_pred_trend = trend(fold1_predict) fold1_hits = hits(fold1_act_trend,fold1_pred_trend) fold1_perc = fold1_hits / len(fold1_act_trend) #fold 2: svr_fold2 = SVR_Train(enc_fold2_train,fold2_train_y,'rbf',eps,gam,c) fold2_predict = svr_fold2.predict(enc_fold2_test) fold2_act_trend = trend(fold2_test_y) fold2_pred_trend = trend(fold2_predict) fold2_hits = hits(fold2_act_trend,fold2_pred_trend) fold2_perc = fold2_hits / len(fold2_act_trend) #fold 3: svr_fold3 = SVR_Train(enc_fold3_train,fold3_train_y,'rbf',eps,gam,c) fold3_predict = svr_fold3.predict(enc_fold3_test) fold3_act_trend = trend(fold3_test_y) fold3_pred_trend = trend(fold3_predict) fold3_hits = hits(fold3_act_trend,fold3_pred_trend) fold3_perc = fold3_hits / len(fold3_act_trend) #fold 4: svr_fold4 = SVR_Train(enc_fold4_train,fold4_train_y,'rbf',eps,gam,c) fold4_predict = svr_fold4.predict(enc_fold4_test) fold4_act_trend = trend(fold4_test_y) fold4_pred_trend = trend(fold4_predict) fold4_hits = hits(fold4_act_trend,fold4_pred_trend) fold4_perc = fold4_hits / len(fold4_act_trend) #fold 5: svr_fold5 = SVR_Train(enc_fold5_train,fold5_train_y,'rbf',eps,gam,c) fold5_predict = svr_fold5.predict(enc_fold5_test) fold5_act_trend = trend(fold5_test_y) fold5_pred_trend = trend(fold5_predict) fold5_hits = hits(fold5_act_trend,fold5_pred_trend) fold5_perc = fold5_hits / len(fold5_act_trend) plt.plot(fold5_predict) plt.plot(fold5_test_y) def mse(act,pred): errr = 0 for i in range(len(act)): errr += (act[i]-pred[i])**2 errr = errr/len(act) return errr def mae(act,pred): errr = 0 for i in range(len(act)): error = act[i] - pred[i] if error > 0: errr+=error else: errr+= (-error) errr = errr/len(act) return errr mse_5 = mse(np.array(fold5_test_y),fold5_predict) mse_4 = mse(np.array(fold4_test_y),fold4_predict) mse_3 = mse(np.array(fold3_test_y),fold3_predict) mse_2 = mse(np.array(fold2_test_y),fold2_predict) mse_1 = mse(np.array(fold1_test_y),fold1_predict) mae_5 = mae(np.array(fold5_test_y),fold5_predict) mae_4 = mae(
np.array(fold4_test_y)
numpy.array
#!/usr/bin/env python """ This module provide high-level class that provides simplified APIs for conducting different experiment. """ import os import pathlib import bluesky import ophyd import epics import databroker import numpy as np from bluesky.callbacks.best_effort import BestEffortCallback from bluesky.suspenders import SuspendFloor from bluesky.simulators import summarize_plan from time import sleep from .devices.beamline import Beam, SimBeam from .devices.beamline import FastShutter from .devices.motors import StageAero, SimStageAero from .devices.motors import EnsemblePSOFlyDevice from .devices.detectors import PointGreyDetector, DexelaDetector, SimDetector from .util import dict_to_msg from .util import load_config from .util import is_light_on import bluesky.preprocessors as bpp import bluesky.plan_stubs as bps class Experiment: """Generic expriment handler""" def __init__(self, mode='debug'): self.RE = bluesky.RunEngine({}) # self.db = databroker.Broker.named("mongodb_config") # self.RE.subscribe(self.db.insert) self.RE.subscribe(BestEffortCallback()) self._mode = mode self.shutter = Experiment.get_main_shutter(mode) self.suspend_shutter = SuspendFloor(self.shutter.pss_state, 1) # TODO: # create fast shutter here # for 1id the fast shutter PV is # FS1PV: 1id:softGlue:AND-1_IN1_Signal # FS2PV: 1id:softGlue:AND-2_IN1_Signal # There are also mask PVs to enable and disable FS control with different signals # FS1maskPV: 1id:softGlue:AND-1_IN2_Signal # FS2maskPV: 1id:softGlue:AND-2_IN2_Signal # The mask PV is used to trigger the FS with other hardware triggers # mostly along with the detector, so that beam is off when not acquiring # i.e. control with sweep: epics_put(sprintf("%s",FS_control_PV), "Sweep", SGtime) # still not entirely sure how this works, maybe bluesky already has this trigger mode? # monitor APS current # NOTE: only start monitoring APS ring status during production if mode.lower() in ['production']: from apstools.devices import ApsMachineParametersDevice self._aps = ApsMachineParametersDevice(name="APS") self.suspend_APS_current = SuspendFloor(self._aps.current, 2, resume_thresh=10) self.RE.install_suspender(self.suspend_APS_current) @staticmethod def get_main_shutter(mode): """ return simulated shutter when [dryrun, debug] acutal shutter when [productio] TODO: need to update with acutal PV for 6-ID-D """ if mode.lower() in ['debug', 'dryrun']: from apstools.devices import SimulatedApsPssShutterWithStatus A_shutter = SimulatedApsPssShutterWithStatus(name="A_shutter") elif mode.lower() == 'production': from apstools.devices import ApsPssShutterWithStatus A_shutter = ApsPssShutterWithStatus( "PA:01ID", # This is for 1ID "PA:01ID:STA_A_FES_OPEN_PL", # This is for 1ID name="A_shutter", ) else: raise ValueError(f"Invalide mode, {mode}") return A_shutter @staticmethod def get_fast_shutter(mode): """Return fast shutter""" # TODO: implement the fast shutter, then instantiate it here pass class Tomography(Experiment): """Tomography experiment control for 6-ID-D.""" def __init__(self, mode='debug'): super(Tomography, self).__init__(mode) self._mode = mode # instantiate device self.tomo_stage = Tomography.get_tomostage(self._mode) self.fly_control = Tomography.get_flycontrol(self._mode) self.tomo_det = Tomography.get_detector(self._mode) # detector is initialized here self.tomo_beam = Tomography.get_tomobeam(self._mode) # TODO: # we need to do some initialization with Beam based on # a cached/lookup table @property def mode(self): return f"current mode is {self._mode}, available options are ['debug', 'dryrun', 'production']" @mode.setter def mode(self, newmode): self._mode = newmode self.shutter = Experiment.get_main_shutter(self._mode) self.tomo_stage = Tomography.get_tomostage(self._mode) self.fly_control = Tomography.get_flycontrol(self._mode) self.tomo_det = Tomography.get_detector(self._mode) self.tomo_beam = Tomography.get_tomobeam(self._mode) def check(self, cfg): """Return user input before run""" cfg = load_config(cfg) if type(cfg) != dict else cfg print(f"Tomo configuration:\n{dict_to_msg(cfg['tomo'])}") print(f"Output:\n{dict_to_msg(cfg['output'])}") def __repr__(self): """Return summary of the current experiment status""" """ beam = self.tomo_beam stage = self.tomo_stage # get the current beamline optics # TODO: need to figure out how to get the beam energy # commented out for Sim testing _beamline_status = ( f"Beam Size is: {beam.s1.h_size}x{beam.s1.v_size} (HxV) \n" f"Attenuation is: {beam.att_level} \n" f"Beam Energy is: {beam.energy} \n" f"Focus Lenses Positions: l1y @ {beam.l1.l1y} \n" f" l2y @ {beam.l2.l2y} \n" f" l3y @ {beam.l3.l3y} \n" f" l4y @ {beam.l4.l4y} \n" ) _status_msg = ( (f"Here is the current beamline status:\n") + _beamline_status + (f"\nHere are the current motor positions:\n") + dict_to_msg(stage.position_cached) + (f"\nHere is the current experiment configuration:\n") # dict_to_msg(cfg['tomo']) + # (f"\nHere are the file output info:\n") + # dict_to_msg(cfg['output']) ) return _status_msg """ pass # TODO: # verbose string representation of the experiment and beamline # status as a dictionary -> yaml def calibration(self): """Perform beamline calibration""" # TODO: # Still not clear how calibration can be done automatically, but # let's keep a function here as a place holder # Check out this auto alignment to see if some functions can be used here # https://github.com/AdvancedPhotonSource/auto_sample_alignment.git # Per conversation with Peter, This package can return the same location on the pin # according to the images. However, they are requesting more features like determine # the slit position and size. # Jun and Peter will test this code during the first week of October, let wait for their feedback. pass @staticmethod def get_tomobeam(mode): """return Tomobeam based on given mode""" if mode.lower() in ['dryrun', 'production']: beam = Beam() elif mode.lower() == 'debug': # NOTE: # This is a place holder for maybe additional control of the beam # simulated tomobeam from the virtual beamline # dumped all the simulated beam control to m16 beam = SimBeam() else: raise ValueError(f"Invalide mode -> {mode}") return beam @staticmethod def get_tomostage(mode): """return tomostage based on given mode""" if mode.lower() in ['dryrun', 'production']: tomostage = StageAero(name='tomostage') elif mode.lower() == 'debug': # NOTE: # Using SimStageAero from the Virtual Beamline. tomostage = SimStageAero(name='tomostage') else: raise ValueError(f"Invalide mode -> {mode}") return tomostage @staticmethod def get_flycontrol(mode): # We may have a different version of psofly if mode.lower() == 'debug': # TODO: need better simulated motors from ophyd import sim psofly = sim.flyer1 elif mode.lower() in ['dryrun', 'production']: psofly = EnsemblePSOFlyDevice("PV_FLY", name="psofly") else: raise ValueError(f"Invalide mode, {mode}") return psofly @staticmethod def get_detector(mode): det_PV = { 'debug': "6iddSIMDET1:", 'dryrun': "1idPG4:", 'production': "1idPG4:", }[mode.lower()] det = { 'debug': SimDetector(det_PV, name='det'), 'dryrun': PointGreyDetector(det_PV, name='det'), 'production': PointGreyDetector(det_PV, name='det'), }[mode.lower()] # setup HDF5 layout using a hidden EPICS PV # -- enumerator type # -- need to set both write and RBV field epics.caput(f"{det_PV}cam1:FrameType.ZRST", "/exchange/data_white_pre") epics.caput(f"{det_PV}cam1:FrameType.ONST", "/exchange/data") epics.caput(f"{det_PV}cam1:FrameType.TWST", "/exchange/data_white_post") epics.caput(f"{det_PV}cam1:FrameType.THST", "/exchange/data_dark") epics.caput(f"{det_PV}cam1:FrameType_RBV.ZRST", "/exchange/data_white_pre") epics.caput(f"{det_PV}cam1:FrameType_RBV.ONST", "/exchange/data") epics.caput(f"{det_PV}cam1:FrameType_RBV.TWST", "/exchange/data_white_post") epics.caput(f"{det_PV}cam1:FrameType_RBV.THST", "/exchange/data_dark") # set the attribute file (det.cam) and the layout file (det.hdf1) # ISSUE:CRITICAL # we are encoutering some strange issue that preventing the HDF5 plugin to # function properly. _current_fp = str(pathlib.Path(__file__).parent.absolute()) _attrib_fp = os.path.join(_current_fp, 'config/PG4_attributes.xml') _layout_fp = os.path.join(_current_fp, 'config/tomo6idd_layout.xml') det.cam1.nd_attributes_file.put(_attrib_fp) det.hdf1.xml_file_name.put(_layout_fp) # turn off the problematic auto setting in cam1 # NOTE: # These settings should have been cached after a succesful run. We are just ensuring that # the correct settings are used for the camera to prevent potential loss of cached settings # -- related to auto-* det.cam1.auto_exposure_auto_mode.put(0) det.cam1.sharpness_auto_mode.put(0) det.cam1.gain_auto_mode.put(0) det.cam1.frame_rate_auto_mode.put(0) # -- prime camera # NOTE: # By default, all file plugins have no idea the images dimension&size, therefore we need to pump # in an image to let the file plugins know what to expect # ---- get camera ready to keep taking image det.cam1.acquire_time.put(0.001) det.cam1.acquire_period.put(0.005) det.cam1.image_mode.put('Continuous') # ---- get tiff1 primed det.tiff1.auto_increment.put(0) det.tiff1.capture.put(0) det.tiff1.enable.put(1) det.tiff1.file_name.put('prime_my_tiff') det.cam1.acquire.put(1) sleep(0.01) det.cam1.acquire.put(0) det.tiff1.enable.put(0) det.tiff1.auto_increment.put(1) # ---- get hdf1 primed det.hdf1.auto_increment.put(0) det.hdf1.capture.put(0) det.hdf1.enable.put(1) det.hdf1.file_name.put('prime_my_hdf') det.cam1.acquire.put(1) sleep(0.01) det.cam1.acquire.put(0) det.hdf1.enable.put(0) det.hdf1.auto_increment.put(1) # ---- turn on auto save (supercede by disable, so we are safe) det.tiff1.auto_save.put(1) det.hdf1.auto_save.put(1) # -- realted to proc1 det.proc1.filter_callbacks.put(1) # 0 Every array; 1 Array N only (useful for taking bg) det.proc1.auto_reset_filter.put(1) # ALWAYS auto reset filter # -- ?? more to come # -- enter stand-by mode det.cam1.image_mode.put('Multiple') return det # --------------------------------------------- # # ----- pre-defined scan plans starts from here # # --------------------------------------------- # def collect_white_field(self, cfg_tomo, atfront=True): """ Collect white/flat field images by moving the sample out of the FOV """ # unpack devices det = self.tomo_det tomostage = self.tomo_stage # move sample out of the way # TODO: # the details and fields need to be updated for 6-ID-D _x = cfg_tomo['fronte_white_kx'] if atfront else cfg_tomo['back_white_kx'] _z = cfg_tomo['fronte_white_kz'] if atfront else cfg_tomo['back_white_kz'] yield from bps.mv(tomostage.kx, _x) #update with correct motor name yield from bps.mv(tomostage.kz, _z) # setup detector # TODO: # actual implementation need to be for 6-ID-D # Raw images go through the following plugins: # PG1 ==> TRANS1 ==> PROC1 ==> TIFF1 # || || # ==> IMAGE1 ======> HDF1 yield from bps.mv(det.proc1.nd_array_port, 'TRANS1') yield from bps.mv(det.hdf1.nd_array_port, 'PROC1') yield from bps.mv(det.tiff1.nd_array_port, 'PROC1') yield from bps.mv(det.trans1.enable, 1) yield from bps.mv(det.proc1.enable, 1) yield from bps.mv(det.proc1.enable_filter, 1) yield from bps.mv(det.proc1.filter_type, 'Average') yield from bps.mv(det.proc1.reset_filter, 1) yield from bps.mv(det.proc1.num_filter, cfg_tomo['n_frames']) yield from bps.mv(det.cam1.trigger_mode, "Internal") yield from bps.mv(det.cam1.image_mode, "Multiple") yield from bps.mv(det.cam1.num_images, cfg_tomo['n_frames']*cfg_tomo['n_white']) yield from bps.trigger_and_read([det]) # move sample back to FOV # NOTE: # not sure is this will work or not... # TODO: # need to update all the motor names according to StageAero yield from bps.mv(tomostage.kx, cfg_tomo['initial_kx']) yield from bps.mv(tomostage.kz, cfg_tomo['initial_kz']) def collect_dark_field(self, cfg_tomo): """ Collect dark field images by close the shutter """ # TODO: # Need to toggle Fast shutter det = self.tomo_det # Raw images go through the following plugins: # PG1 ==> TRANS1 ==> PROC1 ==> TIFF1 # || || # ==> IMAGE1 ======> HDF1 yield from bps.mv(det.proc1.nd_array_port, 'TRANS1') yield from bps.mv(det.hdf1.nd_array_port, 'PROC1') yield from bps.mv(det.tiff1.nd_array_port, 'PROC1') yield from bps.mv(det.trans1.enable, 1) yield from bps.mv(det.proc1.enable, 1) yield from bps.mv(det.proc1.enable_filter, 1) yield from bps.mv(det.proc1.filter_type, 'Average') yield from bps.mv(det.proc1.reset_filter, 1) yield from bps.mv(det.proc1.num_filter, cfg_tomo['n_frames']) yield from bps.mv(det.cam1.trigger_mode, "Internal") yield from bps.mv(det.cam1.image_mode, "Multiple") yield from bps.mv(det.cam1.num_images, cfg_tomo['n_frames']*cfg_tomo['n_dark']) yield from bps.trigger_and_read([det]) def step_scan(self, cfg_tomo): """ Collect projections with step motion """ # unpack devices det = self.tomo_det tomostage = self.tomo_stage # TODO: # the fields need to be updated for 6-ID-D # Raw images go through the following plugins: # PG1 ==> TRANS1 ==> PROC1 ==> TIFF1 # || || # ==> IMAGE1 ======> HDF1 yield from bps.mv(det.proc1.nd_array_port, 'TRANS1') yield from bps.mv(det.hdf1.nd_array_port, 'PROC1') yield from bps.mv(det.tiff1.nd_array_port, 'PROC1') yield from bps.mv(det.trans1.enable, 1) yield from bps.mv(det.proc1.enable, 1) yield from bps.mv(det.proc1.enable_filter, 1) yield from bps.mv(det.proc1.filter_type, 'Average') yield from bps.mv(det.proc1.reset_filter, 1) yield from bps.mv(det.proc1.num_filter, cfg_tomo['n_frames']) yield from bps.mv(det.cam1.num_images, cfg_tomo['n_frames']) angs = np.arange( cfg_tomo['omega_start'], cfg_tomo['omega_end']+cfg_tomo['omega_step']/2, cfg_tomo['omega_step'], ) for ang in angs: yield from bps.checkpoint() yield from bps.mv(tomostage.rot, ang) yield from bps.trigger_and_read([det]) def fly_scan(self, cfg_tomo): """ Collect projections with fly motion """ det = self.tomo_det psofly = self.fly_control # TODO: # The fields need to be updated for 6-ID-D # Raw images go through the following plugins: # PG1 ==> TRANS1 ==> PROC1 ==> TIFF1 # || || # ==> IMAGE1 ======> HDF1 # TODO: yield from bps.mv(det.proc1.nd_array_port, 'TRANS1') yield from bps.mv(det.hdf1.nd_array_port, 'PROC1') yield from bps.mv(det.tiff1.nd_array_port, 'PROC1') yield from bps.mv(det.trans1.enable, 1) yield from bps.mv(det.proc1.enable, 1) yield from bps.mv(det.proc1.enable_filter, 1) yield from bps.mv(det.proc1.filter_type, 'Average') yield from bps.mv(det.proc1.reset_filter, 1) yield from bps.mv(det.proc1.num_filter, cfg_tomo['n_frames']) yield from bps.mv(det.cam1.num_images, cfg_tomo['n_frames']) # we are assuming that the global psofly is available yield from bps.mv( psofly.start, cfg_tomo['omega_start'], psofly.end, cfg_tomo['omega_end'], psofly.scan_delta, abs(cfg_tomo['omega_step']), psofly.slew_speed, cfg_tomo['slew_speed'], ) # taxi yield from bps.mv(psofly.taxi, "Taxi") yield from bps.mv( det.cam1.num_images, cfg_tomo['n_projections'], det.cam1.trigger_mode, "Overlapped", ) # start the fly scan yield from bps.trigger(det, group='fly') yield from bps.abs_set(psofly.fly, "Fly", group='fly') yield from bps.wait(group='fly') def tomo_scan(self, cfg): """ Tomography scan plan based on given configuration """ # unpack devices det = self.tomo_det tomostage = self.tomo_stage # TODO: commented for Sim test shutter = self.shutter shutter_suspender = self.suspend_shutter beam = self.tomo_beam # load experiment configurations cfg = load_config(cfg) if type(cfg) != dict else cfg # TODO: # the following needs to be updated for 6-ID-D # update the cached motor position in the dict in case exp goes wrong _cached_position = self.tomo_stage.cache_position() ######################### ## step 0: preparation ## ######################### acquire_time = cfg['tomo']['acquire_time'] acquire_period = cfg['tomo']['acquire_period'] n_white = cfg['tomo']['n_white'] n_dark = cfg['tomo']['n_dark'] angs = np.arange( cfg['tomo']['omega_start'], cfg['tomo']['omega_end']+cfg['tomo']['omega_step']/2, cfg['tomo']['omega_step'], ) n_projections = len(angs) cfg['tomo']['n_projections'] = n_projections cfg['tomo']['total_images'] = n_white + n_projections + n_white + n_dark fp = cfg['output']['filepath'] fn = cfg['output']['fileprefix'] # consider adding an extra step to: # Perform energy calibration, set intended attenuation # set the lenses, change the intended slit size # prime the control of FS ##################################### ## step 0.1: check beam parameters ## ##################################### # set slit sizes # These are the 1-ID-E controls # epics_put("1ide1:Kohzu_E_upHsize.VAL", ($1), 10) ## # epics_put("1ide1:Kohzu_E_dnHsize.VAL", (($1)+0.1), 10) ## # epics_put("1ide1:Kohzu_E_upVsize.VAL", ($2), 10) ## VERT SIZE # epics_put("1ide1:Kohzu_E_dnVsize.VAL", ($2)+0.1, 10) ## # _beam_h_size = cfg['tomo']['beamsize_h'] # _beam_v_size = cfg['tomo']['beamsize_v'] # yield from bps.mv(beam.s1.h_size, _beam_h_size ) # yield from bps.mv(beam.s1.v_size, _beam_v_size ) # yield from bps.mv(beam.s2.h_size, _beam_h_size + 0.1 ) # add 0.1 following 1ID convention # yield from bps.mv(beam.s2.v_size, _beam_v_size + 0.1 ) # to safe guard the beam? if self._mode.lower() in ['dryrun', 'production']: # set attenuation _attenuation = cfg['tomo']['attenuation'] yield from bps.mv(beam.att._motor, _attenuation) # check energy # need to be clear what we want to do here _energy_foil = cfg['tomo']['energyfoil'] yield from bps.mv(beam.foil._motor, _energy_foil) # need to complete this part in beamline.py # TODO: # Instead of setting the beam optics, just check the current setup # and print it out for user infomation. # current beam size # TODO: # use softIOC to provide shortcut to resize slits # cfg['tomo']['beamsize_h'] = beam.s1.h_size # cfg['tomo']['beamsize_v'] = beam.s1.v_size # current lenses (proposed...) cfg['tomo']['focus_beam'] = beam.l1.l1y == 10 # to see if focusing is used # current attenuation cfg['tomo']['attenuation'] = beam.att._motor.get() # check energy? may not be necessary. # TODO: # set up FS controls # decide what to do with the focus lenses # calculate slew speed for fly scan # https://github.com/decarlof/tomo2bm/blob/master/flir/libs/aps2bm_lib.py # TODO: considering blue pixels, use 2BM code as ref if cfg['tomo']['type'].lower() == 'fly': scan_time = (acquire_time+cfg['tomo']['readout_time'])*n_projections slew_speed = (angs.max() - angs.min())/scan_time cfg['tomo']['slew_speed'] = slew_speed # need to make sure that the sample out position is the same for both front and back x0, z0 = tomostage.kx.position, tomostage.kz.position dfx, dfz = cfg['tomo']['sample_out_position']['kx'], cfg['tomo']['sample_out_position']['kz'] rotang = np.radians(cfg['tomo']['omega_end']-cfg['tomo']['omega_start']) rotm = np.array([[ np.cos(rotang), np.sin(rotang)], [-np.sin(rotang), np.cos(rotang)]]) dbxz = np.dot(rotm, np.array([dfx, dfz])) dbx = dbxz[0] if abs(dbxz[0]) > 1e-8 else 0.0 dbz = dbxz[1] if abs(dbxz[1]) > 1e-8 else 0.0 # now put the value to dict cfg['tomo']['initial_kx'] = x0 cfg['tomo']['initial_kz'] = z0 cfg['tomo']['fronte_white_kx'] = x0 + dfx cfg['tomo']['fronte_white_kz'] = z0 + dfz cfg['tomo']['back_white_kx'] = x0 + dbx cfg['tomo']['back_white_kz'] = z0 + dbz ############################################### ## step 0.9: print out the cfg for user info ## ############################################### self.check(cfg) # NOTE: file path cannot be used with bps.mv, leading to a timeout error for me in [det.tiff1, det.hdf1]: me.file_path.put(fp) @bpp.stage_decorator([det]) @bpp.run_decorator() def scan_closure(): # TODO: # Somewhere we need to check the light status # open shutter for beam if self._mode.lower() in ['production']: yield from bps.mv(shutter, 'open') yield from bps.install_suspender(shutter_suspender) # config output if self._mode.lower() in ['dryrun','production']: for me in [det.tiff1, det.hdf1]: yield from bps.mv(me.file_name, fn) # yield from bps.mv(me.file_path, fp) yield from bps.mv(me.file_write_mode, 2) # 1: capture, 2: stream yield from bps.mv(me.num_capture, cfg['tomo']['total_images']) yield from bps.mv(me.file_template, ".".join([r"%s%s_%06d",cfg['output']['type'].lower()])) elif self._mode.lower() in ['debug']: for me in [det.tiff1, det.hdf1]: # TODO: file path will lead to time out error in Sim test # yield from bps.mv(me.file_path, '/data') yield from bps.mv(me.file_name, fn) yield from bps.mv(me.file_write_mode, 2) # 1: capture, 2: stream yield from bps.mv(me.auto_increment, 1) yield from bps.mv(me.num_capture, cfg['tomo']['total_images']) yield from bps.mv(me.file_template, ".".join([r"%s%s_%06d",cfg['output']['type'].lower()])) if cfg['output']['type'] in ['tif', 'tiff']: yield from bps.mv(det.tiff1.enable, 1) yield from bps.mv(det.tiff1.capture, 1) yield from bps.mv(det.hdf1.enable, 0) elif cfg['output']['type'] in ['hdf', 'hdf1', 'hdf5']: yield from bps.mv(det.tiff1.enable, 0) yield from bps.mv(det.hdf1.enable, 1) yield from bps.mv(det.hdf1.capture, 1) else: raise ValueError(f"Unsupported output type {cfg['output']['type']}") # setting acquire_time and acquire_period yield from bps.mv(det.cam1.acquire_time, acquire_time) yield from bps.mv(det.cam1.acquire_period, acquire_period) # collect front white field yield from bps.mv(det.cam1.frame_type, 0) # for HDF5 dxchange data structure yield from self.collect_white_field(cfg['tomo'], atfront=True) # collect projections yield from bps.mv(det.cam1.frame_type, 1) # for HDF5 dxchange data structure if cfg['tomo']['type'].lower() == 'step': # run step_scan yield from self.step_scan(cfg['tomo']) elif cfg['tomo']['type'].lower() == 'fly': yield from self.fly_scan(cfg['tomo']) else: raise ValueError(f"Unsupported scan type: {cfg['tomo']['type']}") # collect back white field yield from bps.mv(det.cam1.frame_type, 2) # for HDF5 dxchange data structure yield from self.collect_white_field(cfg['tomo'], atfront=False) # collect back dark field yield from bps.mv(det.cam1.frame_type, 3) # for HDF5 dxchange data structure # TODO: no shutter available for Sim testing if self._mode.lower() in ['dryrun', 'production']: yield from bps.remove_suspender(shutter_suspender) yield from bps.mv(shutter, "close") yield from self.collect_dark_field(cfg['tomo']) return (yield from scan_closure()) # summarize_plan with config yml file def dryrun(self, scan_config): """use summarize_plan for quick analysis""" return summarize_plan(self.tomo_scan(scan_config)) def run(self,scan_config): """run tomo_scan with RE""" return self.RE(self.tomo_scan(scan_config)) class NearField(Experiment): """NF-HEDM control for 6-ID-D""" def __init__(self, mode='debug'): super(NearField, self).__init__(mode) self._mode = mode # instantiate device self.nf_stage = NearField.get_nfstage(self._mode) self.fly_control = NearField.get_flycontrol(self._mode) self.nf_det = NearField.get_detector(self._mode) self.nf_beam = NearField.get_nfbeam(self._mode) if mode.lower() in ['debug']: # take an image to prime the tiff1 and hdf1 plugin self.nf_det.cam1.acquire_time.put(0.001) self.nf_det.cam1.acquire_period.put(0.005) self.nf_det.cam1.image_mode.put('Continuous') self.nbf_det.tiff1.auto_increment.put(0) self.nbf_det.tiff1.capture.put(0) self.nbf_det.tiff1.enable.put(1) self.nbf_det.tiff1.file_name.put('prime_my_tiff') self.nbf_det.cam1.acquire.put(1) sleep(0.01) self.nf_det.cam1.acquire.put(0) self.nf_det.tiff1.enable.put(0) self.nf_det.tiff1.auto_increment.put(1) self.nf_det.hdf1.auto_increment.put(0) self.nf_det.hdf1.capture.put(0) self.nf_det.hdf1.enable.put(1) self.nf_det.hdf1.file_name.put('prime_my_hdf') self.nf_det.cam1.acquire.put(1) sleep(0.01) self.nf_det.cam1.acquire.put(0) self.nf_det.hdf1.enable.put(0) self.nf_det.hdf1.auto_increment.put(1) # set up auto save for tiff and hdf self.nf_det.tiff1.auto_save.put(1) self.nf_det.hdf1.auto_save.put(1) # turn on proc1 filter self.nf_det.proc1.enable_filter.put(1) self.nf_det.proc1.auto_reset_filter.put(1) self.nf_det.proc1.filter_callbacks.put(1) # 0 for 'Every array'; 1 for 'Every N only' # TODO: # we need to do some initialization with Beam based on # a cached/lookup table @property def mode(self): return f"current mode is {self._mode}, available options are ['debug'. 'dryrun', 'production']" @mode.setter def mode(self, newmode): self._mode = newmode self.shutter = Experiment.get_main_shutter(self._mode) self.nf_stage = NearField.get_nfstage(self._mode) self.fly_control = NearField.get_flycontrol(self._mode) self.nf_det = NearField.get_detector(self._mode) self.nf_beam = NearField.get_nfbeam(self._mode) def check(self, cfg): """Return user input before run""" cfg = load_config(cfg) if type(cfg) != dict else cfg print(f"NearField configuration:\n{dict_to_msg(cfg['nf'])}") print(f"Output:\n{dict_to_msg(cfg['output'])}") def __repr__(self): """Return summary of the current experiment status""" """ beam = self.nf_beam stage = self.nf_stage # get the current beamline optics # TODO: need to figure out how to get the beam energy _beamline_status = ( f"Beam Size is: {beam.s1.h_size}x{beam.s1.v_size} (HxV) \n" f"Attenuation is: {beam.att_level} \n" f"Beam Energy is: {beam.energy} \n" f"Focus Lenses Positions: l1y @ {beam.l1.l1y} \n" f" l2y @ {beam.l2.l2y} \n" f" l3y @ {beam.l3.l3y} \n" f" l4y @ {beam.l4.l4y} \n" ) _status_msg = ( (f"Here is the current beamline status:\n") + _beamline_status + (f"\nHere are the current motor positions:\n") + dict_to_msg(stage.position_cached) + (f"\nHere is the current experiment configuration:\n") # dict_to_msg(cfg['nf']) + # (f"\nHere are the file output info:\n") + # dict_to_msg(cfg['output']) ) return _status_msg """ # TODO: # verbose string representation of the experiment and beamline # status as a dictionary -> yaml def calibration(self): """Perform beamline calibration""" # TODO: # Propose not to do calibration here # Calibration should be done in a seperate module, limit experiment to data collection. # Should log calibration in RunEngine as well. pass @staticmethod def get_nfbeam(mode): """return NFbeam based on given mode""" if mode.lower() in ['dryrun', 'production']: beam = Beam() elif mode.lower() == 'debug': # NOTE: # This is a place holder for maybe additional control of the beam # simulated tomobeam from the virtual beamline # dumped all the simulated beam control to m16 beam = SimBeam() else: raise ValueError(f"Invalide mode -> {mode}") return beam @staticmethod def get_nfstage(mode): """return nfstage based on given mode""" if mode.lower() in ['dryrun', 'production']: nfstage = StageAero(name='nfstage') elif mode.lower() == 'debug': nfstage = SimStageAero(name='nfstage') else: raise ValueError(f"Invalide mode -> {mode}") return nfstage @staticmethod def get_flycontrol(mode): if mode.lower() == 'debug': # TODO: need better simulated motors from ophyd import sim psofly = sim.flyer1 elif mode.lower() in ['dryrun', 'production']: psofly = EnsemblePSOFlyDevice("PV_FLY", name="psofly") else: raise ValueError(f"Invalide mode, {mode}") return psofly @staticmethod def get_detector(mode): # TODO: implement real PVs if mode.lower() == 'debug': det = SimDetector("6iddSIMDET1:", name='det') epics.caput("6iddSIMDET1:cam1:FrameType.ZRST", "/exchange/data_white_pre") epics.caput("6iddSIMDET1:cam1:FrameType.ONST", "/exchange/data") epics.caput("6iddSIMDET1:cam1:FrameType.TWST", "/exchange/data_white_post") epics.caput("6iddSIMDET1:cam1:FrameType.THST", "/exchange/data_dark") # ophyd need this configuration epics.caput("6iddSIMDET1:cam1:FrameType_RBV.ZRST", "/exchange/data_white_pre") epics.caput("6iddSIMDET1:cam1:FrameType_RBV.ONST", "/exchange/data") epics.caput("6iddSIMDET1:cam1:FrameType_RBV.TWST", "/exchange/data_white_post") epics.caput("6iddSIMDET1:cam1:FrameType_RBV.THST", "/exchange/data_dark") # set the layout file for cam # TODO: need to udpate with acutal config files for 6-ID-D # commented out for Sim test # _current_fp = str(pathlib.Path(__file__).parent.absolute()) # _attrib_fp = os.path.join(_current_fp, 'config/PG2_attributes.xml') # _layout_fp = os.path.join(_current_fp, 'config/tomo6bma_layout.xml') # det.cam1.nd_attributes_file.put(_attrib_fp) # det.hdf1.xml_file_name.put(_layout_fp) # # turn off the problematic auto setting in cam # det.cam1.auto_exposure_auto_mode.put(0) # det.cam1.sharpness_auto_mode.put(0) # det.cam1.gain_auto_mode.put(0) # det.cam1.frame_rate_auto_mode.put(0) elif mode.lower() in ['dryrun', 'production']: # TODO: Need to make sure this is correct # change to PG4 for testing det = PointGreyDetector("1idPG4:", name='det') # TODO: # Change the motor PV to the actual motor that moves the detector along z-axis from ophyd import EpicsMotor det.cam1.nfposition = EpicsMotor("6idhedm:m41:", name='nfposition') # check the following page for important information # https://github.com/BCDA-APS/use_bluesky/blob/master/notebooks/sandbox/images_darks_flats.ipynb # epics.caput("1idPG4:cam1:FrameType.ZRST", "/exchange/data_white_pre") epics.caput("1idPG4:cam1:FrameType.ONST", "/exchange/data") epics.caput("1idPG4:cam1:FrameType.TWST", "/exchange/data_white_post") epics.caput("1idPG4:cam1:FrameType.THST", "/exchange/data_dark") # ophyd need this configuration epics.caput("1idPG4:cam1:FrameType_RBV.ZRST", "/exchange/data_white_pre") epics.caput("1idPG4:cam1:FrameType_RBV.ONST", "/exchange/data") epics.caput("1idPG4:cam1:FrameType_RBV.TWST", "/exchange/data_white_post") epics.caput("1idPG4:cam1:FrameType_RBV.THST", "/exchange/data_dark") # set the layout file for cam # TODO: need to udpate with acutal config files for 6-ID-D _current_fp = str(pathlib.Path(__file__).parent.absolute()) _attrib_fp = os.path.join(_current_fp, 'config/PG2_attributes.xml') _layout_fp = os.path.join(_current_fp, 'config/tomo6bma_layout.xml') det.cam1.nd_attributes_file.put(_attrib_fp) det.hdf1.xml_file_name.put(_layout_fp) # turn off the problematic auto setting in cam det.cam1.auto_exposure_auto_mode.put(0) det.cam1.sharpness_auto_mode.put(0) det.cam1.gain_auto_mode.put(0) det.cam1.frame_rate_auto_mode.put(0) else: raise ValueError(f"Invalide mode, {mode}") det.proc1.filter_callbacks.put(1) # 0 Every array; 1 Array N only (useful for taking bg) det.proc1.auto_reset_filter.put(1) # ALWAYS auto reset filter return det ############################ ## Near Field Calibration ## ############################ # NOT to be used in scan plans def calibration(self): """Image calibration for the two NF z positions""" det = self.nf_det # TODO: what needs to be done here # add the z motor? # add the beamstp motor? pass # ----- pre-defined scan plans starts from here @bpp.run_decorator() def fly_scan(self, cfg_nf): """ Collect projections with fly motion """ det = self.nf_det psofly = self.fly_control # TODO: # Need to set up FS control for the scan # During fly scan, the FS is always open # TODO: # The fields need to be updated for 6-ID-D yield from bps.mv(det.hdf1.nd_array_port, 'PG1') yield from bps.mv(det.tiff1.nd_array_port, 'PG1') # we are assuming that the global psofly is available yield from bps.mv( psofly.start, cfg_nf['omega_start'], psofly.end, cfg_nf['omega_end'], psofly.scan_delta, abs(cfg_nf['omega_step']), psofly.slew_speed, cfg_nf['slew_speed'], ) # taxi yield from bps.mv(psofly.taxi, "Taxi") yield from bps.mv( det.cam1.num_images, cfg_nf['n_projections'], det.cam1.trigger_mode, "Overlapped", ) # start the fly scan yield from bps.trigger(det, group='fly') yield from bps.abs_set(psofly.fly, "Fly", group='fly') yield from bps.wait(group='fly') def nf_scan(self, cfg): """ NearField scan plan based on given configuration """ # unpack devices det = self.nf_det stage = self.nf_stage shutter = self.shutter shutter_suspender = self.suspend_shutter beam = self.nf_beam # load experiment configurations cfg = load_config(cfg) if type(cfg) != dict else cfg # TODO: # the following needs to be updated for 6-ID-D # update the cached motor position in the dict in case exp goes wrong _cached_position = self.nf_stage.cache_position() ######################### ## step 0: preparation ## ######################### acquire_time = cfg['nf']['acquire_time'] angs = np.arange( cfg['nf']['omega_start'], cfg['nf']['omega_end']+cfg['nf']['omega_step']/2, cfg['nf']['omega_step'], ) n_projections = len(angs) cfg['nf']['n_projections'] = n_projections cfg['nf']['total_images'] = n_projections fp = cfg['output']['filepath'] fn = cfg['output']['fileprefix'] # consider adding an extra step to: # Perform energy calibration, set intended attenuation # set the lenses, change the intended slit size # prime the control of FS ############################################# ## step 0.1: check and set beam parameters ## ############################################# # set slit sizes # These are the 1-ID-E controls # epics_put("1ide1:Kohzu_E_upHsize.VAL", ($1), 10) ## # epics_put("1ide1:Kohzu_E_dnHsize.VAL", (($1)+0.1), 10) ## # epics_put("1ide1:Kohzu_E_upVsize.VAL", ($2), 10) ## VERT SIZE # epics_put("1ide1:Kohzu_E_dnVsize.VAL", ($2)+0.1, 10) ## # _beam_h_size = cfg['nf']['beamsize_h'] # _beam_v_size = cfg['nf']['beamsize_v'] # yield from bps.mv(beam.s1.h_size, _beam_h_size ) # yield from bps.mv(beam.s1.v_size, _beam_v_size ) # yield from bps.mv(beam.s2.h_size, _beam_h_size + 0.1 ) # add 0.1 following 1ID convention # yield from bps.mv(beam.s2.v_size, _beam_v_size + 0.1 ) # to safe guard the beam? # set attenuation # _attenuation = cfg['nf']['attenuation'] # yield from bps.mv(beam.att.att_level, _attenuation) # check energy # need to be clear what we want to do here # _energy_foil = cfg['nf']['energyfoil'] # yield from bps.mv(beam.foil, _energy_foil) # need to complete this part in beamline.py # TODO: # Instead of setting the beam optics, just check the current setup # and print it out for user infomation. # current beam size # cfg['nf']['beamsize_h'] = beam.s1.h_size # cfg['nf']['beamsize_v'] = beam.s1.v_size # current lenses (proposed...) cfg['nf']['focus_beam'] = beam.l1.l1y.position == 10 # to see if focusing is used # current attenuation # TODO: commented for Sim testing # cfg['nf']['attenuation'] = beam.att.att_level # check energy? may not be necessary. # TODO: # set up FS controls # decide what to do with the focus lenses ####################################### ## calculate slew speed for fly scan ## ####################################### # https://github.com/decarlof/tomo2bm/blob/master/flir/libs/aps2bm_lib.py # TODO: considering blue pixels, use 2BM code as ref scan_time = (acquire_time+cfg['nf']['readout_time'])*n_projections slew_speed = (angs.max() - angs.min())/scan_time cfg['nf']['slew_speed'] = slew_speed # need to make sure that the sample out position is the same for both front and back x0, z0 = stage.kx.position, stage.kz.position dfx, dfz = cfg['nf']['sample_out_position']['kx'], cfg['nf']['sample_out_position']['kz'] rotang = np.radians(cfg['nf']['omega_end']-cfg['nf']['omega_start']) rotm = np.array([[ np.cos(rotang), np.sin(rotang)], [-np.sin(rotang), np.cos(rotang)]]) dbxz = np.dot(rotm, np.array([dfx, dfz])) dbx = dbxz[0] if abs(dbxz[0]) > 1e-8 else 0.0 dbz = dbxz[1] if abs(dbxz[1]) > 1e-8 else 0.0 # now put the value to dict cfg['nf']['initial_kx'] = x0 cfg['nf']['initial_kz'] = z0 cfg['nf']['fronte_white_kx'] = x0 + dfx cfg['nf']['fronte_white_kz'] = z0 + dfz cfg['nf']['back_white_kx'] = x0 + dbx cfg['nf']['back_white_kz'] = z0 + dbz ## Ideally, we set up the FS control once, then the FS will be controlled with ## intended signals ######################################### ## Function for NF Single Layer Scan ## ######################################### self.check(cfg) @bpp.stage_decorator([det]) @bpp.run_decorator() def scan_singlelayer(self, cfg_nf, _layer_number): # TODO: # Somewhere we need to check the light status, or, add a suspender? # config output # currently set up to output 1 HDF5 file for each NF layer, including 2 det positions for me in [det.tiff1, det.hdf1]: yield from bps.mv(me.file_path, fp) yield from bps.mv(me.file_name, '{}_layer{:06d}'.format(fn, _layer_number)) yield from bps.mv(me.file_write_mode, 2) yield from bps.mv(me.num_capture, cfg['nf']['total_images']*2) # *2 for two det positions yield from bps.mv(me.file_template, ".".join([r"%s%s_%06d",cfg['output']['type'].lower()])) if cfg['output']['type'] in ['tif', 'tiff']: yield from bps.mv(det.tiff1.enable, 1) yield from bps.mv(det.tiff1.capture, 1) yield from bps.mv(det.hdf1.enable, 0) elif cfg['output']['type'] in ['hdf', 'hdf1', 'hdf5']: yield from bps.mv(det.tiff1.enable, 0) yield from bps.mv(det.hdf1.enable, 1) yield from bps.mv(det.hdf1.capture, 1) else: raise ValueError(f"Unsupported output type {cfg['output']['type']}") # TODO: # Add FS control here to toggle the FS or Main Shutter? # collect projections in the current layer in the FIRST det z position yield from bps.mv(det.cam1.frame_type, 1) # for HDF5 dxchange data structure yield from bps.mv(det.cam1.nfposition, cfg_nf['detector_z_position']['nf_z1']) # need actual motor yield from self.fly_scan(cfg['nf']) # collect projections in the current layer in the SECOND det z position yield from bps.mv(det.cam1.nfposition, cfg_nf['detector_z_position']['nf_z2']) # need actual motor yield from self.fly_scan(cfg['nf']) # TODO: # Add FS control here to close the FS or Main Shutter? ############################ ## Near Field Volume Scan ## ############################ n_layers = cfg['nf']['volume']['n_layers'] ky_start = cfg['nf']['volume']['ky_start'] ky_step = cfg['nf']['volume']['ky_step'] if ky_step == 0: # To repeat the current layer for n_layer times # !!! The layer/file number will still increase for this same layer _scan_positions = np.arange(1, n_layers+1, 1) for _layer_number_count in _scan_positions: yield from bps.mv(stage.ky, ky_start) yield from scan_singlelayer(self, cfg['nf'], _layer_number_count) ### NOT sure if this works!!! # For regular scans elif ky_step != 0: _layer_number_count = 1 _scan_positions = np.arange(ky_start, ky_start+(n_layers-0.5)*ky_step, ky_step) for _current_scan_ky in _scan_positions: yield from bps.mv(stage.ky, _current_scan_ky) yield from scan_singlelayer(self, cfg['nf'], _layer_number_count) ### NOT sure if this works!!! _layer_number_count += 1 # summarize_plan with config yml file def dryrun(self, scan_config): """use summarize_plan for quick analysis""" return summarize_plan(self.nf_scan(scan_config)) class FarField(Experiment): """FF-HEDM control for 6-ID-D""" def __init__(self, mode='debug'): super(FarField, self).__init__(mode) self._mode = mode # instantiate device self.ff_stage = FarField.get_ffstage(self._mode) self.fly_control = FarField.get_flycontrol(self._mode) self.ff_det = FarField.get_detector(self._mode) self.ff_beam = FarField.get_ffbeam(self._mode) # TODO: Do we need to do this for the farfield? if mode.lower() in ['debug']: # take an image to prime the tiff1 and hdf1 plugin self.ff_det.cam1.acquire_time.put(0.001) self.ff_det.cam1.acquire_period.put(0.005) self.ff_det.cam1.image_mode.put('Continuous') self.ff_det.tiff1.auto_increment.put(0) self.ff_det.tiff1.capture.put(0) self.ff_det.tiff1.enable.put(1) self.ff_det.tiff1.file_name.put('prime_my_tiff') self.ff_det.cam1.acquire.put(1) sleep(0.01) self.ff_det.cam1.acquire.put(0) self.ff_det.tiff1.enable.put(0) self.ff_det.tiff1.auto_increment.put(1) self.ff_det.hdf1.auto_increment.put(0) self.ff_det.hdf1.capture.put(0) self.ff_det.hdf1.enable.put(1) self.ff_det.hdf1.file_name.put('prime_my_hdf') self.ff_det.cam1.acquire.put(1) sleep(0.01) self.ff_det.cam1.acquire.put(0) self.ff_det.hdf1.enable.put(0) self.ff_det.hdf1.auto_increment.put(1) # set up auto save for tiff and hdf self.ff_det.tiff1.auto_save.put(1) self.ff_det.hdf1.auto_save.put(1) # turn on proc1 filter self.ff_det.proc1.enable_filter.put(1) self.ff_det.proc1.auto_reset_filter.put(1) self.ff_det.proc1.filter_callbacks.put(1) # 0 for 'Every array'; 1 for 'Every N only' # TODO: # we need to do some initialization with Beam based on # a cached/lookup table @property def mode(self): return f"current mode is {self._mode}, available options are ['debug', 'dryrun', 'production']" @mode.setter def mode(self, newmode): self._mode = newmode self.shutter = Experiment.get_main_shutter(self._mode) self.ff_stage = FarField.get_ffstage(self._mode) self.fly_control = FarField.get_flycontrol(self._mode) self.ff_det = FarField.get_detector(self._mode) self.ff_beam = FarField.get_ffbeam(self._mode) def check(self, cfg): """Return user input before run""" cfg = load_config(cfg) if type(cfg) != dict else cfg print(f"FarField configuration:\n{dict_to_msg(cfg['ff'])}") print(f"Output:\n{dict_to_msg(cfg['output'])}") def __repr__(self): """Return summary of the current experiment status""" """ beam = self.ff_beam stage = self.ff_stage # get the current beamline optics # TODO: need to figure out how to get the beam energy _beamline_status = ( f"Beam Size is: {beam.s1.h_size}x{beam.s1.v_size} (HxV) \n" f"Attenuation is: {beam.att_level} \n" f"Beam Energy is: {beam.energy} \n" f"Focus Lenses Positions: l1y @ {beam.l1.l1y} \n" f" l2y @ {beam.l2.l2y} \n" f" l3y @ {beam.l3.l3y} \n" f" l4y @ {beam.l4.l4y} \n" ) _status_msg = ( (f"Here is the current beamline status:\n") + _beamline_status + (f"\nHere are the current motor positions:\n") + dict_to_msg(stage.position_cached) + (f"\nHere is the current experiment configuration:\n") # dict_to_msg(cfg['ff']) + # (f"\nHere are the file output info:\n") + # dict_to_msg(cfg['output']) ) return _status_msg # TODO: # verbose string representation of the experiment and beamline # status as a dictionary -> yaml """ def calibration(self): """Perform beamline calibration""" # TODO: # Should probably do this in a seperate module # Still not clear how calibration can be done automatically, but # let's keep a function here as a place holder # Check out this auto alignment to see if some functions can be used here # https://github.com/AdvancedPhotonSource/auto_sample_alignment.git # Per conversation with Peter, This package can return the same location on the pin # according to the images. However, they are requesting more features like determine # the slit position and size. # Jun and Peter will test this code during the first week of October, let wait for their feedback. pass @staticmethod def get_ffbeam(mode): """return FFbeam based on given mode""" if mode.lower() in ['dryrun', 'production']: beam = Beam() elif mode.lower() == 'debug': # NOTE: # This is a place holder for maybe additional control of the beam # simulated tomobeam from the virtual beamline # dumped all the simulated beam control to m16 beam = SimBeam() else: raise ValueError(f"Invalide mode -> {mode}") return beam @staticmethod def get_ffstage(mode): """return nfstage based on given mode""" if mode.lower() in ['dryrun', 'production']: ffstage = StageAero(name='ffstage') elif mode.lower() == 'debug': ffstage = SimStageAero(name='ffstage') else: raise ValueError(f"Invalide mode -> {mode}") return ffstage @staticmethod def get_flycontrol(mode): if mode.lower() == 'debug': # TODO: need better simulated motors from ophyd import sim psofly = sim.flyer1 elif mode.lower() in ['dryrun', 'production']: psofly = EnsemblePSOFlyDevice("PV_FLY", name="psofly") else: raise ValueError(f"Invalide mode, {mode}") return psofly @staticmethod def get_detector(mode): # TODO: implement real PVs if mode.lower() == 'debug': det = SimDetector("6iddSIMDET1:", name='det') epics.caput("6iddSIMDET1:cam1:FrameType.ZRST", "/exchange/data_white_pre") epics.caput("6iddSIMDET1:cam1:FrameType.ONST", "/exchange/data") epics.caput("6iddSIMDET1:cam1:FrameType.TWST", "/exchange/data_white_post") epics.caput("6iddSIMDET1:cam1:FrameType.THST", "/exchange/data_dark") # ophyd need this configuration epics.caput("6iddSIMDET1:cam1:FrameType_RBV.ZRST", "/exchange/data_white_pre") epics.caput("6iddSIMDET1:cam1:FrameType_RBV.ONST", "/exchange/data") epics.caput("6iddSIMDET1:cam1:FrameType_RBV.TWST", "/exchange/data_white_post") epics.caput("6iddSIMDET1:cam1:FrameType_RBV.THST", "/exchange/data_dark") # set the layout file for cam # TODO: need to udpate with acutal config files for 6-ID-D _current_fp = str(pathlib.Path(__file__).parent.absolute()) _attrib_fp = os.path.join(_current_fp, 'config/PG2_attributes.xml') _layout_fp = os.path.join(_current_fp, 'config/tomo6bma_layout.xml') det.cam1.nd_attributes_file.put(_attrib_fp) det.hdf1.xml_file_name.put(_layout_fp) # turn off the problematic auto setting in cam1 det.cam1.auto_exposure_auto_mode.put(0) det.cam1.sharpness_auto_mode.put(0) det.cam1.gain_auto_mode.put(0) det.cam1.frame_rate_auto_mode.put(0) elif mode.lower() in ['dryrun', 'production']: ### TODO: det = PointGreyDetector("1idPG4:", name='det') # TODO: # Change the motor PV to the actual motor that moves the detector along z-axis from ophyd import EpicsMotor det.cam1.nfposition = EpicsMotor("6idhedm:m41:", name='nfposition') # check the following page for important information # https://github.com/BCDA-APS/use_bluesky/blob/master/notebooks/sandbox/images_darks_flats.ipynb # epics.caput("1idPG4:cam1:FrameType.ZRST", "/exchange/data_white_pre") epics.caput("1idPG4:cam1:FrameType.ONST", "/exchange/data") epics.caput("1idPG4:cam1:FrameType.TWST", "/exchange/data_white_post") epics.caput("1idPG4:cam1:FrameType.THST", "/exchange/data_dark") # ophyd need this configuration epics.caput("1idPG4:cam1:FrameType_RBV.ZRST", "/exchange/data_white_pre") epics.caput("1idPG4:cam1:FrameType_RBV.ONST", "/exchange/data") epics.caput("1idPG4:cam1:FrameType_RBV.TWST", "/exchange/data_white_post") epics.caput("1idPG4:cam1:FrameType_RBV.THST", "/exchange/data_dark") # set the layout file for cam # TODO: need to udpate with acutal config files for 6-ID-D _current_fp = str(pathlib.Path(__file__).parent.absolute()) _attrib_fp = os.path.join(_current_fp, 'config/PG2_attributes.xml') _layout_fp = os.path.join(_current_fp, 'config/tomo6bma_layout.xml') det.cam1.nd_attributes_file.put(_attrib_fp) det.hdf1.xml_file_name.put(_layout_fp) # turn off the problematic auto setting in cam det.cam1.auto_exposure_auto_mode.put(0) det.cam1.sharpness_auto_mode.put(0) det.cam1.gain_auto_mode.put(0) det.cam1.frame_rate_auto_mode.put(0) ### Need to get have the Dexela configured in Devices.py # det = DexelaDetector("PV_DET", name='det') # """ # # check the following page for important information # # https://github.com/BCDA-APS/use_bluesky/blob/master/notebooks/sandbox/images_darks_flats.ipynb # # # epics.caput("PV_DET:cam1:FrameType.ZRST", "/exchange/data_white_pre") # epics.caput("PV_DET:cam1:FrameType.ONST", "/exchange/data") # epics.caput("PV_DET:cam1:FrameType.TWST", "/exchange/data_white_post") # epics.caput("PV_DET:cam1:FrameType.THST", "/exchange/data_dark") # # ophyd need this configuration # epics.caput("PV_DET:cam1:FrameType_RBV.ZRST", "/exchange/data_white_pre") # epics.caput("PV_DET:cam1:FrameType_RBV.ONST", "/exchange/data") # epics.caput("PV_DET:cam1:FrameType_RBV.TWST", "/exchange/data_white_post") # epics.caput("PV_DET:cam1:FrameType_RBV.THST", "/exchange/data_dark") # # set the layout file for cam # # TODO: need to udpate with acutal config files for 6-ID-D # _current_fp = str(pathlib.Path(__file__).parent.absolute()) # _attrib_fp = os.path.join(_current_fp, 'config/PG2_attributes.xml') # _layout_fp = os.path.join(_current_fp, 'config/tomo6bma_layout.xml') # det.cam1.nd_attributes_file.put(_attrib_fp) # det.hdf1.xml_file_name.put(_layout_fp) # # turn off the problematic auto setting in cam1 # det.cam1.auto_exposure_auto_mode.put(0) # det.cam1.sharpness_auto_mode.put(0) # det.cam1.gain_auto_mode.put(0) # det.cam1.frame_rate_auto_mode.put(0) # """ else: raise ValueError(f"Invalide mode, {mode}") det.proc1.filter_callbacks.put(1) # 0 Every array; 1 Array N only (useful for taking bg) det.proc1.auto_reset_filter.put(1) # ALWAYS auto reset filter return det ########################### ## Far Field Calibration ## ########################### # NOT to be used in scan plans def calibration(self): """Far field calibration for detectors""" det = self.ff_det # TODO: # add the z motor? # not sure what we need here pass # ----- pre-defined scan plans starts from here @bpp.run_decorator() def collect_dark_field(self, cfg_ff): """ Collect dark field images by close the shutter """ # TODO: # Need to toggle Fast shutter, or main?? det = self.ff_det yield from bps.mv(det.hdf1.nd_array_port, 'PROC1') yield from bps.mv(det.tiff1.nd_array_port, 'PROC1') yield from bps.mv(det.proc1.enable, 1) yield from bps.mv(det.proc1.reset_filter, 1) yield from bps.mv(det.proc1.num_filter, cfg_ff['n_frames']) yield from bps.mv(det.cam1.trigger_mode, "Internal") yield from bps.mv(det.cam1.image_mode, "Multiple") yield from bps.mv(det.cam1.num_images, cfg_ff['n_frames']*cfg_ff['n_dark']) yield from bps.trigger_and_read([det]) @bpp.run_decorator() def step_scan(self, cfg_ff): """ Collect projections with step motion """ # unpack devices det = self.ff_det ffstage = self.ff_stage # TODO: # the fields need to be updated for 6-ID-D yield from bps.mv(det.hdf1.nd_array_port, 'PROC1') yield from bps.mv(det.tiff1.nd_array_port, 'PROC1') yield from bps.mv(det.proc1.enable, 1) yield from bps.mv(det.proc1.reset_filter, 1) yield from bps.mv(det.proc1.num_filter, cfg_ff['n_frames']) angs = np.arange( cfg_ff['omega_start'], cfg_ff['omega_end']+cfg_ff['omega_step']/2, cfg_ff['omega_step'], ) for ang in angs: yield from bps.checkpoint() yield from bps.mv(ffstage.rot, ang) yield from bps.trigger_and_read([det]) ### Why is this [det] instead of det? /JasonZ @bpp.run_decorator() def fly_scan(self, cfg_ff): """ Collect projections with fly motion """ det = self.ff_det psofly = self.fly_control # TODO: # Need to set up FS control for the scan # During fly scan, the FS is always open # For step scan, FS is triggered along with the detector (not always) # TODO: # The fields need to be updated for 6-ID-D FF-HEDM yield from bps.mv(det.hdf1.nd_array_port, 'PG1') yield from bps.mv(det.tiff1.nd_array_port, 'PG1') # we are assuming that the global psofly is available yield from bps.mv( psofly.start, cfg_ff['omega_start'], psofly.end, cfg_ff['omega_end'], psofly.scan_delta, abs(cfg_ff['omega_step']), psofly.slew_speed, cfg_ff['slew_speed'], ) # taxi yield from bps.mv(psofly.taxi, "Taxi") yield from bps.mv( det.cam1.num_images, cfg_ff['n_projections'], det.cam1.trigger_mode, "Overlapped", ) # start the fly scan yield from bps.trigger(det, group='fly') yield from bps.abs_set(psofly.fly, "Fly", group='fly') yield from bps.wait(group='fly') def ff_scan(self, cfg): """ FarField scan plan based on given configuration """ # unpack devices det = self.ff_det stage = self.ff_stage shutter = self.shutter shutter_suspender = self.suspend_shutter beam = self.ff_beam # load experiment configurations cfg = load_config(cfg) if type(cfg) != dict else cfg # TODO: # the following needs to be updated for 6-ID-D # update the cached motor position in the dict in case exp goes wrong _cached_position = self.ff_stage.cache_position() ######################### ## step 0: preparation ## ######################### acquire_time = cfg['ff']['acquire_time'] n_dark = cfg['ff']['n_dark'] angs = np.arange( cfg['ff']['omega_start'], cfg['ff']['omega_end']+cfg['nf']['omega_step']/2, cfg['ff']['omega_step'], ) n_projections = len(angs) cfg['ff']['n_projections'] = n_projections cfg['ff']['total_images'] = n_dark + n_projections + n_dark fp = cfg['output']['filepath'] fn = cfg['output']['fileprefix'] # consider adding an extra step to: # Perform energy calibration, set intended attenuation # set the lenses, change the intended slit size # prime the control of FS ############################################# ## step 0.1: check and set beam parameters ## ############################################# # set slit sizes # These are the 1-ID-E controls # epics_put("1ide1:Kohzu_E_upHsize.VAL", ($1), 10) ## # epics_put("1ide1:Kohzu_E_dnHsize.VAL", (($1)+0.1), 10) ## # epics_put("1ide1:Kohzu_E_upVsize.VAL", ($2), 10) ## VERT SIZE # # epics_put("1ide1:Kohzu_E_dnVsize.VAL", ($2)+0.1, 10) ## # _beam_h_size = cfg['ff']['beamsize_h'] # _beam_v_size = cfg['ff']['beamsize_v'] # yield from bps.mv(beam.s1.h_size, _beam_h_size ) # yield from bps.mv(beam.s1.v_size, _beam_v_size ) # yield from bps.mv(beam.s2.h_size, _beam_h_size + 0.1 ) # add 0.1 following 1ID convention # yield from bps.mv(beam.s2.v_size, _beam_v_size + 0.1 ) # to safe guard the beam? # # set attenuation # _attenuation = cfg['ff']['attenuation'] # yield from bps.mv(beam.att.att_level, _attenuation) # # check energy # # need to be clear what we want to do here # _energy_foil = cfg['nf']['energyfoil'] # yield from bps.mv(beam.foil, _energy_foil) # need to complete this part in beamline.py # TODO: # Instead of setting the beam optics, just check the current setup # and print it out for user infomation. # current beam size # cfg['ff']['beamsize_h'] = beam.s1.h_size # cfg['ff']['beamsize_v'] = beam.s1.v_size # current lenses (proposed...) cfg['ff']['focus_beam'] = beam.l1.l1y.position == 10 # to see if focusing is used # current attenuation # TODO: att_level commented out for Sim test # cfg['ff']['attenuation'] = beam.att.att_level # check energy? may not be necessary. # TODO: # set up FS controls # decide what to do with the focus lenses ####################################### ## calculate slew speed for fly scan ## ####################################### # https://github.com/decarlof/tomo2bm/blob/master/flir/libs/aps2bm_lib.py # TODO: considering blue pixels, use 2BM code as ref if cfg['ff']['type'].lower() == 'fly': scan_time = (acquire_time+cfg['ff']['readout_time'])*n_projections slew_speed = (angs.max() - angs.min())/scan_time cfg['ff']['slew_speed'] = slew_speed # TODO: # If this is not used during scans, consider moving this to corresponding part # need to make sure that the sample out position is the same for both front and back x0, z0 = stage.kx.position, stage.kz.position dfx, dfz = cfg['ff']['sample_out_position']['kx'], cfg['nf']['sample_out_position']['kz'] rotang = np.radians(cfg['ff']['omega_end']-cfg['nf']['omega_start']) rotm = np.array([[ np.cos(rotang), np.sin(rotang)], [-np.sin(rotang), np.cos(rotang)]]) dbxz = np.dot(rotm, np.array([dfx, dfz])) dbx = dbxz[0] if abs(dbxz[0]) > 1e-8 else 0.0 dbz = dbxz[1] if abs(dbxz[1]) > 1e-8 else 0.0 # now put the value to dict cfg['ff']['initial_kx'] = x0 cfg['ff']['initial_kz'] = z0 cfg['ff']['fronte_white_kx'] = x0 + dfx cfg['ff']['fronte_white_kz'] = z0 + dfz cfg['ff']['back_white_kx'] = x0 + dbx cfg['ff']['back_white_kz'] = z0 + dbz ## Ideally, we set up the FS control once, then the FS will be controlled with ## intended signals ######################################### ## Function for FF Single Layer Scan ## ######################################### self.check(cfg) @bpp.stage_decorator([det]) @bpp.run_decorator() def scan_singlelayer(self, cfg_ff, _layer_number): # TODO: # Somewhere we need to check the light status, or, add a suspender? # config output for me in [det.tiff1, det.hdf1]: yield from bps.mv(me.file_path, fp) yield from bps.mv(me.file_name, '{}_layer{:06d}'.format(fn, _layer_number)) yield from bps.mv(me.file_write_mode, 2) yield from bps.mv(me.num_capture, cfg['ff']['total_images']) yield from bps.mv(me.file_template, ".".join([r"%s%s_%06d",cfg['output']['type'].lower()])) if cfg['output']['type'] in ['tif', 'tiff']: yield from bps.mv(det.tiff1.enable, 1) yield from bps.mv(det.tiff1.capture, 1) yield from bps.mv(det.hdf1.enable, 0) elif cfg['output']['type'] in ['hdf', 'hdf1', 'hdf5']: yield from bps.mv(det.tiff1.enable, 0) yield from bps.mv(det.hdf1.enable, 1) yield from bps.mv(det.hdf1.capture, 1) else: raise ValueError(f"Unsupported output type {cfg['output']['type']}") # TODO: # Add FS control here to toggle the FS or Main Shutter? # collect front dark field yield from bps.mv(det.cam1.frame_type, 3) # for HDF5 dxchange data structure yield from bps.remove_suspender(shutter_suspender) yield from bps.mv(shutter, "close") # let's discuss which shutter to use here yield from self.collect_dark_field(cfg['ff']) ### NOTE: the main shutter may be closed after dark field!!! # collect projections in the current layer in the det z position # Let's discussed if we want det z control during scans yield from bps.mv(det.cam1.frame_type, 1) # for HDF5 dxchange data structure if cfg['ff']['type'].lower() == 'step': yield from self.step_scan(cfg['ff']) elif cfg['ff']['type'].lower() == 'fly': # yield from bps.mv(det.cam1.position, cfg_ff['detector_z_position']['ff_z1']) # need actual motor yield from self.fly_scan(cfg['ff']) else: raise ValueError(f"Unsupported scan type: {cfg['ff']['type']}") # collect back dark field yield from bps.mv(det.cam1.frame_type, 3) # for HDF5 dxchange data structure yield from bps.remove_suspender(shutter_suspender) yield from bps.mv(shutter, "close") # let's discuss which shutter to use here yield from self.collect_dark_field(cfg['ff']) # TODO: # Add FS control here to close the FS or Main Shutter? ########################### ## Far Field Volume Scan ## ########################### n_layers = cfg['ff']['volume']['n_layers'] ky_start = cfg['ff']['volume']['ky_start'] ky_step = cfg['ff']['volume']['ky_step'] if ky_step == 0: # To repeat the current layer for n_layer times # !!! The layer/file number will still increase for this same layer _scan_positions = np.arange(1, n_layers+1, 1) for _layer_number_count in _scan_positions: yield from bps.mv(stage.ky, ky_start) yield from scan_singlelayer(self, cfg['ff'], _layer_number_count) ### NOT sure if this works!!! # For regular scans elif ky_step != 0: _layer_number_count = 1 _scan_positions =
np.arange(ky_start, ky_start+(n_layers-0.5)*ky_step, ky_step)
numpy.arange
import batoid from test_helpers import timer import numpy as np @timer def test_normalized(): for _ in range(1000): x = np.random.uniform() y = np.random.uniform() z = np.random.uniform() w = np.random.uniform() np.testing.assert_allclose( np.linalg.norm(batoid.utils.normalized([x])), 1.0, rtol=0, atol=1e-10 ) np.testing.assert_allclose( np.linalg.norm(batoid.utils.normalized([x, y])), 1.0, rtol=0, atol=1e-10 ) np.testing.assert_allclose( np.linalg.norm(batoid.utils.normalized([x, y, z])), 1.0, rtol=0, atol=1e-10 ) np.testing.assert_allclose( np.linalg.norm(batoid.utils.normalized([x, y, z, w])), 1.0, rtol=0, atol=1e-10 ) @timer def test_gnomicDirCos(): np.random.seed(5) u = np.random.uniform(-0.1, 0.1, size=1000) v = np.random.uniform(-0.1, 0.1, size=1000) # Test round trip u1, v1 = batoid.utils.dirCosToGnomic(*batoid.utils.gnomicToDirCos(u, v)) np.testing.assert_allclose(u, u1, rtol=1e-10, atol=1e-12) np.testing.assert_allclose(v, v1, rtol=1e-10, atol=1e-12) # Test round trip in the other direction alpha = np.random.uniform(-0.1, 0.1, size=1000) beta = np.random.uniform(-0.1, 0.1, size=1000) gamma = np.sqrt(1 - alpha**2 - beta**2) alpha1, beta1, gamma1 = batoid.utils.gnomicToDirCos( *batoid.utils.dirCosToGnomic(alpha, beta, gamma) ) np.testing.assert_allclose(alpha, alpha1, rtol=1e-10, atol=1e-12) np.testing.assert_allclose(beta, beta1, rtol=1e-10, atol=1e-12) np.testing.assert_allclose(gamma, gamma1, rtol=1e-10, atol=1e-12) # For really tiny angles, u/v should be basically the same as alpha/beta u = np.random.uniform(-1e-6, 1e-6, size=1000) v = np.random.uniform(-1e-6, 1e-6, size=1000) alpha, beta, gamma = batoid.utils.gnomicToDirCos(u, v) np.testing.assert_allclose(alpha, u, rtol=0, atol=1e-8) np.testing.assert_allclose(beta, v, rtol=0, atol=1e-8) # Check normalization of direction cosines np.testing.assert_allclose(np.sqrt(alpha*alpha+beta*beta+gamma*gamma), 1, rtol=0, atol=1e-15) @timer def test_gnomicSpherical(): np.random.seed(57) u = np.random.uniform(-0.1, 0.1, size=1000) v = np.random.uniform(-0.1, 0.1, size=1000) # Test round trip u1, v1 = batoid.utils.sphericalToGnomic(*batoid.utils.gnomicToSpherical(u, v)) np.testing.assert_allclose(u, u1, rtol=1e-10, atol=1e-12) np.testing.assert_allclose(v, v1, rtol=1e-10, atol=1e-12) # Test round trip in other direction phi = np.random.uniform(0.0, 0.1, size=1000) theta = np.random.uniform(-np.pi, np.pi, size=1000) phi1, theta1 = batoid.utils.gnomicToSpherical(*batoid.utils.sphericalToGnomic(phi, theta)) np.testing.assert_allclose(phi, phi1, rtol=1e-10, atol=1e-12) np.testing.assert_allclose(theta, theta1, rtol=1e-10, atol=1e-12) # Check u**2 + v**2 = tan(phi)**2 u, v = batoid.utils.sphericalToGnomic(phi, theta) np.testing.assert_allclose(np.tan(phi)**2, u**2+v**2, rtol=0, atol=1e-17) # Check v/u = tan(theta) np.testing.assert_allclose(np.tan(theta), v/u, rtol=1e-15, atol=0) @timer def test_sphericalToDirCos(): np.random.seed(577) phi = np.random.uniform(0.0, 0.1, size=1000) theta = np.random.uniform(-np.pi, np.pi, size=1000) # Test round trip phi1, theta1 = batoid.utils.dirCosToSpherical(*batoid.utils.sphericalToDirCos(phi, theta)) np.testing.assert_allclose(phi, phi1, rtol=1e-10, atol=1e-12) np.testing.assert_allclose(theta, theta1, rtol=1e-10, atol=1e-12) # Test round trip in other direction alpha = np.random.uniform(-0.1, 0.1, size=1000) beta = np.random.uniform(-0.1, 0.1, size=1000) gamma = np.sqrt(1 - alpha**2 - beta**2) alpha1, beta1, gamma1 = batoid.utils.sphericalToDirCos( *batoid.utils.dirCosToSpherical(alpha, beta, gamma) ) np.testing.assert_allclose(alpha, alpha1, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(beta, beta1, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(gamma, gamma1, rtol=1e-10, atol=1e-12) # Check normalization of direction cosines np.testing.assert_allclose(np.sqrt(alpha1*alpha1+beta1*beta1+gamma1*gamma1), 1, rtol=0, atol=1e-15) @timer def test_composition(): np.random.seed(5772) # Let's try spherical -> dirCos -> gnomic = spherical -> gnomic phi = np.random.uniform(0.0, 0.1, size=1000) theta = np.random.uniform(-np.pi, np.pi, size=1000) u1, v1 = batoid.utils.dirCosToGnomic(*batoid.utils.sphericalToDirCos(phi, theta)) u2, v2 = batoid.utils.sphericalToGnomic(phi, theta) np.testing.assert_allclose(u1, u2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(v1, v2, rtol=1e-10, atol=1e-10) # And cycle: gnomic -> spherical -> dirCos = gnomic -> dirCos u = np.random.uniform(-0.1, 0.1, size=1000) v = np.random.uniform(-0.1, 0.1, size=1000) a1, b1, c1 = batoid.utils.sphericalToDirCos(*batoid.utils.gnomicToSpherical(u, v)) a2, b2, c2 = batoid.utils.gnomicToDirCos(u, v) np.testing.assert_allclose(a1, a2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(b1, b2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(c1, c2, rtol=1e-10, atol=1e-10) # And cycle: dirCos -> gnomic -> spherical = dirCos -> spherical a = np.random.uniform(-0.1, 0.1, size=1000) b = np.random.uniform(-0.1, 0.1, size=1000) c = np.sqrt(1 - a*a - b*b) ph1, th1 = batoid.utils.gnomicToSpherical(*batoid.utils.dirCosToGnomic(a, b, c)) ph2, th2 = batoid.utils.dirCosToSpherical(a, b, c) np.testing.assert_allclose(ph1, ph2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(th1, th2, rtol=1e-10, atol=1e-10) # And reverse direction: gnomic -> dirCos -> spherical = gnomic -> spherical u = np.random.uniform(-0.1, 0.1, size=1000) v = np.random.uniform(-0.1, 0.1, size=1000) ph1, th1 = batoid.utils.dirCosToSpherical(*batoid.utils.gnomicToDirCos(u, v)) ph2, th2 = batoid.utils.gnomicToSpherical(u, v) np.testing.assert_allclose(ph1, ph2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(th1, th2, rtol=1e-10, atol=1e-10) # and cycle: spherical -> gnomic -> dirCos = spherical -> dirCos phi = np.random.uniform(0.0, 0.1, size=1000) theta = np.random.uniform(-np.pi, np.pi, size=1000) a1, b1, c1 = batoid.utils.gnomicToDirCos(*batoid.utils.sphericalToGnomic(phi, theta)) a2, b2, c2 = batoid.utils.sphericalToDirCos(phi, theta) np.testing.assert_allclose(a1, a2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(b1, b2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(c1, c2, rtol=1e-10, atol=1e-10) # and cycle: dirCos -> spherical -> gnomic = dirCos -> gnomic a = np.random.uniform(-0.1, 0.1, size=1000) b = np.random.uniform(-0.1, 0.1, size=1000) c = np.sqrt(1 - a*a - b*b) u1, v1 = batoid.utils.sphericalToGnomic(*batoid.utils.dirCosToSpherical(a, b, c)) u2, v2 = batoid.utils.dirCosToGnomic(a, b, c) np.testing.assert_allclose(u1, u2, rtol=1e-10, atol=1e-10) np.testing.assert_allclose(v1, v2, rtol=1e-10, atol=1e-10) @timer def test_jacobian(): np.random.seed(57721) u = np.random.uniform(-0.1, 0.1, size=1000) v = np.random.uniform(-0.1, 0.1, size=1000) phi, theta = batoid.utils.gnomicToSpherical(u, v) jac1 = batoid.utils.dSphericalDGnomic(u, v) jac2 = batoid.utils.dGnomicDSpherical(phi, theta) # Check that the product of the jacobian and its inverse is the identity matrix np.testing.assert_allclose( np.matmul(np.transpose(jac1, (2,0,1)), np.transpose(jac2, (2,0,1))), np.transpose(np.tile(np.eye(2)[:,:,None], 1000), (2,0,1)), rtol=0, atol=1e-15 ) np.testing.assert_allclose( np.matmul(np.transpose(jac2, (2,0,1)), np.transpose(jac1, (2,0,1))), np.transpose(np.tile(np.eye(2)[:,:,None], 1000), (2,0,1)), rtol=0, atol=1e-15 ) # Check d(u, v)/d(phi, theta) against finite difference du = dv = 1e-8 phi2, theta2 = batoid.utils.gnomicToSpherical(u+du, v) phi3, theta3 = batoid.utils.gnomicToSpherical(u, v+dv) np.testing.assert_allclose( jac1[0,0,:], (phi2-phi)/du, atol=1e-5 ) np.testing.assert_allclose( jac1[0,1,:], (phi3-phi)/du, atol=1e-5 ) np.testing.assert_allclose( jac1[1,0,:], np.sin(phi)*(theta2-theta)/du, atol=1e-5 ) np.testing.assert_allclose( jac1[1,1,:],
np.sin(phi)
numpy.sin
import numpy import xraylib import scipy.constants as codata # needed by bragg_calc from xoppylib.crystals.bragg_preprocessor_file_io import bragg_preprocessor_file_v2_write from dabax.common_tools import f0_xop, f0_xop_with_fractional_charge from dabax.common_tools import bragg_metrictensor, lorentz, atomic_symbols import sys import os import platform from xoppylib.xoppy_util import locations from dabax.dabax_xraylib import DabaxXraylib # # # def bragg_metrictensor(a,b,c,a1,a2,a3,RETURN_REAL_SPACE=0,RETURN_VOLUME=0,HKL=None): """ Returns the metric tensor in the reciprocal space :param a: unit cell a :param b: unit cell b :param c: unit cell c :param a1: unit cell alpha :param a2: unit cell beta :param a3: unit cell gamma :param RETURN_REAL_SPACE: set to 1 for returning metric tensor in real space :param RETURN_VOLUME: set to 1 to return the unit cell volume in Angstroms^3 :param HKL: if !=None, returns the d-spacing for the corresponding [H,K,L] reflection :return: the returned value depends on the keywords used. If RETURN_REAL_SPACE=0,RETURN_VOLUME=0, and HKL=None then retuns the metric tensor in reciprocal space. """ # input cell a,b,c,alpha,beta,gamma; angles in degrees a1 *= numpy.pi / 180.0 a2 *= numpy.pi / 180.0 a3 *= numpy.pi / 180.0 # ; # ; tensor in real space # ; g = numpy.array( [ [a*a, a*b*numpy.cos(a3), a*c*numpy.cos(a2)], \ [a*b*numpy.cos(a3), b*b, b*c*numpy.cos(a1)], \ [a*c*numpy.cos(a2), b*c*numpy.cos(a1), c*c]] ) if RETURN_REAL_SPACE: return g # print("g: ",g) # ; # ; volume of the lattice # ; volume2 = numpy.linalg.det(g) volume = numpy.sqrt(volume2) # print("Volume of unit cell: %g A^3",volume) if RETURN_VOLUME: return volume # ; # ; tensor in reciprocal space # ; ginv =
numpy.linalg.inv(g)
numpy.linalg.inv
import warnings import numpy as np import numpy.testing as npt from dipy.data import get_fnames from dipy.core.gradients import (gradient_table, GradientTable, gradient_table_from_bvals_bvecs, gradient_table_from_qvals_bvecs, gradient_table_from_gradient_strength_bvecs, WATER_GYROMAGNETIC_RATIO, reorient_bvecs, generate_bvecs, check_multi_b) from dipy.io.gradients import read_bvals_bvecs def test_btable_prepare(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(7) bvals[0] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(bt.bvecs, bvecs) # bt.info fimg, fbvals, fbvecs = get_fnames('small_64D') bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) bvecs = np.where(np.isnan(bvecs), 0, bvecs) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(bt.bvecs, bvecs) bt2 = gradient_table(bvals, bvecs.T) npt.assert_array_equal(bt2.bvecs, bvecs) btab = np.concatenate((bvals[:, None], bvecs), axis=1) bt3 = gradient_table(btab) npt.assert_array_equal(bt3.bvecs, bvecs) npt.assert_array_equal(bt3.bvals, bvals) bt4 = gradient_table(btab.T) npt.assert_array_equal(bt4.bvecs, bvecs) npt.assert_array_equal(bt4.bvals, bvals) # Test for proper inputs (expects either bvals/bvecs or 4 by n): npt.assert_raises(ValueError, gradient_table, bvecs) def test_GradientTable(): gradients = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 1], [3, 4, 0], [5, 0, 12]], 'float') expected_bvals = np.array([0, 1, 1, 5, 13]) expected_b0s_mask = expected_bvals == 0 expected_bvecs = gradients / (expected_bvals + expected_b0s_mask)[:, None] gt = GradientTable(gradients, b0_threshold=0) npt.assert_array_almost_equal(gt.bvals, expected_bvals) npt.assert_array_equal(gt.b0s_mask, expected_b0s_mask) npt.assert_array_almost_equal(gt.bvecs, expected_bvecs) npt.assert_array_almost_equal(gt.gradients, gradients) gt = GradientTable(gradients, b0_threshold=1) npt.assert_array_equal(gt.b0s_mask, [1, 1, 1, 0, 0]) npt.assert_array_equal(gt.bvals, expected_bvals) npt.assert_array_equal(gt.bvecs, expected_bvecs) # checks negative values in gtab npt.assert_raises(ValueError, GradientTable, -1) npt.assert_raises(ValueError, GradientTable, np.ones((6, 2))) npt.assert_raises(ValueError, GradientTable, np.ones((6,))) with warnings.catch_warnings(record=True) as w: bad_gt = gradient_table(expected_bvals, expected_bvecs, b0_threshold=200) assert len(w) == 1 def test_gradient_table_from_qvals_bvecs(): qvals = 30. * np.ones(7) big_delta = .03 # pulse separation of 30ms small_delta = 0.01 # pulse duration of 10ms qvals[0] = 0 sq2 = np.sqrt(2) / 2 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) gt = gradient_table_from_qvals_bvecs(qvals, bvecs, big_delta, small_delta) bvals_expected = (qvals * 2 * np.pi) ** 2 * (big_delta - small_delta / 3.) gradient_strength_expected = qvals * 2 * np.pi /\ (small_delta * WATER_GYROMAGNETIC_RATIO) npt.assert_almost_equal(gt.gradient_strength, gradient_strength_expected) npt.assert_almost_equal(gt.bvals, bvals_expected) def test_gradient_table_from_gradient_strength_bvecs(): gradient_strength = .03e-3 * np.ones(7) # clinical strength at 30 mT/m big_delta = .03 # pulse separation of 30ms small_delta = 0.01 # pulse duration of 10ms gradient_strength[0] = 0 sq2 = np.sqrt(2) / 2 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) gt = gradient_table_from_gradient_strength_bvecs(gradient_strength, bvecs, big_delta, small_delta) qvals_expected = (gradient_strength * WATER_GYROMAGNETIC_RATIO * small_delta / (2 * np.pi)) bvals_expected = (qvals_expected * 2 * np.pi) ** 2 *\ (big_delta - small_delta / 3.) npt.assert_almost_equal(gt.qvals, qvals_expected) npt.assert_almost_equal(gt.bvals, bvals_expected) def test_gradient_table_from_bvals_bvecs(): sq2 = np.sqrt(2) / 2 bvals = [0, 1, 2, 3, 4, 5, 6, 0] bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2], [0, 0, 0]]) gt = gradient_table_from_bvals_bvecs(bvals, bvecs, b0_threshold=0) npt.assert_array_equal(gt.bvecs, bvecs) npt.assert_array_equal(gt.bvals, bvals) npt.assert_array_equal(gt.gradients, np.reshape(bvals, (-1, 1)) * bvecs) npt.assert_array_equal(gt.b0s_mask, [1, 0, 0, 0, 0, 0, 0, 1]) # Test nans are replaced by 0 new_bvecs = bvecs.copy() new_bvecs[[0, -1]] = np.nan gt = gradient_table_from_bvals_bvecs(bvals, new_bvecs, b0_threshold=0) npt.assert_array_equal(gt.bvecs, bvecs) # Bvalue > 0 for non-unit vector bad_bvals = [2, 1, 2, 3, 4, 5, 6, 0] npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # num_gard inconsistent bvals, bvecs bad_bvals = np.ones(7) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # negative bvals bad_bvals = [-1, -1, -1, -5, -6, -10] npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # bvals not 1d bad_bvals = np.ones((1, 8)) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # bvec not 2d bad_bvecs = np.ones((1, 8, 3)) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bvals, bad_bvecs, b0_threshold=0.) # bvec not (N, 3) bad_bvecs = np.ones((8, 2)) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bvals, bad_bvecs, b0_threshold=0.) # bvecs not unit vectors bad_bvecs = bvecs * 2 npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bvals, bad_bvecs, b0_threshold=0.) # Test **kargs get passed along gt = gradient_table_from_bvals_bvecs(bvals, bvecs, b0_threshold=0, big_delta=5, small_delta=2) npt.assert_equal(gt.big_delta, 5) npt.assert_equal(gt.small_delta, 2) def test_b0s(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(8) bvals[0] = 0 bvals[7] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2], [0, 0, 0]]) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(np.where(bt.b0s_mask > 0)[0],
np.array([0, 7])
numpy.array
"""Coding Practice #0616.""" import numpy as np import cv2 # 1. Convolutional filtering. # Open an image in B/W (Gray scale) and show it. img = cv2.imread('picture_LenaSoderberg_small.jpg', 0) # Open as a B/W image. cv2.imshow("In Gray Scale", img) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. # 1.1. Applying the Gaussian blur kernel. img_blurred = cv2.GaussianBlur(img, ksize=(5, 5), sigmaX=10, sigmaY=10) cv2.imshow("Blurred", img_blurred) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. # 1.2. Applying the Sharpening kernel. kernel_sharp = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) img_sharp = cv2.filter2D(img, ddepth=-1, kernel=kernel_sharp) # ddepth = -1 => the destination has the same depth as the source image. cv2.imshow("Sharpened", img_sharp) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. # 1.3. Applying the Outline kernel #1. kernel_outline1 =
np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
numpy.array
"""Crowded field photometry pipeline. This module fits positions, fluxes, PSFs, and sky backgrounds of images. Intended usage is: >>> x, y, flux, model, psf = fit_im(im, psf_initial, weight=wim, psfderiv=numpy.gradient(-psf), nskyx=3, nskyy=3, refit_psf=True) which returns the best fit positions (x, y), fluxes (flux), model image (model), and improved psf (psf) to the image im, with an initial psf guess (psf_initial), an inverse-variance image wim, and a variable sky background. See mosaic.py for how to use this on a large image that is too big to be fit entirely simultaneously. """ import numpy import pdb import crowdsource.psf as psfmod import scipy.ndimage.filters as filters from collections import OrderedDict import sys nodeblend_maskbit = 2**30 sharp_maskbit = 2**31 def shift(im, offset, **kw): """Wrapper for scipy.ndimage.interpolation.shift""" from scipy.ndimage.interpolation import shift if 'order' not in kw: kw['order'] = 4 # 1" Gaussian: 60 umag; 0.75": 0.4 mmag; 0.5": 4 mmag # order=3 roughly 5x worse. if 'mode' not in kw: kw['mode'] = 'nearest' if 'output' not in kw: kw['output'] = im.dtype return shift(im, offset, **kw) def sim_image(nx, ny, nstar, psf, noise, nskyx=3, nskyy=3, stampsz=19): im = numpy.random.randn(nx, ny).astype('f4')*noise stampszo2 = stampsz // 2 im = numpy.pad(im, [stampszo2, stampszo2], constant_values=-1e6, mode='constant') x = numpy.random.rand(nstar).astype('f4')*(nx-1) y = numpy.random.rand(nstar).astype('f4')*(ny-1) flux = 1./numpy.random.power(1.0, nstar) for i in range(nstar): stamp = psf(x[i], y[i], stampsz=stampsz) xl = numpy.round(x[i]).astype('i4') yl = numpy.round(y[i]).astype('i4') im[xl:xl+stampsz, yl:yl+stampsz] += stamp*flux[i] if (nskyx != 0) or (nskyy != 0): im += sky_model(100*numpy.random.rand(nskyx, nskyy).astype('f4'), im.shape[0], im.shape[1]) ret = im[stampszo2:-stampszo2, stampszo2:-stampszo2], x, y, flux return ret def significance_image(im, model, isig, psf, sz=19): """Significance of a PSF at each point, without local background fit.""" # assume, for the moment, the image has already been sky-subtracted def convolve(im, kernel): from scipy.signal import fftconvolve return fftconvolve(im, kernel[::-1, ::-1], mode='same') # identical to 1e-8 or so # from scipy.ndimage.filters import convolve # return convolve(im, kernel[::-1, ::-1], mode='nearest') psfstamp = psfmod.central_stamp(psf, sz).copy() sigim = convolve(im*isig**2., psfstamp) varim = convolve(isig**2., psfstamp**2.) modim = convolve(model*isig**2., psfstamp) varim[varim <= 1e-14] = 0. # numerical noise starts to set in around here. ivarim = 1./(varim + (varim == 0) * 1e14) return sigim*numpy.sqrt(ivarim), modim*numpy.sqrt(ivarim) def significance_image_lbs(im, model, isig, psf, sz=19): """Give significance of PSF at each point, with local background fits.""" def convolve(im, kernel): from scipy.signal import fftconvolve return fftconvolve(im, kernel[::-1, ::-1], mode='same') def convolve_flat(im, sz): from scipy.ndimage.filters import convolve filt = numpy.ones(sz, dtype='f4') c1 = convolve(im, filt.reshape(1, -1), mode='constant', origin=0) return convolve(c1, filt.reshape(-1, 1), mode='constant', origin=0) # we need: * convolution of ivar with P^2 # * convolution of ivar with flat # * convolution of ivar with P # * convolution of b*ivar with P # * convolution of b*ivar with flat ivar = isig**2. if sz is None: psfstamp = psfmod.central_stamp(psf).copy() else: psfstamp = psfmod.central_stamp(psf, censize=sz).copy() ivarp2 = convolve(ivar, psfstamp**2.) ivarp2[ivarp2 < 0] = 0. ivarimsimple = 1./(ivarp2 + (ivarp2 == 0) * 1e12) ivarf = convolve_flat(ivar, psfstamp.shape[0]) ivarp = convolve(ivar, psfstamp) bivarp = convolve(im*ivar, psfstamp) bivarf = convolve_flat(im*ivar, psfstamp.shape[0]) atcinvadet = ivarp2*ivarf-ivarp**2. atcinvadet[atcinvadet <= 0] = 1.e-12 ivarf[ivarf <= 0] = 1.e-12 fluxest = (bivarp*ivarf-ivarp*bivarf)/atcinvadet fluxisig = numpy.sqrt(atcinvadet/ivarf) fluxsig = fluxest*fluxisig modim = convolve(model*ivar, psfstamp) return fluxsig, modim*numpy.sqrt(ivarimsimple) def peakfind(im, model, isig, dq, psf, keepsat=False, threshold=5, blendthreshold=0.3, psfvalsharpcutfac=0.7, psfsharpsat=0.7): psfstamp = psf(int(im.shape[0]/2.), int(im.shape[1]/2.), deriv=False, stampsz=59) sigim, modelsigim = significance_image(im, model, isig, psfstamp, sz=59) sig_max = filters.maximum_filter(sigim, 3) x, y = numpy.nonzero((sig_max == sigim) & (sigim > threshold) & (keepsat | (isig > 0))) fluxratio = im[x, y]/numpy.clip(model[x, y], 0.01, numpy.inf) sigratio = (im[x, y]*isig[x, y])/numpy.clip(modelsigim[x, y], 0.01, numpy.inf) sigratio2 = sigim[x, y]/numpy.clip(modelsigim[x, y], 0.01, numpy.inf) keepsatcensrc = keepsat & (isig[x, y] == 0) m = ((isig[x, y] > 0) | keepsatcensrc) # ~saturated, or saturated & keep if dq is not None and numpy.any(dq[x, y] & nodeblend_maskbit): nodeblend = (dq[x, y] & nodeblend_maskbit) != 0 blendthreshold = numpy.ones_like(x)*blendthreshold blendthreshold[nodeblend] = 100 if dq is not None and numpy.any(dq[x, y] & sharp_maskbit): sharp = (dq[x, y] & sharp_maskbit) != 0 msharp = ~sharp | psfvalsharpcut( x, y, sigim, isig, psfstamp, psfvalsharpcutfac=psfvalsharpcutfac, psfsharpsat=psfsharpsat) # keep if not nebulous region or sharp peak. m = m & msharp m = m & ((sigratio2 > blendthreshold*2) | ((fluxratio > blendthreshold) & (sigratio > blendthreshold/4.) & (sigratio2 > blendthreshold))) return x[m], y[m] def psfvalsharpcut(x, y, sigim, isig, psf, psfvalsharpcutfac=0.7, psfsharpsat=0.7): xl = numpy.clip(x-1, 0, sigim.shape[0]-1) xr = numpy.clip(x+1, 0, sigim.shape[0]-1) yl = numpy.clip(y-1, 0, sigim.shape[1]-1) yr = numpy.clip(y+1, 0, sigim.shape[1]-1) # sigim[x, y] should always be >0 from threshold cut. psfval1 = 1-(sigim[xl, y]+sigim[xr, y])/(2*sigim[x, y]) psfval2 = 1-(sigim[x, yl]+sigim[x, yr])/(2*sigim[x, y]) psfval3 = 1-(sigim[xl, yl]+sigim[xr, yr])/(2*sigim[x, y]) psfval4 = 1-(sigim[xl, yr]+sigim[xr, yl])/(2*sigim[x, y]) # in nebulous region, there should be a peak of these around the PSF # size, plus a bunch of diffuse things (psfval ~ 0). from scipy.signal import fftconvolve pp = fftconvolve(psf, psf[::-1, ::-1], mode='same') half = psf.shape[0] // 2 ppcen = pp[half, half] psfval1pp = 1-(pp[half-1, half]+pp[half+1, half])/(2*ppcen) psfval2pp = 1-(pp[half, half-1]+pp[half, half+1])/(2*ppcen) psfval3pp = 1-(pp[half-1, half-1]+pp[half+1, half+1])/(2*ppcen) psfval4pp = 1-(pp[half-1, half+1]+pp[half+1, half-1])/(2*ppcen) fac = psfvalsharpcutfac*(1-psfsharpsat*(isig[x, y] == 0)) # more forgiving if center is masked. res = ((psfval1 > psfval1pp*fac) & (psfval2 > psfval2pp*fac) & (psfval3 > psfval3pp*fac) & (psfval4 > psfval4pp*fac)) return res def build_model(x, y, flux, nx, ny, psf=None, psflist=None, psfderiv=False): if psf is None and psflist is None: raise ValueError('One of psf and psflist must be set') if psf is not None and psflist is not None: raise ValueError('Only one of psf and psflist must be set') if psflist is None: stampsz = 59 psflist = build_psf_list(x, y, psf, stampsz, psfderiv=psfderiv) sz = numpy.ones(len(x), dtype='i4')*stampsz else: sz = numpy.array([tpsf[0].shape[-1] for tpsf in psflist[0]]) if len(sz) > 0: stampsz = numpy.max(sz) else: stampsz = 59 stampszo2 = stampsz//2 im = numpy.zeros((nx, ny), dtype='f4') im = numpy.pad(im, [stampszo2, stampszo2], constant_values=0., mode='constant') xp = numpy.round(x).astype('i4') yp = numpy.round(y).astype('i4') # _subtract_ stampszo2 to move from the center of the PSF to the edge # of the stamp. # _add_ it back to move from the original image to the padded image. xe = xp - sz//2 + stampszo2 ye = yp - sz//2 + stampszo2 repeat = 3 if psfderiv else 1 for i in range(len(x)): for j in range(repeat): im[xe[i]:xe[i]+sz[i], ye[i]:ye[i]+sz[i]] += ( psflist[j][i][:, :]*flux[i*repeat+j]) im = im[stampszo2:-stampszo2, stampszo2:-stampszo2] return im def build_psf_list(x, y, psf, sz, psfderiv=True): """Make a list of PSFs of the right size, hopefully efficiently.""" psflist = {} for tsz in numpy.unique(sz): m = sz == tsz res = psf(x[m], y[m], stampsz=tsz, deriv=psfderiv) if not psfderiv: res = [res] psflist[tsz] = res counts = {tsz: 0 for tsz in numpy.unique(sz)} out = [[] for i in range(3 if psfderiv else 1)] for i in range(len(x)): for j in range(len(out)): out[j].append(psflist[sz[i]][j][counts[sz[i]]]) counts[sz[i]] += 1 return out def in_padded_region(flatcoord, imshape, pad): coord = numpy.unravel_index(flatcoord, imshape) m = numpy.zeros(len(flatcoord), dtype='bool') for c, length in zip(coord, imshape): m |= (c < pad) | (c >= length - pad) return m def fit_once(im, x, y, psfs, weight=None, psfderiv=False, nskyx=0, nskyy=0, guess=None): """Fit fluxes for psfs at x & y in image im. Args: im (ndarray[NX, NY] float): image to fit x (ndarray[NS] float): x coord y (ndarray[NS] float): y coord psf (ndarray[sz, sz] float): psf stamp weight (ndarray[NX, NY] float): weight for image psfderiv (tuple(ndarray[sz, sz] float)): x, y derivatives of psf image nskyx (int): number of sky pixels in x direction (0 or >= 3) nskyy (int): number of sky pixels in y direction (0 or >= 3) Returns: tuple(flux, model, sky) flux: output of optimization routine; needs to be refined model (ndarray[NX, NY]): best fit model image sky (ndarray(NX, NY]): best fit model sky """ # sparse matrix, with rows at first equal to the fluxes at each peak # later add in the derivatives at each peak sz = numpy.array([tpsf[0].shape[-1] for tpsf in psfs[0]]) if len(sz) > 0: stampsz = numpy.max(sz) else: stampsz = 19 stampszo2 = stampsz // 2 szo2 = sz // 2 nx, ny = im.shape pad = stampszo2 + 1 im = numpy.pad(im, [pad, pad], constant_values=0., mode='constant') if weight is None: weight = numpy.ones_like(im) weight = numpy.pad(weight, [pad, pad], constant_values=0., mode='constant') weight[weight == 0.] = 1.e-20 pix = numpy.arange(stampsz*stampsz, dtype='i4').reshape(stampsz, stampsz) # convention: x is the first index, y is the second # sorry. xpix = pix // stampsz ypix = pix % stampsz xp = numpy.round(x).astype('i4') yp = numpy.round(y).astype('i4') # _subtract_ stampszo2 to move from the center of the PSF to the edge # of the stamp. # _add_ pad back to move from the original image to the padded image. xe = xp - stampszo2 + pad ye = yp - stampszo2 + pad repeat = 1 if not psfderiv else 3 nskypar = nskyx * nskyy npixim = im.shape[0]*im.shape[1] xloc = numpy.zeros(repeat*numpy.sum(sz*sz).astype('i4') + nskypar*npixim, dtype='i4') # yloc = numpy.zeros(len(xloc), dtype='i4') # no longer need yloc; csc entries are built directly. values = numpy.zeros(len(xloc), dtype='f4') colnorm = numpy.zeros(len(x)*repeat+nskypar, dtype='f4') first = 0 for i in range(len(xe)): f = stampszo2-szo2[i] l = stampsz - f wt = weight[xe[i]:xe[i]+stampsz, ye[i]:ye[i]+stampsz][f:l, f:l] for j in range(repeat): xloc[first:first+sz[i]**2] = ( numpy.ravel_multi_index(((xe[i]+xpix[f:l, f:l]), (ye[i]+ypix[f:l, f:l])), im.shape)).reshape(-1) # yloc[first:first+sz[i]**2] = i*repeat+j values[first:first+sz[i]**2] = ( (psfs[j][i][:, :]*wt).reshape(-1)) colnorm[i*repeat+j] = numpy.sqrt( numpy.sum(values[first:first+sz[i]**2]**2.)) colnorm[i*repeat+j] += (colnorm[i*repeat+j] == 0) values[first:first+sz[i]**2] /= colnorm[i*repeat+j] first += sz[i]**2 if nskypar != 0: sxloc, syloc, svalues = sky_parameters(nx+pad*2, ny+pad*2, nskyx, nskyy, weight) startidx = len(x)*repeat nskypix = len(sxloc[0]) for i in range(len(sxloc)): xloc[first:first+nskypix] = sxloc[i] # yloc[first:first+nskypix] = startidx+syloc[i] colnorm[startidx+i] = numpy.sqrt(numpy.sum(svalues[i]**2.)) colnorm[startidx+i] += (colnorm[startidx+i] == 0.) values[first:first+nskypix] = svalues[i] / colnorm[startidx+i] first += nskypix shape = (im.shape[0]*im.shape[1], len(x)*repeat+nskypar) from scipy import sparse csc_indptr = numpy.cumsum([sz[i]**2 for i in range(len(x)) for j in range(repeat)]) csc_indptr = numpy.concatenate([[0], csc_indptr]) if nskypar != 0: csc_indptr = numpy.concatenate([csc_indptr, [ csc_indptr[-1] + i*nskypix for i in range(1, nskypar+1)]]) mat = sparse.csc_matrix((values, xloc, csc_indptr), shape=shape, dtype='f4') if guess is not None: # guess is a guess for the fluxes and sky; no derivatives. guessvec = numpy.zeros(len(xe)*repeat+nskypar, dtype='f4') guessvec[0:len(xe)*repeat:repeat] = guess[0:len(xe)] if nskypar > 0: guessvec[-nskypar:] = guess[-nskypar:] guessvec *= colnorm else: guessvec = None flux = lsqr_cp(mat, (im*weight).ravel(), atol=1.e-4, btol=1.e-4, guess=guessvec) model = mat.dot(flux[0]).reshape(*im.shape) flux[0][:] = flux[0][:] / colnorm im = im[pad:-pad, pad:-pad] model = model[pad:-pad, pad:-pad] weight = weight[pad:-pad, pad:-pad] if nskypar != 0: sky = sky_model(flux[0][-nskypar:].reshape(nskyx, nskyy), nx+pad*2, ny+pad*2) sky = sky[pad:-pad, pad:-pad] else: sky = model * 0 model = model / (weight + (weight == 0)) res = (flux, model, sky) return res def unpack_fitpar(guess, nsource, psfderiv): """Extract fluxes and sky parameters from fit parameter vector.""" repeat = 3 if psfderiv else 1 return guess[0:nsource*repeat:repeat], guess[nsource*repeat:] def lsqr_cp(aa, bb, guess=None, **kw): # implement two speed-ups: # 1. "column preconditioning": make sure each column of aa has the same # norm # 2. allow guesses # column preconditioning is important (substantial speedup), and has # been implemented directly in fit_once. # allow guesses: solving Ax = b is the same as solving A(x-x*) = b-Ax*. # => A(dx) = b-Ax*. So we can solve for dx instead, then return dx+x*. # This improves speed if we reduce the tolerance. from scipy.sparse import linalg if guess is not None: bb2 = bb - aa.dot(guess) if 'btol' in kw: fac = numpy.sum(bb**2.)**(0.5)/numpy.sum(bb2**2.)**0.5 kw['btol'] = kw['btol']*numpy.clip(fac, 0.1, 10.) else: bb2 = bb.copy() normbb = numpy.sum(bb2**2.) bb2 /= normbb**(0.5) par = linalg.lsqr(aa, bb2, **kw) # for some reason, everything ends up as double precision after this # or lsmr; lsqr seems to be better # par[0][:] *= norm**(-0.5)*normbb**(0.5) par[0][:] *= normbb**0.5 if guess is not None: par[0][:] += guess par = list(par) par[0] = par[0].astype('f4') par[9] = par[9].astype('f4') return par def compute_centroids(x, y, psflist, flux, im, resid, weight, derivcentroids=False, centroidsize=19): # define c = integral(x * I * P * W) / integral(I * P * W) # x = x/y coordinate, I = isolated stamp, P = PSF model, W = weight # Assuming I ~ P(x-y) for some small offset y and expanding, # integrating by parts gives: # y = 2 / integral(P*P*W) * integral(x*(I-P)*W) # that is the offset we want. # we want to compute the centroids on the image after the other sources # have been subtracted off. # we construct this image by taking the residual image, and then # star-by-star adding the model back. psfs = [numpy.zeros((len(x), centroidsize, centroidsize), dtype='f4') for i in range(len(psflist))] for j in range(len(psflist)): for i in range(len(x)): psfs[j][i, :, :] = psfmod.central_stamp(psflist[j][i], censize=centroidsize) stampsz = psfs[0].shape[-1] stampszo2 = (stampsz-1)//2 dx = numpy.arange(stampsz, dtype='i4')-stampszo2 dx = dx.reshape(-1, 1) dy = dx.copy().reshape(1, -1) xp = numpy.round(x).astype('i4') yp = numpy.round(y).astype('i4') # subtracting to get to the edge of the stamp, adding back to deal with # the padded image. xe = xp - stampszo2 + stampszo2 ye = yp - stampszo2 + stampszo2 resid = numpy.pad(resid, [stampszo2, stampszo2], constant_values=0., mode='constant') weight = numpy.pad(weight, [stampszo2, stampszo2], constant_values=0., mode='constant') im = numpy.pad(im, [stampszo2, stampszo2], constant_values=0., mode='constant') repeat = len(psflist) residst = numpy.array([resid[xe0:xe0+stampsz, ye0:ye0+stampsz] for (xe0, ye0) in zip(xe, ye)]) weightst = numpy.array([weight[xe0:xe0+stampsz, ye0:ye0+stampsz] for (xe0, ye0) in zip(xe, ye)]) psfst = psfs[0] * flux[:len(x)*repeat:repeat].reshape(-1, 1, 1) imst = numpy.array([im[xe0:xe0+stampsz, ye0:ye0+stampsz] for (xe0, ye0) in zip(xe, ye)]) if len(x) == 0: weightst = psfs[0].copy() residst = psfs[0].copy() imst = psfs[0].copy() modelst = psfst.copy() if len(psflist) > 1: modelst += psfs[1]*flux[1:len(x)*repeat:repeat].reshape(-1, 1, 1) modelst += psfs[2]*flux[2:len(x)*repeat:repeat].reshape(-1, 1, 1) cen = [] ppw = numpy.sum(modelst*modelst*weightst, axis=(1, 2)) pp = numpy.sum(modelst*modelst, axis=(1, 2)) for dc in (dx, dy): xrpw = numpy.sum(dc[None, :, :]*residst*modelst*weightst, axis=(1, 2)) xmmpm = numpy.sum(dc[None, :, :]*(modelst-psfst)*modelst, axis=(1, 2)) cen.append(2*xrpw/(ppw + (ppw == 0.))*(ppw != 0.) + 2*xmmpm/(pp + (pp == 0.))*(pp != 0.)) xcen, ycen = cen norm = numpy.sum(modelst, axis=(1, 2)) norm = norm + (norm == 0) psfqf = numpy.sum(modelst*(weightst > 0), axis=(1, 2)) / norm # how should we really be doing this? derivcentroids is the first order # approximation to the right thing. the centroid computation that I do # otherwise should be unbiased but noisier than optimal for significantly # offset peaks. <NAME> (2016) say that I should convolve with the # PSF and interpolate to the brightest point with some polynomial. I # expected this to be slow (convolving thousands of stamps individually # with the PSF each iteration), but the spread_model code worked pretty # well, so this is probably a worthwhile thing to try. if it worked, it # would obviate some of the code mess above, and be optimal, so that # sounds worthwhile. if not derivcentroids: m = psfqf < 0.5 else: m = numpy.ones(len(xcen), dtype='bool') xcen[m] = 0. ycen[m] = 0. if (len(psflist) > 1) and numpy.sum(m) > 0: ind = numpy.flatnonzero(m) # just use the derivative-based centroids for this case. fluxnz = flux[repeat*ind] fluxnz = fluxnz + (fluxnz == 0) xcen[ind] = flux[repeat*ind+1]/fluxnz ycen[ind] = flux[repeat*ind+2]/fluxnz # stamps: 0: neighbor-subtracted images, # 1: images, # 2: psfs with shifts # 3: psfs without shifts res = (xcen, ycen, (modelst+residst, imst, modelst, weightst, psfst)) return res def estimate_sky_background(im): """Find peak of count distribution; pretend this is the sky background.""" # for some reason, I have found this hard to work robustly. Replace with # median at the moment. return numpy.median(im) def sky_im(im, weight=None, npix=20, order=1): """Remove sky from image.""" nbinx, nbiny = (numpy.ceil(sh/1./npix).astype('i4') for sh in im.shape) xg = numpy.linspace(0, im.shape[0], nbinx+1).astype('i4') yg = numpy.linspace(0, im.shape[1], nbiny+1).astype('i4') val = numpy.zeros((nbinx, nbiny), dtype='f4') usedpix = numpy.zeros((nbinx, nbiny), dtype='f4') if weight is None: weight = numpy.ones_like(im, dtype='f4') if numpy.all(weight == 0): return im*0 # annoying! for i in range(nbinx): for j in range(nbiny): use = weight[xg[i]:xg[i+1], yg[j]:yg[j+1]] > 0 usedpix[i, j] = numpy.sum(use) if usedpix[i, j] > 0: val[i, j] = estimate_sky_background( im[xg[i]:xg[i+1], yg[j]:yg[j+1]][use]) val[usedpix < 20] = 0. usedpix[usedpix < 20] = 0. from scipy.ndimage.filters import gaussian_filter count = 0 while numpy.any(usedpix == 0): sig = 0.4 valc = gaussian_filter(val*(usedpix > 0), sig, mode='constant') weightc = gaussian_filter((usedpix != 0).astype('f4'), sig, mode='constant') m = (usedpix == 0) & (weightc > 1.e-10) val[m] = valc[m]/weightc[m] usedpix[m] = 1 count += 1 if count > 100: m = usedpix == 0 val[m] = numpy.median(im) print('Sky estimation failed badly.') break x = numpy.arange(im.shape[0]) y = numpy.arange(im.shape[1]) xc = (xg[:-1]+xg[1:])/2. yc = (yg[:-1]+yg[1:])/2. from scipy.ndimage import map_coordinates xp = numpy.interp(x, xc, numpy.arange(len(xc), dtype='f4')) yp = numpy.interp(y, yc, numpy.arange(len(yc), dtype='f4')) xpa = xp.reshape(-1, 1)*numpy.ones(len(yp)).reshape(1, -1) ypa = yp.reshape(1, -1)*numpy.ones(len(xp)).reshape(-1, 1) coord = [xpa.ravel(), ypa.ravel()] bg = map_coordinates(val, coord, mode='nearest', order=order) bg = bg.reshape(im.shape) return bg def get_sizes(x, y, imbs, weight=None, blist=None): x = numpy.round(x).astype('i4') y = numpy.round(y).astype('i4') peakbright = imbs[x, y] sz = numpy.zeros(len(x), dtype='i4') cutoff = 1000 sz[peakbright > cutoff] = 59 sz[peakbright <= cutoff] = 19 # for the moment... # for very bright things, use a bigger PSF # but if there are too many of these, don't bother. cutoff2 = 20000 if ((numpy.sum(peakbright > cutoff2) < numpy.sum(peakbright > cutoff)/2) or (numpy.sum(peakbright > cutoff) < 100)): sz[peakbright > cutoff2] = 149 else: print('Too many bright sources, using smaller PSF stamp size...') if weight is not None: sz[weight[x, y] == 0] = 149 # saturated/off edge sources get big PSF # sources near listed sources get very big PSF if blist is not None and len(x) > 0: for xb, yb in zip(blist[0], blist[1]): dist2 = (x-xb)**2 + (y-yb)**2 indclose = numpy.argmin(dist2) if dist2[indclose] < 5**2: sz[indclose] = 299 return sz def fit_im_force(im, x, y, psf, weight=None, dq=None, psfderiv=True, nskyx=0, nskyy=0, refit_psf=False, niter=4, blist=None, derivcentroids=False, refit_sky=True, startsky=numpy.nan): repeat = 3 if psfderiv else 1 guessflux = None msky = 0 model = 0 if len(x) == 0: raise ValueError('must force some sources') if derivcentroids and not psfderiv: raise ValueError('derivcentroids only makes sense when psfderiv ' 'is true') for titer in range(niter): for c, s in zip((x, y), im.shape): if numpy.any((c < -0.499) | (c > s-0.501)): c[:] = numpy.clip(c, -0.499, s-0.501) print('Some positions within 0.01 pix of edge of image ' 'clipped back to 0.01 pix inside image.') if (refit_sky and ((titer > 0) or numpy.any(~numpy.isfinite(startsky)))): sky = sky_im(im-model, weight=weight, npix=100) else: sky = startsky sz = get_sizes(x, y, im-sky-msky, weight=weight, blist=blist) minsz = numpy.min(sz) psfs = [numpy.zeros((len(x), minsz, minsz), dtype='f4') for i in range(repeat)] if guessflux is not None: guess = guessflux.copy() else: guess = None # should really only be done once in refit_psf=False case psfsfull = build_psf_list(x, y, psf, sz, psfderiv=psfderiv) # need to package some "tiling" around this eventually, probably? flux, model, msky = fit_once( im-sky, x, y, psfsfull, psfderiv=psfderiv, weight=weight, guess=guess, nskyx=nskyx, nskyy=nskyy) import gc gc.collect() flux = flux[0] skypar = flux[len(x)*repeat:] guessflux = flux[:len(x)*repeat:repeat] for i in range(repeat): psfs[i][...] = [psfmod.central_stamp(psfsfull[i][j], minsz) for j in range(len(psfsfull[i]))] centroids = compute_centroids(x, y, psfs, flux, im-(sky+msky), im-model-sky, weight, derivcentroids=derivcentroids) xcen, ycen, stamps = centroids if refit_psf: psf, x, y = refit_psf_from_stamps(psf, x, y, xcen, ycen, stamps) # we are letting the positions get updated, even when # psfderiv is false, only for the mean shift that # gets introduced when we recentroid all the stars. # we could eliminate this by replacing the above with # psf, _, _ = refit_psf_from_stamps(...) # for WISE at the moment, this should _mostly_ introduce # a mean shift, and potentially also a small subpixel-offset # related shift. if psfderiv: if derivcentroids: maxstep = 1 else: maxstep = 3 dcen = numpy.sqrt(xcen**2 + ycen**2) m = dcen > maxstep xcen[m] /= dcen[m] ycen[m] /= dcen[m] x, y = (numpy.clip(c, -0.499, s-0.501) for c, s in zip((x+xcen, y+ycen), im.shape)) print('Iteration %d, median sky %6.2f' % (titer+1, numpy.median(sky+msky))) stats = compute_stats(x-numpy.round(x), y-numpy.round(y), stamps[0], stamps[2], stamps[3], stamps[1], flux) if dq is not None: stats['flags'] = extract_im(x, y, dq).astype('i4') stats['sky'] = extract_im(x, y, sky+msky).astype('f4') stars = OrderedDict([('x', x), ('y', y), ('flux', flux), ('deltx', xcen), ('delty', ycen)] + [(f, stats[f]) for f in stats]) dtypenames = list(stars.keys()) dtypeformats = [stars[n].dtype for n in dtypenames] dtype = dict(names=dtypenames, formats=dtypeformats) stars = numpy.fromiter(zip(*stars.values()), dtype=dtype, count=len(stars['x'])) res = (stars, model+sky, sky+msky, psf) return res def refit_psf_from_stamps(psf, x, y, xcen, ycen, stamps, name=None, plot=False): # how far the centroids of the model PSFs would # be from (0, 0) if instantiated there # this initial definition includes the known offset (since # we instantiated off a pixel center), and the model offset xe, ye = psfmod.simple_centroid( psfmod.central_stamp(stamps[4], censize=stamps[0].shape[-1])) # now we subtract the known offset xe -= x-numpy.round(x) ye -= y-numpy.round(y) if hasattr(psf, 'fitfun'): psffitfun = psf.fitfun npsf = psffitfun(x, y, xcen+xe, ycen+ye, stamps[0], stamps[1], stamps[2], stamps[3], nkeep=200, name=name, plot=plot) if npsf is not None: npsf.fitfun = psffitfun else: shiftx = xcen + xe + x - numpy.round(x) shifty = ycen + ye + y - numpy.round(y) npsf = find_psf(x, shiftx, y, shifty, stamps[0], stamps[3], stamps[1]) # we removed the centroid offset of the model PSFs; # we need to correct the positions to compensate if npsf is not None: xnew = x + xe ynew = y + ye psf = npsf else: xnew = x ynew = y return psf, xnew, ynew def fit_im(im, psf, weight=None, dq=None, psfderiv=True, nskyx=0, nskyy=0, refit_psf=False, verbose=False, miniter=4, maxiter=10, blist=None, maxstars=40000, derivcentroids=False, ntilex=1, ntiley=1, fewstars=100, threshold=5, ccd=None, plot=False, titer_thresh=2, blendthreshu=2, psfvalsharpcutfac=0.7, psfsharpsat=0.7): if isinstance(weight, int): weight = numpy.ones_like(im)*weight model = numpy.zeros_like(im) xa = numpy.zeros(0, dtype='f4') ya = xa.copy() lsky = numpy.median(im[weight > 0]) hsky = numpy.median(im[weight > 0]) msky = numpy.zeros_like(im) passno = numpy.zeros(0, dtype='i4') guessflux, guesssky = None, None titer = -1 lastiter = -1 skypar = {} # best sky parameters so far. roughfwhm = psfmod.neff_fwhm(psf(im.shape[0]//2, im.shape[1]//2)) roughfwhm = numpy.max([roughfwhm, 3.]) while True: titer += 1 hsky = sky_im(im-model, weight=weight, npix=20) lsky = sky_im(im-model, weight=weight, npix=50*roughfwhm) if titer != lastiter: # in first passes, do not split sources! blendthresh = blendthreshu if titer < titer_thresh else 0.2 xn, yn = peakfind(im-model-hsky, model-msky, weight, dq, psf, keepsat=(titer == 0), blendthreshold=blendthresh, threshold=threshold, psfvalsharpcutfac=psfvalsharpcutfac, psfsharpsat=psfsharpsat) if len(xa) > 0 and len(xn) > 0: keep = neighbor_dist(xn, yn, xa, ya) > 1.5 xn, yn = (c[keep] for c in (xn, yn)) if (titer == 0) and (blist is not None): xnb, ynb = add_bright_stars(xn, yn, blist, im) xn = numpy.concatenate([xn, xnb]).astype('f4') yn = numpy.concatenate([yn, ynb]).astype('f4') xa, ya = (numpy.concatenate([xa, xn]).astype('f4'), numpy.concatenate([ya, yn]).astype('f4')) passno = numpy.concatenate([passno, numpy.zeros(len(xn))+titer]) else: xn, yn = numpy.zeros(0, dtype='f4'), numpy.zeros(0, dtype='f4') if titer != lastiter: if (titer == maxiter-1) or ( (titer >= miniter-1) and (len(xn) < fewstars)) or ( len(xa) > maxstars): lastiter = titer + 1 # we probably don't want the sizes to change very much. hsky certainly # will change a bit from iteration to iteration, though. sz = get_sizes(xa, ya, im-hsky-msky, weight=weight, blist=blist) if guessflux is not None: guess = numpy.concatenate([guessflux, numpy.zeros_like(xn)]) else: guess = None sky = hsky if titer >= 2 else lsky # in final iteration, no longer allow shifting locations; just fit # centroids. tpsfderiv = psfderiv if lastiter != titer else False repeat = 1+tpsfderiv*2 if len(sz) != 0: minsz = numpy.min(sz) else: minsz = 19 psfs = [numpy.zeros((len(xa), minsz, minsz), dtype='f4') for i in range(repeat)] flux = numpy.zeros(len(xa)*repeat, dtype='f4') for (bdxf, bdxl, bdxaf, bdxal, bdyf, bdyl, bdyaf, bdyal) in ( subregions(im.shape, ntilex, ntiley)): mbda = in_bounds(xa, ya, [bdxaf-0.5, bdxal-0.5], [bdyaf-0.5, bdyal-0.5]) mbd = in_bounds(xa, ya, [bdxf-0.5, bdxl-0.5], [bdyf-0.5, bdyl-0.5]) psfsbda = build_psf_list(xa[mbda], ya[mbda], psf, sz[mbda], psfderiv=tpsfderiv) sall = numpy.s_[bdxaf:bdxal, bdyaf:bdyal] spri = numpy.s_[bdxf:bdxl, bdyf:bdyl] dx, dy = bdxal-bdxaf, bdyal-bdyaf sfit = numpy.s_[bdxf-bdxaf:dx+bdxl-bdxal, bdyf-bdyaf:dy+bdyl-bdyal] weightbda = weight[sall] if weight is not None else None guessmbda = guess[mbda] if guess is not None else None guesssky = skypar.get((bdxf, bdyf)) guessmbda = (numpy.concatenate([guessmbda, guesssky]) if guessmbda is not None else None) tflux, tmodel, tmsky = fit_once( im[sall]-sky[sall], xa[mbda]-bdxaf, ya[mbda]-bdyaf, psfsbda, psfderiv=tpsfderiv, weight=weightbda, guess=guessmbda, nskyx=nskyx, nskyy=nskyy) model[spri] = tmodel[sfit] msky[spri] = tmsky[sfit] ind = numpy.flatnonzero(mbd) ind2 = numpy.flatnonzero(mbd[mbda]) for i in range(repeat): flux[ind*repeat+i] = tflux[0][ind2*repeat+i] skypar[(bdxf, bdyf)] = flux[numpy.sum(mbda)*repeat:] for i in range(repeat): if len(ind2) == 0: continue psfs[i][mbd] = [psfmod.central_stamp(psfsbda[i][tind], minsz) for tind in ind2] # try to free memory! Not sure where the circular reference # could be, but this makes a factor of a few difference # in peak memory usage on fields with lots of stars with # large models... del psfsbda import gc gc.collect() centroids = compute_centroids(xa, ya, psfs, flux, im-(sky+msky), im-model-sky, weight, derivcentroids=derivcentroids) xcen, ycen, stamps = centroids if titer == lastiter: stats = compute_stats(xa-
numpy.round(xa)
numpy.round
from torch.utils.data import Dataset import torch import numpy as np import random import torch.nn.functional as F from torchvision import transforms from torchvision.transforms.functional import normalize import PIL from PIL import Image import os from .transform import Compose, RandomCrop, RandomRotation, RandomVerticalFlip,RandomHorizontalFlip from .preprocess import * # from .extract_patches import create_patch_idx class TrainDataset(Dataset): def __init__(self, imgs,masks,fovs,vessels,patches_idx,mode,args): self.imgs = imgs self.masks = masks self.fovs = fovs self.vessels = vessels self.patch_h, self.patch_w = args.train_patch_height, args.train_patch_width self.patches_idx = patches_idx self.inside_FOV = args.inside_FOV self.transforms = None if mode == "train": self.transforms = Compose([ # RandomResize([56,72],[56,72]), RandomCrop((48,48)), # RandomFlip_LR(prob=0.5), # RandomFlip_UD(prob=0.5), # RandomRotate() RandomRotation(10), RandomVerticalFlip(), RandomHorizontalFlip() ]) def __len__(self): return len(self.patches_idx) def __getitem__(self, idx): n, x_center, y_center = self.patches_idx[idx] data = self.imgs[n,:,y_center-int(self.patch_h/2):y_center+int(self.patch_h/2),x_center-int(self.patch_w/2):x_center+int(self.patch_w/2)] mask = self.masks[n,:,y_center-int(self.patch_h/2):y_center+int(self.patch_h/2),x_center-int(self.patch_w/2):x_center+int(self.patch_w/2)] vessel = self.vessels[n, :, y_center - int(self.patch_h / 2):y_center + int(self.patch_h / 2), x_center - int(self.patch_w / 2):x_center + int(self.patch_w / 2)] if self.transforms: data = Image.fromarray((np.squeeze(data)*255.).astype(np.uint8)) mask = Image.fromarray((np.squeeze(mask)*255.).astype(np.uint8)) vessel = Image.fromarray((np.squeeze(vessel)*255.).astype(np.uint8)) data, mask, vessel = self.transforms([data, mask, vessel]) data = np.expand_dims(np.array(data),0) mask = np.expand_dims(np.array(mask),0) vessel = np.expand_dims(np.array(vessel),0) data = data / 255. mask = mask / 255. vessel = vessel / 255. data = torch.from_numpy(data).float() mask = torch.from_numpy(mask).long() vessel = torch.from_numpy(vessel).long() # if self.transforms: # data, mask = self.transforms(data, mask) return data, mask.squeeze(0), vessel.squeeze(0) def data_load(file_path): img_list = [] gt_list = [] fov_list = [] vessel_list = [] with open(file_path, 'r') as file_to_read: while True: lines = file_to_read.readline().strip() # read a line if not lines: break img, gt, fov, vessel = lines.split(' ') img_list.append(img) gt_list.append(gt) fov_list.append(fov) vessel_list.append(vessel) imgs = None groundTruth = None FOVs = None VS = None for i in range(len(img_list)): img = np.asarray(PIL.Image.open(img_list[i])) #0-255 gt = np.asarray( PIL.Image.open(gt_list[i])) # 0,1,2,3,4,5 vs = np.asarray( PIL.Image.open(vessel_list[i])) # 0,255 # import pdb # pdb.set_trace() if len(gt.shape) == 3: gt = gt[:, :, 0] if len(vs.shape) == 3: vs = vs[:, :, 0] fov = np.asarray(PIL.Image.open(fov_list[i])) # 0,255 if len(fov.shape) == 3: fov = fov[:, :, 0] imgs = np.expand_dims(img, 0) if imgs is None else np.concatenate((imgs,
np.expand_dims(img, 0)
numpy.expand_dims
from typing import Tuple, List, Optional import numpy as np from numpy import ndarray from anml.models.interface import TrimmingCompatibleModel from anml.parameter.parameter import Parameter from sfma.data import Data from sfma.models.utils import build_linear_constraint, log_erfc from scipy.special import erfc class MarginalModel(TrimmingCompatibleModel): """Marginal model for stochastic frontier. """ def __init__(self, params: List[Parameter]): super().__init__() self._w = None if not all([isinstance(param, Parameter) for param in params]): raise TypeError("params must be a list of Parameter.") param_names = [param.param_name for param in params] if "eta" not in param_names: raise ValueError("MarginalModel requires parameter eta.") if "gamma" not in param_names: raise ValueError("MarginalModel requires parameter gamma.") if not any(["beta" in x for x in param_names]): raise ValueError("MarginalModel requires parameter beta.") self.params = { param.param_name: param for param in params } # extract constraints information self.lb = np.hstack([self.params[name].lb_fe for name in param_names]) self.ub = np.hstack([self.params[name].ub_fe for name in param_names]) self.C, self.c_lb, self.c_ub = build_linear_constraint([ (self.params[name].constr_matrix_fe, self.params[name].constr_lb_fe, self.params[name].constr_ub_fe) for name in param_names ]) @property def beta_names(self) -> List[str]: betas = [] for key, val in self.params: if "beta" in key: betas.append(key) return betas @property def fevar_size(self) -> int: num_fe = 0 for beta in self.beta_names: num_fe += self.params[beta].num_fe return num_fe @property def revar_size(self) -> int: return self.params["gamma"].num_fe @property def ievar_size(self) -> int: return self.params["eta"].num_fe @property def var_sizes(self) -> List[int]: return [self.fevar_size, self.revar_size, self.ievar_size] @property def var_size(self) -> int: return sum(self.var_sizes) @property def femat(self) -> ndarray: mats = [] for beta in self.beta_names: mats.append(self.params[beta].design_matrix_fe) return np.hstack(mats) @property def remat(self) -> ndarray: return self.params["gamma"].design_matrix_fe @property def iemat(self) -> ndarray: return self.params["eta"].design_matrix_fe def get_vars(self, x: ndarray) -> Tuple[ndarray, ndarray, ndarray]: variables = np.split(x, np.cumsum([self.var_sizes])[:-1]) beta = variables[0] gamma = np.sqrt(variables[1]**2) eta = np.sqrt(variables[2]**2) return beta, gamma, eta @property def w(self): return self._w @w.setter def w(self, weights: np.ndarray): if any(weights < 0. or weights > 1.): raise ValueError("Weights are not between 0 and 1.") self._w = weights # pylint:disable=unbalanced-tuple-unpacking def _objective(self, x: ndarray, data: Data) -> ndarray: """ Objective function """ beta, gamma, eta = self.get_vars(x) r = data.obs - self.femat.dot(beta) v_re = np.sum(self.remat**2*gamma, axis=1) v_ie = np.sum(self.iemat**2*eta, axis=1) v = data.obs_var + v_re + v_ie z = np.sqrt(v_ie)*r/np.sqrt(2.0*v*(data.obs_var + v_re)) return 0.5 * r ** 2 / v + 0.5 * np.log(v) - log_erfc(z) def objective(self, x: ndarray, data: Data) -> float: obj = self._objective(x=x, data=data) if self.w is not None: obj = self.w.dot(obj) return np.mean(obj) def _gradient(self, x: ndarray, data: Data) -> ndarray: beta, gamma, eta = self.get_vars(x) r = data.obs - self.femat.dot(beta) v_re = np.sum(self.remat ** 2 * gamma, axis=1) v_ie = np.sum(self.iemat ** 2 * eta, axis=1) v_roe = data.obs_var + v_re v = data.obs_var + v_re + v_ie z =
np.sqrt(v_ie)
numpy.sqrt
# Copyright 2021 The Commplax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import numpy as np import pandas as pd from scipy import signal, special from commplax import op import matplotlib.pyplot as plt import quantumrandom def randpam(s, n, p=None): a = np.linspace(-s+1, s-1, s) return np.random.choice(a, n, p=p) + 1j * np.random.choice(a, n, p=p) def randqam(s, n, p=None): m = np.int(np.sqrt(s)) a = np.linspace(-m+1, m-1, m, dtype=np.float64) return np.random.choice(a, n, p=p) + 1j * np.random.choice(a, n, p=p) def grayenc_int(x): x = np.asarray(x, dtype=int) return x ^ (x >> 1) def graydec_int(x): x = np.atleast_1d(np.asarray(x, dtype=int)) mask = np.array(x) while mask.any(): I = mask > 0 mask[I] >>= 1 x[I] ^= mask[I] return x def qamgrayenc_int(x, L): """ <NAME>., <NAME>., <NAME>. and <NAME>., 2001. Constellation labeling for linear encoders. IEEE Transactions on Information Theory, 47(6), pp.2417-2431. """ x = np.asarray(x, dtype=int) M = int(np.sqrt(L)) B = int(np.log2(M)) x1 = x // M x2 = x % M return (grayenc_int(x1) << B) + grayenc_int(x2) def qamgraydec_int(x, L): x = np.asarray(x, dtype=int) M = int(np.sqrt(L)) B = int(np.log2(M)) x1 = graydec_int(x >> B) x2 = graydec_int(x % (1 << B)) return x1 * M + x2 def pamdecision(x, L): x = np.asarray(x) y = np.atleast_1d((np.round(x / 2 + 0.5) - 0.5) * 2).astype(int) # apply bounds bd = L - 1 y[y > bd] = bd y[y < -bd] = -bd return y def qamdecision(x, L): x = np.atleast_1d(x) M = int(np.sqrt(L)) if any(np.iscomplex(x)): I = pamdecision(np.real(x), M) Q = pamdecision(np.imag(x), M) y = I + 1j*Q else: # is tuple I = pamdecision(x[0], M) Q = pamdecision(x[1], M) y = (I, Q) return y def qammod(x, L): x = np.asarray(x, dtype=int) M = int(np.sqrt(L)) A = np.linspace(-M+1, M-1, M, dtype=np.float64) C = A[None,:] + 1j*A[::-1, None] d = qamgraydec_int(x, L) return C[d // M, d % M] def qamdemod(x, L): x = np.asarray(x) M = int(np.sqrt(L)) x = qamdecision(x, L) c = ((np.real(x) + M - 1) // 2).astype(int) r = ((M - 1 - np.imag(x)) // 2).astype(int) d = qamgrayenc_int(r * M + c, L) return d def int2bit(d, M): M = np.asarray(M, dtype=np.int) d = np.atleast_1d(d).astype(np.uint8) b = np.unpackbits(d[:,None], axis=1)[:,-M:] return b def bit2int(b, M): b = np.asarray(b, dtype=np.uint8) d = np.packbits(np.pad(b.reshape((-1,M)), ((0,0),(8-M,0)))) return d def grayqamplot(L): M = int(np.sqrt(L)) x = range(L) y = qammod(x, L) fstr = "{:0" + str(M) + "b}" I = np.real(y) Q =
np.imag(y)
numpy.imag
# -*- coding: utf-8 -*- """ Created on Tue Jul 3 13:28:53 2018 @author: badat """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np from sklearn.metrics import average_precision_score,f1_score,precision_score,recall_score import pandas as pd import pdb #%% def get_compress_type(file_name): compression_type = '' if 'ZLIB' in file_name: compression_type = 'ZLIB' elif 'GZIP' in file_name: compression_type = 'GZIP' return compression_type def compute_AP(predictions,labels): num_class = predictions.shape[1] ap=np.zeros(num_class) ap_pascal = np.zeros(num_class) for idx_cls in range(num_class): prediction = np.squeeze(predictions[:,idx_cls]) label = np.squeeze(labels[:,idx_cls]) # mask = np.abs(label)==1 # if np.sum(label>0)==0: # continue binary_label=np.clip(label,0,1) ap[idx_cls]=average_precision_score(binary_label,prediction)#average_precision_score(binary_label,prediction[mask]) ap_pascal[idx_cls]=calc_pr_ovr_noref(binary_label,prediction)[-1] return ap,ap_pascal def evaluate(iterator,tensors,features,logits,sess,is_train=None): if is_train is not None: print('switch to inference model') sess.run(is_train.assign(False)) sess.run(iterator.initializer) predictions = [] labels = [] while True: try: img_ids_v,features_v,labels_v = sess.run(tensors) feed_dict = {features:features_v} logits_v = sess.run(logits, feed_dict) predictions.append(logits_v) labels.append(labels_v) except tf.errors.OutOfRangeError: print('end') break predictions = np.concatenate(predictions) labels = np.concatenate(labels) assert predictions.shape==labels.shape,'invalid shape' if is_train is not None: sess.run(is_train.assign(True)) return compute_AP(predictions,labels) def evaluate_latent_noise(iterator,tensors,features,logits,sess,is_train=None): if is_train is not None: print('switch to inference model') sess.run(is_train.assign(False)) sess.run(iterator.initializer) v_predictions = [] h_predictions = [] labels = [] while True: try: img_ids_v,features_v,labels_v = sess.run(tensors) feed_dict = {features:features_v} logits_v = sess.run(logits, feed_dict) v_predictions.append(logits_v[0]) h_predictions.append(logits_v[1]) labels.append(labels_v) except tf.errors.OutOfRangeError: print('end') break v_predictions = np.concatenate(v_predictions) h_predictions = np.concatenate(h_predictions) labels = np.concatenate(labels) assert v_predictions.shape==labels.shape,'invalid shape' if is_train is not None: sess.run(is_train.assign(True)) ap_v,ap_v_pascal = compute_AP(v_predictions,labels) ap_h,ap_h_pascal = compute_AP(h_predictions,labels) return ap_v,ap_v_pascal,ap_h,ap_h_pascal #%% def calc_pr_ovr_noref(counts, out): """ [P, R, score, ap] = calc_pr_ovr(counts, out, K) Input : counts : number of occurrences of this word in the ith image out : score for this image K : number of references Output : P, R : precision and recall score : score which corresponds to the particular precision and recall ap : average precision """ #binarize counts counts = np.array(counts > 0, dtype=np.float32); tog = np.hstack((counts[:,np.newaxis].astype(np.float64), out[:, np.newaxis].astype(np.float64))) ind = np.argsort(out) ind = ind[::-1] score = np.array([tog[i,1] for i in ind]) sortcounts = np.array([tog[i,0] for i in ind]) tp = sortcounts; fp = sortcounts.copy(); for i in range(sortcounts.shape[0]): if sortcounts[i] >= 1: fp[i] = 0.; elif sortcounts[i] < 1: fp[i] = 1.; P = np.cumsum(tp)/(np.cumsum(tp) + np.cumsum(fp)); numinst = np.sum(counts); R = np.cumsum(tp)/numinst ap = voc_ap(R,P) return P, R, score, ap def voc_ap(rec, prec): """ ap = voc_ap(rec, prec) Computes the AP under the precision recall curve. """ rec = rec.reshape(rec.size,1); prec = prec.reshape(prec.size,1) z = np.zeros((1,1)); o = np.ones((1,1)); mrec = np.vstack((z, rec, o)) mpre = np.vstack((z, prec, z)) for i in range(len(mpre)-2, -1, -1): mpre[i] = max(mpre[i], mpre[i+1]) I = np.where(mrec[1:] != mrec[0:-1])[0]+1; ap = 0; for i in I: ap = ap + (mrec[i] - mrec[i-1])*mpre[i]; return ap #%% def count_records(file_name): c = 0 for record in tf.python_io.tf_record_iterator(file_name): c += 1 return c def preprocessing_graph(G): np.fill_diagonal(G,1) for idx_col in range(G.shape[1]): normalizer = np.sum(G[:,idx_col]) G[:,idx_col] = G[:,idx_col]*1.0/normalizer return G def generate_missing_signature(attributes,fractions): n_attr = attributes.shape[1] n_sample = attributes.shape[0] Masks = np.zeros((attributes.shape[0],attributes.shape[1],len(fractions)),dtype=np.float32) for idx_f in range(len(fractions)): select_fraction = fractions[idx_f] for idx_a in range(n_attr): sub_l = np.zeros(n_sample) attr = attributes[:,idx_a] pos_idx=np.where(attr>0)[0] n_pos =len(pos_idx) if n_pos > 0: n_sub_pos = max(int(n_pos*select_fraction),1) sub_pos_idx = np.random.choice(pos_idx,n_sub_pos,False) sub_l[sub_pos_idx]=attr[sub_pos_idx] neg_idx=np.where(attr<0)[0] n_neg = len(neg_idx) if n_neg > 0: n_sub_neg = max(int(n_neg*select_fraction),1) sub_neg_idx = np.random.choice(neg_idx,n_sub_neg,False) sub_l[sub_neg_idx]=attr[sub_neg_idx] Masks[:,idx_a,idx_f]=sub_l return Masks #%% label mapping function def LoadLabelMap(attr_name_file, class_name_file): attr_name = [] class_name = [] with open(attr_name_file,"r") as f: lines=f.readlines() for line in lines: idx,name=line.rstrip('\n').split(' ') attr_name.append(name) with open(class_name_file,"r") as f: lines=f.readlines() for line in lines: idx,name=line.rstrip('\n').split(' ') class_name.append(name) return attr_name,class_name def LoadClassSignature(class_signature_file): signatures = [] with open(class_signature_file,"r") as f: lines=f.readlines() for line in lines: attrs=line.rstrip('\n').split(' ') signatures.append(attrs) return np.array(signatures).astype(np.float32)/100 def quantizeSignature_mean(signatures): signatures_q = np.ones(signatures.shape)*-1 signatures_m = np.mean(signatures,axis=0) signatures_s_m = signatures-signatures_m[np.newaxis,:] signatures_q[signatures_s_m>=0]=1 signatures_q[signatures_s_m<0]=0 return signatures_q def quantizeSignature(signatures): signatures_q = np.ones(signatures.shape)*-1 signatures_q[signatures>=0.5]=1 signatures_q[signatures<0.5]=0 return signatures_q def quantizeSignature_0(signatures): signatures_q = np.ones(signatures.shape)*-1 signatures_q[signatures>0]=1 signatures_q[signatures<=0]=0 return signatures_q def DAP(sigmoid_Predictions,signatures_q,signatures): n = sigmoid_Predictions.shape[0] T = signatures_q[:,:,np.newaxis]*np.ones((1,1,n)) prior = np.mean(signatures_q,0) # eliminate degenerative prior prior[prior==0]=0.5 prior[prior==1]=0.5 # clss_prior = np.multiply(signatures_q,prior)+np.multiply(1-signatures_q,1-prior) log_clss_prior = np.sum(np.log(clss_prior),1) # P_T = sigmoid_Predictions[:,:,np.newaxis].T Inter = np.multiply(T,P_T)+np.multiply(1-T,1-P_T) Score=np.sum(np.log(Inter),axis=1) # calibrate prior Score_calibrate = Score - log_clss_prior[:,np.newaxis] return Score_calibrate #def DAP_sum(Predictions,signatures_q,signatures): # n = Predictions.shape[0] # T = signatures_q[:,:,np.newaxis]*np.ones((1,1,n)) # prior = np.mean(signatures_q,0) # # eliminate degenerative prior # prior[prior==0]=0.5 # prior[prior==1]=0.5 # # # clss_prior = np.multiply(signatures_q,prior)+np.multiply(1-signatures_q,1-prior) # clss_prior = np.sum(clss_prior,1) # # # P_T = Predictions[:,:,np.newaxis].T # Inter = np.multiply(T,P_T)+np.multiply(1-T,1-P_T) # Score=np.sum(Inter,axis=1) # # calibrate prior # Score_calibrate = Score / clss_prior[:,np.newaxis] # # return Score_calibrate def mean_acc(pred,true): clss = np.unique(true) acc = np.ones(len(clss))*-1 for idx_c,c in enumerate(clss): pred_clss = pred[true==c] acc[idx_c] = np.sum(pred_clss==c)*1.0/len(pred_clss) return acc def zeroshot_evaluation(Score_calibrate,t_labels,seen,unseen,mode = 'mean_acc'): t_labels = np.squeeze(t_labels) seen_tst_set = np.array([idx_s for idx_s in range(len(t_labels)) if t_labels[idx_s] in seen]) unseen_tst_set = np.array([idx_s for idx_s in range(len(t_labels)) if t_labels[idx_s] in unseen]) unconsider_class = np.array([idx_c for idx_c in range(Score_calibrate.shape[1]) if (idx_c not in seen) and (idx_c not in unseen)]) acc_u_u=-1 acc_u_a=-1 acc_s_s=-1 acc_s_a=-1 # for idx_c in unseen: # print(np.sum(t_labels==idx_c)) # pdb.set_trace() if len(unconsider_class)>0: print('-'*30) print('detect unconsider class: ',unconsider_class.shape) print('-'*30) Score_calibrate[:,unconsider_class] = -1000 if len(unseen_tst_set)>0: #u->a Score_calibrate_u_a = Score_calibrate[unseen_tst_set,:] clss_u_a = np.argmax(Score_calibrate_u_a,1) if mode == 'mean_acc': acc_u_a = np.mean(mean_acc(clss_u_a,t_labels[unseen_tst_set]))# else: acc_u_a = np.sum((clss_u_a-t_labels[unseen_tst_set])==0)*1.0/len(unseen_tst_set) #u->u Score_calibrate_u_u = Score_calibrate_u_a[:,unseen] clss_u_u = np.argmax(Score_calibrate_u_u,1) clss_u_u=np.array([unseen[l] for l in clss_u_u]) if mode == 'mean_acc': acc_u_u = np.mean(mean_acc(clss_u_u,t_labels[unseen_tst_set]))## else: acc_u_u = np.sum((clss_u_u-t_labels[unseen_tst_set])==0)*1.0/len(unseen_tst_set) if len(seen_tst_set)>0: #s->a Score_calibrate_s_a = Score_calibrate[seen_tst_set,:] clss_s_a = np.argmax(Score_calibrate_s_a,1) if mode == 'mean_acc': acc_s_a = np.mean(mean_acc(clss_s_a,t_labels[seen_tst_set]))# else: acc_s_a = np.sum((clss_s_a-t_labels[seen_tst_set])==0)*1.0/len(seen_tst_set) #s->s Score_calibrate_s_s = Score_calibrate_s_a[:,seen] clss_s_s = np.argmax(Score_calibrate_s_s,1) clss_s_s=np.array([seen[l] for l in clss_s_s]) if mode == 'mean_acc': acc_s_s = np.mean(mean_acc(clss_s_s,t_labels[seen_tst_set]))# else: acc_s_s =np.sum((clss_s_s-t_labels[seen_tst_set])==0)*1.0/len(seen_tst_set) return acc_u_u,acc_u_a,acc_s_s,acc_s_a #%% def signature_completion(Label_completion_v,sparse_dict_label_v,signature_q,quantization): unique_labels = np.unique(sparse_dict_label_v) signature_comp=np.zeros(signature_q.shape) for l in unique_labels: mask_l = sparse_dict_label_v == l signature_comp[l,:]=np.mean(Label_completion_v[mask_l,:],0) if quantization: raise Exception('not implemented') # signature_comp[signature_comp>0]=1 # signature_comp[signature_comp<0]=-1 return signature_comp def evaluate_completion(signature_comp,signature_q,quantization): mask_comp = np.sum(np.abs(signature_comp),1)!=0 if quantization: return
np.sum((signature_comp!=signature_q)[mask_comp,:],1)
numpy.sum
#!/user/bin/env python # -*- coding:utf-8 -*- import cv2 import numpy as np def gaussianFilter(img): height, width = img.shape # 1.对图像进行填充,填充后的图像尺寸为(2M*2N) p = 2 * height q = 2 * width fillimg = np.zeros((p, q), np.float) midimg =
np.zeros((p, q), np.float)
numpy.zeros
from deap import base from deap import creator from deap import tools from deap import algorithms from deap import gp import numpy as np import random from operator import attrgetter import parameters import sys # # ============================================================================= # # Fixed parameters # # ============================================================================= RANDOM_SEED = parameters.RANDOM_SEED POPULATION_SIZE = parameters.POPULATION_SIZE MAX_TIME_HORIZON = parameters.MAX_TIME_HORIZON MUTATION_RATE = parameters.MUTATION_RATE MAX_GENERATIONS = parameters.MAX_GENERATIONS CROSSOVER_RATE = parameters.CROSSOVER_RATE MIN_TIME_HORIZON = parameters.MIN_TIME_HORIZON INITIAL_PRICE = parameters.INITIAL_PRICE TOURNAMENT_SIZE = parameters.TOURNAMENT_SIZE INITIAL_ASSETS = parameters.INITIAL_ASSETS INITIAL_CASH = parameters.INITIAL_CASH MIN_VALUATION = parameters.MIN_VALUATION MAX_VALUATION = parameters.MAX_VALUATION PROBA_TF = parameters.PROBA_TF PROBA_VI = parameters.PROBA_VI toolbox = base.Toolbox() # Create the fitness object creator.create("fitness_strategy", base.Fitness, weights=(1.0,)) # Create the individual object creator.create("individual", list, typecode="d", fitness=creator.fitness_strategy) # Create the individual list toolbox.register( "generate_tf_strategy", random.randint, MIN_TIME_HORIZON, MAX_TIME_HORIZON ) toolbox.register("generate_wealth", random.randint, 0, 0) toolbox.register("generate_cash", random.randint, INITIAL_CASH, INITIAL_CASH) toolbox.register("generate_asset", random.randint, INITIAL_ASSETS, INITIAL_ASSETS) toolbox.register("generate_loan", random.randint, 0, 0) toolbox.register("generate_trading_signal", random.randint, 0, 0) toolbox.register("generate_excess_demand", random.randint, 0, 0) toolbox.register("generate_profit", random.randint, 0, 0) toolbox.register("generate_ema", random.randint, 0, 0) toolbox.register("generate_margin", random.randint, 0, 0) toolbox.register( "generate_tf_individual", tools.initCycle, creator.individual, ( toolbox.generate_tf_strategy, toolbox.generate_wealth, toolbox.generate_cash, toolbox.generate_asset, toolbox.generate_loan, toolbox.generate_trading_signal, toolbox.generate_excess_demand, toolbox.generate_profit, toolbox.generate_ema, toolbox.generate_margin, ), n=1, ) toolbox.register( "tf_population_creation", tools.initRepeat, list, toolbox.generate_tf_individual ) toolbox.register( "generate_tf_individual2", tools.initCycle, creator.individual, (toolbox.generate_tf_strategy), n=1, ) toolbox.register( "tf_population_creation2", tools.initRepeat, list, toolbox.generate_tf_individual2 ) toolbox.register("generate_no_asset", random.randint, 0, 0) toolbox.register( "generate_hyper_tf_individual", tools.initCycle, creator.individual, ( toolbox.generate_tf_strategy, toolbox.generate_wealth, toolbox.generate_cash, toolbox.generate_no_asset, toolbox.generate_loan, toolbox.generate_trading_signal, toolbox.generate_excess_demand, toolbox.generate_profit, toolbox.generate_ema, toolbox.generate_margin, ), n=1, ) toolbox.register( "generate_hyper_tf_individual2", tools.initRepeat, creator.individual, toolbox.generate_tf_strategy, n=1, ) toolbox.register("generate_vi_strategy", random.randint, MIN_VALUATION, MAX_VALUATION) toolbox.register( "generate_vi_individual", tools.initCycle, creator.individual, ( toolbox.generate_vi_strategy, toolbox.generate_wealth, toolbox.generate_cash, toolbox.generate_asset, toolbox.generate_loan, toolbox.generate_trading_signal, toolbox.generate_excess_demand, toolbox.generate_profit, toolbox.generate_ema, toolbox.generate_margin, ), n=1, ) toolbox.register( "vi_population_creation", tools.initRepeat, list, toolbox.generate_vi_individual ) toolbox.register( "generate_vi_individual2", tools.initCycle, creator.individual, (toolbox.generate_vi_strategy), n=1, ) toolbox.register( "vi_population_creation2", tools.initRepeat, list, toolbox.generate_vi_individual2 ) toolbox.register( "generate_hyper_vi_individual", tools.initCycle, creator.individual, ( toolbox.generate_vi_strategy, toolbox.generate_wealth, toolbox.generate_cash, toolbox.generate_no_asset, toolbox.generate_loan, toolbox.generate_trading_signal, toolbox.generate_excess_demand, toolbox.generate_profit, toolbox.generate_ema, toolbox.generate_margin, ), n=1, ) toolbox.register( "generate_hyper_vi_individual2", tools.initRepeat, creator.individual, toolbox.generate_vi_strategy, n=1, ) def determine_mixed_strategy(PROBA_TF, PROBA_VI): global types rd = random.random() if rd <= PROBA_TF: types = np.vstack((types, "TF")) return toolbox.generate_tf_strategy() elif rd > PROBA_TF and rd <= PROBA_TF + PROBA_VI: types = np.vstack((types, "VI")) return toolbox.generate_vi_strategy() toolbox.register("generate_mix_strategy", determine_mixed_strategy, PROBA_TF, PROBA_VI) def create_mixed_population(POPULATION_SIZE, PROBA_TF, PROBA_VI): global types types = np.array(["NA"]) def determine_mixed_strategy(PROBA_TF, PROBA_VI): global types rd = random.random() if rd <= PROBA_TF: types = np.vstack((types, "TF")) return toolbox.generate_tf_strategy() elif rd > PROBA_TF and rd <= PROBA_TF + PROBA_VI: types = np.vstack((types, "VI")) return toolbox.generate_vi_strategy() toolbox.register( "generate_mix_strategy", determine_mixed_strategy, PROBA_TF, PROBA_VI ) # toolbox.register("generate_mix_individual", tools.initCycle, creator.individual, # (toolbox.generate_mix_strategy, toolbox.generate_wealth, # toolbox.generate_cash, toolbox.generate_asset, # toolbox.generate_loan, toolbox.generate_trading_signal, # toolbox.generate_excess_demand,toolbox.generate_profit, # toolbox.generate_ema, toolbox.generate_margin), n=1) toolbox.register( "generate_mix_individual", tools.initRepeat, creator.individual, toolbox.generate_mix_strategy, n=1, ) toolbox.register( "mix_population_creation", tools.initRepeat, list, toolbox.generate_mix_individual, ) pop = toolbox.mix_population_creation(n=POPULATION_SIZE) return pop, types toolbox.register( "generate_hyper_mix_individual", tools.initCycle, creator.individual, ( toolbox.generate_mix_strategy, toolbox.generate_wealth, toolbox.generate_cash, toolbox.generate_no_asset, toolbox.generate_loan, toolbox.generate_trading_signal, toolbox.generate_excess_demand, toolbox.generate_profit, toolbox.generate_ema, toolbox.generate_margin, ), n=1, ) """ TO REMOVE """ # Fitness definition def ema_fitness(individual): return (individual[8],) toolbox.register("evaluate", ema_fitness) # Fitness definition def ema_fitness2(balance_sheet, index_list): # print("ema_fitnss2") fit_vec = [] for i in index_list: fit_vec.append(balance_sheet[i, 7]) # print(fit_vec) # return balance_sheet[index_list,7] return (fit_vec,) toolbox.register("evaluate2", ema_fitness2) def set_fitness(population, balance_sheet): for i in range(len(population)): print("i " + str(i)) population[i].fitness = balance_sheet[i, 7] def fitness_for_all(population, balance_sheet): index_list = [] for i in range(len(population)): index_list.append(i) # print(invalid_index_list) # freshIndividuals = [ind for ind in population] freshFitnessValues = ema_fitness2(balance_sheet, index_list) # print("fresh fitness values ") # print(freshFitnessValues) for individual, fitnessValue in zip(population, freshFitnessValues): individual.fitness.values = fitnessValue # for i in range(len(population)): # population[i].fitness.values = fitnessValue[i] print("Fitness value") print(fitnessValue) fitnessValues = fitnessValue.copy() return fitnessValues # Function to recompute fitness of invalid individuals def fitness_for_invalid(offspring): freshIndividuals = [ind for ind in offspring if not ind.fitness.valid] # print(freshIndividuals) # print(type(freshIndividuals)) freshFitnessValues = list(map(toolbox.evaluate, freshIndividuals)) # print(freshFitnessValues) for individual, fitnessValue in zip(freshIndividuals, freshFitnessValues): individual.fitness.values = fitnessValue # Function to recompute fitness of invalid individuals using balance sheet def fitness_for_invalid2(population, balance_sheet): invalid_index_list = [] for i in range(len(population)): if not population[i].fitness.valid: invalid_index_list.append(i) # print("invalid index list") # print(invalid_index_list) #this works freshIndividuals = [ind for ind in population if not ind.fitness.valid] # freshFitnessValues = list(map(toolbox.evaluate2, balance_sheet, invalid_index_list)) freshFitnessValues = ema_fitness2(balance_sheet, invalid_index_list) print(freshFitnessValues) for individual, fitnessValue in zip(freshIndividuals, freshFitnessValues): individual.fitness.values = fitnessValue # Creating our own crossover operator: def feasible_crossover(ind1, ind2, CROSSOVER_RATE): if random.random() < CROSSOVER_RATE: upperb = max(ind1, ind2)[0] lowerb = min(ind1, ind2)[0] ind1[0] = random.randint(lowerb, upperb) ind2[0] = random.randint(lowerb, upperb) return ind1[0], ind2[0] toolbox.register("feasible_crossover", feasible_crossover) toolbox.register("mate", toolbox.feasible_crossover) # Creating our own mutation operator def mutate_both_ways(ind): if random.random() < 0.5: ind[0] -= 1 else: ind[0] += 1 def feasible_mutation(ind, MUTATION_RATE): if random.random() < MUTATION_RATE: if ind[0] == MAX_TIME_HORIZON: # we can only mutate lower ind[0] -= 1 elif ind[0] == 1: # we can only mutate higher ind[0] += 1 else: mutate_both_ways(ind) # we can mutate lower or higher return ind toolbox.register("feasible_mutation", feasible_mutation) toolbox.register("mutate", toolbox.feasible_mutation) def random_decimal(low, high): # number = float(random.randint(low*1000, high*1000))/1000 global number if low >= 0 and high >= 0: number = float(random.randint(round(low * 1000), round(high * 1000)) / 1000) if low < 0 and high < 0: number = -float(random.randint(round(-low * 1000), round(-high * 1000)) / 1000) return number def selRandom(individuals, k): return [random.choice(individuals) for i in range(k)] # Creation of our customised selection operator (outnrament) that handles positive & negative fitness values def selTournament(individuals, k, tournsize, fit_attr="fitness"): chosen = [] for i in range(k): chosen_i = [] aspirants = selRandom(individuals, tournsize - 1) aspirants.append(individuals[i]) chosen_i = max(aspirants, key=attrgetter(fit_attr)) chosen_i[1:10] = individuals[i][1:10] chosen.append(chosen_i) return chosen toolbox.register("selTournament", selTournament) toolbox.register("select", toolbox.selTournament) """ TO REMOVE """ # Define the hypermutation (insolvency) parameter round_replacements = 0 def hypermutate(pop): pop_temp = list(map(toolbox.clone, pop)) round_replacements = 0 for i in range(0, len(pop_temp)): # if pop_temp[i][1] + pop_temp[i][9] <= 0: if pop_temp[i][1] <= 0: pop_temp[i] = toolbox.generate_hyper_tf_individual() del pop_temp[i].fitness.values # global round_replacements round_replacements += 1 pop[:] = pop_temp return pop, round_replacements toolbox.register("hypermutate", hypermutate) # Define the hypermutation (insolvency) parameter def hypermutate2(pop_ex, pop_op, types, balance_sheet, mode): types_temp = np.copy(types) balance_sheet_temp = np.copy(balance_sheet) pop_ex_temp = pop_ex.copy() pop_op_temp = pop_op.copy() if mode == "extended": PROBA_TF = parameters.PROBA_TF PROBA_VI = parameters.PROBA_VI PROBA_GP = 0 if mode == "open": PROBA_GP = 1 PROBA_TF = 0 PROBA_VI = 0 if mode == "combined": PROBA_GP = parameters.PROBA_GP PROBA_TF = parameters.PROBA_TF PROBA_VI = parameters.PROBA_VI round_replacements = 0 """ Hypermutate pop_ex """ for i in range(0, POPULATION_SIZE): if balance_sheet[i][0] <= 0: # print("i = " + str(i)) """Agent is insolvent. Delete""" if i < len(pop_ex): # del pop_ex_temp[i].fitness.values del pop_ex_temp[i].fitness del pop_ex_temp[i] elif i >= len(pop_ex): del pop_op_temp[i - len(pop_ex)].fitness.values del pop_op_temp[i - len(pop_ex)] balance_sheet_temp = np.delete(balance_sheet_temp, (i), axis=0) types_temp = np.delete(types_temp, (i), axis=0) """ Replace """ ind_bs = np.array([0, INITIAL_CASH, INITIAL_ASSETS, 0, 0, 0, 0, 0, 0]) balance_sheet_temp = np.vstack((balance_sheet_temp, ind_bs)) # Draw the type to choose what pop and type to append if PROBA_GP == 1: """The incoming agent is of type GP""" # add = gp.create-population(.POPULATIOn_SIZE...) # pop_op_temp.append(add) types_temp = np.vstack((types_temp, "GP")) round_replacements += 1 elif PROBA_TF == 1: """The incoming agent is of type TF""" pop_ex_temp.append(toolbox.generate_hyper_tf_individual2()) types_temp = np.vstack((types_temp, "TF")) round_replacements += 1 elif PROBA_VI == 1: """The incoming agent is of type VI""" pop_ex_temp.append(toolbox.generate_hyper_vi_individual2()) types_temp = np.vstack((types_temp, "VI")) round_replacements += 1 else: rd = random.uniform(0, PROBA_TF + PROBA_VI + PROBA_GP) if rd <= PROBA_TF: types_temp = np.vstack((types_temp, "TF")) round_replacements += 1 pop_ex_temp.append(toolbox.generate_hyper_tf_individual2()) elif rd > PROBA_TF and rd <= PROBA_TF + PROBA_VI: types_temp = np.vstack((types_temp, "VI")) round_replacements += 1 pop_ex_temp.append(toolbox.generate_hyper_vi_individual2()) elif rd > PROBA_TF + PROBA_VI: # add = gp.create-population(.POPULATIOn_SIZE...) # pop_op_temp.append(add) types_temp =
np.vstack((types_temp, "GP"))
numpy.vstack
import pandas as pd import numpy as np df_simple = pd.DataFrame(np.arange(12).reshape(3, 4)) print(df_simple) # 0 1 2 3 # 0 0 1 2 3 # 1 4 5 6 7 # 2 8 9 10 11 print(df_simple.values) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(type(df_simple.values)) # <class 'numpy.ndarray'> print(df_simple.columns) # RangeIndex(start=0, stop=4, step=1) print(type(df_simple.columns)) # <class 'pandas.core.indexes.range.RangeIndex'> print(df_simple.index) # RangeIndex(start=0, stop=3, step=1) print(type(df_simple.index)) # <class 'pandas.core.indexes.range.RangeIndex'> print(list(df_simple.columns)) # [0, 1, 2, 3] print(type(list(df_simple.columns))) # <class 'list'> print(df_simple.columns.tolist()) # [0, 1, 2, 3] print(type(df_simple.columns.tolist())) # <class 'list'> df = pd.DataFrame(
np.arange(12)
numpy.arange
from __future__ import division, absolute_import, print_function import numpy as np try: from scipy.spatial import cKDTree, KDTree, SphericalVoronoi, distance except ImportError: pass from .common import Benchmark class Build(Benchmark): params = [ [(3,10000,1000), (8,10000,1000), (16,10000,1000)], ['KDTree', 'cKDTree'], ] param_names = ['(m, n, r)', 'class'] def setup(self, mnr, cls_name): self.cls = KDTree if cls_name == 'KDTree' else cKDTree m, n, r = mnr np.random.seed(1234) self.data = np.concatenate((np.random.randn(n//2,m), np.random.randn(n-n//2,m)+np.ones(m))) self.queries = np.concatenate((np.random.randn(r//2,m), np.random.randn(r-r//2,m)+np.ones(m))) def time_build(self, mnr, cls_name): """ Constructing kd-tree ======================= dim | # points | time """ m, n, r = mnr if cls_name == 'cKDTree_flat': self.T = self.cls(self.data, leafsize=n) else: self.cls(self.data) LEAF_SIZES = [8, 128] BOX_SIZES = [None, 1.0] class Query(Benchmark): params = [ [(3,10000,1000), (8,10000,1000), (16,10000,1000)], [1, 2, np.inf], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n, r)', 'p', 'boxsize', 'leafsize'] @staticmethod def do_setup(self, mnr, p, boxsize, leafsize): m, n, r = mnr np.random.seed(1234) self.data = np.random.uniform(size=(n, m)) self.queries = np.random.uniform(size=(r, m)) self.T = cKDTree(self.data, leafsize=leafsize, boxsize=boxsize) def setup(self, mnr, p, boxsize, leafsize): Query.do_setup(self, mnr, p, boxsize, leafsize) def time_query(self, mnr, p, boxsize, leafsize): """ Querying kd-tree dim | # points | # queries | KDTree | cKDTree | flat cKDTree """ self.T.query(self.queries, p=p) class Radius(Benchmark): params = [ [(3,10000,1000)], [1, 2, np.inf], [0.2, 0.5], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n, r)', 'p', 'probe radius', 'boxsize', 'leafsize'] def __init__(self): self.time_query_pairs.__func__.params = list(self.params) self.time_query_pairs.__func__.params[0] = [(3,1000,30), (8,1000,30), (16,1000,30)] def setup(self, mnr, p, probe_radius, boxsize, leafsize): Query.do_setup(self, mnr, p, boxsize, leafsize) def time_query_ball_point(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_ball_point(self.queries, probe_radius, p=p) def time_query_pairs(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_pairs(probe_radius, p=p) class Neighbors(Benchmark): params = [ [(3,1000,1000), (8,1000,1000), (16,1000,1000)], [1, 2, np.inf], [0.2, 0.5], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n1, n2)', 'p', 'probe radius', 'boxsize', 'leafsize'] def setup(self, mn1n2, p, probe_radius, boxsize, leafsize): m, n1, n2 = mn1n2 self.data1 = np.random.uniform(size=(n1, m)) self.data2 = np.random.uniform(size=(n2, m)) self.T1 = cKDTree(self.data1, boxsize=boxsize, leafsize=leafsize) self.T2 = cKDTree(self.data2, boxsize=boxsize, leafsize=leafsize) def time_sparse_distance_matrix(self, mn1n2, p, probe_radius, boxsize, leafsize): self.T1.sparse_distance_matrix(self.T2, probe_radius, p=p) def time_count_neighbors(self, mn1n2, p, probe_radius, boxsize, leafsize): """ Count neighbors kd-tree dim | # points T1 | # points T2 | p | probe radius | BoxSize | LeafSize """ self.T1.count_neighbors(self.T2, probe_radius, p=p) def generate_spherical_points(num_points): # generate uniform points on sphere (see: # http://stackoverflow.com/a/23785326/2942522)
np.random.seed(123)
numpy.random.seed
""" Computes different GAN metrics for a generator. """ import os from collections import defaultdict import numpy as np import torch import torch.nn as nn from torch_mimicry.metrics import compute_fid, compute_is, compute_kid from torch_mimicry.utils import common from torchvision import utils as vutils from .distributed import * from .pr_score import pr_score from .fid_score import fid_score from .compute_fid_with_index import fid_score_with_index from .compute_fid_with_attr import fid_score_with_attr from .pr_score_with_attr import partial_recall_score_with_attr def sigmoid(x): return 1 / (1 + np.exp(-x)) class DRS(nn.Module): def __init__(self, netG, netD, device, batch_size=256): super().__init__() self.netG = netG self.netD = netD self.maximum = -100000 self.device = device self.batch_size = batch_size self.init_drs() def get_fake_samples_and_ldr(self, num_data): with torch.no_grad(): imgs = self.netG.generate_images(num_data, device=self.device) netD_out = self.netD(imgs) if type(netD_out) is tuple: netD_out = netD_out[0] ldr = netD_out.detach().cpu().numpy() return imgs, ldr def init_drs(self): for i in range(50): _, ldr = self.get_fake_samples_and_ldr(self.batch_size) tmp_max = ldr.max() if self.maximum < tmp_max: self.maximum = tmp_max def sub_rejection_sampler(self, fake_samples, ldr, eps=1e-6, gamma=None): tmp_max = ldr.max() if tmp_max > self.maximum: self.maximum = tmp_max ldr_max = ldr - self.maximum F = ldr_max - np.log(1- np.exp(ldr_max-eps)) if gamma is None: gamma = np.percentile(F, 80) F = F - gamma sigF = sigmoid(F) psi = np.random.rand(len(sigF)) fake_x_sampled = [fake_samples[i].detach().cpu().numpy() for i in range(len(sigF)) if sigF[i] > psi[i]] return torch.Tensor(fake_x_sampled) def generate_images(self, num_images, device=None): fake_samples_list = [] num_sampled = 0 if device is None: device = self.device while num_sampled < num_images: fake_samples, ldrs = self.get_fake_samples_and_ldr(self.batch_size) fake_samples_accepted = self.sub_rejection_sampler(fake_samples, ldrs) fake_samples_list.append(fake_samples_accepted) num_sampled += fake_samples_accepted.size(0) fake_samples_all = torch.cat(fake_samples_list, dim=0) return fake_samples_all[:num_images].to(device) def visualize_images(self, log_dir, evaluate_step, num_images = 64): img_dir = os.path.join(log_dir, 'images') fake_samples = self.generate_images(num_images) images_viz = vutils.make_grid(fake_samples, padding=2, normalize=True) vutils.save_image(images_viz, '{}/fake_samples_step_{}_after_drs.png'.format(img_dir, evaluate_step), normalize=True) def evaluate_drs( metric, netG, netD_drs, log_dir, evaluate_range=None, evaluate_step=None, use_original_netD=False, num_runs=1, start_seed=0, overwrite=False, write_to_json=True, device=None, is_stylegan2=False, **kwargs): """ Evaluates a generator over several runs. Args: metric (str): The name of the metric for evaluation. netG (Module): Torch generator model to evaluate. log_dir (str): The path to the log directory. evaluate_range (tuple): The 3 valued tuple for defining a for loop. evaluate_step (int): The specific checkpoint to load. Used in place of evaluate_range. device (str): Device identifier to use for computation. num_runs (int): The number of runs to compute FID for each checkpoint. start_seed (int): Starting random seed to use. write_to_json (bool): If True, writes to an output json file in log_dir. overwrite (bool): If True, then overwrites previous metric score. Returns: None """ # Check evaluation range/steps if evaluate_range and evaluate_step or not (evaluate_step or evaluate_range): raise ValueError( "Only one of evaluate_step or evaluate_range can be defined.") if evaluate_range: if (type(evaluate_range) != tuple or not all(map(lambda x: type(x) == int, evaluate_range)) or not len(evaluate_range) == 3): raise ValueError( "evaluate_range must be a tuple of ints (start, end, step).") output_log_dir = log_dir / 'evaluate' / f'step-{evaluate_step}' output_log_dir.mkdir(parents=True, exist_ok=True) # Check metric arguments if metric == 'kid': if 'num_samples' not in kwargs: raise ValueError( "num_samples must be provided for KID computation.") output_file = os.path.join( output_log_dir, 'kid_{}k.json'.format(kwargs['num_samples'] // 1000)) elif metric == 'fid': if 'num_real_samples' not in kwargs or 'num_fake_samples' not in kwargs: raise ValueError( "num_real_samples and num_fake_samples must be provided for FID computation." ) output_file = os.path.join( output_log_dir, 'fid_{}k_{}k.json'.format(kwargs['num_real_samples'] // 1000, kwargs['num_fake_samples'] // 1000)) elif metric == 'inception_score': if 'num_samples' not in kwargs: raise ValueError( "num_samples must be provided for IS computation.") output_file = os.path.join( output_log_dir, 'inception_score_{}k.json'.format(kwargs['num_samples'] // 1000)) elif metric == 'pr': if 'num_real_samples' not in kwargs or 'num_fake_samples' not in kwargs: raise ValueError( "num_real_samples and num_fake_samples must be provided for PR computation." ) output_file = os.path.join( output_log_dir, 'pr_{}k_{}k.json'.format(kwargs['num_real_samples'] // 1000, kwargs['num_fake_samples'] // 1000)) else: choices = ['fid', 'kid', 'inception_score', 'pr'] raise ValueError("Invalid metric {} selected. Choose from {}.".format( metric, choices)) # Check checkpoint dir netG_ckpt_dir = os.path.join(log_dir, 'checkpoints', 'netG') if use_original_netD: ckpt_path = 'netD' else: ckpt_path = 'netD_drs' netD_drs_ckpt_dir = os.path.join(log_dir, 'checkpoints', ckpt_path) if not os.path.exists(netG_ckpt_dir): raise ValueError( "Checkpoint directory {} cannot be found in log_dir.".format( netG_ckpt_dir)) # Check device if device is None: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Setup output file if os.path.exists(output_file): scores_dict = common.load_from_json(output_file) scores_dict = dict([(int(k), v) for k, v in scores_dict.items()]) else: scores_dict = {} # Decide naming convention names_dict = { 'fid': 'FID', 'inception_score': 'Inception Score', 'kid': 'KID', 'pr': 'PR', } # Evaluate across a range start, end, interval = evaluate_range or (evaluate_step, evaluate_step, evaluate_step) for step in range(start, end + 1, interval): # Skip computed scores # if step in scores_dict and write_to_json and not overwrite: # print("INFO: {} at step {} has been computed. Skipping...".format( # names_dict[metric], step)) # continue # Load and restore the model checkpoint netG_ckpt_file = os.path.join(netG_ckpt_dir, 'netG_{}_steps.pth'.format(step)) netD_drs_ckpt_file = os.path.join(netD_drs_ckpt_dir, f'{ckpt_path}_{step}_steps.pth') if not os.path.exists(netG_ckpt_file): print("INFO: Checkpoint at step {} does not exist. Skipping...". format(step)) continue netG.restore_checkpoint(ckpt_file=netG_ckpt_file, optimizer=None) if is_stylegan2: ckpt = torch.load(netG_ckpt_file, map_location=lambda storage, loc: storage) netD_drs.load_state_dict(ckpt["drs_d"] if "drs_d" in ckpt else ckpt["d"]) else: netD_drs.restore_checkpoint(ckpt_file=netD_drs_ckpt_file, optimizer=None) netG = DRS(netG=netG, netD=netD_drs, device=device) #Visualize images after DRS netG.visualize_images(log_dir = log_dir, evaluate_step = evaluate_step) # Compute score for each seed scores = [] if metric == 'pr': scores = defaultdict(list) for seed in range(start_seed, start_seed + num_runs): print("INFO: Computing {} in memory...".format(names_dict[metric])) # Obtain only the raw score without var if metric == "fid": score = compute_fid.fid_score(netG=netG, seed=seed, device=device, log_dir=log_dir, **kwargs) elif metric == "inception_score": score, _ = compute_is.inception_score(netG=netG, seed=seed, device=device, log_dir=log_dir, **kwargs) elif metric == "kid": score, _ = compute_kid.kid_score(netG=netG, device=device, seed=seed, log_dir=log_dir, **kwargs) elif metric == "pr": score = pr_score(netG=netG, seed=seed, device=device, log_dir=log_dir, **kwargs) if metric == "pr": for key in score: scores[key].append(score[key]) print("INFO: {} (step {}) [seed {}]: {}".format( key, step, seed, score[key])) else: scores.append(score) print("INFO: {} (step {}) [seed {}]: {}".format( names_dict[metric], step, seed, score)) scores_dict[step] = scores # Save scores every step if write_to_json: common.write_to_json(scores_dict, output_file) # Print the scores in order for step in range(start, end + 1, interval): if step in scores_dict: if metric == "pr": for key in scores_dict[step]: scores = scores_dict[step][key] mean =
np.mean(scores)
numpy.mean
# See "d_bankfull" in update_flow_depth() ######## (2/21/13) # NB! update_diversion() is currently COMMENTED OUT. # See "(5/13/10)" for a temporary fix. #------------------------------------------------------------------------ # Copyright (c) 2001-2020, <NAME> # # Apr 2020. Added set_new_defaults(), disable_all_output(). # Oct 2019. Added FLOOD_OPTION and CHECK_STABILITY flags. # Sep 2014. Wrote new update_diversions(). # New standard names and BMI updates and testing. # Nov 2013. Converted TopoFlow to a Python package. # Feb 2013. Adapted to use EMELI framework. # Jan 2013. Shared scalar doubles are now 0D numpy arrays. # This makes them mutable and allows components with # a reference to them to see them change. # So far: Q_outlet, Q_peak, Q_min... # Jan 2013. Revised handling of input/output names. # Oct 2012. CSDMS Standard Names and BMI. # May 2012. Commented out diversions.update() for now. ####### # May 2012. Shared scalar doubles are now 1-element 1D numpy arrays. # This makes them mutable and allows components with # a reference to them to see them change. # So far: Q_outlet, Q_peak, Q_min... # May 2010. Changes to initialize() and read_cfg_file() # Mar 2010. Changed codes to code, widths to width, # angles to angle, nvals to nval, z0vals to z0val, # slopes to slope (for GUI tools and consistency # across all process components) # Aug 2009. Updates. # Jul 2009. Updates. # May 2009. Updates. # Jan 2009. Converted from IDL. #----------------------------------------------------------------------- # NB! In the CFG file, change MANNING and LAW_OF_WALL flags to # a single string entry like "friction method". ######### #----------------------------------------------------------------------- # Notes: Set self.u in manning and law_of_wall functions ?? # Update friction factor in manning() and law_of_wall() ? # Double check how Rh is used in law_of_the_wall(). # d8_flow has "flow_grids", but this one has "codes". # Make sure values are not stored twice. #----------------------------------------------------------------------- #----------------------------------------------------------------------- # NOTES: This file defines a "base class" for channelized flow # components as well as functions used by most or # all channel flow methods. The methods of this class # (especially "update_velocity") should be over-ridden as # necessary for different methods of modeling channelized # flow. See channels_kinematic_wave.py, # channels_diffusive_wave.py and channels_dynamic_wave.py. #----------------------------------------------------------------------- # NOTES: update_free_surface_slope() is called by the # update_velocity() methods of channels_diffusive_wave.py # and channels_dynamic_wave.py. #----------------------------------------------------------------------- # # class channels_component # # ## get_attribute() # (defined in each channel component) # get_input_var_names() # (5/15/12) # get_output_var_names() # (5/15/12) # get_var_name() # (5/15/12) # get_var_units() # (5/15/12) #----------------------------- # set_constants() # set_missing_cfg_options() # (4/29/20) # initialize() # update() # finalize() # set_computed_input_vars() # (5/11/10) #---------------------------------- # initialize_d8_vars() ######## # initialize_computed_vars() # initialize_diversion_vars() # (9/22/14) # initialize_outlet_values() # initialize_peak_values() # initialize_min_and_max_values() # (2/3/13) #------------------------------------- # update_flood_d8_vars() # (9/17/19, for flooding) # update_R() # update_R_integral() # update_discharge() # update_flood_discharge() # (9/20/19) # update_diversions() # (9/22/14) # update_flow_volume() # update_flood_volume() # (9/20/19) # update_flow_depth_LAST() # update_flow_depth() # (9/16/19, update) # update_flood_depth() # (9/20/19) # update_free_surface_slope() # update_shear_stress() # (9/9/14, depth-slope product) # update_shear_speed() # (9/9/14) # update_trapezoid_Rh() # update_friction_factor() # (9/9/14) #---------------------------------- # update_velocity() # (override as needed) # update_velocity_on_edges() # update_froude_number() # (9/9/14) #---------------------------------- # update_outlet_values() # update_peak_values() # (at the main outlet) # update_Q_out_integral() # (moved here from basins.py) # update_mins_and_maxes() # (don't add into update()) # update_total_channel_water_volume() # (9/17/19) # update_total_land_water_volume() # (9/17/19) # check_flow_depth() # check_flow_velocity() #---------------------------------- # open_input_files() # read_input_files() # close_input_files() #---------------------------------- # update_outfile_names() # bundle_output_files() # (9/21/14. Not used yet) # disable_all_output() # (04/29/20) # open_output_files() # write_output_files() # close_output_files() # save_grids() # save_pixel_values() #---------------------------------- # manning_formula() # law_of_the_wall() # print_status_report() # remove_bad_slopes() # Functions: # (stand-alone versions of these) # Trapezoid_Rh() # Manning_Formula() # Law_of_the_Wall() #----------------------------------------------------------------------- import numpy as np import os, os.path import copy from topoflow.utils import BMI_base from topoflow.utils import file_utils ### from topoflow.utils import model_input from topoflow.utils import model_output from topoflow.utils import ncgs_files ### from topoflow.utils import ncts_files ### from topoflow.utils import rtg_files ### from topoflow.utils import text_ts_files ### from topoflow.utils import tf_utils #------------------------------------------------------- # NOTE: Do not import "d8_base" itself, it won't work #------------------------------------------------------- from topoflow.components import d8_global as d8_base # (11/11/16) ## from topoflow.utils import tf_d8_base as d8_base #----------------------------------------------------------------------- class channels_component( BMI_base.BMI_component ): #----------------------------------------------------------- # Note: rainfall_volume_flux *must* be liquid-only precip. #----------------------------------------------------------- _input_var_names = [ 'atmosphere_water__rainfall_volume_flux', # (P_rain) 'glacier_ice__melt_volume_flux', # (MR) 'land_surface_water__baseflow_volume_flux', # (GW) 'land_surface_water__evaporation_volume_flux', # (ET) 'soil_surface_water__infiltration_volume_flux', # (IN) 'snowpack__melt_volume_flux', # (SM) 'water-liquid__mass-per-volume_density' ] # (rho_H2O) #------------------------------------------------------------------ # 'canals__count', # n_canals # 'canals_entrance__x_coordinate', # canals_in_x # 'canals_entrance__y_coordinate', # canals_in_y # 'canals_entrance_water__volume_fraction', # Q_canals_fraction # 'canals_exit__x_coordinate', # canals_out_x # 'canals_exit__y_coordinate', # canals_out_y # 'canals_exit_water__volume_flow_rate', # Q_canals_out # 'sinks__count', # n_sinks # 'sinks__x_coordinate', # sinks_x # 'sinks__y_coordinate', # sinks_y # 'sinks_water__volume_flow_rate', # Q_sinks # 'sources__count', # n_sources # 'sources__x_coordinate', # sources_x # 'sources__y_coordinate', # sources_y # 'sources_water__volume_flow_rate' ] # Q_sources #---------------------------------- # Maybe add these out_vars later. #---------------------------------- # ['time_sec', 'time_min' ] _output_var_names = [ 'basin_outlet_water_flow__half_of_fanning_friction_factor', # f_outlet 'basin_outlet_water_x-section__mean_depth', # d_outlet 'basin_outlet_water_x-section__peak_time_of_depth', # Td_peak 'basin_outlet_water_x-section__peak_time_of_volume_flow_rate', # T_peak 'basin_outlet_water_x-section__peak_time_of_volume_flux', # Tu_peak 'basin_outlet_water_x-section__time_integral_of_volume_flow_rate', # vol_Q 'basin_outlet_water_x-section__time_max_of_mean_depth', # d_peak 'basin_outlet_water_x-section__time_max_of_volume_flow_rate', # Q_peak 'basin_outlet_water_x-section__time_max_of_volume_flux', # u_peak 'basin_outlet_water_x-section__volume_flow_rate', # Q_outlet 'basin_outlet_water_x-section__volume_flux', # u_outlet #-------------------------------------------------- 'canals_entrance_water__volume_flow_rate', # Q_canals_in #-------------------------------------------------- 'channel_bottom_surface__slope', # S_bed 'channel_bottom_water_flow__domain_max_of_log_law_roughness_length', # z0val_max 'channel_bottom_water_flow__domain_min_of_log_law_roughness_length', # z0val_min 'channel_bottom_water_flow__log_law_roughness_length', # z0val 'channel_bottom_water_flow__magnitude_of_shear_stress', # tau 'channel_bottom_water_flow__shear_speed', # u_star 'channel_centerline__sinuosity', # sinu 'channel_water__volume', # vol 'channel_water_flow__froude_number', # froude 'channel_water_flow__half_of_fanning_friction_factor', # f 'channel_water_flow__domain_max_of_manning_n_parameter', # nval_max 'channel_water_flow__domain_min_of_manning_n_parameter', # nval_min 'channel_water_flow__manning_n_parameter', # nval 'channel_water_surface__slope', # S_free #--------------------------------------------------- # These might only be available at the end of run. #--------------------------------------------------- 'channel_water_x-section__domain_max_of_mean_depth', # d_max 'channel_water_x-section__domain_min_of_mean_depth', # d_min 'channel_water_x-section__domain_max_of_volume_flow_rate', # Q_max 'channel_water_x-section__domain_min_of_volume_flow_rate', # Q_min 'channel_water_x-section__domain_max_of_volume_flux', # u_max 'channel_water_x-section__domain_min_of_volume_flux', # u_min #--------------------------------------------------------------------- 'channel_water_x-section__hydraulic_radius', # Rh 'channel_water_x-section__initial_mean_depth', # d0 'channel_water_x-section__mean_depth', # d 'channel_water_x-section__volume_flow_rate', # Q 'channel_water_x-section__volume_flux', # u 'channel_water_x-section__wetted_area', # A_wet 'channel_water_x-section__wetted_perimeter', # P_wet ####### Next one added for flooding: 2019-09-16. ######## 'channel_water_x-section_top__width', # w_top 'channel_x-section_trapezoid_bottom__width', # width 'channel_x-section_trapezoid_side__flare_angle', # angle ####### Next one added for flooding: 2019-09-16. ######## 'land_surface_water__depth', # df 'land_surface_water__runoff_volume_flux', # R 'land_surface_water__domain_time_integral_of_runoff_volume_flux', # vol_R 'model__time_step', # dt 'model_grid_cell__area', # da #--------------------------------------------------------------------- 'network_channel_water__volume', # vol_chan 'land_surface_water__area_integral_of_depth' ] # vol_land ################################################ # These come from input files, not from other components _config_var_names = [ 'channel_bottom_water_flow__log_law_roughness_length', # z0val 'channel_centerline__sinuosity', # sinu 'channel_water_flow__manning_n_parameter', # nval 'channel_water_x-section__bankfull_depth', # d_bankfull, NEW 'channel_water_x-section__bankfull_width', # w_bankfull, NEW 'channel_water_x-section__initial_mean_depth', # d0 # 'channel_water_x-section_top__width', # w_top 'channel_x-section_trapezoid_bottom__width', # width 'channel_x-section_trapezoid_side__flare_angle', # angle # Next two vars can be obtained from d8 component. # 'land_surface__elevation', # DEM # 'land_surface__slope', # S_bed 'land_surface_water__depth' ] # df _var_name_map = { 'atmosphere_water__rainfall_volume_flux': 'P_rain', 'glacier_ice__melt_volume_flux': 'MR', # 'land_surface__elevation': 'DEM', # 'land_surface__slope': 'S_bed', 'land_surface_water__baseflow_volume_flux': 'GW', 'land_surface_water__evaporation_volume_flux': 'ET', 'soil_surface_water__infiltration_volume_flux': 'IN', 'snowpack__melt_volume_flux': 'SM', 'water-liquid__mass-per-volume_density': 'rho_H2O', #------------------------------------------------------------------------ 'basin_outlet_water_flow__half_of_fanning_friction_factor':'f_outlet', 'basin_outlet_water_x-section__mean_depth': 'd_outlet', 'basin_outlet_water_x-section__peak_time_of_depth': 'Td_peak', 'basin_outlet_water_x-section__peak_time_of_volume_flow_rate': 'T_peak', 'basin_outlet_water_x-section__peak_time_of_volume_flux': 'Tu_peak', 'basin_outlet_water_x-section__volume_flow_rate': 'Q_outlet', 'basin_outlet_water_x-section__volume_flux': 'u_outlet', 'basin_outlet_water_x-section__time_integral_of_volume_flow_rate': 'vol_Q', 'basin_outlet_water_x-section__time_max_of_mean_depth': 'd_peak', 'basin_outlet_water_x-section__time_max_of_volume_flow_rate':'Q_peak', 'basin_outlet_water_x-section__time_max_of_volume_flux': 'u_peak', #-------------------------------------------------------------------------- 'canals_entrance_water__volume_flow_rate': 'Q_canals_in', #-------------------------------------------------------------------------- 'channel_bottom_surface__slope': 'S_bed', 'channel_bottom_water_flow__domain_max_of_log_law_roughness_length': 'z0val_max', 'channel_bottom_water_flow__domain_min_of_log_law_roughness_length': 'z0val_min', 'channel_bottom_water_flow__log_law_roughness_length': 'z0val', 'channel_bottom_water_flow__magnitude_of_shear_stress': 'tau', 'channel_bottom_water_flow__shear_speed': 'u_star', 'channel_centerline__sinuosity': 'sinu', 'channel_water__volume': 'vol', 'channel_water_flow__domain_max_of_manning_n_parameter': 'nval_max', 'channel_water_flow__domain_min_of_manning_n_parameter': 'nval_min', 'channel_water_flow__froude_number': 'froude', 'channel_water_flow__half_of_fanning_friction_factor': 'f', 'channel_water_flow__manning_n_parameter': 'nval', 'channel_water_surface__slope': 'S_free', #----------------------------------------------------------------------- 'channel_water_x-section__domain_max_of_mean_depth': 'd_max', 'channel_water_x-section__domain_min_of_mean_depth': 'd_min', 'channel_water_x-section__domain_max_of_volume_flow_rate': 'Q_max', 'channel_water_x-section__domain_min_of_volume_flow_rate': 'Q_min', 'channel_water_x-section__domain_max_of_volume_flux': 'u_max', 'channel_water_x-section__domain_min_of_volume_flux': 'u_min', #----------------------------------------------------------------------- 'channel_water_x-section__hydraulic_radius': 'Rh', 'channel_water_x-section__initial_mean_depth': 'd0', 'channel_water_x-section__mean_depth': 'd', 'channel_water_x-section__volume_flow_rate': 'Q', 'channel_water_x-section__volume_flux': 'u', 'channel_water_x-section__wetted_area': 'A_wet', 'channel_water_x-section__wetted_perimeter': 'P_wet', ## 'channel_water_x-section_top__width': # (not used) 'channel_x-section_trapezoid_bottom__width': 'width', #### 'channel_x-section_trapezoid_side__flare_angle': 'angle', #### 'land_surface_water__depth': 'df', 'land_surface_water__domain_time_integral_of_runoff_volume_flux': 'vol_R', 'land_surface_water__runoff_volume_flux': 'R', 'model__time_step': 'dt', 'model_grid_cell__area': 'da', #------------------------------------------------------------------ 'canals__count': 'n_canals', 'canals_entrance__x_coordinate': 'canals_in_x', 'canals_entrance__y_coordinate': 'canals_in_y', 'canals_entrance_water__volume_fraction': 'Q_canals_fraction', 'canals_exit__x_coordinate': 'canals_out_x', 'canals_exit__y_coordinate': 'canals_out_y', 'canals_exit_water__volume_flow_rate': 'Q_canals_out', 'sinks__count': 'n_sinks', 'sinks__x_coordinate': 'sinks_x', 'sinks__y_coordinate': 'sinks_y', 'sinks_water__volume_flow_rate': 'Q_sinks', 'sources__count': 'n_sources', 'sources__x_coordinate': 'sources_x', 'sources__y_coordinate': 'sources_y', 'sources_water__volume_flow_rate': 'Q_sources', #------------------------------------------------------------------ 'network_channel_water__volume': 'vol_chan', 'land_surface_water__area_integral_of_depth': 'vol_land' } ##################################### _var_units_map = { 'atmosphere_water__rainfall_volume_flux': 'm s-1', 'glacier_ice__melt_volume_flux': 'm s-1', ## 'land_surface__elevation': 'm', ## 'land_surface__slope': '1', 'land_surface_water__baseflow_volume_flux': 'm s-1', 'land_surface_water__evaporation_volume_flux': 'm s-1', 'soil_surface_water__infiltration_volume_flux': 'm s-1', 'snowpack__melt_volume_flux': 'm s-1', 'water-liquid__mass-per-volume_density': 'kg m-3', #--------------------------------------------------------------------------- 'basin_outlet_water_flow__half_of_fanning_friction_factor': '1', 'basin_outlet_water_x-section__mean_depth': 'm', 'basin_outlet_water_x-section__peak_time_of_depth': 'min', 'basin_outlet_water_x-section__peak_time_of_volume_flow_rate': 'min', 'basin_outlet_water_x-section__peak_time_of_volume_flux': 'min', 'basin_outlet_water_x-section__time_integral_of_volume_flow_rate': 'm3', 'basin_outlet_water_x-section__time_max_of_mean_depth': 'm', 'basin_outlet_water_x-section__time_max_of_volume_flow_rate': 'm3 s-1', 'basin_outlet_water_x-section__time_max_of_volume_flux': 'm s-1', 'basin_outlet_water_x-section__volume_flow_rate': 'm3 s-1', 'basin_outlet_water_x-section__volume_flux': 'm s-1', #--------------------------------------------------------------------------- 'canals_entrance_water__volume_flow_rate': 'm3 s-1', #--------------------------------------------------------------------------- 'channel_bottom_surface__slope': '1', 'channel_bottom_water_flow__domain_max_of_log_law_roughness_length': 'm', 'channel_bottom_water_flow__domain_min_of_log_law_roughness_length': 'm', 'channel_bottom_water_flow__log_law_roughness_length': 'm', 'channel_bottom_water_flow__magnitude_of_shear_stress': 'kg m-1 s-2', 'channel_bottom_water_flow__shear_speed': 'm s-1', 'channel_centerline__sinuosity': '1', 'channel_water__volume': 'm3', 'channel_water_flow__froude_number': '1', 'channel_water_flow__half_of_fanning_friction_factor': '1', 'channel_water_flow__manning_n_parameter': 'm-1/3 s', 'channel_water_flow__domain_max_of_manning_n_parameter': 'm-1/3 s', 'channel_water_flow__domain_min_of_manning_n_parameter': 'm-1/3 s', 'channel_water_surface__slope': '1', #-------------------------------------------------------------------- 'channel_water_x-section__domain_max_of_mean_depth': 'm', 'channel_water_x-section__domain_min_of_mean_depth': 'm', 'channel_water_x-section__domain_max_of_volume_flow_rate': 'm3 s-1', 'channel_water_x-section__domain_min_of_volume_flow_rate': 'm3 s-1', 'channel_water_x-section__domain_max_of_volume_flux': 'm s-1', 'channel_water_x-section__domain_min_of_volume_flux': 'm s-1', #-------------------------------------------------------------------- 'channel_water_x-section__hydraulic_radius': 'm', 'channel_water_x-section__initial_mean_depth': 'm', 'channel_water_x-section__mean_depth': 'm', 'channel_water_x-section__volume_flow_rate': 'm3 s-1', 'channel_water_x-section__volume_flux': 'm s-1', 'channel_water_x-section__wetted_area': 'm2', 'channel_water_x-section__wetted_perimeter': 'm', 'channel_x-section_trapezoid_bottom__width': 'm', 'channel_x-section_trapezoid_side__flare_angle': 'rad', # CHECKED 'land_surface_water__depth': 'm', 'land_surface_water__domain_time_integral_of_runoff_volume_flux': 'm3', 'land_surface_water__runoff_volume_flux': 'm s-1', 'model__time_step': 's', 'model_grid_cell__area': 'm2', #------------------------------------------------------------------ 'canals__count': '1', 'canals_entrance__x_coordinate': 'm', 'canals_entrance__y_coordinate': 'm', 'canals_entrance_water__volume_fraction': '1', 'canals_exit__x_coordinate': 'm', 'canals_exit__y_coordinate': 'm', 'canals_exit_water__volume_flow_rate': 'm3 s-1', 'sinks__count': '1', 'sinks__x_coordinate': 'm', 'sinks__y_coordinate': 'm', 'sinks_water__volume_flow_rate': 'm3 s-1', 'sources__count': '1', 'sources__x_coordinate': 'm', 'sources__y_coordinate': 'm', 'sources_water__volume_flow_rate': 'm3 s-1', #------------------------------------------------------------ 'network_channel_water__volume': 'm3', 'land_surface_water__area_integral_of_depth': 'm3' } ##################################### #------------------------------------------------ # Return NumPy string arrays vs. Python lists ? #------------------------------------------------ ## _input_var_names = np.array( _input_var_names ) ## _output_var_names = np.array( _output_var_names ) #------------------------------------------------------------------- def get_input_var_names(self): #-------------------------------------------------------- # Note: These are currently variables needed from other # components vs. those read from files or GUI. #-------------------------------------------------------- return self._input_var_names # get_input_var_names() #------------------------------------------------------------------- def get_output_var_names(self): return self._output_var_names # get_output_var_names() #------------------------------------------------------------------- def get_config_var_names(self): # New, proposed BMI function return self._config_var_names # get_config_var_names() #------------------------------------------------------------------- def get_var_name(self, long_var_name): return self._var_name_map[ long_var_name ] # get_var_name() #------------------------------------------------------------------- def get_var_units(self, long_var_name): return self._var_units_map[ long_var_name ] # get_var_units() #------------------------------------------------------------------- ## def get_var_type(self, long_var_name): ## ## #--------------------------------------- ## # So far, all vars have type "double", ## # but use the one in BMI_base instead. ## #--------------------------------------- ## return 'float64' ## ## # get_var_type() #------------------------------------------------------------------- def set_constants(self): #------------------------ # Define some constants #------------------------ self.g = np.float64(9.81) # (gravitation const.) self.aval = np.float64(0.476) # (integration const.) self.kappa = np.float64(0.408) # (von Karman's const.) self.law_const = np.sqrt(self.g) / self.kappa self.one_third = np.float64(1.0) / 3.0 self.two_thirds = np.float64(2.0) / 3.0 self.deg_to_rad = np.pi / 180.0 self.rad_to_deg = 180.0 / np.pi # set_constants() #------------------------------------------------------------------- def set_missing_cfg_options(self): #------------------------------------------------------ # (2019-10-08) Added CHECK_STABILITY flag to CFG file # so stability check be turned off to increase speed. #------------------------------------------------------ if not(hasattr(self, 'CHECK_STABILITY')): self.CHECK_STABILITY = True #-------------------------------------------------------------- # (2019-10-03) Added FLOOD_OPTION flag to CFG file. # If not(FLOOD_OPTION), don't write flood depths (all zeros). #-------------------------------------------------------------- if not(hasattr(self, 'FLOOD_OPTION')): self.FLOOD_OPTION = False self.SAVE_DF_GRIDS = False self.SAVE_DF_PIXELS = False #--------------------------------------------- # Also new in 2019, not in older CFG files # Not used then, but still need to be set. # Need to be set if FLOOD_OPTION is False ?? #--------------------------------------------- if not(hasattr(self, 'd_bankfull_type')): self.d_bankfull_type = 'Scalar' # or Grid self.d_bankfull = 10.0 # [meters] self.d_bankfull_file = '' # set_missing_cfg_options() #------------------------------------------------------------------- def initialize(self, cfg_file=None, mode="nondriver", SILENT=False): if not(SILENT): print(' ') print('Channels component: Initializing...') self.status = 'initializing' # (OpenMI 2.0 convention) self.mode = mode self.cfg_file = cfg_file #----------------------------------------------- # Load component parameters from a config file #----------------------------------------------- self.set_constants() # (12/7/09) # print 'CHANNELS calling initialize_config_vars()...' self.initialize_config_vars() self.set_missing_cfg_options() # (2020-04-29) # New option, see set_new_defaults(). if not(self.FLOOD_OPTION): self.SAVE_DF_GRIDS = False # (still needed here) self.SAVE_DF_PIXELS = False self.d_flood_gs_file = '' self.d_flood_ts_file = '' #------------------------------------------------------------ # Must call read_grid_info() after initialize_config_vars() #------------------------------------------------------------ # print 'CHANNELS calling read_grid_info()...' #### self.read_grid_info() # NOW IN initialize_config_vars() #------------------------------------------------------------ #print 'CHANNELS calling initialize_basin_vars()...' self.initialize_basin_vars() # (5/14/10) #----------------------------------------- # This must come before "Disabled" test. #----------------------------------------- # print 'CHANNELS calling initialize_time_vars()...' self.initialize_time_vars() #---------------------------------- # Has component been turned off ? #---------------------------------- if (self.comp_status == 'Disabled'): if not(SILENT): print('Channels component: Disabled in CFG file.') self.disable_all_output() # (04/29/2020) self.DONE = True self.status = 'initialized' # (OpenMI 2.0 convention) return ## print '################################################' ## print 'min(d0), max(d0) =', self.d0.min(), self.d0.max() ## print '################################################' #-------------------------------------------------------- # Since only Grid type is allowed, these are not set in # the CFG file, but need to be defined for next part. #-------------------------------------------------------- self.code_type = 'Grid' # (may not need this one) self.slope_type = 'Grid' ################################################################## # Move this block into new: "initialize_input_file_vars()" ??? #--------------------------------------------------- # Initialize vars to be read from files (11/16/16) #--------------------------------------------------- # Need this in order to use "update_var()". #---------------------------------------------------------- # NOTE: read_config_file() sets these to '0.0' if they # are not type "Scalar", so self has the attribute. #---------------------------------------------------------- if (self.slope_type.lower() != 'scalar'): self.slope = self.initialize_var(self.slope_type, dtype='float64') if (self.width_type.lower() != 'scalar'): self.width = self.initialize_var(self.width_type, dtype='float64') if (self.angle_type.lower() != 'scalar'): self.angle = self.initialize_var(self.angle_type, dtype='float64') if (self.sinu_type.lower() != 'scalar'): self.sinu = self.initialize_var(self.sinu_type, dtype='float64') if (self.d0_type.lower() != 'scalar'): self.d0 = self.initialize_var(self.d0_type, dtype='float64') #-------------------------------------------------------------------------------- if (self.d_bankfull_type.lower() != 'scalar'): self.d_bankfull = self.initialize_var(self.d_bankfull_type, dtype='float64') # if (self.w_bankfull_type.lower() != 'scalar'): # self.w_bankfull = self.initialize_var(self.w_bankfull_type, dtype='float64') #-------------------------------------------------------------------------------- if (self.MANNING): if (self.nval_type.lower() != 'scalar'): self.nval = self.initialize_var(self.nval_type, dtype='float64') if (self.LAW_OF_WALL): if (self.z0val_type.lower() != 'scalar'): self.z0val = self.initialize_var(self.z0val_type, dtype='float64') #------------------------------------------------------ # Must now do this before read_input_files (11/11/16) #------------------------------------------------------ print('CHANNELS calling initialize_d8_vars()...') self.initialize_d8_vars() # (depend on D8 flow grid) #--------------------------------------------- # Open input files needed to initialize vars #--------------------------------------------- # Can't move read_input_files() to start of # update(), since initial values needed here. #--------------------------------------------- # print 'CHANNELS calling open_input_files()...' self.open_input_files() print('CHANNELS calling read_input_files()...') self.read_input_files() #-------------------------------------------- # Set any input variables that are computed #-------------------------------------------------- # NOTE: Must be called AFTER read_input_files(). #-------------------------------------------------- print('CHANNELS calling set_computed_input_vars()...') self.set_computed_input_vars() #----------------------- # Initialize variables #----------------------- ## print 'CHANNELS calling initialize_d8_vars()...' ## self.initialize_d8_vars() # (depend on D8 flow grid) print('CHANNELS calling initialize_computed_vars()...') self.initialize_computed_vars() #-------------------------------------------------- # (5/12/10) I think this is obsolete now. #-------------------------------------------------- # Make sure self.Q_ts_file is not NULL (12/22/05) # This is only output file that is set by default # and is still NULL if user hasn't opened the # output var dialog for the channel process. #-------------------------------------------------- ## if (self.SAVE_Q_PIXELS and (self.Q_ts_file == '')): ## self.Q_ts_file = (self.case_prefix + '_0D-Q.txt') self.open_output_files() self.status = 'initialized' # (OpenMI 2.0 convention) # initialize() #------------------------------------------------------------------- def update(self, dt=-1.0): ## DEBUG = True DEBUG = False #--------------------------------------------- # Note that u and d from previous time step # must be used on RHS of the equations here. #--------------------------------------------- self.status = 'updating' # (OpenMI 2.0 convention) #------------------------------------------------------- # There may be times where we want to call this method # even if component is not the driver. But note that # the TopoFlow driver also makes this same call. #------------------------------------------------------- if (self.mode == 'driver'): self.print_time_and_value(self.Q_outlet, 'Q_out', '[m^3/s]') ### interval=0.5) # [seconds] # For testing (5/19/12) # self.print_time_and_value(self.Q_outlet, 'Q_out', '[m^3/s] CHANNEL') #------------------------------------------- # Read from files as needed to update vars #----------------------------------------------------- # NB! This is currently not needed for the "channel # process" because values don't change over time and # read_input_files() is called by initialize(). # NB! read_input_files() is called in initialize(). #----------------------------------------------------- # if (self.time_index > 0): # if (DEBUG): print('#### Calling read_input_files()...') # self.read_input_files() #------------------------- # Update computed values #------------------------- if (self.FLOOD_OPTION): if (DEBUG): print('#### Calling update_d8_vars()...') self.update_flood_d8_vars() ############ (2019-09-17) #------------------------------------------------------------ if (DEBUG): print('#### Calling update_R()...') self.update_R() if (DEBUG): print('#### Calling update_R_integral()...') self.update_R_integral() if (DEBUG): print('#### Calling update_channel_discharge()...') self.update_channel_discharge() #------------------------------------------------------------ if (self.FLOOD_OPTION): if (DEBUG): print('#### Calling update_flood_discharge()...') self.update_flood_discharge() ############ (2019-09-20) if (DEBUG): print('#### Calling update_discharge()...') self.update_discharge() if (DEBUG): print('#### Calling update_diversions()...') self.update_diversions() if (DEBUG): print('#### Calling update_flow_volume()...') self.update_flow_volume() #------------------------------------------------------------ if (self.FLOOD_OPTION): if (DEBUG): print('#### Calling update_flood_volume()...') self.update_flood_volume() ############ (2019-09-20) if (DEBUG): print('#### Calling update_flow_depth()...') self.update_flow_depth() #------------------------------------------------------------ if (self.FLOOD_OPTION): if (DEBUG): print('#### Calling update_flood_depth()...') self.update_flood_depth() ############ (2019-09-20) #----------------------------------------------------------------- if not(self.DYNAMIC_WAVE): if (DEBUG): print('#### Calling update_trapezoid_Rh()...') self.update_trapezoid_Rh() # print 'Rhmin, Rhmax =', self.Rh.min(), self.Rh.max()a #----------------------------------------------------------------- # (9/9/14) Moved this here from update_velocity() methods. #----------------------------------------------------------------- if not(self.KINEMATIC_WAVE): if (DEBUG): print('#### Calling update_free_surface_slope()...') self.update_free_surface_slope() if (DEBUG): print('#### Calling update_shear_stress()...') self.update_shear_stress() if (DEBUG): print('#### Calling update_shear_speed()...') self.update_shear_speed() #----------------------------------------------------------------- # Must update friction factor before velocity for DYNAMIC_WAVE. #----------------------------------------------------------------- if (DEBUG): print('#### Calling update_friction_factor()...') self.update_friction_factor() #----------------------------------------------------------------- if (DEBUG): print('#### Calling update_velocity()...') self.update_velocity() self.update_velocity_on_edges() # (set to zero) if (DEBUG): print('#### Calling update_froude_number()...') self.update_froude_number() #----------------------------------------------------------------- ## print 'Rmin, Rmax =', self.R.min(), self.R.max() ## print 'Qmin, Qmax =', self.Q.min(), self.Q.max() ## print 'umin, umax =', self.u.min(), self.u.max() ## print 'dmin, dmax =', self.d.min(), self.d.max() ## print 'nmin, nmax =', self.nval.min(), self.nval.max() ## print 'Rhmin, Rhmax =', self.Rh.min(), self.Rh.max() ## print 'Smin, Smax =', self.S_bed.min(), self.S_bed.max() if (DEBUG): print('#### Calling update_outlet_values()...') self.update_outlet_values() if (DEBUG): print('#### Calling update peak values()...') self.update_peak_values() if (DEBUG): print('#### Calling update_Q_out_integral()...') self.update_Q_out_integral() #--------------------------------------------- # This takes extra time and is now done # only at the end, in finalize(). (8/19/13) #--------------------------------------------- # But then "topoflow_driver" doesn't get # correctly updated values for some reason. #--------------------------------------------- ## self.update_mins_and_maxes() #-------------------------------------------------- # Check computed values (but not if known stable) #-------------------------------------------------- if (self.CHECK_STABILITY): D_OK = self.check_flow_depth() U_OK = self.check_flow_velocity() OK = (D_OK and U_OK) else: OK = True #---------------------------------------------- # Write user-specified data to output files ? #---------------------------------------------- # Components use own self.time_sec by default. #----------------------------------------------- if (DEBUG): print('#### Calling write_output_files()...') self.write_output_files() ## self.write_output_files( time_seconds ) #----------------------------- # Update internal clock # after write_output_files() #----------------------------- if (DEBUG): print('#### Calling update_time()') self.update_time( dt ) if (OK): self.status = 'updated' # (OpenMI 2.0 convention) else: self.status = 'failed' self.DONE = True # update() #------------------------------------------------------------------- def finalize(self): #--------------------------------------------------- # We can compute mins and maxes in the final grids # here, but the framework will not then pass them # to any component (e.g. topoflow_driver) that may # need them. #--------------------------------------------------- self.update_total_channel_water_volume() ## (9/17/19) self.update_total_land_water_volume() ## (9/17/19) ## self.update_total_edge_water_volume() ## (5/7/20) self.update_mins_and_maxes( REPORT=False ) ## (2/6/13) self.print_final_report(comp_name='Channels component') self.status = 'finalizing' # (OpenMI) self.close_input_files() # TopoFlow input "data streams" self.close_output_files() self.status = 'finalized' # (OpenMI) # finalize() #------------------------------------------------------------------- def set_computed_input_vars(self): #--------------------------------------------------------------- # Note: The initialize() method calls initialize_config_vars() # (in BMI_base.py), which calls this method at the end. #-------------------------------------------------------------- cfg_extension = self.get_attribute( 'cfg_extension' ).lower() # cfg_extension = self.get_cfg_extension().lower() self.KINEMATIC_WAVE = ("kinematic" in cfg_extension) self.DIFFUSIVE_WAVE = ("diffusive" in cfg_extension) self.DYNAMIC_WAVE = ("dynamic" in cfg_extension) #------------------------------------------- # These currently can't be set to anything # else in the GUI, but need to be defined. #------------------------------------------- self.code_type = 'Grid' self.slope_type = 'Grid' # (shouldn't need this) #--------------------------------------------------------- # Make sure that all "save_dts" are larger or equal to # the specified process dt. There is no point in saving # results more often than they change. # Issue a message to this effect if any are smaller ?? #--------------------------------------------------------- self.save_grid_dt = np.maximum(self.save_grid_dt, self.dt) self.save_pixels_dt = np.maximum(self.save_pixels_dt, self.dt) # set_computed_input_vars() #------------------------------------------------------------------- def initialize_d8_vars(self): #--------------------------------------------- # Compute and store a variety of (static) D8 # flow grid variables. Embed structure into # the "channel_base" component. #--------------------------------------------- self.d8 = d8_base.d8_component() #-------------------------------------------------- # D8 component builds its cfg filename from these #------------------------------------------------------------- # (2/11/2017) The initialize() method in d8_base.py now # uses case_prefix (vs. site_prefix) for its CFG file: # <site_prefix>_d8_global.cfg. This is to prevent confusion # since this was the only CFG file that used site_prefix. #------------------------------------------------------------- # Note: This D8 component is serving a channels component # that has already been instantiated and knows its # directory and prefix information. So we can build # the correct D8 cfg_file name from that info. It # will then read path_info CFG file to get other info. #------------------------------------------------------------- cfg_file = (self.case_prefix + '_d8_global.cfg') cfg_file = (self.cfg_directory + cfg_file) self.d8.initialize( cfg_file=cfg_file, SILENT=self.SILENT, \ REPORT=self.REPORT ) # self.d8.site_prefix = self.site_prefix # self.d8.case_prefix = self.case_prefix # (used in d8_base.py) # self.d8.in_directory = self.in_directory # self.d8.initialize( cfg_file=None, SILENT=self.SILENT, \ # REPORT=self.REPORT ) #--------------------------------------------------- # The next 2 "update" calls are needed when we use # the new "d8_base.py", but are not needed when # using the older "tf_d8_base.py". #--------------------------------------------------- self.d8.update(self.time, SILENT=False, REPORT=True) #----------------------------------------------------------- # Note: This is also needed, but is not done by default in # d8.update() because it hurts performance of Erode. #----------------------------------------------------------- self.d8.update_noflow_IDs() #--------------------------------------------------- # Initialize separate set of d8 vars for flooding. # (2019-09-21) #--------------------------------------------------- if (self.FLOOD_OPTION): d8f = copy.copy( self.d8 ) # (or use "copy.deepcopy"?) d8f.FILL_PITS_IN_Z0 = False d8f.LINK_FLATS = False self.d8f = d8f # initialize_d8_vars() #------------------------------------------------------------- def initialize_computed_vars(self): #-------------------------------------------------------- # (5/17/12) If MANNING, we need to set z0vals to -1 so # they are always defined for use with EMELI framework. #-------------------------------------------------------- # BMI_base.read_config_file() reads "float" scalars as # numpy "float64" data type. Applying np.float64() # will break references. #-------------------------------------------------------- if (self.MANNING): if (self.nval is not None): self.nval_min = self.nval.min() self.nval_max = self.nval.max() #--------------------------------------- print(' min(nval) = ' + str(self.nval_min) ) print(' max(nval) = ' + str(self.nval_max) ) #--------------------------------------- self.z0val = self.initialize_scalar(-1, dtype='float64') self.z0val_min = self.initialize_scalar(-1, dtype='float64') self.z0val_max = self.initialize_scalar(-1, dtype='float64') if (self.LAW_OF_WALL): if (self.z0val is not None): self.z0val_min = self.z0val.min() self.z0val_max = self.z0val.max() #----------------------------------------- print(' min(z0val) = ' + str(self.z0val_min) ) print(' max(z0val) = ' + str(self.z0val_max) ) #----------------------------------------- self.nval = self.initialize_scalar(-1, dtype='float64') self.nval_min = self.initialize_scalar(-1, dtype='float64') self.nval_max = self.initialize_scalar(-1, dtype='float64') #------------------------------------------------------------ # If neither set, use a constant velocity? (Test: 5/18/15) #------------------------------------------------------------ if not(self.MANNING) and not(self.LAW_OF_WALL): print('#### WARNING: In CFG file, MANNING=0 and LAW_OF_WALL=0.') #----------------------------------- self.z0val = self.initialize_scalar(-1, dtype='float64') self.z0val_min = self.initialize_scalar(-1, dtype='float64') self.z0val_max = self.initialize_scalar(-1, dtype='float64') #-------------------------------------------------------------- self.nval = self.initialize_scalar(-1, dtype='float64') self.nval_min = self.initialize_scalar(-1, dtype='float64') self.nval_max = self.initialize_scalar(-1, dtype='float64') #----------------------------------------------- # Convert bank angles from degrees to radians. #------------------------------------------------- # When bank angles are given as a GRID, this is # done in read_input_files(). Then realized that # that conversion didn't occur for SCALAR angle. # This caused "denom" later to be negative. # (Fixed on: 2019-10-08.) #------------------------------------------------- ### if (np.size( self.angle ) == 1): if (self.angle_type.lower() == 'scalar'): self.angle *= self.deg_to_rad # [radians] #----------------------------------------------- # Print mins and maxes of some other variables # that were initialized by read_input_files(). #----------------------------------------------- # print(' min(slope) = ' + str(self.slope.min()) ) # print(' max(slope) = ' + str(self.slope.max()) ) print(' min(width) = ' + str(self.width.min()) ) print(' max(width) = ' + str(self.width.max()) ) print(' min(angle) = ' + str(self.angle.min() * self.rad_to_deg) + ' [deg]') print(' max(angle) = ' + str(self.angle.max() * self.rad_to_deg) + ' [deg]') print(' min(sinuosity) = ' + str(self.sinu.min()) ) print(' max(sinuosity) = ' + str(self.sinu.max()) ) print(' min(init_depth) = ' + str(self.d0.min()) ) print(' max(init_depth) = ' + str(self.d0.max()) ) #------------------------------------------------ # 8/29/05. Multiply ds by (unitless) sinuosity # Orig. ds is used by subsurface flow #------------------------------------------------ # NB! We should also divide slopes in S_bed by # the sinuosity, as now done here. #---------------------------------------------------- # NB! This saves a modified version of ds that # is only used within the "channels" component. # The original "ds" is stored within the # topoflow model component and is used for # subsurface flow, etc. #---------------------------------------------------- ### self.d8.ds_chan = (self.sinu * ds) ### self.ds = (self.sinu * self.d8.ds) self.d8.ds = (self.sinu * self.d8.ds) ### USE LESS MEMORY ################################################### ################################################### ### S_bed = (S_bed / self.sinu) #************* self.slope = (self.slope / self.sinu) self.S_bed = self.slope self.S_free = self.S_bed.copy() # (2020-04-29) ################################################### ################################################### #--------------------------- # Initialize spatial grids #----------------------------------------------- # NB! It is not a good idea to initialize the # water depth grid to a nonzero scalar value. #----------------------------------------------- print('Initializing u, f, d grids...') self.u = self.initialize_grid( 0, dtype='float64' ) self.f = self.initialize_grid( 0, dtype='float64' ) self.d = self.initialize_grid( 0, dtype='float64' ) self.d += self.d0 # (Add initial depth, if any.) #------------------------------------------ # Use a constant velocity (Test: 5/18/15) #------------------------------------------ # if not(self.MANNING) and not(self.LAW_OF_WALL): # ## self.u[:] = 1.5 # [m/s] # self.u[:] = 3.0 # [m/s] ######################################################### # Add this on (2/3/13) so make the TF driver happy # during its initialize when it gets reference to R. # But in "update_R()", be careful not to break the ref. # "Q" may be subject to the same issue. ######################################################### self.Qc = self.initialize_grid( 0, dtype='float64' ) self.R = self.initialize_grid( 0, dtype='float64' ) #----------------------------------------- # Added these new variables for flooding #----------------------------------------- self.d_flood = self.initialize_grid( 0, dtype='float64' ) #(9/16/19) if (self.FLOOD_OPTION): self.Qf = self.initialize_grid( 0, dtype='float64' ) #(9/20/19) self.Q = self.initialize_grid( 0, dtype='float64' ) #(total) else: self.Q = self.Qc # (2 names for same thing) ############################################################################## # seconds_per_year = 3600 * 24 * 365 = 31,536,000 # mm_per_meter = 1000 ############################################################################## # baseflow_rate = 250.0 # [mm per year], was 230.0 # baseflow_rate_mps = baseflow_rate / (31536000.0 * 1000.0) #[m/s] # self.GW_init = np.zeros([self.ny, self.nx], dtype='Float64') # self.GW_init += baseflow_rate_mps ############################################################################## #--------------------------------------------------- # Initialize new grids. Is this needed? (9/13/14) #--------------------------------------------------- self.tau = self.initialize_grid( 0, dtype='float64' ) self.u_star = self.initialize_grid( 0, dtype='float64' ) self.froude = self.initialize_grid( 0, dtype='float64' ) #--------------------------------------- # These are used to check mass balance #--------------------------------------- self.vol_R = self.initialize_scalar( 0, dtype='float64') self.vol_Q = self.initialize_scalar( 0, dtype='float64') self.vol_chan = self.initialize_scalar( 0, dtype='float64') self.vol_land = self.initialize_scalar( 0, dtype='float64') #------------------------------------------- # Make sure all slopes are valid & nonzero # since otherwise flow will accumulate #------------------------------------------- if (self.KINEMATIC_WAVE): self.remove_bad_slopes() #(3/8/07. Only Kin Wave case) #---------------------------------------------- # Use "get_new_slope_grid()" in new_slopes.py # instead of "remove_bad_slopes()". # Or change "slope_grid" in the CFG file. #---------------------------------------------- ## self.get_new_slope_grid() #---------------------------------------- # Initial volume of water in each pixel #----------------------------------------------------------- # Note: angles were read as degrees & converted to radians #----------------------------------------------------------- L2 = self.d * np.tan(self.angle) self.A_wet = self.d * (self.width + L2) self.P_wet = self.width + (np.float64(2) * self.d / np.cos(self.angle) ) self.vol = self.A_wet * self.d8.ds # [m3] #--------------------------------------------------------- # Volume of water in channel when bankfull (2019-09-16) # Note that w_bankfull is not used here, but: # w_bankfull = width + (2 * d_bankfull * tan(angle)) # width = w_bankfull - (2 * d_bankfull * tan(angle)) #--------------------------------------------------------- L3 = self.d_bankfull * np.tan(self.angle) Ac_bankfull = self.d_bankfull * (self.width + L3) self.vol_bankfull = Ac_bankfull * self.d8.ds self.vol_flood = self.initialize_grid( 0, dtype='float64') #------------------------------------------------------- # Note: depth is often zero at the start of a run, and # both width and then P_wet are also zero in places. # Therefore initialize Rh as shown. #------------------------------------------------------- self.Rh = self.initialize_grid( 0, dtype='float64' ) ## self.Rh = self.A_wet / self.P_wet # [m] ## print 'P_wet.min() =', self.P_wet.min() ## print 'width.min() =', self.width.min() ## self.initialize_diversion_vars() # (9/22/14) self.initialize_outlet_values() self.initialize_peak_values() self.initialize_min_and_max_values() ## (2/3/13) ## w = np.where( self.width <= 0 ) ## nw = np.size( w[0] ) # (This is correct for 1D or 2D.) ## if (nw > 0): ## print 'WARNING:' ## print 'Number of locations where width==0 =', nw ## if (nw < 10): ## print 'locations =', w ## print ' ' # initialize_computed_vars() #------------------------------------------------------------- def initialize_diversion_vars(self): #----------------------------------------- # Compute source IDs from xy coordinates #----------------------------------------- source_rows = np.int32( self.sources_y / self.ny ) source_cols = np.int32( self.sources_x / self.nx ) self.source_IDs = (source_rows, source_cols) ## self.source_IDs = (source_rows * self.nx) + source_cols #--------------------------------------- # Compute sink IDs from xy coordinates #--------------------------------------- sink_rows = np.int32( self.sinks_y / self.ny ) sink_cols = np.int32( self.sinks_x / self.nx ) self.sink_IDs = (sink_rows, sink_cols) ## self.sink_IDs = (sink_rows * self.nx) + sink_cols #------------------------------------------------- # Compute canal entrance IDs from xy coordinates #------------------------------------------------- canal_in_rows = np.int32( self.canals_in_y / self.ny ) canal_in_cols = np.int32( self.canals_in_x / self.nx ) self.canal_in_IDs = (canal_in_rows, canal_in_cols) ## self.canal_in_IDs = (canal_in_rows * self.nx) + canal_in_cols #--------------------------------------------- # Compute canal exit IDs from xy coordinates #--------------------------------------------- canal_out_rows = np.int32( self.canals_out_y / self.ny ) canal_out_cols = np.int32( self.canals_out_x / self.nx ) self.canal_out_IDs = (canal_out_rows, canal_out_cols) ## self.canal_out_IDs = (canal_out_rows * self.nx) + canal_out_cols #-------------------------------------------------- # This will be computed from Q_canal_fraction and # self.Q and then passed back to Diversions #-------------------------------------------------- self.Q_canals_in = np.array( self.n_sources, dtype='float64' ) # initialize_diversion_vars() #------------------------------------------------------------------- def initialize_outlet_values(self): #--------------------------------------------------- # Note: These are retrieved and used by TopoFlow # for the stopping condition. TopoFlow # receives a reference to these, but in # order to see the values change they need # to be stored as mutable, 1D numpy arrays. #--------------------------------------------------- # Note: Q_last is internal to TopoFlow. #--------------------------------------------------- # self.Q_outlet = self.Q[ self.outlet_ID ] self.Q_outlet = self.initialize_scalar(0, dtype='float64') self.u_outlet = self.initialize_scalar(0, dtype='float64') self.d_outlet = self.initialize_scalar(0, dtype='float64') self.f_outlet = self.initialize_scalar(0, dtype='float64') # initialize_outlet_values() #------------------------------------------------------------------- def initialize_peak_values(self): #------------------------- # Initialize peak values #------------------------- self.Q_peak = self.initialize_scalar(0, dtype='float64') self.T_peak = self.initialize_scalar(0, dtype='float64') self.u_peak = self.initialize_scalar(0, dtype='float64') self.Tu_peak = self.initialize_scalar(0, dtype='float64') self.d_peak = self.initialize_scalar(0, dtype='float64') self.Td_peak = self.initialize_scalar(0, dtype='float64') # initialize_peak_values() #------------------------------------------------------------------- def initialize_min_and_max_values(self): #------------------------------- # Initialize min & max values # (2/3/13), for new framework. #------------------------------- v = 1e6 self.Q_min = self.initialize_scalar(v, dtype='float64') self.Q_max = self.initialize_scalar(-v, dtype='float64') self.u_min = self.initialize_scalar(v, dtype='float64') self.u_max = self.initialize_scalar(-v, dtype='float64') self.d_min = self.initialize_scalar(v, dtype='float64') self.d_max = self.initialize_scalar(-v, dtype='float64') # initialize_min_and_max_values() #------------------------------------------------------------------- def update_flood_d8_vars(self): #--------------------------------------------------------- # Note: Use free-surface gradient of d_flood to compute # flow to neighbors. (209-09-17) #--------------------------------------------------------- # Note: self.d_flood is used to compute self.Q. #--------------------------------------------------------- self.FLOODING = (self.d_flood.max() > 0) if not(self.FLOODING): self.d8f = copy.copy( self.d8 ) self.d8f.FILL_PITS_IN_Z0 = False self.d8f.LINK_FLATS = False return #-------------------------------------------------------- # Use (DEM + d_flood) to compute a free-surface gradient # and update all of the D8 vars. #-------------------------------------------------------- z_free = (self.d8.DEM + self.d_flood) #--------------------------------------- self.d8f.update_flow_grid( DEM=z_free ) ###### self.d8f.update_parent_ID_grid() self.d8f.update_parent_IDs() # (needed for gradients) self.d8f.update_flow_from_IDs() self.d8f.update_flow_to_IDs() self.d8f.update_noflow_IDs() # (needed to fill depressions naturally) self.d8f.update_flow_width_grid() # (dw) self.d8f.update_flow_length_grid() # (ds) ### self.d8f.update_area_grid() #---------------------------------------- # self.d8f.d8_grid gives the D8 flow codes # update_flood_d8_vars() #------------------------------------------------------------------- # def update_excess_rainrate(self): def update_R(self): #---------------------------------------- # Compute the "excess rainrate", R. # Each term must have same units: [m/s] # Sum = net gain/loss rate over pixel. #---------------------------------------------------- # R can be positive or negative. If negative, then # water is removed from the surface at rate R until # surface water is consumed. #-------------------------------------------------------------- # P = precip_rate [m/s] (converted by read_input_data()). # SM = snowmelt rate [m/s] # GW = seep rate [m/s] (water_table intersects surface) # ET = evap rate [m/s] # IN = infil rate [m/s] # MR = icemelt rate [m/s] #------------------------------------------------------------ # Use refs to other comp vars from new framework. (5/18/12) #------------------------------------------------------------ P = self.P_rain # (This is now liquid-only precip. 9/14/14) SM = self.SM GW = self.GW ### GW = self.GW_init ET = self.ET IN = self.IN MR = self.MR ## if (self.DEBUG): ## print 'At time:', self.time_min, ', P =', P, '[m/s]' #-------------- # For testing #-------------- # print( '(Pmin, Pmax) = ' + str(P.min()) + ', ' + str(P.max()) ) # print( '(SMmin, SMmax) = ' + str(SM.min()) + ', ' + str(SM.max()) ) # print( '(GWmin, GWmax) = ' + str(GW.min()) + ', ' + str(GW.max()) ) # print( '(ETmin, ETmax) = ' + str(ET.min()) + ', ' + str(ET.max()) ) # print( '(INmin, INmax) = ' + str(IN.min()) + ', ' + str(IN.max()) ) # print( '(MRmin, MRmax) = ' + str(MR.min()) + ', ' + str(MR.max()) ) # print( ' ' ) self.R = (P + SM + GW + MR) - (ET + IN) # update_R() #------------------------------------------------------------------- def update_R_integral(self): #----------------------------------------------- # Update mass total for R, sum over all pixels #--------------------------------------------------------------- # Note: Typically, chan_dt < met_dt, so that vol_R is updated # more frequently than vol_P. Since EMELI performs linear # interpolation in time, integrals may be slightly different. #--------------------------------------------------------------- volume = np.double(self.R * self.da * self.dt) # [m^3] if (np.size(volume) == 1): self.vol_R += (volume * self.rti.n_pixels) else: self.vol_R += np.sum(volume) # update_R_integral() #------------------------------------------------------------------- def update_channel_discharge(self): #--------------------------------------------------------- # The discharge grid, Q, gives the flux of water _out_ # of each grid cell. This entire amount then flows # into one of the 8 neighbor grid cells, as indicated # by the D8 flow code. The update_flow_volume() function # is called right after this one in update() and uses # the Q grid. #--------------------------------------------------------- # 7/15/05. The cross-sectional area of a trapezoid is # given by: Ac = d * (w + (d * tan(theta))), # where w is the bottom width. If we were to # use: Ac = w * d, then we'd have Ac=0 when w=0. # We also need angle units to be radians. #--------------------------------------------------------- #----------------------------- # Compute the discharge grid #------------------------------------------------------ # A_wet is initialized in initialize_computed_vars(). # A_wet is updated in update_trapezoid_Rh(). #------------------------------------------------------ self.Qc[:] = self.u * self.A_wet ## (2/19/13, in place) #-------------- # For testing #-------------- ## print '(umin, umax) =', self.u.min(), self.u.max() ## print '(d0min, d0max) =', self.d0.min(), self.d0.max() ## print '(dmin, dmax) =', self.d.min(), self.d.max() ## print '(amin, amax) =', self.angle.min(), self.angle.max() ## print '(wmin, wmax) =', self.width.min(), self.width.max() ## print '(Qmin, Qmax) =', self.Q.min(), self.Q.max() ## print '(L2min, L2max) =', L2.min(), L2.max() ## print '(Qmin, Qmax) =', self.Q.min(), self.Q.max() #-------------- # For testing #-------------- # print 'dmin, dmax =', self.d.min(), self.d.max() # print 'umin, umax =', self.u.min(), self.u.max() # print 'Qmin, Qmax =', self.Q.min(), self.Q.max() # print ' ' # print 'u(outlet) =', self.u[self.outlet_ID] # print 'Q(outlet) =', self.Q[self.outlet_ID] ######## #---------------------------------------------------- # Wherever depth is less than z0, assume that water # is not flowing and set u and Q to zero. # However, we also need (d gt 0) to avoid a divide # by zero problem, even when numerators are zero. #---------------------------------------------------- # FLOWING = (d > (z0/aval)) #*** FLOWING[self.d8.noflow_IDs] = False ;****** # u = (u * FLOWING) # Q = (Q * FLOWING) # d = np.maximum(d, 0.0) ;(allow depths lt z0, if gt 0.) # update_channel_discharge() #------------------------------------------------------------------- def update_flood_discharge(self): ### if not(self.FLOODING): ### return #------------------------------------------ # Find grid cells with & without flooding #------------------------------------------ w1 = (self.d_flood > 0) # (array of True or False) w2 = np.invert( w1 ) #--------------------------------------------------- # (2019-09-16) Add discharge due to overbank flow # See manning_formula() function in this file. #--------------------------------------------------- uf = (self.u / 5.0) Af = (self.d8f.dw * self.d_flood) ###### CHECK dw self.Qf[ w1 ] = uf[ w1 ] * Af[ w1 ] # (in place) self.Qf[ w2 ] = 0.0 # update_flood_discharge() #------------------------------------------------------------------- def update_discharge(self): #------------------------------------------------------------ # Note: This is not finished yet. The fact that channel # flow and overbank flooding flow can have different # D8 flow directions, with the flooding flow direction # switching back and forth, can result in an oscillation # or spikiness in the hydrograph. It is not yet # clear how to best handle this. Reducing the timestep # does not seem to resolve the issue. However, flood # depths seem to be well-behaved. #------------------------------------------------------------ if (self.FLOOD_OPTION): #------------------------------------------ # Look at where the 2 D8 flow grids align # First part here with w1 is solid. #------------------------------------------ # w1 = (self.d8.d8_grid == self.d8f.d8_grid) # w2 = np.invert( w1 ) ## self.Q[ w1 ] = self.Qc[ w1 ] + self.Qf[ w1 ] #-------------------------------------------------- # Not sure how to handle w2 grid cells. This # just makes it easy to see where the D8 flow # directions differ, at places in main channels. #-------------------------------------------------- ## self.Q[ w2 ] = 0.0 # This part with w1 is also solid. w1 = (self.Qf == 0) w2 = np.invert( w1 ) self.Q[ w1 ] = self.Qc[ w1 ] #---------------------------------------------------- # This is not 100% correct, since the D8 flow grids # are not the same for the channel and flood flows. #---------------------------------------------------- ## self.Q[:] = self.Qc + self.Qf #--------------------------------------------------------- # This gives smoother hydrographs in main channels (with # some spikes still), but has Q=0 for most grid cells. #--------------------------------------------------------- ## self.Q[:] = self.Qf #------------------------------------------------- # A compromise, but hydrograph still has spikes, # even with timestep of 1 second for Treynor. #------------------------------------------------- # np.maximum( self.Qc, self.Qf, self.Q) # (in place) #--------------------------------------------------- # Average with previous time step to smooth spikes, # thought due to switching of flow direction. # Hydrographs are much smoother. #---------------------------------------------------- Q2 = (self.Qc[ w2 ] + self.Qf[ w2 ]) Q3 = (self.Q[ w2 ] + Q2) / 2.0 self.Q[ w2 ] = Q3 ### self.Q[ w2 ] = (self.Qc + self.Qf) / 2.0 # (in place) # For another idea ## self.Q[ self.d8f.parent_IDs ] ### self.Q[ w2 ] = self.Qc[ w2 ] + self.Qf[ w2 ]/2.0 ############### ### self.Q[ w2 ] = self.Qc[ w2 ] #################### ## self.Q[:] = self.Qc + self.Qf else: # Set self.Q = self.Qc in initialize(). dum = 0 # update_discharge() #------------------------------------------------------------------- def update_diversions(self): #-------------------------------------------------------------- # Note: The Channel component requests the following input # vars from the Diversions component by including # them in its "get_input_vars()": # (1) Q_sources, Q_sources_x, Q_sources_y # (2) Q_sinks, Q_sinks_x, Q_sinks_y # (3) Q_canals_out, Q_canals_out_x, Q_canals_out_y # (4) Q_canals_fraction, Q_canals_in_x, Q_canals_in_y. # source_IDs are computed from (x,y) coordinates during # initialize(). # # Diversions component needs to get Q_canals_in from the # Channel component. #-------------------------------------------------------------- # Note: This *must* be called after update_discharge() and # before update_flow_volume(). #-------------------------------------------------------------- # Note: The Q grid stores the volume flow rate *leaving* each # grid cell in the domain. For sources, an extra amount # is leaving the cell which can flow into its D8 parent # cell. For sinks, a lesser amount is leaving the cell # toward the D8 parent. #-------------------------------------------------------------- # Note: It is not enough to just update Q and then call the # update_flow_volume() method. This is because it # won't update the volume in the channels in the grid # cells that the extra discharge is leaving from. #-------------------------------------------------------------- # If a grid cell contains a "source", then an additional Q # will flow *into* that grid cell and increase flow volume. #-------------------------------------------------------------- #------------------------------------------------------------- # This is not fully tested but runs. However, the Diversion # vars are still computed even when Diversions component is # disabled. So it slows things down somewhat. #------------------------------------------------------------- return ######################## ######################## #---------------------------------------- # Update Q and vol due to point sources #---------------------------------------- ## if (hasattr(self, 'source_IDs')): if (self.n_sources > 0): self.Q[ self.source_IDs ] += self.Q_sources self.vol[ self.source_IDs ] += (self.Q_sources * self.dt) #-------------------------------------- # Update Q and vol due to point sinks #-------------------------------------- ## if (hasattr(self, 'sink_IDs')): if (self.n_sinks > 0): self.Q[ self.sink_IDs ] -= self.Q_sinks self.vol[ self.sink_IDs ] -= (self.Q_sinks * self.dt) #--------------------------------------- # Update Q and vol due to point canals #--------------------------------------- ## if (hasattr(self, 'canal_in_IDs')): if (self.n_canals > 0): #----------------------------------------------------------------- # Q grid was just modified. Apply the canal diversion fractions # to compute the volume flow rate into upstream ends of canals. #----------------------------------------------------------------- Q_canals_in = self.Q_canals_fraction * self.Q[ self.canal_in_IDs ] self.Q_canals_in = Q_canals_in #---------------------------------------------------- # Update Q and vol due to losses at canal entrances #---------------------------------------------------- self.Q[ self.canal_in_IDs ] -= Q_canals_in self.vol[ self.canal_in_IDs ] -= (Q_canals_in * self.dt) #------------------------------------------------- # Update Q and vol due to gains at canal exits. # Diversions component accounts for travel time. #------------------------------------------------- self.Q[ self.canal_out_IDs ] += self.Q_canals_out self.vol[ self.canal_out_IDs ] += (self.Q_canals_out * self.dt) # update_diversions() #------------------------------------------------------------------- def update_flow_volume(self): #----------------------------------------------------------- # Notes: This function must be called after # update_discharge() and update_diversions(). #----------------------------------------------------------- # Notes: Q = surface discharge [m^3/s] # R = excess precip. rate [m/s] # da = pixel area [m^2] # dt = channel flow timestep [s] # vol = total volume of water in pixel [m^3] # v2 = temp version of vol # w1 = IDs of pixels that... # p1 = IDs of parent pixels that... #----------------------------------------------------------- dt = self.dt # [seconds] #---------------------------------------------------- # Add contribution (or loss ?) from excess rainrate #---------------------------------------------------- # Contributions over entire grid cell from rainfall, # snowmelt, icemelt and baseflow (minus losses from # evaporation and infiltration) are assumed to flow # into the channel within the grid cell. # Note that R is allowed to be negative. #---------------------------------------------------- self.vol += (self.R * self.da) * dt # (in place) #----------------------------------------- # Add contributions from neighbor pixels #------------------------------------------------------------- # Each grid cell passes flow to *one* downstream neighbor. # Note that multiple grid cells can flow toward a given grid # cell, so a grid cell ID may occur in d8.p1 and d8.p2, etc. #------------------------------------------------------------- # (2/16/10) RETEST THIS. Before, a copy called "v2" was # used but this doesn't seem to be necessary. #------------------------------------------------------------- if (self.d8.p1_OK): self.vol[ self.d8.p1 ] += (dt * self.Qc[self.d8.w1]) if (self.d8.p2_OK): self.vol[ self.d8.p2 ] += (dt * self.Qc[self.d8.w2]) if (self.d8.p3_OK): self.vol[ self.d8.p3 ] += (dt * self.Qc[self.d8.w3]) if (self.d8.p4_OK): self.vol[ self.d8.p4 ] += (dt * self.Qc[self.d8.w4]) if (self.d8.p5_OK): self.vol[ self.d8.p5 ] += (dt * self.Qc[self.d8.w5]) if (self.d8.p6_OK): self.vol[ self.d8.p6 ] += (dt * self.Qc[self.d8.w6]) if (self.d8.p7_OK): self.vol[ self.d8.p7 ] += (dt * self.Qc[self.d8.w7]) if (self.d8.p8_OK): self.vol[ self.d8.p8 ] += (dt * self.Qc[self.d8.w8]) #---------------------------------------------------- # Subtract the amount that flows out to D8 neighbor #---------------------------------------------------- self.vol -= (self.Qc * dt) # (in place) #-------------------------------------------------------- # While R can be positive or negative, the surface flow # volume must always be nonnegative. This also ensures # that the flow depth is nonnegative. (7/13/06) #-------------------------------------------------------- ## self.vol = np.maximum(self.vol, 0.0) ## self.vol[:] = np.maximum(self.vol, 0.0) # (2/19/13) np.maximum( self.vol, 0.0, self.vol ) # (in place) # update_flow_volume #------------------------------------------------------------------- def update_flood_volume(self): ### if not(self.FLOODING): ### return dt = self.dt # [seconds] #--------------------------------------------------------- # Excess water volume from overbank flow acts as a source # of water in the cell, that adds to whatever volume of # water is already there. Channel volume at bankfull, # called vol_bankfull, is computed in initialize(). # D8 child cells with a higher free-surface may add to # the amount in a cell, and this total is reduced by # whatever amount flows to the D8 parent cell. #---------------------------------------------------------- dvol = (self.vol - self.vol_bankfull) self.vol_flood += np.maximum(dvol, 0.0) ### np.maximum( dvol, 0.0, self.vol_flood) # (in place) #-------------------------------------------------------------- # Wherever vol > vol_bankfull, the channel volume computed # by update_flow_volume() is wrong and should instead be # the bankfull volume. Extra water volume is put into d_flood. #-------------------------------------------------------------- np.minimum(self.vol, self.vol_bankfull, self.vol ) # (in place) #----------------------------------------- # Add contributions from neighbor pixels #------------------------------------------------------------- # Each grid cell passes flow to *one* downstream neighbor. # Note that multiple grid cells can flow toward a given grid # cell, so a grid cell ID may occur in d8.p1 and d8.p2, etc. #------------------------------------------------------------- if (self.d8f.p1_OK): self.vol_flood[ self.d8f.p1 ] += (dt * self.Qf[self.d8f.w1]) if (self.d8f.p2_OK): self.vol_flood[ self.d8f.p2 ] += (dt * self.Qf[self.d8f.w2]) if (self.d8f.p3_OK): self.vol_flood[ self.d8f.p3 ] += (dt * self.Qf[self.d8f.w3]) if (self.d8f.p4_OK): self.vol_flood[ self.d8f.p4 ] += (dt * self.Qf[self.d8f.w4]) if (self.d8f.p5_OK): self.vol_flood[ self.d8f.p5 ] += (dt * self.Qf[self.d8f.w5]) if (self.d8f.p6_OK): self.vol_flood[ self.d8f.p6 ] += (dt * self.Qf[self.d8f.w6]) if (self.d8f.p7_OK): self.vol_flood[ self.d8f.p7 ] += (dt * self.Qf[self.d8f.w7]) if (self.d8f.p8_OK): self.vol_flood[ self.d8f.p8 ] += (dt * self.Qf[self.d8f.w8]) #---------------------------------------------------- # Subtract the amount that flows out to D8 neighbor #---------------------------------------------------- self.vol_flood -= (self.Qf * dt) # (in place) #-------------------------------------------------------- # While R can be positive or negative, the surface flow # volume must always be nonnegative. This also ensures # that the flow depth is nonnegative. (7/13/06) #-------------------------------------------------------- np.maximum( self.vol_flood, 0.0, self.vol_flood ) # (in place) # update_flood_volume() #------------------------------------------------------------------- def update_flow_depth_LAST(self): #----------------------------------------------------------- # Notes: 7/18/05. Modified to use the equation for volume # of a trapezoidal channel: vol = Ac * ds, where # Ac=d*[w + d*tan(t)], and to solve the resulting # quadratic (discarding neg. root) for new depth, d. # 8/29/05. Now original ds is used for subsurface # flow and there is a ds_chan which can include a # sinuosity greater than 1. This may be especially # important for larger pixel sizes. # Removed (ds > 1) here which was only meant to # avoid a "divide by zero" error at pixels where # (ds eq 0). This isn't necessary since the # Flow_Lengths function in utils_TF.pro never # returns a value of zero. #---------------------------------------------------------- # Modified to avoid double where calls, which # reduced cProfile run time for this method from # 1.391 to 0.644. (9/23/14) #---------------------------------------------------------- # Commented this out on (2/18/10) because it doesn't # seem to be used anywhere now. Checked all # of the Channels components. #---------------------------------------------------------- # self.d_last = self.d.copy() #----------------------------------- # Make some local aliases and vars #----------------------------------------------------------- # Note: angles were read as degrees & converted to radians #----------------------------------------------------------- d = self.d d_flood = self.d_flood ##### (2019-09-16) width = self.width ### angle = self.angle SCALAR_ANGLES = (np.size(angle) == 1) #------------------------------------------------------ # (2/18/10) New code to deal with case where the flow # depth exceeds a bankfull depth. # For now, d_bankfull is hard-coded. # # CHANGE Manning's n here, too? #------------------------------------------------------ d_bankfull = 4.0 # [meters] ################################ wb = (self.d > d_bankfull) # (array of True or False) self.width[ wb ] = self.d8.dw[ wb ] if not(SCALAR_ANGLES): self.angle[ wb ] = 0.0 # w_overbank = np.where( d > d_bankfull ) # n_overbank = np.size( w_overbank[0] ) # if (n_overbank != 0): # width[ w_overbank ] = self.d8.dw[ w_overbank ] # if not(SCALAR_ANGLES): angle[w_overbank] = 0.0 #------------------------------------------------------ # (2/18/10) New code to deal with case where the top # width exceeds the grid cell width, dw. #------------------------------------------------------ top_width = width + (2.0 * d * np.sin(self.angle)) wb = (top_width > self.d8.dw) # (array of True or False) self.width[ wb ] = self.d8.dw[ wb ] if not(SCALAR_ANGLES): self.angle[ wb ] = 0.0 # wb = np.where(top_width > self.d8.dw) # nb = np.size(w_bad[0]) # if (nb != 0): # width[ wb ] = self.d8.dw[ wb ] # if not(SCALAR_ANGLES): angle[ wb ] = 0.0 #---------------------------------- # Is "angle" a scalar or a grid ? #---------------------------------- if (SCALAR_ANGLES): if (angle == 0.0): d = self.vol / (width * self.d8.ds) else: denom = 2.0 * np.tan(angle) arg = 2.0 * denom * self.vol / self.d8.ds arg += width**(2.0) d = (np.sqrt(arg) - width) / denom else: #----------------------------------------------------- # Pixels where angle is 0 must be handled separately #----------------------------------------------------- w1 = ( angle == 0 ) # (arrays of True or False) w2 = np.invert( w1 ) #----------------------------------- A_top = width[w1] * self.d8.ds[w1] d[w1] = self.vol[w1] / A_top #----------------------------------- denom = 2.0 * np.tan(angle[w2]) arg = 2.0 * denom * self.vol[w2] / self.d8.ds[w2] arg += width[w2]**(2.0) d[w2] = (np.sqrt(arg) - width[w2]) / denom #----------------------------------------------------- # Pixels where angle is 0 must be handled separately #----------------------------------------------------- # wz = np.where( angle == 0 ) # nwz = np.size( wz[0] ) # wzc = np.where( angle != 0 ) # nwzc = np.size( wzc[0] ) # # if (nwz != 0): # A_top = width[wz] * self.d8.ds[wz] # ## A_top = self.width[wz] * self.d8.ds_chan[wz] # d[wz] = self.vol[wz] / A_top # # if (nwzc != 0): # term1 = 2.0 * np.tan(angle[wzc]) # arg = 2.0 * term1 * self.vol[wzc] / self.d8.ds[wzc] # arg += width[wzc]**(2.0) # d[wzc] = (np.sqrt(arg) - width[wzc]) / term1 #------------------------------------------ # Set depth values on edges to zero since # they become spikes (no outflow) 7/15/06 #------------------------------------------ d[ self.d8.noflow_IDs ] = 0.0 #------------------------------------------------ # 4/19/06. Force flow depth to be positive ? #------------------------------------------------ # This seems to be needed with the non-Richards # infiltration routines when starting with zero # depth everywhere, since all water infiltrates # for some period of time. It also seems to be # needed more for short rainfall records to # avoid a negative flow depth error. #------------------------------------------------ # 7/13/06. Still needed for Richards method #------------------------------------------------ ## self.d = np.maximum(d, 0.0) np.maximum(d, 0.0, self.d) # (2/19/13, in place) #------------------------------------------------- # Find where d <= 0 and save for later (9/23/14) #------------------------------------------------- self.d_is_pos = (self.d > 0) self.d_is_neg = np.invert( self.d_is_pos ) # update_flow_depth_LAST #------------------------------------------------------------------- def update_flow_depth(self): #------------------------------------------------------------ # Notes: 2019-09/16. This function replaces the one above # now called "update_flow_depth_LAST(). This version # allows overbank flow and flooding. #------------------------------------------------------------ # Notes: 7/18/05. Modified to use the equation for volume # of a trapezoidal channel: vol = Ac * ds, where # Ac=d*[w + d*tan(t)], and to solve the resulting # quadratic (discarding neg. root) for new depth, d. # 8/29/05. Now original ds is used for subsurface # flow and there is a ds_chan which can include a # sinuosity greater than 1. This may be especially # important for larger pixel sizes. # Removed (ds > 1) here which was only meant to # avoid a "divide by zero" error at pixels where # (ds eq 0). This isn't necessary since the # Flow_Lengths function in utils_TF.pro never # returns a value of zero. #---------------------------------------------------------- # Modified to avoid double where calls, which # reduced cProfile run time for this method from # 1.391 to 0.644. (9/23/14) #---------------------------------------------------------- # Commented this out on (2/18/10) because it doesn't # seem to be used anywhere now. Checked all # of the Channels components. #---------------------------------------------------------- # self.d_last = self.d.copy() #----------------------------------- # Make some local aliases and vars #----------------------------------------------------------- # Note: angles were read as degrees & converted to radians #----------------------------------------------------------- d = self.d width = self.width ### angle = self.angle SCALAR_ANGLES = (np.size(angle) == 1) #----------------------------------------------- # Now compute the water depth in the channels. #----------------------------------------------- # Is "angle" a scalar or a grid ? #---------------------------------- if (SCALAR_ANGLES): if (angle == 0.0): d = self.vol / (width * self.d8.ds) else: denom = 2.0 * np.tan(angle) arg = 2.0 * denom * self.vol / self.d8.ds arg += width**(2.0) d = (np.sqrt(arg) - width) / denom # For debugging # print('angle = ' + str(angle) ) # print('denom.min() = ' + str(denom.min()) ) # print('denom.max() = ' + str(denom.max()) ) # print('ds.min() = ' + str(self.d8.ds.min()) ) # print('ds.max() = ' + str(self.d8.ds.max()) ) # print('arg.min() = ' + str(arg.min()) ) # print('arg.max() = ' + str(arg.max()) ) # d = (np.sqrt(arg) - width) / denom else: #----------------------------------------------------- # Pixels where angle is 0 must be handled separately #----------------------------------------------------- w1 = ( angle == 0 ) # (arrays of True or False) w2 = np.invert( w1 ) #----------------------------------- A_top = width[w1] * self.d8.ds[w1] d[w1] = self.vol[w1] / A_top #----------------------------------- denom = 2.0 * np.tan(angle[w2]) arg = 2.0 * denom * self.vol[w2] / self.d8.ds[w2] arg += width[w2]**(2.0) d[w2] = (np.sqrt(arg) - width[w2]) / denom #------------------------------------------------------------ # Wherever vol > vol_bankfull, the flow depth just computed # is wrong and should instead be the bankfull depth. # Extra water volume has already been put into d_flood. #------------------------------------------------------------ #### d[ wb1 ] = self.d_bankfull[ wb1 ] #------------------------------------------ # Set depth values on edges to zero since # they become spikes (no outflow) 7/15/06 #----------------------------------------------------------- # NB! This destroys mass, and will have a small effect on # mass balance calculations. Since flooding now uses the # free-surface gradient (DEM + d_flood), we should not # set it to zero at interior noflow_IDs. #----------------------------------------------------------- d[ self.d8.noflow_IDs ] = 0.0 # (was needed for Baro) ## d[ self.d8.edge_IDs ] = 0.0 #------------------------------------------------ # 4/19/06. Force flow depth to be positive ? #------------------------------------------------ # This seems to be needed with the non-Richards # infiltration routines when starting with zero # depth everywhere, since all water infiltrates # for some period of time. It also seems to be # needed more for short rainfall records to # avoid a negative flow depth error. #------------------------------------------------ # 7/13/06. Still needed for Richards method #------------------------------------------------ ## self.d = np.maximum(d, 0.0) np.maximum(d, 0.0, self.d) # (2/19/13, in place) #------------------------------------------------- # Find where d <= 0 and save for later (9/23/14) #------------------------------------------------- self.d_is_pos = (self.d > 0) self.d_is_neg = np.invert( self.d_is_pos ) # update_flow_depth #------------------------------------------------------------------- def update_flood_depth(self): #----------------------------------------------------------- # Wherever vol > vol_bankfull, the flow depth computed by # update_flow_depth() is wrong and should instead be the # bankfull depth. Extra water volume is put into d_flood. #----------------------------------------------------------- # Note: This shouldn't be necessary now. #----------------------------------------------------------- # np.minimum(self.d, self.d_bankfull, self.d ) # (in place) #---------------------------------------------------------- # (2019-09-16) Compute the overbank/flooding depth. # Channel volume at bankfull is computed in initialize(). #---------------------------------------------------------- # Remember that "width" is the trapezoid bottom width. # In addition, w_bankfull is not used here, but: # w_bankfull = width + (2 * d_bankfull * tan(angle)) # width = w_bankfull - (2 * d_bankfull * tan(angle)) # If we know any 3 of these 4 vars, we can compute the # 4th one. So assume d_bankfull, angle & width are known. # HOWEVER, values of w_bankfull found by remote sensing # may be more accurate than values of d_bankfull. #---------------------------------------------------------- SCALAR_DA = (np.size(self.d8.da) == 1) d_flood = self.d_flood vol_flood = self.vol_flood ################### w1 = (vol_flood > 0) # (array of True or False) w2 = np.invert( w1 ) if (SCALAR_DA): d_flood[ w1 ] = vol_flood[ w1 ] / self.d8.da else: d_flood[ w1 ] = vol_flood[ w1 ] / self.d8.da[ w1 ] d_flood[ w2 ] = 0.0 #------------------------------------------- # Set depth values on edges to zero since # otherwise they become spikes (no outflow) #----------------------------------------------------------- # NB! This destroys mass, and will have a small effect on # mass balance calculations. Since flooding uses the # free-surface gradient (DEM + d_flood), we should not # set it to zero at interior noflow_IDs. #----------------------------------------------------------- d_flood[ self.d8.noflow_IDs ] = 0.0 ## d_flood[ self.d8.edge_IDs ] = 0.0 self.d_flood[:] = d_flood # write in place # update_flood_depth() #------------------------------------------------------------------- def update_free_surface_slope(self): #----------------------------------------------------------- # Notes: It is assumed that the flow directions don't # change even though the free surface is changing. #----------------------------------------------------------- # NB! This only applies to water in the channels, and # cannot be used when there is overbank flow. # See "z_free" above instead. #----------------------------------------------------------- delta_d = (self.d - self.d[self.d8.parent_IDs]) self.S_free[:] = self.S_bed + (delta_d / self.d8.ds) #-------------------------------------------- # Don't do this; negative slopes are needed # to decelerate flow in dynamic wave case # and for backwater effects. #-------------------------------------------- # Set negative slopes to zero #------------------------------ ### self.S_free = np.maximum(self.S_free, 0) # update_free_surface_slope() #------------------------------------------------------------------- def update_shear_stress(self): #-------------------------------------------------------- # Notes: 9/9/14. Added so shear stress could be shared. # This uses the depth-slope product. #-------------------------------------------------------- if (self.KINEMATIC_WAVE): slope = self.S_bed else: slope = self.S_free self.tau[:] = self.rho_H2O * self.g * self.d * slope # update_shear_stress() #------------------------------------------------------------------- def update_shear_speed(self): #-------------------------------------------------------- # Notes: 9/9/14. Added so shear speed could be shared. #-------------------------------------------------------- self.u_star[:] = np.sqrt( self.tau / self.rho_H2O ) # update_shear_speed() #------------------------------------------------------------------- def update_trapezoid_Rh(self): #------------------------------------------------------------- # Notes: Compute the hydraulic radius of a trapezoid that: # (1) has a bed width of wb >= 0 (0 for triangular) # (2) has a bank angle of theta (0 for rectangular) # (3) is filled with water to a depth of d. # The units of wb and d are meters. The units of # theta are assumed to be degrees and are converted. #------------------------------------------------------------- # NB! wb should never be zero, so P_wet can never be 0, # which would produce a NaN (divide by zero). #------------------------------------------------------------- # See Notes for TF_Tan function in utils_TF.pro # AW = d * (wb + (d * TF_Tan(theta_rad)) ) #------------------------------------------------------------- # 9/9/14. Bug fix. Angles were already in radians but # were converted to radians again. #-------------------------------------------------------------- #--------------------------------------------------------- # Compute hydraulic radius grid for trapezoidal channels #----------------------------------------------------------- # Note: angles were read as degrees & converted to radians #----------------------------------------------------------- d = self.d # (local synonyms) wb = self.width # (trapezoid bottom width) L2 = d * np.tan( self.angle ) A_wet = d * (wb + L2) P_wet = wb + (np.float64(2) * d / np.cos(self.angle) ) #--------------------------------------------------- # At noflow_IDs (e.g. edges) P_wet may be zero # so do this to avoid "divide by zero". (10/29/11) #--------------------------------------------------- P_wet[ self.d8.noflow_IDs ] = np.float64(1) Rh = (A_wet / P_wet) #-------------------------------- # w = np.where(P_wet == 0) # print 'In update_trapezoid_Rh():' # print ' P_wet= 0 at', w[0].size, 'cells' #--------------------------------------------------- # Override Rh for overland flow, where d_flood > 0 # (2019-09-18) #--------------------------------------------------- # w1 = (self.d_flood > 0) # (array of True or False) # Rh[ w1 ] = self.d_flood[ w1 ] ######################################### #------------------------------------ # Force edge pixels to have Rh = 0. # This will make u = 0 there also. #------------------------------------ Rh[ self.d8.noflow_IDs ] = np.float64(0) ## w = np.where(wb <= 0) ## nw = np.size(w[0]) ## if (nw > 0): Rh[w] = np.float64(0) self.Rh[:] = Rh self.A_wet[:] = A_wet ## (Now shared: 9/9/14) self.P_wet[:] = P_wet ## (Now shared: 9/9/14) #--------------- # For testing #-------------- ## print 'dmin, dmax =', d.min(), d.max() ## print 'wmin, wmax =', wb.min(), wb.max() ## print 'amin, amax =', self.angle.min(), self.angle.max() # update_trapezoid_Rh() #------------------------------------------------------------------- def update_friction_factor(self): #---------------------------------------- # Note: Added on 9/9/14 to streamline. #---------------------------------------------------------- # Note: f = half of the Fanning friction factor # d = flow depth [m] # z0 = roughness length # S = bed slope (assumed equal to friction slope) # g = 9.81 = gravitation constant [m/s^2] #--------------------------------------------------------- # For law of the wall: # kappa = 0.41 = von Karman's constant # aval = 0.48 = integration constant # law_const = sqrt(g)/kappa = 7.6393d # smoothness = (aval / z0) * d # f = (kappa / alog(smoothness))^2d # tau_bed = rho_w * f * u^2 = rho_w * g * d * S # d, S, and z0 can be arrays. # To make default z0 correspond to default # Manning's n, can use this approximation: # z0 = a * (2.34 * sqrt(9.81) * n / kappa)^6d # For n=0.03, this gives: z0 = 0.011417 ######################################################### # However, for n=0.3, it gives: z0 = 11417.413 # which is 11.4 km! So the approximation only # holds within some range of values. #-------------------------------------------------------- ############################################################### # cProfile: This method took: 0.369 secs for topoflow_test() ############################################################### #-------------------------------------- # Find where (d <= 0). g=good, b=bad #-------------------------------------- wg = self.d_is_pos wb = self.d_is_neg # wg = ( self.d > 0 ) # wb = np.invert( wg ) #----------------------------- # Compute f for Manning case #----------------------------------------- # This makes f=0 and du=0 where (d <= 0) #----------------------------------------- if (self.MANNING): n2 = self.nval ** np.float64(2) self.f[ wg ] = self.g * (n2[wg] / (self.d[wg] ** self.one_third)) self.f[ wb ] = np.float64(0) #--------------------------------- # Compute f for Law of Wall case #--------------------------------- if (self.LAW_OF_WALL): #------------------------------------------------ # Make sure (smoothness > 1) before taking log. # Should issue a warning if this is used. #------------------------------------------------ smoothness = (self.aval / self.z0val) * self.d np.maximum(smoothness, np.float64(1.1), smoothness) # (in place) self.f[wg] = (self.kappa / np.log(smoothness[wg])) ** np.float64(2) self.f[wb] = np.float64(0) ############################################################## # cProfile: This method took: 0.93 secs for topoflow_test() ############################################################## # #-------------------------------------- # # Find where (d <= 0). g=good, b=bad # #-------------------------------------- # wg = np.where( self.d > 0 ) # ng = np.size( wg[0]) # wb = np.where( self.d <= 0 ) # nb = np.size( wb[0] ) # # #----------------------------- # # Compute f for Manning case # #----------------------------------------- # # This makes f=0 and du=0 where (d <= 0) # #----------------------------------------- # if (self.MANNING): # n2 = self.nval ** np.float64(2) # if (ng != 0): # self.f[wg] = self.g * (n2[wg] / (self.d[wg] ** self.one_third)) # if (nb != 0): # self.f[wb] = np.float64(0) # # #--------------------------------- # # Compute f for Law of Wall case # #--------------------------------- # if (self.LAW_OF_WALL): # #------------------------------------------------ # # Make sure (smoothness > 1) before taking log. # # Should issue a warning if this is used. # #------------------------------------------------ # smoothness = (self.aval / self.z0val) * self.d # np.maximum(smoothness, np.float64(1.1), smoothness) # (in place) # ## smoothness = np.maximum(smoothness, np.float64(1.1)) # if (ng != 0): # self.f[wg] = (self.kappa / np.log(smoothness[wg])) ** np.float64(2) # if (nb != 0): # self.f[wb] = np.float64(0) #--------------------------------------------- # We could share the Fanning friction factor #--------------------------------------------- ### self.fanning = (np.float64(2) * self.f) # update_friction_factor() #------------------------------------------------------------------- def update_velocity(self): #--------------------------------------------------------- # Note: Do nothing now unless this method is overridden # by a particular method of computing velocity. #--------------------------------------------------------- print("Warning: update_velocity() method is inactive.") # print 'KINEMATIC WAVE =', self.KINEMATIC_WAVE # print 'DIFFUSIVE WAVE =', self.DIFFUSIVE_WAVE # print 'DYNAMIC WAVE =', self.DYNAMIC_WAVE # update_velocity() #------------------------------------------------------------------- def update_velocity_on_edges(self): #--------------------------------- # Force edge pixels to have u=0. #---------------------------------------- # Large slope around 1 flows into small # slope & leads to a negative velocity. #------------------------------------------------------ # Whenever flow direction is undefined (i.e. noflow), # the velocity should be zero. Not just on edges. #------------------------------------------------------ self.u[ self.d8.noflow_IDs ] = np.float64(0) ### self.u[ self.d8.edge_IDs ] = np.float64(0) # update_velocity_on_edges() #------------------------------------------------------------------- def update_froude_number(self): #---------------------------------------------------------- # Notes: 9/9/14. Added so Froude number could be shared. # This use of wg & wb reduced cProfile time from: # 0.644 sec to: 0.121. (9/23/14) #---------------------------------------------------------- # g = good, b = bad #-------------------- wg = self.d_is_pos wb = self.d_is_neg self.froude[ wg ] = self.u[wg] / np.sqrt( self.g * self.d[wg] ) self.froude[ wb ] = np.float64(0) # update_froude_number() #------------------------------------------------------------- def update_outlet_values(self): #------------------------------------------------- # Save computed values at outlet, which are used # by the TopoFlow driver. #----------------------------------------------------- # Note that Q_outlet, etc. are defined as 0D numpy # arrays to make them "mutable scalars" (i.e. # this allows changes to be seen by other components # who have a reference. To preserver the reference, # however, we must use fill() to assign a new value. #----------------------------------------------------- Q_outlet = self.Q[ self.outlet_ID ] u_outlet = self.u[ self.outlet_ID ] d_outlet = self.d[ self.outlet_ID ] f_outlet = self.f[ self.outlet_ID ] self.Q_outlet.fill( Q_outlet ) self.u_outlet.fill( u_outlet ) self.d_outlet.fill( d_outlet ) self.f_outlet.fill( f_outlet ) ## self.Q_outlet.fill( self.Q[ self.outlet_ID ] ) ## self.u_outlet.fill( self.u[ self.outlet_ID ] ) ## self.d_outlet.fill( self.d[ self.outlet_ID ] ) ## self.f_outlet.fill( self.f[ self.outlet_ID ] ) ## self.Q_outlet = self.Q[ self.outlet_ID ] ## self.u_outlet = self.u[ self.outlet_ID ] ## self.d_outlet = self.d[ self.outlet_ID ] ## self.f_outlet = self.f[ self.outlet_ID ] ## self.Q_outlet = self.Q.flat[self.outlet_ID] ## self.u_outlet = self.u.flat[self.outlet_ID] ## self.d_outlet = self.d.flat[self.outlet_ID] ## self.f_outlet = self.f.flat[self.outlet_ID] # update_outlet_values() #------------------------------------------------------------- def update_peak_values(self): #------------------------------------------- # Using "fill" saves new values "in-place" # and preserves "mutable scalars". #------------------------------------------- if (self.Q_outlet > self.Q_peak): self.Q_peak.fill( self.Q_outlet ) self.T_peak.fill( self.time_min ) # (time to peak) #--------------------------------------- if (self.u_outlet > self.u_peak): self.u_peak.fill( self.u_outlet ) self.Tu_peak.fill( self.time_min ) #--------------------------------------- if (self.d_outlet > self.d_peak): self.d_peak.fill( self.d_outlet ) self.Td_peak.fill( self.time_min ) ## if (self.Q_outlet > self.Q_peak): ## self.Q_peak = self.Q_outlet ## self.T_peak = self.time_min # (time to peak) ## #----------------------------------- ## if (self.u_outlet > self.u_peak): ## self.u_peak = self.u_outlet ## self.Tu_peak = self.time_min ## #----------------------------------- ## if (self.d_outlet > self.d_peak): ## self.d_peak = self.d_outlet ## self.Td_peak = self.time_min # update_peak_values() #------------------------------------------------------------- def update_Q_out_integral(self): #-------------------------------------------------------- # Note: Renamed "volume_out" to "vol_Q" for consistency # with vol_P, vol_SM, vol_IN, vol_ET, etc. (5/18/12) #-------------------------------------------------------- self.vol_Q += (self.Q_outlet * self.dt) ## 5/19/12. ## self.vol_Q += (self.Q[self.outlet_ID] * self.dt) # update_Q_out_integral() #------------------------------------------------------------- def update_mins_and_maxes(self, REPORT=False): #------------------------------------------------------- # Note: Only call this at the end, not from update(). #------------------------------------------------------- #-------------------------------------- # Get mins and max over entire domain #-------------------------------------- ## Q_min = self.Q.min() ## Q_max = self.Q.max() ## #--------------------- ## u_min = self.u.min() ## u_max = self.u.max() ## #--------------------- ## d_min = self.d.min() ## d_max = self.d.max() #-------------------------------------------- # Exclude edges where mins are always zero. #-------------------------------------------- nx = self.nx ny = self.ny Q_min = self.Q[1:(ny - 2)+1,1:(nx - 2)+1].min() Q_max = self.Q[1:(ny - 2)+1,1:(nx - 2)+1].max() #------------------------------------------------- u_min = self.u[1:(ny - 2)+1,1:(nx - 2)+1].min() u_max = self.u[1:(ny - 2)+1,1:(nx - 2)+1].max() #------------------------------------------------- d_min = self.d[1:(ny - 2)+1,1:(nx - 2)+1].min() d_max = self.d[1:(ny - 2)+1,1:(nx - 2)+1].max() #------------------------------------------------- # (2/6/13) This preserves "mutable scalars" that # can be accessed as refs by other components. #------------------------------------------------- if (Q_min < self.Q_min): self.Q_min.fill( Q_min ) if (Q_max > self.Q_max): self.Q_max.fill( Q_max ) #------------------------------ if (u_min < self.u_min): self.u_min.fill( u_min ) if (u_max > self.u_max): self.u_max.fill( u_max ) #------------------------------ if (d_min < self.d_min): self.d_min.fill( d_min ) if (d_max > self.d_max): self.d_max.fill( d_max ) #------------------------------------------------- # (2/6/13) This preserves "mutable scalars" that # can be accessed as refs by other components. #------------------------------------------------- ## self.Q_min.fill( np.minimum( self.Q_min, Q_min ) ) ## self.Q_max.fill( np.maximum( self.Q_max, Q_max ) ) ## #--------------------------------------------------- ## self.u_min.fill( np.minimum( self.u_min, u_min ) ) ## self.u_max.fill( np.maximum( self.u_max, u_max ) ) ## #--------------------------------------------------- ## self.d_min.fill( np.minimum( self.d_min, d_min ) ) ## self.d_max.fill( np.maximum( self.d_max, d_max ) ) #------------------------------------------------- # (2/6/13) This preserves "mutable scalars" that # can be accessed as refs by other components. #------------------------------------------------- ## self.Q_min.fill( min( self.Q_min, Q_min ) ) ## self.Q_max.fill( max( self.Q_max, Q_max ) ) ## #--------------------------------------------------- ## self.u_min.fill( min( self.u_min, u_min ) ) ## self.u_max.fill( max( self.u_max, u_max ) ) ## #--------------------------------------------------- ## self.d_min.fill( min( self.d_min, d_min ) ) ## self.d_max.fill( max( self.d_max, d_max ) ) #---------------------------------------------- # (2/6/13) This produces "immutable scalars". #---------------------------------------------- ## self.Q_min = self.Q.min() ## self.Q_max = self.Q.max() ## self.u_min = self.u.min() ## self.u_max = self.u.max() ## self.d_min = self.d.min() ## self.d_max = self.d.max() if (REPORT): print('In channels_base.update_mins_and_maxes():') print('(dmin, dmax) =', self.d_min, self.d_max) print('(umin, umax) =', self.u_min, self.u_max) print('(Qmin, Qmax) =', self.Q_min, self.Q_max) print(' ') # update_mins_and_maxes() #------------------------------------------------------------- def update_total_channel_water_volume(self, REPORT=False): #---------------------------------------------------- # Note: Compute the total volume of water in all # channels for the entire DEM. Can use this # in the final mass balance reporting. # (2019-09-17) #---------------------------------------------------- # Note: This should be called from finalize(). #---------------------------------------------------- vol = self.vol vol[ self.d8.noflow_IDs ] = 0.0 ## vol[ self.d8.edge_IDs ] = 0.0 vol_chan = np.sum( vol ) self.vol_chan.fill( vol_chan ) #------------------------------------- # Exclude values on edges of the DEM? #------------------------------------- # nx = self.nx # ny = self.ny # vol = self.vol[1:(ny - 2)+1,1:(nx - 2)+1].min() # update_total_channel_water_volume() #------------------------------------------------------------- def update_total_land_water_volume(self, REPORT=False): #---------------------------------------------------- # Note: Compute the total volume of land water in # all grid cells for the entire DEM. Use # this in the final mass balance reporting. # (2019-09-17) #---------------------------------------------------- #------------------------------------- # Exclude values on edges of the DEM? #------------------------------------- # nx = self.nx # ny = self.ny # d_flood = self.d_flood[1:(ny - 2)+1,1:(nx - 2)+1].min() d_flood = self.d_flood vol_land = np.sum( d_flood * self.da ) self.vol_land.fill( vol_land ) # update_total_land_water_volume() #------------------------------------------------------------------- def check_flow_depth_LAST(self): OK = True d = self.d dt = self.dt nx = self.nx ################# #--------------------------------- # All all flow depths positive ? #--------------------------------- wbad = np.where( np.logical_or( d < 0.0, np.logical_not(np.isfinite(d)) )) nbad = np.size( wbad[0] ) if (nbad == 0): return OK OK = False dmin = d[wbad].min() star_line = '*******************************************' msg = [ star_line, \ 'ERROR: Simulation aborted.', ' ', \ 'Negative or NaN depth found: ' + str(dmin), \ 'Time step may be too large.', \ 'Time step: ' + str(dt) + ' [s]' ] for k in range(len(msg)): print(msg[k]) #------------------------------------------- # If not too many, print actual velocities #------------------------------------------- if (nbad < 30): brow = wbad[0][0] bcol = wbad[1][0] ## badi = wbad[0] ## bcol = (badi % nx) ## brow = (badi / nx) crstr = str(bcol) + ', ' + str(brow) msg = [' ', '(Column, Row): ' + crstr, \ 'Flow depth: ' + str(d[brow, bcol])] for k in range(len(msg)): print(msg[k]) print(star_line) print(' ') raise RuntimeError('Negative depth found.') # (11/16/16) return OK # check_flow_depth_LAST() #------------------------------------------------------------------- def check_flow_depth(self): OK = True d = self.d dt = self.dt nx = self.nx ################# #--------------------------------- # Are any flow depths negative ? #--------------------------------- wneg = np.where( d < 0.0 ) nneg = np.size( wneg[0] ) #----------------------------- # Are any flow depths NaNs ? #----------------------------- wnan = np.where( np.isnan(d) ) nnan = np.size( wnan[0] ) #----------------------------- # Are any flow depths Infs ? #----------------------------- winf = np.where( np.isinf(d) ) ninf = np.size( winf[0] ) #---------------------------------- # Option to allow NaN but not Inf #---------------------------------- if (nneg == 0) and (ninf == 0): return OK OK = False #-------------------------------------------------- # if (nneg == 0) and (nnan == 0) and (ninf == 0): # return OK # OK = False #---------------------------------- # Print informative error message #---------------------------------- star_line = '*******************************************' print( star_line ) print('ERROR: Simulation aborted.') print(' ') #-------------------------------------------------------- if (nneg > 0): dmin = d[ wneg ].min() str1 = 'Found ' + str(nneg) + ' negative depths.' str2 = ' Smallest negative depth = ' + str(dmin) print( str1 ) print( str2 ) #-------------------------------------------------------- if (nnan > 0): str3 = 'Found ' + str(nnan) + ' NaN depths.' print( str3 ) #-------------------------------------------------------- if (ninf > 0): str4 = 'Found ' + str(ninf) + ' infinite depths.' print( str4 ) #------------------------------------ # Option to allow NaNs on the edges #------------------------------------ print( 'Time step may be too large for stability.' ) print( 'Time step: ' + str(dt) + ' [s]' ) print( 'Try reducing timestep in channels CFG file.' ) print( star_line ) print( ' ' ) #------------------------------------------- # If not too many, print actual depths #------------------------------------------- # if (nbad < 30): # brow = wbad[0][0] # bcol = wbad[1][0] # ## badi = wbad[0] # ## bcol = (badi % nx) # ## brow = (badi / nx) # crstr = str(bcol) + ', ' + str(brow) # # msg = [' ', '(Column, Row): ' + crstr, \ # 'Flow depth: ' + str(d[brow, bcol])] # for k in range(len(msg)): # print(msg[k]) # print(star_line) # print(' ') raise RuntimeError('Negative or NaN depth found.') # (11/16/16) return OK # check_flow_depth() #------------------------------------------------------------------- def check_flow_velocity_LAST(self): OK = True u = self.u dt = self.dt nx = self.nx #-------------------------------- # Are all velocities positive ? #-------------------------------- wbad = np.where( np.logical_or( u < 0.0, np.logical_not(np.isfinite(u)) )) nbad = np.size( wbad[0] ) if (nbad == 0): return OK OK = False umin = u[wbad].min() star_line = '*******************************************' msg = [ star_line, \ 'ERROR: Simulation aborted.', ' ', \ 'Negative or NaN velocity found: ' + str(umin), \ 'Time step may be too large.', \ 'Time step: ' + str(dt) + ' [s]'] for k in range(len(msg)): print(msg[k]) #------------------------------------------- # If not too many, print actual velocities #------------------------------------------- if (nbad < 30): brow = wbad[0][0] bcol = wbad[1][0] ## badi = wbad[0] ## bcol = (badi % nx) ## brow = (badi / nx) crstr = str(bcol) + ', ' + str(brow) msg = [' ', '(Column, Row): ' + crstr, \ 'Velocity: ' + str(u[brow, bcol])] for k in range(len(msg)): print(msg[k]) print(star_line) print(' ') raise RuntimeError('Negative or NaN velocity found.') # (11/16/16) return OK ## umin = u[wbad].min() ## badi = wbad[0] ## bcol = (badi % nx) ## brow = (badi / nx) ## crstr = str(bcol) + ', ' + str(brow) ## msg = np.array([' ', \ ## '*******************************************', \ ## 'ERROR: Simulation aborted.', ' ', \ ## 'Negative velocity found: ' + str(umin), \ ## 'Time step may be too large.', ' ', \ ## '(Column, Row): ' + crstr, \ ## 'Velocity: ' + str(u[badi]), \ ## 'Time step: ' + str(dt) + ' [s]', \ ## '*******************************************', ' ']) ## for k in xrange( np.size(msg) ): ## print msg[k] ## return OK # check_flow_velocity_LAST() #------------------------------------------------------------------- def check_flow_velocity(self): OK = True u = self.u dt = self.dt nx = self.nx #--------------------------------- # Are any flow depths negative ? #--------------------------------- wneg = np.where( u < 0.0 ) nneg = np.size( wneg[0] ) #----------------------------- # Are any flow depths NaNs ? #----------------------------- wnan = np.where( np.isnan(u) ) nnan = np.size( wnan[0] ) #----------------------------- # Are any flow depths Infs ? #----------------------------- winf = np.where( np.isinf(u) ) ninf = np.size( winf[0] ) #---------------------------------- # Option to allow NaN but not Inf #---------------------------------- if (nneg == 0) and (ninf == 0): return OK OK = False #-------------------------------------------------- # if (nneg == 0) and (nnan == 0) and (ninf == 0): # return OK # OK = False #---------------------------------- # Print informative error message #---------------------------------- star_line = '*******************************************' print( star_line ) print('ERROR: Simulation aborted.') print(' ') #-------------------------------------------------------- if (nneg > 0): umin = u[ wneg ].min() str1 = 'Found ' + str(nneg) + ' negative velocities.' str2 = ' Smallest negative velocity = ' + str(umin) print( str1 ) print( str2 ) #-------------------------------------------------------- if (nnan > 0): str3 = 'Found ' + str(nnan) + ' NaN velocities.' print( str3 ) #-------------------------------------------------------- if (ninf > 0): str4 = 'Found ' + str(ninf) + ' infinite velocities.' print( str4 ) #------------------------------------ # Option to allow NaNs on the edges #------------------------------------ print( 'Time step may be too large for stability.' ) print( 'Time step: ' + str(dt) + ' [s]' ) print( 'Try reducing timestep in channels CFG file.' ) print( star_line ) print( ' ' ) raise RuntimeError('Negative or NaN velocity found.') # (11/16/16) return OK ## umin = u[wbad].min() ## badi = wbad[0] ## bcol = (badi % nx) ## brow = (badi / nx) ## crstr = str(bcol) + ', ' + str(brow) ## msg = np.array([' ', \ ## '*******************************************', \ ## 'ERROR: Simulation aborted.', ' ', \ ## 'Negative velocity found: ' + str(umin), \ ## 'Time step may be too large.', ' ', \ ## '(Column, Row): ' + crstr, \ ## 'Velocity: ' + str(u[badi]), \ ## 'Time step: ' + str(dt) + ' [s]', \ ## '*******************************************', ' ']) ## for k in xrange( np.size(msg) ): ## print msg[k] ## return OK # check_flow_velocity() #------------------------------------------------------------------- def open_input_files(self): #------------------------------------------------------ # This method uses prepend_directory() in BMI_base.py # which uses both eval and exec. #------------------------------------------------------ # in_files = ['slope_file', 'nval_file', 'z0val_file', # 'width_file', 'angle_file', 'sinu_file', # 'd0_file', 'd_bankfull_file' ] # self.prepend_directory( in_files, INPUT=True ) #------------------------------------------------------ # This avoids eval/exec, but is brute-force # 2020-05-03. Changed in_directory to topo_directory. # See set_directories() in BMI_base.py. #------------------------------------------------------ self.slope_file = (self.topo_directory + self.slope_file) self.nval_file = (self.topo_directory + self.nval_file) self.z0val_file = (self.topo_directory + self.z0val_file) self.width_file = (self.topo_directory + self.width_file) self.angle_file = (self.topo_directory + self.angle_file) self.sinu_file = (self.topo_directory + self.sinu_file) self.d0_file = (self.topo_directory + self.d0_file) self.d_bankfull_file = (self.topo_directory + self.d_bankfull_file) #---------------------------------------------- # Open all input files and store file objects #---------------------------------------------- #self.code_unit = model_input.open_file(self.code_type, self.code_file) self.slope_unit = model_input.open_file(self.slope_type, self.slope_file) if (self.MANNING): self.nval_unit = model_input.open_file(self.nval_type, self.nval_file) if (self.LAW_OF_WALL): self.z0val_unit = model_input.open_file(self.z0val_type, self.z0val_file) self.width_unit = model_input.open_file(self.width_type, self.width_file) self.angle_unit = model_input.open_file(self.angle_type, self.angle_file) self.sinu_unit = model_input.open_file(self.sinu_type, self.sinu_file) self.d0_unit = model_input.open_file(self.d0_type, self.d0_file) self.d_bankfull_unit = model_input.open_file(self.d_bankfull_type, self.d_bankfull_file) # open_input_files() #------------------------------------------------------------------- def read_input_files(self): #------------------------------------------------------- # Note: All grids are assumed to have same dimensions # as the DEM. #------------------------------------------------------- rti = self.rti #------------------------------------------------------- # All grids are assumed to have a data type of Float32 # as stored in their binary grid file. #------------------------------------------------------- # If EOF is reached, model_input.read_next() does not # change the value of the scalar or grid. #------------------------------------------------------- slope = model_input.read_next(self.slope_unit, self.slope_type, rti) if (slope is not None): self.update_var( 'slope', slope ) if (self.MANNING): nval = model_input.read_next(self.nval_unit, self.nval_type, rti) if (nval is not None): self.update_var( 'nval', nval ) if (self.LAW_OF_WALL): z0val = model_input.read_next(self.z0val_unit, self.z0val_type, rti) if (z0val is not None): self.update_var( 'z0val', z0val ) width = model_input.read_next(self.width_unit, self.width_type, rti) if (width is not None): #------------------------------------------------------- # Width can be zero on 4 edges, but this can result in # a "divide by zero" error later on, so need to adjust. #------------------------------------------------------- w1 = ( width == 0 ) # (arrays of True or False) width[w1] = self.d8.dw[w1] self.update_var( 'width', width ) angle = model_input.read_next(self.angle_unit, self.angle_type, rti) if (angle is not None): #------------------------------------------------------------ # Convert bank angles from degrees to radians. For a # SCALAR angle, this is done in initialize_computed_vars(). # To support general case this is done here for angle GRID. #------------------------------------------------------------ angle *= self.deg_to_rad # [radians] self.update_var( 'angle', angle ) sinu = model_input.read_next(self.sinu_unit, self.sinu_type, rti) if (sinu is not None): self.update_var( 'sinu', sinu ) d0 = model_input.read_next(self.d0_unit, self.d0_type, rti) if (d0 is not None): self.update_var( 'd0', d0 ) # (2019-09-16) ############################## d_bankfull = model_input.read_next(self.d_bankfull_unit, self.d_bankfull_type, rti) if (d_bankfull is not None): self.update_var( 'd_bankfull', d_bankfull ) # read_input_files() #------------------------------------------------------------------- # def read_input_files_last(self): # # #---------------------------------------------------- # # The D8 flow codes are always a grid, size of DEM. # #---------------------------------------------------- # # NB! model_input.py also has a read_grid() function. # #---------------------------------------------------- # rti = self.rti # ## print 'Reading D8 flow grid (in CHANNELS)...' # ## self.code = rtg_files.read_grid(self.code_file, rti, # ## RTG_type='BYTE') # ## print ' ' # # #------------------------------------------------------- # # All grids are assumed to have a data type of Float32. # #------------------------------------------------------- # slope = model_input.read_next(self.slope_unit, self.slope_type, rti) # if (slope is not None): # self.slope = slope # ## print ' min(slope) =', slope.min() # ## print ' max(slope) =', slope.max() # # # If EOF was reached, hopefully numpy's "fromfile" # # returns None, so that the stored value will be # # the last value that was read. # # if (self.MANNING): # nval = model_input.read_next(self.nval_unit, self.nval_type, rti) # if (nval is not None): # # if (self.nval_type.lower() == 'scalar'): # # self.update_scalar( 'nval', nval ) # # else: # # self.nval = nval # self.nval = nval # self.nval_min = nval.min() # self.nval_max = nval.max() # print ' min(nval) =', self.nval_min # print ' max(nval) =', self.nval_max # # if (self.LAW_OF_WALL): # z0val = model_input.read_next(self.z0val_unit, self.z0val_type, rti) # if (z0val is not None): # self.z0val = z0val # self.z0val_min = z0val.min() # self.z0val_max = z0val.max() # print ' min(z0val) =', self.z0val_min # print ' max(z0val) =', self.z0val_max # # width = model_input.read_next(self.width_unit, self.width_type, rti) # if (width is not None): # #------------------------------------------------------- # # Width can be zero on 4 edges, but this can result in # # a "divide by zero" error later on, so need to adjust. # #------------------------------------------------------- # w1 = ( width == 0 ) # (arrays of True or False) # width[w1] = self.d8.dw[w1] # self.width = width # print ' min(width) =', width.min() # print ' max(width) =', width.max() # # angle = model_input.read_next(self.angle_unit, self.angle_type, rti) # if (angle is not None): # print ' min(angle) =', angle.min(), ' [deg]' # print ' max(angle) =', angle.max(), ' [deg]' # #----------------------------------------------- # # Convert bank angles from degrees to radians. # #----------------------------------------------- # self.angle = angle * self.deg_to_rad # [radians] # ### self.angle = angle # (before 9/9/14) # # sinu = model_input.read_next(self.sinu_unit, self.sinu_type, rti) # if (sinu is not None): # self.sinu = sinu # print ' min(sinuosity) =', sinu.min() # print ' max(sinuosity) =', sinu.max() # # d0 = model_input.read_next(self.d0_unit, self.d0_type, rti) # if (d0 is not None): # self.d0 = d0 # print ' min(d0) =', d0.min() # print ' max(d0) =', d0.max() # # ## code = model_input.read_grid(self.code_unit, \ # ## self.code_type, rti, dtype='UInt8') # ## if (code is not None): self.code = code # # # read_input_files_last() #------------------------------------------------------------------- def close_input_files(self): # if not(self.slope_unit.closed): # if (self.slope_unit is not None): #------------------------------------------------- # NB! self.code_unit was never defined as read. #------------------------------------------------- # if (self.code_type != 'scalar'): self.code_unit.close() if (self.slope_type != 'Scalar'): self.slope_unit.close() if (self.MANNING): if (self.nval_type != 'Scalar'): self.nval_unit.close() if (self.LAW_OF_WALL): if (self.z0val_type != 'Scalar'): self.z0val_unit.close() if (self.width_type != 'Scalar'): self.width_unit.close() if (self.angle_type != 'Scalar'): self.angle_unit.close() if (self.sinu_type != 'Scalar'): self.sinu_unit.close() if (self.d0_type != 'Scalar'): self.d0_unit.close() if (self.d_bankfull_type != 'Scalar'): self.d_bankfull_unit.close() ## if (self.slope_file != ''): self.slope_unit.close() ## if (self.MANNING): ## if (self.nval_file != ''): self.nval_unit.close() ## if (self.LAW_OF_WALL): ## if (self.z0val_file != ''): self.z0val_unit.close() ## if (self.width_file != ''): self.width_unit.close() ## if (self.angle_file != ''): self.angle_unit.close() ## if (self.sinu_file != ''): self.sinu_unit.close() ## if (self.d0_file != ''): self.d0_unit.close() # close_input_files() #------------------------------------------------------------------- def update_outfile_names(self): #------------------------------------------------- # Notes: Append out_directory to outfile names. #------------------------------------------------- self.Q_gs_file = (self.out_directory + self.Q_gs_file) self.u_gs_file = (self.out_directory + self.u_gs_file) self.d_gs_file = (self.out_directory + self.d_gs_file) self.f_gs_file = (self.out_directory + self.f_gs_file) self.d_flood_gs_file = (self.out_directory + self.d_flood_gs_file) #-------------------------------------------------------- self.Q_ts_file = (self.out_directory + self.Q_ts_file) self.u_ts_file = (self.out_directory + self.u_ts_file) self.d_ts_file = (self.out_directory + self.d_ts_file) self.f_ts_file = (self.out_directory + self.f_ts_file) self.d_flood_ts_file = (self.out_directory + self.d_flood_ts_file) # update_outfile_names() #------------------------------------------------------------------- def bundle_output_files(self): ################################################### # NOT READY YET. Need "get_long_name()" and a new # version of "get_var_units". (9/21/14) ################################################### #------------------------------------------------------------- # Bundle the output file info into an array for convenience. # Then we just need one open_output_files(), in BMI_base.py, # and one close_output_files(). Less to maintain. (9/21/14) #------------------------------------------------------------- # gs = grid stack, ts = time series, ps = profile series. #------------------------------------------------------------- self.out_files = [ {var_name:'Q', save_gs:self.SAVE_Q_GRIDS, gs_file:self.Q_gs_file, save_ts:self.SAVE_Q_PIXELS, ts_file:self.Q_ts_file, long_name:get_long_name('Q'), units_name:get_var_units('Q')}, #----------------------------------------------------------------- {var_name:'u', save_gs:self.SAVE_U_GRIDS, gs_file:self.u_gs_file, save_ts:self.SAVE_U_PIXELS, ts_file:self.u_ts_file, long_name:get_long_name('u'), units_name:get_var_units('u')}, #----------------------------------------------------------------- {var_name:'d', save_gs:self.SAVE_D_GRIDS, gs_file:self.d_gs_file, save_ts:self.SAVE_D_PIXELS, ts_file:self.d_ts_file, long_name:get_long_name('d'), units_name:get_var_units('d')}, #----------------------------------------------------------------- {var_name:'f', save_gs:self.SAVE_F_GRIDS, gs_file:self.f_gs_file, save_ts:self.SAVE_F_PIXELS, ts_file:self.f_ts_file, long_name:get_long_name('f'), units_name:get_var_units('f')}, #----------------------------------------------------------------- {var_name:'d_flood', save_gs:self.SAVE_DF_GRIDS, gs_file:self.d_flood_gs_file, save_ts:self.SAVE_DF_PIXELS, ts_file:self.d_flood_ts_file, long_name:get_long_name('d_flood'), units_name:get_var_units('d_flood')} ] # bundle_output_files #------------------------------------------------------------------- def disable_all_output(self): self.SAVE_Q_GRIDS = False self.SAVE_U_GRIDS = False self.SAVE_D_GRIDS = False self.SAVE_F_GRIDS = False self.SAVE_DF_GRIDS = False #---------------------------- self.SAVE_Q_PIXELS = False self.SAVE_U_PIXELS = False self.SAVE_D_PIXELS = False self.SAVE_F_PIXELS = False self.SAVE_DF_PIXELS = False # disable_all_output() #------------------------------------------------------------------- def open_output_files(self): model_output.check_netcdf() self.update_outfile_names() ## self.bundle_output_files() ## print 'self.SAVE_Q_GRIDS =', self.SAVE_Q_GRIDS ## print 'self.SAVE_U_GRIDS =', self.SAVE_U_GRIDS ## print 'self.SAVE_D_GRIDS =', self.SAVE_D_GRIDS ## print 'self.SAVE_F_GRIDS =', self.SAVE_F_GRIDS ## #--------------------------------------------------- ## print 'self.SAVE_Q_PIXELS =', self.SAVE_Q_PIXELS ## print 'self.SAVE_U_PIXELS =', self.SAVE_U_PIXELS ## print 'self.SAVE_D_PIXELS =', self.SAVE_D_PIXELS ## print 'self.SAVE_F_PIXELS =', self.SAVE_F_PIXELS # IDs = self.outlet_IDs # for k in xrange( len(self.out_files) ): # #-------------------------------------- # # Open new files to write grid stacks # #-------------------------------------- # if (self.out_files[k].save_gs): # model_output.open_new_gs_file( self, self.out_files[k], self.rti ) # #-------------------------------------- # # Open new files to write time series # #-------------------------------------- # if (self.out_files[k].save_ts): # model_output.open_new_ts_file( self, self.out_files[k], IDs ) #-------------------------------------- # Open new files to write grid stacks #-------------------------------------- if (self.SAVE_Q_GRIDS): model_output.open_new_gs_file( self, self.Q_gs_file, self.rti, var_name='Q', long_name='volumetric_discharge', units_name='m^3/s') if (self.SAVE_U_GRIDS): model_output.open_new_gs_file( self, self.u_gs_file, self.rti, var_name='u', long_name='mean_channel_flow_velocity', units_name='m/s') if (self.SAVE_D_GRIDS): model_output.open_new_gs_file( self, self.d_gs_file, self.rti, var_name='d', long_name='max_channel_flow_depth', units_name='m') if (self.SAVE_F_GRIDS): model_output.open_new_gs_file( self, self.f_gs_file, self.rti, var_name='f', long_name='friction_factor', units_name='none') if (self.SAVE_DF_GRIDS): model_output.open_new_gs_file( self, self.d_flood_gs_file, self.rti, var_name='d_flood', long_name='land_surface_water__depth', units_name='m') #-------------------------------------- # Open new files to write time series #-------------------------------------- IDs = self.outlet_IDs if (self.SAVE_Q_PIXELS): model_output.open_new_ts_file( self, self.Q_ts_file, IDs, var_name='Q', long_name='volumetric_discharge', units_name='m^3/s') if (self.SAVE_U_PIXELS): model_output.open_new_ts_file( self, self.u_ts_file, IDs, var_name='u', long_name='mean_channel_flow_velocity', units_name='m/s') if (self.SAVE_D_PIXELS): model_output.open_new_ts_file( self, self.d_ts_file, IDs, var_name='d', long_name='max_channel_flow_depth', units_name='m') if (self.SAVE_F_PIXELS): model_output.open_new_ts_file( self, self.f_ts_file, IDs, var_name='f', long_name='friction_factor', units_name='none') if (self.SAVE_DF_PIXELS): model_output.open_new_ts_file( self, self.d_flood_ts_file, IDs, var_name='d_flood', long_name='land_surface_water__depth', units_name='m') # open_output_files() #------------------------------------------------------------------- def write_output_files(self, time_seconds=None): #--------------------------------------------------------- # Notes: This function was written to use only model # time (maybe from a caller) in seconds, and # the save_grid_dt and save_pixels_dt parameters # read by read_cfg_file(). # # read_cfg_file() makes sure that all of # the "save_dts" are larger than or equal to the # process dt. #--------------------------------------------------------- #----------------------------------------- # Allows time to be passed from a caller #----------------------------------------- if (time_seconds is None): time_seconds = self.time_sec model_time = int(time_seconds) #---------------------------------------- # Save computed values at sampled times #---------------------------------------- if (model_time % int(self.save_grid_dt) == 0): self.save_grids() if (model_time % int(self.save_pixels_dt) == 0): self.save_pixel_values() #---------------------------------------- # Save computed values at sampled times #---------------------------------------- ## if ((self.time_index % self.grid_save_step) == 0): ## self.save_grids() ## if ((self.time_index % self.pixel_save_step) == 0): ## self.save_pixel_values() # write_output_files() #------------------------------------------------------------------- def close_output_files(self): if (self.SAVE_Q_GRIDS): model_output.close_gs_file( self, 'Q') if (self.SAVE_U_GRIDS): model_output.close_gs_file( self, 'u') if (self.SAVE_D_GRIDS): model_output.close_gs_file( self, 'd') if (self.SAVE_F_GRIDS): model_output.close_gs_file( self, 'f') if (self.SAVE_DF_GRIDS): model_output.close_gs_file( self, 'd_flood') #--------------------------------------------------------------- if (self.SAVE_Q_PIXELS): model_output.close_ts_file( self, 'Q') if (self.SAVE_U_PIXELS): model_output.close_ts_file( self, 'u') if (self.SAVE_D_PIXELS): model_output.close_ts_file( self, 'd') if (self.SAVE_F_PIXELS): model_output.close_ts_file( self, 'f') if (self.SAVE_DF_PIXELS): model_output.close_ts_file( self, 'd_flood') # close_output_files() #------------------------------------------------------------------- def save_grids(self): #----------------------------------- # Save grid stack to a netCDF file #--------------------------------------------- # Note that add_grid() methods will convert # var from scalar to grid now, if necessary. #--------------------------------------------- if (self.SAVE_Q_GRIDS): model_output.add_grid( self, self.Q, 'Q', self.time_min ) if (self.SAVE_U_GRIDS): model_output.add_grid( self, self.u, 'u', self.time_min ) if (self.SAVE_D_GRIDS): model_output.add_grid( self, self.d, 'd', self.time_min ) if (self.SAVE_F_GRIDS): model_output.add_grid( self, self.f, 'f', self.time_min ) if (self.SAVE_DF_GRIDS): model_output.add_grid( self, self.d_flood, 'd_flood', self.time_min ) # save_grids() #------------------------------------------------------------------- def save_pixel_values(self): ##### save_time_series_data(self) ####### IDs = self.outlet_IDs time = self.time_min ##### #------------- # New method #------------- if (self.SAVE_Q_PIXELS): model_output.add_values_at_IDs( self, time, self.Q, 'Q', IDs ) if (self.SAVE_U_PIXELS): model_output.add_values_at_IDs( self, time, self.u, 'u', IDs ) if (self.SAVE_D_PIXELS): model_output.add_values_at_IDs( self, time, self.d, 'd', IDs ) if (self.SAVE_F_PIXELS): model_output.add_values_at_IDs( self, time, self.f, 'f', IDs ) if (self.SAVE_DF_PIXELS): model_output.add_values_at_IDs( self, time, self.d_flood, 'd_flood', IDs ) # save_pixel_values() #------------------------------------------------------------------- def manning_formula(self): #--------------------------------------------------------- # Notes: R = (A/P) = hydraulic radius [m] # N = Manning's roughness coefficient # (usually in the range 0.012 to 0.035) # S = bed slope or free slope # R,S, and N may be 2D arrays. # If length units are all *feet*, then an extra # factor of 1.49 must be applied. If units are # meters, no such factor is needed. # Note that Q = Ac * u, where Ac is cross-section # area. For a trapezoid, Ac does not equal w*d. #--------------------------------------------------------- if (self.KINEMATIC_WAVE): S = self.S_bed else: S = self.S_free u = (self.Rh ** self.two_thirds) * np.sqrt(S) / self.nval #-------------------------------------------------------- # Add a hydraulic jump option for when u gets too big ? #-------------------------------------------------------- return u # manning_formula() #------------------------------------------------------------------- def law_of_the_wall(self): #--------------------------------------------------------- # Notes: u = flow velocity [m/s] # d = flow depth [m] # z0 = roughness length # S = bed slope or free slope # g = 9.81 = gravitation constant [m/s^2] # kappa = 0.41 = von Karman's constant # aval = 0.48 = integration constant # law_const = sqrt(g)/kappa = 7.6393d # smoothness = (aval / z0) * d # f = (kappa / alog(smoothness))^2d # tau_bed = rho_w * f * u^2 = rho_w * g * d * S # d, S, and z0 can be arrays. # To make default z0 correspond to default # Manning's n, can use this approximation: # z0 = a * (2.34 * sqrt(9.81) * n / kappa)^6d # For n=0.03, this gives: z0 = 0.011417 ######################################################### # However, for n=0.3, it gives: z0 = 11417.413 # which is 11.4 km! So the approximation only # holds within some range of values. #-------------------------------------------------------- if (self.KINEMATIC_WAVE): S = self.S_bed else: S = self.S_free smoothness = (self.aval / self.z0val) * self.d #------------------------------------------------ # Make sure (smoothness > 1) before taking log. # Should issue a warning if this is used. #------------------------------------------------ smoothness = np.maximum(smoothness, np.float64(1.1)) u = self.law_const * np.sqrt(self.Rh * S) * np.log(smoothness) #-------------------------------------------------------- # Add a hydraulic jump option for when u gets too big ? #-------------------------------------------------------- return u # law_of_the_wall() #------------------------------------------------------------------- def print_status_report(self): #---------------------------------------------------- # Wherever depth is less than z0, assume that water # is not flowing and set u and Q to zero. # However, we also need (d gt 0) to avoid a divide # by zero problem, even when numerators are zero. #---------------------------------------------------- # FLOWING = (d > (z0/aval)) #*** FLOWING[noflow_IDs] = False ;****** wflow = np.where( FLOWING != 0 ) n_flow = np.size( wflow[0] ) n_pixels = self.rti.n_pixels percent = np.float64(100.0) * (np.float64(n_flow) / n_pixels) fstr = ('%5.1f' % percent) + '%' # fstr = idl_func.string(percent, format='(F5.1)').strip() + '%' print(' Percentage of pixels with flow = ' + fstr) print(' ') self.update_mins_and_maxes(REPORT=True) wmax = np.where(self.Q == self.Q_max) nwmax = np.size(wmax[0]) print(' Max(Q) occurs at: ' + str( wmax[0] )) #print,' Max attained at ', nwmax, ' pixels.' print(' ') print('-------------------------------------------------') # print_status_report() #------------------------------------------------------------------- # def remove_bad_slopes0(self, FLOAT=False): # # #------------------------------------------------------------ # # Notes: The main purpose of this routine is to find # # pixels that have nonpositive slopes and replace # # then with the smallest value that occurs anywhere # # in the input slope grid. For example, pixels on # # the edges of the DEM will have a slope of zero. # # # With the Kinematic Wave option, flow cannot leave # # a pixel that has a slope of zero and the depth # # increases in an unrealistic manner to create a # # spike in the depth grid. # # # It would be better, of course, if there were # # no zero-slope pixels in the DEM. We could use # # an "Imposed gradient DEM" to get slopes or some # # method of "profile smoothing". # # # It is possible for the flow code to be nonzero # # at a pixel that has NaN for its slope. For these # # pixels, we also set the slope to our min value. # # # 7/18/05. Broke this out into separate procedure. # #------------------------------------------------------------ # # #----------------------------------- # # Are there any "bad" pixels ? # # If not, return with no messages. # #----------------------------------- # wb = np.where(np.logical_or((self.slope <= 0.0), \ # np.logical_not(np.isfinite(self.slope)))) # nbad = np.size(wb[0]) # print('size(slope) = ' + str(np.size(self.slope)) ) # print('size(wb) = ' + str(nbad) ) # # wg = np.where(np.invert(np.logical_or((self.slope <= 0.0), \ # np.logical_not(np.isfinite(self.slope))))) # ngood = np.size(wg[0]) # if (nbad == 0) or (ngood == 0): # return # # #--------------------------------------------- # # Find smallest positive value in slope grid # # and replace the "bad" values with smin. # #--------------------------------------------- # print('-------------------------------------------------') # print('WARNING: Zero or negative slopes found.') # print(' Replacing them with smallest slope.') # print(' Use "Profile smoothing tool" instead.') # S_min = self.slope[wg].min() # S_max = self.slope[wg].max() # print(' min(S) = ' + str(S_min)) # print(' max(S) = ' + str(S_max)) # print('-------------------------------------------------') # print(' ') # self.slope[wb] = S_min # # #-------------------------------- # # Convert data type to double ? # #-------------------------------- # if (FLOAT): # self.slope = np.float32(self.slope) # else: # self.slope = np.float64(self.slope) # # # remove_bad_slopes0() #------------------------------------------------------------------- def remove_bad_slopes(self, FLOAT=False): #------------------------------------------------------------ # Notes: The main purpose of this routine is to find # pixels that have nonpositive slopes and replace # then with the smallest value that occurs anywhere # in the input slope grid. For example, pixels on # the edges of the DEM will have a slope of zero. # With the Kinematic Wave option, flow cannot leave # a pixel that has a slope of zero and the depth # increases in an unrealistic manner to create a # spike in the depth grid. # It would be better, of course, if there were # no zero-slope pixels in the DEM. We could use # an "Imposed gradient DEM" to get slopes or some # method of "profile smoothing". # It is possible for the flow code to be nonzero # at a pixel that has NaN for its slope. For these # pixels, we also set the slope to our min value. # 7/18/05. Broke this out into separate procedure. #------------------------------------------------------------ #------------------------ # Are any slopes Nans ? #------------------------ wnan = np.where( np.isnan( self.slope ) ) nnan = np.size( wnan[0] ) #------------------------------- # Are any slopes nonpositive ? #------------------------------- wneg = np.where( self.slope <= 0.0 ) nneg = np.size( wneg[0] ) #------------------------------- # Are any slopes infinite ? #------------------------------- winf = np.where( np.isinf( self.slope ) ) ninf = np.size( winf[0] ) #---------------------------- nbad = (nnan + nneg + ninf) if (nbad == 0): return #--------------------------- # Merge "wheres" into wbad #--------------------------- S_shape = self.slope.shape bad = np.zeros( S_shape, dtype='bool' ) if (nnan > 0): bad[ wnan ] = True if (nneg > 0): bad[ wneg ] = True if (ninf > 0): bad[ winf ] = True good = np.invert( bad ) #-------------------- # Print information #-------------------- print('Total number of slope values = ' + str(np.size(self.slope)) ) print('Number of nonpositive values = ' + str(nneg) ) print('Number of NaN values = ' + str(nnan) ) print('Number of infinite values = ' + str(ninf) ) #--------------------------------------------- # Find smallest positive value in slope grid # and replace the "bad" values with smin. #--------------------------------------------- print('-------------------------------------------------') print('WARNING: Zero, negative or NaN slopes found.') print(' Replacing them with smallest slope.') print(' Use "new_slopes.py" instead.') S_min = self.slope[ good ].min() S_max = self.slope[ good ].max() print(' min(S) = ' + str(S_min)) print(' max(S) = ' + str(S_max)) print('-------------------------------------------------') print(' ') self.slope[ bad ] = S_min #-------------------------------- # Convert data type to double ? #-------------------------------- if (FLOAT): self.slope = np.float32(self.slope) else: self.slope =
np.float64(self.slope)
numpy.float64